
Recovering structured low-rank operators using
nuclear norms

Thesis by
John J. Bruer

In Partial Fulfillment of the Requirements for the
degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2017
Defended January 17, 2017

ii

© 2017

John J. Bruer
ORCID: 0000-0003-4590-3038

All rights reserved

iii

Acknowledgements

First, I need to thank my advisor Joel Tropp for the mentorship and support
he has given me throughout my time at Caltech. It has been a true pleasure
to learn from someone who has so much passion for both research and teach-
ing. I greatly admire Joel’s commitment to his work and the high standards he
maintains.

I also appreciate the guidance AdamWierman and John Doyle gave me early in
my graduate career. I am grateful that Adam also agreed to serve onmy thesis
committee along with Babak Hassibi and Yisong Yue. Thank you all.

The administrative staff at Caltech is superlative. Many thanks to Jeri Chittum,
Sydney Garstang, Maria Lopez, Carmen Nemer–Sirois, and Sheila Shull for all
their efforts; their help was invaluable.

I have had the pleasure ofworking at Caltech alongside enthusiastic and friendly
colleagues. These include my officemates Hyoung Jun Ahn, Henry Jacobs,
Zhenua Liu, John Pang, and Xiaoqi Ren. I additionally want to recognize Bren-
dan Ames, Richard Chen, Brendan Farrell, Alex Gittens, Mike McCoy, and
Madeleine Udell from Joel’s research group. Thank you for the stimulating
conversations about research and your camaraderie. I especially want to thank
Mike and his wife Anya Demianenko for the restaurant tours and beer festivals
in addition to their friendship.

Trevor Fowler is a wonderful friend, and I throughly enjoyed the time we spent
as roommates in Pasadena. I had always assumed that I would learn a little
something about math at Caltech, but I didn’t realize that I would learn how
to brew beer and bet on horse racing as well. Thank you for making my time
outside of Caltech that muchmore interesting and fun.

To Trevor, Andrew Payne, and Steve Trzesniewski: even though the general fund
is no more, I will never forget pinhead and green shirt. Thank you to Mark

iv

Giacomantonio and Yunia Lubega for all the bar crawls, brunches, and bad TV.

I am thankful for the close friendships that have endured despite my decision
to pursue graduate school on the other side of the country. A special thank you
to Phil Hennessey for his frequent trips out to LA and to his futon for weekends
in New York. May there be many more adventures in the future.

Above all, thank you to my family. My grandfather helped foster my interest
in math when I was young, and I think he has been looking forward to the
completion of this dissertation as much as I have. My parents and brother have
given me all the love and encouragement I could ask for. None of this would
have been possible without their unwavering support.

Finally, thank you to Judy for your love and companionship. I am extremely
fortunate to have you in my life, and I look forward to sharing whatever is to
come.

v

Abstract

This work considers the problem of recovering matrices and operators from
limited and/or noisy observations. Whereas matrices result from summing
tensor products of vectors, operators result from summing tensor products of
matrices. These constructions lead to viewing both matrices and operators as
the sum of “simple” rank-1 factors.

A popular line of work in this direction is low-rank matrix recovery, i.e., using
linear measurements of a matrix to reconstruct it as the sum of few rank-1 fac-
tors. Rank minimization problems are hard in general, and a popular approach
to avoid them is convex relaxation. Using the trace norm as a surrogate for rank,
the low-rank matrix recovery problem becomes convex.

While the trace norm has received much attention in the literature, other con-
vexifications are possible. This thesis focuses on the class of nuclear norms—a
class that includes the trace norm itself. Much as the trace norm is a convex
surrogate for the matrix rank, other nuclear norms provide convex complexity
measures for additional matrix structure. Namely, nuclear norms measure the
structure of the factors used to construct the matrix.

Transitioning to the operator framework allows for novel uses of nuclear norms
in recovering these structured matrices. In particular, this thesis shows how
to lift structured matrix factorization problems to rank-1 operator recovery
problems. This new viewpoint allows nuclear norms to measure richer types of
structures present in matrix factorizations.

Thisworkalso includes aPython softwarepackage tomodel and solve structured
operator recovery problems. Systematic numerical experiments in operator de-
noising demonstrate the effectiveness of nuclear norms in recovering structured
operators. In particular, choosing a specific nuclear norm that corresponds
to the underlying factor structure of the operator improves the performance

vi

of the recovery procedures when compared, for instance, to the trace norm.
Applications in hyperspectral imaging and self-calibration demonstrate the
additional flexibility gained by utilizing operator (as opposed to matrix) factor-
ization models.

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Table of Contents . vii
List of Illustrations . xii
List of Tables . xiii
Chapter I: Introduction . 1

1.1 An overview of the problem . 2
1.1.1 Linear measurement models 3
1.1.2 Factor structure . 5
1.1.3 Regularization . 6
1.1.4 Algorithmic challenges 6

1.2 The nuclear norm framework . 8
1.2.1 Dyads . 8
1.2.2 The nuclear norm . 10
1.2.3 The nuclear norm recovery problem 12

1.3 Operators . 12
1.3.1 Definition . 13
1.3.2 The action of an operator 13
1.3.3 Why operators? . 14
1.3.4 Nuclear norms . 17

1.4 Our contributions and roadmap 17
1.5 Other contributions . 18

Chapter II: Bilinear modeling . 22
2.1 Bilinear models in practice . 22

2.1.1 Matrix factorization . 22
2.1.2 Lifting models . 30

2.2 Numerical techniques for bilinear models 36
2.2.1 Convexification . 36
2.2.2 Alternating minimization 37
2.2.3 Gradient methods . 38
2.2.4 Initialization for nonconvex methods 39

2.3 Development of the nuclear norm 40
2.3.1 The emergence of cross spaces 41
2.3.2 The fundamental theorem of Grothendieck 42
2.3.3 With an eye towards convex optimization 43
2.3.4 Our work . 46

Chapter III: The nuclear norm . 48
3.1 Notation . 48
3.2 Dyads and operators . 49

viii

3.2.1 Dyads . 49
3.2.2 Operators . 51

3.3 The nuclear norm . 53
3.3.1 Crossnorms . 54
3.3.2 Nuclear norms . 55
3.3.3 The unit ball . 56
3.3.4 Dual norms . 58
3.3.5 Connections to sparse approximation 58
3.3.6 The nuclear norm as an atomic norm 60
3.3.7 The nuclear norm recovery problem 60
3.3.8 Computation . 61

3.4 The trace norm . 61
3.5 Nuclear norms involving `1 . 63
3.6 Semidefinite relaxations . 65

3.6.1 An alternative nuclear norm formulation 65
3.6.2 The semidefinite representation 65
3.6.3 Example: The trace norm 67
3.6.4 Superquadratic norms . 68
3.6.5 Relaxed nuclear norms 69
3.6.6 The quality of the relaxation 71

Chapter IV: The operfact Python package 74
4.1 Overview . 74

4.1.1 The optimization problem 75
4.1.2 Roadmap . 76

4.2 Alternating minimization . 76
4.2.1 Transformation to a nonconvex problem 77
4.2.2 The algorithm . 78
4.2.3 Initialization . 78
4.2.4 Convergence . 80

4.3 Design choices . 81
4.3.1 Why CVXPY? . 81

4.4 Operators . 83
4.4.1 The ArrayOperator . 84
4.4.2 The DyadsOperator . 84
4.4.3 Utility functions . 85

4.5 Measurements . 86
4.5.1 InnerProductMeasurement 87
4.5.2 IdentityMeasurement . 88
4.5.3 DirectActionMeasurement 88
4.5.4 SubsampleMeasurement 89
4.5.5 CombinedMeasurements 89

4.6 Regularizers . 89
4.6.1 The helper functions . 90
4.6.2 The NucNorm class . 91
4.6.3 The NucNorm_SDR class 92

ix

4.7 Solvers . 93
4.7.1 The Problem and SolverOutput classes 93
4.7.2 Convex solver for matrix problems 94
4.7.3 Alternating minimization solver 95
4.7.4 Semidefinite representation solver 96

Chapter V: Denoising with nuclear norms 98
5.1 Overview . 98

5.1.1 A preview of the results 100
5.1.2 Roadmap . 100

5.2 Theoretical considerations . 100
5.2.1 Atomic norm denoising 101
5.2.2 The geometric view . 101
5.2.3 Worst-case performance 103
5.2.4 A connection with linear inverse problems 105

5.3 Nuclear norm denoising with operfact 105
5.3.1 The nuclear norm denoising problem 106
5.3.2 The penalty constant . 106

5.4 A systematic study . 107
5.4.1 The penalty constant . 108
5.4.2 The noise level . 110
5.4.3 Convergence of the alternating minimization solver . . . 112
5.4.4 Reliability of the alternating minimization solver 113

5.5 The main results . 121
5.5.1 Factor structure . 121
5.5.2 Operator rank . 123
5.5.3 Semidefinite relaxations 124
5.5.4 Demixing . 127

5.6 Summary . 129
Chapter VI: Application: Hyperspectral image denoising 130

6.1 Overview . 130
6.1.1 Roadmap . 131

6.2 Relevant work . 131
6.2.1 A mixture model for HSI 132
6.2.2 Denoising vs. spectral unmixing 133
6.2.3 Spa+Lr . 133

6.3 Structured abundances . 135
6.3.1 An operator mixture model 135
6.3.2 Test images . 136
6.3.3 Numerical results . 137
6.3.4 Unmixing . 139

6.4 Next steps . 141
6.5 Discussion . 143

Chapter VII: Application: Self-calibration 144
7.1 Overview . 144

7.1.1 Roadmap . 145

x

7.2 Related work . 145
7.2.1 Linear least squares . 145
7.2.2 Calibrating compressed sensing 146
7.2.3 A lifting approach . 147
7.2.4 Our work . 148

7.3 The operator measurement model 149
7.3.1 Assumptions . 149
7.3.2 Implementation in operfact 150

7.4 Numerical results . 152
7.4.1 Single snapshot . 152
7.4.2 Multiple snapshots . 155
7.4.3 Two-dimensional signals 158

7.5 Summary . 160
Bibliography . 162
Appendix A: Proofs of results in Chapter 3 183

A.1 Proof of Proposition 3.3.3 . 183
A.2 Proof of Proposition 3.3.4 . 185

Appendix B: Denoising experiments . 187
B.1 The synthetic denoising experiments 187

B.1.1 Overview . 187
B.1.2 Operator generation . 189
B.1.3 Noise generation . 190
B.1.4 Solver options . 190
B.1.5 Small experiment . 192
B.1.6 A larger experiment . 192

B.2 The penconst_denoise function 193
B.3 Additional figures and tables for the denoising experiment 194

Appendix C: Hyperspectral imaging experiments 222
C.1 The USGS Digital Spectral Library 222
C.2 Generating the test image . 223
C.3 The Spa+Lr method . 223
C.4 The numerical experiment . 224

C.4.1 Nuclear norm solver . 225
C.4.2 Truncated dyadic SVD . 225
C.4.3 Spa+Lr . 226
C.4.4 Parameter choices . 226

Appendix D: Self-calibration experiments 228
D.1 Single snapshot . 228

D.1.1 Procedure . 228
D.1.2 Parameter choices . 229

D.2 Multiple snapshot . 229
D.2.1 Procedure . 230
D.2.2 Parameter choices . 231

D.3 Two-dimensional signal . 231
D.3.1 Procedure . 232

xi

D.3.2 Parameter choices . 232

xii

LIST OF ILLUSTRATIONS

Number Page
1.1 RGB Image . 15
1.2 Geometry of a time–data tradeoff 19
5.1 Constrained denoising . 102
5.2 Average error vs. penalty constant, `1 norm 109
5.3 Average gain vs. SNR, `1 norm . 111
5.4 Outer iterations by convergence tolerance 113
5.5 Average gain vs. SNR, convex and nonconvex solvers 115
5.6 Average gain vs. SNR, SDP and nonconvex solvers 116
5.7 Average gain vs. SNR, convergence tolerance 117
5.8 Average error vs. penalty constant, solver rank 119
5.9 Average gain vs. rank, `1 norm . 124
5.10 Average gain vs. rank, `1 ⊗ `2 norm 125
5.11 Average gain vs. rank, semidefinite relaxations 126
5.12 Demixing with alternating minimization 128
6.1 HSI datacube . 131
6.2 HSI test image . 137
6.3 Unmixing in HSI denoising . 140
6.4 Washington, D.C. Mall HYDICE image 141
7.1 Phase transitions for single-snapshot self-calibration by SNR . . . 153
7.2 Phase transitions for single-snapshot self-calibration by solver rank155
7.3 Phase transitions for multiple-snapshot self-calibration by signal

model and regularizer . 157
7.4 Phase transitions for multiple-snapshot self-calibration by num-

ber of snapshots . 159
7.5 Phase transition for 2D-signal self-calibration 161
B.1 Average error vs. penalty constant, convex solver 195
B.2 Average error vs. penalty constant, SDP solver 196
B.3 Average gain vs. SNR, convex solver 197
B.4 Average gain vs. SNR, SDP solver 198
B.5 Average gain vs. SNR, convex and nonconvex solvers (full) 199
B.6 Average gain vs. SNR, SDP and nonconvex solvers (full) 200

xiii

LIST OF TABLES

Number Page
3.1 Examples of atomic norms . 59
4.1 Properties and methods of a Measurement object 87
4.2 Properties of a Problem object . 93
4.3 Properties of a ProblemOutput object 95
5.1 A preview of the results . 99
5.2 Denoising problem parameters 107
5.3 The main results . 122
6.1 Denoising the HSI test image, 10 dB SNR 138
B.1 Denoising parameters, 4 × 4 ⊗ 4 × 4 192
B.2 Denoising parameters, 16 × 16 ⊗ 16 × 16 193
B.3 The penconst_denoise function 194
B.4 Denoising gains, 4 × 4 ⊗ 4 × 4. 219

1

Chapter 1

Introduction

Matrices provide natural representations for data in many practical settings.
Often, however, we only have partial or noisy observations of the true matrix
underlying a data model. A central question in these cases is how to effectively
recover this matrix from limited information. This endeavor requires the recon-
ciliation of two competing interests: we prefer simple models to complex ones,
and our models should agree with our observations. In other words, we seek
the simplest explanation for what we see.

Matrices have a well-known complexity measure: rank. A low-rank matrix
can be written as the sum of a small number of “simple” (i.e., rank-1) matri-
ces. And while matrices of practical interest are typically low-rank—or at least
approximately low-rank—optimization problems involving rank are usually
computationally intractable.

Surrogate complexity measures, like the well-known trace norm [Faz02; RFP10],
provide computationally efficient ways to promote low-rank solutions in opti-
mization problems. But matrices may possess other types of structure besides
low-rankedness. In particular, we consider factorization models where a matrix
A may be written as A = XY t such that the factors X andY themselves have
meaningful structure.

This thesis focuses on factorization models for data and a family of convex
complexity measures called nuclear norms (of which the trace norm is but one
example). These norms have a long history in functional analysis [Sch50; Gro53;
Jam87; Rya02], andwe canuse them topromote structured low-rank solutions in
matrix recovery problems. Instead of considering a matrix as simply the sum of

2

rank-1 matrices, we can consider it the sum of rank-1 matrices that themselves
have special properties. In the factorization model, this corresponds to finding
A = XY t such that the columns of X andY adhere to some particular structure.

A major contribution of this thesis is the extension of the structured matrix
recovery problem to a class of objects we call operators. Whereas a rank-1matrix
is the tensor product of two vectors, a rank-1 operator is the tensor product
of two matrices. These operators allow us to consider data with more than
two dimensions, but they also have a connection with the matrix factorization
model. Namely, the matrix A = XY t can be viewed as the action of the operator
X ⊗Y on an identity matrix. Therefore, the problem of recovering a structured
matrix may be lifted to the problem of recovering a rank-1 operator from an
observation of its action. By moving to the operator setting, we can use nuclear
norms to recover a larger variety of structured factorizations. We focus on
demonstrating the numerical efficacy of nuclear norms in recovering structured
operators using a Python package, operfact, that we developed.

This thesis is based on joint researchwithmy advisor Joel Tropp and stems from
his unpublished work on nuclear norms [Tro12]. In this chapter, we summarize
our general approach to structured matrix recovery (Section 1.1), review the
concept of nuclear norms (Section 1.2), and introduce our extension of this
nuclear norm framework to operators (Section 1.3). We outline the remainder
of the thesis in Section 1.4 and briefly discuss my other completed research
project in Section 1.5.

1.1 An overview of the problem

Consider anm ×n real matrix A ∈ Mm×n , and assume that we observe the linear
measurements

b = µ(A),

where µ : Mm×n → Rp is a linear operator.

Given the measurements b , we want to know:

• When can we find a factorization A = XY t such that the factors X andY

have particular structure?

• When can we approximate A itself under the assumption that a factoriza-
tion A = XY t exists where the factors have particular structure?

3

The goal of this work is a numerical study of these problems. We develop a
software package (operfact, see Chapter 4) to model structured factorization
problems, and we employ it to demonstrate how a class of convex complexity
measures called nuclear norms aid in their solution.

Finding a structured factorization is an interesting (and challenging problem)
even when we have access to every entry of the matrix A. In these cases, the
factors themselvesmay have a useful interpretation, andwe review several such
models in Section 2.1.1. Uncovering the appropriate factorizationmay reveal an
interesting underlying explanation for our data. Chapter 7 describes a problem
in self-calibration where recovery of the factorization equates to recovery of
signals sent over a channel with uncertain parameters.

Other times, however, we may seek to approximate A itself from limited and/or
noisy measurements b . In Section 1.1.1 we discuss several types of linear mea-
surements that correspond to practical data acquisition situations. If we expect
that A has a factorization A = XY t where the factors X andY have particular
structure, we should use this information to inform our approximation proce-
dure. Indeed, this knowledge is critical if we wish to accurately approximate A

from partial observations. We give examples of such structure in Section 1.1.2.
Chapters 5 and 6 show the benefit of incorporating prior beliefs on factor struc-
ture into denoising problems.

Note that approximating A does not necessarily require the recovery of a struc-
tured factorization but insteadmerely relies on the fact that such a factorization
exists. This is a subtle yet important distinction.

In order to solve these recovery problems, we rely on the concept of regular-
ization (Section 1.1.3). Our approach, however, does face some algorithmic
challenges, and we outline those in Section 1.1.4.

1.1.1 Linear measurement models

In this work we consider linear measurement models. That is, given the matrix
A ∈ Mm×n , we observe a vector of measurements b ∈ Rp with the i th entry

bi = 〈M i, A〉 + zi,

where M i ∈ Mm×n is a knownmatrix and zi ∈ R is additive noise.

4

It is convenient to write
b = µ(A) + z,

where µ : Mm×n → Rp is the linearmeasurement map induced by the M i and
z ∈ Rp is the additive noise.

While it may seem limiting to restrict ourselves to linear measurements, this
model covers many data acquisition scenarios of practical interest.

Denoising. In the case where the map returns a vectorized version of the
originalmatrix, i.e., µ : A 7→ vec A, the vectorb is simply all entries of thematrix
corrupted by additive noise. Given these measurements, a natural task is to
recover the original matrix A. This problem is called denoising, and we will
consider it in more detail in Chapters 5 and 6.

Missing entries. Let µ be the operator that returns a particular subset of p

entries from amatrix.

This situation leads to thematrix completion problemwhere we wish to recover
the original matrix by filling in the unobserved entries. It appears in appli-
cations such as collaborative filtering [SRJ05; KBV09] where a system makes
predictions about users’ preferences while having observed only a small subset
of all possible preferences.

Compressed sensing. In compressed sensing [CRT06a; Don06] we attempt
to recover a signal from few random measurements. That is, we take p ran-
dom linear observations of the low-rank matrix A ∈ Mm×n where p < mn. At
first blush this may appear impossible. If, however, we take the number p of
measurements large enough, we can succeed with high probability [RFP10;
CRPW12; ALMT14].

Phase retrieval et al. Lifting procedures [GW95; Nes98; BN01] can transform
quadratic or bilinear vector measurements into linear measurements of rank-1
matrices. This technique has found applications in signal processing including
phase retrieval [BBCE09; CMP11; CESV13], blind deconvolution [ARR14], and
self-calibration [LS15b]. We use nuclear norms to perform self-calibration in
Chapter 7.

Structure from action. Wecan also define themap µ as the action of thematrix
on a fixed vector. That is, µ : A 7→ Ax , where x ∈ Rn determines µ . This

5

occurs, for instance, in randomized linear algebra [HMT11] where the goal is to
approximate low-rank matrices from their actions on vectors.

Given any of these linear measurements, the goal is to either factor or recover
the partially observed matrix.

1.1.2 Factor structure

It is clear, however, that without additional assumptions on the underlying
structure of the matrix we will not have enough information to do so. Indeed,
consider the example of missing entries. Many matrices of a given size may
agree on a subset of their entries. We apparently have too little information to
reconstruct the original matrix.

The key realization is that an m × n matrix does not necessarily contain mn

independent entries. In practice, matrices have structure, and this structure
implies that these matrices contain limited information. Again, we consider
matrices that admit factorizations

A = XY t,

where the factors X andY are themselves structured.

Examples of possible types of factor structure include

• Sparsity: The factor has few nonzero entries.

• Repeated structure: The factor is the linear image of a vector, such as a
Toeplitz matrix.

• Set membership: The factor belongs to a convex set, such as the set of
matrices with appropriate size and nonnegative entries.

• Low complexity: The factor has low complexity as measured by a convex
function, such as a norm.

Additionally we often find that matrices have low rank. That is, a factorization
A = XY t exists where the inner dimension of the decomposition is small. While
the rank of the matrix A is somewhat independent of factor structure, a low-
rank assumption on A additionally serves to limit the amount of information
contained in the matrix.

6

In thisworkwe focus on factorizationsA = XY t where the columnsof the factors
X andY have low complexity as measured by convex functions. In particular,
we consider the cases where we measure this complexity using norms. This
leads to the nuclear norm framework we introduce in Section 1.2. Chapter 3
covers the mathematical background of these norms in greater detail, while
Section 2.3 discusses their historical development.

1.1.3 Regularization

Wewish to use any prior knowledge regarding the factor structure of a matrix
in order to recover it from incomplete observations. This goal creates a tension
between remaining faithful to the measurements while seeking simpler (i.e.,
more structured) solutions. The key concept that enables us to balance these
interests is regularization.

Consider a convex function f that assigns low values to matrices that have
decompositions composed of “simple” factors. To recover a structured matrix
from linear measurements b , we can then attempt to solve one of the following
three equivalent problems:

minimize
A

loss(A;b) subject to f (A) ≤ γ

minimize
A

f (A) subject to loss(A;b) ≤ ε (1.1)

minimize
A

loss(A;b) + λf (A),

where loss(·;b) is a convex function measuring the agreement between the
candidate matrix (under the linear measurement map) and the observations b .

These problems illustrate our competing interests in maintaining fidelity to
our observations while seeking simple solutions. The parameters γ, ε, and
λ all serve to tune this balance. The complexity measurement f serves as a
regularizer : it pushes us to findmore regular, i.e., structured solutions.

1.1.4 Algorithmic challenges

Given our assumptions on the regularizer f and the loss function, the regu-
larized recovery problems (1.1) are convex. In fact, they are regularized linear
inverse problems owing to the fact that our measurement maps are linear. But
even if we assume that we can construct appropriate convex regularizers f on
the factor structure, we face significant challenges in solving these problems.

7

1.1.4.1 Convex, but intractable f

The convex approach in (1.1) seems simple and convenient, but our discussion
of nuclear norms will show that expressing convex regularizers f for factor-
izations is not straightforward. Often there is no closed form for f , but even
worse, wehave examples of nuclear norms that are provably difficult to compute
exactly.

Later we discuss two approaches for handling these situations. Our most versa-
tile method relies on nonconvex alternating minimization (Section 4.2), while
the other more narrowly applicable method finds semidefinite relaxations for
some interesting cases (Section 3.6). While the shift to nonconvex methods
introduces additional complexities, we take some solace in the fact that a truly
convex problem underlies our efforts.

1.1.4.2 Factorization

If we seek a structured matrix factorization, the approach in (1.1) requires an
additional step. After retrieving the approximation A we must then apply a
factorization procedure. In a few cases where f is a nuclear norm, we will
see that an appropriate factorization follows with almost no effort. This is the
exception, however.

Generally, finding this factorization takes the form

Find (X , Y) subject to XY t = A and (X , Y) ∈ C,

where C is the set of permissible structured factors. This bilinear inverse prob-
lem is nonconvex and presents optimization challenges.

1.1.4.3 Rank constraints

Rank is an important complexity measure for matrices, and we can define in it
terms of a decomposition.

Definition 1.1.1 (Rank). The rank of a matrix A ∈ Mm×n is the smallest inner
dimension over all possible decompositions. That is,

rank(A) := min
{

r : A = XY t , X ∈ Mm×r , Y ∈ Mn×r

}
.

Low-rankmatrices admit decompositions with small inner dimension, and this
dimension reduction leads to simple models. Furthermore, practical matrices

8

are often low-rank or approximately low-rank. In fact, we may believe that the
underlying model of the data is truly low-rank, and any real instantiation of
that model is noisy. Seeking low-rank models is therefore justified.

If, however, we incorporate a low-rank assumption into our algorithmic ap-
proach, we face a problem. Indeed, consider the rank minimization problem

minimize
A

rank(A) subject to loss(A;b) ≤ ε .

The rank constraint is not convex, and in general, this problem is difficult to
optimize.

In her doctoral thesis, Fazel [Faz02] proposed replacing the difficult rank con-
straint with the trace norm. That is,

minimize
A

‖A‖S1 subject to loss(A;b) ≤ ε,

where the trace norm ‖A‖S1 , also known as the Schatten 1-norm, sums the
singular values of A. By analogy with the `1 norm—a popular heuristic for pro-
moting sparsity [DS89]—the trace norm promotes matrices with few nonzero
singular values. Since the rank of a matrix corresponds exactly to its number
of nonzero singular values, this approach proves effective in finding low-rank
solutions.

As anorm, it is necessarily convex, and inparticular itmaybe computed through
a semidefinite program. Furthermore, this norm belongs to the class of nuclear
norms1 that we introducemomentarily. Wewill see that nuclear normsmeasure
the complexity of matrices through the size and structure of their possible
decompositions. Therefore we can use such norms to promote low-rank, as
well as structured, solutions.

1.2 The nuclear norm framework

In this section we define nuclear norms and give some intuition for their behav-
ior; we give a more complete development in Chapter 3. But first we introduce
tensor notation for matrix decompositions.

1.2.1 Dyads

The discussion of nuclear norms is closely tied to matrix decompositions, and
so we now introduce notation to assist us in working with such decompositions.

1In fact, the trace norm is often called “the nuclear norm”.

9

Definition 1.2.1 (Dyad). Given vectors x ∈ Rm and y ∈ Rn , we define the dyad
x ⊗ y to be the rank-1 matrix

x ⊗ y := x y t =


x1y1 · · · · · · x1yn

x2y1 x2y2 · · · x2yn
...

...
. . .

...

xm y1 · · · · · · xm yn


∈ Mm×n . (1.2)

For any matrix decomposition A = XY t with inner dimension r , we can write

A =
r∑

i=1
x i ⊗ y i,

where thex i and y i are the columnsofX andY . Just as thematrix decomposition
A = XY t is not unique, neither is the dyadic decomposition.

We then have the following definition for rank.

Definition 1.2.2 (Rank). The rank of a matrix is the minimal number of dyads
required among all of its dyadic decompositions. That is,

rank(A) := min
{

r : A =
r∑

i=1
x i ⊗ y i

}
.

This corresponds exactly to the notion that a rank-r matrix can be written as
the sum of r rank-1 matrices.

At first glance it appears that we have done nothing but introduce unusual
notation for writing matrices and matrix factorizations. The benefits of this
approach should become clearer as we continue, but for now we highlight the
main advantages.

First, the notation itself suggests that the vectors x and y have equal standing
in the dyad x ⊗ y . We consider their structures separately but consider their
contributions to the dyad equally. Second, it provides a clean notation for
writing factorizations that dispenses with using the matrix transpose. Third,
the symbol ⊗ suggests the connection between this work and the theory of
tensor products. (We discuss this briefly in Section 1.3.3 and survey some of
the relevant historical developments in Section 2.3.) Finally, it allows for us to
easily extend thework on nuclear norms inmatrix factorizations to the operator
setting. We introduce this extension in Section 1.3, and it is amajor contribution
of this thesis.

10

1.2.2 The nuclear norm

Say that we have normed spaces X = (Rm, ‖·‖X) andY = (Rn, ‖·‖Y). We can
now consider norms on X ⊗Y , and we insist that any such norm |||·||| satisfies
the property

|||x ⊗ y ||| = ‖x ‖X ‖y ‖Y , (1.3)

for all dyads x ⊗ y with x ∈ X and y ∈ Y . This type of norm is called a crossnorm,
and we discuss it more formally in Section 3.3.1. The crossnorm property (1.3)
ensures that each factor of the dyad contributes to the norm symmetrically. We
can see that scaling the dyad also scales the crossnorm, as expected.

For now, we want to consider how we can extend the crossnorm (1.3) to sums
of dyads. This choice is not unique, but any such choice must obey the triangle
inequality ������������ r∑

i=1
x i ⊗ y i

������������ ≤ r∑
i=1
‖x i ‖X ‖y i ‖Y . (1.4)

We desire the largest such norm in order to maximally penalize deviation from
structure, and so it is sensible to use the bound (1.4) to define the norm. Note,
however, that the normmust also agree for equivalent sums of dyads (i.e., all
possible dyadic decompositions of the equivalentmatrix). So over all equivalent
dyadic decompositions, we take the best possible value of (1.4). This leads to the
definition of the nuclear norm. See Section 3.3 for amore detailed development.

Definition 1.2.3 (Nuclear norm). Consider normed spaces X = (Rm, ‖·‖X) and
Y = (Rn, ‖·‖Y). For every matrix A ∈ Mm×n we define NX,Y , the nuclear norm
on X ⊗Y , as

NX,Y (A) := inf
{∑

i

‖x i ‖X ‖y i ‖Y : A =
∑

i

x i ⊗ y i

}
. (1.5)

Alternatively, we have

NX,Y (A) := inf
{
‖λ‖`1 : A =

∑
i

λi x i ⊗ y i, ‖x i ‖X = 1, ‖y i ‖Y = 1
}
.

Both infima are taken over all (finite) decompositions of A.

As desired, we can then interpret the nuclear norm as measuring the “cost” of
constructing the matrix from a dyadic decomposition. Adding more dyads to
the construction increases the cost as does increasing the magnitude of the

11

dyads. That is, adding the dyad x ⊗y to the decomposition incurs cost ‖x ‖X ‖y ‖Y .
We compute the nuclear norm using the least costly decomposition.

This suggests thatwe can use nuclear norms as regularizers to promotematrices
that have structured factorizations. By choosing the norms ‖·‖X and ‖·‖Y , we
can control which types of factor structures the nuclear norm NX,Y favors. Also,
the nuclear norm penalizes the addition of dyads to the factorization, and so
we believe that the nuclear norm assists in promoting low-rank solutions. We
will make the geometric intuition behind this more clear in Section 3.3.6, but
for now we give a familiar example.

1.2.2.1 Example: The trace norm

The `2 ⊗ `2 nuclear norm is the trace norm ‖·‖S1 .

Proposition 1.2.4 (The trace norm). Let A ∈ Mm×n have the compact SVD
A = UΣV t. In dyadic notation, we write

A =
r∑

i=1
σiu i ⊗ v i . (1.6)

Then the `2 ⊗ `2 nuclear norm, N`2, `2 , is

N`2, `2(A) = inf
{∑

i

‖x i ‖`2 ‖y i ‖`2 : A =
∑

i

x i ⊗ y i

}
(1.7)

=

r∑
i=1

σi,

where the infimum runs over all decompositions of A. We conclude that
N`2, `2(A) = ‖A‖S1 .

Weprove the proposition in Section 3.4. If, however, the SVD (1.6) is the optimal
decomposition in the infimum (1.7), then it is clear that the conclusion holds.

Now—if we continue to think of the nuclear norm as measuring the cost of
constructing a matrix—the cost of adding the dyad x ⊗ y to the optimal decom-
position is ‖x ‖`2 ‖y ‖`2 . In particular, the magnitude of the dyads is measured
with respect to the `2 norms of their factors. We seek factors with low total
energy. The trace norm results from searching over all decompositions and only
considering the one with the lowest cost.

We provide additional examples of nuclear norms in Section 3.5.

12

1.2.3 The nuclear norm recovery problem

This thesis focuses on the use of nuclear norms to regularize structured matrix
recovery problems. Wemodify the regularized recovery problem (1.1) accord-
ingly.

Assume that we have access to noisy linear measurements b of an underlying
true matrix A\ ∈ Mm×n . That is,

b = µ(A\) + z,

where µ : Mm×n → Rp is a linear measurement map and z ∈ Rp is additive
noise.

Further assume that A\ admits a factorization

A\ =
r∑

i=1
x \i ⊗ y \i ,

where the x \i ∈ (Rm, ‖·‖X) and the y \i ∈ (Rn, ‖·‖Y) have low complexity as
measured by the X andY norms.

We approximate A\ by solving

minimize
A

1
2
‖b − µ(A)‖2`2 + λNX,Y (A), (1.8)

where NX,Y is the nuclear norm on X ⊗Y (1.5), and λ > 0 is a penalty constant
controlling the balance between solution complexity and measurement fidelity.
Here we have chosen the squared `2 norm as the convex loss function.

The key point is that (1.8) is a convex program! Nuclear norms allow us to
convexify structural constraints on the factors of a matrix.

Solving (1.8) numerically while demonstrating the utility of nuclear norms is
the focus of this thesis. One main contribution of this work is the development
of a Python software package (operfact) to model and solve these problems.
We discuss the details of the software in Chapter 4. Our othermain contribution
is the extension of the nuclear norm recovery problem to structured operators.
We turn our attention to this now.

1.3 Operators

While we have used matrices to motivate nuclear norms, we will consider a
more general set of tensors for the remainder of this thesis. We call these tensors

13

operators, and we construct them by generalizing our definition of dyad to also
allow for matrix factors. Even though this modification may seem simple, it
results in novel uses for nuclear norms.

1.3.1 Definition

The above definition of dyads (1.2) considers only the tensor product of two
vectors. But what about the tensor product of twomatrices? Or a matrix and
a vector? These objects certainly exist, and we again choose to define them
through a correspondence with rank-1 matrices.

Definition 1.3.1 (Dyad, redux). Let vec(·) be the mapping that takes a matrix
inMd1×d2 and returns the vector inRd1d2 created by stacking the columns of the
matrix in order from left to right. Given X ∈ Mm×n andY ∈ Mp×q , let the dyad
X ⊗Y be the rank-1 matrix

X ⊗Y := vec(X) vec(Y)t ∈ Mmn×pq . (1.9)

In the case where n = q = 1, this definition corresponds with Definition 1.2.1.

The operation ⊗ in (1.9) is not the Kronecker product. We are instead repre-
senting the dyad X ⊗ Y ∈ Mm×n ⊗ Mp×q as a matrix in Mmn×pq through the
Choi-Jamiołkowski isomorphism. This mapping is prominent in quantum in-
formation theory; see Watrous’s lecture notes [Wat11] for more details. We use
this particular representation for its convenience in stating subsequent results.
Note, however, that this Choi-Jamiołkowski representation and the Kronecker
product are themselves related through an isomorphism.

An operator is then any finite linear combination of dyads

A =
∑

i

λi X i ⊗Y i .

For the same dimensions as in the definition above, we denote the linear space
of operators asOm×n⊗p×q .

1.3.2 The action of an operator

We call these objects operators because we can indeed regard them as linear
mappings. First, we can define the action of the dyad X ⊗Y ∈ Mm×n ⊗Mp×q on
a tensor product of vectors as

(X ⊗Y)(u ⊗ v) := X u ⊗Y v = X (uv t)Y t,

14

where u ∈ Rn and v ∈ Rq . In other words, we can view a dyad as the tensor
product of two linear transformations.

We then extend this definition by linearity to obtain a linear mapping X ⊗
Y : Mn×q → Mm×p . For any matrix M =

∑
i u i ⊗ v i , we have that

(X ⊗Y)
(∑

i

u i ⊗ v i

)
=

∑
i

X (u iv t
i)Y t = X MY t.

Finally, another linear extension allows us to view the operatorA =
∑

i X i ⊗Y i

as the linear map fromMn×q toMm×p given by

A(M) =
(∑

i

X i ⊗Y i

)
(M) =

∑
i

(X i ⊗Y i)(M) =
∑

i

X i MY t
i, (1.10)

for any M ∈ Mn×q .

We point out that the matrix representation (1.9) of an operator given by the
Choi-Jamiołkowski isomorphism is not used to compute (1.10). The Kronecker
product, however, may be used to perform this computation. In any case, the
representations are again isomorphic.

1.3.3 Why operators?

We have twomain motivations for using operators.

A connection to multidimensional arrays. Even though we equate dyads with
rank-1 matrices, we see above that we can also think of these operators as 4-
dimensional arrays (or 3-dimensional arrays). Indeed, the entries of the matrix
representation of X ⊗ Y contain all products xi j ykl of the entries of X andY .
We could therefore choose to index entries of the operator by using 4 numbers
(instead of 2).

Note that inmultilinear algebra it is common toconstruct tensors likea⊗b⊗c⊗d

that are truly considered as 4-dimensional arrays. Such objects are said to
have tensor order 4. They are the natural extensions of one-dimensional arrays
(vectors) and two-dimensional arrays (matrices). While itmay be convenient for
us to consider the entries of our operators as four-dimensional arrays, note that
we have defined our objects by correspondence to matrices (order-2 tensors).
That is, our operators satisfy bilinear identities as opposed to more involved
multilinear identities. In this way we rely solely on bilinear algebra, which is an
important mathematical and computational distinction.

15

(red component) (green component)

(blue component) (composite)

Figure 1.1: RGB Image. Each pixel of the Caltech logotype (bottom right) is
the sum of red, green, and blue components. This RGB image is therefore a
hyperspectral image with 3 spectral bands.

Lifting matrices. Operators also allow us to consider additional structure in
matrix factorizations by using nuclear norms. We note that the factorization
A = XY t with inner dimension r has a connection to the rank-1 operator X ⊗Y

when viewed as the linear mapping (1.10). That is,

A = XY t if and only if A = (X ⊗Y)(Ir) = X IrY t.

The key point is that we can view the matrix A as a linear image of the operator
X ⊗Y . Therefore the problem of factoring A becomes a problem of finding (and
factorizing) a rank-1 operator given its action on a matrix (i.e., the identity).

While nuclear norms for the matrix A only allow us to consider structure on
the columns of X andY , nuclear norms on the lifted operator X ⊗Y allow us to
consider structure on the factors as a whole. This change of perspective enables
us to consider nuclear norms that can account for additional types of two-
dimensional structure present in the factors of these matrix decompositions.

We should note, however, that this lifting procedure carries a cost. In particular,
the dimension of the search space rises and the number of measurements
relative to that dimension falls. This suggests that the matrix factors X andY

must be highly structured in order for recovery to succeed.

1.3.3.1 Examples of operators

To get a sense for the utility of operators, let us consider somepractical examples.

Hyperspectral images. Consider an m × n color image in RGB format. That
is, for each pixel we have three intensity values: red, green, and blue. We could

16

store this image as the operator

A =

3∑
i=1

X i ⊗ e i ∈ Om×n⊗3×1,

where X 1, X 2, and X 3 are thematrices giving the red, green, and blue intensities
for each pixel, and the e i ∈ R3 are standard basis vectors. Figure 1.1 illus-
trates this using the Caltech logotype. This notion extends to images storing
intensities at any number of measured wavelengths, and such hyperspectral
images have applications in remote sensing [Row+74; RGA77; VG88; VG93],
astronomy [Heg+03], quality control [KCM01; Gow+07; Rod+05], and medical
diagnosis [AKKT10]. We use the nuclear norm framework to denoise hyperspec-
tral images in Chapter 6.

Two-dimensional time series. We can represent two-dimensional time series
as three-dimensional arrays. The entry ai jk of such an arrayA would denote
the (i, j)th value at time k . A familiar concrete example is video, where ai jk

would be the intensity of light at pixel (i, j) of the k th frame.

Graphs with multiple linkages. Graphs have natural matrix representations
through adjacency matrices. Assume thatG = (V, E) is a directed, unweighted
graph on the ordered set of verticesV with edges in E . Let X be the |V | × |V |
matrix such that xi j = 1 if an edge exists from vertex i to vertex j and xi j = 0
otherwise. Then X is the adjacency matrix forG .

We can imagine situations where we wish to represent various types of connec-
tions between the same set of vertices. For instance, Padgett [Pad94] cataloged
the business andmarital ties between prominent Renaissance-era Florentine
families. Dunlavy et al. [DKK12] constructed a network between academic
papers that not only contained citation links but also additional links such as
authorship and keyword similarity. These situations may be modeled math-
ematically as a set of graphs {Gk = (V, Ek)}k with corresponding adjacency
matrices {X k }k . We may then combine this multiply-linked graph into the
operator

A =
∑

k

X k ⊗ e k .

If we regardA as a three-dimensional array, then the entry ai jk = 1 if an edge
of the k th kind exists from vertex i to vertex j . The above-mentioned work of
Dunlavy et al., in fact, uses tensor decompositionmethods to analyze a similarly
constructed tensor.

17

Lifted matrices. As we just demonstrated, the matrix A = XY t may be viewed
as a linear imageof the rank-1operatorX ⊗Y . This enables datamodels basedon
matrix factorization to be considered as low-rank operator recovery problems.
In Section 2.1.1 we present a number of such models found in the literature.

1.3.4 Nuclear norms

The nuclear norm definition also generalizes to the operator setting with little
modification.

Definition 1.3.2 (Nuclear norm). Consider normed spaces X = (Mm×n, ‖·‖X)
andY = (Mp×q, ‖·‖Y). For every operatorA ∈ Om×n⊗p×q , we define NX,Y , the
nuclear norm on X ⊗Y , as

NX,Y (A) := inf
{∑

i

‖X i ‖X ‖Y i ‖Y : A =
∑

i

X i ⊗Y i

}
.

Alternatively, we have

NX,Y (A) := inf
{
‖λ‖`1 : A =

∑
i

λi X i ⊗Y i, ‖X i ‖X = 1, ‖Y i ‖Y = 1
}
.

Both infima are taken over all (finite) decompositions ofA.

This definition corresponds exactly to that of nuclear norms on matrices. It
againmeasures the total cost of building an operator fromdyads, penalizing the
number andmagnitude of dyads (as measured by the norms of their factors).

Similarly, this results in the nuclear norm recovery problem for operators. We
approximate the operatorA\ by solving

minimize
A

1
2
‖b − µ(A)‖2`2 + λNX,Y (A), (1.11)

where µ is a linear measurement map, and b = µ(A\) are the observed mea-
surements of the true operatorA\. Here NX,Y is a nuclear norm on operators.
This approach, again, results in a convex program that can promote the recovery
of operators with distinguished factor structure.

1.4 Our contributions and roadmap

The main contributions of this thesis are an extension of nuclear norms to
the setting of operators; a software package to model and solve the nuclear

18

norm recovery problem (1.11); and an empirical study of the effectiveness of
nuclear norms as regularizers in operator recovery problems. We use examples
in denoising and self-calibration for our numerical experiments.

In Chapter 2 we discuss the relationship between this work and the literature in
bilinear models and decomposition norms. Chapter 3 presents relevant results
of the nuclear norm framework for operator recovery problems. This work is
largely based on the unpublished paper [Tro12] of Joel Tropp.

In Chapter 4 we describe the development and use of the Python package
operfact that we created to enable the rapid prototyping of operator models
and nuclear norm recovery problems. Our open-source software, available on
GitHub2, provides the versatility to experiment with nuclear normmodels in
an object-oriented fashion. We include various linear measurement models
and nuclear norms in the base package but also allow for additional expansion.

In Chapter 5 we use our software package to investigate the performance of
nuclear norms in synthetic denoising experiments. We show that incorporat-
ing prior information regarding factor structure indeed improves denoising
performance versus other nuclear norms and, in particular, the trace norm.
Chapter 6 extends these examples to an application in hyperspectral imaging
incorporating real data.

Finally we consider a self-calibration application in Chapter 7. We use an op-
erator lifting model to linearize a set of bilinear measurements. Our model
can then incorporate the 2-dimensional structure of the underlying signals (as
opposed to the 1-dimensional structure in the matrix lifting model).

1.5 Other contributions

In addition to the above, I completed a research project showing that a resource
tradeoff exists in solving certain statistical problems via convex optimization.
We summarize that work here.

The work of Chandrasekaran and Jordan [CJ13] proposed using a hierarchy
of convex relaxations in constrained denoising problems to achieve a time–
data tradeoff. In these problems, the accuracy of denoising depends on the
number of data samples taken and the local geometry of the constraint set. They

2https://github.com/jbruer/operfact

https://github.com/jbruer/operfact

19

xÚ

nullHAL + xÚ

DI f , xÚM + xÚ

9x : f HxL £ f IxÚM=

9x : f
�

HxL £ f
�

IxÚM=

xÚ

nullHAL + xÚ

Figure 1.2: Geometry of a time–data tradeoff. The left panel shows the geomet-
ric exact recovery condition for the regularized linear inverse problem (1.13).
The blue shaded area shows the convex cone of directions that decrease f at
the true signal x \ (the descent cone), and the red line signifies the null space
of the measurement matrix A. Provided that these two sets intersect trivially,
x \ is the unique solution to the regularized linear inverse problem. The right
panel shows a relaxed regularizer f̃ and the growth of the descent cone. As the
number of measurements of x \ grows, the null space shrinks. This provides
more “room” to relax the regularizer while maintaining exact recovery. This
figure originally appeared in [BTCB14, Fig. 1].

combined this geometric insight with a framework for generating hierarchies of
relaxed constraint sets. These relaxed problems becomemore computationally
efficientwhile providing sufficient accuracy in the presence of growingnumbers
of samples.

My collaborators and I harnessed the same geometric insight, albeit with a
different relaxationmethod, to establish a resource tradeoff in sparse regression
problems. Namely, we considered the situation where x \ ∈ Rd is a signal of
interest and we observe linear measurements

b = Ax \ + z, (1.12)

where A ∈ Rm×d is a known compressed sensing matrix (m < d), and z is noise.

In our first paper [BTCB14] we considered the noiseless case (i.e., z = 0) and
the regularized linear inverse problem

minimize
x

f (x) subject to Ax = b, (1.13)

where f is a convex regularizer that promotes the structure of x \. The success
of this program depends on the alignment of the null space of A and the convex

20

cone of directions that decrease f at x \. When these two sets intersect trivially,
the regularized linear inverse problem recovers the true signal x \ exactly. The
left panel of Figure 1.2 illustrates this condition.

Following Chandrasekaran and Jordan, we recognized that this recovery con-
dition presents a geometric opportunity. In particular, as the number m of
measurements grows, the size of the null space of A shrinks. This allows for in-
creasingly relaxed regularizers—with larger descent cones—while maintaining
exact recovery. Provided that these relaxed regularizers allow for faster com-
putation, we can achieve a time–data tradeoff. The right panel of Figure 1.2
demonstrates this opportunity.

To achieve this tradeoff, we proposed a family of strongly convex majorizers
{fµ : µ > 0} with

fµ(x) := f (x) + µ

2
‖x ‖2`2 . (1.14)

Replacing the regularizer f in (1.13) with the strongly convex relaxation fµ ,
results in a smooth dual problem that we can then solve using a Nesterov-style
accelerated gradient descent technique [Nes05; AT06; BCG11]. As the parameter
µ grows, the dual problembecomes smoother and allows for faster convergence.

On the other hand, increasing µ also increases the size of the descent cones of fµ .
To determine howmuchwe can increase µ given a numberm ofmeasurements,
we must be able to calculate the size of the descent cones of fµ and compare
them to the null space of A. Amelunxen et al. [ALMT14] proposed the statistical
dimension tomeasure the size of convex cones. They proved that for Gaussian A,
exact recovery in (1.13) occurswithhighprobability provided that thenumberm

of measurements exceeds the statistical dimension of the regularizer’s descent
cone at x \.

We calculated the statistical dimension of the descent cones of the smoothed
`1 norm and Schatten 1-norm (trace norm) at sparse vectors and low-rank
matrices, respectively. This allowed us to compute the maximal value of µ as a
function of the number m of available measurements. Our mathematical result
suggests the existence of a time–data tradeoff. We restate that result here in the
case where the true signal x \ ∈ Rd is an s-sparse vector and the regularizer f is
the `1 norm.

Proposition 1.5.1 (Error bound for dual-smoothed sparse vector recov-
ery [BTCB14, Prop. 4.2]). Let x \ in the measurement model (1.12) be an s-sparse

21

vector in Rd , and let A ∈ Rm×d have independent standard Gaussian entries.
Take the regularizer f in (1.13) to be the `1 normand replace it with the smoothed
version fµ in (1.14), where we set µ := µ(m) to be the maximal value of the
smoothing parameter µ as a function of the number m of measurements. The
sequence {x k }k of primal iterates resulting from solving the smoothed version
of (1.13) using a suitable Nesterov-style accelerated gradient method satisfies

‖x \ − x k ‖`2 ≤
2d

1
2 κ(A)

[
ρ · (1 + µ(m)‖x \‖`∞)2 + (1 − ρ)

] 1
2

µ(m) · k ,

where ρ := s/d is the sparsity of x \, and κ(A) is the condition number of A.

The result suggests that the error at the k th iteration decreases roughly as
1/µ(m), and so a time–data tradeoff exists. We confirmed the existence of the
tradeoff through numerical experimentation.

Our subsequent work [BTCB15] considered the noisy case, i.e., where z in (1.12)
is nonzero. The reasoning therein for the existence of a resource tradeoff is
similar to the noiseless case. We utilized the work of Oymak andHassibi [OH15]
characterizing the stability of the phase transition in Amelunxen et al. [ALMT14]
to estimate the accuracy of the (smoothed) regularized regression problem

minimize
x

fµ(x) subject to ‖Ax − b ‖`2 ≤ ε .

This again admits a dual problem solvable using Nesterov-style accelerated
gradient methods [Nes07].

We again proved theoretical results suggesting a resource tradeoff. In this case,
however, we may balance sample size, computational time, and statistical
accuracy. Numerical results confirmed the existence of these tradeoffs with
both synthetic data and an image interpolation problem.

22

Chapter 2

Bilinear modeling

In this chapter we review bilinear data models appearing in the literature. Sec-
tion 2.1 highlights the use of bilinear models in various application areas. We
survey twomajor techniques used to recover or factor bilinear models in Sec-
tion 2.2. Finally, we discuss the history of nuclear norms—the focus of our
efforts—in Section 2.3.

2.1 Bilinear models in practice

In this section, we examine several examples of bilinear models and discuss
their historical development. We split the examples into two categories: matrix
models and lifted models.

2.1.1 Matrix factorization

Wecallmatrix factorizationmodels thosewhere thedatanaturally arise inmatrix
(or operator) form, and where structured factorizations of those matrices lead
directly to interpretations of the models.

2.1.1.1 Sparse PCA

Consider anm×n datamatrix A where them rows represent observations overn

variables. Principal component analysis (PCA) aims to find linear combinations
of the original n variables that correspond to the directions ofmaximal variance
in the data. These new “variables” are called principal components, and if a
small number of them capture much of the variation in the original data set, we

23

can achieve dimension reduction by simply transforming our original variables
to the linear space spanned by that small subset.

If we assume that the columns of A have zero mean, we can compute the
principal components through the singular value decomposition (SVD)

A = UΣV t or UΣ = AV ,

where the columns ofUΣ are the principal components, and the columns of
V are the loadings. In general we see that the principal components are linear
combinations of all n original variables. This hinders interpretability. Wemight,
instead, prefer that the principal components are linear combinations of a small
subset of the original variables. That is, we would like the columns ofV to have
few nonzero entries.

Jeffers [Jef67] proposed thresholding smaller entries ofV , while Jackson [Jac91]
opted for a rounding procedure. Jolliffe [Jol95] investigated applying rotations
to achieve simpler loadings, but his work with Cadima [CJ95] highlighted some
difficulties with all of these procedures. We instead look to procedures that
attempt to construct suitable loadingsV directly from the data, as opposed to
post-processing the results of standard PCA.

The earlier work of Hausman [Hau82] considered restricting loadings to the set
S = {0, −1, +1}. Kolda and O’Leary [KO00] noted the similarity between princi-
pal component analysis and semidiscrete decomposition—an SVD-like decom-
position where the entries of the factorsmay only take values in S . Vines [Vin00]
extended this approach to consider non-unit integer loadings as well.

Jolliffe et al. [JTU03], inspired by the sparsity-inducing LASSO [Tib96], proposed
a PCAprocedure called SCoTLASS that constrained the `1 norms of the loadings,
i.e., the columns ofV . Finding the first column ofV requires solving

v 1 = arg max
v

v tAtAv subject to ‖v ‖`2 = 1, ‖v ‖`1 ≤ s . (2.1)

This nonconvexmaximization problem adds an `1 constraint to the usual “max-
imal variance” approach to PCA. A semidefinite lifting and relaxation approach
by d’Aspremont et al. [dEJL07] provides a convex approach to this problem, and
we revisit it in Section 2.1.2.1.

Zou et al. [ZHT06] cast PCA as a ridge regression problemandpromoted sparsity
by using the elastic net [ZH05]. Their alternating minimization scheme to solve

24

the resulting nonconvex problem, termed sparse PCA, allowed for larger-scale
computation.

Shen and Huang [SH08] andWitten et al. [WTH09] approached this problem by
adding additional constraints to the SVD. In the case of finding the first principal
component, this becomes

minimize
σ>0,u,v

1
2
‖A − σuv t‖2`2

subject to ‖u ‖2`2 = ‖v ‖
2
`2
= 1

f1(u) ≤ γ1, f2(v) ≤ γ2,

where the fi are penalty functions chosen to induce structure on theu, v . Witten
et al. considered this general form, which they called the penalized matrix
decomposition. Shen and Huang called their approach regularized SVD and set
f2 = ‖·‖`1 with no penalty f1. This more specific case bears resemblance to the
`2 ⊗ `1 nuclear norm.

