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ABSTRACT

This thesis is composed of three distinct topics.
Chapters II, III and IV are concerned with the analytical
consequences of adsorption of reactants at the electrode
surface with d,c. polarography and normal and differential
pulse polarography. Theoretical behavior was calculated
by means of digital simulation and Laplace transform
techniques. The effects of nonlinear adsorption isotherms
and uncompensated resistance on current-potential response
was calculated, The reaction Cd+2/Cd(Hg) with adsorption
induced by the presence of iodide was used as a test system,

Chapters V and VI are concerned with the electrochemical
behavior of molecules with more than one center for electron
transfer. Classical statistical methods were used with
computer calculation of results, Problems considered
include concentration- and current-potential behavior of:
(1) polymeric species with no interaction between centers;
(2) dimers with interactions; and (3) asymmetric binuclear
molecules.

Chapter VII discusses data analysis techniques for
"large step' coulostatics in the study of electron transfer
kinetics, The merits of the technique in electrochemistry
are discussed. A method for the use of a numerically
generated function as the basis function for nonlinear

regression is discussed,
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Chapter VIII presents a study of alternative methods
of "small step'" coulostatic data analysis., Strong cross-
correlation was found between double layer capacitance,

charge transfer parameters and diffusional parameters.
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CHAPTER I

Introduction

This thesis in electrochemistry is comprised of three
distinct topics. Chapters II, III and IV are all concerned
with the analytical consequences of adsorption of reactants
at the electrode surface with d.c., and pulse polarographic
techniques. Chapters V and VI are simple mathematical
treatments of certain features of current-potential and
concentration-potential behavior of molecules containing two
or more electroactive centers. Chapters VIT and VIII discuss
some nuances of data analysis with the use of charge
injection techniques to determine electrode kinetics.

The projects described herein illustrate some uses of
numerical mathematics, statistics andmini-computer applications
in electrochemistry. The PDP-11 computer was found to be
indispensable to the projects since it allowed for several
modes of use: as a "number cruncher”™, in large scale digital
simulations, it saves the high costs involved with running
programs on a large computer; as an interactive terminal, it
allows rapid program correction and modification; and, of
course, it is most valuable in control of customized
experimental design and data analysis.

A brief summary of each Chapter and associated

Appendices follows.



Chapter II1 is a preliminary theoretical treatment
of the effects of adsorbed product and reactant on pulse
polarographic response. A closed-form solution for the
current function was derived, and a computer was employed
to generate differential pulse polarograms for comparison
with theory. The computer programs for generating the

theoretical curves are found in Appendix A.

Chapter III2 is an extension of the ideas in Chapter II.
Limitations of the mathematics are bypassed by means of
digital simulation. The ways in which peak currents and
wave shapes of differential pulse polarograms are affected
by adsorption of reactants and products are examined with
the additional complications of nonlinear adsorption
isotherms and uncompensated resistance. Comparison of
theoretical and experimental results is made for Cd(1I) ion
with adsorption induced by addition of iodide and bromide.
Some additional material on the effects of adsorbed
reactants on d.c. polarography is included in this chapter.
The differential pulse computer programs are found in

Appendix B, the d.c. programs in Appendix C.

Chapter IV3 considers many of the same effects for
normal pulse polarography as were discussed in Chapter IIT.

Computer programs are found in Appendix D.



Chapter V4 is concerned with the statistical treatment
of molecules with many centers for electron transfer.
It is shown that when negligible coulombic or other physical
or chemical interaction occurs between centers, the shape
(but not the magnitude) of the resulting current-potential
curves in voltammetry or polarography are identical for

polymer or monomer species,

Chapter VI is an extension of the work in Chapter V
with emphasis on two frequently encountered perturbations:
interaction between centers, and non-symmetry of centers.
For simplicity the derivations were restricted to dimers
although extension to any particular case should be

trivial. Some cases from the literature are discussed.

Chapter VII is concerned with the analysis of large
step coulostatics data, Nonlinear regression is employed
to determine standard rate constants and transfer
coefficients, assuming that the formal potential and
double layer capacitances are known to high accuracy.

The method of computation which allows highly accelerated
convergence for the theoretical calculations is developed.

Error analysis of the method is discussed.



Chapter VIII reports the results of a study of the
use of small step coulostatics in the analysis of electrode
kinetics. The use of nonlinear regression analysis of
the coulostatic data is critically discussed with regard
to the cross correlation of unknowns and the analysis

of errors. Several experimental systems are discussed.