We return to the problem of sparse PCA in Section 2.1.2.1 where we consider
liftingmodels. Before moving on, however, we wish to highlight the appearance
of nuclear norms in the related problem of robust PCA—principal component
analysis in the presence of outliers. Under thismodel, the datamatrix A ∈ Mm×n

comprises m observations in Rn . The observations are assumed to approxi-
mately lie in a low-dimensional subspace ofRn so that the data matrix A is the
mixture

A = L + S,

where L is the true low-rank data and S are the corruptions known as outliers.

Candès et al. [CLMW11]—using an approach studied by Chandrasekaran et
al. [CSPW11]—proposed solving robust PCAwith the convex demixing problem

minimize ‖L ‖S1 + λ‖S ‖`1 subject to A = L + S .

The tracenorm (‖·‖S1) is also the `2⊗`2 nuclear norm (Section 3.4) andpromotes
low-rank L. Meanwhile, the `1 norm is the `1 ⊗ `1 nuclear norm (Section 3.5)
and promotes sparse S . The assumption under this model is that the outliers
result as corruptions in a small fraction of all entries of A.

McCoy and Tropp [MT11] and Xu et al. [XCS12] independently proposed a
slightly different demixingmethod. They considered the datamatrixA as arising

25

from the mixture
A = L + S,

where L is low-rank and S has few nonzero rows. Again, the matrix L is the true
low-rank model, but now entire observations (rows of A) may be outliers.

They then formulated robust PCA as the convex demixing problem

minimize ‖L ‖S1 + λ
∑

i

‖s i ‖`2 subject to A = L + S,

where the s i are the rows of S . Observe that the sum of the `2 norms of the rows
of S is the `1⊗ `2 nuclear norm (Section 3.5). The use of the `1⊗ `2 nuclear norm
to promote row-sparsity also appeared earlier in the literature on simultaneous
sparse approximation (Section 2.1.1.4).

2.1.1.2 Dictionary learning

Consider the signal model
a = X y,

where a ∈ Rm is a signal composed from linear combinations of the columns of
X ∈ Mm×r with weights given by y ∈ Rr . In the theory of sparse approximation,
the matrix X is a dictionary, and its columns are called atoms. The goal is
to represent (or approximate) the signal a as a sparse linear combination of
atoms, i.e., the vector y should have few nonzero entries. Benefits of sparse
approximations include compressibility and interpretability.

A central question, however, is how to choose the dictionary X . Choices include
the Fourier transformation, wavelet bases, frames, unions of bases, and random
atoms; see Mallat [Mal09] for more details. These designed dictionaries aim
to provide sparse representations for many signals of interest, but we could
instead consider learning a suitable dictionary from a corpus of known signals.
This is exactly the dictionary learning problem.

Let us now consider the matrix A ∈ Mm×n of n signals inRm . We seek a factor-
ization

A = XY ,

where X ∈ Mm×r is now the unknown dictionary, andY ∈ Mr×n contains the
unknown weights that generate the corpus. We ask that the columns ofY in
this factorization be sparse.

26

Olshausen and Field, a pair of psychologists studying the mammalian visual
cortex, ignited the field of dictionary learning with their 1997 paper [OF97].
They learned a dictionary from patches of nature photographs and showed
that sparse coding in this dictionary mimicked the observed activity of certain
sensory cells. Since then, dictionary learning has enjoyed successes in image
denoising [EA06], edge detection [Mai+08], and super-resolution [YWHM10].
We use nuclear norms in a related example when denoising hyperspectral
images in Chapter 6.

The last two decades have seen a growing interest in both improved numerical
methods and theoretical guarantees for dictionary learning. The alternating
methods of Engan et al. [EAH99] (method of optimal directions), Tropp [Tro04]
(generalized k -means), and Aharon et al. [AEB06] (K-SVD) share the same gen-
eral approach. Consider the dictionary learning problem

minimize
X ,Y

1
2
‖A − XY ‖2`2 subject to ‖y i ‖`0 ≤ s, for i = 1, . . . , n,

where the “`0 norm” returns the number of nonzero entries in a vector. These
methods proceed by alternating between a sparse coding step (fixingY) and a
dictionary update (fixing X). Agarwal et al. [AAJN16] provide theoretical support
for these techniques.

Clustering methods, including work by Agarwal et al. [AAN16] and Arora et
al. [AGM14], instead find a subset of the corpus that shares a dictionary element
and use that subset to estimate the element. Both papers include guarantees
on the success of the clustering procedure, but the guarantees in the latter are
stronger.

Note that the nuclear norm framework does not apply directly here as it works
to constrain the columns of X , and in this case, the rows ofY . Here we wish the
columns ofY to be sparse. Bach et al. [BMP08] do consider a nuclear norm-type
approach but with mixed success. A possible alternative involves lifting this
matrix problem to operator space as in Section 1.3.3. That is, we consider

A = (X ⊗Y t)(I) = XY ,

and solve a nuclear norm recovery problem on the space of operators. Note
that the difficulty here arises from seeing the single action of the dictionary on
the identity. While it may not be possible to identify the dictionary from this
formulation, it may still provide benefits in denoising-type problems.

27

2.1.1.3 Nonnegative matrix factorization

The goal of nonnegative matrix factorization (NMF) is to decompose a matrix
A ∈ Mm×n as

A ≈ XY ,

where the nonnegative matrix X ∈ Mm×k is the feature matrix, and the nonneg-
ative matrixY ∈ Mk×n are theweights.

Paatero and Tapper [PT94] first proposed to find such decompositions in order
to perform factor analysis on environmental data. In particular, they wised to
improve on the interpretability of PCA. Indeed, the nonnegativity constraints
ensure that features (columns of X) may only be constructively added together
to explain the data matrix A. This leads to a more intuitive construction of the
columns of the data matrix as a positive combination of nonnegative factors.
To solve the problem, they used constrained alternating least squares.

A series of papers by Lee and Seung [LS97; LS99; LS01] independently developed
the method of nonnegative matrix factorization in the context of unsupervised
learning. In this setting, the goal is to write the columns of a data matrix A as
linear combinations of the columns of a feature matrix X . Again, restricting the
features andweights to be positive prevents “cancellation” between the features.
That is, we may interpret each column of A as being built up constructively
from a library of parts (features). They applied NMF to images of faces (eigen-
faces) to demonstrate this. Their multiplicative update method to find these
factorizations can be regarded as a form of gradient descent. Tropp’s literature
review [Tro03] discusses both of these early approaches in more detail.

Notice the similarity in aims with the sparse dictionary learning problem. In-
deed, Hoyer [Hoy02; Hoy04] proposed to add a sparseness constraint to the
weightsY . To solve the nonnegative sparse coding (NNSC) problem, he em-
ployed a projected gradient descent method. See also Lin [Lin07] for a more
comprehensive study of thesemethods. The generalized k -means framework in
Tropp’s thesis [Tro04, Ch. 8] proposed solving NMF and NNSC using alternating
minimization. Hyunsoo Kim and Park [KP07] provided an algorithm for sparse
NMF using alternating least squares.

Ding et al. [DHS05] examined the connection between NMF and the k -means
problem. Namely, the symmetric NMF with an additional orthogonality con-

28

straint
minimize

X ≥0,X tX
‖A − X X t‖2F,

is equivalent to solving
maximize

X ≥0,X tX
tr(X tAX),

the spectral relaxation to k -means [Zha+02].1 Of particular interest, the sym-
metric NMF problem without the orthogonality constraint still returns X with
nearly orthogonal columns. Jingu Kim and Park [KP08] used an alternating least
squares method for sparse NMF to solve the clustering problem.

More recent work provides recovery guarantees for these nonconvex ap-
proaches [AGM12; XY13; AGKM16; RRTB12; BGKP16; LLR16].

The work of Bach [Bac13], discussed in Section 2.3.3.3, considered nuclear
norm-type problems where the individual factor structures may be penalized
using gauges on compact sets (instead of just norms). Creating a gauge on
the intersection of `p-norm balls with the positive orthant results in nuclear
norm-type regularizers for NMF.

2.1.1.4 Simultaneous sparse approximation

Consider a set of signals b i ∈ Rm , i = 1, . . . , k , each taking the form

b i = Φx \i + z i,

where the columns ofΦ ∈ Mm×d are elementary signals, the sparse vectors x \i ∈
Rd are weights, and the z i are additive noise. The simple sparse approximation
problemseeks to recoverx \i givenΦ andb i . Simultaneous sparse approximation
concerns the situation where all of the x \i have the same sparsity pattern. That
is, each signal b i is a noisy linear combination of the same elementary signals.

We can write this model in matrix form as

B = ΦX \ + Z ,

where the k columns ofB , X \, and Z comprise theb i ,x i , and z i from above. The
goal now is to recover the coefficients X \.

1In k -means, one attempts to create k clusters of vectors such that each vector belongs to
the cluster whose centroid is closest to it.

29

This problem appears in medical imaging [GGR95; CREK05; Phi+05], com-
munications [CR02], source localization [MCW03; MCW05; Oll15], sensor net-
works [LGLS06], multidimensional signal processing [SDB13; SDBC17], blind
source separation [Gri02], and image processing [FR08].

Tropp et al. [TGS06] developed a greedy algorithm based on orthogonal match-
ing pursuit [PRK93; DMA97] to solve the problem. More relevant to the present
work is his convex relaxation method [Tro06]. This formulation proposes relax-
ing the hard problem

minimize
X

of nonzero rows in X subject to ‖B −ΦX ‖F ≤ ε,

by replacing the objective to obtain a convex program

minimize
X

∑
i

max
j
|xi j | subject to ‖B −ΦX ‖F ≤ ε .

The objective is now the sum of the `∞ norms of the rows of X , and this serves
to promote the row-sparsity of X . We will see in Section 3.5 that this is exactly
the `1 ⊗ `∞ nuclear norm!

While thismaynot seem like amatrix factorizationmodel, consider the structure
of X \. In the case where the x \i are identically equal to some vector x \, we can
write

X \ =
d∑

i=1
e i ⊗ x \i 1k,

where 1k ∈ Rk is the all-ones vector. We now see that the left factors of X \ are
sparse, and the right factors are constant. The `1 ⊗ `∞ nuclear norm is a natural
fit. In the case where the x i are allowed to vary, the `1 ⊗ `2 nuclear normmay
be a better choice.

2.1.1.5 Matrix completion

Consider the problem of recovering a low-rank matrix A\ ∈ Mm×n while observ-
ing only a subset of its entries. Namely, we assume that

A\ = XY t,

where X ∈ Mm×r andY ∈ Mn×r .

Say thatΩ is the set of indices of A\ that we observe. Then we can attempt to
find A\ by solving the rank minimization problem

minimize
A

rank(A) subject to ai j = a \i j for (i, j) ∈ Ω.

30

The work of Srebro [SRJ05; SS05], motivated by the example of collaborative
filtering, suggested replacing the hard rank constraint with the max-norm. We
show in Example 3.6.10 of Section 3.6.5 that the max-norm is a semidefinite
relaxation of the `∞ ⊗ `∞ nuclear norm. This relaxation effectively penalizes
the largest squared `2 norms of the rows of X andY .

Candès and Recht [CR09] used the familiar trace norm relaxation for the
rank [Faz02] to convexify the matrix completion problem. Using techniques
from compressed sensing they proved that O(n1.2r logn) observations suffice
to recover a rank-r n × n matrix. Their subsequent works [CT10; Rec11] refined
this result. Candès and Plan [CP10] addressed the stability of this procedure in
the presence of noise.

Nonconvex algorithms for solving this problem include alternating minimiza-
tion [JNS12; Har14] and gradient descent [KMO10a; KMO10b]. In fact, alter-
nating least squares is popular in large-scale applications like collaborative
filtering [ZWSP08; Kor09; KBV09]. Stochastic gradient algorithms also achieve
great speedups on large-scale problems through parallelization [RR13]. Re-
cent work by Ge et al. [GLM16] showed that the nonconvex matrix completion
problem for positive semidefinite matrices has no spurious local minima.

Note that thematrix completion problem is a special form of thematrix sensing
problem [RFP10] wherein we wish to recover structured matrices from linear
measurements. Indeed, we can extract the i j -entry of A\ through the inner prod-
uct 〈E i j, A\〉, where E i j is a standard basis matrix. Therefore we may instead
frame the matrix completion problem as

minimize
A

f (A) subject to µ(A) = b,

where µ is the linear measurement map returning a particular set of entries
from amatrix, and b = mu (A\) is the vector of observed entries. This is simply
a regularized linear inverse problem. Instead of restricting f to the trace norm,
we can choose any other nuclear norm that might better encode the factor
structure of A\. Our Python package, operfact, models these problems using
the SubsampleMeasurement object (Section 4.5.4).

2.1.2 Lifting models

In this section we consider approaches where the bilinear (or quadratic) mea-
surement model on vectors is lifted to a linear model on a rank-1 matrix.

31

2.1.2.1 Sparse PCA, redux

We revisit the sparse PCA model (2.1) from Section 2.1.1.1. For simplicity we
assume that A ∈ Mn×n is the covariance matrix of the n observed zero-mean
variables. Finding the first sparse principal component inRn corresponds to
the maximization problem

maximize
x

x tAx subject to ‖x ‖`2 = 1 and ‖x ‖`0 ≤ s, (2.2)

where s ≤ n and the “`0 norm” returns the number of nonzero entries of the
vector.

The approach of d’Aspremont et al. [dEJL07] requires lifting the problem to

maximize
X

tr(AX) (2.3)

subject to tr(X) = 1 and ‖X ‖`0 ≤ s2,

X � 0 and rank(X) = 1,

where we now optimize over X ∈ Mn×n . The second set of constraints guar-
antees that any solution X = xx t for some x , and the first set of constraints
ensures that x satisfies the same conditions as in (2.2).

The lifted problem (2.3) has turned the quadratic objective into a linear one, and
it has replaced the nonconvex norm equality with a linear one. The `0 and rank
constraints still make (2.3) a hard, nonconvex problem. But by dropping the
rank constraint and relaxing the `0 constraint, we may obtain the semidefinite
program

maximize
X

tr(AX)

subject to tr(X) = 1,
‖X ‖`1 ≤ s,

X � 0.

This follows the standard technique of relaxing a hard sparsity constraint to
an `1 constraint. Here we use the fact that if tr(X) = 1 with X = xx t, then
‖X ‖`0 ≤ s2 implies that ‖X ‖`1 ≤ s . This is truly a relaxation.

As we will see in Section 3.5, the `1 norm of a matrix (i.e., the sum of its abso-
lute entries) coincides with the `1 ⊗ `1 nuclear norm. So we can think of this
semidefinite program as encouraging the recovery of a PSDmatrix with a short
dyadic decomposition comprising sparse factors. Indeed, this is the goal.

32

2.1.2.2 Phase retrieval

Phase retrieval is the problem of recovering a signal while having access only to
measurements of themagnitude of its Fourier coefficients—and not their phase.
Thisproblemhasapplications inareas suchasoptics [Wal63], astronomy [DF87],
crystallography [Mil90; Har93], microscopy [MCKS99; Mia+02; MISE08], and
diffractive imaging [Bun+07].

Mathematically, let x \ ∈ Cn be a signal, and suppose that we observe quadratic
measurements

bk = |〈ak, x \〉|2, k = 1, 2, . . . , m, (2.4)

where the ak are known (designed). To solve the phase retrieval problem, we
must find a vector x that agrees with the observed measurements.

The classical algorithms for phase retrieval sprout from the alternating pro-
jection work of Gerchberg and Saxton [GS72] and Fienup [Fie78; Fie82]. We
focus, however, on more recent work that lifts this vector recovery problem
to a matrix recovery problem. Balan et al. [BBCE09] recast the quadratic mea-
surements (2.4) of the vector x \ into linear measurements of a matrix X \ using
certain tight frames. Chai et al. [CMP11] used a different linearization scheme
that resulted in the liftedmatrixX \ having rankone. Thephase retrieval problem
then becomes the familiar one of low-rank matrix recovery given linear mea-
surements. This idea was further promoted by Candès and coauthors [CESV13;
CSV13].

To linearize the quadratic measurements (2.4), we use the fact that

|〈ak, x〉|2 = tr(a∗k xx ∗ak) = tr(ak a∗k xx ∗).

If we let Ak = ak a∗k , then we have the linear measurements

bk = tr(Ak X \), (2.5)

where X \ = x \(x \)∗. Furthermore, the lifted matrix X \ is rank-1 and positive
semidefinite.

Define the measurement map µ : Cn×n → Cm such that [µ(X)]k = tr(Ak X). We
can then state the lifted phase retrieval problem as

minimize
X

rank(X) subject to µ(X) = b and X � 0,

33

where the k th entry of b is the measurement bk (2.5). By replacing the rank
objective with the trace norm, we obtain a convex program for phase retrieval.

In addition to the convex methods, Candès et al. [CLS15] proposed a noncon-
vex gradient descent method, while Netrapalli et al. [NJS15] used alternating
minimization.

Researchers, inspired by the application of low-rankmatrix recovery techniques
to phase retrieval, have turned to lifting approaches to solve other signal pro-
cessing problems. We discuss two such problems here.

2.1.2.3 Blind deconvolution

Consider two real signals g , h ∈ RL and their (circular) convolution

b = g ∗ h, or bl =

L∑
l ′=1

gl ′hl−l ′+1,

where the index on h runs modulo the set {1, 2, . . . , L}. An important problem
in signal processing asks to recover g and h from their convolution b . This task
has a long history in applications such as astronomy [Bat82; JC93], communi-
cations [TXHK95; WP98; WBSJ15], and medical imaging [Dro89; FKL89; WH90;
Kri+92].

We focus on a recent approach to convexify this problem. Inspired by the phase
retrieval work in [CSV13], Ahmed et al. [ARR14] proposed a lifting approach
to formulate blind deconvolution as a rank-1 matrix recovery problem with
incomplete measurements. They employed trace-normminimization to relax
the rank constraint while providing conditions that guaranteed recovery of
the true low-rank solution. In order to achieve this with incomplete measure-
ments, however, they needed to impose subspace constraints on the signals.
Namely, they assumed that g and h belong toM andN dimensional subspaces,
respectively. Thus, 

g = Sx, x ∈ RM , S ∈ ML×M

h = T y, y ∈ RN , T ∈ ML×N .

34

Then by the convolution theorem [Mal09, Thm. 3.9],

b̂ = F y = F (g ∗ h) = F g � F h

= (F Sx) � (FT y)
= Ŝx � T̂ y

= diag(Ŝx)T̂ y,

where F is the Fourier transform, and the operation � is elementwise vector
multiplication.

Then the l th entry of b̂ is

b̂l = 〈ŝ l, x〉〈y, t̂ l 〉
= (ŝ l)∗x y ∗t̂ l

= tr((ŝ l)∗x y ∗t̂ l)
= tr(t̂ l (ŝ l)∗x y ∗)
= tr(M ∗l (x y ∗)) = 〈M l, x y ∗〉,

where M l = ŝ l t̂
∗
l , ŝ l is the l th column of Ŝ

∗, and t̂ l is the l th row of T̂ . We can
therefore view the measurements b̂l as the inner products of the matrices M l

with the rank-1 matrix x y ∗. Convolution is thereby represented as a linear
operator on this rank-1 matrix.

We can perform the deconvolution by solving

minimize
A

‖A‖S1 subject to tr(M ∗l A) = b̂l .

If the resulting A is rank-1, a simple factorizationwill find candidate vectors x, y ,
andwe can compute candidate signals g andh . Asmentioned in Section 1.2.2.1
(and proved in Section 3.4), the trace norm is the `2 ⊗ `2 nuclear norm. Ahmed
et al. used low-rank matrix recovery techniques to provide guarantees on the
success of this program for blind deconvolution. In the case where the Fourier
coefficients y are sparse, Flinth [Fli16] showed that the `2 ⊗ `1 nuclear norm is
a superior choice.

There has also been recentwork on nonconvex techniques to solve this problem.
Lee et al. [LLJB15] provided performance guarantees for an alternating mini-
mization solver. Li et al. [LLSW16] used a nonconvex gradient descent method
(Wirtinger flow) to improve performance computationally and in terms of re-
quired data.

35

2.1.2.4 Self-calibration

Consider an array of sensors used to measure and report signals. In practical
settings, however, sensors do not give exact measurements. Their outputs are
better viewed as a combination of the inputs we wish to measure and some
additional parameters that we may not control. The problem of self-calibration
is to estimate both the true signal and the calibrationparameters of our sensor(s)
from these uncalibrated outputs.

This problem arises in distributed sensing, where the sensors themselves have
inaccuracies in gain (or phase) [BN07; BN08;WRS08; LB14]. Direction-of-arrival
estimation [FW88; FW91; See94; NS96; LY06; Liu+11] seeks to estimate a signal
and the direction from where it came using sensor arrays. Source localization
in acoustics aims to identify the location of sound sources using microphonic
arrays [MDO11]. Autofocusing is used to increase range resolution in radar
imaging [ZWBY14]

Mathematically, consider a signal y ∈ RN , and assume that we have measure-
ments of that signal

b = T (x)y + z,

where themeasurementmatrixT (x) ∈ ML×N depends on a vector of parameters
x ∈ RM and z ∈ RL is noise. Even if we assume thatT (x) depends linearly on x ,
solving for y is a bilinear inverse problem. Furthermore, the problem still may
be underdetermined even if we knowT (x) exactly.

Note the similarity to the blind deconvolution problem above. Indeed, we can
regard blind deconvolution as a specific type of self-calibration problem. The
distinguishing feature is that here the measurements do not necessarily result
from a convolution.

Our primary motivation to consider this problem is a lifting model proposed
by Ling and Strohmer [LS15b]. They were inspired by the previously-discussed
lifting procedures to convexify phase retrieval [CSV13; CESV13] and blind de-
convolution [ARR14]. Their method, termed SparseLift, transforms the bilinear
self-calibration problem into an `1-minimization problem on a rank-1 matrix.

Earlier work of Balzano and Nowak [BN07; BN08] provided an approach to use
multiple snapshots (observations from a sensor array at different times) to re-
formulate self-calibration as a solvable linear system. Ling and Strohmer [LS16]

36

recently considered a linear least squares approach with performance guaran-
tees.

Gribonval et al. [GCD12] also considered a convex approach for calibrating
compressed sensing problems with unknown gains on the measurements. The
work of Bilen et al. [BPGD14] extended thismethod to handle phase uncertainty
in measurements as well. A new paper by Wang and Chi [Wan16] provides
theoretical guarantees.

We describe each of these approaches in more detail in Section 7.2. We also
note that Cambareri and Jacques [CJ16a] proposed a new gradient descent
method that mirrors the work of Li et al. [LLSW16] in blind deconvolution. In
Chapter 7 we use our operfact package to conduct numerical experiments on
self-calibration problems.

2.2 Numerical techniques for bilinear models

In the previous section we examined several examples of bilinear data models.
The numerical techniques used to solve these problems fall into several broad
categories. Here, we briefly summarize a few such methods.

2.2.1 Convexification

While not a numerical method per se, we have seen convexification as an ap-
proach to solve simultaneous sparse regression [Tro06], sparse PCA [dEJL07],
phase retrieval [CSV13; CESV13], blind deconvolution [ARR14; ACD15], and
self-calibration [GCD12; BPGD14; FS14; LS15b; LS15a]. These examples lift
the bilinear (or quadratic) problems on vectors into linear measurements of a
low-rank matrix. The solution then proceeds via convex relaxation of the low-
rank constraint using, for instance, the trace norm [Faz02; RFP10]. Standard
semidefinite solvers (or frontends such as CVX [GB14] and CVXPY [DB16]) can
then solve the problem.

It is increasingly common, however, in large-scale applications to use noncon-
vex techniques such as alternating minimization [JNS12; Har14] or gradient
descent [KMO10a; KMO10b] (see also below). In these cases, the nonconvex
approaches can provide great advantages in terms of storage and parallelization.
While convex programs are desirable for their convergence guarantees, these

37

nonconvex approaches work well empirically. A growing body of research aims
to explain this phenomenon [ZL15; ZWL15; CW15; SL15; GLM16].

Note that our nuclear norm framework also works to convexify bilinear data
models. Indeed, the nuclear norms serve as convex regularizers on operators
that promote structure within their factors. We also resort to nonconvex meth-
ods to solve these problems, but we do so for their flexibility in modeling.

2.2.2 Alternating minimization

The idea behind alternating minimization is simple: we optimize over sets
of variables in turn while holding the others fixed.2 To see its benefit with
factorization models, consider the general low-rank matrix sensing problem

minimize
A

rank(A) subject to µ(A) = b,

where A ∈ Mm×n is the decision variable, and b ∈ Rp are measurements re-
sulting from applying the linear operator µ to an unobserved low-rank matrix
A\.

We have already discussed how to solve this problem via convex relaxation and
the trace norm. Instead, let us explicitly factorize A = XY t, where X ∈ Mm×k ,
Y ∈ Mn×k , andk is a target rank. Thenwe reformulate our optimizationproblem
as

minimize
X ∈Mm×k ,Y ∈Mn×k

1
2
‖b − µ(XY t)‖2`2 =: f (X , Y). (2.6)

This problem is easily solvable when holding either X orY fixed and optimiz-
ing over the other. Given an initializationY 0, the updating procedure at each
iteration t is then

X t+1 ← arg min
X

f (X , Y t)

Y t+1 ← arg min
Y

f (X t+1, Y),

where the subscript on the matrices indicates the iteration.

Alternating minimization is used to solve sparse PCA [ZHT06; SH08; WTH09],
dictionary learning [EAH99; Tro04; AEB06; AAJN16; XY13], nonnegative matrix
factorization [PT94; Tro04; KP07; KP08], matrix completion [JNS12; Har14],
phase retrieval [NJS15], and blind deconvolution [LLJB15].

2This method is also referred to as block coordinate descent in the literature.

38

The explicit factorization allows for a large reduction in storage requirements
and processing with rank k � min{m, n}. Additionally, simple subproblems
may admit opportunities for parallelization to take advantage of multiple com-
putational cores in large-scale settings. Lastly, the alternating approach pro-
vides flexibility in modeling. This last reason, in particular, led us to implement
an alternating minimization approach to solving nuclear norm problems (see
Section 4.2). It allows us to easily prototype many different nuclear norms.

On the other hand, alternating minimization generally does not guarantee con-
vergence to a global minimum. Furthermore, it can exhibit great sensitivity
to its initialization. We discuss initialization below in Section 2.2.4, and some
of the previously-cited papers do manage to provide guarantees for their spe-
cific applications. Despite these potential shortcomings, however, alternating
methods have still shown empirical success and remain a staple of nonconvex
optimization.

2.2.3 Gradient methods

Gradient methods work similarly to alternating minimization. Consider again
the low-rank matrix sensing problem (2.6) from above. Assume that we have
an initialization [X 0 Y 0]t. At each iteration t , we update the decision variables
through the gradient step[

X t+1

Y t+1

]
←

[
X t − η∇f (X , Y t)
Y t − η∇f (X t , Y)

]
,

where η > 0 is the step size.

We also have gradientmethods to solve dictionary learning [AGMM15], nonneg-
ative matrix factorization [LS01; Hoy04; Lin07], matrix completion [KMO10a;
KMO10b; RR13], phase retrieval [CLS15], blind deconvolution [LLSW16], and
self-calibration [CJ16b].

Despite its relatively slow convergence, gradient descent has grownmore popu-
lar with the advent of parallelized stochastic gradient descent methods [BT97;
ZLS09; ZWLS10; RRWN11] that can take advantage of multicore and distributed
computing systems for large-scale optimization.

Applying gradient descent to nonconvex problems raises questions about ini-
tialization and convergence. As opposed to convex optimization, we cannot

39

guarantee that gradient descent on the nonconvex problem converges to the
global optimum. In fact, gradient descent may fail to converge to even a lo-
cal minimum given an unfavorable initialization [Nes04, Sec. 1.2.3]. Recent
work, however, showed that for objectives satisfying the strict saddle prop-
erty3, gradient descent (with an appropriate step size) converges almost surely
to a local minimum [LSJR16]. A line of work by Sun and coauthors demon-
strated that problems in dictionary learning [SQW17a; SQW17b] and phase
retrieval [SQW16] indeed satisfy this property.

For our work, however, the flexibility afforded by using alternating minimiza-
tion in conjunction with existing convex solver packages proves most valuable.
The extensibility of our software package operfact certainly allows for future
incorporation of various gradient solvers if applications demand it.

2.2.4 Initialization for nonconvex methods

Both the nonconvex alternating minimization and gradient descent algorithms
require careful initializations. As opposed to convex optimization problems,
the nonconvex versions may have spurious local minima. That is, these local
minima are not globally optimal solutions. Furthermore, the convergence to
any particular point in the nonconvex case may depend on the starting point
provided to the algorithm.

Consider again the nonconvex formulation (2.6) of the matrix sensing problem.
Observe that the point (X , Y) = (0, 0) is always a localminimum, but clearly this
is not a global minimum in general. This also shows why initialization to zero
does not work in these settings. Indeed, if we apply gradient descent starting at
this point, we will find that we have already converged. Therefore we need to
examine initialization schemes more closely.

One method for initialization simply chooses a random point. After solving the
nonconvex minimization problem for several different random initializations,
we can then choose the solution that has the lowest objective value. In gen-
erating these random points, we can also take into account problem-specific
constraints. For instance, if we seek a nonnegative factorization wemay force
our random initial factors to have only nonnegative entries [Hoy04; Lin07; KP07;

3A twice continuously differentiable function f : Rd → R possesses the strict saddle prop-
erty if every critical point x is either a local minimum or ∇2f (x) has at least one eigenvalue
strictly less than zero.

40

KP08]. Random initialization may also rely on observed data. Tropp’s alternat-
ing minimization method for matrix factorization initializes the columns of the
factor X with random columns from the observed matrix A [Tro04].

A large downside of random initialization is the possibility of having to solve
the optimization problemmultiple times. It would be preferable to construct a
deterministic initialization that would hopefully result in good convergence.
A spectral initialization does precisely this. Generally these methods rely on a
spectral decomposition, the SVD, to find an initial point given the observed data.
In sparse PCA, for example, one can use classical PCA as an initial guess [ZHT06;
SH08; WTH09]. This is simply the SVD.

The measurements in the low-rank matrix sensing problem (2.6), however, are
incomplete. Indeed, we observe the vector b = µ(A\) + z instead of the matrix
A\ itself. To perform a spectral initialization, we can first computeT = µ∗(b),
where µ∗ is the adjoint of the measurement map µ . Then we can compute the
SVD ofT and initialize X andY with the top-r left and right singular vectors of
T , where r is the rank of the explicit factorization A = XY t.

Keshavan, Montanari, and Oh [KMO10a; KMO10b] used this initialization for
solving matrix completion with gradient descent. Their method additionally in-
volves trimming and rescaling the adjoint—here, simply the matrix of observed
entries. Jain et al. [JNS12] and Hardt [Har14] use this same initialization in their
analyses of alternating minimization algorithms for solving matrix completion.
Spectral initializations also show success in phase retrieval [NJS15; CLS15],
blind deconvolution [LLJB15; LLSW16], and self-calibration [CJ16b].

Given the similarity of our structured operator recovery problems to matrix
sensing, we adopt spectral initialization for our work as well. We discuss our
implementation in Section 4.2.3.

2.3 Development of the nuclear norm

Themathematical development of the nuclear norm in Chapter 3 follows the
unpublished work [Tro12] of my advisor Joel Tropp. What we refer to as the
nuclear norm, however, has a long history in functional analysis. In this section,
we review that history anddiscuss somemore recentworks that aremore similar
in character to our own.

41

2.3.1 The emergence of cross spaces

In 1927, Hitchcock proposed writingmultidimensional arrays (tensors) as sums
of elementary, rank-1 tensors [Hit27; Hit28]. His work, along with that of Old-
enburger in the 1930s [Old34; Old36], established the algebraic character of
tensor product spaces. They considered how rank, an important algebraic
complexity measure of matrices, extended to tensors. These types of polyadic
decompositions gained popularity in the 1970s with CANDECOMP [CC70] and
PARAFAC [Har70]. See the comprehensive review of Kolda and Bader [KB09] for
more details on this line of research.

Our discussion of nuclear norms naturally depends on the topology of linear
spaces created from sums of elementary tensors. Namely, what can be said
about the topology of X ⊗ Y , the linear space of dyads x ⊗ y with x ∈ X and
y ∈ Y . Francis Murray and John von Neumann [MN36] considered the case
where both X andY were Hilbert spaces.

Robert Schatten, Murray’s doctoral student, focused on the more general case
where X andY were Banach spaces. His 1950 monograph A Theory of Cross-
Spaces [Sch50] collected his work (partly in collaboration with von Neumann)
from throughout the 1940s [Sch43; Sch46; SN46; SN48] devoted to addressing
the question of norms on X ⊗Y .

A cross-space results from first forming the linear space of products from X and
Y taking the form

r∑
i=1

x i ⊗ y i,

where the product ⊗ observes bilinear identities (see Section 3.2.1). Schatten
viewed such objects as operators from Y ∗, the dual of Y , to X , and attached
norms to this space. He considered a particular class of norms, however, called
crossnorms (hence the name cross-space). Such norms (which we denote
generally using the notation |||·|||) satisfied the additional condition that

|||x ⊗ y ||| = ‖x ‖X ‖y ‖Y ,

for all pairs x ∈ X, y ∈ Y .4

4Schatten used α to indicate a general crossnorm, whereas we use |||·|||.

42

Of particular interest to us, Schatten proved the existence of a largest (and
smallest) crossnorm. This largest crossnorm, which he denoted as γ, is

γ

(∑
i

x i ⊗ y i

)
= inf

{∑
j

‖x ′j ‖X ‖y ′j ‖Y :
∑

j

x ′j ⊗ y ′j =
∑

i

x i ⊗ y i

}
,

where the infimum extends over all equivalent representations of the tensor.
This largest crossnorm, also called the projective tensor norm, corresponds
exactly to our Definition 1.2.3 of the nuclear norm.5 A key contribution by
Schatten is the notion that this largest crossnorm is universal. That is, it exists
for the tensor product of any pair of Banach spaces.

The interpretation that holds the most meaning for the present work—and
which we expand on through our discussion in Chapter 3—is that this largest
crossnorm is the strongest. That is, its unit ball is contained inside that of
all other crossnorms. Since we wish to use this norm as a regularizer to find
operators with structured factors, it is advantageous that the norm assigns the
greatest penalty (among crossnorms) for deviating from that structure.

The smallest crossnorm, knownas the injective tensor norm anddenoted as λ by
Schatten, appears in our work as the dual of the nuclear norm (Definition 3.3.7).
While Schatten primarily dealt with these two crossnorms, there is in fact a rich
structure of crossnorms that we now examine briefly.

2.3.2 The fundamental theorem of Grothendieck

Alexandre Grothendieck published his famous Résumé [Gro53] in 1953. Within
he also formed the product space of Banach spacesX andY as the linear span of
dyads. On these spaces he consider ⊗-norms (tensor norms), crossnorms with
an extra condition bounding their size in combination with linear operators on
the factors.6 These include the greatest (projective) norm from above, denoted
in Grothendieck’s work as ‖·‖∧, and the least (injective) norm, denoted ‖·‖∨.

In addition, he showed that there exist 12 other “natural” ⊗-norms. These
are the only 14 ⊗-norms (up to equivalencies), and they form a complete lat-
tice [Gro53, p. 37]. Of particular interest to us are two famous theorems that

5The term nuclear norm has a precise definition, and while it coincides with the projective
tensor norm in finite dimensions, this is not the case in infinite dimensions. We deal with
finite dimensional spaces in this work, and so we adopt to term nuclear norm to emphasize the
connection with current low-rank matrix recovery literature. See Ryan [Rya02, Sec. 2.6] for a
fuller explanation.

6Schatten and von Neumann [SN48] called these uniform crossnorms.

43

bound the equivalence of certain tensor norms. What Grothendieck [Gro53,
Thm. 1 (p. 59), Coro. 2 (p. 60)] called the “fundamental theorem in themetric the-
ory of tensor products”, now known as Grothendieck’s Theorem, compares the
`∞ ⊗ `∞ nuclear norm (in our notation) and its semidefinite relaxation known
as the max-norm in the machine learning literature [SRJ05; SS05]. We discuss
this in Section 3.6.6.1.7 Additionally the “little” Grothendieck theorem [Gro53,
Thm. 4, Coro. 1 (p. 51)] compares the `∞ ⊗ `2 nuclear normwith its semidefinite
relaxation. See our discussion in Section 3.6.6.2.

Even though the results of Grothendieck are widely celebrated today, they were
not immediately recognized. Possible reasons include the difficulty of read-
ing his Résumé [Pie07, Sec. 6.3.11.8] or its publication in an obscure Brazil-
ian journal [Pis12, p. 238]. The work, 15 years later, of Lindenstrauss and
Pełczyński [LP68] revived the main result of Grothendieck’s work and refor-
mulated it in terms of matrices instead of tensor product spaces.

Many references exist for further reading on the topology of tensor product
spaces. Ryan [Rya02] provides a more accessible introduction to the mate-
rial. Meanwhile Pietsch [Pie07] details the history of Banach spaces. Diestel
et al. [DGFS08] revisit Grothendieck’s Résumé, following its structure while ex-
panding andmodernizing the content. Pisier [Pis12] reviews the development
and applications of Grothendieck’s theorems.

2.3.3 With an eye towards convex optimization

We now turn our attention to more recent work that applies the nuclear norm
to recovering structured matrix factorizations.

2.3.3.1 A familiar example

In Section 1.2.2.1 we already saw an example of a nuclear norm used in matrix
recovery problems: the trace norm. In our notation, this is the `2 ⊗ `2 nuclear
norm, but it is often referred to as the nuclear norm in the literature. As we
discussed, Fazel [Faz02] used the trace norm as a convex relaxation for matrix
rank. The motivation to do so is that the trace norm is the convex envelope of
the rank, the tightest convex relaxation for the rank. We address the creation of
nuclear norms from sets of structured atoms in Section 3.3.6. Her work with

7In the tensor product literature, the relaxation is known as theHilbertian norm.

44

Recht et al. [RFP10] provided guarantees on the effectiveness of the trace norm
in solving thematrix sensing problem

minimize
A

‖A‖S1 subject to µ(A) = b,

where µ is a random, linear measurement map, and the entries b are the corre-
sponding linear measurements of the true low-rank matrix we wish to recover.

Their results extended the compressed sensing approach [CRT06a; Don06]
where the goal is to recover sparse vectors from undersampled random lin-
ear measurements. They generalized the restricted isometry property (RIP)
of Candès and Tao [CRT06a] to matrices, showing that for certain random
measurement maps , O(r (m + n) log(mn))measurements suffice to recover a
rank-r m × n matrix using trace-normminimization. Recent work in convex
geometry provides exact characterizations of the number of required Gaussian
measurements for matrix sensing to succeed [CRPW12; ALMT14].

2.3.3.2 Rediscovering the projective tensor norm

Meanwhile, Francis Bach et al. [BMP08] considered the problem of dictionary
learning (see also Section 2.1.1.2). Recall that in this problem we wish to find a
factorization of a signal corpus A,

A = XY t,

where the matrix X is a dictionary, and the matrixY of coefficients has sparse
rows (i.e., Y t has sparse columns). They aimed to convexify the nonconvex
approach of optimizing directly over the X andY subject to constraints on their
structure.

Their solution, termed decomposition norms, was the projective tensor norm.
They considered the function (restated to match our notation)

fr (A) = min
{ r∑

i=1
‖x i ‖X ‖y i ‖Y : A =

r∑
i=1

x i ⊗ y i

}
.

This closely resembles the definition of the nuclear norm (1.5) except for the
fact that the minimization occurs only over decompositions of length r versus
all finite-length decompositions. By taking the limit f∞(A) = limr→∞ fr (A), they
recovered the nuclear norm on X ⊗Y and thus obtained a convex regularizer
for imposing structure on the factors of a matrix decomposition.

45

To solve the dictionary learning problem, they considered a combination of the
`1 and `2 norms on the coefficient matrix with the `2 norm on the dictionary
elements. That is,

‖x ‖2X = ‖x ‖2`2 and ‖y ‖2Y = (1 − ν)‖y ‖2`1 + ν‖y ‖
2
`2
.

They then defined the function

F (y y t) := (1 − ν)
∑

i j

(|y y t |)i j + ν tr(y y t) = ‖y ‖2Y .

This allowed them to rework the dictionary learning problem as one over posi-
tive semidefinite matrices, but the convex formulation required allowing the
rank to be any finite number. By applying a smoothing procedure (to obtain a
twice-differentiable approximation of F), they were able to establish that any
rank-deficient local minimum of the rank-constrained version of this problem
was in fact a global minimum [BMP08, Prop. 4]. The argument followed that of
Burer andMonteiro [BM04].

We should point out, however, that just because no spurious local minima exist
does not mean that all stationary points of the nonconvex problem are global
minima. Furthermore, finding local minima (as opposed to critical points)
may still be challenging. Even so, their work demonstrated both the promise of
nuclear norms and some of the computational difficulties in their application.

Haeffele et al. [HYV14] further extended the above result to allow for some non-
differentiable F . They proposed a rank-constrained block coordinate descent
procedure [XY13] for the factor structures

‖·‖X = νX ‖·‖X̃ + ‖·‖`2 and ‖·‖Y = νY ‖·‖Ỹ + ‖·‖`2,

where νX and νY are user-chosen parameters. Their simulations showed success
in performing image segmentation and compressed sensing on hyperspectral
images. (We consider a hyperspectral image denoising problem in Chapter 6.)

2.3.3.3 Generalizing the results

In a subsequent work [Bac13], Bach revisited the notion of decomposition
norms. This time, however, he formulated them as a gauge functions on sets
of structured dyads. See Section 3.3.6 for our similar construction and a dis-
cussion of its connection to sparse approximation and atomic norms [DT96;

46

CRPW12]. Bach considered the more general case of using gauges to measure
the complexity of each factor in dyadic decompositions, whereas we restrict
our discussion to norms. He also formed the semidefinite relaxation to nuclear
norms we discuss in Section 3.6. Furthermore, Bach characterized the qual-
ity of the semidefinite relaxations using a technique from Nesterov [Nes98],
itself a rediscovery of Grothendieck’s Theorem. See the discussion of Grothen-
dieck’s work above and our statement of the result in Section 3.6.6.1. Note that
Tropp [Tro12] independently characterized these semidefinite relaxations.

Haeffele and Vidal [HV15] returned to consider general nuclear norms on X ⊗Y

as well as applications with higher-order tensors. In our context of regularized
matrix factorization problems, their results state that any local minimizer of
the rank-constrained problem

minimize
1
2

b −
r∑

i=1
x i ⊗ y i

2
`2

+ λ

r∑
i=1
‖x i ‖X ‖y i ‖Y ,

is a global minimizer provided that x i = 0 and y i = 0 for some i . Furthermore,
if the x i ∈ Rm and the y i ∈ Rn , then the global minimizer requires at most mn

dyads.

They additionally provided a “meta-algorithm” that guarantees finding the
global minimizer of the recovery problem via local descent from any initializer.
Critically, this “meta-algorithm” requires the ability to determine that the local
descent procedure reaches a local minimum of the rank-constrained problem.
This is non-trivial, and alternating minimization algorithms can generally only
guarantee convergence to a stationary point. In practice, this makes the simple
condition for global optimality an unverifiable one.

2.3.4 Our work

Our work builds on the literature in three main ways. First, we extend the use of
nuclear norms to structured operator recovery problems. We can view these op-
erators, introduced in Section 1.3, as liftings for matrices. This enables us to use
nuclear norms to promote a larger variety of structured matrix factorizations.

Second, we provide a flexible Python package (operfact) to allow for rapid
prototyping of nuclear normmodels. This, combined with an alternating mini-
mization solver built upon CVXPY, enable us to systematically test the perfor-
mance of nuclear norms in structured low-rank recovery problems. We release

47

this software to the community as an open-source project 8, and this thesis
describes its design (Chapter 4).

Third, we use this software package to perform a systematic numerical study of
nuclear norms in denoising problems (Chapter 5). We provide solid evidence
that nuclear norms succeed in recovery problems over a variety of different
factor structures. This knowledge enables us to model problems in hyperspec-
tral imaging (Chapter 6) and self-calibration (Chapter 7) as convex operator
recovery problems. Using nuclear norms to match the factor structures of our
models, we then solve these problems numerically.

8https://github.com/jbruer/operfact

https://github.com/jbruer/operfact

48

Chapter 3

The nuclear norm

The nuclear norm has a history in Banach space theory that we surveyed in
Section 2.3. This chapter gives a mathematical introduction to nuclear norms
and presents results relevant to this thesis. Our treatment is based on the
unpublishedwork [Tro12] ofmy advisor Joel Tropp. We restatemany of his ideas
and results here in the interest of making this document self-contained, but
we develop the framework for the more general case of operators (Section 1.3)
instead of matrices.

3.1 Notation

Vectors. We letRm be the space of realm-dimensional vectors, andwe denote
vectors with bold, lowercase, italic letters, e.g., a . We write entries of a as the
scalars ai . This space is endowed with the usual operations of vector addition
and scalar multiplication, and we write the standard basis {e i }mi=1. Additionally,
it has the inner product

〈a, b〉 = a tb =
m∑

i=1
ai bi,

where t indicates the transpose.

Matrices. We letMm×n be the space of m × n matrices with real entries. We
write matrices using bold, uppercase letters, e.g., A, with scalar entries ai j . This
space has the usual operations of matrix addition and scaling, and we write
the standard basis as {E i j }, where E i j = e i ⊗ e j = e i e t

j for i = 1, . . . , m and

49

j = 1, . . . , n. It has the inner product

〈A, B〉 = tr(AtB) =
m∑

i=1

n∑
j=1

ai j bi j,

where t is again the transpose, and tr is the trace operator.

We will sometimes refer to rows and columns of matrices using colon notation.
For instance the vectors a i : and a :j refer respectively to the i th row and j th
column of the matrix A.

Operators. We write operators with bold, uppercase, script letters, e.g.,A. In
the next section, we discuss additional notational conventions for operators.

Vectorization. For a matrix A ∈ Mm×n , we define the vectorization operator
vec : Mm×n → Rmn as the map returning the columns of the matrix stacked in
order from left to right.

Norms. We use the standard `p norms on vectors. We adopt the convention
that applying a vector norm on a matrix is equivalent to vectorizing the matrix
and applying the norm.

The Schatten p-norm of the matrix A is defined as

‖A‖Sp
:=

(r∑
i=1

σi (A)p
) 1

p

,

where σ1(A) ≥ σ2(A) ≥ · · · ≥ σr (A) ≥ 0 are the singular values of A. In
particular, the Schatten 1-norm is the trace norm, the Schatten 2-norm is the
Frobenius (Euclidean) norm, and the Schatten∞-norm is the spectral norm.

3.2 Dyads and operators

Since decompositions are at the heart of nuclear norms we review the notation
introduced in Section 1.3.1 and discuss additional properties of operators.

3.2.1 Dyads

First let us restate the definition of a dyad from Section 1.3.1.

Definition 3.2.1 (Dyad). Given X ∈ Mm×n andY ∈ Mp×q , let the dyad X ⊗Y be
the rank-1 matrix

X ⊗Y := vec(X) vec(Y)t ∈ Mmn×pq . (3.1)

50

In the case where n = q = 1, this definition corresponds to the usual notion of
a rank-1 matrix as the outer product of two vectors.

We emphasize that we are defining dyads—elementary tensors in the tensor
product spaceMm×n ⊗Mp×q—through a particular correspondence with ma-
trices inMmn×pq . In particular, we are not using the operation ⊗ to represent
the Kronecker product. The mapping (3.1) is known as the Choi-Jamiołkowski
isomorphism, and it is prominent in quantum information theory. See, for ex-
ample, Watrous’s lecture notes [Wat11] for more details. We choose this specific
representation as it proves more convenient for subsequent results.

Bilinear relationships. Two dyads are equal if and only if their corresponding
rank-1 matrices are equal. This makes it easy to see that dyads indeed obey the
bilinear equivalencies of tensor products:

• (X ⊗Y) + (X ′ ⊗Y) = (X + X ′) ⊗Y ,

• (X ⊗Y) + (X ⊗Y ′) = X ⊗ (Y +Y ′),

• (λX) ⊗Y = λ(X ⊗Y) = X ⊗ (λY),

where X , X ′ ∈ Rm×n ,Y , Y ′ ∈ Rp×q , and λ ∈ R is a scalar. In particular X ⊗Y = 0,
the zero dyad, when X = 0 orY = 0.

Tensor product of linear maps. A dyad may also represent the tensor product
of linear maps. For X : Rn → Rm andY : Rq → Rp , we define the action of the
dyad X ⊗Y on the tensor product of vectors as

(X ⊗Y)(u ⊗ v) := X u ⊗Y v = (X u)(Y v)t = X (uv t)Y t,

where u ∈ Rn and v ∈ Rq .

We canextend this definition linearly to obtain amappingX ⊗Y : Mn×q → Mm×p .
For any matrix M =

∑
i u i ⊗ v i ∈ Mn×q , we have that

(X ⊗Y)(M) =
∑

i

(X ⊗Y)(u i ⊗ v i) =
∑

i

X (u iv t
i)Y t = X MY t. (3.2)

In this context X ⊗Y is a linearmap, but note that its action doesnot correspond
to matrix multiplication using the definition (3.1).

51

3.2.2 Operators

We define the vector space of operators through linear combinations of dyads.
That is,

Om×n⊗p×q =

{ r∑
i=1

λi X i ⊗Y i : X i ∈ Mm×n, Y i ∈ Mp×q, λi ∈ R, r ∈ N
}
.

When the number of dyads in an operator decomposition is irrelevant to the
discussion wemay, for instance, write

A =
∑

i

X i ⊗Y i,

but we emphasize that the sum is always finite.

The reason that we call these objects operators is because we can regard them
as linearmappings overmatrices. LetA =

∑r
i=1 X i ⊗Y i ∈ Om×n⊗p×q . By linearly

extending the action of dyads (3.2) we see thatA : Mn×q → Mm×p is the linear
map

A(M) :=
r∑

i=1
(X i ⊗Y i)(M) =

r∑
i=1

X i MY t
i, (3.3)

for every M ∈ Mn×q .

As we saw in Section 1.3.3, this viewpoint allows us to treat operators as liftings
of matrices. In particular, we have that

A = XY t if and only if A = (X ⊗Y)(Ir) = X IrY t,

where r is the inner dimension of the matrix factorization. Therefore we can
regard the matrix A = XY t as a linear image of the rank-1 operator X ⊗Y . In
particular, we can use the nuclear norm framework on operators to promote
structure inmatrix factorizations. This approach leads to novel applications of
nuclear norms for structured matrix recovery.

In the remainder of this section, we introduce additional notation and proper-
ties of operators.

The standard basis. If the families {E i j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and {E kl : 1 ≤
k ≤ p, 1 ≤ l ≤ q} are the standard bases forMm×n andMp×q , then the dyad
E i j ⊗ E kl corresponds to the standard basis element Ei jkl ofOm×n⊗p×q .

52

Therefore we can represent any operatorA ∈ Om×n⊗p×q entrywise as the linear
combination

A =

m∑
i=1

n∑
j=1

p∑
k=1

q∑
l=1

ai jkl (E i j ⊗ E kl). (3.4)

The ai jkl are the entries of the operatorA. Even though operators are rank-2
tensors, this shows how wemay model 4-dimensional data through the use of
operators.

Just as with matrices, we use colon notation to retrieve slices of operators. For
instance, given an operatorA ∈ Om×n⊗p×q the slice A ::kl ∈ Mm×n is such that
(A ::kl)i j =Ai jkl .

Matrix representations. In particular, we can combine the entrywise represen-
tation (3.4) with Definition 3.2.1 to explicitly write the operatorA as a matrix

A =

m∑
i=1

n∑
j=1

p∑
k=1

q∑
l=1

ai jkl (E i j ⊗ E kl)

=

m∑
i=1

n∑
j=1

p∑
k=1

q∑
l=1

ai jkl vec(E i j) vec(E kl)t ∈ Mmn×pq . (3.5)

When we wish to emphasize that we are treating the operatorA as a matrix, we
use the notation mat(A).

Alternatively, for any dyadic decompositionA =
∑

i X i ⊗Y i , we can write

mat(A) =
∑

i

vec(X i) vec(Y i)t. (3.6)

This representation always exists, as we can always find a dyadic decomposition
ofA using (3.4).

Again, this particular representation of objects in the tensor product space
Mm×n ⊗ Mp×q as matrices inMmn×pq is the Choi-Jamiołkowski isomorphism.
Furthermore, note that this matrix representation (3.6) of an operator is not
used to compute the action of the operator (3.3). The Kronecker product may
be used for this computation instead, and it is again related to (3.6) through an
isomorphism.

Dyadic SVD. A useful decomposition of A comes from the singular value
decomposition (SVD) of its matrix representation (3.6). Let mat(A) = UΣV t be
a compact SVD. LetU i be the i th column ofU reshaped (columnwise) as an

53

m × n matrix, and letV i be a similar reshaping of the i th column ofV into a
p × q matrix. Then the dyadic SVD ofA is

A =

r∑
i=1

σiU i ⊗V i, (3.7)

where σi is the i th diagonal entry of Σ and r is the rank of mat(A).

Note that this also appears in the literature as the Kronecker product SVD (KP-
SVD) [Van00].

The inner product. The inner product on operators is

〈A, B〉 =
m∑

i=1

n∑
j=1

p∑
k=1

q∑
l=1

ai jkl bi jkl,

where the ai jkl and bi jkl are the entries of the operators. Note that this defini-
tion corresponds exactly to the usual inner product of the matrix representa-
tions (3.5) ofA andB.

Also useful is the inner product identity

〈X ⊗Y , X ′ ⊗Y ′〉 = 〈X , X ′〉〈Y , Y ′〉. (3.8)

Operator rank. Finally, the rank of an operator is the smallest number of dyads
that may be used in any of its decompositions. That is,

rank(A) = min
{

r : A =
r∑

i=1
X i ⊗Y i

}
.

This corresponds to the matrix rank of mat(A).

3.3 The nuclear norm

We desire a complexity measure for operators satisfying the following:

• It should be a convex function to facilitate its minimization.

• The complexity of an operator should grow linearly with respect to its
absolute scale.

• It should account for the scale and complexity of each dyad used to con-
struct the operator.

54

• Each additional dyad used to construct the operator should contribute as
much as possible to the complexity.

• The complexity must only penalize the best possible decomposition of
the operator.

We now show how we create such a measurement and discuss some of its
geometric properties.

3.3.1 Crossnorms

The above criteria suggest that we must have a sensible way to measure the
complexity of individual dyads. We choose to do this through the use of cross-
norms.

Definition 3.3.1 (Crossnorm). Consider two normed spaces

X = (Mm×n, ‖·‖X) and Y = (Mp×q, ‖·‖Y).

The norm |||·||| onOm×n⊗p×q is an X ⊗Y crossnorm if

|||X ⊗Y ||| = ‖X ‖X ‖Y ‖Y ,

for every dyad X ⊗Y with X ∈ X andY ∈ Y .

Note that the crossnorm property applies to norms on the space of operators,
but the definition only concerns their action on dyads. When applied to dyads,
crossnorms equally account for the complexity of each factor. As norms, they
are necessarily positive definite and absolutely homogenous. We can easily
confirm these properties hold on dyads.

Additionally, crossnorms must satisfy the triangle inequality. Thus for any
operator with the decompositionA =

∑
i X i ⊗Y i wemust have that

|||A ||| =
������������∑

i

X i ⊗Y i

������������ ≤∑
i

|||X i ⊗Y i ||| =
∑

i

‖X i ‖X ‖Y i ‖Y .

The crossnormmust satisfy this inequality for every possible decomposition of
A. Therefore we conclude that

|||A ||| ≤ inf
{∑

i

‖X i ‖X ‖Y i ‖Y : A =
∑

i

X i ⊗Y i

}
, (3.9)

where the infimum ranges over all decompositions ofA.

55

3.3.2 Nuclear norms

Since we desire a crossnorm on operators that penalizes additional dyads as
much as possible, it seems natural to choose the largest one. As all crossnorms
must satisfy the inequality (3.9), we use it to define our complexity measure:
the nuclear norm.

Definition 3.3.2 (Nuclear norm). Given two normed spaces

X = (Mm×n, ‖·‖X) and Y = (Mp×q, ‖·‖Y),

we define NX,Y , the nuclear norm on X ⊗Y , as

NX,Y (A) := inf
{∑

i

‖X i ‖X ‖Y i ‖Y : A =
∑

i

X i ⊗Y i

}
. (3.10)

Alternatively, we have

NX,Y (A) := inf
{∑

i

|λi | : A =
∑

i

λi X i ⊗Y i, ‖X i ‖X = 1, ‖Y i ‖Y = 1
}
. (3.11)

Both infima are taken over all dyadic decompositions ofA.

This is exactly the definition we provided in Section 1.3.4. As we expect, the
nuclear norm is not only a norm but a crossnorm too.

Proposition 3.3.3 (Properties of the nuclear norm). Let X = (Mm×n, ‖·‖X) and
Y = (Mp×q, ‖·‖Y) be normed vector spaces. The nuclear norm NX,Y satisfies the
following.

1. The nuclear norm NX,Y is a norm onOm×n⊗p×q .

2. NX,Y is a crossnorm.

3. NX,Y dominates all other crossnorms on X ⊗Y uniformly.

We prove these results in Section A.1 of the appendix.

We interpret the nuclear normasmeasuring the cost of constructing anoperator
through its dyadic decompositions. Each dyad X i ⊗Y i of the optimal decom-
position in the infimum (3.10) contributes the associated “cost” ‖X i ‖X ‖Y i ‖Y .

56

Dyads with low complexity as measured by the X andY norms, therefore, con-
tribute less to the nuclear norm. Operators with low nuclear norm are precisely
the operators that have decompositions using few, structured dyads.

Given the importance of the optimal dyadic decomposition in this interpreta-
tion, we wish to know what we can say about its existence and general form.

Proposition 3.3.4 (Optimal decompositions). Let X = (Mm×n, ‖·‖X) andY =

(Mp×q, ‖·‖Y) be normed vector spaces. The nuclear norm NX,Y satisfies the fol-
lowing.

1. The infima in Definition 3.3.2 of NX,Y are attained.

2. The number of dyads at such an optimal decomposition is no more than
mnpq .

We provide the proof of these results in Section A.2 of the appendix. Note,
however, that for some nuclear norms NX,Y the bound on the number of dyads
required for an optimal decomposition can be improved. In particular, refer
to the calculation of the `2 ⊗ `2 nuclear norm (Section 3.4) and nuclear norms
involving `1 (Section 3.5).

While we will refer back often to Definition 3.3.2, we now turn our attention
to a geometric construction of the nuclear norm. The reader may find this
alternative viewpoint more intuitive.

3.3.3 The unit ball

In the previous section we derived the definition of the nuclear norm from a
list of requisites and the notion of crossnorms. Here we derive an equivalent
definition through the construction of the nuclear unit ball. We adopt the factor
spaces X = (Mm×n, ‖·‖X) andY = (Mp×q, ‖·‖Y) as above. It is natural for us to
ask that dyads with unit norm factors also have unit norm. So let us define

DX ⊗Y := {X ⊗Y : ‖X ‖X = 1, ‖Y ‖Y = 1}, (3.12)

the set of all dyads in X ⊗Y with unit norm factors. For these dyads to have unit
nuclear norm, we require that they lie on the boundary of the nuclear norm’s
unit ball.

57

Additionally, we seek the smallest unit ball meeting this requirement; the small-
est unit ball will serve to penalize dyads as much as possible while retaining our
notion of unit-norm dyads. The unit ball of a normmust be absolutely convex,
and the smallest such set containingDX ⊗Y is its absolutely convex hull.

Definition 3.3.5 (Nuclear unit ball). Let X = (Mm×n, ‖·‖X) andY = (Mp×q, ‖·‖Y)
be normed vector spaces. Define the nuclear unit ball SX ⊗Y as

SX ⊗Y := abs convDX ⊗Y =

{∑
i

λi X i ⊗Y i : X i ⊗Y i ∈ DX,Y ,
∑

i

|λi | ≤ 1
}
. (3.13)

Since the set DX ⊗Y is symmetric itself, its absolutely convex hull coincides with
its convex hull, and we can instead write

SX ⊗Y = convDX ⊗Y =

{∑
i

λi X i ⊗Y i : X i ⊗Y i ∈ DX,Y ,
∑

i

λi = 1, λi ≥ 0
}
.

(3.14)

We claim that the nuclear unit ball SX ⊗Y corresponds exactly with the set {A :
NX,Y (A) ≤ 1}.

Proposition 3.3.6. For normed spaces X and Y as in Definition 3.3.5, the nu-
clear unit ball (3.13) coincides with the unit ball of the nuclear norm NX,Y in
Definition 3.3.2. That is,

A ∈ SX ⊗Y ⇐⇒ NX,Y ≤ 1.

Proof. For everyA ∈ SX ⊗Y , we have that

A =
∑

i

λi X i ⊗Y i,

where
∑

i |λi | ≤ 1, and ‖X i ‖X = ‖Y i ‖Y = 1. By Definition 3.3.2 of NX,Y , we
immediately have that

NX,Y (A) ≤
∑

i

|λi | = 1.

If, instead, we assume that NX,Y (A) ≤ 1 then by Proposition 3.3.4 there exists
an optimal decomposition

A =
∑

i

λi X i ⊗Y i,

with ‖X i ‖X = ‖Y i ‖Y = 1, and
∑

i |λi | = NX,Y (A) ≤ 1. ThereforeA ∈ SX ⊗Y . �

58

3.3.4 Dual norms

Using the unit ball of the nuclear norm on X ⊗Y , we can define the dual norm.

Definition 3.3.7 (Dual norm). Let X = (Mm×n, ‖·‖X) andY = (Mp×q, ‖·‖Y) be
normed vector spaces. The dual norm N ∗X,Y is given by

N ∗X,Y (B) := max{〈B,A〉 : A ∈ SX ⊗Y }, (3.15)

for everyB ∈ Om×n⊗p×q .

The dual normproves useful subsequently whenwe calculate particular nuclear
norms.

Proposition 3.3.8 (The dual of the nuclear norm). Let X = (Mm×n, ‖·‖X) and
Y = (Mp×q, ‖·‖Y) be normed vector spaces. The dual norm N ∗X,Y is given by

N ∗X,Y (B) = max{〈B, X ⊗Y 〉 : ‖X ‖X = 1, ‖Y ‖Y = 1}. (3.16)

By using the correspondence between operators and matrices, we can also ex-
press the dual norm as follows.

N ∗X,Y (B) = max{〈vecY , B t vec X 〉 : ‖X ‖X = 1, ‖Y ‖Y = 1}, (3.17)

where B = mat(B), the matrix representation (3.6) ofB.

Proof. The dual norm (3.15) is the maximum of a linear functional over the
compact, convex set SX ⊗Y . This maximummust occur at an extreme point of
the set. Recall, however, that SX ⊗Y is the convex hull of the DX ⊗Y , the set of
unit-norm dyads. Therefore the extreme points of SX ⊗Y must reside in DX ⊗Y ,
and we can let the maximum range over DX ⊗Y instead. This results in the
expression (3.16).

For any dyadic decomposition of B, let B = mat(B) be its matrix representa-
tion (3.6). Applying standard inner product rules gives (3.17). �

3.3.5 Connections to sparse approximation

A straightforward modification of (3.11) in Definition 3.3.2 of the nuclear norm
on X ⊗Y gives that

NX,Y (A) = inf
{
‖λ‖`1 : A =

∑
i

λi X i ⊗Y i, X i ⊗Y i ∈ DX ⊗Y

}
, (3.18)

59

Norm Structure
`1 1-sparse vector
`∞ Sign vector (±1 entries)
S1 Rank-1 matrix
S∞ Orthogonal matrix

Table 3.1: Examples of atomicnorms. This table lists familiar vector andmatrix
norms that arise as complexity measurements on atomic decompositions. The
structure column indicates the atoms composing these decompositions.

whereDX ⊗Y is once again the set of unit-norm dyads (3.12).

We can think of the nuclear norm as buildingA from linear combinations of
unit-norm dyads and finding the decomposition with the smallest absolute
sum of coefficients. In the language of sparse approximation, we think ofDX ⊗Y

as a dictionary containing the basic building blocks of operators. These entries
in the dictionary, called atoms, are structured rank-1 operators.

The principle of finding an atomic decomposition of a signal through `1-
minimization is known as basis pursuit and was introduced by Chen, Donoho,
and Saunders [CDS98]. The effect of `1-minimization is to promote sparse
decompositions. We therefore interpret the nuclear norm as finding a sparse
representation of A from the dictionary DX ⊗Y . That is, it seeks a low-rank
decomposition forA comprising structured dyads.

The nuclear norm of an operator (3.18) is the optimal value of this optimization
problem. Over all decompositions of the operator into linear combinations of
dictionary elements, the nuclear norm is the lowest possible absolute sum of
the coefficients. In this way, we can think of the nuclear norm as representing
the “cost” of constructing an operator from a given set of dictionary elements.
We consider operators that are themselves sums of few atoms as having lower
cost, and therefore, lower nuclear norms. The idea of using the nuclear norm
as a complexity measure exactly corresponds with the intuition that “simpler”
operators cost less to construct. This idea of creating a norm-like complexity
measure based on atomic decompositions from dictionaries appears in the
work of DeVore and Temlyakov [DT96] on functional approximation.

Many common norms appearing in the sparse approximation literature have
similar interpretations as complexity measures on atomic decompositions.
Table 3.1 lists several of these norms and their associated structured atoms.
By constructing nuclear norms from such norms, we can promote operators

60

having desirable factor structure. For instance, we expect the `∞ ⊗ S∞ nuclear
norm to promote dyads where the left factor is a signmatrix and the right factor
is an orthogonal matrix.

This idea of encoding prior assumptions of factor structure into the nuclear
norm is central to our framework. For instance, we conduct numerical experi-
ments in Chapter 5 to measure the performance of various nuclear norms as
regularizers for denoising structured low-rank operators. We demonstrate that
matching the nuclear norm to the factor structure of the true operator provides
the best denoising performance. In particular, denoising with a well-chosen
nuclear norm outperforms standard trace-normminimization.

3.3.6 The nuclear norm as an atomic norm

Since SX ⊗Y is the convex hull of DX ⊗Y , see (3.14), the nuclear norm is the gauge
function of a convex hull:

NX,Y (A) = inf{t > 0 : A ∈ t · SX ⊗Y }.

The nuclear norm, therefore, falls into the atomic norm framework of Chan-
drasekaran et al. [CRPW12]. The convex hull of the dictionaryDX ⊗Y provides the
tightest convex superset of the dictionary, and defining atomic norms as gauges
of those hulls creates complexity measures that maximally penalize deviation
away from convex combinations of dictionary elements. That is, operators with
low atomic norm arise as superpositions of few structured atoms.

3.3.7 The nuclear norm recovery problem

In Chapter 1 we motivated our discussion of nuclear norms using the problem
of approximating operators from noisy and incomplete linear measurements.
This culminated in the nuclear norm recovery problem (1.11) that we restate
here.

LetA\ ∈ Om×n⊗p×q be an operator and µ : Om×n⊗p×q → Rs be a linear mea-
surementmap. Assume that we observeb = µ(A\)+ z , where z ∈ Rs is additive
noise. We propose to estimateA\ given b by solving the problem

minimize
A

1
2
‖b − µ(A)‖2`2 + λNX,Y (A),

61

where λ > 0 is a parameter that balances the relative importance ofmaintaining
fidelity to themeasurements b and promoting solutions with low nuclear norm.

Our interpretations of the nuclear norm in Sections 3.3.5 and 3.3.6 suggest
that using the nuclear norm on X ⊗ Y as a regularizer in (1.11) will promote
solutions that have sparse representations in the dictionaryDX ⊗Y . Therefore,
our choice to use any particular nuclear normNX,Y in (1.11) should be based on
the assumption thatA\ admits a sparse atomic decomposition in the dictionary
DX ⊗Y .

3.3.8 Computation

While the nuclear norm appears to be a useful tool in recovering structured low-
rank operators, we face computational difficulties. Simply put, we have very
few instances where we can directly compute the nuclear norm of an operator
(and we address these in the following two sections). In other cases, we can
show that computing the nuclear norm is, in fact, intractable.

Even though this situation seems dire, we do have some reason for optimism.
First, some difficult nuclear norms can be well approximated by semidefinite
programs. We consider this scenario in Section 3.6. Fundamental results from
functional analysis can also characterize the quality of these approximations.

Second, we can draw on techniques from nonconvex optimization to compute
more general nuclear norms. Techniques such as alternating minimization
and gradient descent, discussed in Section 2.2, have had success in various
matrix factorization problems. We detail our preferred approach—alternating
minimization—more thoroughly in Section 4.2.

While we utilize nonconvex optimization in our own software, we emphasize
that the underlying nuclear normminimization problems we wish to solve are
truly convex. This provides us some solace evenwhenwemust employ heuristic
approaches in their solution.

3.4 The trace norm

As we stated in Section 1.2.2.1, the trace norm is in fact the `2 ⊗ `2 nuclear norm.
Here we restate and prove this same result for operators. First, however, we
review some implications of the dyadic SVD (3.7).

62

Consider the operatorA ∈ Om×n⊗p×q and itsmatrix representation A = mat(A)
from (3.6). We can compute the dyadic SVD as in (3.7),

A =

r∑
i=1

σiU i ⊗V i .

We can also take the trace norm of the matrix ‖A‖S1 as we normally would

‖A‖S1 =
r∑

i=1
σi .

Note that the decomposition (and hence the singular values) correspond to the
matrix A; we make no statement here about the singular values of an operator.
Instead we call the σi dyadic singular values.

Given the properties of the SVD, we see that theU i andV i also have unit Eu-
clidean norm. For matrices this is often referred to as the Frobenius norm
(written as ‖·‖F), but we simply refer to it as the `2 norm. We now prove that the
`2 ⊗ `2 nuclear norm is indeed the trace norm. This result applies to the tensor
product of vectors as well as the tensor product of matrices shown here.

Proposition 3.4.1 (The trace norm). LetA ∈ Om×n⊗p×q have the dyadic SVD

A =

r∑
i=1

σiU i ⊗V i .

Then the `2 ⊗ `2 nuclear norm, N`2, `2 , is given by the sum of the dyadic singular
values

N`2, `2(A) =
r∑

i=1
σi .

Furthermore, the dual norm is

N ∗`2, `2(B) = σ1(B),

the largest dyadic singular value ofB.

Proof. For any operatorB inOm×n⊗p×q , let B be its matrix representation (3.6)
inMmn×pq . By the definition (3.17) of the dual norm, we have that

N ∗`2, `2(B) = max{〈vecY , B t vec X 〉 : ‖X ‖`2 = ‖Y ‖`2 = 1},

where the maximum is taken over X ∈ Mm×n andY ∈ Mp×q .

63

The maximum itself is the largest singular value of B , and so

N ∗`2, `2(B) = σ1(B) = σ1(B),

with the abuse of notation that σ1(B) returns the largest dyadic singular value
of the operatorB.

Since the nuclear norm N`2, `2 is both a norm and a crossnorm, we can apply
the triangle inequality to see that

N`2, `2(A) ≤
r∑

i=1
σi ‖U i ‖`2 ‖V i ‖`2 =

r∑
i=1

σi .

However, we also have that

N`2, `2(A) = max{〈A, B〉 : N ∗`2, `2(B) ≤ 1}
= max{〈A, B〉 : σ1(B) ≤ 1}
≥ 〈UΣV t, UV t〉

= tr(V ΣtU tY V t) = tr(Σ) =
r∑

i=1
σi,

where the i th column ofU is vec(U i), the i th column ofV is vec(V i), and the
diagonal matrix Σ has the σi as its entries. The inequality holds by choosing
B = UV t and applying properties of the trace. �

In particular, this result still holds for the `2 ⊗ `2 nuclear norm in the vector
case.

3.5 Nuclear norms involving `1

We also have a closed form expression for the nuclear norm when equipping
either of the factor spaces with the `1 norm. If, for instance, we measure the
right factors with the `1 norm, then the X ⊗ `1 nuclear norm is the sum of the X

norms of the “left slices”. Similarly, the `1 ⊗Y is simply the sum of theY norms
of the “right slices”.

Proposition 3.5.1. LetA ∈ Om×n⊗p×q be an operator. In the space X ⊗ `1, we
have the nuclear norm

NX, `1(A) =
p∑

k=1

q∑
l=1
‖A ::kl ‖X ,

64

and the operatorA has the optimal decomposition

A =

p∑
k=1

q∑
l=1

A ::kl ⊗ E kl .

Furthermore, the dual norm is

N ∗X, `1(B) = max
k,l
‖B ::kl ‖X ∗ .

Proof. We start with computing the dual norm

N ∗(B) = max{〈B, X ⊗Y 〉 : ‖X ‖X = 1; ‖Y ‖`1 = 1}
= max{|〈B, X ⊗ E kl 〉| : ‖X ‖X = 1;k = 1, . . . , p ; l = 1, . . . , q}
= max{|〈B ::kl, X 〉| : ‖X ‖X = 1;k = 1, . . . , p ; l = 1, . . . , q}
= max

k,l
‖B ::kl ‖X ∗,

where the second equality follows since the maximum over the `1-norm ball
occurs at ±E kl for some k and l , and the third is an application of the inner
product identity (3.8).

Since the nuclear norm is a crossnorm, we must have that

N (A) ≤
p∑

k=1

q∑
l=1
‖A ::kl ‖X ‖E kl ‖`1 =

p∑
k=1

q∑
l=1
‖A ::kl ‖X .

On the other hand,

N (A) = max{〈A, B〉 : N ∗(B) ≤ 1}

≥ max

{〈 p∑
k=1

q∑
l=1

A ::kl ⊗ E kl,

p∑
k ′=1

q∑
l ′=1

B ::k ′l ′ ⊗ E k ′l ′

〉
: ‖B ::k ′l ′‖X ∗ ≤ 1

}
= max

{
p∑

k=1

q∑
l=1
〈A ::kl, B ::kl 〉 : ‖B ::kl ‖X ∗ ≤ 1 for each k, l

}
=

p∑
k=1

q∑
l=1
‖A ::kl ‖X ,

where the inequality holds by choosing a particular B, and the last equality
holds because the optimal B ::kls will norm the A ::kls. �

65

3.6 Semidefinite relaxations

While the trace norm and nuclear norms involving `1 have easily computable
forms (along with optimal decompositions), many other interesting norms
do not. In this section we describe how some nuclear norms may be well-
approximated by solving semidefinite programs.

3.6.1 An alternative nuclear norm formulation

To arrive at the semidefinite relaxations, we make use of an additional formula-
tion for the nuclear norm.

Proposition 3.6.1 (Alternate definition of the nuclear norm). Let X =

(Mm×n, ‖·‖X) and Y = (Mp×q, ‖·‖Y) be normed vector spaces. We can write
the nuclear norm on X ⊗Y as

NX,Y (A) = inf
{
1
2

∑
i

(‖X i ‖2X + ‖Y i ‖2Y) : A =
∑

i

X i ⊗Y i

}
, (3.19)

where the infimum is over all decompositions ofA.

Proof. Recall from Definition 3.3.2 that the nuclear norm on X ⊗Y (3.10) is

NX,Y (A) = inf
{∑

i

‖X i ‖X ‖Y i ‖Y : A =
∑

i

X i ⊗Y i

}
.

Using the bilinearity of dyad arithmetic, we can write

X i ⊗Y i = (ti X i) ⊗ (t −1i Y i),

for every ti > 0. Through the arithmetic–geometric mean inequality, we have
that

‖X i ‖X ‖Y i ‖Y = inf
ti>0

1
2

(
‖ti X i ‖2X + ‖t −1i Y i ‖2Y

)
.

Through the changes of variables ti X i 7→ X i and t −1i Y i 7→ Y i , we obtain the
desired result. �

3.6.2 The semidefinite representation

The key to creating the relaxed nuclear norms is our ability to express operator
decompositions through a semidefinite inequality.

66

Proposition 3.6.2 (Semidefinite representation of operator decomposition).
Fix operators A ∈ Om×n⊗p×q , W1 ∈ Om×n⊗m×n , and W2 ∈ Op×q⊗p×q . Let A ∈
Mmn×pq ,W 1 ∈ Mmn×mn , andW 2 ∈ Mpq×pq be theirmatrix representations (3.6).
The following conditions are equivalent.

1. There exist matrices X ∈ Mmn×r andY ∈ Mpq×r for some r ∈ N such that

A = XY t, W 1 = X X t, and W 2 = Y Y t.

2. The following semidefinite inequality holds.[
W 1 A

At W 2

]
� 0. (3.20)

In operator notation, condition (1) states that

A =

r∑
i=1

X i ⊗Y i,

where the X i ∈ Mm×n andY i ∈ Mp×q are the reshaped columns of X andY .

Additionally, the semidefinite inequality (3.20) implies that condition (1) holds
for some r ≤ mn + pq .

Proof. Assume condition (2) holds so that the block matrix has the positive
square root

S =

[
W 1 A

At W 2

]1/2
=

[
X

Y

]
, (3.21)

where thematrices X ∈ Mmn×(mn+pq) andY ∈ Mpq×(mn+pq) result from grouping
the rows of S .

Then we have that [
W 1 A

At W 2

]
=

[
X

Y

] [
X

Y

] t

=

[
X X t XY t

Y X t Y Y t

]
,

and condition (1) follows by equating the blocks.

Conversely, if condition (1) holds, we can substitute X andY directly into (3.20).
By the above, the resulting block matrix is indeed positive semidefinite.

Finally, our procedure for generating X andY from the positive square root
shows that r ≤ mn + pq in condition (1). �

67

The import of this result is that finding a semidefinite block matrix with a
prescribed A also determines an operator decomposition. We now explore
how optimization problems involving theW i in the block matrix can recover
structured decompositions.

3.6.3 Example: The trace norm

Before looking at how this semidefinite representation may be applied more
generally, we outline the method with the familiar example of the trace norm.

Proposition 3.6.3 (Semidefinite representation of the trace norm). For every
operatorA ∈ Om×n⊗p×q , we have that

N`2, `2(A) = inf
{
1
2
[tr(W 1) + tr(W 2)] :

[
W 1 A

At W 2

]
� 0

}
, (3.22)

where A is the matrix representation (3.6) ofA, and the block matrix formula-
tion is as in Proposition 3.6.2.

Proof. Starting with the nuclear norm formulation (3.19), we replace the factor-
ization constraint with the semidefinite inequality (3.21) from Proposition 3.6.2.
And by Proposition 3.6.2, we have that A = XY t,W 1 = X X t, andW 2 = Y Y t for
some X andY .

We see that∑
j

‖x :j ‖2`2 =
∑

j

(∑
i

|xi j |2
)

=
∑

i

(∑
j

|xi j |2
)
=

∑
i

‖x i :‖2`2 =
∑

i

(X X t)i i = tr(W 1),

where x :i is the i th column of the matrix X .

Sincewe are regardingA = XY t as thematrix representation (3.6) of the operator
A, the semidefinite block matrix results in the dyadic decomposition

A =

r∑
i=1

X i ⊗Y i,

where X i is the i th column of X reshaped into an m × n matrix. In particular,
we have that ‖X i ‖`2 = ‖x :i ‖`2 . Therefore,∑

i

‖X i ‖2`2 = tr(W 1).

68

A similar equality holds for the factorsY i and tr(W 2). We conclude that (3.22) is
in fact the `2 ⊗ `2 nuclear norm. �

The key idea here is that we may replace the factorization constraint in the
formulation of the nuclear norm with a semidefinite constraint and express
the factor norms in terms of the entries ofW 1 andW 2. In particular, we move
from considering the dyad factors X i to the matrix X whose columns are the
vectorized X i . Then we express the sum of the squared column norms of X as a
function of the squared Euclidean row norms of X . Here the function is simply
the sum, and the statement holds with equality.

As we will see shortly, we can make a similar expression for other squared
column norms, but the relationship holds with an inequality. Note that the
equality between the squared norms of the factors X i and the squared column
norms of X exists when we norm the X i with vector norms.

3.6.4 Superquadratic norms

To generalize the above we need to express the sum of the squared column
norms of a matrix as a function of its squared Euclidean row norms. In this
section we show how to achieve this for superquadratic norms.

Definition 3.6.4 (Superquadratic norm). A vector norm ‖·‖X on Rm is su-
perquadratic if there exists a gauge gX : Rm

+ → R+ such that

‖x ‖2X = gX (|x |2),

for every x ∈ Rm . We use |·|2 to denote the componentwise squaring of a vector.

Many norms are, in fact, superquadratic.

Example 3.6.5 (The `2 norm is superquadratic). Let the normed space X = `m
2 .

Observe that for all x ∈ Rm ,

‖x ‖2`2 =
m∑

i=1
|xi |2,

and so the `2 norm is superquadratic with gauge

g`2(s) =
m∑

i=1
|si | = ‖s ‖`1,

for all s ∈ Rm
+ .

69

Example 3.6.6 (The `∞ norm is superquadratic). Let the normed space X = `m
∞.

Observe that for all x ∈ Rm ,

‖x ‖2`∞ = max
i=1, ...,m

|xi |2,

and so the `∞ norm is superquadratic with gauge

g`∞(s) = max
i=1, ...,m

|si | = ‖s ‖`∞,

for all s ∈ Rm
+ .

Example 3.6.7 (The `p norm, p ≥ 2, is superquadratic). Let the normed space
X = `m

p with p ≥ 2. Observe that for all x ∈ Rm ,

‖x ‖2`p
=

(m∑
i=1
(|xi |2)p/2

)2/p
,

and so the `p norm, with p ≥ 2 is superquadratic with gauge

g`p (s) =
(m∑

i=1
|si |p/2

)2/p
= ‖s ‖`p/2,

for all s ∈ Rm
+ .

We will focus on the use of the `2 and `∞ norms, but we also see that the last
result allows us to interpolate between them.

3.6.5 Relaxed nuclear norms

In this section we show how we can create semidefinite relaxations of nuclear
norms when the factor spaces have superquadratic vector norms.

Definition 3.6.8 (The relaxed nuclear norm). Let ‖·‖X on Rmn and ‖·‖Y on
Rpq be superquadratic vector norms. For everyA ∈ Om×n⊗p×q , we define the
relaxed nuclear norm as

RX,Y (A) := inf
{
1
2
[gX (diag(W 1)) + gY (diag(W 2))] :

[
W 1 A

At W 2

]
� 0

}
,

where A is the matrix representation (3.6) ofA, and the block matrix has di-
mensions as in (3.20).

The relaxed norm RX,Y is thus the solution to a convex program, and it is com-
putationally tractable whenever the gauges gX and gY are themselves tractable.

70

Furthermore, note that this definition agreeswith the trace normexample (3.22)
in Proposition 3.6.3.

We now show that RX,Y is indeed a relaxation of NX,Y .

Proposition 3.6.9 (Relaxation). Let ‖·‖X on Rmn and ‖·‖Y on Rpq be su-
perquadratic vector norms. The relaxed norm RX,Y satisfies

RX,Y (A) ≤ NX,Y (A),

for allA ∈ Om×n⊗p×q .

Proof. We start with the formulation of the nuclear norm given in Proposi-
tion 3.6.1 and replace the decomposition constraint with the semidefinite con-
straint from Proposition 3.6.2. To complete the proof wemust verify that the
objective

1
2
[gX (diag(W 1)) + gY (diag(W 2))] ≤

1
2

∑
i

(‖X i ‖2X + ‖Y i ‖2Y).

As we saw in the proof of Proposition 3.6.3, the semidefinite block matrix (3.21)
corresponds to a dyadic decomposition of the operatorA. In particular, for
W 1 = X X t, we have that X j in the dyadic decomposition is exactly the j th
column of X reshaped to have dimension m × n.

If we let x :j be the j th column of X , then∑
j

‖X j ‖2X =
∑

j

‖x :j ‖2X =
∑

j

gX (|x:j |)2

≥ gX

(∑
j

|x:j |2
)
= gX (diag(X X t)) = gX (diag(W 1)),

where we use the fact that gauges satisfy a triangle inequality. As we saw earlier,
the squared Euclidean norms of the rows of X coincidewith the diagonal entries
ofW 1 = X X t. A similar relationship holds for the squaredY norms of theY i in
the dyadic decomposition ofA. �

We can now apply Definition 3.6.8 to the superquadratic norm examples from
the previous section.

71

Example 3.6.10 (Relaxation of the `∞ ⊗ `∞ nuclear norm). Let the factor spaces
be X = `mn

∞ andY = `pq
∞ . Therefore we have that

gX (diag(W 1)) = max
i=1, ...,mn

[W 1]i i and gY (diag(W 2)) = max
j=1, ...,pq

[W 2]j j .

The relaxed nuclear norm is then

RX,Y (A) := inf
{
1
2

[
max

i
[W 1]i i +max

j
[W 2]j j

]
:

[
W 1 A

At W 2

]
� 0

}
,

for each operatorA ∈ Om×n⊗p×q .

This relaxed nuclear norm appears in the machine learning literature as the
max-norm. [Lee+10; SS05; SRJ05]

Example 3.6.11 (Relaxation of the `2 ⊗ `∞ nuclear norm). Let the factor spaces
be X = `mn

2 andY = `pq
∞ . Therefore we have that

gX (diag(W 1)) = tr(W 1) and gY (diag(W 2)) = max
j=1, ...,pq

[W 2]j j .

The relaxed nuclear norm is then

RX,Y (A) := inf
{
1
2

[
tr(W 1) +max

j
[W 2]j j

]
:

[
W 1 A

At W 2

]
� 0

}
,

for each operatorA ∈ Om×n⊗p×q .

A similar relaxation applies to the `∞ ⊗ `2 nuclear norm.

Example 3.6.12 (Relaxation of the `r ⊗ `s nuclear norm for r, s ≥ 2). Let the
factor spaces be X = `mn

r andY = `pq
s with r, s ≥ 2. Therefore we have that

gX (diag(W 1)) = ‖diag(W 1)‖r/2 and gY (diag(W 2)) = ‖diag(W 2)‖s/2.

The relaxed nuclear norm is then

RX,Y (A) := inf
{
1
2

[
‖diag(W 1)‖r/2 + ‖diag(W 2)‖s/2

]
:

[
W 1 A

At W 2

]
� 0

}
,

for each operatorA ∈ Om×n⊗p×q .

3.6.6 The quality of the relaxation

In Proposition 3.6.9 we showed the relaxed nuclear norms for superquadratic
factor spaces indeed minorize their corresponding true nuclear norms. Given

72

this, a natural question is how closely the relaxations coincide with the true
norms. Remarkably, these relaxations approximate their nuclear norms quite
well in some important cases of interest. The results of this section originally
appeared in the famous 1953 paper of Grothendieck [Gro53] (see also Sec-
tion 2.3.2).

The central result of that paper, known as Grothendieck’s Theorem, proves that
the `∞ ⊗ `∞ semidefinite relaxation deviates from the true nuclear norm by a
dimension-independent multiplicative constant. Grothendieck-type results
exist for other nuclear norm relaxations, and we present one for the `2 ⊗ `∞
case (also due to Grothendieck himself). See Pisier’s book [Pis86] and his more
recent survey [Pis12] for a history of Grothendieck-type results.

3.6.6.1 Grothendieck’s Theorem

Grothendieck, in his 1953 paper [Gro53], presented a result he called “the fun-
damental theorem in the metric theory of tensor products.” This result, now
known as Grothendieck’s Theorem, is an inequality between three fundamental
norms of the tensor product space `∞ ⊗ `∞.1 While our terminology differs, we
have already seen two of these norms.

On `∞ ⊗ `∞, the nuclear norm N`∞, `∞ is also known as the projective tensor
product norm, while the relaxed normR`∞, `∞ is theHilbertian norm. The Groth-
endieck Theorem allows us to compare these two norms, and we restate the
result here in our notation.

Proposition 3.6.13 (The Grothendieck Theorem). Let the factor spaces be X =

`mn
∞ andY = `pq

∞ . For everyA ∈ Om×n⊗p×q ,

R`∞, `∞(A) ≤ N`∞, `∞(A) ≤ K R
G · R`∞, `∞(A),

where the real Grothendieck constant K R
G satisfies 1.66 ≤ K R

G < π/(2 log(1 +√
2)) ≈ 1.8.

The above bounds, due to Krivine [Kri77], improve uponGrothendieck’s original
result that 1.57 ≈ π/2 ≤ K R

G ≤ sinh(π/2) ≈ 2.30. While Krivine conjectured that
his upper boundwas optimal, recentwork byBravermanet al. [BMMN11] shows
that it is not. The exact value for Grothendieck’s constant remains unknown.

1In fact, Grothendieck’s result is not limited to finite-dimensional spaces, but we remain
firmly in the finite-dimensional setting for this work.

73

To prove this theorem, Grothendieck uses a relaxation and rounding argument.
The relaxation step involves transforming a computationally difficult optimiza-
tion problem into one that is tractable. This corresponds exactly to our relax-
ation of the nuclear norm. The rounding step relates the solution of the relaxed
problem back to the original, difficult one by randomly rounding the computed
optimal point into a feasible point of the original problem. This is done in
such a way as to ensure that values of the relaxed and original problems are
comparable.

This relaxationand rounding strategy for approximating solutions to combinato-
rial optimization problems—such as computing the `∞⊗ `∞ nuclear norm—has
since becomemainstream. Lovász [Lov79] harnessed this technique to devise a
polynomial-time approximation—known as the Lovász theta function—of cer-
tain difficult-to-compute graph quantities. His formulation explicitly utilized
semidefinite programming in the relaxation step.

More recently, Goemans and Williamson [GW95] famously used a semidefinite
rounding and relaxation approach to approximate the optimal solution of the
MAX-CUT problem. This work led to increased interest in semidefinite pro-
gramming for approximation algorithms. Additionally, Alon and Naor [AN06]
showed that a rounding approach based on proofs of Grothendieck’s Theorem
can well-approximate the CUT-NORM problem, a generalization of MAX-CUT.
The survey of Khot and Naor [KN12] provides further connections between
Grothendieck-type theorems and problems in combinatorial optimization.

3.6.6.2 The “Little” Grothendieck Theorem

In subsequent chapters we consider the empirical performance of the `2 ⊗ `∞
and `∞ ⊗ `2 nuclear norms. It happens that a Grothendieck-type theorem exists
to characterize the quality of their semidefinite relaxations as well.

Proposition 3.6.14 (The “Little” Grothendieck Theorem). Let the factor spaces
be X = `mn

∞ andY = `pq
∞ . For everyA ∈ Om×n⊗p×q ,

R`2, `∞(A) ≤ N`2, `∞(A) ≤ kR
G · R`2, `∞(A),

where the little Grothendieck constant kR
G = π/2 is optimal. A similar relation-

ship holds for `∞ ⊗ `2.

Grothendieck also proved this result [Gro53, Thm. 4, p. 51] in his 1953 paper
and established that the constant kR

G is optimal [Gro53, Coro. 1, p. 51].

74

Chapter 4

The operfact Python package

In this chapter we present the Python software package operfactwe developed
to implement operator recovery problems using the nuclear norm framework
described in Chapter 3. This software is open-source and available on GitHub1

and through PyPI, the official Python package repository. Here we discuss the
implementation choices and basic usage of the package; a reference guide to
its classes and methods is included with the software.

4.1 Overview

Our exploration of operator factorization models requires solving many similar
optimization problems. Instead of writing individual solvers for the models we
wish to test, we develop a higher-level tool that allows us to programmatically
modify a generic solver to fit any of our particular needs. In this way we can
more quickly prototypeproblemsof interest and run thenumerical experiments
necessary to validate these models.

This document describes the design and implementation of this framework in
the form of a Python package named operfact (an unimaginative shortening
of operator factorization). Subsequent chapters present concrete examples that
illustrate the use of the package.

1https://github.com/jbruer/operfact

https://github.com/jbruer/operfact

75

4.1.1 The optimization problem

In Chapter 1 we described the situation where we observe linear measurements
b ∈ Rs of an operatorA\ ∈ Om×n⊗p×q given as

b = µ(A\) + z,

where µ : Om×n⊗p×q → Rs is a linear map and z ∈ Rs is additive noise. We wish
to know when we can either:

• Find a factorizationA\ =
∑

i X i ⊗ Y i where the factors X i andY i have
some particular structure.

• ApproximateA\ given that it admits such a factorization.

We use nuclear norms (Chapter 3) as regularizers that encode our prior assump-
tions on the factor structure of the true signalA\ and solve the problem

minimize
A

1
2
‖b − µ(A)‖2`2 + λNX,Y (A), (4.1)

where we use the squared Euclidean norm tomeasure the fidelity of the can-
didate operatorA to the measurements b , and NX,Y is the nuclear norm on
X ⊗ Y . The positive constant λ adjusts the balance between our desires to
recover highly structured operators and to remain faithful to the observations.
In the remainder of this work, wemeasure fidelity using the Euclidean norm.
In general, this loss measurement should be sensitive to the additive noise z .
We consider the function loss(·) to be more sensitive to the noise z if loss(σz)
increases more rapidly as the scale σ increases. We assume isotropic Gaussian
noise, and so the Euclidean norm serves us well.

Due to the convexity of thenuclear normand the linearity of µ , the problem (4.1)
is a convex optimization problem. Therefore finding a local minimum of the
objective yields the globalminimum. This fact allows for solvers that canprovide
strong convergence guarantees.

When the nuclear norm NX,Y admits a simple optimal decomposition, the
optimization problem (4.1) allows us to approximate the operatorA and factor
it. We saw examples of this in Sections 3.4 and 3.5, with the trace norm and
whenever X orY is the `1 norm.

76

In some cases, where computing the nuclear norm is difficult, we can rely
on a semidefinite relaxation strategy. We detailed this in Section 3.6. These
relaxations can improve the computational situation without much sacrifice
in the power of the regularizer. Furthermore, we defined this relaxation in
terms of a factorization. Therefore solving these problems also allows us to
retrieve a corresponding dyadic decomposition. We implement this approach
in Section 4.7.4.

In general, we do not have either option. For these cases we utilize alternating
minimization. Factorization then requires an additional step or consideration
during the optimization process. In the next section we describe alternating
minimization. We discuss our implementation in Section 4.7.3.

4.1.2 Roadmap

We discuss alternating minimization, our default method for solving the opera-
tor recovery problem (4.1), in Section 4.2. We discuss the higher-level choices of
our implementation in Section 4.3 beforewe outline the individual components
of our software package.

The package operfact itself comprises four main modules. The operators

module discussed in Section 4.4 concerns the generation and manipulation
of operators. The measurementsmodule discussed in Section 4.5 provides a
standard way to define linear measurement maps of operators and provides
several examples of such maps. The regularizersmodule discussed in Sec-
tion 4.6 implements the nuclear norm framework for use in numerical solvers.
The solversmodule discussed in Section 4.7 implements solvers for the nu-
clear norm recovery problem (4.1) via CVXPY. Additionally, the utilsmodule
provides helper methods to perform embarrassingly parallel numerical experi-
ments; see the reference manual for more information about this module.

We introduce the contents of each module and provide code samples highlight-
ing the usage of these features. The referencemanual includedwith the package
contains additional details.

4.2 Alternating minimization

Inmost caseswe consider, the nuclear normonX ⊗Y has no simple closed-form
representation. We instead resort to solving (4.1) using alternating minimiza-

77

tion.

4.2.1 Transformation to a nonconvex problem

To obtain the nonconvex problem, we first form an explicit factorizationA =∑r
i=1 X i ⊗Y i of the decision variable. Using the definition (3.10) of the nuclear

norm, we create a new optimization problem over the factors X i andY i :

minimize
X i ,Y i

1
2

b − µ

(r∑
i=1

X i ⊗Y i

)

2
`2

+ λ

r∑
i=1
‖X i ‖X ‖Y i ‖Y . (4.2)

We notice two important differences between (4.2) and (4.1). First, this problem
is no longer convex due to the bilinear relationship between the X i andY i under
µ . We must pay this penalty to use this factored form.

Second, the bound r on the sum indicates that we now search over all decompo-
sitions of the operator with r dyads as opposed to all finite decompositions. We
are therefore enforcing a rank constraint on the solution. In our quest to recover
low-rank operators, this may be useful. On the other hand, results from the
literature suggest that this nonconvex problem becomes “easier” as the solver
rank grows [BM04; BMP08; HV15]. Namely, higher solver rank can remove
spurious local minima from the problem.

4.2.1.1 An alternative formulation of the problem

Recall that Proposition 3.6.1 provides an alternative formulation (3.19) of the nu-
clear norm. Using this, instead of the definition (3.10), results in the nonconvex
optimization problem

minimize
X i ,Y i

1
2

b − µ

(r∑
i=1

X i ⊗Y i

)

2
`2

+ λ

r∑
i=1

1
2
(‖X i ‖2X + ‖Y i ‖2Y). (4.3)

We refer to (4.2) as the “product” formulation and to (4.3) as the “sum” formu-
lation. While both originate from equivalent definitions of the nuclear norm,
the numerical implementations of these problems will be different. In fact, the
documentation of CVX [GB14] states that:

One particular reformulation that we strongly encourage is to
eliminate quadratic forms [...] whenever it is possible to construct
equivalent models using norm instead. Our experience tells us

78

Algorithm 1 Alternating minimization
Require: measurement map µ , observed vector b
Require: regularization constant λ, solver rank r
Require: initializationY 0

i , i = 1, . . . , r
1: for t = 0, 1, . . . , tmax do
2: {X t

i } ← arg min{X i }
1
2 ‖b − µ(∑r

i=1 X i ⊗Y t−1
i)‖

2
`2
+ λ

∑r
i=1‖X i ‖X ‖Y t−1

i ‖Y
3: {Y t

i } ← arg min{Y i }
1
2 ‖b − µ(∑r

i=1 X t
i ⊗Y i)‖2`2 + λ

∑r
i=1‖X t

i ‖X ‖Y i ‖Y
4: end for
5: return {X tmax

i }, {Y tmax
i }

that quadratic forms often pose a numerical challenge for the
underlying solvers that CVX uses.

We acknowledge that this advice goes against conventional wisdom:
quadratic forms are the prototypical smooth convex function, while
norms are nonsmooth and therefore unwieldy. But with the conic
solvers that CVX uses, this wisdom is exactly backwards. It is the
norm that is best suited for conic formulation and solution.

We use CVXPY to model our optimization problems, but it uses conic formu-
lations just like CVX. This note, therefore, suggests that the “product” formu-
lation (4.2) will offer higher accuracy. Our numerical experimentation, how-
ever, shows that this is not always the case, and we explore this further in
Section 5.4.4.2.

4.2.2 The algorithm

The alternating minimization algorithm for (4.2) is shown in Algorithm 1. We
proceed by first fixing theY i and solving with respect to the X i . Then we fix the
X i and solve for theY i . Note that when fixing one set of factors, the problem
again becomes convex in the other set. In this way we turn the nonconvex
problem into a set of linked convex subproblems. We repeat these steps until
we either reach convergence or complete a predetermined maximal number of
iterations.

4.2.3 Initialization

In Section 2.2.4 we reviewed initialization schemes for nonconvex optimization
methods found in the literature. Here we discuss in more detail our default

79

initialization scheme for the alternating minimization solver shown in Algo-
rithm 1.

Jain et al. [JNS12] solve the related matrix sensing problem using alternating
minimization. That is,

minimize
X ,Y

‖b − µ(XY t)‖2`2, (4.4)

where the inner dimension of the matrix factorization is r . In our dyadic nota-
tion, this is

minimize
x i ,y i

b − µ

(r∑
i=1

x i ⊗ y i

)

2
`2

.

The solver first minimizes over the left factors x i while keeping the right factors
y i fixed. For the first iteration, they must therefore provide the solver with an
initial estimate of the right factors.

Jain et al. analyze the alternating minimization algorithm for matrix sensing as
a perturbed power method. They note that due to this connection it is critical
that the subspace spanned by the right factors y i not be orthogonal (or nearly
orthogonal) to the true subspace. They prove that spectral initialization works
well.

That is, they first compute the SVD of the matrix µ∗(b), where µ∗ is the adjoint
of the measurement map. Then they set the y i to be the top-r right singular
vectors.

We recognize, however, that our definition of dyads (Definition 3.2.1) is through
a correspondence withmatrices. Therefore, by dropping the nuclear norm term
from (4.2), we can formulate a similar low-rank operator sensing problem,

minimize
X i ,Y i

b − µ

(r∑
i=1

X i ⊗Y i

)

2
`2

.

Even though we now have matrix factors X i andY i , we can still regard this as
a low-rankmatrix sensing problem. This leads us to also consider the same
spectral initialization.

That is, we first compute
T = µ∗(b),

80

where µ∗ denotes the adjoint of our measurement map. The initialization then
results by taking the dyadic SVD (3.7) ofT,

T =
∑

i

σiU i ⊗V i,

and setting the initial right factorsY 0
i := V i for i = 1, . . . , r .

Our tests using this initialization on the nuclear norm recovery problem (4.2)
show that it works well. In particular, the spectral initialization leads to faster—
andmore accurate—solutions of various nuclear norm problems as compared
to random initialization.

4.2.4 Convergence

We have no guarantees that the alternating minimization algorithm applied
to (4.2) will converge to a globally optimal solution. This is unfortunate, but
it does not dissuade us from using this nonconvex method. In fact, recent
work onmatrix completion [JNS12; Har14], dictionary learning [AAJN16], phase
retrieval [NJS15], andblinddeconvolution [LLJB15] provide recovery guarantees
for specific implementations of alternating minimization and begin to explain
the empirical successes of these methods.

Note, however, that all of these results still depend on randomized models for
theirmeasurementmaps or underlying signals. For instance, the analysis ofma-
trix sensing in Jain et al. [JNS12] assumes that the measurement map µ in (4.4)
satisfies a restricted isometry property (RIP) [CT05; CRT06b]. Unfortunately, it
is computationally hard to show that a particular map µ actually satisfies this
property [TP14; NW14], and so a common technique relies on using maps µ

from random ensembles that satisfy the RIP with high probability [BDDW08].

Nevertheless, alternating minimization allows for flexibility in our applications.
We can quickly implement newmeasurement maps µ and nuclear norms NX,Y

in conjunction with standard front-ends to convex solvers (e.g., CVXPY [DB16]).
Additionally, the storage savings in using relatively low-rank factorized forms of
operators allows for larger problem sizes than the convex solvers. These reasons,
combined with our empirical success in using alternating minimization, make
this a suitable method for our work.

81

4.3 Design choices

The operfact package requires Python 3.5 and relies on the convex optimiza-
tion modeling package CVXPY [DB16] to build representations of the operator
recovery problem (4.1) that we can then pass to external solvers.2 Weuse CVXPY
since our goal is to prototype optimization problems in a flexible manner with
minimal code. This library arose from the success of CVX [GB14; GB08] and
its implementation of disciplined convex programming (DCP) [GBY06]. While
we must pay some overhead associated with the modeling step—including
potential inefficiencies in the standard form problem that is sent to the solver—
we can more quickly get to the task of actually solving the problem. In other
words, we pay a smaller cost each time we solve the problem versus paying a
potentially much larger cost in writing software.

The use of operfact again requires a small computational overhead in setting
up our factorization problems, and the optimization problems generated by
CVXPY are somewhat less efficient than a purpose-built solver. In addition,
we have had to spend time developing operfact itself. The result, however,
is that we are able to test many different combinations of measurements and
regularizers now with little additional effort. That is, we can focus on finding
interesting operator models to pursue. Any particular application could be
optimized for computational performance in the future.

4.3.1 Why CVXPY?

We recognize that our choice of CVXPY as our modeling software is not obvious.
We could have used CVX under Matlab or Convex.jl [Ude+14] under Julia. All of
these packages adhere to the principles of disciplined convex programming.
Here we review the major factors in our decision.

4.3.1.1 Base language

In addition to the choice of modeling software, we must consider the base lan-
guage of our package. We envisioned our software as an object-oriented inter-
face for creating operator optimization problems. Python, Matlab, and Julia all
allow foruser-definedobjects. Inouropinion, Pythonand Julia provide a cleaner

2The package uses Python 3.5-specific features sparingly, but for simplicity we do not
maintain compatibility with earlier versions of Python.

82

interface for doing so. All three languages have sufficient support for working
with arrays and data either through built-in functions or well-established exter-
nal libraries.

While the Julia language provides great promise for scientific computing, its
core language is still undergoing rapid development and change. When starting
this project, we simply wanted a programming language that wasmore stable in
both its design and implementation. Our current familiarity with both Matlab
and Python also led us to shy away from Julia. We do recognize, though, that
the Julia syntax provides a familiar interface for current Matlab users. Further-
more, its use of method overloading (termedmultiple dispatch) has a certain
attractiveness for defining and operating uponmathematical objects. Note that
the performance advantages of Julia were not a consideration for our project.
The time spent in external convex solvers dominates the time spent within both
the modeling framework and operfact itself.

4.3.1.2 Stateful optimization problems

Our initial numerical work on this project involved tests in Matlab using both a
Burer–Monteiro-type approach [BM03] to rank-constrained minimization and
alternatingminimizationwith CVX. Alternatingminimization requires repeated
optimization over subsets of the variables in a problem. CVX, however, provides
no ability to retain a model after the solver returns. That is, we must create
a new model every time we solve a subproblem. This costs us time and also
prevents us from using previous solutions to warm-start the solver.

Meanwhile, both CVXPY andConvex.jl allowus to create optimization problems
as objects. These objects retain their state and allow us to reuse them across
iterations. WithCVXPY,we create objects for each subproblem that contain both
the variables to optimize as well as parameters—the variables we hold fixed.
We use the solution of one subproblem to update the parameters of the other.
Convex.jl, on the other hand, actually allows us to create just one optimization
problem and fix/free variables as we alternate between subproblems. While
this approach is more elegant than our solution with CVXPY, the key advantage
of both packages over CVX is stateful optimization objects.3

3A very recent paper by Shen et al. [She+16] describes an extension to the DCP ruleset to
handle multi-convex problems. Given a partition of the decision variables, an optimization
problem ismulti-convexprovided that it is convexwhenoptimizing over each set of thepartition
(and holding the remaining variables fixed). An accompanying Python package, DMCP, extends

83

4.3.1.3 Connection to external solvers

CVPXY also integrates with the SCS solver [OCPB16]. This first-order solver
for convex cone programs allows us to more efficiently handle larger operator
recovery problems than the default interior-point solvers of both CVXPY and
CVX. We note that the latest beta versions of CVX also include SCS support, and
so this no longer serves as a strong differentiator.

4.3.1.4 Parallelization

In our work, wemust also solvemany independent operator recovery problems.
While CVX can work with parallel computing facilities in Matlab, this is not
well-supported. We admittedly do not require anything more than the ability
to runmultiple instances of our software; the parallelization could be accom-
plished through the use of shell scripts. The ability, however, to use the basic
parallelization features of Python proves useful. Furthermore, running Matlab
on multiple machines requires licenses for those machines. This licensing may
not have posed a problem for our work, but it is a consideration in the use of
Matlab.

4.3.1.5 Caveats

Wemust note that CVXPY does have some disadvantages versus CVX. First, it
does not yet support convex variables. While complex numbers certainly appear
in practical applications, we do not require this for our investigation of nuclear
norms. Second, CVX creates more efficient representations of convex problems.
Its ability to eliminate redundant constraints, for instance, surpasses that of
CVXPY. The problems sent to the external solvers are often more compact, and
this can lead to a speedup. Third, CVX provides a greater number of convex
“atoms” that can be used in creating optimization problems. This reflects the
more established nature of CVX in general. For our application, however, the
advantages of CVXPY and Python outweigh their shortcomings.

4.4 Operators

The operfact.operatorsmodule defines two types of operator objects along
with some utility functions to generate andmanipulate them.
CVXPY to solve multi-convex problems using alternating minimization. A future version of
operfact could make use of this facility.