REFERENCES

(1) F. C. Anson, J. B. Flanagan, K. Takashi, and A. Yamada,

J. Blectroanal. Chem., 67, 253 {1976).

(2) J. B. Flanagan, K. Takahashi and F. C. Anson, J.

Electroanal. Chem., 81, 261 (1977).

(3) J. B. Flanagan, K. Takahashi, and F. C. Anson, J.

Electroanal. Chem., 85, 257(1977).

(4) J. B. Flanagan, S. Margel, A. J. Bard and F. C. Anson,

J. Am. Chem. Soc., submitted for publication.




6

CHAPTER 11

A Preliminary Analysis of the Effects of Adsorbed

Reactants on Differential Pulse Response

INTRODUCTION

Experimentally it was observed that a remarkable
enhancement of differential pulse polarographic currents’
can be seen when adsorption-inducing anions are added
to solutions of certain metal cations. For example,
Fig. 2.1 compares the differential pulse polarogram for
a 10 uM solution of Cd(II) in 0.1 M KNOj3; where no
adsorption of Cd(II) occurs, with that in 0.1 M KI where
extensive adsorption of Cd(II) is induced.2 The peak
current in the iodide electrolyte is almost twice as
large as that in the nitrate electrolyte and even greater
current enhancements (3 to 5-fold) have been obtained by
decreasing the time at which the differential pulse
polarographic current is sampled after the application of
each potential pulse. While the likely utility of this
phenomenon in increasing the analytical sensitivity of
differential pulse polarography seems evident and well
worth exploiting, in this hapter I wish to emphasize the
particular virtuesof this phenomenon in studies directed
at measuring and characterizing reactant and product

adsorption at electrode surfaces.



FIGURE 2.1

Differential pulse polarograms for 10 pyM Cd(II)
in 0.1 M KNO; and 0.1 M KI. Pulse amplitude:
25 mV; potential scan rate: 1 mV sﬂl; drop
age; 2 s; drop area: 0.0161 em®. A - 0.1 M

KNO3. B - 0.1 M KI. Potential measured vs. SCE.
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EXPERIMENTAL

The differential pulse polarograms were obtained with
a Princeton Applied Research Model 174 "Polarcgraphic
Analyzer" including the electro-mechanical dropping
electrode dislodger supplied with this instrument. A
Houston Omnigraph XY Recorder was used to record the
polarograms. Electrolysis cells, oxygen removal and the
operating procedure were all conventional. Measurments
were made at 25 * 1° C.

Solutions were prepared from triply distilled water
and reagent grade chemicals. With concentrations of
reactants greater than ca 100 uM the peak currents were
evaluated with the d.c. potential held constant in order
to compensate for the slow response of the instrument.3
With smaller concentrations the d.c. potential was usually

scanned at the rate of 0.1—-2 mV s-1.

THEORY
The adsorption-induced enhancements of the differential
pulse polarographic peak currents were measured at
reactant concentrations in the micromolar range where the
total amount of reactant adsorbed was so small that
Henry's law was assumed to hold (i.e., the adsorption was

assumed to obey a linear isotherm):
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1

p = Kgep (x=0) C2.1)

Ip = Kpep(x=0) (2.2)

where I' is the concentration (mol cmna) of the adsorbed
species, c(x=0) is the concentration (mol cm ) of the
corresponding species in the solution at the electrode
surface, K is the Henry's law adsorption coefficient
(cm), and the subscripts R and P refer to the reactant
and product, respectively.

The values of CR(x=0) and cP(x=O) were assumed to be

given by the Nernst equation

Ch(x=0)

Initially, only the reactant is present in the solution
at concentration c¥*.

The d.c. Farédaic currents which flow before each
potential step is applied when E is in the vicinity of E°
were neglected in calculating the pulse polarographic
current responses. This approximation, which amounts to
the assumption that the composition of the layer of
solution at the electrode surface matches that of the bulk
of the solution, has been shown by Christie4 to lead to
negligible error in the calculated peak currents under

most typical experimental conditions. The approximation
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will become better and better as the drop time is increased
and the time after each pulse when the current is sampled
is decreased.