84

4.4.1 The ArrayOperator

As discussed in Section 3.2.2 we can think of operators as 4-dimensional arrays
with entries ai jkl as in

A =
∑
i jkl

ai jkl (E i j ⊗ E kl),

where the ai jkl are the entries of the operator and the E i j , E kl are the standard
basis matrices.

We implement this operator as a wrapper around a standard NumPy 4-
dimensional array. This means that all built-in array operations work with
these operators as well.

We create such an operator from an existing 4D array as follows:

import numpy as np

from operfact import operators

shape = (m, n, p, q)

oper = operators.ArrayOperator(np.random.normal(size=shape)) # a

random Gaussian operator

oper.T # standard NumPy array methods work

The operfact package assumes that all operators have four dimensions, but
it is worth noting that NumPy arrays will not enforce this condition. It is
therefore possible to create or manipulate ArrayOperator objects so that they
have fewer dimensions. Care must be taken to ensure that any operations on
ArrayOperators perform adequate error-checking.

4.4.2 The DyadsOperator

While the ArrayOperator proves useful for ingesting and outputting tabular (or
tensorial) data, we also require an operator object that can represent operator
factorizations. The DyadsOperator class allows for representing operators as
sums of dyads, precisely how we defined operators in Section 3.2.2.

Given an operator

A =

r∑
i=1

X i ⊗Y i,

we call the X i the left factors and theY i the right factors.

We construct the same operator in Python as follows from lists of the factors:

85

import numpy as np

from operfact import operators

shape = (m, n, p, q)

nfactors = r

Generate random left and right factors

Xs = [np.random.normal(size=shape [0:2]) for r in range(nfactors)]

Ys = [np.random.normal(size=shape [2:4]) for r in range(nfactors)]

Combine to form the DyadsOperator

oper = operators.DyadsOperator(Xs, Ys)

The DyadsOperator infers the shape and nfactors from the lists

assert oper.shape == shape

assert oper.nfactors == nfactors

As shown in the listing, a DyadsOperator computes its shape and number of
factors (dyads) from the lists passed in its initialization. We can access the left
and right factors using the lfactors and rfactors properties. These are simply
lists of the factor matrices.

We can transform a DyadsOperator into other useful representations. The
asArrayOperator method computes a 4-dimensional ArrayOperator object
from the dyadic representation. Similarly, the asmatrixmethod computes the
matrix representation (3.6) of the operator.

Note that the DyadsOperator in the example has a storage requirement of
r (mn + pq) numbers whereas the ArrayOperator andmatrix representations
require mnpq numbers. There can be a substantial savings with the dyadic
representation of low-rank operators.

Finally, we can apply the dyadic representation of the operator to a matrix as
the linear operator (3.3). That is,

A(M) =
∑

i

X i MY t
i,

for any appropriately-sized matrix M . The methods apply and cvxapply imple-
ment this calculation for NumPy arrays and CVXPYmatrices, respectively.

4.4.3 Utility functions

Themodule also contains a fewutilitymethods. First, theRandomDyadsOperator
method creates a new DyadsOperator object with randomly generated factors.

86

The default distribution for the factors is standard Gaussian, but it may also be
specified by the user. (See the manual for more details.)

We can then create the operator in the previous listing as follows:

from operfact import operators

shape = (m, n, p, q)

nfactors = r

Generate a DyadsOperator with random standard Gaussian factors

oper = operators.RandomDyadsOperator(shape , nfactors)

We often wish to compute the inner product between operators. The innerprod
method takes two operators as input and returns their inner product. The in-
putsmay be any combination of ArrayOperator and DyadsOperator objects. In
the case where two DyadsOperator objects have factors that are CVXPY expres-
sions, we can compute their inner product using the specialized cvxinnerprod

method.

Finally, thekpsvdmethodcomputes thedyadic SVD(3.7) of bothArrayOperator
and DyadsOperator objects. It handles the necessary conversion of the operator
to is matrix representation (3.6) and calls the NumPy SVDmethod. The output
follows NumPy conventions as shown in this listing.

from operfact import operators

shape = (m, n, p, q)

nfactors = r

Generate a DyadsOperator with random standard Gaussian factors

oper = operators.RandomDyadsOperator(shape , nfactors)

U, S, Vt = operators.kpsvd(oper) # take the dyadic SVD

mat = U @ S @ Vt # reconstruct the matrix representation of the

operator

4.5 Measurements

The operfact.measurementsmodule defines objects that represent linear mea-
surement maps. A base class Measurement outlines the properties andmethods
these objects may have; Table 4.1 lists these. We have also implemented several
different types of measurement maps. The system, however, is extensible. We
show this, for instance, in Section 7.3.2 where we implement a measurement
object for self-calibration problems.

87

Property Description
shape The dimension of operators in the domain
nmeas The size of the resulting measurement vector (co-domain)
Method Description
apply Apply the measurement map to an operator
cvxapply Apply the measurement map to a CVXPY object
matapply Apply the measurement map to an operator in matrix form
asOperator Return the linear map as list of ArrayOperator objects
initfrommeas Apply the adjoint (used in spectral initialization, Sec. 4.2.3)

Table 4.1: Properties andmethods of a Measurement object. The Measurement
base class provides the abstract specification for a linear measurement map.
This table lists the properties and methods required for its implementation.

4.5.1 InnerProductMeasurement

Given the space of operators Om×n⊗p×q equipped with the inner product as
in Section 3.2.2, we can write any linear functional on that space as an inner
product. That is, every linear functional µ : Om×n⊗p×q → R takes the form

µ(A) = 〈M,A〉,

for someM ∈ Om×n⊗p×q .

Such a functional returns a single linear measurement of an operator,
and we provide an implementation of such measurement maps in the
InnerProductMeasurement class. To instantiate this measurement object, we
simply provide the fixed operator corresponding toM above.

from operfact import measurements , operators

shape = (m, n, p, q)

Generate a random Gaussian ArrayOperator

oper = operators.ArrayOperator(np.random.normal(size=shape))

Measurement map returning a single random Gaussian measurement

meas = measurements.InnerProductMeasurement(oper)

Note that the adjoint µ∗ : R→ Om×n⊗p×q is simply

µ∗(b) = bM.

Every linearmeasurementmap µ : Om×n⊗p×q → Rs can be written entrywise as

[µ(A)]i = 〈Mi,A〉,

88

where the {Mi }si=1 are the fixed operators defining the linear map. It can be
useful to represent measurement maps in this standard way, and the method
asOperator serves to convert measurement objects into lists of the operators
Mi that define their mapping.

4.5.2 IdentityMeasurement

Sometimes we have access to every entry of our operator of interest, but those
observations are corrupted by noise. In this case, the linear measurement map
returns the entries of the operator as a vector. Here µ : Om×n⊗p×q → Rmnpq is
simply

µ(A) = vec(A),

and the adjoint is simply the inverse reshaping operation.

We implement this operator as IdentityMeasurement and use it extensively in
Chapter 5 where we solve denoising problems.

4.5.3 DirectActionMeasurement

Wemay also observe an operator through its action on a matrix. In this case we
have a linear map µ : Om×n⊗p×q → Rmp given by

µ(A) =
∑

i

vec(X i MY t
i),

where M ∈ Rn×q is the fixedmatrix defining the measurement map, andA =∑
i X i ⊗ Y i is any dyadic decomposition of A. We implement this with the

DirectActionMeasurement class.

For the sake of convenience, let us index entries of µ(A) with two indices
i = 1, . . . , m and k = 1, . . . , p . We then have that

[µ(A)]ik = 〈Mik,A〉,

where
[Mi ′k ′]i jkl = δi i ′δkk ′mj l,

where δ is the Kronecker delta, and mj l is the j l-entry of the fixed matrix M .

If we then doubly-index the vector b ∈ Rmp in exactly the same order as the
entries of µ(A), we compute the adjoint as

[µ∗(b)]i jkl = bik mj l,

where bik is the ik -entry of b .

89

4.5.4 SubsampleMeasurement

Themeasurement map that returns a subset of the entries of an operator is a
linear map. Indeed, for an ordered setΩ of indices of an operator inOm×n⊗p×q ,
the measurement map µ : Om×n⊗p×q → R|Ω| may be written entrywise as

[µ(A)]i = 〈EΩi ,A〉, for i = 1, . . . , |Ω|,

where the EΩi are standard basis operators.

The adjoint µ∗ : R|Ω| → Om×n⊗p×q is then given by

µ∗(b) =
|Ω|∑
i=1

bΩiEΩi .

The SubsampleMeasurement implements this map.

4.5.5 CombinedMeasurements

Finally we may use the CombinedMeasurements object to form new linear
measurement maps by combining other linear measurement maps. Let
µ i : Om×n⊗p×q → Rsi for i = 1, . . . , I . Then if S =

∑
i si , we can derive the

measurement operator µ : Om×n⊗p×q → RS as

µ(A) =


µ1(A)
µ2(A)
...

µ I (A)


.

The adjoint is then

µ∗(b) =
I∑

i=1
µ∗i (b i),

where the b i are the corresponding subvectors from the above construction of
µ(A).

4.6 Regularizers

Themodule operfact.regularizers implements the nuclear norm framework
from Chapter 3 programmatically. We represent nuclear norms (and relaxed

90

nuclear norms) as objects that can then be passed to solvers. The objects them-
selves represent a single nuclear norm but may include various computational
implementations to work with different solvers.

This package includes three solvers: a direct convex solver (matsolve), a noncon-
vex alternating minimization solver (altminsolve), and a semidefinite solver
(sdpsolve). We discuss the details of these solvers in Section 4.7. A nuclear
norm object may be compatible with any combination of these solvers de-
pending on its computability. For instance, Proposition 3.4.1 showed that the
`2 ⊗ `2 nuclear norm is the trace norm, and it is representable directly in CVXPY.
Therefore we may use it in the direct convex solver matsolve. Proposition 3.6.3,
on the other hand, showed that the `2 ⊗ `2 nuclear norm has a semidefinite
representation, and so we may use it with the semidefinite solver sdpsolve.
Finally, as with all nuclear norms we consider, we can apply the nonconvex
alternating minimization approach described in Section 4.2.

All of the nuclear norm objects we discuss derive from a single Regularizer
base class that serves to codify the relationship between regularizer objects and
solvers. The Regularizer object defines three methods norm_altmin, norm_-
mat, and norm_sdp to provide implementations of norms in the specific ways
expected by each of the alternating minimization, direct convex, and semidefi-
nite solvers. If a particular regularizer may not be used with a particular solver,
its correspondingmethodmay be set to None. The available_solversmethod
returns a list of solvers that the regularizer supports (i.e., those normmethods
not set to None). This system allows users to construct additional norms and
extend existing norms to work with new solvers.

4.6.1 The helper functions

CVXPY has built-in functions allowing the use of certain norms in its disciplined
convex programming framework. Weprovide a set of aliases for commonnorms
taking the form norm_x. For example, setting x to be l1 gives the `1 norm, while
setting x to be s1 gives the Schatten 1-norm (trace norm). We also include
easily computable nuclear norms, e.g., norm_l1l2 represents the `1 ⊗ `2 nuclear
norm. All of these helper functions work directly on CVXPY expressions, and
we use them to compose nuclear norm objects. See the reference manual for
the complete list.

91

4.6.2 The NucNorm class

The NucNorm class derives from the basic Regularizer class and defines the
interface for working with nuclear norms. To create such an object, we must
specify which norms we wish to use on the left and right factor spaces. For
instance, to create an object representing the `2 ⊗ `2 nuclear norm we write

from operfact import regularizers as regs

N_l2l2 = regs.NucNorm(regs.norm_l2 , regs.norm_l2)

assert N_l2l2.norm_mat is regs.norm_s1

Notice the last assertion. Since the `2 ⊗ `2 nuclear norm corresponds to the
Schatten 1-norm (trace norm) on matrices, the NucNorm class automatically
assigns the appropriate norm_matmethod. For nuclear norms with no such
simple alias, the norm_matmethod is set to None. The flexibility of using objects
for nuclear norms allows us to make such a determination outside of the solver.
That is, the solver remains agnostic to the implementation; it simply calls the
appropriate normmethod of the regularizer object.

For the nuclear norms without simple aliases in CVXPY, we resort to alternating
minimization. In Section 4.2.1 we saw two possible formulations for the non-
convex nuclear norm recovery problem. Here we discuss the two subclasses of
NucNorm that implement those formulations.

4.6.2.1 NucNorm_Prod

Recall the “product” formulation (4.2):

minimize
X i ,Y i

1
2

b − µ

(r∑
i=1

X i ⊗Y i

)

2
`2

+ λ

r∑
i=1
‖X i ‖X ‖Y i ‖Y .

To implement this formulation, the regularizer object should compute the
following for the solver: ∑

i

‖X i ‖X ‖Y i ‖Y ,

given the factors X i andY i themselves. The NucNorm_Prod class implements
this computation in its norm_altminmethod.

92

4.6.2.2 NucNorm_Sum

Alternatively, we have the “sum” formulation (4.3):

minimize
X i ,Y i

1
2

b − µ

(r∑
i=1

X i ⊗Y i

)

2
`2

+ λ

r∑
i=1

1
2
(‖X i ‖2X + ‖Y i ‖2Y).

To implement this formulation, the regularizer object should compute the
following for the solver:

r∑
i=1

1
2
(‖X i ‖2X + ‖Y i ‖2Y),

given the factors X i andY i themselves. The NucNorm_Sum class implements this
computation in its norm_altminmethod.

4.6.3 The NucNorm_SDR class

Finally we consider the semidefinite relaxations of nuclear norms we discussed
in Section 3.6. Recall that for superquadratic norms X and Y , we have the
following semidefinite relaxation of the nuclear norm (Definition 3.6.8):

RX,Y (A) := inf
{
1
2
[gX (diag(W 1)) + gY (diag(W 2))] :

[
W 1 A

At W 2

]
� 0

}
,

where the semidefinite constraint follows from Proposition 3.6.2.

The semidefinite solver passes the diagonals ofW 1 andW 2 to the NucNorm_SDR
object and expects it to compute

1
2
[gX (diag(W 1)) + gY (diag(W 2))] ,

where gX and gY are the appropriate gauge functions of the superquadratic
norms X andY .

The NucNorm_SDR class represents these regularizers, and we can create an in-
stance as follows:

from operfact import regularizers as regs

R_l2linf = regs.NucNorm_SDR(regs.norm_l2 , regs.norm_linf)

assert R_l2linf.lgauge is cvxpy.sum_entries

assert R_l2linf.rgauge is cvxpy.max_entries

93

Property Description
shape The dimension of operators in the domain
measurementobj An object representing the linear measurement map
measurementvec The observed measurements
norm A Regularizer object
penconst Regularization constant
solver The CVXPY solver to use
rank Number of dyads to use in the solver (altminsolve only)
relconvergetol Stopping criterion (altminsolve only)
maxiters Maximum iterations (altminsolve only)
rfactorsinit Initialization (altminsolve only)

Table 4.2: Properties of a Problem object. The Problem object stores all of the
information required by our solvers. This table lists its properties.

We see that the NucNorm_SDR constructor converts the provided norms into their
respective gauges. It uses these in computing the objectives for norm_sdp.

The relaxed `∞ ⊗ `∞ nuclear norm also has the alias MaxNorm for convenience.

4.7 Solvers

The focus of this work is solving the operator recovery problem

minimize
A

1
2
‖b − µ(A)‖2`2 + λNX,Y (A),

where µ is a linear measurement map, b contains the observed measurements,
NX,Y is the nuclear norm on X ⊗Y , and λ > 0 is a regularization constant.

We implement solvers in the operfact.solvers submodule. The solvers them-
selves are functions that take a Problem object containing all the information
needed to instantiate and solve the problem.

4.7.1 The Problem and SolverOutput classes

We store the specification of an operator recovery problem using the Problem
class. Table 4.2 lists the most important properties of this class. For more
advanced options, refer to the reference manual.

Listing 1 shows the creation of a synthetic denoising problem. The resulting
object prob is ready to be passed to our solver of choice. Some of the options
apply solely to the alternating minimization solver, altminsolve, and we dis-

94

Listing 1 Denoising in operfact. Sample Python code to model a denoising
problem with operfact.

import numpy as np
from operfact import operators , measurements , solvers
from operfact import regularizers as regs

shape = (m, n, p, q)
nfactors = r
sigma = 0.1

Create the true operator and noisy measurements
oper = operators.RandomDyadsOperator(shape , nfactors)
measobj = measurements.IdentityMeasurement(shape)
measvec = measobj.apply(oper) + sigma*np.random.normal(size=

measobj.nmeas)
Create the problem instance
prob = solvers.Problem ()
prob.shape = shape
prob.measurementobj = measobj
prob.measurementvec = measvec
prob.norm = regs.NucNorm_Prod(regs.norm_l2 , regs.norm_l2)
prob.penconst = regs.penconst_denoise(shape , sigma , prob.norm)
prob.solver = cvxpy.SCS
prob.rank = r # altminsolve only
prob.relconvergetol = 1e-3 # altminsolve only
prob.maxiters = 10 # altminsolve only
prob.rfactorsinit = None # altminsolve only

cuss them in the next section. The solver then returns a SolverOutput object
(or a list of such objects) with the properties outlined in Table 4.3.

4.7.2 Convex solver for matrix problems

When we have a simple closed-form representation of the nuclear norm NX,Y ,
we can solve the convex operator recovery problem (4.1) directly with CVXPY.
To solve the problem in Listing 1, we run

out = solvers.matsolve(prob)

The solver works directly with the matrix representation (3.6) of the operator
and returns an ArrayOperator of the solution in out.recovered. Note that this
solver performs no factorization itself, but recall that the examples of such
closed-form nuclear norms in Sections 3.4 and 3.5 each come equipped with
an optimal decomposition that is easy to compute. The solver can also return a
DyadsOperator object using the dyadic SVD (3.7); see the reference manual for
details.

95

Property Description
problem The original Problem object
cvxpy_probs The CVXPY problem(s) created by the solver
recovered The solution as an ArrayOperator or DyadsOperator
objval The value of the objective after optimization
setup_time The wall-time taken before calling CVXPY
solve_time The wall-time taken by CVXPY
total_time The total wall-time taken
outer_iters The number of iterations taken (altminsolve only)
relconvtol The effective convergence tolerance (altminsolve only)
relchange The final relative objective change (altminsolve only)
maxiters The effective iteration limit (altminsolve only)

Table 4.3: Properties of a ProblemOutput object. The ProblemOutput object
stores all of the information returned by one of the solvers. This table lists its
properties.

This solver proves useful as a truly convex solver for operator recovery problems.
While we must resort to other techniques such as alternating minimization
in most cases, the convex solver still applies to models of interest. It also can
serve to benchmark the alternating solver, and we do this using denoising prob-
lems in Chapter 5. For large problems where we seek very low-rank solutions,
the alternating solver can provide an advantage by limiting the problem size.
Otherwise, the convex solver provides good performance and convergence
guarantees without requiring the consideration of many hyperparameters.

4.7.3 Alternating minimization solver

To solve the problem in Listing 1 using alternating minimization (Algorithm 1,
Section 4.2), we run

out = solvers.altminsolve(prob)

The operator in out.recovered is a DyadsOperator comprising the left factors
X i and right factorsY i used as the decision variables in (4.2).

4.7.3.1 Initialization

The property rfactorsinit of the Problem object takes a list of right factors
Y i to use as initialization for the alternating minimization solver. If None is
passed instead, the solver defaults to the spectral initialization described in

96

Section 4.2.3. The initfrommeasmethod of the measurement object allows for
the required computation of its adjoint.

4.7.3.2 Stopping criteria

Wemeasure our progress to convergence using the relative objective change

|f (Ai−1) − f (Ai)|
f (Ai−1) ,

whereAi is the decision variable after the i th iteration and f is the objective
of the optimization problem. We stop when this relative change falls below a
predetermined threshold. This is the property relconvergetol of the Problem
object.

We also stop if we have failed to reach convergence after a fixed number of
iterations. This is the maxiters property of the Problem object.

4.7.3.3 Solver rank

Finally, we must specify the number of dyads that the alternating minimization
solver uses to construct the operator decompositions. This is the rank property
of the Problem object.

4.7.4 Semidefinite representation solver

In Section 4.6.3 we discussed the implementation of semidefinite relaxations
for some nuclear norms. When the X andY norms are superquadratic, we have
the semidefinite program

minimize
S

1
2
‖b − µ(A)‖2`2 +

λ

2
[gX (diag(W 1)) + gY (diag(W 2))]

subject to S =

[
W 1 A

At W 2

]
S � 0,

where A = mat(A), the matrix representation (3.6) of the decision variableA.

The semidefinite solver sdpsolve finds the solution to this problem in conjunc-
tion with NucNorm_SDR regularizers. We can apply this solver to Listing 1 as
follows.

97

prob.norm = regs.NucNorm_SDR(regs.norm_l2 , regs.norm_l2)

out = solvers.sdpsolve(prob)

Just as with matsolve, the output is an ArrayOperator, but we can also have
the solver return a DyadsOperator via either a dyadic SVD or the blockmatrices
W i . See the reference manual for more details.

98

Chapter 5

Denoising with nuclear norms

In this chapter, we use our Python package operfact to complete a systematic
study in denoising structured low-rank operators with nuclear norms.

5.1 Overview

We now turn our attention to denoising structured low-rank operators. Let
A\ ∈ Om×n⊗p×q be an operator, and assume that we observe

B =A\ + σZ,

whereZ ∈ Om×n⊗p×q is random noise with the parameter σ > 0 controlling
its scale. We wish to approximateA\ from this corrupted copyB. To do so we
solve the optimization problem

minimize
A

1
2
‖B −A‖2`2 + λNX,Y (A), (5.1)

where the nuclear norm NX,Y is a regularizer, and λ ≥ 0 is a penalty constant
controlling the extent to which we remain faithful to our observations while
promoting structured solutions.1

As we have discussed, NX,Y (A) simultaneously encodes the complexity of the
individual factors ofA—with respect to the normed spaces X andY —as well as
the total complexity incurred by formingA as a superposition of those factors.
That is, NX,Y serves to promote solutions composed using a small number of
dyads whose factors each have low complexity in the respective norms of X and
Y .

1For simplicity, we forego the explicit use of linear measurement maps in this formulation.
We address this when discussing the implementation of this problem in operfact.

99

Operator shape: 4 × 4 ⊗ 4 × 4 Rank: 1 SNR: 15dB Solver: altmin (NucNorm_Sum) Solver rank: 16 Tolerance: ε = 5 × 10−4
Factors `1, `1 `1, `2 `1, `∞ `1, S1 `1, S∞ `2, `1 `2, `2 `2, `∞ `2, S1 `2, S∞ `∞, `1 `∞, `2 `∞, `∞ `∞, S1 `∞, S∞ S1, `1 S1, `2 S1, `∞ S1, S1 S1, S∞ S∞, `1 S∞, `2 S∞, `∞ S∞, S1 S∞, S∞
gaus, gaus 1.0 1.4 0.5 1.3 1.0 1.0 6.1 2.1 3.3 3.6 0.1 1.9 0.1 0.6 0.7 0.8 3.7 0.8 2.0 1.8 0.7 3.6 0.9 1.7 1.9
gaus, lr 1.2 1.1 -0.2 3.2 0.4 1.6 5.8 1.0 7.4 3.0 0.6 1.8 -0.2 2.7 0.3 1.3 3.6 0.1 5.0 1.0 1.1 3.3 0.1 4.4 1.1
gaus, orth 0.8 1.5 0.9 1.1 2.7 1.1 6.4 2.9 2.6 7.8 0.2 2.3 0.8 0.6 3.1 0.8 4.1 1.4 1.7 4.8 0.6 3.9 1.4 1.3 4.8
gaus, sign 0.4 1.4 3.8 1.3 1.1 0.6 6.2 8.4 3.7 4.5 -0.1 1.9 2.2 0.6 0.9 0.5 4.0 5.2 2.2 2.1 0.4 3.8 4.7 1.7 2.2
lr, lr 1.5 1.9 0.5 4.0 0.8 1.7 6.3 1.8 7.8 3.7 0.3 1.8 -0.2 2.7 0.2 3.4 7.9 2.8 9.5 4.8 0.6 3.9 0.4 4.8 1.0
lr, orth 1.3 1.8 1.1 1.4 3.2 1.2 6.3 2.9 2.9 7.4 0.2 2.1 0.5 0.5 2.9 2.8 7.7 3.9 4.2 9.3 0.5 4.0 1.2 1.2 4.7
orth, orth 1.0 1.6 0.9 1.1 3.0 1.3 6.7 3.0 2.9 8.1 0.7 2.9 1.2 1.1 4.0 0.7 3.6 1.3 1.6 5.0 2.4 7.0 3.9 4.1 9.5
sign, lr 0.7 0.8 -0.2 3.1 0.3 1.4 6.1 1.7 7.8 3.3 3.2 6.9 1.6 8.7 3.9 1.1 4.0 0.5 5.5 1.3 1.1 3.9 0.7 5.1 1.3
sign, orth 0.4 1.1 0.7 0.6 2.8 1.2 6.2 3.2 2.6 7.6 2.9 7.0 3.6 4.0 8.5 0.9 4.4 1.6 1.7 5.3 0.8 3.9 1.7 1.3 4.9
sign, sign 0.1 1.2 3.5 1.1 0.7 0.9 6.6 8.8 4.1 3.6 2.9 7.5 11.7 5.1 3.4 0.7 4.7 5.9 2.7 2.0 0.6 3.9 4.6 2.0 1.8
sparse, gaus 5.8 8.5 6.0 7.0 8.3 1.1 6.8 2.3 3.7 4.4 0.2 1.6 0.2 0.2 0.3 2.8 8.3 3.3 4.7 5.9 0.5 4.5 0.8 1.5 1.7
sparse, lr 5.9 7.7 5.6 10.5 7.0 1.3 6.1 1.9 7.9 3.4 -0.0 1.2 -0.0 2.0 -0.0 3.0 7.5 2.9 9.2 4.5 0.4 3.7 0.5 4.6 1.0
sparse, orth 5.3 7.6 6.5 6.0 10.6 0.8 6.0 2.9 2.6 7.3 -0.0 1.2 -0.0 -0.0 1.7 2.6 7.3 3.8 3.8 9.0 0.2 3.6 1.2 0.8 4.6
sparse, sign 5.4 7.7 12.6 6.5 7.4 0.6 6.0 8.1 3.3 3.9 0.0 1.3 1.9 0.0 0.1 2.5 7.3 10.0 4.3 5.1 0.1 3.7 4.7 1.2 1.5
sparse, sparse 15.3 8.2 4.0 10.8 7.4 8.6 6.6 0.7 8.1 4.1 4.2 1.3 -0.0 2.1 -0.0 10.7 8.1 1.9 9.6 4.8 7.8 3.9 -0.0 4.8 1.2

Table 5.1: A preview of the results. This table shows the gain in dB (5.9) for denoising 4 × 4 ⊗ 4 × 4 rank-1 operators with various
combinations of factor structure and nuclear norm. Bold numbers indicate the highest value(s) in each row (i.e., the nuclear norm
that empirically denoises the factor structure best). We notice that nuclear norms tuned to the factor structure of the operator
perform best. The full discussion of these results is in Section 5.5. (Key: gaus = Gaussian, lr = low-rank, orth = orthogonal.)

100

5.1.1 A preview of the results

We hypothesize that:

Matching nuclear norms to the factor structures of the true signal
A\ provides superior denoising results.

And, indeed, Table 5.1 demonstrates this principle across a range of factor
structures andnuclearnorms! The rowsof the table correspond to combinations
of factor structures, and the columns correspond to nuclear norms. The values
of the table reflect the denoising performance.2 Higher values correspond to
better performance, and the bold value in each row highlights the nuclear norm
that results in the best performance.

For instance, if A\ = X \ ⊗ Y \, where X \ and Y \ are both sparse, then—as
expected—the `1 ⊗ `1 nuclear norm is the best regularizer for denoising. In the
case where X \ andY \ are both orthogonal matrices, the S∞ ⊗ S∞ nuclear norm
works best. This matches the intuition from Table 3.1 of atomic norms.

The bulk of this chapter describes a systematic study to validate our Python
package operfact and its alternating minimization solver. This culminates in a
discussion of results like the above in Section 5.5.

5.1.2 Roadmap

First we review relevant theoretical results on denoising in Section 5.2. In
Section 5.3 we restate the problem and show its implementation under the
operfact Python package. We discuss our systematic study of denoising in
Section 5.4. Finally, we present our main results in Section 5.5.

Appendix B provides details on the experimental protocol along with additional
figures and tables.

5.2 Theoretical considerations

In this section we review some results from the literature that are relevant to
denoising with nuclear norms.

2They show the gain in decibels (5.9), and we explain these terms shortly.

101

5.2.1 Atomic norm denoising

Bhaskar et al. [BTR13] consider the use of atomic norms [CRPW12] as regulariz-
ers in denoising problems. Since nuclear norms are themselves atomic norms,
their general results concerning atomic norm denoising apply to nuclear norm
denoising as well.3 Their work provides upper bounds on the denoising per-
formance in terms of the nuclear norm of the true signal, and we restate this
result in our notation.

Fact 5.2.1 ([BTR13, Thm. 1]). For λ ≥ EN ∗X,Y (Z) and Â the solution to the
nuclear norm denoising problem (5.1),

E‖A\ − Â‖2`2 ≤ σλNX,Y (A\).

N ∗X,Y is the dual norm of NX,Y as given in Proposition 3.3.8.

This result links the expected absolute squared error of our solution to the
penalty constant and the nuclear norm of our true operator.

Note that the condition λ ≥ EN ∗X,Y (Z) is equivalent to σλ ≥ EN ∗X,Y (σZ).
Because of this, we find it useful to separate the noise level σ explicitly from
the noise processZ. This makes our choice of λ independent of the noise level.

5.2.2 The geometric view

Meanwhile, Chandrasekaran and Jordan [CJ13] consider constrained denoising
problems and provide improved bounds that depend on the geometry of the
constraint set. In our setting, this means solving the problem

minimize
A

1
2
‖B −A‖`2 subject to NX,Y (A) ≤ NX,Y (A\), (5.2)

where the notation is just as in (5.1).

The solution to (5.2) is the projection of B onto the sublevel set of the X ⊗ Y

nuclear norm at A\. As illustrated in Figure 5.1, the error of this projection
depends on the noise level (i.e., the expected distance betweenB andA\) as
well as the “size” of the sublevel set of NX,Y atA\.

To be more precise, we define the descent cone.
3A nuclear norm is the gauge function of the convex hull of unit-norm dyads. See Sec-

tion 3.3.6.

102

�♮	

{� ∶ �%,' � ≤ �%,'(�
♮)}

ℬ

�-

Figure 5.1: Constrained denoising. This figure illustrates the constrained de-
noising problem (5.2). The shaded blue set represents the sublevel set of the
nuclear norm NX,Y at the true signalA\. The pointB is the noisy observation,
and its orthogonal projection Ã onto the sublevel set is the solution. The error
is the distance between Ã andA\. Notice that the shape of the sublevel set
controls the error.

Definition 5.2.2 (Descent cone). Let f : Rd → R ∪ {+∞} be a proper convex
function. The descent cone of f at the point v is the convex cone

D(f ;v) :=
⋃
τ≥0
{w ∈ Rd : f (v + λw) ≤ f (v)}.

This is the convex cone inRd that contains the directions into the sublevel set
of f at v .

In the present example, we care about the “size” of D(NX,Y ;A\). Chan-
drasekaran and Jordan [CJ13] measure this quantity in terms of the Gaus-
sian squared-complexity of the cone. We follow the work of Amelunxen et
al. [ALMT14] and refer to it as the statistical dimension.4

Definition 5.2.3 ([ALMT14, Def. 2.1] Statistical dimension). The statistical di-
mension of the convex cone C ⊆ Rd is

δ(C) := E
[
‖ΠC(g)‖2`2

]
where g ∼ NORMAL(0, Id),

4Note that the definition of Gaussian squared-complexity [CJ13, Def. 3] is ambiguous with
respect to a squaring inside the expectation, but the resulting Gaussian squared-complexity of
a convex cone [CJ13, Coro. 6] coincides with the statistical dimension formulation provided in
Fact 5.2.5.

103

andΠC is the projection operator onto C.

In short, the statistical dimension allows us to measure sizes of convex cones in
a way that is compatible with the notion of dimension for linear subspaces.

We can now restate the denoising bound from Chandrasekaran and Jor-
dan [CJ13] in our notation.

Fact 5.2.4 ([CJ13, Prop. 4]). Assume that the error operatorZ has independent,
standard Gaussian entries. Then the solution Â of the constrained denoising
problem (5.2) obeys the bound

E‖A\ − Â‖2`2 ≤ σ
2 · δ

(
D(NX,Y ;A\)

)
.

This bound still depends on the complexity of the true signalA\, but it depends
on the shape of the regularizer and not its value—as opposed to Fact 5.2.1.
This greatly improves the error bounds. To wit, consider denoising with the
`1 to promote sparsity. The size of the descent cone of the `1 norm at a vector
depends solely on its sparsity (see [CRPW12; ALMT14]) while the norm itself
increases in magnitude as the scale of the vector increases.

Note that Fact 5.2.4 depends on the noise processZ being Gaussian given the
use of the statistical dimension to measure the size of the descent cone. Even
so, the key point here is the connection between the denoising performance
and the geometry of the regularizer around the target signal. A regularizer that
is more “pointed” around signals of interest performs better.

5.2.3 Worst-case performance

Finally, Oymak and Hassibi [OH15] present a result similar to Fact 5.2.4 for
the regularized problem. Before examining their result, we introduce some
additional formulations for the descent cone and statistical dimension.

Fact 5.2.5 (Alternative formulations [McC13, Prop. 3.7]). Let C ⊆ Rd be a convex
cone with polar C◦, then

δ(C) = E
[
dist(g , C◦)2

]
where g ∼ normal(0, Id).

Furthermore, we canwrite the polar of the descent cone of a proper, convex func-
tion f : Rd → R ∪ {+∞} in terms of its subdifferential ∂f (v),

D(f ;v)◦ =
⋃
λ≥0

λ∂f (v).

104

That is, the polar of the descent cone is the cone of scaled subdifferentials.

We can now state their result in our notation.

Fact 5.2.6 ([OH15, Thm. 1.1]). For λ ≥ 0 and Â the solution to the nuclear norm
denoising problem (5.1), the worst-case normalized mean squared error is

max
σ>0

E‖A\ − Â‖2`2
σ2 = E

[
dist(G, λ∂NX,Y (A\))2

]
,

where G has the same dimensions asA\ with independent standard Gaussian
entries, and λ∂NX,Y (A\) is the subdifferential of NX,Y atA\ scaled by λ.

Furthermore, the maximum is achieved as σ → 0.

Using Fact 5.2.5, we can relate this to 5.2.4. In particular, λ∂f (v) ⊆ D(f ;v)◦ for
all λ ≥ 0, and so

δ
(
D(f ;v)

)
≤ E

[
dist(g , λ∂f (v))2

]
.

The intuition is that a larger subdifferential of NX,Y at A\ results in smaller
denoising error by reducing the expected distance between it and a Gaussian
vector. Given the polar relationship between the subdifferential and the de-
scent cone, this matches entirely with our intuition that smaller descent cones
correspond with smaller error.

Additionally, this worst-case error occurs as the noise level tends to zero. This
may be surprising, but it has a geometric interpretation. Refer back to the
geometric view of denoising in Figure 5.1. For observations with low noise (i.e.,
near the true signal) the projection very closely conforms to the shape of the
descent cone around the target signalA\. Therefore measuring the width of
the descent cone also reveals how far away the projection is likely to fall from
the true signal.

As the noise level increases, however, the local geometry is less critical and
we may project to a point with (relatively) less noise by happy accident. The
strongest case in support of using particular nuclear norms will therefore be
found in the low-noise regime, andwe address this point further in Section 5.4.2.

Note that while the geometry of descent cones exactly determines the denoising
performance in our synthetic problems, calculating the statistical dimensions
of these cones presents its own challenges. But upper bounds for interesting
cases do exist [CRPW12; ALMT14]. These intuitions, however, lead us to believe

105

that the nuclear norms we construct for particular signal structures do have
favorable geometry. We seek to confirm this through our numerical work.

5.2.4 A connection with linear inverse problems

Before moving on, we should note that the performance of nuclear norms in
denoising problems has ramifications for their ability to recover operators in
linear inverse problems.

Let µ : Om×n⊗p×q → Rs be a random Gaussian measurement map with s <

mnpq .5 Assume that we have observations b = µ(A\), and let f be a proper
convex function onOm×n⊗p×q .

We formulate a regularized linear inverse problem to recoverA\:

minimize
A

f (A) subject to µ(A) = b,

Amelunxen et al. [ALMT14, Thm. II] prove that, roughly speaking, this convex
problem recoversA\ when s > δ

(
D(f ;A\)

)
and fails for s smaller.

Recall that the statistical dimension δ
(
D(f ;A\)

)
determines the worse-case

error in the constrained denoising problem (Fact 5.2.4). Oymak and Has-
sibi [OH15] show that this quantity also roughly corresponds to the worst-case
error of the regularized denoising problem (with optimal λ) in Fact 5.2.6.
Together, this set of results confirms the connection between these problems
observed in [DJM13].

A study of the denoising performance of nuclear norms, therefore, reveals some-
thing about their geometry around structured signals, and this has ramifications
beyond the denoising problems themselves.

5.3 Nuclear norm denoising with operfact

In this section we restate the denoising problem and provide sample code to
illustrate how we translate the mathematical formulation into the operfact
Python package. We also discuss the choices of certain solver parameters.

5By this we mean that each entry of µ(A) is the inner product betweenA and a known
operator with independent standard Gaussian entries.

106

5.3.1 The nuclear norm denoising problem

LetA\ ∈ Om×n⊗p×q be the true operator, and let µ be the linear measurement
map such that µ(A\) = vec(A\). Assume that we observe

b = µ(A\) + σz,

where z ∈ Rmnpq is additive noise with independent, standard Gaussian entries.
This is exactly the situation we described in the beginning of this chapter except
that we have now vectorized the observations.

To recoverA\ from b , we solve

minimize
A

1
2
‖b − vec(A)‖2`2 + σλNX,Y (A), (5.3)

where NX,Y , the nuclear norm on X ⊗Y , serves as the regularizer, and λ ≥ 0 is
the penalty constant. Again, this corresponds exactly to the problem (5.1). We
can solve (5.3) using operfact, and the measurement map µ is implemented
by the IdentityMeasurement object (Section 4.5.2).

In Python code, this becomes:

from operfact import measurements , regularizers , solvers

prob = solvers.Problem ()

prob.shape = (m, n, p, q)

prob.measurementobj = measurements.IdentityMeasurement(shape)

prob.measurementvec = b # the observations

prob.norm = regularizers.NucNorm_Prod(X, Y) # the X,Y nuclear

norm

prob.penconst = LAMBDA

Before solving this problem, however, we must carefully consider the choice of
the penalty constant λ.

5.3.2 The penalty constant

Even if we use the “best” regularizer to denoise our signal, a poor choice of λ
will lead to poor denoising. Fact 5.2.1 provides some guidance in our selection.
In particular we note that we can minimize the error bound in that result by
choosing

λ = EN ∗X,Y (Z). (5.4)

107

Operator generation
Operator shape
Operator rank
Factor structures

Noise generation
Noise level (σ)

Solver options
Regularizer (NX,Y)
Penalty constant (λ)
operfact solver

altminsolve only:
Number of dyads in solution
Relative convergence threshold
Max. outer iterations

Table 5.2: Denoising problem parameters. These are the parameters we must
specify for each of the three stages in the design and solution of our synthetic
denoising problem.

That is, the choice of the penalty constant depends on the expected dual norm
of the noise.

In the best cases we can compute this expectation over GaussianZ exactly. In
other cases we can compute the dual normN ∗X,Y (Z) easily and approximate the
expectation. In the worst cases computing this dual norm itself requires solving
an intractable optimization problem.

To facilitate the selection of λ, we provide the helper function penconst_-

denoise in operfact.regularizers to compute our best guess for λ given the
dimensions ofZ and the chosen nuclear norm NX,Y . Details on this function
and its logic are included in Section B.2 of the appendix.

Note that this result does not depend on a particular noise processZ. While
we are assuming isotropic Gaussian noise, this is not a requirement. We also
recognize that in practice the exact noise processZ and its power may not be
known, but any reasonable approximation of EN ∗X,Y (Z) should be helpful. In
our synthetic experiments, we will verify that this approach indeedmakes good
choices for λ.

5.4 A systematic study

This chapter examines the generation and solution of synthetic denoising prob-
lems using nuclear norms. We have a number of parameters, however, that we
must choose in this process. Table 5.2 lists them in three categories: operator
generation, noise generation, and solver options.

We test a large combination of these parameters on small operators. This ex-

108

periment, detailed in Section B.1 of the appendix, allows us to answer some
important questions surrounding our methodology. Namely, we ask:

• Are our choices for the penalty constant λ good?

• How does the noise level affect solver performance?

• Does the alternating minimization solver converge?

• Is the alternating minimization solver reliable?

Before evaluating the effect of matching nuclear norms with factor structure,
we address these issues.

5.4.1 The penalty constant

Let λ0 be the penalty constant computed in (5.4) as

λ0 := EN ∗X,Y (Z),

whereZ is Gaussian noise that corrupts the observations of our true signal. The
penconst_denoise function described in Section B.2 of the appendix calculates
(or estimates) λ0.

In the initial experiment we consider penalty constants

λ j = 2−j λ0, (5.5)

where we call j the offset. We test over a small range of offsets around j = 0 and
measure the absolute squared error of denoising

‖A\ − Â‖2`2, (5.6)

where Â is the result obtained from the solver.

Note that the offset j = −∞ corresponds to setting the penalty constant λ = 0.
We test this condition—corresponding to no regularization—as a sort of control.

Our initial experiment, described fully in Section B.1 of the appendix, denoises
randomly-generated structured operators in O4×4⊗4×4 with various nuclear

109

sign, sign sparse, sparse

L
1

, L
1

-Inf -3 -2 -1 0 1 -Inf -3 -2 -1 0 1

0.001

0.100

j: penalty constant offset

a
v
g

.
s
q

u
a

re
d

 e
rr

o
r

0

5

10

15

20

SNR (dB)

Figure 5.2: Average error vs. penalty constant, `1 norm. Each panel plots the
average squared error (5.6) of the denoising procedure over 10 trials versus
the penalty constant offset j (5.5) using the `1 norm as a regularizer at various
SNR (5.7). Lighter hues correspond to higher SNR (less noise). Error bars show
the minimum andmaximum error over the trials. We facet the figure by factor
structure. All tests were performed with the convex solver matsolve.

norms as regularizers. We denote the structure of the operator using the nota-
tion (· , ·) to indicate separately the structures of the left and right factors. For
instance, a rank-r (sparse, sign) operator takes the form

A =

r∑
i=1

X i ⊗Y i,

where theX i are random1-sparsematrices, and theY i are randomsignmatrices
(i.e., their entries take the values ±1 with equal probability). Section B.1.2 of the
appendix describes the random operator generation in more detail along with
all of the factor structures we consider.

In Figure 5.2 we show the results when using the `1 ⊗ `1 nuclear norm (equiva-
lent to the vector `1 norm) to denoise rank-1 (sparse, sparse) and (sign, sign)
operators. We show the average squared error (5.6) measured over 10 trials at
each offset with various noise levels. This test uses the convex solver matsolve
(Section 4.7.2).

In the right panel, where we denoise a sparse operator with the `1 norm, we see
that the lowest error occurs at offset j = 0. And even though the error rises with

110

the noise level6, we see that the theory provides good guidance in computing
λ0.

In the left panel, however, we see that regularizing a (sign, sign) operator with
the `1 norm proves fruitless. While this result is expected, it may lead us to
question whether our choice for λ0 is actually appropriate here. The theory tells
us that the calculation of the penalty constant depends on the noise process
and not on the signal itself. Therefore, the success with sparse operators is
enough to satisfy us with the calculation of λ0 for the `1 norm.

We have examined such results for all combinations of nuclear norm and factor
structure that we consider in this chapter. They demonstrate that our estimate
for λ0 is adequate in allowing us to find an optimal penalty constant across
all our regularizers. For completeness, we include the full set of results in the
appendix for the convex solver matsolve (Figure B.1), the SDP solver sdpsolve
(Figure B.2), and the alternating minimization solver altminsolve (Figure B.7).

5.4.2 The noise level

Recall from Fact 5.2.6 that the worst-case denoising performance occurs as the
noise level tends to zero. That is, the relative value of using any one nuclear
norm over any other is best judged in regimes with very little noise. Wemust
also recognize, however, that our numerical solvers place practical limits on the
noise floor. Solving problems accurately in low-noise regimes requires greater
solver precision. We examine this phenomenon here.

Setting the noise level requires choosing the scale σ ≥ 0 in our measurements

b = vec(A\) + σz,

where z ∈ Rmnpq has independent standard Gaussian entries.

Instead of working with the scale σ, wemeasure the noise level using the signal-
to-noise ratio (SNR) in decibels (dB):

SNR := 10 log10

(
‖A\‖2`2
‖σZ‖2`2

)
≈ 10 log10

(
‖A\‖2`2

σ2 ·mnpq

)
. (5.7)

6We define the signal-to-noise ratio (SNR) in equation (5.7) of the next section. For now,
note that lower SNR corresponds with a higher noise level.

111

sign, sign sparse, sign sparse, sparse

L
1

, L
1

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

5

10

15

20

SNR (dB)

a
v
g

.
g

a
in

 (
d

B
)

2

4

6

8

rank

Figure 5.3: Average gain vs. SNR, `1 norm. Each panel plots the average
gain (5.9) of the denoising procedure over 10 trials versus the SNR (5.7) using
the `1 norm as a regularizer at various operator ranks. Lighter hues correspond
to higher-rank operators. Error bars show the minimum andmaximum gain
over the trials. We facet the figure by factor structure. All tests were performed
with the convex solver matsolve.

Maintaining a fixed SNR allows for easier comparisons between signals of dif-
ferent power levels.7

After we obtain the estimate Â by solving the denoising problem, we can mea-
sure its error using the recovery signal-to-distortion ratio (RSDR)

RSDR := 10 log10

(
‖A\‖2`2
‖Ã −A\‖2`2

)
. (5.8)

The improvement in signal quality achieved through the denoising procedure
is called the gain, and we compute it as

gain := RSDR− SNR = 10 log10

(
‖σZ‖2`2
‖Ã −A\‖2`2

)
≈ 10 log10

(
σ2 ·mnpq

‖Ã −A\‖2`2

)
.

(5.9)
We think of gain as the ratio between the noise level and the recovery error on a
logarithmic scale. Positive gain indicates a benefit from denoising.

7But note that we normalize the Euclidean norms of the operators in this experiment
anyway.

112

Figure 5.3 shows average gain versus SNR when using the convex solver
matsolve with the `1 norm to denoise (sparse, sparse), (sparse, sign), and
(sign, sign) operators. We display this for various operator ranks. Note that
the average gain is computed over all trials using the empirically best penalty
constant λ j , where j is the offset in (5.5).

In the right panel, we see that the gain in denoising (sparse, sparse) operators
with the `1 norm remains relatively constant across different levels of the SNR,
with lower-rank operators showing higher gain. A similar situation occurs in
the middle panel with (sparse, sign) operators even though the average gain is
less than the (sparse, sparse) case. The `1 norm, however, shows very little gain
when denoising (sign, sign) operators in the left panel. But note that at 0dB, we
see some gain.

Figures B.3 and B.4 in the appendix show the full complement of results for
matsolve and sdpsolve, respectively. Those figures are consistent with the
above conclusions.

Namely, effective nuclear norms appear to remain more constant in their gain
across SNRs. And at lower SNRs, poor denoisers perform better relative to the
high SNR regime. This is as we have discussed earlier: denoising performance
is relatively better when there is more noise.

Given that our goal is to assess the relative merits of different nuclear norms,
we wish to examine performance at the highest SNR available. This regime
provides the best assessment of the worst-case performance of the regularizer.
We must be mindful, however, that higher SNR requires higher solver precision.
We will return to this point in our discussion of the alternating minimization
solver.

5.4.3 Convergence of the alternating minimization solver

Now we examine the convergence behavior of the alternating minimization
solver. First, we consider the stopping criteria. Recall that we stop the alternat-
ing minimization when the relative objective change between outer iterations
falls below a given threshold or when we complete a fixed number of outer
iterations. That is, we halt when

|fi − fi−1 |
fi

≤ ε, (5.10)

113

0.01 0.05 0.1

5e-04 0.001 0.005

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

0e+00

1e+06

2e+06

3e+06

0e+00

1e+06

2e+06

3e+06

outer iterations

c
o

u
n

t

Figure 5.4: Outer iterations by convergence tolerance. Each facet shows a
histogram of the number of individual denoising problems that reached con-
vergence to a specified tolerance after each number of outer iterations. The title
of the facet indicates the value ε of the relative convergence tolerance (5.10).
These counts are over all 10 trials of all parameter combinations tested for the
alternating minimization solver. See Table B.1 in the appendix for a listing of
those parameters.

where fi is the objective at the i th iteration, and ε is the convergence tolerance
(see also Section 4.7.3.2).

In this experiment,we set themaximumnumberof outer iterations at 25and test
the effect of changing the convergence tolerance. Figure 5.4 shows histograms
of the number of outer iterations required for each problem to converge to the
six convergence tolerances we tested.

Unsurprisingly, a smaller convergence tolerance results in an increased number
of iterations. We note, however, that while some of the problems at the strictest
tolerance require at least the maximum number of iterations, these problems
appear to be an extremely small minority. Wemake no claim that those prob-
lems are insignificant, and we address the choice of the tolerance later. For now,
we note that the solver generally converges to our specified tolerance.

5.4.4 Reliability of the alternating minimization solver

In this section we compare the results from the nonconvex alternating mini-
mization solver altminsolve (Section 4.7.3) to those of the convex matsolve

114

(Section 4.7.2) and sdpsolve (Section 4.7.4) solvers. Our notion of “reliability”
here is the accuracy of altminsolve versus the convex solvers. If we can ensure
agreement between these results for the cases where the convex solvers apply,
we will have some confidence in using altminsolve in cases where it stands as
our only option. Since the alternating minimization solver requires additional
hyperparameters, we will also use these comparisons to judge their selection.

5.4.4.1 The penalty constant

The alternating minimization solver can handle nuclear norms that the direct
convex solvers cannot. Just as before, wemust ensure that the estimated penalty
constant λ0 is appropriate for these norms as well. Figure B.7 showing the
average squared error in denoising versus the penalty constant offset (5.5) for
all norms handled by altminsolve is included in the appendix. We analyze
these figures just as in Section 5.4.1, and we conclude that the considered range
of penalty constants is adequate.

5.4.4.2 Nuclear norm formulation

Recall from Section 4.2.1 that we have two implementations of the nuclear
norm: the “product” formulation (4.2) and the “sum” formulation (4.3).

Figure 5.5 compares matsolve and both nuclear norm implementations of
altminsolve. As beforewe plot gain (5.9) versus SNR (5.7) when denoising rank-
1 (sparse, sparse), (sparse, sign), and (sign, sign) operators with the `1 norm as
a regularizer, but here we plot each solver as its own series. We set altminsolve
to use 16 dyads, and choose the convergence tolerance ε = 5 × 10−4.

In the rightmost facet, we see that the sum formulation of the alternating min-
imization solver tracks the results from the convex solver very closely. The
product formulation, however, shows higher gains across all noise levels. A
similar situation holds for (sparse, sign) operators in the middle facet except
that the sum formulation begins to perform worse when compared to the con-
vex formulation at higher SNR. For (sign, sign) operators, we again see that the
solvers do relatively better at lower SNR (higher noise).

We note that the relative change in the objective at the final iteration is com-
parable between both the sum and product formulation—and, in fact, the
product formulation converges more quickly. In these instances, the product

115

sign, sign sparse, sign sparse, sparse

L
1

, L
1

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

10

20

30

SNR (dB)

a
v
g

.
g

a
in

 (
d

B
) method

convex

product

sum

Figure 5.5: Average gain vs. SNR, convex and nonconvex solvers. Each panel
plots the average gain (5.9) of the denoising procedure over 10 trials versus the
SNR (5.7) using the `1 norm as a regularizer with the color/shape indicating the
solutionmethod. We test the convex solver matsolve andboth the sum (4.3) and
product (4.2) formulations of the alternating minimization solver altminsolve.
Error bars show the minimum andmaximum gain over the trials. We facet the
figure by factor structure.

formulation requires 2 outer iterations versus the (usually) 3 from the sum
formulation.

The discussion in Section 4.2.1.1 suggests that the product formulation should
be more accurate, but we do not see this. With the product formulation, we do
see faster convergence in wall-time, the number of outer iterations, and the
time per outer iteration. Here it requires roughly 2/3rds of the time to complete
each outer iteration, and it requires 2/3rds of the outer iterations to reach the
same level of convergence as the sum formulation. This does not, however,
explain the discrepancy in the gains.

We do not claim here that the product formulation performsmore reliably even
though it has higher gains. Observe that both nonconvex formulations largely
agree with the convex solver in the left panel, where we denoise (sign, sign)
operators.8 At higher SNR, however, the product formulation finds some gain

8Note that in several cases here, the empirically best penalty constant offset is j = −∞. That
is, the best result occurs when we do not regularize at all. The formulations are clearly identical
under this condition.

116

sign, sign sparse, sign sparse, sparse

L
in

f, L
in

f

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.0

2.5

5.0

7.5

10.0

SNR (dB)

a
v
g

.
g

a
in

 (
d

B
)

method

nonconvex

SDP

Figure 5.6: Average gain vs. SNR, SDP and nonconvex solvers. Each panel
plots the average gain (5.9) of the denoising procedure over 10 trials versus the
SNR (5.7) using the relaxed `∞ ⊗ `∞ nuclear norm (also called the max-norm)
as a regularizer with the color/shape indicating the solution method. We test
the SDP solver sdpsolve and the alternating minimization solver altminsolve.
Error bars show the minimum andmaximum gain over the trials. We facet the
figure by factor structure.

where we believe none should exist. We believe this is due to relatively lower
solver precision.

For the remainder of this chapter, we will utilize the sum formulation of alter-
nating minimization as it agrees more closely with the convex formulation. We
do, however, consider the product formulation again in later experiments as it
is faster and does result in good denoising performance. In fact, some of our
tests have shown that changing the quadratic loss term to just the Euclidean
norm can greatly decrease solution times. Here, however, that is not the case.

Finally, we can do a similar experiment to test how the alternatingminimization
formulation of the semidefinite relaxations performs compared to the convex
one. Figure 5.6 shows this for the semidefinite relaxation of the `∞ ⊗ `∞ nuclear
norm (max-norm) on rank-1 (sparse, sparse), (sparse, sign), and (sign, sign) op-
erators. We again see that the solvers roughly agree even though the nonconvex
solver appears to perform slightly worse on the interesting (sign, sign) case.

Taken together, these experiments suggest that an SNR of 10dB or 15dB is
reasonable for comparing the relative merits of different nuclear norms.

117

sign, sign sparse, sign sparse, sparse

L
1

, L
1

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

5

10

15

20

SNR (dB)

a
v
g

.
g

a
in

 (
d

B
)

-3.0

-2.5

-2.0

-1.5

-1.0

tol. (log)

Figure 5.7: Average gain vs. SNR, convergence tolerance. Each panel plots the
average gain (5.9) of the denoising procedure over 10 trials versus the SNR (5.7)
using the `1 norm as a regularizer with the color indicating the relative conver-
gence tolerance (5.10) of the alternating minimization solver on a logarithmic
scale. Lighter hues correspond to looser tolerances. The black, dashed lines
indicate the results from the convex solver for comparison. Error bars show
the minimum andmaximum gain over the trials. We facet the figure by factor
structure.

We include the additional comparisons between altminsolve and matsolve in
Figure B.5 in the appendix. Figure B.6 has the same for semidefinite relaxations
with sdpsolve.

5.4.4.3 Convergence tolerance

In Section 5.4.3 we ensured that the alternating minimization solver is converg-
ing within our chosen tolerances before hitting the outer iteration limit. We
also examined the agreement between the alternating solver with the direct
convex solvers under the strictest convergence tolerance. Of course the strictest
tolerance requires more computational time, and so we would like to relax it, if
possible.

Figure 5.7 shows the same gain (5.9) vs. SNR (5.7) plots (using the `1 norm
as a regularizer), but this time we focus on the effect of changing the relative
convergence tolerance ε in (5.10). In the case of the (sign, sign) operators, we
see that lowering the tolerance allows for the solver to find gains where we know

118

none should exist. That is, we see the spurious results of low solver precision.

When we consider the (sparse, sparse) operators, we see smaller differences
between the tolerances. Furthermore, lowering solver precision appears to hurt
gain slightly. The thing to remember here is that, in this setting, convergence
happens quickly—usually within 3 outer iterations. Even if we lower the tol-
erance, we see that the solver converges to a higher level of precision anyway.
Essentially we are seeing the effects of faster convergence rather than an ability
to cope with less accuracy.

The combination of these results and those of the previous sections suggests
that using ε = 10−3 at an SNR of 10dB or 15dB allows for good agreement with
the convex solvers while avoiding false gains at lower SNRs. Figure B.8 in the
appendix shows the complete set of gain versus SNR plots for each of our six
choices of the convergence tolerance and all combinations of regularizer and
factor structure.

5.4.4.4 Number of dyads

With the alternating minimization solver, we have the option of limiting the
number of dyads used in the solution. This allows us to decrease the size of
the optimization problems wemust solve, and if we seek low-rank solutions,
we can by definition represent them with fewer dyads. Doing this, however,
materially alters the optimization problem we solve.

Consider the denoising problem with a rank constraint (and no nuclear norm)

minimize
Ar

‖B −Ar ‖2`2 subject to Ar =

r∑
i=1

X i ⊗Y i,

wherewehave indexed the decision variableAr by the number of dyads allowed
in the decomposition.

The solution is the best rank-r approximation toB (and we can obtain it using
the truncated dyadic SVD (3.7)). If the true operatorA\ is itself low-rank, we
expect that this method may actually be effective in removing some of the
noise. That is, limiting the number of dyads itself provides some denoising.
This property of the solver can be useful, but in judging the utility of a given
nuclear norm, it may be misleading.

119

sign, sign sparse, sign sparse, sparse

L
1

, L
1

-Inf -3 -2 -1 0 1 -Inf -3 -2 -1 0 1 -Inf -3 -2 -1 0 1

0.001

0.100

j: penalty constant offset

a
v
g

.
s
q

u
a

re
d

 e
rr

o
r

4

8

12

16

solver rank

Figure 5.8: Average error vs. penalty constant, solver rank. Each panel plots
the average squared error (5.6) of the denoising procedure over 10 trials versus
the penalty constant offset j (5.5) using the `1 norm as a regularizer at various
solver ranks (r). Lighter hues correspond to higher solver ranks (i.e., more dyads
used in the solution). Error bars show the minimum andmaximum error over
the trials. We facet the figure by factor structure. All tests were performed at an
SNR (5.7) of 10dB.

Consider the nuclear norm denoising problem with this rank constraint:

minimize
Ar

‖B −Ar ‖2`2 + σλNX,Y (Ar) subject to Ar =

r∑
i=1

X i ⊗Y i .

We call r the solver rank, and we expect that we can now remove noise while
using regularizers that had no such benefit in the unconstrained case.

In short, we recognize thatwemust bemorediscerning indeclaring a regularizer
useful. We regard any nuclear norm that does not perform better than the
truncated dyadic SVD as having no benefit. In practice, we can use the rank-
constrained `2⊗`2 nuclear norm (tracenorm) as a sensible baseline for low-rank
operator denoising.

More importantly, we must reconsider the choice of penalty constant λ. Our
intuition for picking λ relied on results for the denoising problem with no rank
constraints. We should examine how well these choices perform in the rank-
constrained case.

Figure 5.8 shows the average squared error (5.6) versus penalty constant offset

120

j (5.5) for denoising rank-1 (sparse, sparse), (sparse, sign), and (sign, sign)
operators using the `1 norm as a regularizer. We fix the SNR (5.7) at 10dB and
the convergence tolerance (5.10) at ε = 5 × 10−4. We plot one series for each of
the solver ranks tested.

First, notice that when the penalty constant offset is −∞ (i.e., λ = 0), we do
indeed see that lowering the number of dyads in the solver reduces the average
squared error. This is simply the effect of using the truncated SVD to denoise
the signals.

In the right panel, where we denoise (sparse, sparse) operators, we see that
the minimum squared error occurs at the same penalty constant offset j for
all of the solver ranks tested. And while reducing the solver rank does provide
smaller squared error when the penalty constant is smaller than the optimal
value, there is no difference when it is larger.

In the middle panel, where we denoise (sparse, sign) operators, the optimal
value occurs at smaller offsets when we use lower solver rank. We posit that this
is because the regularizer has less effect in light of the rank constraint. Again,
at and above the optimal penalty constant from the full solver rank case, the
results from all solver ranks coincide.

Lastly we consider the (sign, sign) operator. Our previous examinations have
shown that the `1 norm provides no real denoising benefit to these signals.
Indeed, the lowest error occurs when we simply take the rank-1 truncated SVD
of the noisy observations (recall the true signal here is rank-1 as well). At larger
penalty constants, the results between solver ranks again coincide and show
worse error than no regularization at all.

Figure B.9 in the appendix shows these plots for all combinations of nuclear
norm and factor structure. We see no evidence here that requires us to adjust
penalty constants when the solver is rank-constrained. This allows us to take
advantage of the computational speedup afforded by using fewer dyads in the
solver. When comparing the relative merits of nuclear norms, however, we
must ensure that our experiment controls for the gains inherent in using a rank
constraint.

Note that we are generally happy to reduce error through both the choice of reg-
ularizer and the solver rank. But remember that this rank-constrained problem
is inherently non-convex. Even in problems where we wish to recover a rank-r

121

operator, allowing the solver to use more than r dyads can prove beneficial.
This has been observed in the literature [BM04; BMP08; HV15]. We will see
evidence of this when we examine self-calibration problems in Chapter 7.

5.5 The main results

In this section we use the results of the small (4 × 4 ⊗ 4 × 4) experiment and an
additional, larger (16 × 16 ⊗ 16 × 16) experiment described in Section B.1.6 of
the appendix. We aim to answer our original question:

Are nuclear norms effective regularizers in promoting low-rank op-
erators with various factor structures?

5.5.1 Factor structure

Table 5.3 shows the average gain (5.9) over 10 trials for all combinations of
factor structure and nuclear norm tested in two different experiments. Higher
gain indicates superior denoising performance. In each row, the bold number
indicates the nuclear norm providing the highest average gain.

The top table shows the results from the smaller (4× 4 ⊗ 4× 4) experiment with
rank-1 operators with SNR 15dB, solver rank 16, and convergence tolerance
ε = 5× 10−4. The bottom shows the same for 16× 16 ⊗ 16× 16 rank-1 operators
with solver rank 16 and convergence tolerance ε = 10−3. Both sets of results use
the alternating minimization solver with the “sum” formulation (4.3).

First note that the `2 ⊗ `2 nuclear norm (i.e., the trace norm) performs consis-
tently well across all factor structures. We expect that the trace norm works to
promote low-rank operators, and we see this. The trace norm does not care
about the factor structures.

Looking at the top table we see that the highest gain for each factor structure
occurs when the nuclear norm exactly matches the factor structure. That is, for
(sparse, sparse) operators, the `1 ⊗ `1 nuclear norm performs best, while for
(orthogonal, orthogonal) operators, the S∞ ⊗ S∞ nuclear norm performs best.
We also see that partially matching the factor structure gives better results than
not.

In thebottom tablewe see similar results, but there are a few thingsworthnoting.
First we use a solve rank of 16, smaller than the cardinality of either factor, and

122

Operator shape: 4 × 4 ⊗ 4 × 4 Rank: 1 SNR: 15dB Solver: altmin (NucNorm_Sum) Solver rank: 16 Tolerance: ε = 5 × 10−4
Factors `1, `1 `1, `2 `1, `∞ `1, S1 `1, S∞ `2, `1 `2, `2 `2, `∞ `2, S1 `2, S∞ `∞, `1 `∞, `2 `∞, `∞ `∞, S1 `∞, S∞ S1, `1 S1, `2 S1, `∞ S1, S1 S1, S∞ S∞, `1 S∞, `2 S∞, `∞ S∞, S1 S∞, S∞
gaus, gaus 1.0 1.4 0.5 1.3 1.0 1.0 6.1 2.1 3.3 3.6 0.1 1.9 0.1 0.6 0.7 0.8 3.7 0.8 2.0 1.8 0.7 3.6 0.9 1.7 1.9
gaus, lr 1.2 1.1 -0.2 3.2 0.4 1.6 5.8 1.0 7.4 3.0 0.6 1.8 -0.2 2.7 0.3 1.3 3.6 0.1 5.0 1.0 1.1 3.3 0.1 4.4 1.1
gaus, orth 0.8 1.5 0.9 1.1 2.7 1.1 6.4 2.9 2.6 7.8 0.2 2.3 0.8 0.6 3.1 0.8 4.1 1.4 1.7 4.8 0.6 3.9 1.4 1.3 4.8
gaus, sign 0.4 1.4 3.8 1.3 1.1 0.6 6.2 8.4 3.7 4.5 -0.1 1.9 2.2 0.6 0.9 0.5 4.0 5.2 2.2 2.1 0.4 3.8 4.7 1.7 2.2
lr, lr 1.5 1.9 0.5 4.0 0.8 1.7 6.3 1.8 7.8 3.7 0.3 1.8 -0.2 2.7 0.2 3.4 7.9 2.8 9.5 4.8 0.6 3.9 0.4 4.8 1.0
lr, orth 1.3 1.8 1.1 1.4 3.2 1.2 6.3 2.9 2.9 7.4 0.2 2.1 0.5 0.5 2.9 2.8 7.7 3.9 4.2 9.3 0.5 4.0 1.2 1.2 4.7
orth, orth 1.0 1.6 0.9 1.1 3.0 1.3 6.7 3.0 2.9 8.1 0.7 2.9 1.2 1.1 4.0 0.7 3.6 1.3 1.6 5.0 2.4 7.0 3.9 4.1 9.5
sign, lr 0.7 0.8 -0.2 3.1 0.3 1.4 6.1 1.7 7.8 3.3 3.2 6.9 1.6 8.7 3.9 1.1 4.0 0.5 5.5 1.3 1.1 3.9 0.7 5.1 1.3
sign, orth 0.4 1.1 0.7 0.6 2.8 1.2 6.2 3.2 2.6 7.6 2.9 7.0 3.6 4.0 8.5 0.9 4.4 1.6 1.7 5.3 0.8 3.9 1.7 1.3 4.9
sign, sign 0.1 1.2 3.5 1.1 0.7 0.9 6.6 8.8 4.1 3.6 2.9 7.5 11.7 5.1 3.4 0.7 4.7 5.9 2.7 2.0 0.6 3.9 4.6 2.0 1.8
sparse, gaus 5.8 8.5 6.0 7.0 8.3 1.1 6.8 2.3 3.7 4.4 0.2 1.6 0.2 0.2 0.3 2.8 8.3 3.3 4.7 5.9 0.5 4.5 0.8 1.5 1.7
sparse, lr 5.9 7.7 5.6 10.5 7.0 1.3 6.1 1.9 7.9 3.4 -0.0 1.2 -0.0 2.0 -0.0 3.0 7.5 2.9 9.2 4.5 0.4 3.7 0.5 4.6 1.0
sparse, orth 5.3 7.6 6.5 6.0 10.6 0.8 6.0 2.9 2.6 7.3 -0.0 1.2 -0.0 -0.0 1.7 2.6 7.3 3.8 3.8 9.0 0.2 3.6 1.2 0.8 4.6
sparse, sign 5.4 7.7 12.6 6.5 7.4 0.6 6.0 8.1 3.3 3.9 0.0 1.3 1.9 0.0 0.1 2.5 7.3 10.0 4.3 5.1 0.1 3.7 4.7 1.2 1.5
sparse, sparse 15.3 8.2 4.0 10.8 7.4 8.6 6.6 0.7 8.1 4.1 4.2 1.3 -0.0 2.1 -0.0 10.7 8.1 1.9 9.6 4.8 7.8 3.9 -0.0 4.8 1.2

Operator shape: 16 × 16 ⊗ 16 × 16 Rank: 1 SNR: 10dB Solver: altmin (NucNorm_Sum) Solver rank: 16 Tolerance: ε = 1 × 10−3
Factors `1, `1 `1, `2 `1, `∞ `1, S1 `1, S∞ `2, `1 `2, `2 `2, `∞ `2, S1 `2, S∞ `∞, `1 `∞, `2 `∞, `∞ `∞, S1 `∞, S∞ S1, `1 S1, `2 S1, `∞ S1, S1 S1, S∞ S∞, `1 S∞, `2 S∞, `∞ S∞, S1 S∞, S∞
gaus, gaus 6.9 9.5 6.9 8.3 7.4 8.9 16.4 9.0 10.4 14.7 6.9 9.1 6.9 7.4 7.1 8.0 11.4 7.4 11.6 9.7 7.5 13.0 7.2 9.6 9.2
gaus, lr 6.9 9.5 6.9 13.1 6.9 9.2 16.3 8.5 21.1 11.2 6.9 9.2 6.9 12.2 6.9 8.5 11.5 6.9 17.5 8.6 8.0 13.0 6.9 20.6 7.6
gaus, orth 6.9 9.4 6.9 7.8 11.8 8.8 16.4 10.0 11.0 21.6 6.9 9.1 7.3 7.9 10.1 8.0 11.5 8.1 9.7 13.1 7.8 13.3 7.9 10.2 12.8
gaus, sign 6.9 9.4 11.4 8.2 7.8 9.3 16.2 18.9 10.3 15.3 6.9 9.0 9.0 7.6 7.4 7.9 11.5 13.4 11.5 9.9 7.5 13.1 10.2 9.6 9.2
lr, lr 7.5 9.8 6.9 13.0 6.9 9.4 16.4 8.3 21.0 11.3 6.9 8.1 6.9 11.1 6.9 11.9 21.0 12.4 28.0 17.0 6.9 11.4 6.9 20.5 6.9
lr, orth 6.9 9.7 7.0 8.2 11.0 8.9 16.5 10.0 10.9 21.7 6.9 8.4 6.9 6.9 9.1 11.9 20.9 13.7 16.0 24.5 6.9 11.3 6.9 7.5 11.0
orth, orth 6.9 9.4 6.9 7.8 11.9 8.8 16.2 9.7 10.9 21.3 6.9 9.4 7.4 8.2 10.4 7.5 12.5 8.3 10.7 14.7 11.0 16.7 10.7 13.2 21.3
sign, lr 6.9 9.9 6.9 13.8 6.9 9.4 16.2 8.1 21.1 11.2 10.7 14.6 6.9 17.9 10.1 8.7 11.5 6.9 17.3 8.7 8.3 13.2 6.9 20.4 7.7
sign, orth 6.9 10.1 6.9 7.2 12.5 8.9 16.3 9.9 11.0 21.7 10.7 14.7 8.7 14.7 15.4 8.0 11.5 8.3 9.7 13.5 7.7 13.1 7.7 10.0 11.9
sign, sign 6.9 10.0 13.3 8.1 7.3 9.4 16.0 18.8 10.5 14.5 14.9 14.3 21.8 11.8 9.1 7.8 11.5 13.4 11.6 9.8 7.1 12.7 9.6 9.7 8.8
sparse, gaus 15.8 23.9 15.9 16.4 23.1 8.9 18.7 9.4 10.4 15.6 6.9 6.9 6.9 6.9 6.9 12.9 22.9 13.3 15.4 20.8 6.9 16.0 6.9 8.2 8.3
sparse, lr 14.5 23.7 15.4 30.7 21.2 9.3 18.8 8.5 21.4 11.3 6.9 6.9 6.9 10.6 6.9 12.8 22.7 12.9 27.8 18.2 6.9 16.1 6.9 20.6 6.9
sparse, orth 15.9 23.5 17.0 16.8 25.3 8.9 18.8 10.2 11.1 21.8 6.9 7.0 6.9 6.9 7.8 13.0 22.7 14.1 16.1 24.3 6.9 16.1 6.9 7.6 11.0
sparse, sign 16.6 23.5 27.1 16.3 22.9 9.3 18.7 19.2 10.3 15.1 6.9 7.0 8.1 6.9 6.9 13.1 22.6 25.8 15.3 20.4 6.9 15.9 11.5 8.1 8.2
sparse, sparse 40.6 24.0 15.3 30.3 22.3 23.8 19.3 7.2 22.6 11.3 17.5 7.2 6.9 11.2 6.9 30.6 22.7 10.2 27.1 18.1 23.0 16.1 6.9 20.3 6.9

Table 5.3: Themain results. These tables show the gains in dB (5.9) for denoising rank-1 operators at all tested combinations of
factor structure and nuclear norm. Bold numbers indicate the highest value(s) in each row (i.e., the nuclear norm that empirically
denoises the factor structure best). The top table shows results for 4× 4⊗ 4× 4 operators using the alternatingminimization solver
with 16 dyads. The bottom tables shows results for 16 × 16 ⊗ 16 × 16 operators also with 16 dyads in the alternating minimization
solver. (Key: gaus = Gaussian, lr = low-rank, orth = orthogonal.)

123

so this rank constraint in the solver provides some denoising even when the
nuclear norm does not. Indeed, we see around 7dB of gain in situations here
that showed no gain in the table above.

Once again the `2 ⊗ `2 nuclear norm performs consistently regardless of the
factor structure. Generally, matching the nuclear norm to the factor structure
provides the largest gains, but we do have some discrepancies. Notably, the `2 ⊗
S∞ nuclear norm not only performs best with (Gaussian, orthogonal) operators
but also with (orthogonal, orthogonal) and (sign, orthogonal) operators. (In the
case of (orthogonal, orthogonal) operators, it does equally as well as the S∞⊗S∞

nuclear norm.) Also for (sign, low-rank), the `2 ⊗ S1 nuclear norm outperforms
the `2 ⊗ S1 nuclear norm.

We posit that this occurs because of the lower solver rank combined with de-
noising a rank-1 operator. That is, the regularization becomes relatively less
important in denoising this operator. As noted in the next section, these dis-
crepancies lessen as the rank of the operator increases.

We conclude that

Nuclear norms are effective regularizers for structured low-rank op-
erators.

5.5.2 Operator rank

We also want to check the behavior of nuclear norm denoising as we increase
the rank of the true operatorA\. Figure 5.9 plots gain (5.9) versus operator rank
using the `1 norm as a regularizer with 16× 16 ⊗ 16× 16 operators. As expected,
the gain decreases as the operator rank increases.

We also notice that the gain curve for the alternating minimization solver does
not track the shape of the convex solver’s gain curve very well here. Again, we
think this is due to the fact that we use only a solver rank of 16. We point out
that with 4 × 4 ⊗ 4 × 4 operators, the alternating minimization solver with 16
dyads tracks the convex solver quite well. If we consider the `1 ⊗ `2 nuclear
norm instead (Figure 5.10), we do not see this oddity either.

In the last section, we saw thatmatching thenuclear norm to the factor structure
of the true operator improves denoising performance. The results there only
considered denoising rank-1 operators, and so we wish to ensure that similar

124

sign, sign sparse, sign sparse, sparse

L
1

, L
1

4 8 12 16 4 8 12 16 4 8 12 16

0

10

20

30

40

rank

a
v
g

.
g

a
in

 (
d

B
)

solver

convex

nonconvex

Figure 5.9: Average gain vs. rank, `1 norm. Each panel plots the average
gain (5.9) of the denoising procedure over 10 trials versus the operator rank
using the `1 norm as a regularizer with the color/shape indicating the solver. We
test the convex solver matsolve and the nonconvex alternating minimization
solver altminsolve (with solver rank 16). Alternating minimization uses solver
rank 16. All operators have dimension 16 × 16 ⊗ 16 × 16, and the SNR (5.7) is
10dB. Error bars show the minimum and maximum gain over the trials. We
facet the figure by factor structure.

behavior holds for higher-rank operators. Tables B.4 and B.5 in the appendix
confirm this for 4 × 4 ⊗ 4 × 4 and 16 × 16 ⊗ 16 × 16 operators, respectively.

In fact, we see that the discrepancies between factor structure andnuclear norm
that we noticed in Table 5.3[bottom] diminish as the operator rank increases.
We conclude that even though the gains decrease with growing operator rank,
nuclear norms still provide superior denoising performance when tuned to the
factor structure of the operator.

5.5.3 Semidefinite relaxations

Finally, we want to consider the performance of the semidefinite relaxations for
nuclear norms. In Section 3.6 we introduced these relaxations and stated that
they are comparable to the true nuclear norms up to a dimension-independent
multiplicative constant.

Figure 5.11 shows two experiments comparing the semidefinite relaxations to
their true counterparts. In the top panel we show gain (5.9) plotted against

125

gaussian, gaussian sparse, gaussian sparse, sparse

L
1

, L
2

4 8 12 16 4 8 12 16 4 8 12 16

0

5

10

15

20

25

rank

a
v
g

.
g

a
in

 (
d

B
)

solver

convex

nonconvex

Figure 5.10: Average gain vs. rank, `1 ⊗ `2 norm. Each panel plots the average
gain (5.9) of the denoising procedure over 10 trials versus the operator rank
using the `1 ⊗ `2 nuclear norm as a regularizer with the color/shape indicating
the solver. We test the convex solver matsolve and the nonconvex alternating
minimization solver altminsolve (with solver rank 16). All operators have
dimension 16 × 16 ⊗ 16 × 16, and the SNR (5.7) is 10dB. Error bars show the
minimum and maximum gain over the trials. We facet the figure by factor
structure.

operator rank for the smaller set of operators (4 × 4 ⊗ 4 × 4) and with the
alternating minimization solver set to use 16 dyads. In the bottom panel we
create the same plot for our larger (16 × 16 ⊗ 16 × 16) operators, also with
solver rank 16. We facet by the nuclear norms and factor structures, and for
comparison, we plot the gain for the trace norm as a dotted gray line.

In the top panel, we see that the true nuclear norm (with 16 dyads) generally
outperforms the relaxed norm. While the difference is generally small, it is most
noticeable at low operator ranks. The largest discrepancy appears when using
the `∞ ⊗ `∞ nuclear norm to denoise (sign, sign) operators.

The situation differs somewhat when we consider the rank-constrained solu-
tions in the bottom panel. Here, with the exception of the `∞ ⊗ `∞ nuclear
norm, the formulations are generally close. While the true formulation tends to
provide slightly higher gain than the relaxed one, this is not always the case.

Now, however, we see that the relaxed `∞ ⊗ `∞ nuclear norm (the max-norm)
performs as well as the trace norm across the three factor structures tested.

126
Operator dimension: 4 × 4 ⊗ 4 × 4

gaussian, gaussian gaussian, sign sign, sign

L
2

, L
in

f
L

in
f, L

2
L

in
f, L

in
f

2 4 6 8 2 4 6 8 2 4 6 8

0

5

10

0

5

10

0

5

10

rank

a
v
g

.
g

a
in

 (
d

B
)

method

nuc. norm

relaxation

Operator dimension: 16 × 16 ⊗ 16 × 16

gaussian, gaussian gaussian, sign sign, sign

L
2

, L
in

f
L

in
f, L

2
L

in
f, L

in
f

4 8 12 16 4 8 12 16 4 8 12 16

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

rank

a
v
g

.
g

a
in

 (
d

B
)

method

nuc. norm

relaxation

Figure 5.11: Average gain vs. rank, semidefinite relaxations. Each panel plots
the avg. gain (5.9) of the denoising procedure over 10 trials vs. the operator
rank with color/shape indicating the method. We test nuclear norms and their
semidefinite relaxations. The dotted line shows the avg. gain of the `2 ⊗ `2
nuclear norm for reference. All tests use the alternating minimization solver
(with solver rank 16) and SNR (5.7) of 10dB. We include min/max error bars,
and we facet by factor structure (columns) and nuclear norm (rows).

127

The true `∞ ⊗ `∞ nuclear norm norm only does so in the case of (sign, sign)
operators—where we expect it to performwell anyway. This is in contrast to the
unconstrained case in the top panel where both formulations of the `∞ ⊗ `∞
nuclear norm have little success in denoising factor structures other than (sign,
sign).

5.5.4 Demixing

Finally, we wish to briefly address the question of demixing. The denoising
problem itself simply asks us to approximate an operator from complete but
noisy observations. Using our knowledge that the operators have a structured
factorization, we employ nuclear norms to facilitate this approximation.

We may wonder, however, whether or not we can recover that factorization.
This is itself a rather different problem, and it is an important one even in
the case where we observe the true signal directly. Given that the alternating
minimization solver already works in a factored form, we question whether it
can indeed return structured factorizations.

To test this we consider a simple experiment. We generate the operator

A\ =

4∑
i=1

X i ⊗Y i,

where the X i ∈ M4×4 are independent random signmatrices, and theY i ∈ M4×4

are independent random rank-1 matrices.

We then add noise to achieve an SNR of 10dB and solve the denoising problem
using the `∞⊗S1 nuclear norm in the alternatingminimization solver. We set the
solver rank to 16 and the convergence tolerance to ε = 1×10−3. At convergence,
the solver returns an operator with error resulting in an RSDR (5.8) of 14.0dB (a
gain of 4dB).

In Figure 5.12 we display the left and right factors ofA\ along with the first four
dyads of the recovered operator. The first set of panels shows the true factors
with the left (sign) factors displayed above the right (rank-1) factors. The bottom
set of panels shows the first 4 recovered factors using alternating minimization.
Note that the recovered factors match the true factors extremely closely up to
ordering and sign!

We also include the first four components of the truncated dyadic SVD as the
middle set of panels. The right components serve as the initialization for the

128

Left and right factors of the true operatorA\
X1 X2 X3 X4

Y1 Y2 Y3 Y4

Truncated dyadic SVD of the noisy observations
X1 X2 X3 X4

Y1 Y2 Y3 Y4

Alternatingminimization with the `∞ ⊗ S1 norm, first 4 components
X1 X2 X3 X4

Y1 Y2 Y3 Y4

Figure 5.12: Demixing with alternatingminimization. Each set of figures dis-
plays the left and right factors of a particular dyadic decomposition. The top row
shows the dyads of a rank-4 (sign, low-rank) operator inO4×4⊗4×4. The middle
row shows the top 4 components of the dyadic SVD applied to the noisy obser-
vations (SNR 10dB), and the bottom row shows the first 4 dyads returned by the
alternating minimization solver using the `∞ ⊗ S1 nuclear norm for denoising
(gain: 4.1dB).

129

alternating minimization solver, and it is evident that their orientation has an
effect on the ordering of the recovered components.

In any case, we present this example to suggest that solving nuclear norm prob-
lems with alternating minimization can also achieve structured factorizations.
This is obviously an idealized example, and our work is generally focused on
using nuclear norms to solve approximation problems. We leave this aspect for
future study.

5.6 Summary

In this chapter, we performed numerical experiments to demonstrate the ef-
fectiveness of nuclear norms in denoising structured low-rank operators. At
the same time we also had to demonstrate that our alternating minimization
solver and hyperparameter choices produce accurate results. From these tests,
we conclude that nuclear norms—used as regularizers—do indeed promote
structured low-rank operators. Furthermore, we can tailor nuclear norms to
match the underlying structures of those operators. In the next chapter we
consider an application of nuclear norm denoising to hyperspectral imaging.

130

Chapter 6

Application: Hyperspectral image de-
noising

In the previous chapter we evaluated the numerical performance of nuclear
norms in denoising synthetic operators. Here we apply the nuclear norm frame-
work to denoising hyperspectral images making use of some real data.

6.1 Overview

Whereas a grayscale image records the total intensity of light at each pixel,
a hyperspectral image (HSI) records the intensity of light at any number of
specific wavelengths.1 The RGB image we displayed in Figure 1.1, for instance,
stored a color image in red, green, and blue components. More generally, we
can think of hyperspectral images as a data cube with an arbitrary number of
two-dimensional slices, one for each wavelength of light recorded, as shown in
Figure 6.1.

In this way, hyperspectral images are three-dimensional arrays. For an ordered
set of wavelengths, we can then write an HSI as an operator

A =
∑

k

X k ⊗ e k,

where X k is the matrix of intensities at wavelength k and the e k are standard
basis vectors.

1Note that the literature contains references to both hyperspectral andmultispectral images
with the distinction generally being the continuity of the measured spectral bands. This dis-
tinction does not concern us, and we will refer to all images with spectral data as hyperspectral.

131

m pixels

n pixels

p wavelengths

X1

Xp

Figure 6.1: HSI datcube.We can represent a hyperspectral image (HSI) as an
m × n × p data cube, where each of the p slices is an m × n image recording the
intensity of light at a specific wavelength. From the set of these p slices {X k }p

k=1,
we can construct the HSI as the operatorA =

∑p
k=1 X k ⊗ e k .

The focus of this chapter is to apply nuclear norm denoising techniques from
the previous chapter to hyperspectral images incorporating real data. We also
provide a brief comparisonwith a recent approach by Zhao andYang [ZY15] that
applies techniques from dictionary learning to this problem. Note, however,
that we intend this chapter to explore the use of nuclear norms in a setting
that moves away from wholly synthetic data. Even though our approach does
show some benefit, we must also discuss some notable current obstacles to
large-scale implementation.

6.1.1 Roadmap

In Section 6.2 we discuss relevant work from the literature. We then test nuclear
norm denoising on hyperspectral images generated using real spectral data
in Section 6.3. Section 6.4 addresses pitfalls with the approach along with
opportunity for future work.

6.2 Relevant work

Hyperspectral imaging has a decades-long history in the field of remote geolog-
ical sensing. In the 1970s, Rowan and coauthors [Row+74; RGA77] used satellite
imaging data to perform mineral identification. Gregg Vane and coauthors
at the Jet Propulsion Laboratory pioneered airborne instruments for imaging

132

spectrometry in the 1980s [VG88; VG93]. More recent applications appear in
diverse areas such as quality control in food processing [KCM01; Gow+07], as-
tronomical surveys [Heg+03], counterfeit drug detection [Rod+05], andmedical
diagnosis [AKKT10].

In this section, we focus on amixturemodel that provides a basis for exploration
of HSI with nuclear norms.

6.2.1 A mixture model for HSI

Consider remote geological sensing where, for instance, airplanes fly over the
groundmeasuring the reflected spectra of materials below. The resulting hy-
perspectral images will have a fixed spatial resolution, and the spectrum at a
single pixel very likely results as a combination of several different materials on
the ground.

The linear mixing model [KM02] assumes that the surface being imaged con-
sists primarily of a small number of materials each having a roughly constant
spectrum over the surface. Each of these spectra are called endmembers, and
each pixel arises as a convex combination of the spectra. The weights in the
convex combination are called the abundances. Mathematically, we can write
the spectrum of a pixel x ∈ RL as

x = Sa,

where S is an L ×M matrix whose columns are the endmembers, and a ∈ RM

gives the abundances. If the pixel spectrum x results from the combination of
fewmaterials, then the abundances a will be sparse.

To construct a hyperspectral image with N pixels, we then have the model

X = S A, (6.1)

where the columns of X ∈ ML×N are the pixel spectra, and the columns of
A ∈ MM×N are the abundances of each pixel. Note that this resembles a sparse
coding model.

The goal then is to receive a hyperspectral image and “unmix” its pixels to deter-
mine their constituent materials. The survey of Bioucas–Dias et al. [Bio+12] re-
views techniques for solving this problem including approaches based on inde-
pendent component analysis [BGC98; CZ99; Tu00], sparse regression [RRZF06;

133

IPB10; IBP11], and dictionary learning [COR11]. Key distinctions among these
approaches include whether or not the spectral endmembers S are known.

6.2.2 Denoising vs. spectral unmixing

Consider again the linear mixture model (6.1). This is exactly a matrix factoriza-
tion model, and the problems of denoising and spectral unmixing under this
model are then the two central questions that opened this thesis.

Denoising requires finding an approximation of the hyperspectral image X

given the knowledge that it has the factorization X = S A. Spectral unmixing,
on the other hand, requires finding that factorization. While we focus on using
nuclear norms to perform denoising under this model, we will also consider
the unmixing problem.

We do note, however, that other approaches for denoising hyperspectral im-
ages exist including wavelet-based methods [ZG06], tensor filtering [LB08;
RBB08], tensor decomposition [LBF12; LB13; Li+15], and low-rankmatrix meth-
ods [Zha+14; HZZS16]. Again, our focus is the continued numerical testing
of nuclear norms and not a broad comparison of HSI methods. To that end,
we make a limited comparison between nuclear norms, the truncated dyadic
SVD (3.7), and a dictionary learning-based method called Spa+Lr [ZY15].

6.2.3 Spa+Lr

The Spa+Lr method of Zhao and Yang [ZY15] combines a dictionary learning
approach [EA06] with a low-rank assumption on the (matricized) hyperspec-
tral image based on the linear mixture model. We use this method as a point
of comparison for nuclear norm denoising to provide our results with some
context from the HSI literature.

Wemake this choice for two reasons. First, they test hyperspectral images gen-
erated using a linear mixture model. This provides a good starting point for
comparison with nuclear norms. Second, the unsupervised dictionary learn-
ing approach fits well into our discussion of bilinear problems as opposed to
semisupervised techniques using a curated spectral library [IBP11]. We now
summarize their approach.

First, they consider the hyperspectral image X \ as an M N × L matrix, where
M, N are the spatial dimensions, and L is the spectral dimension. Following the

134

linear mixture model, they assume X \ has a representation

X \ = AS,

where the rows of S ∈ MP×L are the endmembers, and the rows of A ∈ MM N×P

are the abundances for each of theM N pixels. (Note thismodel is the transpose
of (6.1).)

They observe the noisy HSI
Y = X \ +W ,

whereW is Gaussian noise.

To approximate the original HSI X \, they consider the nonconvex problem

minimize
X ,D,αi

γ‖X −Y ‖2`2 +
∑

i

‖R i X −Dαi ‖2`2 +
∑

i

η‖a i ‖0 + µ rank(X).

The first termmeasures the fidelity between the decision variable X and the
observed noisy HSI Y . The next term concerns finding a dictionary D and
coefficientsαi such that each patch of theHSIR i X may be coded in terms of the
dictionary, where the R i are the operators that extract overlapping, rectangular
patches of the HSI. The following term promotes sparse coefficient vectors αi

so that we obtain a sparse coding for the patches. The final term penalizes HSI
with high rank.

This formulation is sparse dictionary learning with an additional low-rank
constraint. Due to the linear mixing assumption, they expect that X \ is indeed
low-rank (or approximately so).

Before attempting to solve this problem they replace the hard rank constraint
with the trace norm, introduce an auxiliary variable U = X , and write the
auxiliary constraint as a penalty term:

minimize
X ,D,αi ,U

γ‖X −Y ‖2`2+
∑

i

‖R i X −Dαi ‖2`2+
∑

i

η‖a i ‖0+µ‖U ‖S1+λ‖X −U ‖2`2 .

This problem, while still nonconvex, may be solved through alternating mini-
mization.

The major steps are:

1. FixU , X : Solve the dictionary learning/sparse coding problem in D and
αi using K-SVD [AEB06].

135

2. Fix X , D, αi : Solve forU by soft-thresholding the singular values of X .

3. FixU , D, αi : Solve for X by performing the averaging step

X =

(
γI +

∑
i

R t
i R i + λI

)−1
·
(
γY +

∑
i

R t
i Dαi + λU

)
.

We implement Spa+Lr in Python using scikit-learn [Ped+11] for the dictionary
learning routines. We discuss additional details in Section C.3 of the appendix.

6.3 Structured abundances

Nowwe turn to implementing HSI denoising as a nuclear norm problem and
testing its performance with real spectra.

6.3.1 An operator mixture model

Of course we could write the linear mixture model (6.1) in our usual dyadic
notation as

A =
∑

i

x i ⊗ y i, (6.2)

where the y i ∈ Rn are the endmembers (with spectral dimension n), and the
x i ∈ Rm give the abundances of that endmember at each of the m pixels in the
HSI. The result is a matrix A ∈ Mm×n with each row representing a pixel (spatial
location), and each column a particular wavelength.

Notice though that the abundances in dyadic form need not be sparse. Indeed,
if every pixel of an image is composed in part by endmember y i , then no entry
of x i will be zero. This is as we mentioned in Section 2.1.1 when discussing
dictionary learning. The rowsof the abundancematrixX whose columns are the
x i may be sparse, but the nuclear norm will not directly promote that structure.

There we discuss that lifting the dictionary learning problem to the operator
space is a possibility, but our preliminary investigations revealed difficulties
with this approach. Namely, the observed linear measurements in the lifted
setting are insufficient to solve the dictionary learning problem using operator
nuclear norms. In the HSI setting, however, we may use a slightly different
approach.

136

Instead we consider the HSIA ∈ Om×n⊗p with spatial dimensions m × n and
spectral dimensions p , and we write it as

A =
∑

i

X i ⊗ y i,

where the y i ∈ Rp are the endmembers and the X i ∈ Mm×n are their corre-
sponding abundances at each pixel.

This small change allows us to take advantage of the two-dimensional structure
of the abundances. For instance, ifA is anHSIobtained through remote sensing,
the abundances of materials may occur in contiguous patches, and we could
then expect that the X i are low-rank. Choosing a S1 ⊗ Y nuclear norm could
then promote this structure.

Alternatively, we may consider that the pattern of abundances themselves
should resemble an image with few, sharp jumps in intensity. Total variation2

may then be an appropriate regularizer on the X i . (And while we do recognize
that we could apply one-dimensional TV to the matricized HSI (6.2), we prefer
to retain the two-dimensional structure of the HSI throughout.)

6.3.2 Test images

To test nuclear norm denoising, we generate hyperspectral images using real
spectra from the USGS Digital Spectral Library [Cla+07]. This database, referred
to as splib06a, contains over 1300 spectra including minerals, organic com-
pounds, vegetation, andman-made material. We follow the same generation
procedure as Zhao and Yang [ZY15] that originates from Iordache et al. [IBP11].

First, we select 5 spectra from the database with some care taken to choose
sufficiently different materials; the database includes many sets of extremely
similar spectra. We perform some additional cleaning and smoothing of the
spectra and provide those details in Section C.1 of the appendix. These steps
undoubtedly assist the nuclear norm denoising procedure, but we still believe
that this satisfies our desire to incorporate real data into our experiments (as
opposed to the entirely synthetic tests of last chapter). Our experiments still
use Spa+Lr as a point of comparison under the same circumstances.

2The two-dimensional total variation (2D TV) of a matrix X ∈ Mm×n is defined as ‖X ‖TV :=∑
i, j

√
|xi+1, j − xi, j | + |xi, j+1 − xi, j |. The use of total variation in image denoising was pioneered

by Rudin et al. [ROF92]

137
Abundance matrix 1 Abundance matrix 2 Abundance matrix 3 Abundance matrix 4 Abundance matrix 5

0 50 100 150 200 250

wavelength #

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030
Endmember 1

0 50 100 150 200 250

wavelength #

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Endmember 2

0 50 100 150 200 250

wavelength #

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Endmember 3

0 50 100 150 200 250

wavelength #

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Endmember 4

0 50 100 150 200 250

wavelength #

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Endmember 5

Figure 6.2: HSI test image. The abundances and endmembers of the test im-
ageA =

∑5
i=1 X i ⊗ y i ∈ O75×75⊗224×1 generated using spectra from the USGS

splib06a library according to the procedure of Iordache et al. [IBP11]. The top
panels show the abundances X i , while the bottom panels plot the endmembers
y i .

Using the selected spectra we generate a 75 × 75 × 224 HSI such that there are
25 patches each of size 5 × 5 equally spaced in a square grid. The patches in the
first row are composed of exactly one of the materials. In the second row, each
patch is the equal combination of two materials, and so forth until we reach
the last row where all patches are equal combinations of all five materials. We
ensure that every material is represented in at least one patch of every row.

Figure 6.2 shows such an HSIA =
∑5

i=1 X i ⊗ y i , where the panels of the top
row show each of the abundance matrices X i , and the bottom panels show the
endmembers y i . Note that in the first row of the abundances, each patch only
appears in one of the X i . In the second row, each patch appears in two of the
X i , and so forth.

6.3.3 Numerical results

Let A\ ∈ O75×75⊗224×1 =
∑5

i=1 X i ⊗ y i be the testing HSI generated in the
previous section, and assume that we observe the noisy HSI

B =A\ + σZ,

where the additive noiseZ has independent standard normal entries.

We now test the ability of nuclear norms to denoise this HSI. For the sake of com-
parison we also consider using the truncated dyadic SVD (3.7) to compute the

138

Dyads `1 ⊗ `2 `1 ⊗ TV S1 ⊗ `2 S1 ⊗ TV TV ⊗ `2 TV ⊗ TV Dyadic SVD Spa+Lr
5 21.4 17.7 23.0 18.6 25.0 21.0 15.7
10 19.8 16.4 22.2 17.0 23.8 20.7 12.4
N/A 16.5

Table 6.1: Denoising theHSI test image, 10 dB SNR. This table lists the average
gains in dB (5.9) over 10 trials of the denoising experiment on theHSI test image.
The bold figures indicate the largest value in each row.

best low-rank approximation to the noisy observationB. By construction, the
trueHSIA\ has rank 5. We also test the Spa+Lrmethod of Zhao and Yang [ZY15]
described in Section 6.2.3. The full experimental details are included in Sec-
tion C.4 of the appendix.

Recall that abundance matrices X i in the construction of the test HSIA\ have
well-defined structure. Inparticular, they are low-rank and sparse. Whenviewed
as images, they have continuous patches with well-defined edges. And so we
believe thatnuclearnorms involving the `1 norm, tracenorm, and total variation
norm will serve well for the left factors.

For the endmembers (spectra), we consider the `2 and total variation norms.
We expect that the `2 norm will perform better on the smoothed endmembers
in this example, but we include the TV norm for comparison nonetheless.

Table 6.1 shows the results of the numerical experiment described above and
in Section C.4 of the appendix. We show the average gain3 in decibels for each
combination of factor norms andwith both 5 and 10 dyads allowed in the solver.
The right-hand side of the table displays the gain using the truncated dyadic
SVD and Spa+Lr to perform the denoising.

We see that using the TV ⊗ `2 nuclear norm yields the best performance at
both 5 and 10 dyads. In both cases, the gain also outperforms the truncated
dyadic SVD by a good margin. This is encouraging as the truncated SVD corre-
sponds to solving a rank-constrained denoising problemwith no regularization
(Section 5.4.4.4).

As expected, using the `2 norm on the right factors (endmembers) does result in
better performance than using total variation in this case. Using total variation,
however, still allows the nuclear normmethods to outperform the baseline trun-
cated SVD. Note that the `1 and S1 norms still perform admirably in regularizing

3Recall that we defined gain (in decibels) as the recovery signal-to-distortion ratio (RSDR)
less the signal-to-noise ratio (SNR) of the observations. See Section 5.4.2 for the definitions.

139

the abundances, but we expect that the `1 norm in particular benefits from the
very special structure of our test image.

Finally, we observe that the nuclear norm approach here outperforms Spa+Lr.
Theuseof Spa+Lr allowsus to conclude that the gains fromourmethodcompare
favorably to techniques in the HSI literature. We do not, however, make the
claim here that nuclear norm denoising is strictly better than using Spa+Lr.
Indeed, the nature of this test image suits itself well to our framework. We revisit
this point later.

6.3.4 Unmixing

This chapter focuses on the denoising problem. That is, we see noisy observa-
tions of a hyperspectral image andwewish to approximate that image under the
assumption that it has a low-rank representation as a linearmixture ofmaterials.
We do, however, want to briefly address the problem of spectral unmixing. In
our framework this corresponds to actually obtaining a factorization of the HSI
(as an operator) that corresponds to the linear mixture model. We previously
saw a demixing example in Section 5.5.4.

Given that we use alternatingminimization to solve the nuclear normdenoising
problem, wemaywonder howwell the recovered factors unmix the data. Before
even looking at the results, however, we offer a strongword of caution. Figure 6.2
displays a factorizationof our testHSI into abundances andendmembers. While
we use nuclear norms to promote the different properties of the factors, we
have no reason to believe here that this factorization is an optimal nuclear norm
decomposition of the noiseless HSIA\. This alone should suggest the difficulty
in using our approach to perform factorization in addition to approximation.

Nevertheless, we show the output of our solver in Figure 6.3. The top set of pan-
els shows the dyadic SVD of the rank-5 test HSI along with their singular values.
Of course, this decomposition does not match that of Figure 6.2. The middle
set of panels shows truncated dyadic SVD applied to the noisy observations.
We see that the components corresponding to the smaller singular values are
more susceptible to noise. Finally, the last set of panels shows the output of
the alternating minimization solver applied to the noisy observations using the
TV ⊗ `2 nuclear norm.

We note here that they strongly resemble the decomposition obtained by the

140
Dyadic SVD on the test HSI

X1 X2 X3 X4 X5

0 50 100 150 200 250

wavelength #

0.10

0.08

0.06

0.04

0.02

0.00
y1

0 50 100 150 200 250

wavelength #

0.15

0.10

0.05

0.00

0.05

0.10
y2

0 50 100 150 200 250

wavelength #

0.2

0.1

0.0

0.1

0.2

0.3
y3

0 50 100 150 200 250

wavelength #

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25
y4

0 50 100 150 200 250

wavelength #

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15
y5

σ1 = 115.8 σ2 = 18.32 σ3 = 14.82 σ4 = 1.199 σ5 = 0.1211

Truncated dyadic SVD of the noisy observations
X1 X2 X3 X4 X5

0 50 100 150 200 250

wavelength #

0.10

0.08

0.06

0.04

0.02

0.00
y1

0 50 100 150 200 250

wavelength #

0.15

0.10

0.05

0.00

0.05

0.10
y2

0 50 100 150 200 250

wavelength #

0.2

0.1

0.0

0.1

0.2

0.3
y3

0 50 100 150 200 250

wavelength #

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
y4

0 50 100 150 200 250

wavelength #

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
y5

Alternatingminimization with the TV ⊗ `2 norm
X1 X2 X3 X4 X5

0 50 100 150 200 250

wavelength #

0.10

0.08

0.06

0.04

0.02

0.00
y1

0 50 100 150 200 250

wavelength #

0.10

0.05

0.00

0.05

0.10

0.15
y2

0 50 100 150 200 250

wavelength #

0.2

0.1

0.0

0.1

0.2

0.3
y3

0 50 100 150 200 250

wavelength #

0.1

0.0

0.1

0.2

0.3
y4

0 50 100 150 200 250

wavelength #

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
y5

Figure 6.3: Unmixing inHSI denoising. Each set of figures displays the left and
right factors of a particular dyadic decomposition. The top row shows the top 5
components of the dyadic SVD of the test HSI. The middle row shows the top 5
components of the dyadic SVD applied to the noisy observations (SNR 10dB),
and the bottom row shows the 5 dyads returned by the alternatingminimization
solver using the TV ⊗ `2 nuclear norm for denoising.

141

Figure 6.4:Washington, D.C. Mall HYDICE image. A false color reproduction
of a 1280 × 307 × 191 aerial hyperspectral image.

dyadic SVD. Note that, in particular, the fourth component shows amuch better
resemblance to the true HSI than the truncated dyadic SVD alone. This is the
value of using the nuclear norm in the denoising procedure. After all, the default
initialization for our alternating minimization solver is the truncated dyadic
SVD of the noisy observations (Section 4.2.3). The nuclear norm allows us to
improve on that and return more of the structure present in the original HSI.
We do not, however, achieve any meaningful spectral unmixing.

6.4 Next steps

Wewould like to also apply our techniques to a real hyperspectral image. Fig-
ure 6.4 shows a false color version of a Hyperspectral Digital Imagery Collection
Experiment (HYDICE) [Bas+93] image of the Washington DCMall.4 The HSI
results from aerial imaging and has spatial dimension 1280 × 307 and spectral
dimension 191.

To make the size more manageable, we conducted preliminary tests using a
128×128 patch centered on the LincolnMemorial (on the left side of Figure 6.4).
Quick testingwith the truncateddyadic SVD showed that the resulting data cube
is approximately low-rank with 5 dyads capturing over 99.9% of its variance.
Denoising with the dyadic SVD at 10dB SNR consequently showed gains of
15.3dB with 5 dyads and 12.2 dB with 10 dyads. These results roughly match
those of our HSI with synthetic abundances in Table 6.1. Further testing with
Spa+Lr demonstrated a gain of 11.7dB, and this result agrees with the tests of
Zhao and Yang [ZY15] on the same image (albeit a different patch).

Testing with the nuclear norm framework, however, did not yield gains signifi-
4Available at https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.

html under free license for testing and/or research.

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

142

cantly higher than the dyadic SVD when using 5 or 10 dyads in the alternating
minimization solver. This suggests that the bulk of the denoising resulted from
the reduction in solver dyads and the corresponding initialization using the
dyadic SVD. We hypothesize that even though a linear mixing model may be
appropriate to describe this image, our available nuclear norms are not able to
promote this structure strongly enough here.

A possible solution is to follow work in spectral unmixing, such as [IBP11],
where it is common to use a spectral library (such as splib06a) to specify the
endmembers a priori. Solving such a problem, however, no longer requires the
nuclear norm framework. A disadvantage to this approach is the need for a
spectral library that is well-calibrated to a particular imaging setup.

Alternatively, we could consider an HSI model like

A =
∑

i

X i ⊗ (Dy i),

where the X i are again abundances, and the spectra are now Dy i composed
from a spectral dictionary D . Our desire would be for the y i to be sparse. We
could instead consider the operator

A\ =
∑

i

X i ⊗ y i,

where we have simply removed the spectral dictionaryD , and themeasurement
model

µ(A) = µ

(∑
i

X i ⊗ y i

)
=

∑
i

X i ⊗ Dy i .

That is, we move the spectral dictionary into the measurements of our operator.

On testHSIs as in Section 6.3.2with a small, spectral dictionaryD and theTV⊗`1
nuclear norm, this approach does show some success. We must note, however,
that the memory requirements under operfact for this measurement model
are enormous. Any real test of this approach would necessarily require a larger
dictionary D , and therefore more memory. We present this here to provide a
more complete catalog of our work, but we do not have the resources at present
to pursue this further.

Note that we also did not utilize any nonnegativity constraints on the abun-
dances or spectra, nor did we consider any constraints on the sum of the abun-
dances at each pixel. These additional constraints may lead to better results,
but at the moment, operfact is not equipped to handle them.

143

6.5 Discussion

Despite the difficulties in moving to a fully real hyperspectral image, the work
with USGS spectral library data does demonstrate that nuclear norm denoising
does work outside of fully synthetic data. Just as with the synthetic denoising
problems, tuning the nuclear norm to the factor structure of the underlying
operator is critical, and our tests here also display this.

We emphasize that this approach to HSI denoising is based on a truly convex
problem while utilizing the linear mixture model in an unsupervised fashion
(i.e., we use the spectral library splib06a to generate the images but not to de-
noise them). Even though we solve our problems using a nonconvex approach
(alternating minimization), we believe that the power of using nuclear norms
lies in the fact that we seek the solution to a convex problem at heart. Addi-
tionally, the models we consider here are enabled by the use of operators in the
nuclear norm framework; we would not have been able to take advantage of
the two-dimensional abundance structure using a simple matrix factorization.

In the next chapter, we move away from denoising problems to consider an
application of nuclear norms in self-calibration problems.

144

Chapter 7

Application: Self-calibration

This chapter applies the nuclear norm framework to the self-calibration prob-
lem discussed in Section 2.1.2.4. In particular, we show how lifting the bilinear
measurement model to the space of operators allows us to consider more com-
plicated signal models than the matrix lifting schemes present in the literature.
Nuclear norms then serve as natural regularizers in the lifted problem. Further-
more, we can improve the success rate of self-calibration by choosing nuclear
norms that best match the structure of the lifted models.

7.1 Overview

Assume that we have observations of a signal y ∈ RN given by

b = T (x)y + z, (7.1)

whereT (x) ∈ RL×N is a linearmap depending on a vector of parameters x ∈ RM

and z ∈ RL is noise. Wemay think ofT (x) as representing a sensor array that
depends on calibration parameters x .

The self-calibration problem is to recover the signal y without knowing the
calibration parameters x . That is, we wish to use the observation of the sensors
without performing a calibration step first. As we discussed in Section 2.1.2.4,
this problem has applications in direction-of-arrival estimation [FW88; FW91;
See94; NS96; LY06; Liu+11], distributed sensing [BN07; BN08; WRS08; LB14],
acoustic arrays [MDO11], and radar imaging [ZWBY14].

Note that if T (x) depends linearly on x then recovering (x, y) is a bilinear in-
verse problem. In this chapter, we consider such situations and show how the

145

operfact toolmaybeusedwith nuclear norms to perform self-calibration. Here
we work with examples where L < N . That is, the number of measurements
observed is smaller than the dimension of the signal. Even if we knew T (x),
this problem would be underdetermined. We rely on structural assumptions
combined with appropriate nuclear norms to recover the structured signal and
calibration parameters.

7.1.1 Roadmap

We review the self-calibration literature in Section 7.2. Then in Section 7.3 we
describe an operator liftingmodel for self-calibration and its implementation in
operfact. We perform numerical experiments to demonstrate the effectiveness
of the nuclear norm framework with single snapshots (Section 7.4.1), multiple
snapshots (Section 7.4.2), and two-dimensional signals (Section 7.4.3).

7.2 Related work

In this section we discuss recent work on self-calibration to provide context for
our numerical experiments.

7.2.1 Linear least squares

Bolzano and Nowak [BN07; BN08] consider the problem of self-calibration in
sensor networks. They assume an array of n sensors that take measurements
{x j }nj=1. Each sensor, however, reports itsmeasurements subject to an unknown
gain αj and offset βj resulting in the observations

y j =
x j − βj

αj
.

In vector notation this becomes

x = Y α + β,

whereY is an n × n diagonal matrix with entries y j . They refer to this as a single
snapshot—a report from all the sensors at a particular time.

To recover x from the observationsY , they assume that the true signal x lies
in a low-dimensional subspace. For instance, the signal may be bandlimited

146

and therefore lie in the span of a smaller number of sinusoids. Letting P be the
orthogonal projector onto the complement of this subspace, we see that

P x = Y α + β = 0.

By considering k snapshots they obtain a linear system

P (Y iα + β) = 0, for i = 1, . . . , k .

If the signal subspacehas dimension r , then this system representsk (n−r) equa-
tions in 2n unknowns. They show that it is possible to perform self-calibration
for k large enough. The subsequent work of Lipor and Balzano [LB14] allows
for noisy measurements.

The very recent work of Ling and Strohmer [LS16] extends this approach of
linearizing the bilinear measurements in various self-calibration models. They
provide rigorous guarantees for recovery and address the question of stability
with noisy measurements.

7.2.2 Calibrating compressed sensing

Consider the compressed sensing problem, where we observe

b = T y, (7.2)

withT ∈ RL×N and y ∈ Rn a sparse vector. A typical compressed sensing setting
would assume thatT is a knownmeasurementmatrix (with L < N) and attempt
to recover the sparse vector y . If, however, the sensing matrixT is unknown (or
partially known) we have a calibration problem.

Gribonval et al. [GCD12] consider the case where T is known but subject to
unknown gains. That is, the observations take the form

b = DT y, (7.3)

where D is a diagonal matrix. In other words, each observation bi in (7.3) corre-
sponds to that of (7.2) multiplied by an unknown gain di .

To blindly calibrate this compressed sensing problem, they assume that they
see the observations frommultiple signals in the form

B = DTY ,

147

where thematrixY ∈ MN×Q hasQ unknown sparse signals inRN as its columns.

Provided that none of the gains di is zero, the diagonal matrix D is invertible
with ∆ = D−1. Then the self-calibration problem becomes

minimize
(Y ,∆)

‖Y ‖`1 subject to ∆B = TY and tr(∆) = δ,

where the trace constraint serves to exclude the trivial solution (0, 0). This prob-
lem is now convex, and they perform numerical experiments to demonstrate
that this approach to self-calibration works for compressed sensing problems
provided that the numberQ of training signals is large enough.

Bilen et al. [BPGD14] extend this work to the space of complex signals. That is,
they consider both the gain/amplitude calibration here as well as phase cali-
bration. Recent work of Wang and Chi [Wan16] provide theoretical guarantees
on the calibration procedure when the signals are sparse in the Fourier basis
(i.e.,T is a Fourier matrix).

7.2.3 A lifting approach

Ourmotivation is similar to the preceding work in that we wish to convexify the
self-calibration problem. We, however, frame the problemby lifting to the space
of operators. In particular, we follow the work of Ling and Strohmer [LS15b],
and assume that the measurements (7.1) take the special form

b = DT y + z, and D = diag(Sx), (7.4)

where we now assume that T ∈ RL×N and S ∈ RL×M are known. That is, the
gains D belong to a low-dimensional subspace. The goal now is to recover the
vector x ∈ RM that determines the gains along with the signal y .

We see that this model is a generalization of the blind deconvolution model
discussed in Section 2.1.2. Indeed, Ling and Strohmer took inspiration from
the lifting procedure of Ahmed et al. [ARR14].

Assume that the measurements have no noise. We can write the entries of b as

bl = tr(M t
l (x y t)) = 〈M l, x y t〉, where M l = s lt

t
l,

where s l is the l th row of S , andT l is the l th row ofT .

If we set A = x y t, then we can write the measurement vector b as

b = µ(A),

148

where µ is a linear measurement map such that the l th entry of µ(A) is tr(M t
l A).

That is, the bilinearmeasurementmodel becomes a linearmeasurementmodel
on matrices.

They assume that the true signal y is sparse and solve the self-calibration prob-
lem

minimize
A

‖A‖`1 subject to µ(A) = b . (7.5)

They call this procedure SparseLift.

They also provide a result on the probability of recovery.

Theorem 7.2.1 (`1-minimization for self-calibration [LS15b, Thm. 3.1]). In the
model (7.4), assume that S ∈ RL×M satisfies S∗S = IM (with M ≤ L), x ∈ RM is
sparse, and y ∈ Rn is s-sparse. Further assume thatT ∈ ML×N with L < N has
independent standard Gaussian entries. Then the solution Â to (7.5) equals x y t

with probability at least 1 − O(L−α+1) provided that
L

log2 L
≥ Cαµ2

maxM s log(M s),

where the constant Cα grows linearly with α, and µmax is the largest absolute
entry in

√
LS .

Therefore, the number L of measurements required scales roughly withM s , the
size of the subspace containing the unknown gains multiplied by the sparsity
of the signal. A similar result holds whenT is a partial Fourier matrix.

In their numerical experiments, they also consider using the ‖·‖1,2 norm—the
sum of the Euclidean norms of the rows—to enforce column-sparsity of A. In
the nuclear norm framework this is the `2 ⊗ `1 nuclear norm, and its use makes
sense as A = x y t = x ⊗ y , where y is sparse but x is not.

Flinth [Fli16] extends the theoretical results of Ling and Strohmer [LS15b; LS15a]
to handle self-calibration and demixing problems with the ‖·‖1,2 norm. He
obtains qualitatively similar guarantees, but his results on stability suggest that
the mixed norm will perform better than the `1 norm.

7.2.4 Our work

We also follow the lifting approach of Ling and Strohmer [LS15b], but we con-
sider a lifting to theoperator space to allow for twodifferent extensions: multiple
snapshots and two-dimensional signals. Under the lifted operator model, we

149

can replace the `1 regularizer in (7.5) with a nuclear norm that can account for
the shared structure between snapshots, or the two-dimensional structure of
a signal. While the above-mentioned approach in [GCD12; BPGD14] may be
able to accommodate such structured signals, the authors do not discuss this
possibility.

The remainder of this chapter discusses the operator lifting model and its im-
plementation in operfact along with numerical experiments to demonstrate
its use.

7.3 The operator measurement model

In this section we consider the lifting approach from Ling and Strohmer [LS15b]
in the operator setting. We showhowwe can thenuse it tomodel self-calibration
problems in operfact.

7.3.1 Assumptions

LetY ∈ Mp×q be a set of q signals inRp , and assume that we observe

B = T (x)Y + Z ∈ Md×q, (7.6)

where T (x) ∈ Rd×p is a linear operator depending on a vector of parameters
x ∈ Rm , and z ∈ Md×q is noise.

Following Ling and Strohmer [LS15b], we assume that the sensing operator
T (x) takes the form

T (x) : x 7→ diag(Sx)T 0,

where S ∈ Rd×m and T 0 ∈ Rd×p are known linear transformations. This as-
sumption corresponds to using a known sensingmatrixT 0 with unknown gains
diag(Sx) that belong to the subspace given by range(S). For simplicity, we
henceforth refer toT 0 simply asT .

For the moment take the noise Z = 0, and so we can then write the l th column
of B as

b l = diag(Sx)T y l,

where y l is the l th column ofY .

150

Hence the j l-entry of B is

b j l = [diag(Sx)]j · [T y l]j
= 〈s j :, x〉〈t j :, y l 〉,

where s j : is the j th row of S and t j : is the j th row ofT .

Now letT j l be the matrix whose l th column is t j : and whose remaining entries
are zero. Then we define the operatorMj l ∈ Om×1⊗p×q such that

Mj l = s j : ⊗ T j l .

LetA\ = x ⊗Y ∈ Om×1⊗p×q , and observe that

〈Mj l,A
\〉 = 〈s j :, x〉〈T j l, Y 〉 = 〈s j :, x〉〈t j :, y l 〉 = b j l,

where we have used the inner product identity (3.8).

In this way, we see that the observations (7.6) may be written as the result of
applying a linear map to the rank-1 operatorA\. That is,

B = diag(Sx)TY + Z = µ(A\) + Z where [µ(A\)]j l = 〈Mj l,A
\〉. (7.7)

The adjoint is then
µ∗(B) =

∑
j l

b j lMj l . (7.8)

To perform self-calibration we then solve the convex problem

minimize
A

1
2
‖B − µ(A)‖2`2 + λNX,Y (A), (7.9)

whereNX,Y is a nuclear norm chosen to match the structure of x ⊗Y , and λ ≥ 0
is a penalty constant.

7.3.2 Implementation in operfact

To implement the measurements (7.7) in operfact we create a custom
Measurement class (see Section 4.5). Note that operfact expects a vector of
observations, and so the implementation returns vec(B) instead of B itself.

The following listing shows a partial implementation SelfCalibMeasurement,
the custommeasurement class.

151

import scipy.fftpack

from operfact import operators , measurements

class SelfCalibMeasurement(measurements.Measurement):

""" Implements the self -calibration measurement map"""

def __init__(self , d, m, p, q):

self.dim_amb = d

self.shape = (m, 1, p, q)

self.nmeas = d * q

self.S = scipy.fftpack.dct(np.eye(d), norm='ortho ')[:, 0:m

]

self.T = rand_gaussianmat ((d, p), False)

def apply(self , oper):

assert isinstance(oper , operators.DyadsOperator)

NB: broadcasting elementwise multiplication to do diag(

vec) @ matrix

temp = sum([(self.S @ oper.lfactors[r]) * (self.T @ oper.

rfactors[r])

for r in range(oper.nfactors)])

return temp.flatten(order='F') # return a vector

def matapply(self , mat):

assert (self.shape [3] == 1)

return np.vstack ([np.matrix(self.S[l,:])*(mat*np.matrix(

self.T[l,:]).T) for l in range(self.nmeas)])

def initfrommeas(self , meas):

out = operators.ArrayOperator(np.zeros(self.shape))

for i in range(self.dim_amb):

s_i = self.S[i:i+1, :].T # force return 2D array

a_i = self.T[i:i+1, :].T # force return 2D array

for j in range(self.shape [3]):

Yij = np.zeros(self.shape [2:4])

Yij[:, j:j+1] = a_i # a_i is 2D array

Aij = operators.DyadsOperator ([s_i ,], [Yij ,])

out += meas[j*self.dim_amb + i] * Aij.

asArrayOperator ()

return out

The implementationhere is straightforward and includes an apply function that
works on an operator in dyadic form as well as a matapply function that works

152

on the lifted matrix.1 The initfrommeas function implements the adjoint (7.8)
that we use to initialize the alternating solver.

Note that this implementation assumes that T is Gaussian and S is a partial
DCTmatrix. We use the DCT since CVXPY does not natively handle complex
variables.

7.4 Numerical results

In this section we examine three measurement models and perform numerical
experiments to explore the use of nuclear norms in self-calibration problems.

7.4.1 Single snapshot

First we consider the case of a single snapshot (i.e., q = 1) with d = 128 uncali-
bratedmeasurements of an s-sparse signal y ∈ R256. We allow both the sparsity
s and the dimension of the parameter vector x ∈ Rm to range independently
from 0 to 15. Asmentioned in the last section, we take S ∈ R128×m to be a partial
DCTmatrix, andT ∈ R128×256 to be a Gaussian matrix. This is the same setting
as Ling and Strohmer [LS15b].

We solve the self-calibration problem (7.9) using the `1 ⊗ `1 and `2 ⊗ `1 nuclear
norms as regularizers. Full experimental details appear in Section D.1 of the
appendix.

Figure 7.1 shows the phase transitions for successful self-calibration at various
noise levels using the convex solver matsolve. In each facet we display the
results in a grid, with each square representing a choice for the number s of
nonzeros in y , and the length m of x . The intensity of the square corresponds
to the “success percentage” over 10 random trials: white represents a 100%
success rate while black represents 0%. We address the noiseless and noisy
cases individually.

1The matapply functionhere assumes a single snapshot (i.e.,q = 1), but it could bemodified
to handle the lifted operator case with multiple snapshots. In that case, however, we tend to
use nuclear norms that do not work with the direct convex solver.

153

0dB 5dB 10dB 15dB 20dB noiseless

L
1

, L
1

L
2

, L
1

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0

5

10

15

0

5

10

15

s: nnz(y)

m
:

le
n

g
th

 o
f

x

0

25

50

75

100
success (%)

Figure 7.1: Phase transitions for single-snapshot self-calibration by SNR.
Each plot shows the average success rate for the self-calibration problem over
10 trials as a function of the length m of the parameters x and the number s
of nonzeros in the sparse signal y . The success rate is displayed as a grayscale
gradient from black (0%) to white (100%). The red curve indicates the phase
transition observed by Ling and Strohmer [LS15b], while the yellow curve gives
our empirical 50% success rate computed by logistic regression. We facet our
plot on the SNR (columns) and nuclear norm (rows). All experiments use the
convex solver matsolve.

7.4.1.1 The noiseless case

In the noiseless case, we define success as Ling and Strohmer do,

‖Â −A\‖`2
‖A\‖`2

≤ 0.01,

whereA\ = x ⊗ y is the ground truth, and Â is the solution from the solver. We
project Â to a rank-1 operator (here, a matrix). Note that recovery of x and y is
accomplished by the truncated SVD, and we cannot avoid a scaling ambiguity
between the factors.

Ling and Strohmer [LS15b] empirically observed success when ms < 70. Their
experiments considered partial Fourier S , and according to Theorem 7.2.1, we
expect that using a partial DCT S will require twice as manymeasurements.2

And soweplot a red curvems = 35 indicating the rough location of the expected
phase transition. A yellow curve indicates our empirical 50% success rate. Our
empirical results indeed match closely with theirs in the noiseless case.

2The quantity µ2
max for a Fourier matrix is 1, while it is 2 for a partial DCT.

154

7.4.1.2 The noisy case

For the noisy cases, we let Z in (7.7) have independent NORMAL(0, σ2) entries,
and we choose

σ2 = 10 log10

(
10−SNR/10‖A\‖2`2

mpq

)
,

where SNR is a desired signal-to-noise ratio in decibels (dB). Note that we
measure the SNR of this problem as if we were corrupting the entries ofA\ with
noise just as in Section 5.4.2 of the denoising experiments. (We also calculate the
penalty constant λ using the procedure detailed in Section B.2 of the appendix.)
The SNR is independent of the number of measurements.

Wemeasure the reconstruction signal-to-distortion ratio (RSDR) as

RSDR := 10 log10

(
‖A\‖2`2
‖Â −A\‖2`2

)
. (7.10)

We define success as having RSDR > SNR. That is, success corresponds with
displaying robustness to noise.

The remainingpanels in Figure 7.1 show theperformance of the single-snapshot
self-calibration procedure with various noise levels. As in the denoising experi-
ments, we see that the phase transition at higher SNRs (i.e., lower noise) roughly
matches the noiseless setting and that the relative performance improves as
the SNR falls (see Section 5.4.2). Again, this does not mean that we recover the
signal better in lower-SNR regimes; it means that the recovery is better relative
to the noise level.

7.4.1.3 Solution with alternating minimization

While the previous experiments can be completed using the convex solver
matsolve, we will require the use of our alternating minimization solver
altminsolve as we consider different nuclear norms. Here we wish to deter-
mine the effect of the solver rank on the performance. Since we know that the
true solution of the problem should be rank-1, we would like to use fewer dyads
in the solver.

Figure 7.2 shows the effect of solving (7.9) with alternating minimization at an
SNR of 15dB with different solver ranks. Using 16 dyads results in empirical
success curves that resemble those of the convex solver. Restricting the number
of dyads, however, does result in successes for combinations of larger m and s .

155

1 dyad 2 dyads 4 dyads 16 dyads convex

L
1

, L
1

L
2

, L
1

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

0

5

10

15

0

5

10

15

s: nnz(y)

m
:

le
n

g
th

 o
f

x

0

25

50

75

100
success (%)

Figure 7.2: Phase transitions for single-snapshot self-calibration by solver
rank. Each plot shows the average success rate for the self-calibration problem
over 10 trials as a function of the length m of the parameters x and the number
s of nonzeros in the sparse signal y . The success rate is displayed as a grayscale
gradient from black (0%) to white (100%). The red curve indicates the phase
transition observed by Ling and Strohmer [LS15b], while the yellow curve gives
our empirical 50% success rate computed by logistic regression. We facet our
plot on the solver rank (columns) and nuclear norm (rows). The “convex” col-
umn indicates the convex solver matsolve. All experiments use an SNR of 15dB.

At the other end, with one dyad, the solver no longer shows a sharp phase
transition and does not perform as well for lower s , the number of nonzeros in
y . Even though we expect the solution to be rank-1, using even one extra dyad
considerably improves the behavior. We suspect this reflects results in low-rank
optimization that show reductions (or eliminations) in spurious local minima
for high enough solver rank (see [BM03; BM04]).

7.4.2 Multiple snapshots

We now turn our attention to the multiple-snapshot case (i.e., q > 1). That is,
we have the 128 · q uncalibrated measurements

B = diag(Sx)TY + Z = µ(A\) + Z ∈ M128×q,

where the q columns ofY are s-sparse signals inR256. Again, both the length
of the parameter vector x ∈ Rm and the sparsity s vary independently. We still
construct S ∈ M128×m as a partial DCTmatrix andT ∈ R128×256 as a Gaussian
matrix.

156

To perform self-calibration, we solve (7.9) using a nuclear norm NX,Y chosen
specifically for the structure ofA\ = x ⊗Y . We test three different models for
generating the set of snapshotsY .

• Independent sparse snapshots. Under this model, the columns ofY each
have s nonzeros with their locations chosen uniformly at random and
magnitudes drawn independently from a standard normal distribution.
This is themodel considered in [GCD12; BPGD14]. ThematrixY will have
sq nonzeros, and we believe that the `2 ⊗ `1 nuclear norm is therefore
suited to recoverA\ = x ⊗Y .

• Simultaneous sparsity. Here the columnsofY have s nonzeros in identical
locations with the entries drawn independently from a standard normal
distribution. The matrixY will then be row-sparse with standard normal
rows, and we believe that the `2 ⊗ (`1 ⊗ `2) nuclear norm will suitably
recoverA\.

• Identical sparse snapshots. Finally we consider the case where the
columns of Y are identical s-sparse vectors whose entries have been
drawn independently from a standard normal distribution. The matrixY

will again be row-sparse but with rows having identical entries, and we
therefore believe that the `2 ⊗ (`1 ⊗ `∞) nuclear norm will best match the
structure ofA\.

We consider separately the effects of changing thenuclear normand thenumber
of snapshots. Full experimental details appear in Section D.2 of the appendix.

7.4.2.1 Matching nuclear norms to signal models

Figure 7.3 shows the results of a numerical experiment to test the efficacy of
each of the nuclear normsmentioned above with each of the models for gen-
erating the snapshots Y . Each panel shows the success rate under a single
combination of signal generation and regularizer with 8 snapshots (i.e., q = 8).
All experiments used the alternating minimization solver with 4 dyads at an
SNR of 15dB. Success again is determined by the condition RSDR > SNR, where
the recovery signal-to-distortion ratio (RSDR) is given by (7.10).

We can see that in the case where the columns ofY are independent, promoting
row-sparsity ofY proves detrimental. As we expect, the `2 ⊗ `1 nuclear norm

157

Identical snapshots Simultaneous sparisty Independent snapshots

L
2

, L
1

L
2

, L
1

L
2

L
2

, L
1

L
in

f

0 5 10 15 0 5 10 15 0 5 10 15

0

5

10

15

0

5

10

15

0

5

10

15

s: nnz(y)

m
:

le
n

g
th

 o
f

x

0

25

50

75

100
success (%)

Figure 7.3: Phase transitions formultiple-snapshot self-calibration by signal
model and regularizer. Each plot shows the average success rate for the self-
calibration problemover 10 trials as a function of the lengthm of the parameters
x and the number s of nonzeros in each snapshot y i . The success rate is dis-
played as a grayscale gradient from black (0%) to white (100%). We facet our
plot on the signal model (columns) and nuclear norm (rows). All experiments
use an SNR of 15dB.

performs best with thismodel. Note also that we see an improvement in success
rates versus the single snapshot setting of the previous section. We will return
to this point shortly.

When the snapshots are simultaneously sparse, the `2 ⊗ (`1 ⊗ `2) nuclear norm
performs somewhat better, particularly as the dimension m of x grows. That is,
we see some benefit from including the assumption of row-sparsity onY when
the calibration must account for a greater number of parameters.

Finally, when the columns ofY are identical, both the `2 ⊗ `1 and `2 ⊗ (`1 ⊗ `∞)
nuclear norms perform well. Further examination shows that the `2 ⊗ (`1 ⊗ `∞)
nuclear norm hasmore overall success, but the difference is slight and a pattern
to the differences is not clear.

Overall we see that the identical sparsity patternmodel (under the `2 ⊗ (`1 ⊗ `2)

158

nuclear norm) has the highest success for larger values of s and m. Indeed,
we expect that the row-sparsity of the signal matrixY is a “stronger” structure
than the case of independent columns. Wemust also consider, however, that
identical snapshots model also has row-sparseY . We suspect that the diversity
of the entries allows for better opportunity to learn the parameters x . While the
matrixY may be “simpler” in the identical snapshot case, it is less helpful in
performing calibration.

7.4.2.2 Varying the number of snapshots

We now turn our attention to the effect of the number q of snapshots on the
success rate. Figure 7.4 shows the results of using various values of q under the
different snapshot models. For eachmodel we regularize the self-calibration
problem with the nuclear norms we already identified as providing the best
performance.3 As before we use the alternating minimization solver with 4
dyads and 15dB SNR.

In each instance, we see that increasing the number of snapshots generally
improves the success rate of the self-calibration problem. That is, more snap-
shots allow for performing self-calibration as the number s of nonzeros in each
snapshot increases and as the length m of the calibration parameters x grows.

Consider fixed values for s and the length of x . The intuition here is that even
though we have more snapshots—and thus more entries ofY to recover—the
number ofmeasurements grows linearlywith the numberq of snapshots. Mean-
while, the number of calibration parameters in x remains unchanged. The
additional snapshots give us more opportunity to correctly identify the entries
of x .

We do see, however, that the effect is somewhat less pronounced in the case of
independent snapshots. Our intuition is that the shared structure between the
columns in the other two models is relatively more beneficial as the number of
snapshots grows.

7.4.3 Two-dimensional signals

Our last numerical experiment concerns a self-calibration problem where the
true signal has two-dimensional structure. We consider the signalY ∈ Mp×q

3In the case of identical snapshots, we chose to use the `2 ⊗ (`1 ⊗ `∞) nuclear norm even
though the performance difference was slight compared to the `2 ⊗ `1 nuclear norm.

159

2 snapshots 4 snapshots 8 snapshots

0 5 10 15 0 5 10 15 0 5 10 15

0

5

10

15

s: nnz(y)

m
:

le
n

g
th

 o
f

x

0

25

50

75

100
success (%)

(a) Snapshots y i are independent with the `2 ⊗ `1 nuclear norm.

2 snapshots 4 snapshots 8 snapshots

0 5 10 15 0 5 10 15 0 5 10 15

0

5

10

15

s: nnz(y)

m
:

le
n

g
th

 o
f

x

0

25

50

75

100
success (%)

(b) Snapshots y i are simultaneously sparse with the `2 ⊗ (`1 ⊗ `2) nuclear norm.

2 snapshots 4 snapshots 8 snapshots

0 5 10 15 0 5 10 15 0 5 10 15

0

5

10

15

s: nnz(y)

m
:

le
n

g
th

 o
f

x

0

25

50

75

100
success (%)

(c) Snapshots y i are identical with the `2 ⊗ (`1 ⊗ `∞) nuclear norm.

Figure 7.4: Phase transitions formultiple-snapshot self-calibration by num-
ber of snapshots. Each plot shows the average success rate for the self-
calibration problemover 10 trials as a function of the lengthm of the parameters
x and the number s of nonzeros in each snapshot y i . The success rate is dis-
played as a grayscale gradient from black (0%) to white (100%). We divide our
results into three subfigures, each examining a single signal model and nuclear
norm, and we facet each subfigure on the number q of snapshots observed. All
experiments use an SNR of 15dB.

160

and the (noisy) measurements

b = diag(Sx)T vec(Y) + z,

where the S ∈ Md×m , x ∈ Rm , andT ∈ Md×p are as before. This is simply the
single snapshot problem but instead of considering the true operator

A = x ⊗ vec(Y) ∈ Om×1⊗pq×1,

we let
A = x ⊗Y ∈ Om×1⊗p×q .

This distinction requires little computational change; we reuse the operfact
implementation from Section 7.3.2 with an additional flag to indicate the use of
a 2D signal. The benefit is that we can now apply nuclear norms that promote
desiredmatrix structure in the signalY as opposed to vector structure as in
Section 7.4.1.

For this experiment, weobserve 2048uncalibratedmeasurements (15dBSNR)of
a random rank-r matrixY ∈ M64×64. Again, S ∈ R2048×m is a partial DCTmatrix,
andT ∈ R2048×4096 Gaussian matrix. We allow the parameters m and r to vary
independently and test the performance of self-calibration using alternating
minimization (with 1 dyad) and the `2 ⊗ S1 nuclear norm. Full experimental
details appear in Section D.3 of the appendix.

Given our 2048 measurements and the fact that our structured operatorA =
x ⊗Y has m + r (p + q) = m + 128r degrees of freedom, we have hope that self-
calibration is possible for smaller values ofm and r . Figure 7.5 shows the results
of the experiment, and we indeed see success as we range m and r over small
values. This small experiment provides encouraging results, but more efficient
computational methods are necessary for a study of large two-dimensional
signals.

7.5 Summary

In this chapter, we developed an operator lifting procedure that extends
SparseLift [LS15b] to handle multiple snapshots and two-dimensional signals.
This operator approach allows us to formulate convex programs—using nuclear
norms—that can account for the shared structure between snapshots and the
two-dimensional complexity of single snapshots. We see that natural pairings
of nuclear norms to data models provide good recovery performance.

161

0

1

2

3

4

5

0 1 2 3 4 5

r: rank(Y)

m
:

le
n

g
th

 o
f

x

0

25

50

75

100
success (%)

Figure 7.5: Phase transition for 2D-signal self-calibration. This plot shows
the average success rate for the self-calibration problem (SNR 15dB) over 10
trials as a function of the length m of the parameters x and the rank r of the
two-dimensional signalY . The success rate is displayed as a grayscale gradient
from black (0%) to white (100%).

Our numerical approach utilized the extensibility of operfact to create
problem-specific measurement objects. After all, this is a main reason for
creating the software: rapid prototyping and testing of models.

Taken together with our experiments in denoising, we provide strong evidence
that nuclear norms successfully promote the individual factor structures of
matrices and operators. We can formulate convex programs to approximate
operators having such distinguished structure. In some cases we can even use
the alternating minimization to retrieve factorizations. The successes of the
nuclear norm framework leave open the possibility for future theoretical and
empirical study.

162

Bibliography

[AAJN16] A. Agarwal, A. Anandkumar, P. Jain, and P. Netrapalli. “Learning
Sparsely Used Overcomplete Dictionaries via Alternating Min-
imization”. In: SIAM Journal on Optimization 26.4 (Dec. 2016),
pp. 2775–2799.

[AAN16] A. Agarwal, A. Anandkumar, and P. Netrapalli. “A Clustering Ap-
proach to Learning Sparsely-UsedOvercompleteDictionaries”. In:
IEEE Transactions on Information Theory (Sept. 2016), pp. 1–1.

[ACD15] A. Ahmed, A. Cosee, and L. Demanet. “A convex approach to
blind deconvolution with diverse inputs”. In: Proceedings of the
IEEE 6th International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing. 2015, pp. 5–8.

[AEB06] M. Aharon, M. Elad, and A. Bruckstein. “K-SVD: An Algorithm
for Designing Overcomplete Dictionaries for Sparse Representa-
tion”. In: IEEETransactions onSignal Processing 54.11 (Nov. 2006),
pp. 4311–4322.

[AGKM16] S. Arora, R. Ge, R. Kannan, and A. Moitra. “Computing a Non-
negative Matrix Factorization—Provably”. In: SIAM Journal on
Computing 45.4 (Aug. 2016), pp. 1582–1611.

[AGM12] S. Arora, R. Ge, and A. Moitra. “Learning Topic Models – Going be-
yond SVD”. In: Proceedings of the IEEE 53rd Annual Symposium
on Foundations of Computer Science. IEEE, Dec. 2012, pp. 1–10.

[AGM14] S. Arora, R. Ge, and A. Moitra. “New Algorithms for Learning In-
coherent and Overcomplete Dictionaries”. In: Proceedings of the
27th Conference on Learning Theory. 2014, pp. 779–806.

[AGMM15] S. Arora, R. Ge, T.Ma, and A.Moitra. “Simple, Efficient, andNeural
Algorithms for Sparse Coding”. In: Proceedings of the 28th Con-
ference on Learning Theory. 2015, pp. 113–149.

[AKKT10] H. Akbari, Y. Kosugi, K. Kojima, and N. Tanaka. “Detection and
Analysis of the Intestinal Ischemia Using Visible and Invisible

163

Hyperspectral Imaging”. In: IEEE Transactions on Biomedical En-
gineering 57.8 (2010), pp. 2011–2017.

[ALMT14] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp. “Living
on the edge: phase transitions in convex programs with random
data”. In: Information and Inference 3.3 (2014), pp. 224–294.

[AN06] N. Alon and A. Naor. “Approximating the Cut-Norm via Groth-
endieck’s Inequality”. In: SIAM Journal on Computing 35.4 (Jan.
2006), pp. 787–803.

[ARR14] A. Ahmed, B. Recht, and J. Romberg. “Blind Deconvolution Us-
ing Convex Programming”. In: IEEE Transactions on Information
Theory 60.3 (Mar. 2014), pp. 1711–1732.

[AT06] A. Auslender and M. Teboulle. “Interior gradient and proximal
methods for convex and conic optimization”. In: SIAM Journal
on Optimization 16.3 (2006), pp. 697–725.

[Bac13] F. Bach. “Convex relaxations of structured matrix factorizations”.
In: arXiv.org (Sept. 2013). arXiv: 1309.3117.

[Bas+93] R. Basedow et al. “The HYDICE instrument design and its applica-
tion to planetary instruments”. In: Proceedings of the Workshop
on Advanced Technologies for Planetary Instruments. 1993.

[Bat82] R. H. T. Bates. “Astronomical speckle imaging”. In:Physics Reports
90.4 (Oct. 1982), pp. 203–297.

[BBCE09] R. Balan, B. G. Bodmann, P. G. Casazza, and D. Edidin. “Painless
Reconstruction fromMagnitudes of Frame Coefficients”. In: Jour-
nal of Fourier Analysis and Applications 15.4 (Mar. 2009), pp. 488–
501.

[BCG11] S. R. Becker, E. J. Candès, and M. C. Grant. “Templates for con-
vex cone problems with applications to sparse signal recovery”.
In:Mathematical Programming Computation 3.3 (2011), pp. 165–
218.

[BDDW08] R. Baraniuk, M. Davenport, R. DeVore, andM. Wakin. “A Simple
Proof of the Restricted Isometry Property for RandomMatrices”.
In: Constructive Approximation 28.3 (Jan. 2008), pp. 253–263.

[BGC98] J. D. Bayliss, J. A. Gualtieri, and R. F. Cromp. “Analyzing hyperspec-
tral data with independent component analysis”. In: Proceed-
ings of the 26th AIPR Workshop: Exploiting New Image Sources
and Sensors. Ed. by J. M. Selander. SPIE, Mar. 1998, pp. 133–143.

[BGKP16] C. Bhattacharya, N. Goyal, R. Kannan, and J. Pani. “Non-negative
Matrix Factorization under Heavy Noise”. In: Proceedings of
the 33rd International Conference on Machine Learning. 2016,
pp. 1426–1434.

http://arxiv.org/abs/1309.3117

164

[Bio+12] J. M. Bioucas-Dias et al. “Hyperspectral Unmixing Overview: Geo-
metrical, Statistical, and Sparse Regression-Based Approaches”.
In: IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 5.2 (Apr. 2012), pp. 354–379.

[BM03] S. Burer and R. D. C. Monteiro. “A nonlinear programming algo-
rithm for solving semidefinite programs via low-rank factoriza-
tion”. In:Mathematical Programming 95.2, Ser. B (2003), pp. 329–
357.

[BM04] S. Burer and R. D. C. Monteiro. “Local Minima and Convergence
in Low-Rank Semidefinite Programming”. In:Mathematical Pro-
gramming 103.3 (Dec. 2004), pp. 427–444.

[BMMN11] M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor. “The
Grothendieck Constant is Strictly Smaller than Krivine’s Bound”.
In: Proceedings of the IEEE 52nd Annual Symposium on Founda-
tions of Computer Science. IEEE, 2011, pp. 453–462.

[BMP08] F. Bach, J. Mairal, and J. Ponce. “Convex Sparse Matrix Factoriza-
tions”. In: arXiv.org (Dec. 2008). arXiv: 0812.1869.

[BN01] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Op-
timization. Analysis, Algorithms, and Engineering Applications.
Philadelphia: Society for Industrial and AppliedMathematics, Jan.
2001.

[BN07] L. Balzano and R. Nowak. “Blind Calibration of Sensor Networks”.
In: Proceedings of the 6th International Symposium on Informa-
tion Processing in Sensor Networks. IEEE, 2007, pp. 79–88.

[BN08] L. Balzano and R. Nowak. “Blind Calibration of Networks of Sen-
sors: Theory and Algorithms”. In:Networked Sensing Information
and Control. Boston: Springer, 2008, pp. 9–37.

[BPGD14] C. Bilen, G. Puy, R. Gribonval, and L. Daudet. “Convex Optimiza-
tion Approaches for Blind Sensor Calibration Using Sparsity”.
In: IEEE Transactions on Signal Processing 62.18 (July 2014),
pp. 4847–4856.

[BT97] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Com-
putation. Numerical Methods. Belmont: Athena Scientific, Jan.
1997.

[BTCB14] J. J. Bruer, J. A. Tropp, V. Cevher, and S. R. Becker. “Time–Data
Tradeoffs by Aggressive Smoothing”. In:Advances inNeural Infor-
mation Processing Systems 27 (NIPS 2014). 2014, pp. 1664–1672.

http://arxiv.org/abs/0812.1869

165

[BTCB15] J. J. Bruer, J. A. Tropp, V. Cevher, and S. R. Becker. “Designing
Statistical Estimators That Balance Sample Size, Risk, and Com-
putational Cost”. In: IEEE Journal of Selected Topics in Signal Pro-
cessing 9.4 (2015), pp. 612–624.

[BTR13] B. N. Bhaskar, G. Tang, and B. Recht. “Atomic Norm Denoising
With Applications to Line Spectral Estimation”. In: IEEE Transac-
tions on Signal Processing 61.23 (Dec. 2013), pp. 5987–5999.

[Bun+07] O. Bunk et al. “Diffractive imaging for periodic samples: retriev-
ing one-dimensional concentration profiles across microfluidic
channels”. In: Acta Crystallographica Section A: Foundations of
Crystallography 63.4 (July 2007), pp. 306–314.

[CC70] J. D. Carroll and J.-J. Chang. “Analysis of individual differences
in multidimensional scaling via an n-way generalization of
“Eckart-Young” decomposition”. In: Psychometrika 35.3 (Sept.
1970), pp. 283–319.

[CDS98] S. S. Chen, D. L. Donoho, andM. A. Saunders. “Atomic decompo-
sition by basis pursuit”. In: SIAM Journal on Scientific Computing
20.1 (1998), pp. 33–61.

[CESV13] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski. “Phase
Retrieval via Matrix Completion”. In: SIAM Journal on Imaging
Sciences 6.1 (Feb. 2013), pp. 199–225.

[CJ13] V. Chandrasekaran andM. I. Jordan. “Computational and statisti-
cal tradeoffs via convex relaxation”. In:Proceedings of theNational
Academy of Sciences of the United States of America 110.13 (2013),
E1181–E1190.

[CJ16a] V. Cambareri and L. Jacques. “A Greedy Blind Calibration Method
for Compressed Sensing with Unknown Sensor Gains”. In:
arXiv.org (Oct. 2016). arXiv: 1610.02851.

[CJ16b] V. Cambareri and L. Jacques. “Through the Haze: A Non-Convex
Approach to Blind Calibration for Linear Random Sensing Mod-
els”. In: arXiv.org (Oct. 2016). arXiv: 1610.09028.

[CJ95] J. Cadima and I. T. Jolliffe. “Loading and correlations in the inter-
pretation of principle compenents”. In: Journal of Applied Statis-
tics 22.2 (Jan. 1995), pp. 203–214.

[Cla+07] R. N. Clark et al.USGS digital spectral library splib06a. Sept. 2007.
URL: http://speclab.cr.usgs.gov/spectral.lib06.

[CLMW11] E. J. Candès, X. Li, Y. Ma, and J. Wright. “Robust principal com-
ponent analysis?” In: Journal of the ACM 58.3 (May 2011), pp. 11–
37.

http://arxiv.org/abs/1610.02851
http://arxiv.org/abs/1610.09028
http://speclab.cr.usgs.gov/spectral.lib06

166

[CLS15] E. J. Candès, X. Li, and M. Soltanolkotabi. “Phase Retrieval via
Wirtinger Flow: Theory and Algorithms”. In: IEEE Transactions on
Information Theory 61.4 (Apr. 2015), pp. 1985–2007.

[CMP11] A. Chai, M. Moscoso, and G. Papanicolaou. “Array imaging us-
ing intensity-only measurements”. In: Inverse Problems 27.1 (Jan.
2011), p. 015005.

[COR11] A. S. Charles, B. A. Olshausen, and C. J. Rozell. “Learning Sparse
Codes for Hyperspectral Imagery”. In: IEEE Journal of Selected
Topics in Signal Processing 5.5 (2011), pp. 963–978.

[CP10] E. J. Candès and Y. Plan. “Matrix Completion With Noise”. In:
Proceedings of the IEEE 98.6 (Apr. 2010), pp. 925–936.

[CR02] S. F. Cotter andB.D. Rao. “Sparse channel estimation viamatching
pursuit with application to equalization”. In: IEEE Transactions
on Communications 50.3 (Aug. 2002), pp. 374–377.

[CR09] E. J. Candès and B. Recht. “Exact Matrix Completion via Convex
Optimization”. In: Foundations of Computational Mathematics
9.6 (Apr. 2009), pp. 717–772.

[CREK05] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado. “Sparse
solutions to linear inverse problems with multiple measurement
vectors”. In: IEEE Transactions on Signal Processing 53.7 (June
2005), pp. 2477–2488.

[CRPW12] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. “The
Convex Geometry of Linear Inverse Problems”. In: Foundations
of Computational Mathematics 12.6 (2012), pp. 805–849.

[CRT06a] E. J. Candès, J. Romberg, and T. Tao. “Robust uncertainty prin-
ciples: exact signal reconstruction from highly incomplete fre-
quency information”. In: IEEE Transactions on Information The-
ory 52.2 (Jan. 2006), pp. 489–509.

[CRT06b] E. J. Candès, J. K. Romberg, andT. Tao. “Stable signal recovery from
incomplete and inaccurate measurements”. In: Communications
onPure andAppliedMathematics 59.8 (Aug. 2006), pp. 1207–1223.

[CSPW11] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky.
“Rank-Sparsity Incoherence for Matrix Decomposition”. In: SIAM
Journal on Optimization 21.2 (Apr. 2011), pp. 572–596.

[CSV13] E. J. Candès, T. Strohmer, and V. Voroninski. “PhaseLift: Exact
and Stable Signal Recovery fromMagnitude Measurements via
Convex Programming”. In:Communications on Pure andApplied
Mathematics 66.8 (Aug. 2013), pp. 1241–1274.

167

[CT05] E. J. Candès and T. Tao. “Decoding by Linear Programming”.
In: IEEE Transactions on Information Theory 51.12 (Dec. 2005),
pp. 4203–4215.

[CT10] E. J. Candès and T. Tao. “The Power of Convex Relaxation: Near-
Optimal Matrix Completion”. In: IEEE Transactions on Informa-
tion Theory 56.5 (2010), pp. 2053–2080.

[CW15] Y. Chen andM. J. Wainwright. “Fast low-rank estimation by pro-
jected gradient descent: General statistical and algorithmic guar-
antees”. In: arXiv.org (Sept. 2015). arXiv: 1509.03025.

[CZ99] C. H. Chen and X. Zhang. “Independent component analysis for
remote sensing study”. In: Image and Signal Processing for Re-
mote Sensing V. Ed. by S. B. Serpico. SPIE, Dec. 1999, pp. 150–158.

[DB16] S. Diamond and S. Boyd. “CVXPY: A Python-Embedded Model-
ing Language for Convex Optimization”. In: Journal of Machine
Learning Research 17.83 (2016), pp. 1–5.

[dEJL07] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanck-
riet. “A Direct Formulation for Sparse PCA Using Semidefinite
Programming”. In: SIAM Review 49.3 (Jan. 2007), pp. 434–448.

[DF87] J. C. Dainty and J. R. Feinup. “Phase retrieval and image recon-
struction for astronomy”. In: Image recovery. Ed. by H. Stark. Or-
lando: Academic Press, 1987.

[DGFS08] J. Diestel, A. Grothendieck, J. H. Fourie, and J. Swart. The Met-
ric Theory of Tensor Products. Grothendieck’s Résumé Revisited.
Providence: American Mathematical Society, Jan. 2008.

[DHS05] C. Ding, X. He, and H. D. Simon. “On the Equivalence of Non-
negative Matrix Factorization and Spectral Clustering”. In: Pro-
ceedings of the SIAM International Conference on Data Mining.
Philadelphia: Society for Industrial and Applied Mathematics,
2005, pp. 606–610.

[DJM13] D. L. Donoho, I. Johnstone, and A. Montanari. “Accurate Predic-
tion of Phase Transitions in Compressed Sensing via a Connec-
tion to Minimax Denoising”. In: IEEE Transactions on Informa-
tion Theory 59.6 (2013), pp. 3396–3433.

[DKK12] D. M. Dunlavy, T. G. Kolda, and W. P. Kegelmeyer. “Multilinear
Algebra for Analyzing Data with Multiple Linkages”. In: Graph Al-
gorithms in the Language of Linear Algebra. Philadelphia: Society
for Industrial and Applied Mathematics, Mar. 2012, pp. 85–114.

[DMA97] G. Davis, S. Mallat, and M. Avellaneda. “Adaptive greedy ap-
proximations”. In: Constructive Approximation 13.1 (Mar. 1997),
pp. 57–98.

http://arxiv.org/abs/1509.03025

168

[Don06] D. L. Donoho. “Compressed sensing”. In: IEEE Transactions on
Information Theory 52.4 (Apr. 2006), pp. 1289–1306.

[Dro89] S. N. Drossos. “Fast artifact free reconstruction algorithm for lim-
ited data (PET) using constrained optimisation”. In: Proceedings
of the 3rd International Conference on Image Processing and its
Applications. 1989, pp. 367–372.

[DS89] D. L. Donoho and P. B. Stark. “Uncertainty Principles and Signal
Recovery”. In: SIAM Journal on Applied Mathematics 49.3 (June
1989), pp. 906–931.

[DT96] R. A. DeVore and V. N. Temlyakov. “Some remarks on greedy al-
gorithms”. In: Advances in Computational Mathematics 5.1 (Dec.
1996), pp. 173–187.

[EA06] M. Elad and M. Aharon. “Image Denoising Via Sparse and Redun-
dant Representations Over Learned Dictionaries”. In: IEEE Trans-
actions on Image Processing 15.12 (Dec. 2006), pp. 3736–3745.

[EAH99] K. Engan, S. O. Aase, and J. Hakon Husoy. “Method of optimal di-
rections for frame design”. In: Proceedings of the 1999 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing.
IEEE, 1999, 2443–2446 vol.5.

[Faz02] M. Fazel. “Matrix rank minimization with applications”. PhD the-
sis. Stanford University, 2002.

[Fie78] J. R. Fienup. “Reconstruction of an object from the modulus of its
Fourier transform”. In:Optics Letters 3.1 (July 1978), pp. 27–29.

[Fie82] J. R. Fienup. “Phase retrieval algorithms: a comparison”. In: Ap-
plied Optics 21.15 (Aug. 1982), pp. 2758–2769.

[FKL89] K. Faulkner, C. J. Kotre, andM.Louka. “Veiling glaredeconvolution
of images produced by X-ray image intensifiers”. In: Proceedings
of the 3rd International Conference on Image Processing and its
Applications. 1989, pp. 669–673.

[Fli16] A. Flinth. “Sparse Blind Deconvolution and Demixing Through
`1,2-Minimization”. In: arXiv.org (Sept. 2016). arXiv: 1609.06357.

[FR08] M. Fornasier and H. Rauhut. “Recovery Algorithms for Vector-
Valued Data with Joint Sparsity Constraints”. In: SIAM Journal on
Numerical Analysis 46.2 (Feb. 2008), pp. 577–613.

[FS14] B. Friedlander and T. Strohmer. “Bilinear compressed sensing for
array self-calibration”. In: Proceedings of the 48th Asilomar Con-
ference on Signals, Systems and Computers. IEEE, 2014, pp. 363–
367.

http://arxiv.org/abs/1609.06357

169

[FW88] B. Friedlander and A. J. Weiss. “Eigenstructure methods for direc-
tion finding with sensor gain and phase uncertainties”. In: Pro-
ceedings of the 1988 IEEE International Conference on Acoustics,
Speech, and Signal Processing. IEEE, 1988, pp. 2681–2684.

[FW91] B. Friedlander andA. J.Weiss. “Directionfinding in thepresence of
mutual coupling”. In: IEEE Transactions on Antennas and Propa-
gation 39.3 (Mar. 1991), pp. 273–284.

[GB08] M. C. Grant and S. P. Boyd. “Graph Implementations for Nons-
mooth Convex Programs”. In: Recent Advances in Learning and
Control. London: Springer, 2008, pp. 95–110.

[GB14] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Con-
vex Programming. Mar. 2014. URL: http://cvxr.com/cvx.

[GBY06] M. Grant, S. Boyd, and Y. Ye. “Disciplined Convex Programming”.
In: Global Optimization. Boston: Kluwer Academic Publishers,
2006, pp. 155–210.

[GCD12] R. Gribonval, G. Chardon, and L. Daudet. “Blind calibration for
compressed sensing by convex optimization”. In: Proceedings of
the 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing. IEEE, 2012, pp. 2713–2716.

[GGR95] I. F. Gorodnitsky, J. S. George, and B. D. Rao. “Neuromagnetic
source imaging with FOCUSS: A recursive weighted minimum
norm algorithm”. In: Electroencephalography and Clinical Neu-
rophysiology 95.4 (Nov. 1995), pp. 231–51.

[GLM16] R. Ge, J. D. Lee, and T. Ma. “Matrix Completion has No Spurious
Local Minimum”. In: Advances in Neural Information Processing
Systems 29 (NIPS 2016). 2016, pp. 2973–2981.

[Gow+07] A. Gowen et al. “Hyperspectral imaging – an emerging process
analytical tool for food quality and safety control”. In: Trends in
Food Science & Technology 18.12 (Dec. 2007), pp. 590–598.

[Gri02] R. Gribonval. “Sparse decomposition of stereo signals withMatch-
ing Pursuit and application to blind separation of more than
two sources from a stereo mixture”. In: Proceedings of the 2002
IEEE International Conference on Acoustics, Speech, and Signal
Processing. IEEE, May 2002, pp. III–3057–III–3060.

[Gro53] A. Grothendieck. “Résumé de la théorie métrique des produits
tensoriels topologiques”. In: Bol. Soc. Mat. São Paulo 8 (1953),
pp. 1–79.

[GS72] R. W. Gerchberg andW. O. Saxton. “A practical algorithm for the
determination of the phase from image and diffraction plane
pictures”. In:Optik 35 (1972), pp. 237–246.

http://cvxr.com/cvx

170

[GW95] M. X. Goemans and D. P. Williamson. “Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming”. In: Journal of the ACM 42.6 (Nov.
1995), pp. 1115–1145.

[Har14] M. Hardt. “Understanding Alternating Minimization for Matrix
Completion”. In:Proceedings of the IEEE55thAnnual Symposium
on Foundations of Computer Science. IEEE, Oct. 2014, pp. 651–
660.

[Har70] R. A. Harshman. “Foundations of the PARAFAC Procedure”. In:
UCLAWorking Papers in Phonetics 16 (1970), pp. 1–84.

[Har93] R. W. Harrison. “Phase problem in crystallography”. In: Journal of
the Optical Society of America A 10.5 (May 1993), pp. 1046–1055.

[Hau82] R. E. Hausman. “Constrained multivariate analysis”. In:Optimi-
sation in Statistics. 1982, pp. 137–151.

[Heg+03] E. K. Hege et al. “Hyperspectral imaging for astronomy and space
surviellance”. In: Imaging Spectrometry IX. Ed. by S. S. Shen and
P. E. Lewis. SPIE, Aug. 2003, p. 380.

[Hit27] F. L. Hitchcock. “The Expression of a Tensor or a Polyadic as a Sum
of Products”. In: Studies in AppliedMathematics 6.1-4 (Apr. 1927),
pp. 164–189.

[Hit28] F. L. Hitchcock. “Multiple Invariants and Generalized Rank of a
P-WayMatrix or Tensor”. In: Studies in AppliedMathematics 7.1-4
(Apr. 1928), pp. 39–79.

[HMT11] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding Structure
with Randomness: Probabilistic Algorithms for Constructing Ap-
proximate Matrix Decompositions”. In: SIAM Review 53.2 (May
2011).

[Hoy02] P. O. Hoyer. “Non-negative sparse coding”. In: Proceedings of the
2002 12th IEEEWorkshop on Neural Networks for Signal Process-
ing. IEEE, Nov. 2002, pp. 557–565.

[Hoy04] P. O. Hoyer. “Non-negative Matrix Factorization with Sparseness
Constraints”. In: Journal of Machine Learning Research 5 (Dec.
2004), pp. 1457–1469.

[HV15] B. D. Haeffele and R. Vidal. “Global Optimality in Tensor Factor-
ization, Deep Learning, and Beyond”. In: arXiv.org (June 2015).
arXiv: 1506.07540.

[HYV14] B. D. Haeffele, E. D. Young, and R. Vidal. “Structured low-rank ma-
trix factorization”. In: Proceedings of the 31st International Con-
ference on Machine Learning. 2014.

http://arxiv.org/abs/1506.07540

171

[HZZS16] W. He, H. Zhang, L. Zhang, and H. Shen. “Total-Variation-
Regularized Low-Rank Matrix Factorization for Hyperspectral
Image Restoration”. In: IEEE Transactions on Geoscience and
Remote Sensing 54.1 (Jan. 2016), pp. 178–188.

[IBP11] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza. “Sparse Unmix-
ing of Hyperspectral Data”. In: IEEE Transactions on Geoscience
and Remote Sensing 49.6 (June 2011), pp. 2014–2039.

[IPB10] M.-D. Iordache, A. Plaza, and J. Bioucas-Dias. “On the use of spec-
tral libraries to perform sparse unmixing of hyperspectral data”.
In: Proceedings of the 2ndWorkshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing (2010), pp. 1–4.

[Jac91] J. E. Jackson. A User’s Guide to Principal Components. Hoboken:
JohnWiley & Sons, Inc., 1991.

[Jam87] G. J. O. Jameson. Summing and Nuclear Norms in Banach Space
Theory. Cambridge: Cambridge University Press, July 1987.

[JC93] S. M. Jefferies and J. C. Christou. “Restoration of Astronomical
Images by Iterative Blind Deconvolution”. In: The Astrophysical
Journal 415 (Sept. 1993), p. 862.

[Jef67] J. N. R. Jeffers. “Two Case Studies in the Application of Principal
Component Analysis”. In: Applied Statistics 16.3 (1967), p. 225.

[JNS12] P. Jain, P. Netrapalli, and S. Sanghavi. “Low-rankMatrix Comple-
tion using Alternating Minimization”. In: arXiv.org (Dec. 2012).
arXiv: 1212.0467.

[Jol95] I. T. Jolliffe. “Rotation of principal components: choice of normal-
ization constraints”. In: Journal of Applied Statistics 22.1 (1995),
pp. 29–35.

[JTU03] I. T. Jolliffe, N. T. Trendafilov, andM. Uddin. “AModified Principal
Component Technique Based on the LASSO”. In: Journal of Com-
putational and Graphical Statistics 12.3 (Sept. 2003), pp. 531–547.

[KB09] T. G. Kolda and B. W. Bader. “Tensor Decompositions and Appli-
cations”. In: SIAM Review 51.3 (Aug. 2009), pp. 455–500.

[KBV09] Y. Koren, R. Bell, and C. Volinsky. “Matrix Factorization Tech-
niques forRecommender Systems”. In:Computer 42.8 (Aug. 2009),
pp. 30–37.

[KCM01] M. S. Kim, Y. R. Chen, and P. M. Mehl. “Hyperspectral reflectance
and fluorescence imaging system for food quality and safety”.
In: Transactions of the American Society of Agricultural Engineers
44.3 (May 2001), pp. 721–729.

http://arxiv.org/abs/1212.0467

172

[KM02] N. Keshava and J. F. Mustard. “Spectral unmixing”. In: IEEE Signal
Processing Magazine 19.1 (2002), pp. 44–57.

[KMO10a] R. H. Keshavan, A. Montanari, and S. Oh. “Matrix Completion
FromaFewEntries”. In: IEEETransactions on InformationTheory
56.6 (May 2010), pp. 2980–2998.

[KMO10b] R. H. Keshavan, A. Montanari, and S. Oh. “Matrix Completion
from Noisy Entries”. In: Journal of Machine Learning Research
11.Jul (2010), pp. 2057–2078.

[KN12] S. Khot and A. Naor. “Grothendieck-Type Inequalities in Combi-
natorial Optimization”. In:Communications on Pure and Applied
Mathematics 65.7 (July 2012), pp. 992–1035.

[KO00] T. G. Kolda and D. P. O’Leary. “Algorithm 805: computation and
uses of the semidiscrete matrix decomposition”. In: ACM Trans-
actions on Mathematical Software 26.3 (Sept. 2000), pp. 415–435.

[Kor09] Y. Koren.The BellKor Solution to theNetflixGrandPrize. Tech. rep.
2009.

[KP07] H.KimandH.Park. “Sparsenon-negativematrix factorizations via
alternating non-negativity-constrained least squares for microar-
ray data analysis”. In: Bioinformatics 23.12 (June 2007), pp. 1495–
1502.

[KP08] J. Kim and H. Park. Sparse Nonnegative Matrix Factorization for
Clustering. Tech. rep. 36. Georgia Institute of Technology, 2008.

[Kri+92] V. Krishnamurthi et al. “Blind deconvolution of 2-D and 3-
D fluorescent micrographs”. In: Biomedical Image Processing
and Three-Dimensional Microscopy. Ed. by R. S. Acharya, C. J.
Cogswell, and D. B. Goldgof. San Jose: SPIE, June 1992, pp. 95–102.

[Kri77] J.-L. Krivine. “Sur la constante de Grothendieck”. In: CR Acad. Sci.
Paris Ser. AB 284.8 (1977), A445–A446.

[LB08] D. Letexier and S. Bourennane. “Noise Removal From Hyper-
spectral Images byMultidimensional Filtering”. In: IEEE Transac-
tions onGeoscience andRemote Sensing 46.7 (July 2008), pp. 2061–
2069.

[LB13] T. Lin and S. Bourennane. “Survey of hyperspectral image de-
noising methods based on tensor decompositions”. In: EURASIP
Journal on Advances in Signal Processing 2013.1 (2013), pp. 1–11.

[LB14] J. Lipor and L. Balzano. “Robust blind calibration via total least
squares”. In: Proceedings of the 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing. IEEE, 2014,
pp. 4244–4248.

173

[LBF12] X. Liu, S. Bourennane, andC. Fossati. “Denoising ofHyperspectral
Images Using the PARAFAC Model and Statistical Performance
Analysis”. In: IEEE Transactions on Geoscience and Remote Sens-
ing 50.10 (Oct. 2012), pp. 3717–3724.

[Lee+10] J. D. Lee et al. “Practical Large-Scale Optimization for Max-norm
Regularization”. In: Advances Neural Information Processing Sys-
tems 23 (NIPS 2010). 2010, pp. 1297–1305.

[LGLS06] Z.-Q. Luo, M. Gastpar, J. Liu, and A. Swami. “Distributed signal
processing in sensor networks”. In: IEEE Signal Processing Maga-
zine 23.4 (July 2006), pp. 14–15.

[Li+15] C. Li et al. “Hyperspectral image denoising using the robust low-
rank tensor recovery”. In: Journal of theOptical Society of America
A 32.9 (Sept. 2015), pp. 1604–1612.

[Lin07] C.-J. Lin. “Projected Gradient Methods for Nonnegative Ma-
trix Factorization”. In: Neural Computation 19.10 (Oct. 2007),
pp. 2756–2779.

[Liu+11] A. Liu et al. “An Eigenstructure Method for Estimating DOA and
Sensor Gain-Phase Errors”. In: IEEE Transactions on Signal Pro-
cessing 59.12 (2011), pp. 5944–5956.

[LLJB15] K. Lee, Y. Li, M. Junge, and Y. Bresler. “Stability in blind deconvo-
lution of sparse signals and reconstruction by alternating min-
imization”. In: Proceedings of the 2015 International Conference
on Sampling Theory and Applications. IEEE, 2015, pp. 158–162.

[LLR16] Y. Li, Y. Liang, and A. Risteski. “Recovery Guarantee of Non-
negative Matrix Factorization via Alternating Updates”. In:
Advances in Neural Information Processing Systems 29 (NIPS
2016). Nov. 2016.

[LLSW16] X. Li, S. Ling, T. Strohmer, andK.Wei. “Rapid, Robust, and Reliable
Blind Deconvolution via Nonconvex Optimization”. In: arXiv.org
(June 2016). arXiv: 1606.04933.

[Lov79] L. Lovász. “On the Shannon capacity of a graph”. In: IEEE Trans-
actions on Information Theory 25.1 (Jan. 1979), pp. 1–7.

[LP68] J. Lindenstrauss and A. Pełczyński. “Absolutely summing opera-
tors in Lp-spaces and their applications”. In: StudiaMathematica
29.3 (1968), pp. 275–326.

[LS01] D. D. Lee and H. S. Seung. “Algorithms for Non-negative Ma-
trix Factorization”. In:Advances inNeural Information Processing
Systems 13 (NIPS 2000). 2001, pp. 556–562.

http://arxiv.org/abs/1606.04933

174

[LS15a] S. Ling andT. Strohmer. “BlindDeconvolutionMeets BlindDemix-
ing: Algorithms and Performance Bounds”. In: arXiv.org (Dec.
2015). arXiv: 1512.07730.

[LS15b] S. Ling and T. Strohmer. “Self-calibration and biconvex compres-
sive sensing”. In: Inverse Problems 31.11 (Sept. 2015), p. 115002.

[LS16] S. Ling and T. Strohmer. “Self-Calibration via Linear Least
Squares”. In: arXiv.org (Nov. 2016). arXiv: 1611.04196.

[LS97] D. D. Lee and H. S. Seung. “Unsupervised Learning by Convex
and Conic Coding”. In: Advances in Neural Information Process-
ing Systems 9 (NIPS 1996). 1997, pp. 515–521.

[LS99] D. D. Lee and H. S. Seung. “Learning the parts of objects by non-
negative matrix factorization”. In: Nature 401.6755 (Oct. 1999),
pp. 788–791.

[LSJR16] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. “Gradient
Descent Only Converges to Minimizers”. In: Proceedings of the
29th Conference on Learning Theory. 2016, pp. 1246–1257.

[LY06] M. Lin and L. Yang. “Blind Calibration and DOA Estimation With
Uniform Circular Arrays in the Presence of Mutual Coupling”.
In: Antennas andWireless Propagation Letters 5.1 (2006), pp. 315–
318.

[Mai+08] J. Mairal et al. “Discriminative Sparse Image Models for Class-
Specific Edge Detection and Image Interpretation”. In: Computer
Vision – ECCV 2008. Berlin, Heidelberg: Springer, Oct. 2008,
pp. 43–56.

[Mal09] S. Mallat. A Wavelet Tour of Signal Processing. 3rd edition. The
Sparse Way. Burlington: Academic Press, 2009.

[McC13] M. B. McCoy. “A geometric analysis of convex demixing”. PhD
thesis. California Institute of Technology, 2013.

[MCKS99] J. Miao, P. Charalambous, J. Kirz, and D. Sayre. “Extending
the methodology of X-ray crystallography to allow imaging
of micrometre-sized non-crystalline specimens”. In: Nature
400.6742 (July 1999), pp. 342–344.

[MCW03] D. M. Malioutov, M. Cetin, and A. S. Willsky. “Source localization
by enforcing sparsity through a laplacian prior: an SVD-based ap-
proach”. In: Proceedings of the 2003 IEEEWorkshop on Statistical
Signal Processing. IEEE, 2003, pp. 573–576.

[MCW05] D. Malioutov, M. Cetin, and A. S. Willsky. “A sparse signal re-
construction perspective for source localization with sensor ar-
rays”. In: IEEE Transactions on Signal Processing 53.8 (July 2005),
pp. 3010–3022.

http://arxiv.org/abs/1512.07730
http://arxiv.org/abs/1611.04196

175

[MDO11] R. Mignot, L. Daudet, and F. Ollivier. “Compressed sensing for
acoustic response reconstruction: Interpolation of the early part”.
In: Proceedings of the 2011 IEEEWorkshop on Applications of Sig-
nal Processing to Audio and Acoustics. IEEE, Oct. 2011, pp. 225–
228.

[Mez07] F. Mezzadri. “How to generate randommatrices from the classi-
cal compact groups”. In: Notices of the American Mathematical
Society 54.5 (2007), pp. 592–604.

[Mia+02] J. Miao et al. “High Resolution 3D X-Ray Diffraction Microscopy”.
In: Physical Review Letters 89.8 (Aug. 2002), p. 088303.

[Mil90] R. P. Millane. “Phase retrieval in crystallography and optics”. In:
Journal of theOptical Society of AmericaA 7.3 (Mar. 1990), pp. 394–
411.

[MISE08] J. Miao, T. Ishikawa, Q. Shen, and T. Earnest. “Extending X-Ray
Crystallography to Allow the Imaging of Noncrystalline Materi-
als, Cells, and Single Protein Complexes”. In: Annual Review of
Physical Chemistry 59.1 (May 2008), pp. 387–410.

[MN36] F. J. Murray and J. von Neumann. “On Rings of Operators”. In:
Annals of Mathematics 37.1 (Jan. 1936), p. 116.

[MT11] M. McCoy and J. A. Tropp. “Two proposals for robust PCA using
semidefinite programming”. In: Electronic Journal of Statistics 5
(2011), pp. 1123–1160.

[Nes04] Y. Nesterov. Introductory lectures on convex optimization. Vol. 87.
Applied Optimization. Boston: Kluwer Academic Publishers, 2004.

[Nes05] Y. Nesterov. “Smoothminimization of non-smooth functions”. In:
Mathematical Programming 103.1 (2005), pp. 127–152.

[Nes07] Y. Nesterov. Gradient Methods for Minimizing Composite Objec-
tive Function. Tech. rep. 2007/76. Louvain-la-Neuve, Belgium:
CORE, Université catholique de Louvain, 2007.

[Nes98] Y. Nesterov. “Semidefinite relaxation and nonconvex quadratic
optimization”. In:OptimizationMethods and Software 9.1-3 (Jan.
1998), pp. 141–160.

[NJS15] P. Netrapalli, P. Jain, and S. Sanghavi. “Phase Retrieval Using Alter-
nating Minimization”. In: IEEE Transactions on Signal Processing
63.18 (Sept. 2015), pp. 4814–4826.

[NS96] B. C. Ng and C. M. S. See. “Sensor-array calibration using a
maximum-likelihood approach”. In: IEEE Transactions on Anten-
nas and Propagation 44.6 (June 1996), pp. 827–835.

176

[NW14] A. Natarajan and Y. Wu. “Computational Complexity of Certify-
ing Restricted Isometry Property”. In: Leibniz International Pro-
ceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2014, p. 380.

[OCPB16] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. “Conic Optimiza-
tion via Operator Splitting and Homogeneous Self-Dual Embed-
ding”. In: Journal of Optimization Theory and Applications 169.3
(Feb. 2016), pp. 1042–1068.

[OF97] B. A. Olshausen and D. J. Field. “Sparse coding with an overcom-
plete basis set: A strategy employed by V1?” In: Vision Research
37.23 (Dec. 1997), pp. 3311–3325.

[OH15] S.Oymak andB.Hassibi. “SharpMSEBounds for ProximalDenois-
ing”. In: Foundations of Computational Mathematics 16.4 (Oct.
2015), pp. 965–1029.

[Old34] R. Oldenburger. “Composition and Rank of n-WayMatrices and
Multilinear Forms”. In: Annals of Mathematics 35.3 (July 1934),
p. 622.

[Old36] R. Oldenburger. “Non-Singular Multilinear Forms and Certain
p-Way Matrix Factorizations”. In: Transactions of the American
Mathematical Society 39.3 (May 1936), p. 422.

[Oll15] E. Ollila. “Nonparametric simultaneous sparse recovery: An ap-
plication to source localization”. In: Proceedings of the 23rd Euro-
pean Signal Processing Conference. IEEE, 2015, pp. 509–513.

[Pad94] J. F. Padgett.Marriage andElite Structure in Renaissance Florence,
1281–1500. Oct. 1994. URL: https://uchicago.app.box.com/s/
izitmyicp0vjj4ajxomembzn8p0xot5s.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”.
In: Journal ofMachine Learning Research 12.Oct (2011), pp. 2825–
2830.

[Phi+05] C. Phillips et al. “An empirical Bayesian solution to the source
reconstruction problem in EEG”. In:NeuroImage 24.4 (Feb. 2005),
pp. 997–1011.

[Pie07] A. Pietsch.History of Banach Spaces and Linear Operators. Basel:
Birkhäuser, 2007.

[Pis12] G. Pisier. “Grothendieck’s Theorem, past and present”. In: Bul-
letin of the American Mathematical Society 49.2 (2012), pp. 237–
323.

[Pis86] G. Pisier. Factorization of Linear Operators and Geometry of Ba-
nach Spaces. Vol. 60. Washington: Conference Board of the Math-
ematical Sciences, 1986.

https://uchicago.app.box.com/s/izitmyicp0vjj4ajxomembzn8p0xot5s
https://uchicago.app.box.com/s/izitmyicp0vjj4ajxomembzn8p0xot5s

177

[PRK93] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. “Orthogonal
matching pursuit: recursive function approximation with appli-
cations to wavelet decomposition”. In: Proceedings of the 27th
Asilomar Conference on Signals, Systems and Computers. IEEE
Comput. Soc. Press, Nov. 1993, pp. 40–44.

[PT94] P. Paatero and U. Tapper. “Positive matrix factorization: A non-
negative factor model with optimal utilization of error estimates
of data values”. In: Environmetrics 5.2 (June 1994), pp. 111–126.

[RBB08] N. Renard, S. Bourennane, and J. Blanc-Talon. “Denoising and
Dimensionality Reduction Using Multilinear Tools for Hyperspec-
tral Images”. In: IEEE Geoscience and Remote Sensing Letters 5.2
(Apr. 2008), pp. 138–142.

[Rec11] B. Recht. “A Simpler Approach toMatrix Completion”. In: Journal
of Machine Learning Research 12.Dec (2011), pp. 3413–3430.

[RFP10] B. Recht, M. Fazel, and P. A. Parrilo. “Guaranteed Minimum-Rank
Solutions of Linear Matrix Equations via Nuclear NormMinimiza-
tion”. In: SIAM Review 52.3 (2010), pp. 471–501.

[RGA77] L. C. Rowan, A. F. H. Goetz, and R. P. Ashley. “Discrimination of
Hydrothermally Altered and Unaltered Rocks in Visible and Near-
infrared Multispectral Images”. In: Geophysics 42.3 (Apr. 1977),
pp. 522–535.

[Rod+05] O. Y. Rodionova et al. “NIR spectrometry for counterfeit drug de-
tection”. In: Analytica Chimica Acta 549.1–2 (Sept. 2005), pp. 151–
158.

[ROF92] L. I. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation
based noise removal algorithms”. In: Physica D: Nonlinear Phe-
nomena 60.1-4 (Nov. 1992), pp. 259–268.

[Row+74] L. C. Rowan et al. Discrimination of rock types and detection of
hydrothermally altered areas in south-central Nevada by the use
of computer-enhanced ERTS images. Tech. rep. 1974.

[RR13] B. Recht and C. Re. “Parallel stochastic gradient algorithms for
large-scale matrix completion”. In:Mathematical Programming
Computation 5.2 (Apr. 2013), pp. 201–226.

[RRTB12] B. Recht, C. Re, J. A. Tropp, and V. Bittorf. “Factoring nonnegative
matrices with linear programs”. In: Advances in Neural Informa-
tion Processing Systems 25 (NIPS 2012). 2012, pp. 1214–1222.

[RRWN11] B. Recht, C. Re, S. Wright, and F. Niu. “Hogwild: A Lock-Free Ap-
proach to Parallelizing StochasticGradientDescent”. In:Advances
in Neural Information Processing Systems 24 (NIPS 2011). 2011,
pp. 693–701.

178

[RRZF06] D.M. Rogge, B. Rivard, J. Zhang, and J. Feng. “Iterative Spectral Un-
mixing forOptimizingPer-Pixel Endmember Sets”. In: IEEETrans-
actions on Geoscience and Remote Sensing 44.12 (2006), pp. 3725–
3736.

[Rya02] R. A. Ryan. Introduction to Tensor Products of Banach Spaces. Lon-
don: Springer-Verlag, 2002.

[Sch43] R. Schatten. “On the direct product of Banach spaces”. In:
Transactions of the American Mathematical Society 53.2 (1943),
pp. 195–217.

[Sch46] R. Schatten. “The Cross-Space of Linear Transformations”. In:
Annals of Mathematics 47.1 (Jan. 1946), pp. 73–84.

[Sch50] R. Schatten. A theory of cross-spaces. Princeton: Princeton Univer-
sity Press, 1950.

[SDB13] S. Sahnoun, E.-H. Djermoune, and D. Brie. “Sparse modal estima-
tion of 2-D NMR signals”. In: Proceedings of the 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing.
IEEE, May 2013, pp. 8751–8755.

[SDBC17] S. Sahnoun, E.-H. Djermoune, D. Brie, and P. Comon. “A Simulta-
neous Sparse Approximation Method for Multidimensional Har-
monic Retrieval”. In: Signal Processing 131 (Feb. 2017), pp. 36–
48.

[See94] C. M. S. See. “Sensor array calibration in the presence of mutual
coupling and unknown sensor gains and phases”. In: Electronics
Letters 30.5 (Mar. 1994), pp. 373–374.

[SH08] H. Shen and J. Z. Huang. “Sparse principal component analysis
via regularized low rank matrix approximation”. In: Journal of
Multivariate Analysis 99.6 (July 2008), pp. 1015–1034.

[She+16] X. Shen et al. “Disciplined Multi-Convex Programming”. In:
arXiv.org (Sept. 2016). arXiv: 1609.03285.

[SL15] R. Sun and Z.-Q. Luo. “GuaranteedMatrix Completion via Non-
convex Factorization”. In: Proceedings of the IEEE 56th Annual
SymposiumonFoundations ofComputer Science. IEEE,Dec. 2015,
pp. 270–289.

[SN46] R. Schatten and J. von Neumann. “The Cross-Space of Linear
Transformations. II”. In: Annals of Mathematics 47.3 (July 1946),
pp. 608–630.

[SN48] R. Schatten and J. von Neumann. “The Cross-Space of Linear
Transformations. III”. In: Annals of Mathematics 49.3 (July 1948),
pp. 557–582.

http://arxiv.org/abs/1609.03285

179

[SQW16] J. Sun, Q. Qu, and J. Wright. “A geometric analysis of phase re-
trieval”. In: Proceedings of the 2016 IEEE International Sympo-
sium on Information Theory. IEEE, July 2016, pp. 2379–2383.

[SQW17a] J. Sun, Q. Qu, and J. Wright. “Complete Dictionary Recovery over
the Sphere I: Overviewand theGeometric Picture”. In: IEEETrans-
actions on Information Theory 63.2 (2017), pp. 853–884.

[SQW17b] J. Sun, Q. Qu, and J. Wright. “Complete Dictionary Recovery over
the Sphere II: Recovery by Riemannian Trust-region Method”.
In: IEEE Transactions on Information Theory 63.2 (2017), pp. 885–
914.

[SRJ05] N. Srebro, J. Rennie, and T. S. Jaakkola. “Maximum-Margin Ma-
trix Factorization”. In:Advances inNeural Information Processing
Systems 17 (NIPS 2004). 2005, pp. 1329–1336.

[SS05] N. Srebro and A. Shraibman. “Rank, Trace-Norm andMax-Norm”.
In: Learning Theory. Berlin, Heidelberg: Springer, June 2005,
pp. 545–560.

[TGS06] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. “Algorithms for simul-
taneous sparse approximation. Part I: Greedy pursuit”. In: Signal
Processing 86.3 (Mar. 2006), pp. 572–588.

[Tib96] R. Tibshirani. “Regression shrinkage and selection via the Lasso”.
In: Journal of the Royal Statistical Society: Series B (Methodology)
58.1 (1996), pp. 267–288.

[TP14] A.M.TillmannandM.E. Pfetsch. “TheComputationalComplexity
of the Restricted Isometry Property, the Nullspace Property, and
Related Concepts in Compressed Sensing”. In: IEEE Transactions
on Information Theory 60.2 (Feb. 2014), pp. 1248–1259.

[Tro03] J. A. Tropp. Literature Survey: Non-Negative Matrix Factorization.
2003. URL: http://users.cms.caltech.edu/~jtropp/notes/
Tro03-Literature-Survey.pdf.

[Tro04] J. A. Tropp. “Topics in sparse approximation”. PhD thesis. 2004.

[Tro06] J. A. Tropp. “Algorithms for simultaneous sparse approximation.
Part II: Convex relaxation”. In: Signal Processing 86.3 (Mar. 2006),
pp. 589–602.

[Tro12] J. A. Tropp. “The nuclear option”. Oct. 2012.

[Tu00] T.-M. Tu. “Unsupervised signature extraction and separation in
hyperspectral images: a noise-adjusted fast independent compo-
nent analysis approach”. In:Optical Engineering 39.4 (Apr. 2000),
pp. 897–906.

http://users.cms.caltech.edu/~jtropp/notes/Tro03-Literature-Survey.pdf
http://users.cms.caltech.edu/~jtropp/notes/Tro03-Literature-Survey.pdf

180

[TXHK95] L. Tong,G. Xu, B.Hassibi, andT. Kailath. “BlindChannel Identifica-
tion Based on Second-Order Statistics: A Frequency-Domain Ap-
proach”. In: IEEE Transactions on Information Theory 41.1 (1995),
pp. 329–334.

[Ude+14] M. Udell et al. “Convex optimization in Julia”. In: Proceedings of
the FirstWorkshop for High Performance Technical Computing in
Dynamic Languages (HPTCDL). IEEE Press, Nov. 2014, pp. 18–28.

[Van00] C. F. Van Loan. “The ubiquitous Kronecker product”. In: Journal of
Computational and Applied Mathematics 123.1-2 (2000), pp. 85–
100.

[VG88] G. Vane and A. F. H. Goetz. “Terrestrial Imaging Spectroscopy”. In:
Remote Sensing of Environment 24.1 (Feb. 1988), pp. 1–29.

[VG93] G. Vane and A. F. H. Goetz. “Terrestrial imaging spectrometry:
Current status, future trends”. In:Remote Sensing of Environment
44.2-3 (May 1993), pp. 117–126.

[Vin00] S. K. Vines. “Simple principal components”. In: Journal of the
Royal Statistical Society: Series C (Applied Statistics) 49.4 (Jan.
2000), pp. 441–451.

[Wal63] A.Walther. “TheQuestion of Phase Retrieval in Optics”. In:Optica
Acta: International Journal of Optics 10.1 (Jan. 1963), pp. 41–49.

[Wan16] L. Wang. “Blind Deconvolution fromMultiple Sparse Inputs”. In:
IEEE Signal Processing Letters 23.10 (Oct. 2016), pp. 1384–1388.

[Wat11] J. Watrous. CS 766/QIC 820 Theory of Quantum Information.
2011. URL: https : / / cs . uwaterloo . ca / ~watrous / CS766 /
LectureNotes/all.pdf.

[WBSJ15] G. Wunder, H. Boche, T. Strohmer, and P. Jung. “Sparse Signal
Processing Concepts for Efficient 5G System Design”. In: IEEE
Access 3 (2015), pp. 195–208.

[WH90] T. Wilson and S. J. Hewlett. “Imaging strategies in three-dimen-
sional confocalmicroscopy”. In:Biomedical Image Processing. Ed.
by A. C. Bovik andW. E. Higgins. Santa Clara: International Society
for Optics and Photonics, May 1990, pp. 35–45.

[WP98] X. Wang and H. V. Poor. “Blind equalization and multiuser de-
tection in dispersive CDMA channels”. In: IEEE Transactions on
Communications 46.1 (1998), pp. 91–103.

[WRS08] C. Wang, P. Ramanathan, and K. K. Saluja. “Calibrating Nonlinear
Mobile Sensors”. In: Proceedings of the 5th Annual IEEE Commu-
nications Society Conference on Sensor, Mesh and Ad Hoc Com-
munications and Networks. IEEE, June 2008, pp. 533–541.

https://cs.uwaterloo.ca/~watrous/CS766/LectureNotes/all.pdf
https://cs.uwaterloo.ca/~watrous/CS766/LectureNotes/all.pdf

181

[WTH09] D. M. Witten, R. Tibshirani, and T. Hastie. “A penalized matrix de-
composition, with applications to sparse principal components
and canonical correlation analysis.” In: Biostatistics 10.3 (July
2009), pp. 515–534.

[XCS12] H. Xu, C. Caramanis, and S. Sanghavi. “Robust PCA via Outlier
Pursuit”. In: IEEE Transactions on Information Theory 58.5 (May
2012), pp. 3047–3064.

[XY13] Y. Xu andW. Yin. “A BlockCoordinateDescentMethod for Regular-
ized Multiconvex Optimization with Applications to Nonnegative
Tensor Factorization andCompletion”. In: SIAM Journal on Imag-
ing Sciences 6.3 (July 2013), pp. 1758–1789.

[YWHM10] J. Yang, J. Wright, T. S. Huang, and Y.Ma. “Image Super-Resolution
Via Sparse Representation”. In: IEEE Transactions on Image Pro-
cessing 19.11 (May 2010), pp. 2861–2873.

[ZG06] A. Zelinski and V. Goyal. “Denoising Hyperspectral Imagery and
Recovering Junk Bands using Wavelets and Sparse Approxima-
tion”. In: Proceedings of the 2006 IEEE International Symposium
on Geoscience and Remote Sensing (2006), pp. 387–390.

[ZH05] H. Zou and T. Hastie. “Regularization and variable selection via
the elastic net”. In: Journal of the Royal Statistical Society: Series
B (Methodology) 67 (2005), pp. 301–320.

[Zha+02] H. Zha et al. “Spectral Relaxation for K-means Clustering”. In: Ad-
vances in Neural Information Processing Systems 14 (NIPS 2001).
2002, pp. 1057–1064.

[Zha+14] H. Zhang et al. “Hyperspectral Image RestorationUsing Low-Rank
Matrix Recovery”. In: IEEE Transactions on Geoscience and Re-
mote Sensing 52.8 (Aug. 2014), pp. 4729–4743.

[ZHT06] H. Zou, T. Hastie, and R. Tibshirani. “Sparse Principal Component
Analysis”. In: Journal of Computational and Graphical Statistics
15.2 (June 2006), pp. 265–286.

[ZL15] Q. Zheng and J. Lafferty. “A Convergent Gradient Descent Algo-
rithm forRankMinimizationandSemidefiniteProgramming from
Random Linear Measurements”. In: Advances in Neural Infor-
mation Processing Systems 28 (NIPS 2015). Montreal, June 2015,
pp. 109–117.

[ZLS09] M. Zinkevich, J. Langford, and A. J. Smola. “Slow Learners are
Fast”. In: Advances in Neural Information Processing Systems 22
(NIPS 2009). 2009, pp. 2331–2339.

182

[ZWBY14] L. Zhao, L. Wang, G. Bi, and L. Yang. “An Autofocus Technique for
High-Resolution Inverse Synthetic Aperture Radar Imagery”. In:
IEEE Transactions on Geoscience and Remote Sensing 52.10 (Jan.
2014), pp. 6392–6403.

[ZWL15] T. Zhao, Z. Wang, and H. Liu. “A Nonconvex Optimization Frame-
work for Low RankMatrix Estimation”. In: Advances in Neural In-
formation Processing Systems 28 (NIPS 2015). 2015, pp. 559–567.

[ZWLS10] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. “Parallelized
Stochastic Gradient Descent”. In: Advances Neural Information
Processing Systems 23 (NIPS 2010). 2010, pp. 2595–2603.

[ZWSP08] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. “Large-Scale Par-
allel Collaborative Filtering for the Netflix Prize”. In: Algorithmic
Aspects in Information andManagement. Ed. by R. Fleischer and
J. Xu. Berlin, Heidelberg: Springer, 2008, pp. 337–348.

[ZY15] Y.-Q. Zhao and J. Yang. “Hyperspectral ImageDenoising via Sparse
Representation and Low-Rank Constraint”. In: IEEE Transactions
on Geoscience and Remote Sensing 53.1 (Jan. 2015), pp. 296–308.

183

Appendix A

Proofs of results in Chapter 3

This appendix provides the proofs of some results regarding nuclear norms
from Chapter 3.

A.1 Proof of Proposition 3.3.3

In this section we restate and prove Proposition 3.3.3 regarding properties of
the nuclear norm.

Proposition A.1.1 (Properties of the nuclear norm). Let X = (Mm×n, ‖·‖X) and
Y = (Mp×q, ‖·‖Y) be normed vector spaces. The nuclear norm NX,Y satisfies the
following.

1. The nuclear norm NX,Y is a norm onOm×n⊗p×q .

2. NX,Y is a crossnorm.

3. NX,Y dominates all other crossnorms on X ⊗Y uniformly.

Proof. (1) We prove that the nuclear norm NX,Y is in fact a norm through a
geometric argument. Recall that we denote the set of dyads with unit-norm
factors (3.12) asDX ⊗Y , and we call its absolutely convex hull SX ⊗Y the nuclear
unit ball (3.13). For this argument, we endow the factor spaces (Mm×n andMp×q)
and the operator space (Om×n⊗p×q) with Euclidean topology. We observe that:

• The set SX ⊗Y is symmetric and convex since it is an absolutely convex hull.

184

• The set SX ⊗Y is closed and bounded. To see this, we first note that the
sets {X : ‖X ‖X = 1} ⊆ Rm×n and {Y : ‖Y ‖Y = 1} ⊆ Rp×q are compact.
Therefore the setDX ⊗y is also compact as it is a continuous image of the
direct product of these two compact sets. Finally, SX ⊗Y is the convex hull
of a compact set (DX ⊗Y) in Euclidean space, and so we conclude that it is
compact as well.

• The set SX ⊗Y is absorbing. We can write every operatorA ∈ Om×n⊗p×q as
a linear combinationA =

∑r
i=1 λi X i ⊗Y i with the X i ⊗Y i ∈ DX ⊗Y . Thus

A ∈ t · SX ⊗Y whenever t
∑r

i=1 |λi | ≤ 1.

Therefore the nuclear unit ball SX ⊗Y satisfies the topological requirements to
be the closed unit ball of a norm. Proposition 3.3.6 shows that the nuclear unit
ball coincides with {A : NX,Y (A) ≤ 1}, and we conclude that the nuclear norm
NX,Y is indeed a norm.

(2) To show that NX,Y is additionally a crossnorm, we must demonstrate that

NX,Y (X ⊗Y) = ‖X ‖X ‖Y ‖Y ,

for all dyads X ⊗Y . By the definition (3.10) of the nuclear norm NX,Y , it is clear
that NX,Y (X ⊗Y) ≤ ‖X ‖X ‖Y ‖Y .

Now we introduce the function

f (A) := max{〈A, X ′ ⊗Y ′〉 : ‖X ′‖X ∗ ≤ 1, ‖Y ′‖Y ∗ ≤ 1},

where ‖·‖X ∗ and ‖·‖Y ∗ are the dual norms of the X and Y norms. This is the
maximum of a linear functional over a compact set, and therefore the value is
indeed attained.

Observe, however, that we can bound the absolute value of the linear functional
in the objective using the identity (3.8) that makes explicit the connection
between operators and bilinear forms. That is, forA =

∑
i X i ⊗Y i ,

|〈A, X ′ ⊗Y ′〉| =
����〈∑

i

X i ⊗Y i, X ′ ⊗Y ′
〉����

=

����∑
i

〈X i, X ′〉〈Y i, Y
′〉
����

≤
∑

i

|〈X i, X ′〉| |〈Y i, Y
′〉|

≤ ‖X ′‖X ∗ ‖Y ′‖Y ∗
∑

i

‖X i ‖X ‖Y i ‖Y .

185

Therefore, f (∑i X i ⊗ Y i) ≤
∑

i ‖X i ‖X ‖Y i ‖Y , and we conclude that f (A) ≤
NX,Y (A).

Furthermore, we see that

f (X ⊗Y) = max{〈X ⊗Y , X ′ ⊗Y ′〉 : ‖X ′‖X ∗ ≤ 1, ‖Y ′‖Y ∗ ≤ 1}
= max{〈X , X ′〉〈Y , Y ′〉 : ‖X ′‖X ∗ ≤ 1, ‖Y ′‖Y ∗ ≤ 1}
= ‖X ‖X ‖Y ‖Y .

We conclude that

f (X ⊗Y) = ‖X ‖X ‖Y ‖Y ≤ NX,Y (X ⊗Y) ≤ ‖X ‖X ‖Y ‖Y ,

and so NX,Y (X ⊗Y) = ‖X ‖X ‖Y ‖. The nuclear norm NX,Y is a crossnorm.

(3)Finally, let |||·||| be any crossnormonOm×n⊗p×q . For anyoperatorA =
∑

i X i⊗
Y i ∈ Om×n⊗p×q , we have that

|||A ||| =
������������∑

i

X i ⊗Y i

������������ ≤∑
i

‖X i ‖X ‖Y i ‖Y .

Therefore |||A ||| ≤ NX,Y (A). �

A.2 Proof of Proposition 3.3.4

In this section we restate and prove Proposition 3.3.4 concerning the optimal
decompositions in Definition 3.3.2 of the nuclear norm.

Proposition A.2.1 (Optimal decompositions). Let X = (Mm×n, ‖·‖X) andY =

(Mp×q, ‖·‖Y) be normed vector spaces. The nuclear norm NX,Y satisfies the fol-
lowing.

1. The infima in Definition 3.3.2 of NX,Y are attained.

2. The number of dyads at such an optimal decomposition is no more than
mnpq .

Proof. We first consider the alternative definition of the nuclear norm as the
gauge function of SX ⊗Y , the nuclear unit ball (3.14). That is,

NX,Y (A) = inf{t : t ≥ 0,A ∈ t · SX ⊗Y }.

186

This is the infimum of a linear function over a compact set, and therefore it is
attained.

Furthermore, the optimal t ∗ = NX,Y (A) > 0 wheneverA , 0, and then (1/t ∗)A
lies on the boundary of SX ⊗Y . Using the definition (3.14) of SX ⊗Y ⊆ Om×n⊗p×q

as the convex hull ofDX ⊗Y (the set (3.12) of dyads with unit-norm factors), we
can write (1/t ∗)A as the convex combination

1
t ∗
A =

mnpq∑
i=1

λi X i ⊗Y i,

where mnpq is the dimension ofOm×n⊗p×q , ‖X i ‖X = 1, and ‖Y i ‖Y = 1.

We claim that A =
∑mnpq

i=1 (t ∗λi X i) ⊗ Y i is an optimal decomposition in the
definition (3.10). Indeed,

mnpq∑
i=1
= ‖t ∗λi X i ‖X ‖Y i ‖Y =

mnpq∑
i=1
|t ∗λi | = t ∗ = NX,Y (A),

where we have used the fact that the λi are the coefficients of a convex combi-
nation and that t ∗ is positive.

Similarly,A =
∑mnpq

i=1 t ∗λi (X i ⊗Y i) is the equivalent optimal decomposition in
the definition (3.11). In the casewhereA = 0, it is clear thatA = 0⊗0 = 1 ·0⊗0
is an optimal decomposition. Therefore, the number of dyads in any optimal
decomposition is at most mnpq , the dimension ofOm×n⊗p×q . �

187

Appendix B

Denoising experiments

This appendix provides the details of the denoising experiments in Chapter 5.

B.1 The synthetic denoising experiments

In this sectionwe describe the protocol for our synthetic denoising experiments,
discussing the parameters that we may vary at each step of the procedure. Our
subsequent numerical experiments result from a principled exploration of this
parameter space, and we will provide more detailed information about our
particular choices when discussing those specific experiments.

B.1.1 Overview

All of our synthetic denoising experiments result from creating and solving
individual denoising problems while systematically varying the parameters
used therein. In this section we summarize the procedure used to create sin-
gle denoising problems as well as our method for hierarchically testing the
parameters.

B.1.1.1 A single denoising problem

We split the creation and solution of a synthetic denoising problem into three
main stages, and we summarize the procedure:

1. Operator generation: We construct the true signal A\ ∈ Om×n⊗p×q , a
low-rank operator whose factors have distinguished structure.

188

a) We choose the dimensions m, n, p, q of the true signalA\ and its
rank r .

b) We generate left factors {X i }ri=1 (inMm×n) having a chosen structure,
and we do the same for the right factors {Y i }ri=1 (inMp×q).

c) We combine the factors to make the true signalA\ =
∑r

i=1 X i ⊗Y i .

d) We verify thatA\ indeed has rank r . If not, we repeat the generation
and combination steps.

e) In order to facilitate comparisons between different signals, we nor-
malizeA\ by dividing each factor by 1/

√
‖A\‖`2 . For simplicity, we

takeA\ to mean the normalized signal.

2. Noise generation: We corrupt the true signal with noise.

a) Generate a random operatorZ ∈ Om×n⊗p×q with independent stan-
dard normal entries, and select a noise level σ.

b) Create the noisy measurementsB =A\ + σZ.

3. Solver options and solution: We choose a regularizer and call on
altminsolve—and, if applicable, matsolve and sdpsolve—to compute
the estimate Â.

a) Select a regularizer.

b) Compute a range of appropriate penalty constants.

c) Specify options to pass to altminsolve, matsolve, and sdpsolve.

d) Call the solver(s) to compute the estimate Â, and compute the de-
sired error metrics.

Each of these steps has a set of parameters associated with it, and the following
sections describe them in more detail.

B.1.1.2 Testing the parameter space

We test the parameters in a hierarchical fashion. That is, for each combination
of operator generation parameters, we create one operatorA\. And then for
each noise power we form the noisy observationB. We denoise thisB using all
combinations of the solver options.

189

While we could generate a differentA\ for each call to the solvers, this hierar-
chical approach saves some time. It also matches our desires in testing. We
think that choosing the regularizer to match the operator structure will result
in better performance, and this procedure indeed tests all of the regularizers
for each generatedA\.

Note that we only test the combinations of factor structures that are unique up
to ordering. That is, if we test sparse left factors with Gaussian right factors, we
do not test Gaussian left factors with sparse right factors. We do, however, test
all combinations of nuclear norms.

Additionally, we only test cases where the number of dyads in the solver is at
least as large as the true operator rank. This makes sense as we wish to look at
what happens when we use fewer dyads than the maximal operator rank, but
we do not want the number of dyads to be smaller than the number actually
necessary to represent the true signal.

B.1.2 Operator generation

Wechoose dimensions forA\ ∈ Om×n⊗p×q and its rank r . Recall that the rank1 of
A\ is equivalent to the rank of thematrixmat(A\) (see Section 3.2.2). Therefore
the maximal rank ofA\ is min{mn, pq}.

Finally, wemust specify howexactlywewill generate thedyads used to construct
A\. We select one structure that is shared by all of the left factors X i and another
(possibly same) structure that is shared by all of the right factorsY i . In these
experiments we consider the following choices:

• Random Gaussian matrix: The entries of the matrix are independent
NORMAL(0, 1) variates.

• Random 1-sparse matrix: We set one randomly chosen entry of thematrix
to +1 or −1 with equal probability. The remaining entries are identically
zero.

• Random sign matrix: Each entry is independently filled by either +1 or −1
with equal probability.

1We take the rank of an operator to mean the smallest number of dyads that sum to that
operator. Sometimes rank is used interchangeably with order when referring to tensors.

190

• Random orthogonal matrix: We generate these matrices using a QR de-
composition of random Gaussian matrices. Some care must be taken
to ensure that we sample uniformly from the distribution of orthogonal
matrices. See [Mez07] for details.

• Random rank-1 matrix: We generate a random rank-1 matrix inMm×n as
the outer product of random unit vectors u ∈ Rm and v ∈ Rn .

We consider these structures precisely for their connection with the `2, `1, `∞,
S∞, and S1 norms respectively (see Section 3.3.6 and Table 3.1).

Note that just because a matrix can be written as the sum of r dyads does not
mean that it has rank equal to r . In some cases, choosing the factors of the
r dyads independently can easily lead to operators with rank smaller than r .
Sparse factors, in particular, are susceptible to this when the desired rank r is
close to its maximal value. We guard against this by checking the rank of the
generatedA\ and regenerating it if necessary.

B.1.3 Noise generation

For our experiments, we only generate randomnoise operatorsZwith indepen-
dent standard normal entries. So all that remains is for us to choose the noise
power σ2. It is more useful for us, however, to consider the signal-to-noise ratio
(SNR) measured in decibels (dB):

SNR := 10 log10

(
‖A\‖2`2
‖σZ‖2`2

)
≈ 10 log10

(
‖A\‖2`2

σ2 ·mnpq

)
.

In particular, since we normalize the true operator so that ‖A\‖`2 = 1, we can
find the noise power σ2 for a target SNR as

σ2 =
10−SNR/10

mnpq
.

B.1.4 Solver options

For each problem, we need to specify a nuclear norm as a regularizer. In
operfact, these are objects of type NucNorm_Sum, NucNorm_Prod, and NucNorm_-
SDR. We describe them in Section 4.6.2.

191

Of particular interest to us are the nuclear norms involving `2, `1, `∞, S∞, and
S1 norms since these correspond to the factor structures under consideration.
We also consider the relaxed nuclear norms involving the superquadratic `2
and `∞ norms.

In Section 5.3.2 we discuss the computation of the optimal penalty constant
when the regularizer is a norm, and we discuss the function that implements
this computation in Section B.2 of this appendix. Since these are estimates
of the optimal regularization constant, however, we also introduce an “offset”
parameter that allows us to test a range of constants. If we let λ0 denote the
computed constant, we pick offsets j and compute λ j = 2j λ0. Note that j = −∞
(i.e., λ−∞ = 0) corresponds to using no regularization.

We then choose a solver from our operfact.solversmodule (Section 4.7). This
choice is at least partially determinedby the regularizerweuse: inmost cases the
alternating minimization solver is the only one available. Some nuclear norms,
however, admit simple implementations with the convex solver matsolve. We
also use sdpsolve for the semidefinite relaxations.

Since each of our outer solvers relies on the Python package CVXPY [DB16]
to construct and solve the optimization problem, we must specify which ex-
ternal solver CVXPY should use. We call this the “inner” solver, and we use
SCS [OCPB16] for our experiments. This first-order solver has the advantage
of allowing us to test higher-dimensional problems than the default interior-
point solver CVXOPT. Because of the relatively slow convergence of first-order
methods, we pay for the better scaling by solving the problem to lower accuracy.

Each of the solvers that CVXPY calls has its own set of hyperparameters that we
may specify. In these experiments we use the default options for SCS, but we
enable warm-starting for our alternating minimization solver.

In problems where we use the alternating minimization solver altminsolve,
we have some additional parameters to specify. Most importantly, this solver
allows us explicitly specify the number of dyads we use in the solution. We
will explore the effect of this hyperparameter through experimentation, but we
should note now that if we restrict altminsolve to using a smaller number of
dyads than the rank of the true signalA\, it could not reconstruct this signal
even in the case of no noise. This follows directly from the definition of operator
rank. Therefore, we do not test combinations where the solver rank is less than

192

Operator generation
Operator shape 4 × 4 ⊗ 4 × 4
Operator rank 1, 2, 4, 8
Factor structures all combinations of random 1-sparse, Gaussian, sign,

rank-1, and orthogonal matrices
Noise generation
Noise level 0dB, 5dB, 10dB, 15dB, 20dB
Solver options
Regularizer all nuclear norms involving `1, `2, `∞, S1, and S∞

semidefinite relaxations for `2 ⊗ `∞, `∞ ⊗ `2, and `∞ ⊗ `∞
Regularization constant offsets = −∞, −3, −2, −1, 0, 1
Outer solver altminsolve; matsolve and sdpsolve, where applicable
Inner solver SCS
Inner solver options default

altminsolve only:
Number of dyads in solution 1, 2, 4, 8, 16
Relative convergence threshold 1 × 10−1, 5 × 10−2, 1 × 10−2, 5 × 10−3, 1 × 10−3, 5 × 10−4
Max. outer iterations 25

Table B.1: Denoising parameters, (4× 4⊗ 4× 4). This table lists the parameters
tested in our synthetic denoising experiment for operators of size (4× 4 ⊗ 4× 4).

the operator rank.

The alternating minimization solver terminates when the relative change in
the objective between outer iterations is below a given threshold or after we
have completed a maximal number of outer iterations. We supply both of these
thresholds to the solver.

B.1.5 Small experiment

The combinatorial nature of testing our parameter space requires that we con-
trol the amount of time it takes to solve any one particular problem. To that
end, we use small dimensions (4 × 4 ⊗ 4 × 4) to perform initial tests that inform
us on how to effectively limit the parameter space when running larger tests.
Table B.1 summarizes the full set of parameters we test over 10 trials in this
small-scale experiment.

B.1.6 A larger experiment

Following our initial experimentation, we narrow the parameter space and de-
noise larger operators. Table B.2 details these choices, and we again performed
10 trials of this experiment.

193

Operator generation
Operator shape 16 × 16 ⊗ 16 × 16
Operator rank 1, 2, 4, 8, 16
Factor structures all combinations of random 1-sparse, Gaussian, sign,

rank-1, and orthogonal matrices
Noise generation
Noise level 10dB
Solver options
Regularizer all nuclear norms involving `1, `2, `∞, S1, and S∞

semidefinite relaxations for `2 ⊗ `∞, `∞ ⊗ `2, and `∞ ⊗ `∞
Regularization constant offsets = −∞, −3, −2, −1, 0, 1
Outer solver altminsolve; matsolve and sdpsolve, where applicable
Inner solver SCS
Inner solver options default

altminsolve only:
Number of dyads in solution 1, 4, 16
Relative convergence threshold 1 × 10−1, 5 × 10−2, 1 × 10−2, 5 × 10−3, 1 × 10−3
Max. outer iterations 25

Table B.2: Denoising parameters, (16 × 16 ⊗ 16 × 16). This table lists the pa-
rameters tested in our synthetic denoising experiment for operators of size
(16 × 16 ⊗ 16 × 16).

B.2 The penconst_denoise function

The penconst_denoise function computes or estimates an appropriate penalty
constant λ0 = EN ∗X,Y (Z), where N ∗X,Y is the dual norm andZ is random noise
(see Section 5.3.2). We assume thatZ ∈ Om×n⊗p×q has independent standard
normal entries.

Table B.3 lists the output of this function for various combinations of factor
spaces X and Y . If a particular combination is not listed, the default λ0 =√

mn +
√

pq is used.

We note that in some cases the dual norm has a closed form, and we can use
Monte Carlo to estimate λ0. In two cases we use a call to an extreme value
distribution to compute the expectation.

Most of the cases, however, are heuristic guesses based on observations in the
denoising experiment. We found that these valuesworkedwell, but we also note
that we have not studied these choices over a large range of operator dimension.
We advise calibration of the penalty constant for any application, and we note
that using an offset like λ j = λ02j works well to test ranges of penalty constants.

194

X Y λ0
`1 `1 extreme value dist.2
`1 `2 extreme value dist.
`1 `∞ Monte Carlo
`1 S1 Monte Carlo
`1 S∞ Monte Carlo
`2 `1 extreme value dist.
`2 `2

√
mn +

√
pq

`2 `∞ (
√

mn +
√

pq)√pq (heuristic)
`2 S1

√
mn +

√
pq (heuristic)

`2 S∞ (
√

mn +
√

pq)
√
min{p, q}

`∞ `1 Monte Carlo
`∞ `2 (

√
mn +

√
pq)
√

mn (heuristic)
`∞ `∞ (

√
mn +

√
pq)√mnpq (heuristic)

`∞ S1 (
√

mn +
√

pq)
√

mn (heuristic)
`∞ S∞ (

√
mn +

√
pq)

√
mn ·min{p, q} (heuristic)

S1 `1 Monte Carlo
S1 `∞ (

√
mn +

√
pq)√pq (heuristic)

S1 S∞ (
√

mn +
√

pq)
√
min{p, q} (heuristic)

S∞ `1 Monte Carlo
S∞ `2 (

√
mn +

√
pq)

√
min{m, n} (heuristic)

S∞ `∞ (
√

mn +
√

pq)
√

pq ·min{m, n} (heuristic)
S∞ S1 (

√
mn +

√
pq)

√
min{m, n} (heuristic)

S∞ S∞ (
√

mn +
√

pq)
√

pq ·min{m, n} (heuristic)

Table B.3: The penconst_denoise function. This table lists the estimate of the
penalty constant λ0 = EN ∗X,Y (Z) for the X ⊗ Y nuclear norm with standard
Gaussian noise Z ∈ Om×n⊗p×q . In cases where the dual norm is easily com-
putable, we may use “Monte Carlo” to estimate λ0, and in two cases we appeal
to an extreme value distribution.

B.3 Additional figures and tables for the denoising

experiment

This section contains the additional figures and tables for the denoising experi-
ment referenced in Chapter 5.

195

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

L1, L1 L1, L2 L1, Linf L2, L1 L2, L2 Linf, L1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

051
0

1
5

2
0

S
N

R
 (

d
B

)

Figure B.1: Average error vs. penalty constant, convex solver. Each panel plots
the average squared error (5.6) of the denoising procedure over 10 trials versus
the penalty constant offset j (5.5) at various SNR (5.7) using the convex solver
matsolve on rank-1 operators. Lighter hues correspond to higher SNR (less
noise). Error bars show the minimum andmaximum error over the trials. We
facet the figure by factor structure (columns) and nuclear norms (rows).

196

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

L2, L2 L2, Linf Linf, L2 Linf, Linf

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

051
0

1
5

2
0

S
N

R
 (

d
B

)

Figure B.2: Average error vs. penalty constant, SDP solver. Each panel plots
the average squared error (5.6) of the denoising procedure over 10 trials versus
the penalty constant offset j (5.5) at various SNR (5.7) using the SDP solver
sdpsolve on rank-1 operators. Lighter hues correspond to higher SNR (less
noise). Error bars show the minimum andmaximum error over the trials. We
facet the figure by factor structure (columns) and nuclear norms (rows).

197

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

L1, L1 L1, L2 L1, Linf L2, L1 L2, L2 Linf, L1

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0

S
N

R
 (

d
B

)

avg. gain (dB)

2468

ra
n

k

Figure B.3: Average gain vs. SNR, convex solver. Each panel plots the average
gain in dB (5.9) of the denoising procedure over 10 trials versus the SNR (5.7)
using the convex solver matsolve. Lighter hues correspond to higher rank
operators. Error bars show the minimum and maximum gain over the trials.
We facet the figure by factor structure (columns) and nuclear norms (rows).

198

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

L2, L2 L2, Linf Linf, L2 Linf, Linf

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
.0

2
.5

5
.0

7
.5

1
0

.0

0
.0

2
.5

5
.0

7
.5

1
0

.0

0
.0

2
.5

5
.0

7
.5

1
0

.0

0
.0

2
.5

5
.0

7
.5

1
0

.0

S
N

R
 (

d
B

)

avg. gain (dB)

2468

ra
n

k

Figure B.4: Average gain vs. SNR, SDP solver. Each panel plots the average gain
in dB (5.9) of the denoising procedure over 10 trials versus the SNR (5.7) using
the SDP solver sdpsolve. Lighter hues correspond to higher rank operators.
Error bars show the minimum andmaximum gain over the trials. We facet the
figure by factor structure (columns) and nuclear norms (rows).

199

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

L1, L1 L1, L2 L1, Linf L2, L1 L2, L2 Linf, L1

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0

S
N

R
 (

d
B

)

avg. gain (dB)

m
e

th
o

d c
o

n
v
e

x

p
ro

d
u

c
t

s
u

m

Figure B.5: Average gain vs. SNR, convex and nonconvex solvers (full). Each
panel plots the average gain in dB (5.9) of the denoising procedure over 10
trials versus the SNR (5.7) with the color/shape indicating the solution method.
We test the convex solver matsolve and both the sum (4.3) and product (4.2)
formulations of the alternating minimization solver altminsolvewith solver
rank 16 and convergence tolerance ε = 5 × 10−4 in (5.10). All operators have
rank 1. Error bars show the minimum andmaximum gain over the trials. We
facet the figure by factor structure (columns) and nuclear norms (rows).

200

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

L2, L2 L2, Linf Linf, L2 Linf, Linf

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
.0

2
.5

5
.0

7
.5

1
0

.0

0
.0

2
.5

5
.0

7
.5

1
0

.0

0
.0

2
.5

5
.0

7
.5

1
0

.0

0
.0

2
.5

5
.0

7
.5

1
0

.0

S
N

R
 (

d
B

)

avg. gain (dB)

m
e

th
o

d n
o

n
c
o

n
v
e

x

S
D

P

Figure B.6: Average gain vs. SNR, SDP and nonconvex solvers (full). Each
panel plots the average gain in dB (5.9) of the denoising procedure over 10
trials versus the SNR (5.7) with the color/shape indicating the solution method.
We test both the SDP solver sdpsolve and the alternating minimization solver
altminsolve (with solver rank 16 and convergence tolerance ε = 5 × 10−4
in (5.10)) on relaxed nuclear norms. All operators have rank 1. Error bars show
the minimum andmaximum gain over the trials. We facet the figure by factor
structure (columns) and relaxed nuclear norms (rows).

201

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

NucNorm_Prod: L1, L1 NucNorm_Prod: L2, L2 NucNorm_Prod: Linf, Linf NucNorm_Prod: S1, S1 NucNorm_Prod: Sinf, Sinf NucNorm_Sum: L2, L1 NucNorm_Sum: Linf, L2 NucNorm_Sum: S1, Linf NucNorm_Sum: Sinf, S1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

051
0

1
5

2
0

S
N

R
 (

d
B

)

Figure B.7a: Average error vs. penalty constant, alternating minimization solver.
Each panel plots the average squared error (5.6) of the denoising procedure over 10
trials versus the penalty constant offset j (5.5) at various SNR (5.7) using the alternating
minimization solver altminsolve on rank-1 operators. All problems use solver rank 16
and convergence tolerance ε = 5 × 10−4 in (5.10). Lighter hues correspond to higher
SNR (less noise). Error bars show the minimum andmaximum error over the trials. We
facet the figure by factor structure (columns) and nuclear norms (rows).

202

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

NucNorm_Prod: L1, L2 NucNorm_Prod: L2, Linf NucNorm_Prod: Linf, S1 NucNorm_Prod: S1, Sinf NucNorm_Sum: L1, L1 NucNorm_Sum: L2, L2 NucNorm_Sum: Linf, Linf NucNorm_Sum: S1, S1 NucNorm_Sum: Sinf, Sinf

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

051
0

1
5

2
0

S
N

R
 (

d
B

)

Figure B.7b: Average error vs. penalty constant, alternating minimization solver.
(continued)

203

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

NucNorm_Prod: L1, Linf NucNorm_Prod: L2, S1 NucNorm_Prod: Linf, Sinf NucNorm_Prod: Sinf, L1 NucNorm_SDR: L2, L2 NucNorm_Sum: L1, L2 NucNorm_Sum: L2, Linf NucNorm_Sum: Linf, S1 NucNorm_Sum: S1, Sinf

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

051
0

1
5

2
0

S
N

R
 (

d
B

)

Figure B.7c: Average error vs. penalty constant, alternating minimization solver.
(continued)

204

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

NucNorm_Prod: L1, S1 NucNorm_Prod: L2, Sinf NucNorm_Prod: S1, L1 NucNorm_Prod: Sinf, L2 NucNorm_SDR: L2, Linf NucNorm_Sum: L1, Linf NucNorm_Sum: L2, S1 NucNorm_Sum: Linf, Sinf NucNorm_Sum: Sinf, L1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

051
0

1
5

2
0

S
N

R
 (

d
B

)

Figure B.7d: Average error vs. penalty constant, alternating minimization solver.
(continued)

205

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

NucNorm_Prod: L1, Sinf NucNorm_Prod: Linf, L1 NucNorm_Prod: S1, L2 NucNorm_Prod: Sinf, Linf NucNorm_SDR: Linf, L2 NucNorm_Sum: L1, S1 NucNorm_Sum: L2, Sinf NucNorm_Sum: S1, L1 NucNorm_Sum: Sinf, L2

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

051
0

1
5

2
0

S
N

R
 (

d
B

)

Figure B.7e: Average error vs. penalty constant, alternating minimization solver.
(continued)

206

g
a

u
s
s
ia

n
,
g

a
u

s
s
ia

n
g

a
u

s
s
ia

n
,
lo

w
ra

n
k

g
a

u
s
s
ia

n
,
o

rt
h

g
a

u
s
s
ia

n
,
s
ig

n
lo

w
ra

n
k
,
lo

w
ra

n
k

lo
w

ra
n

k
,
o

rt
h

o
rt

h
,
o

rt
h

s
ig

n
,
lo

w
ra

n
k

s
ig

n
,
o

rt
h

s
ig

n
,
s
ig

n
s
p

a
rs

e
,
g

a
u

s
s
ia

n
s
p

a
rs

e
,
lo

w
ra

n
k

s
p

a
rs

e
,
o

rt
h

s
p

a
rs

e
,
s
ig

n
s
p

a
rs

e
,
s
p

a
rs

e

NucNorm_Prod: L2, L1 NucNorm_Prod: Linf, L2 NucNorm_Prod: S1, Linf NucNorm_Prod: Sinf, S1 NucNorm_SDR: Linf, Linf NucNorm_Sum: L1, Sinf NucNorm_Sum: Linf, L1 NucNorm_Sum: S1, L2 NucNorm_Sum: Sinf, Linf

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

-I
n

f-
3

-2
-1

0
1

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

051
0

1
5

2
0

S
N

R
 (

d
B

)

Figure B.7f: Average error vs. penalty constant, alternating minimization solver.
(continued)

207

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L1, L1 NucNorm_Prod: L2, L2 NucNorm_Prod: Linf, Linf NucNorm_Prod: S1, S1 NucNorm_Prod: Sinf, Sinf NucNorm_Sum: L2, L1 NucNorm_Sum: Linf, L2 NucNorm_Sum: S1, Linf NucNorm_Sum: Sinf, S1

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0 0

1
0

2
0

3
0

S
N

R
 (

d
B

)

avg. gain (dB)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

to
l.

(l
o

g
)

Figure B.8a: Average gain vs. SNR, alternatingminimization solver. Each panel plots
the average gain in dB (5.9) of the denoising procedure over 10 trials versus the SNR (5.7)
with the color indicating the relative convergence tolerance (5.10) of the alternating
minimization solver on a logarithmic scale. Lighter hues correspond to looser toler-
ances. Error bars show the minimum andmaximum gain over the trials. We facet the
figure by factor structure (columns) and nuclear norms (rows).

208

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L1, L2 NucNorm_Prod: L2, Linf NucNorm_Prod: Linf, S1 NucNorm_Prod: S1, Sinf NucNorm_Sum: L1, L1 NucNorm_Sum: L2, L2 NucNorm_Sum: Linf, Linf NucNorm_Sum: S1, S1 NucNorm_Sum: Sinf, Sinf

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0

S
N

R
 (

d
B

)

avg. gain (dB)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

to
l.

(l
o

g
)

Figure B.8b: Average gain vs. SNR, alternatingminimization solver. (continued)

209

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L1, Linf NucNorm_Prod: L2, S1 NucNorm_Prod: Linf, Sinf NucNorm_Prod: Sinf, L1 NucNorm_SDR: L2, L2 NucNorm_Sum: L1, L2 NucNorm_Sum: L2, Linf NucNorm_Sum: Linf, S1 NucNorm_Sum: S1, Sinf

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0

S
N

R
 (

d
B

)

avg. gain (dB)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

to
l.

(l
o

g
)

Figure B.8c: Average gain vs. SNR, alternatingminimization solver. (continued)

210

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L1, S1 NucNorm_Prod: L2, Sinf NucNorm_Prod: S1, L1 NucNorm_Prod: Sinf, L2 NucNorm_SDR: L2, Linf NucNorm_Sum: L1, Linf NucNorm_Sum: L2, S1 NucNorm_Sum: Linf, Sinf NucNorm_Sum: Sinf, L1

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0 05

1
0

1
5

2
0

S
N

R
 (

d
B

)

avg. gain (dB)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

to
l.

(l
o

g
)

Figure B.8d: Average gain vs. SNR, alternatingminimization solver. (continued)

211

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L1, Sinf NucNorm_Prod: Linf, L1 NucNorm_Prod: S1, L2 NucNorm_Prod: Sinf, Linf NucNorm_SDR: Linf, L2 NucNorm_Sum: L1, S1 NucNorm_Sum: L2, Sinf NucNorm_Sum: S1, L1 NucNorm_Sum: Sinf, L2

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5

S
N

R
 (

d
B

)

avg. gain (dB)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

to
l.

(l
o

g
)

Figure B.8e: Average gain vs. SNR, alternatingminimization solver. (continued)

212

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L2, L1 NucNorm_Prod: Linf, L2 NucNorm_Prod: S1, Linf NucNorm_Prod: Sinf, S1 NucNorm_SDR: Linf, Linf NucNorm_Sum: L1, Sinf NucNorm_Sum: Linf, L1 NucNorm_Sum: S1, L2 NucNorm_Sum: Sinf, Linf

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5 05

1
0

1
5

S
N

R
 (

d
B

)

avg. gain (dB)

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

to
l.

(l
o

g
)

Figure B.8f: Average gain vs. SNR, alternatingminimization solver. (continued)

213

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L1, L1 NucNorm_Prod: L2, L2 NucNorm_Prod: Linf, Linf NucNorm_Prod: S1, S1 NucNorm_Prod: Sinf, Sinf NucNorm_Sum: L2, L1 NucNorm_Sum: Linf, L2 NucNorm_Sum: S1, Linf NucNorm_Sum: Sinf, S1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

481
2

1
6

s
o

lv
e

r
ra

n
k

Figure B.9a: Average error vs. penalty constant, solver rank (full). Each panel plots
the average squared error (5.6) of the denoising procedure over 10 trials versus the
penalty constant offset j (5.5) at various solver ranks (r). Lighter hues correspond
to higher solver ranks (i.e., more dyads used in the solution). Error bars show the
minimum andmaximum error over the trials. We facet the figure by factor structure
(columns) and nuclear norm (rows). All tests were performed at an SNR (5.7) of 10dB,
and all operators have rank 1.

214

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L1, L2 NucNorm_Prod: L2, Linf NucNorm_Prod: Linf, S1 NucNorm_Prod: S1, Sinf NucNorm_Sum: L1, L1 NucNorm_Sum: L2, L2 NucNorm_Sum: Linf, Linf NucNorm_Sum: S1, S1 NucNorm_Sum: Sinf, Sinf

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

0
.0

0
1

0
.1

0
0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

481
2

1
6

s
o

lv
e

r
ra

n
k

Figure B.9b: Average error vs. penalty constant, solver rank (full). (continued)

215

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L1, Linf NucNorm_Prod: L2, S1 NucNorm_Prod: Linf, Sinf NucNorm_Prod: Sinf, L1 NucNorm_SDR: L2, L2 NucNorm_Sum: L1, L2 NucNorm_Sum: L2, Linf NucNorm_Sum: Linf, S1 NucNorm_Sum: S1, Sinf

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

481
2

1
6

s
o

lv
e

r
ra

n
k

Figure B.9c: Average error vs. penalty constant, solver rank (full). (continued)

216

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L1, S1 NucNorm_Prod: L2, Sinf NucNorm_Prod: S1, L1 NucNorm_Prod: Sinf, L2 NucNorm_SDR: L2, Linf NucNorm_Sum: L1, Linf NucNorm_Sum: L2, S1 NucNorm_Sum: Linf, Sinf NucNorm_Sum: Sinf, L1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

481
2

1
6

s
o

lv
e

r
ra

n
k

Figure B.9d: Average error vs. penalty constant, solver rank (full). (continued)

217

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L1, Sinf NucNorm_Prod: Linf, L1 NucNorm_Prod: S1, L2 NucNorm_Prod: Sinf, Linf NucNorm_SDR: Linf, L2 NucNorm_Sum: L1, S1 NucNorm_Sum: L2, Sinf NucNorm_Sum: S1, L1 NucNorm_Sum: Sinf, L2

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

0
.0

1

1
.0

0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

481
2

1
6

s
o

lv
e

r
ra

n
k

Figure B.9e: Average error vs. penalty constant, solver rank (full). (continued)

218

g
a

u
s
s
ia

n
,

g
a

u
s
s
ia

n
g

a
u

s
s
ia

n
,

lo
w

ra
n

k
g

a
u

s
s
ia

n
,

o
rt

h
g

a
u

s
s
ia

n
,

s
ig

n
lo

w
ra

n
k
,

lo
w

ra
n

k
lo

w
ra

n
k
,

o
rt

h
o

rt
h

,
o

rt
h

s
ig

n
,

lo
w

ra
n

k
s
ig

n
,

o
rt

h
s
ig

n
,

s
ig

n
s
p

a
rs

e
,

g
a

u
s
s
ia

n
s
p

a
rs

e
,

lo
w

ra
n

k
s
p

a
rs

e
,

o
rt

h
s
p

a
rs

e
,

s
ig

n
s
p

a
rs

e
,

s
p

a
rs

e

NucNorm_Prod: L2, L1 NucNorm_Prod: Linf, L2 NucNorm_Prod: S1, Linf NucNorm_Prod: Sinf, S1 NucNorm_SDR: Linf, Linf NucNorm_Sum: L1, Sinf NucNorm_Sum: Linf, L1 NucNorm_Sum: S1, L2 NucNorm_Sum: Sinf, Linf

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

-I
n

f
-3

-2
-1

0
1

0
.0

1

0
.1

0

1
.0

0

0
.0

1

0
.1

0

1
.0

0

0
.0

1

0
.1

0

1
.0

0

0
.0

1

0
.1

0

1
.0

0

0
.0

1

0
.1

0

1
.0

0

0
.0

1

0
.1

0

1
.0

0

0
.0

1

0
.1

0

1
.0

0

0
.0

1

0
.1

0

1
.0

0

0
.0

1

0
.1

0

1
.0

0

j:
p

e
n

a
lty

 c
o

n
s
ta

n
t

o
ff

s
e

t

avg. squared error

481
2

1
6

s
o

lv
e

r
ra

n
k

Figure B.9f: Average error vs. penalty constant, solver rank (full). (continued)

219

Operator shape: 4 × 4 ⊗ 4 × 4 Rank: 2 SNR: 15dB Solver: altmin (NucNorm_Sum) Solver rank: 16 Tolerance: ε = 5 × 10−4
Factors `1, `1 `1, `2 `1, `∞ `1, S1 `1, S∞ `2, `1 `2, `2 `2, `∞ `2, S1 `2, S∞ `∞, `1 `∞, `2 `∞, `∞ `∞, S1 `∞, S∞ S1, `1 S1, `2 S1, `∞ S1, S1 S1, S∞ S∞, `1 S∞, `2 S∞, `∞ S∞, S1 S∞, S∞
gaus, gaus 0.4 0.8 -0.2 0.6 0.5 0.9 3.9 1.2 1.8 2.0 0.1 1.4 -0.2 0.4 0.3 0.5 2.0 0.2 0.9 0.9 0.6 2.1 0.2 0.8 0.9
gaus, lr 0.9 1.1 0.2 2.2 0.6 1.2 4.2 1.2 5.0 1.9 0.3 1.6 0.1 1.4 0.3 0.9 2.3 0.3 2.9 0.9 0.8 2.3 0.3 2.6 0.8
gaus, orth 0.1 0.8 0.2 0.3 1.2 0.6 3.7 1.6 1.3 4.5 -0.2 1.0 -0.1 -0.0 0.8 0.2 1.7 0.4 0.6 1.9 0.2 1.7 0.5 0.5 2.0
gaus, sign 0.3 1.0 1.7 0.8 0.7 0.8 4.0 5.7 1.8 2.3 0.0 1.4 1.3 0.3 0.5 0.5 2.1 2.5 1.0 1.0 0.4 2.0 2.3 0.8 1.0
lr, lr 0.6 0.9 0.1 2.1 0.4 1.0 3.9 1.2 4.8 1.8 0.0 1.3 -0.1 1.1 0.0 1.9 3.9 1.2 6.5 1.8 0.3 1.9 -0.0 1.8 0.5
lr, orth 0.6 1.0 0.5 0.5 1.9 0.8 3.7 1.4 1.5 3.8 0.0 1.3 0.0 0.1 0.9 1.8 3.7 2.0 1.9 6.1 0.3 1.9 0.1 0.5 1.6
orth, orth 0.0 0.6 0.3 0.4 1.2 0.4 3.3 1.3 1.3 3.5 -0.2 1.0 0.0 -0.2 1.4 0.0 2.0 0.1 0.7 1.1 0.6 3.8 1.7 1.1 5.3
sign, lr 0.8 1.5 0.3 2.3 1.0 1.3 4.3 1.1 5.2 2.2 2.4 4.9 0.9 6.8 2.0 0.9 2.6 0.3 3.0 1.2 1.0 2.4 0.3 2.8 0.9
sign, orth 0.2 1.3 0.3 1.1 1.1 0.6 3.6 1.7 1.5 3.9 1.3 4.5 2.1 1.8 6.2 0.4 1.9 0.7 0.9 2.1 0.5 2.0 0.8 0.7 2.2
sign, sign 1.3 1.2 1.4 1.1 0.8 0.9 3.8 4.9 1.9 2.2 1.2 4.5 7.6 2.6 2.5 0.7 2.1 2.7 1.1 1.1 0.6 2.2 2.7 1.0 1.2
sparse, gaus 4.1 5.5 3.4 4.9 4.7 0.7 3.9 1.4 1.7 2.1 -0.1 0.6 -0.1 -0.1 -0.1 1.7 4.7 1.6 2.4 2.6 0.3 2.2 0.4 0.8 0.9
sparse, lr 4.5 5.9 3.6 7.7 4.6 1.1 4.1 1.4 4.7 1.7 0.0 0.9 0.0 0.6 0.0 2.3 4.5 1.7 6.3 2.3 0.5 2.4 0.4 2.2 0.7
sparse, orth 4.1 5.7 4.6 5.0 8.1 0.8 4.0 1.5 1.7 4.7 -0.1 0.9 -0.1 -0.1 0.1 1.6 4.4 2.0 2.3 6.7 0.3 3.1 0.4 1.2 1.8
sparse, sign 4.2 5.7 9.6 5.7 4.9 0.6 3.9 5.3 1.8 2.1 -0.1 0.8 0.3 -0.1 -0.1 1.8 4.5 7.4 3.0 2.7 0.5 2.3 2.3 0.8 0.8
sparse, sparse 12.4 5.7 2.8 8.4 4.2 5.9 3.9 0.6 5.0 2.0 2.8 0.8 0.2 1.2 0.2 8.3 4.7 1.1 6.2 2.7 4.8 2.2 0.2 2.8 0.9

Operator shape: 4 × 4 ⊗ 4 × 4 Rank: 4 SNR: 15dB Solver: altmin (NucNorm_Sum) Solver rank: 16 Tolerance: ε = 5 × 10−4
Factors `1, `1 `1, `2 `1, `∞ `1, S1 `1, S∞ `2, `1 `2, `2 `2, `∞ `2, S1 `2, S∞ `∞, `1 `∞, `2 `∞, `∞ `∞, S1 `∞, S∞ S1, `1 S1, `2 S1, `∞ S1, S1 S1, S∞ S∞, `1 S∞, `2 S∞, `∞ S∞, S1 S∞, S∞
gaus, gaus -0.1 0.4 -0.1 0.3 0.2 0.2 1.7 0.7 0.8 1.1 -0.2 0.7 -0.2 0.0 0.2 0.2 0.9 0.0 0.3 0.4 0.1 1.0 0.2 0.3 0.4
gaus, lr 0.3 0.4 -0.0 0.8 0.1 0.4 1.7 0.5 1.9 0.7 -0.0 0.8 -0.0 0.7 -0.0 0.4 1.0 0.1 1.1 0.3 0.3 1.1 -0.0 1.1 0.3
gaus, orth 0.3 0.8 0.4 0.7 0.9 0.7 2.2 1.4 1.1 2.4 0.3 1.2 0.3 0.5 0.9 0.6 1.5 0.8 0.7 1.3 0.5 1.5 0.7 0.7 1.2
gaus, sign 0.3 0.6 0.7 0.5 0.5 0.7 2.0 2.4 1.1 1.4 0.1 1.1 1.0 0.4 0.5 0.6 1.1 1.0 0.6 0.7 0.5 1.3 1.2 0.6 0.7
lr, lr 0.6 0.6 0.0 1.2 0.4 0.6 2.1 0.8 2.4 1.1 0.0 0.8 0.0 0.6 0.1 1.1 2.4 0.5 3.6 0.8 0.3 1.2 0.1 0.8 0.3
lr, orth 0.3 0.7 0.6 0.6 1.1 0.5 2.0 1.4 1.0 2.0 0.1 0.8 0.1 0.1 0.4 0.8 2.1 1.4 1.0 3.3 0.1 1.1 0.3 0.4 0.8
orth, orth 0.3 0.7 0.3 0.6 0.8 0.6 2.1 1.3 1.1 2.2 0.2 1.3 0.6 0.4 1.3 0.4 1.1 0.4 0.5 0.9 0.8 2.2 1.2 0.8 3.4
sign, lr 0.4 0.6 -0.1 0.8 0.3 0.5 1.8 0.5 2.1 0.8 0.9 2.2 0.2 3.8 0.5 0.4 1.0 0.0 1.1 0.3 0.4 1.2 0.0 1.2 0.2
sign, orth -0.0 0.4 -0.2 0.4 0.3 0.1 1.5 0.8 0.7 1.6 0.2 1.6 0.7 0.4 3.3 -0.0 0.7 0.1 0.2 0.5 -0.0 1.0 0.2 0.2 0.8
sign, sign 1.0 0.8 0.4 0.7 0.6 0.6 2.0 2.3 1.1 1.3 0.2 1.9 4.9 0.8 1.3 0.6 1.1 1.0 0.6 0.6 0.5 1.4 1.4 0.6 0.7
sparse, gaus 2.7 3.8 2.2 2.8 2.7 0.4 1.7 0.7 1.0 1.0 0.0 0.3 0.0 0.0 0.0 0.9 2.3 0.9 1.6 1.2 0.2 1.0 0.1 0.5 0.5
sparse, lr 2.8 3.3 1.4 5.6 2.1 0.1 1.4 0.3 1.7 0.4 -0.2 0.1 -0.2 -0.2 -0.2 0.8 1.9 0.2 3.1 0.5 -0.1 0.7 -0.2 0.5 -0.1
sparse, orth 3.1 4.1 3.0 2.8 6.3 0.4 2.0 1.2 0.8 2.3 0.0 0.5 0.0 0.0 0.1 0.9 2.6 1.3 1.1 3.6 0.3 1.4 0.5 0.5 1.1
sparse, sign 2.6 3.7 7.2 2.9 2.7 0.4 1.7 1.7 0.8 1.1 0.5 0.3 -0.0 -0.0 -0.0 0.8 2.1 3.8 1.4 1.4 0.3 1.0 0.8 0.3 0.5
sparse, sparse 10.0 3.9 1.5 6.4 2.6 4.1 1.9 0.3 2.6 1.3 1.5 0.3 0.1 0.3 0.1 6.3 2.4 0.2 3.6 1.3 3.1 1.1 0.1 1.4 0.4

Table B.4: Denoising gains, 4 × 4 ⊗ 4 × 4. These tables show the gains in dB (5.9) for denoising 4 × 4 ⊗ 4 × 4 operators of various
ranks at all tested combinations of factor structure and nuclear norm. Bold numbers indicate the highest value(s) in each row
(i.e., the nuclear norm that empirically denoises the factor structure best). All results use the alternating minimization solver
with 16 dyads, a convergence tolerance ε = 5 × 10−4 in (5.10), and SNR (5.7) of 15dB. (Key: gaus = Gaussian, lr = low-rank, orth =
orthogonal.)

220

Operator shape: 16 × 16 ⊗ 16 × 16 Rank: 2 SNR: 10dB Solver: altmin (NucNorm_Sum) Solver rank: 16 Tolerance: ε = 1 × 10−3
Factors `1, `1 `1, `2 `1, `∞ `1, S1 `1, S∞ `2, `1 `2, `2 `2, `∞ `2, S1 `2, S∞ `∞, `1 `∞, `2 `∞, `∞ `∞, S1 `∞, S∞ S1, `1 S1, `2 S1, `∞ S1, S1 S1, S∞ S∞, `1 S∞, `2 S∞, `∞ S∞, S1 S∞, S∞
gaus, gaus 7.0 9.9 7.0 7.9 7.6 9.2 12.2 8.1 9.8 12.2 7.0 8.0 7.0 7.0 7.1 7.6 11.0 7.1 8.2 9.2 7.4 11.0 7.1 9.0 8.1
gaus, lr 7.0 9.9 7.0 12.0 7.0 9.3 12.3 7.9 15.6 9.6 7.0 8.1 7.0 10.5 7.0 7.9 11.0 7.0 16.2 7.4 7.6 10.9 7.0 14.1 7.0
gaus, orth 7.0 9.9 7.0 7.4 10.0 9.1 12.1 9.0 9.6 16.6 7.0 8.0 7.0 7.0 8.7 7.6 10.9 8.0 7.8 11.4 7.0 10.8 7.7 8.6 10.4
gaus, sign 7.0 9.9 10.8 7.9 7.6 10.0 12.2 15.0 9.8 12.1 7.0 8.0 8.0 7.0 7.0 8.2 11.0 11.8 8.2 9.2 7.9 11.2 9.9 9.0 8.1
lr, lr 6.9 9.7 6.9 11.8 6.9 9.1 12.0 8.0 14.2 9.6 6.9 7.7 6.9 9.8 6.9 11.2 15.7 10.3 21.0 16.1 6.9 9.6 6.9 12.1 6.9
lr, orth 7.0 9.7 7.0 7.5 9.8 9.1 12.0 8.3 9.4 14.8 7.0 7.8 7.0 7.0 7.5 11.7 15.4 11.1 12.3 19.0 7.0 10.0 7.0 7.0 8.9
orth, orth 7.0 10.0 7.0 7.3 9.9 9.2 12.2 8.5 9.6 15.1 7.0 8.5 7.0 7.0 9.1 7.2 11.1 7.1 7.8 10.8 9.4 13.2 8.4 10.1 13.9
sign, lr 7.0 10.9 7.0 13.2 7.0 9.2 12.2 7.8 14.1 9.6 10.4 12.5 7.0 17.4 8.0 7.8 11.0 7.0 16.5 7.4 7.6 11.0 7.0 14.2 7.0
sign, orth 7.0 10.9 7.0 8.7 10.3 9.2 12.3 8.3 9.6 15.0 10.4 12.5 7.7 10.4 15.7 7.6 11.1 7.3 8.2 10.9 7.3 10.9 7.3 8.7 9.6
sign, sign 7.0 10.8 12.1 8.8 8.1 9.9 12.2 14.4 9.8 12.2 12.6 12.5 12.4 10.8 9.5 8.3 10.9 11.7 8.2 9.1 7.8 11.0 10.4 8.9 8.2
sparse, gaus 14.9 20.2 14.1 14.4 20.5 9.2 15.3 8.7 10.2 11.9 7.0 7.0 7.0 7.0 7.0 12.4 17.9 11.9 13.7 18.2 7.0 9.7 7.0 8.0 7.7
sparse, lr 14.7 20.2 13.6 22.4 19.2 9.2 15.3 7.9 14.3 9.6 7.0 7.0 7.0 7.0 7.0 12.4 18.7 9.7 21.7 16.6 7.0 10.2 7.0 12.8 7.0
sparse, orth 15.1 19.7 13.8 14.4 20.6 9.1 15.1 8.5 9.6 14.8 7.0 7.0 7.0 7.0 7.0 12.5 17.7 11.3 12.8 19.1 7.0 10.5 7.0 8.3 9.5
sparse, sign 16.7 19.7 22.9 14.3 20.3 9.9 15.1 14.5 9.9 12.1 7.0 7.0 7.0 7.0 7.0 12.4 17.6 21.7 13.3 17.9 7.0 10.2 10.0 8.0 8.2
sparse, sparse 29.6 20.8 11.8 24.6 19.5 20.6 15.3 7.0 19.4 9.6 12.0 7.0 7.0 7.7 7.0 22.9 18.8 7.4 22.4 16.2 17.7 10.0 7.0 14.2 7.0

Operator shape: 16 × 16 ⊗ 16 × 16 Rank: 4 SNR: 10dB Solver: altmin (NucNorm_Sum) Solver rank: 16 Tolerance: ε = 1 × 10−3
Factors `1, `1 `1, `2 `1, `∞ `1, S1 `1, S∞ `2, `1 `2, `2 `2, `∞ `2, S1 `2, S∞ `∞, `1 `∞, `2 `∞, `∞ `∞, S1 `∞, S∞ S1, `1 S1, `2 S1, `∞ S1, S1 S1, S∞ S∞, `1 S∞, `2 S∞, `∞ S∞, S1 S∞, S∞
gaus, gaus 7.2 9.6 7.2 7.2 7.2 9.3 10.4 8.0 9.2 9.5 7.2 7.8 7.2 7.2 7.3 7.2 9.9 7.2 7.2 8.3 7.2 9.3 7.2 8.1 7.8
gaus, lr 7.2 9.7 7.2 11.4 7.2 9.1 10.3 7.4 13.7 8.6 7.2 7.6 7.2 9.7 7.2 7.2 9.8 7.2 11.0 7.2 7.2 9.2 7.2 12.3 7.2
gaus, orth 7.2 9.7 7.2 7.2 8.4 9.4 10.4 8.0 9.0 10.7 7.2 7.9 7.2 7.2 8.3 7.2 9.8 7.3 7.2 9.7 7.2 9.3 7.4 7.9 8.9
gaus, sign 7.2 9.7 8.9 7.2 7.2 9.9 10.4 12.9 9.2 9.3 7.2 7.9 8.3 7.2 7.5 8.5 9.9 10.7 7.2 8.3 7.4 9.3 9.5 8.1 7.9
lr, lr 7.2 9.8 7.2 11.6 7.2 9.2 10.4 7.5 14.0 8.5 7.2 7.2 7.2 8.3 7.2 11.5 12.9 8.9 19.5 11.0 7.2 8.4 7.2 10.7 7.2
lr, orth 7.2 9.7 7.2 7.2 8.9 9.3 10.5 8.2 9.0 10.6 7.2 7.5 7.2 7.2 7.4 11.6 13.0 10.3 11.5 17.8 7.2 8.1 7.2 7.2 7.7
orth, orth 7.2 9.8 7.2 7.2 8.4 9.2 10.4 8.2 9.0 10.7 7.2 7.8 7.2 7.2 8.4 7.2 9.9 7.2 7.2 9.2 8.0 12.0 7.6 8.8 13.8
sign, lr 7.2 10.1 7.2 11.5 7.2 9.2 10.4 7.5 13.7 8.6 9.0 12.7 7.2 14.8 7.9 7.2 9.9 7.2 11.3 7.2 7.2 9.3 7.2 11.9 7.2
sign, orth 7.2 10.1 7.2 8.5 8.2 9.3 10.3 8.0 9.0 10.4 8.4 13.1 7.7 9.5 13.9 7.2 9.8 7.2 7.2 9.5 7.2 9.3 7.3 8.0 9.1
sign, sign 7.2 10.2 7.6 8.5 7.6 10.0 10.4 13.8 9.2 9.6 7.2 12.9 15.9 10.1 9.3 8.3 9.9 10.6 7.2 8.5 7.2 9.4 9.4 8.1 8.0
sparse, gaus 14.3 15.9 12.5 13.1 14.3 9.2 10.3 8.0 9.3 9.4 7.2 7.2 7.2 7.2 7.2 11.8 13.7 9.8 12.8 12.1 7.2 8.5 7.2 7.9 7.8
sparse, lr 14.5 16.3 12.2 19.0 14.0 9.3 10.4 7.7 14.2 8.6 7.3 7.3 7.3 7.3 7.3 11.8 13.6 8.9 18.7 10.9 7.3 9.2 7.3 11.1 7.3
sparse, orth 14.6 16.1 12.5 13.4 15.6 9.3 10.4 8.1 9.1 10.7 7.3 7.3 7.3 7.3 7.3 11.9 14.3 10.5 12.8 16.5 7.3 8.6 7.3 8.2 8.5
sparse, sign 15.1 16.0 19.8 13.4 14.1 10.0 10.4 13.3 9.3 9.4 7.2 7.2 7.2 7.2 7.2 12.1 14.3 18.2 12.7 12.0 8.0 8.5 8.8 8.2 7.9
sparse, sparse 22.5 17.7 10.1 19.9 16.1 15.9 12.3 7.2 14.3 9.1 9.5 7.2 7.2 7.2 7.2 20.3 14.6 7.2 18.8 11.7 14.9 9.0 7.2 11.9 7.2

Table B.9a: Denoising gains, 16 × 16 ⊗ 16 × 16. These tables show the gains in dB (5.9) for denoising 16 × 16 ⊗ 16 × 16 operators of various
ranks at all tested combinations of factor structure and nuclear norm. Bold numbers indicate the highest value(s) in each row (i.e., the nuclear
norm that empirically denoises the factor structure best). All results use the alternating minimization solver with 16 dyads, a convergence
tolerance ε = 1 × 10−3 in (5.10), and SNR (5.7) of 10dB. (Key: gaus = Gaussian, lr = low-rank, orth = orthogonal.)

221

Operator shape: 16 × 16 ⊗ 16 × 16 Rank: 8 SNR: 10dB Solver: altmin (NucNorm_Sum) Solver rank: 16 Tolerance: ε = 1 × 10−3
Factors `1, `1 `1, `2 `1, `∞ `1, S1 `1, S∞ `2, `1 `2, `2 `2, `∞ `2, S1 `2, S∞ `∞, `1 `∞, `2 `∞, `∞ `∞, S1 `∞, S∞ S1, `1 S1, `2 S1, `∞ S1, S1 S1, S∞ S∞, `1 S∞, `2 S∞, `∞ S∞, S1 S∞, S∞
gaus, gaus 7.7 7.7 7.7 7.7 7.7 7.7 9.2 7.7 8.8 8.2 7.7 7.7 7.7 7.7 7.7 7.7 9.1 7.7 7.7 7.7 7.7 8.3 7.7 7.7 7.7
gaus, lr 7.7 7.7 7.7 10.3 7.7 7.7 9.1 7.7 11.5 7.7 7.7 7.7 7.7 8.7 7.7 7.7 9.0 7.7 10.6 7.7 7.7 8.2 7.7 10.8 7.7
gaus, orth 7.7 7.7 7.7 7.7 7.7 7.7 9.1 7.7 8.7 8.5 7.7 7.8 7.7 7.7 7.8 7.7 9.0 7.7 7.7 8.1 7.7 8.2 7.7 7.7 8.1
gaus, sign 7.7 7.7 7.7 7.7 7.7 7.7 9.1 10.1 8.7 8.2 7.7 7.8 7.7 7.7 7.7 7.7 9.0 7.9 7.7 7.7 7.7 8.2 7.7 7.7 7.8
lr, lr 7.7 7.7 7.7 10.5 7.7 7.7 9.1 7.7 11.8 7.7 7.7 7.7 7.7 7.7 7.7 10.1 11.3 7.7 16.4 9.2 7.7 8.0 7.7 9.0 7.7
lr, orth 7.7 7.7 7.7 7.7 7.7 7.7 9.1 7.7 8.7 8.5 7.7 7.7 7.7 7.7 7.7 9.9 11.4 9.2 9.6 15.0 7.7 8.0 7.7 7.7 7.7
orth, orth 7.6 7.6 7.6 7.6 7.6 7.6 9.0 7.6 8.6 8.4 7.6 7.7 7.6 7.6 7.8 7.6 9.0 7.6 7.6 7.7 7.6 9.3 7.6 7.6 11.6
sign, lr 7.6 7.6 7.6 9.6 7.6 7.6 9.0 7.6 11.6 7.6 7.6 9.8 7.6 14.5 7.6 7.6 8.9 7.6 10.5 7.6 7.6 8.3 7.6 10.9 7.6
sign, orth 7.7 7.7 7.7 7.7 7.7 7.7 9.1 7.7 8.7 8.5 7.7 9.8 7.7 7.7 12.6 7.7 9.0 7.7 7.7 7.9 7.7 8.2 7.7 7.7 8.0
sign, sign 7.7 7.7 7.7 7.7 7.7 7.7 9.2 9.2 8.8 8.2 7.7 8.9 13.9 8.1 8.2 7.7 9.0 8.1 7.7 7.7 7.7 8.2 8.0 7.7 7.8
sparse, gaus 12.1 13.4 10.8 12.4 12.1 7.8 9.1 7.8 8.9 8.2 7.8 7.8 7.8 7.8 7.8 10.5 11.5 9.3 11.0 9.7 7.8 8.1 7.8 7.8 7.9
sparse, lr 12.6 13.1 10.3 18.1 11.3 7.7 9.1 7.7 12.0 7.7 7.7 7.7 7.7 7.7 7.7 10.5 11.4 7.7 16.6 9.6 7.7 8.2 7.7 9.2 7.7
sparse, orth 12.2 14.0 10.6 12.4 14.3 7.8 9.1 7.8 8.8 8.5 7.8 7.8 7.8 7.8 7.8 10.2 11.5 9.5 10.8 14.2 7.8 8.2 7.8 7.8 8.4
sparse, sign 12.3 14.0 16.5 12.7 12.0 7.8 9.1 9.1 8.9 8.1 7.8 7.8 7.8 7.8 7.8 10.1 11.6 15.9 11.1 10.3 7.8 8.1 8.3 7.8 8.0
sparse, sparse 21.5 13.2 7.8 19.6 11.7 13.9 9.1 7.8 12.3 8.6 7.8 7.8 7.8 7.8 7.8 18.9 11.5 7.8 17.4 9.5 12.6 8.6 7.8 10.2 7.8

Table B.9b: Denoising gains, 16 × 16 ⊗ 16 × 16. (continued)

222

Appendix C

Hyperspectral imaging experiments

This appendix provides additional details for the numerical experiments on
hyperspectral image denoising in Chapter 6.

C.1 The USGS Digital Spectral Library

We use the USGS Digital Spectral Library [Cla+07] to generate the endmembers
for our hyperspectral image test. The raw data contains spectra with some
missing data, and so we apply a simple resampling and smoothing procedure to
ensure that allmembers of the libraryhave reflectancedata at 224 evenly-spaced
wavelengths between 0.4µm and 2.5µm.

For each material, the database includes a column vector x of wavelengths
and a corresponding column vector y of reflectance values. We perform the
following procedure to each item in the library:

1. For any entry yi that is NaN, set yi = 0.

2. Select the indices of x that are not NaN.

3. Create a scipy UnivariateSplinewith the subsets of x and y correspond-
ing to those indices. Set the parameters k = 3 and s = 10.

4. Create a new x with 224 linearly-spaced points between 0.4 and 2.5 (in-
clusive).

5. Create a new y by applying the spline to the resampled x .

223

C.2 Generating the test image

The test HSI is a 75 × 75 × 224 hyperspectral image generated through a linear
mixing model according to the procedure of Iordache et al. [IBP11]. The image
consists of an equally-spaced 5 × 5 grid of patches that are each 5 × 5 pixels
large. To fill the patches we:

1. Choose 5 spectra from our spectral library (Section C.1).

2. For each patch in the i th row of the grid, choose a combination (without
replacement) from the set of all combinations of i endmembers.

3. Fill in the spectra of the patch as an equal combination of the i chosen
endmembers.

4. For i = 5, set all patches to be an equal combination of all endmembers.

The following Python code shows how to generate abundance matrices that
generate such a test image:

cols = [5, 20, 35, 50, 65]

rows = cols

A = np.zeros ((75, 75, 5))

blk = np.ones ((5,5))

for i in range (5):

combos = list(itertools.combinations(range (5), i+1))

if len(combos) == 1:

combos = combos *5

combo_ixs = np.random.choice(len(combos), 5, replace=False)

for j in range (5):

for k in range(i+1):

A[rows[i]:rows[i]+5, cols[j]:cols[j]+5, combos[

combo_ixs[j]][k]] = 1.0/(i+1)

C.3 The Spa+Lr method

We implement the Spa+Lr method of Zhao et al. [ZY15] in Python using scikit-
learn [Ped+11] for dictionary learning and imagemanipulation routines. For
the sake of experimentation, assume that we have access to the true imageA\,
and use this to generate a dictionary that is then used in the recovery. This

224

saves time in repeated experimentation and certainly does not diminish the
performance of Spa+Lr. Assume that B ∈ Om×n⊗p is a noisy HSI, and σ is an
estimate of the standard deviation of the noise. We proceed as follows:

1. ReshapeA\, B into matrices A\, B ∈ Mmn×p .

2. Set γ = (30/σ)/(102.5). (This achieved better performance than γ = 30/σ
from the paper.)

3. Set λ = 100.

4. Set µ = λσ ·max{
√

mn,
√

p}/6.5.

5. Fix a patch size of (8, 8), and extract overlapping patches from the true
image A\. De-mean and normalize the patches.

6. Use the MiniBatchDictionaryLearning class of scikit-learn to learn a dic-
tionary from the patches.

7. Set X = B .

8. Perform kmax iterations of the following:

a) Extract overlapping patches from X . De-mean and normalize the
patches.

b) Use the dictionary object to perform sparse coding on the patches.

c) Reconstruct the patches from the obtained weights, and re-add the
mean and normalization.

d) Reconstruct the matrix X from the patches.

e) Compute the SVD of X =W SV t, and soft-threshold the diagonal of
S . That is, set si i = sgn (si i) ·max{|si i | − (µ/λ), 0}.

f) SetU =W SV t.

g) Set X = (γB + ρX + λU)/(γ + ρ + λ), where ρ = mnp . (This is a
simplification of the true averaging procedure.)

C.4 The numerical experiment

This section describes the procedure for the HSI experiment in Chapter 6.

225

C.4.1 Nuclear norm solver

To denoise with nuclear norms, we use the following procedure:

1. Load the 75 × 75 × 224 test HSI (Section C.2).

2. Compute a noise level σ to reach the desired signal-to-noise ratio (SNR).

3. Generate a 75×75×224 randomoperatorwith independentNORMAL(0, σ)
entries.

4. Corrupt the test image with the noise array.

5. Compute the penalty constant λ0 using the procedure in Section B.2 and
apply offset j to obtain λ = λ0 · 2j .

6. Generate a Problem object and call the solver with desired options.

7. Compute the relative error and RSDR of the output.

C.4.2 Truncated dyadic SVD

To denoise with the truncated dyadic SVD, we:

1. Load the 75 × 75 × 224 test HSI (Section C.2).

2. Compute a noise level σ to reach the desired signal-to-noise ratio (SNR).

3. Generate a 75×75×224 randomoperatorwith independentNORMAL(0, σ)
entries.

4. Corrupt the test image with the noise array.

5. Compute the dyadic SVD (3.7) of the noisy observations and truncate to
the top r dyads.

6. Compute the relative error and RSDR of the output.

226

C.4.3 Spa+Lr

To denoise with Spa+Lr (Section C.3), we:

1. Load the 75 × 75 × 224 test HSI (Section C.2).

2. Compute a noise level σ to reach the desired signal-to-noise ratio (SNR).

3. Generate a 75×75×224 randomoperatorwith independentNORMAL(0, σ)
entries.

4. Corrupt the test image with the noise array.

5. Run the Spa+Lr procedure.

6. Compute the relative error and RSDR of the output.

C.4.4 Parameter choices

For all experiments, fix SNR at 10dB.

Nuclear norm solver. Set the relative convergence tolerance ε = 10−3 and the
maximal number of iterations to 10. Use the non-quadratic option (noquad)
on altminsolve and NucNorm_Prod for all the nuclear norm objects. For solver
ranks 5 and 10, test each of the following pairs of nuclear norm and offsets j :

• `1 ⊗ `2 with j = −10, . . . , −6,

• `1 ⊗ TV with j = −13, . . . , −8,

• S1 ⊗ `2 with j = −9, . . . , −6,

• S1 ⊗ TV with j = −9, . . . , −5,

• TV ⊗ `2 with j = −13, . . . , −9,

• TV ⊗ TV with j = −13, . . . , −9.

Repeat for 10 trials, and for each nuclear norm return the best average gain1

over all tested offsets j .
1Recall that gain = RSDR − SNR. See Section 5.4.2.

227

Dyad SVD. Solve the denoising problem with the dyadic SVD for r = 5, 10.
Repeat 10 times and compute the average gain.

Spa+Lr Run the Spa+Lr procedure 10 times and compute the average gain.

228

Appendix D

Self-calibration experiments

This appendix details the procedures for the self-calibration experiments de-
scribed in Chapter 7.

D.1 Single snapshot

This section describes the single snapshot experiments in Section 7.4.1.

D.1.1 Procedure

Repeat the following for desired parameter choices:

1. Generate a parameter vector x ∈ Rm with independent standard normal
entries.

2. Generate a sparse vector y ∈ R256.

a) Choose s indices uniformly at random.

b) Fill those s entries of y with independent standard normal variates.

3. Construct the matrix S ∈ M128×m from the first m columns of the nor-
malized DCTmatrix, and generate a matrixT ∈ M128×256 with standard
normal entries. (Performed internally by the SelfCalibMeasurement ob-
ject.)

4. Generate a noise vector z ∈ R128 with standard normal entries.

229

5. Compute σ for a target SNR using the procedure from the denoising
experiments (Section B.1.3).

6. Generate measurements b ∈ R128 by computing b = diag(Sx)T y + σz .

7. Compute the penalty constant λ0 using the procedure in Section B.2 and
apply offset j to obtain λ = λ0 · 2j .

8. Generate a Problem object and call the solver with desired options.

9. Project the output Â to a rank-1 operator, and compute relative er-
ror/RSDR.

Note that the noiseless case takes σ = 0, and the penalty constant λ is not used.

D.1.2 Parameter choices

For all experiments we vary m and s independently through 1, 2, . . . , 15.

Convex solver. Use the convex solver matsolvewith the `1 normand the `2⊗`1
nuclear norm at SNR 0dB, 5dB, 10dB, 20dB, and∞dB (noiseless). Repeat for 10
trials.

Alternating minimization solver. Use the alternating minimization solver
altminsolvewith convergence tolerance ε = 10−3 and a maximum of 10 outer
iterations. Fix SNR at 15dB for all experiments. Test all combinations of the
following parameters:

• Regularizers: `1 norm and `2 ⊗ `1 nuclear norm.

• Penalty constant offsets: j = −2, −1, 0, 1

• Solver ranks: 1, 2, 4, 16

Repeat for 10 trials.

D.2 Multiple snapshot

This section describes the multiple snapshot experiments in Section 7.4.2.

230

D.2.1 Procedure

Repeat the following for desired parameter choices:

1. Generate a parameter vector x ∈ Rm with independent standard normal
entries.

2. Generate signalsY ∈ M256×q with one of the following procedures:

• Independent snapshots: For each column of Y , choose s indices
uniformly at random and fill those s entries of y with independent
standard normal variates.

• Simultaneous sparsity: Choose s indices out of 1, . . . , 256 uniformly
at random. For each column ofY , fill those s indices with indepen-
dent standard normal variates.

• Identical snapshots: Create an s-sparse vector with independent
standard normal entires, and fill all columns ofY identically with
this vector.

3. Construct the matrix S ∈ M128×m from the first m columns of the nor-
malized DCTmatrix, and generate a matrixT ∈ M128×256 with standard
normal entries. (Performed internally by the SelfCalibMeasurement ob-
ject.)

4. Generate a noise matrix Z ∈ M128×q with standard normal entries.

5. Compute σ for a target SNR using the procedure from the denoising
experiments (Section B.1.3).

6. Generate measurementsB ∈ M128×q by computingB = diag(Sx)T y +σZ .

7. Compute the penalty constant λ0 using the procedure in Section B.2 and
apply offset j to obtain λ = λ0 · 2j .

8. Generate a Problem object and call the solver with desired options.

9. Project the output Â to a rank-1 operator, and compute relative er-
ror/RSDR.

231

D.2.2 Parameter choices

For all experiments we use the alternating minimization solver and vary m and
s independently through 1, 2, . . . , 15. Fix the SNR at 15dB, the convergence
tolerance at ε = 10−3, the maximum number of outer iterations at 10, and the
solver rank at 4.

Initial experiment. Set the number of snapshots to q = 8. Test all combina-
tions of the following parameters:

• Regularizers: `2 ⊗ `1, `2 ⊗ (`1 ⊗ `2), and `2 ⊗ (`1 ⊗ `∞) nuclear norms

• Penalty constant offsets: j = −4, −3, −2, −1, 0

• Signal model: Independent snapshots, simultaneously sparsity, identical
snapshots.

Repeat for 10 trials.

Varying the number of snapshots. Consider only the following pairs of signal
model and nuclear norm:

• Independent snapshots with the `2 ⊗ `1 nuclear norm,

• Simultaneously sparse snapshots with the `2 ⊗ (`1 ⊗ `2) nuclear norm,
and

• Identical snapshots with the `2 ⊗ (`1 ⊗ `∞) nuclear norm.

For each of these pairs test all combinations of the following parameters:

• Number of snapshots: q = 2, 4

• Penalty constant offsets: j = −4, −3, −2, −1, 0

Repeat for 10 trials.

D.3 Two-dimensional signal

This section describes the experiment with two-dimensional signals in Sec-
tion 7.4.3.

232

D.3.1 Procedure

Repeat the following for desired parameter choices:

1. Generate a parameter vector x ∈ Rm with independent standard normal
entries.

2. Generate a random rank-r matrixY ∈ M64×64.

3. Construct the matrix S ∈ M2048×m from the first m columns of the nor-
malized DCTmatrix, and generate a matrixT ∈ M2048×4096 with standard
normal entries. (Performed internally by the SelfCalibMeasurement ob-
ject.)

4. Generate a noise vector z ∈ R2048 with standard normal entries.

5. Compute σ for a target SNR using the procedure from the denoising
experiments (Section B.1.3).

6. Generate measurements b ∈ R2048 by computing b = diag(Sx)T vec(Y) +
σz .

7. Compute the penalty constant λ0 using the procedure in Section B.2 and
apply offset j to obtain λ = λ0 · 2j .

8. Generate a Problem object and call the solver with desired options.

9. Project the output Â to a rank-1 operator, and compute relative er-
ror/RSDR.

D.3.2 Parameter choices

We use the alternating minimization solver with the `2 ⊗ S1 nuclear norm, 1
dyad, convergence tolerance ε = 10−3, and a maximum of 10 outer iterations.
Fix the SNR at 15dB. We vary m and r independently through 1, 2, . . . , 5 and
test each penalty constant offset j = −2, −1, 0, 1. Repeat for 10 trials.

	Acknowledgements
	Abstract
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	An overview of the problem
	Linear measurement models
	Factor structure
	Regularization
	Algorithmic challenges

	The nuclear norm framework
	Dyads
	The nuclear norm
	The nuclear norm recovery problem

	Operators
	Definition
	The action of an operator
	Why operators?
	Nuclear norms

	Our contributions and roadmap
	Other contributions

	Bilinear modeling
	Bilinear models in practice
	Matrix factorization
	Lifting models

	Numerical techniques for bilinear models
	Convexification
	Alternating minimization
	Gradient methods
	Initialization for nonconvex methods

	Development of the nuclear norm
	The emergence of cross spaces
	The fundamental theorem of Grothendieck
	With an eye towards convex optimization
	Our work

	The nuclear norm
	Notation
	Dyads and operators
	Dyads
	Operators

	The nuclear norm
	Crossnorms
	Nuclear norms
	The unit ball
	Dual norms
	Connections to sparse approximation
	The nuclear norm as an atomic norm
	The nuclear norm recovery problem
	Computation

	The trace norm
	Nuclear norms involving 1
	Semidefinite relaxations
	An alternative nuclear norm formulation
	The semidefinite representation
	Example: The trace norm
	Superquadratic norms
	Relaxed nuclear norms
	The quality of the relaxation

	The operfact Python package
	Overview
	The optimization problem
	Roadmap

	Alternating minimization
	Transformation to a nonconvex problem
	The algorithm
	Initialization
	Convergence

	Design choices
	Why CVXPY?

	Operators
	The ArrayOperator
	The DyadsOperator
	Utility functions

	Measurements
	InnerProductMeasurement
	IdentityMeasurement
	DirectActionMeasurement
	SubsampleMeasurement
	CombinedMeasurements

	Regularizers
	The helper functions
	The NucNorm class
	The NucNorm_SDR class

	Solvers
	The Problem and SolverOutput classes
	Convex solver for matrix problems
	Alternating minimization solver
	Semidefinite representation solver

	Denoising with nuclear norms
	Overview
	A preview of the results
	Roadmap

	Theoretical considerations
	Atomic norm denoising
	The geometric view
	Worst-case performance
	A connection with linear inverse problems

	Nuclear norm denoising with operfact
	The nuclear norm denoising problem
	The penalty constant

	A systematic study
	The penalty constant
	The noise level
	Convergence of the alternating minimization solver
	Reliability of the alternating minimization solver

	The main results
	Factor structure
	Operator rank
	Semidefinite relaxations
	Demixing

	Summary

	Application: Hyperspectral image denoising
	Overview
	Roadmap

	Relevant work
	A mixture model for HSI
	Denoising vs. spectral unmixing
	Spa+Lr

	Structured abundances
	An operator mixture model
	Test images
	Numerical results
	Unmixing

	Next steps
	Discussion

	Application: Self-calibration
	Overview
	Roadmap

	Related work
	Linear least squares
	Calibrating compressed sensing
	A lifting approach
	Our work

	The operator measurement model
	Assumptions
	Implementation in operfact

	Numerical results
	Single snapshot
	Multiple snapshots
	Two-dimensional signals

	Summary

	Bibliography
	Proofs of results in Chapter 3
	Proof of Proposition 3.3.3
	Proof of Proposition 3.3.4

	Denoising experiments
	The synthetic denoising experiments
	Overview
	Operator generation
	Noise generation
	Solver options
	Small experiment
	A larger experiment

	The penconst_denoise function
	Additional figures and tables for the denoising experiment

	Hyperspectral imaging experiments
	The USGS Digital Spectral Library
	Generating the test image
	The Spa+Lr method
	The numerical experiment
	Nuclear norm solver
	Truncated dyadic SVD
	Spa+Lr
	Parameter choices

	Self-calibration experiments
	Single snapshot
	Procedure
	Parameter choices

	Multiple snapshot
	Procedure
	Parameter choices

	Two-dimensional signal
	Procedure
	Parameter choices