The solution of Fick's diffusion equations for this
set of boundary and initial conditions has been previously

e=il Equations (2.1)

discussed by’several authors
through (2.6) in the paper of Reinmuth and Balasubramanian9
can be combined with eqns (2.1) and (2.2) above to obtain
the following expression for the current density as a

function of the time, t, after the application of each

potential step of magnitude (E, - E;):

1 i
nFy0, D.2%K., + D, %K. - BK.K

R Xp * Dp Ky rKp . 1
I = i + [K K g2 - B(D,ZK, +
K0, + Kp —> rKp R Xp
D %k ) + D_7p_%|exp(B82t)erfc(Bt?) + K K.&(t) (2.4)
P R R P ) RP ’

where: y = cR/ez - cp

at t = 0: cp = £6,c%/(€0:1+1); cp = Ec*/(£01+1); &= (DR/DP)I/2

5 L
and B = (Dp202+Dp7)/ (KpB2+Kp)

o+
§(t) = 0 for t > O;~/~6(t)dt =1
O_

ﬁi = exp[—(nF/RT)(Ei-E°]]
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No capacitive charging current is included in eqn (2.4)
because the differential pulse polarographic current
read-out eliminates most of ‘this current. Except for this
feature, eqn (2.4) is not restricted to differential pulse
polarography. It is a general expression for current
vs. time when the potential is stepped between any two
potentials in a polarographic wave for adsorbing reactants
or products which obey linear isotherms.

Equation (2.4) reduces to the equation given by
Parry and Osteryoung1 when KR and KP are equal to each
other or approach zero, except for the small difference
arising from our neglect of the current flowing just
before each potential step. [Reinmuth9 has presented
a good account of the reasons for the disappearance of

the effects of adsorption when KR = KP.)

RESULTS AND DISCUSSION

Equation (2.4) was used with the aid of a computer
to calculate complete pulse polarograms by varying E: while
keeping (E2 - E1) constant. The resulting peak currents
were evaluated for various values of KR, KP and the
current sampling time, t. Some results are shown in
Fig. 2.2 in which the ratio of the calculated peak
currents in the presence and absence of adsorption are

presented as a function of the adsorption coefficients
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FIGURE 2.2

Calculated peak currents for adsorbed reactants
divided by those that would result in the absence

of adsorption. The parameters used in eqn (2.4)

were: Dy = Dp = 107" cm® s™'; (B, - E1) = 10 mV.

(——) Reactant adsorption, KP = iy [=ewe= ) product

adsorption, K, = 0; current sampling times: (1,4)

R
1 ms; (2, S) 10 ms; (3, 6) 50 ms.
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and of the time following the application of the potential
pulse that the current is sampled. Note that the
calculated peak currents can exceed the values obtained
in the absence of adsorption by factors of three or more
for sufficiently large values of the adsorption coefficients
or sufficiently short sampling times.

The PAR 174 instrument has an effective sampling

time of ca. 48 ms. With this value of t, D, = 5.3 x 10 °

R
em " s7!, Dy = 1.7 ¥ 107° em™® 77, K, = 0 and the

measured ratio of 1.7 for the two peak currents in

Fig. 2.1 a value of KR of 2 x 10 °~ cm was obtained by
manipulation of eqn (2.4). This value of KR leads to

a calculated adsorption of 2 x 10 '~ mol cm ~ of Cd(II)
from a 10 uM solution of Cd(II) in 0.1 M KI. At a
potential of -550 mV the adsorption amounted to 1.9 to

2.1 x 10°'" mol cm®. This good agreement between the
measured adsorption and that calculated from the pulse
polarographic peak current ratios supports the theoretical
analysis which lead to eqn (2.4).

The curves in Fig. (2.2) remain independent of the
bulk concentration of the reactant only in the range
where the adsorption isotherm remains linear. As the
concentration of the reactant is increased the adsorption
isotherm must eventually become non-linear when the

finite capacity of the electrode surface to accept
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additional adsorbing species limits the adsorption. At
this point the diffusive contribution to the peak currents
will continue to grow as the bulk concentration of
reactant increases while the adsorptive contribution does
not and the peak currents will tend toward their values
in the absence of adsorption. This behavior is shown in
Fig. 2.3 where the normalized peak currents for Cd(II)
in the iodide electrolyte (i.e., the peak current divided
by the bulk concentration of Cd(II) and the (drop age)z/3
to account for changes in area) are plotted versus the
concentration of Cd(II). There are two level portions
of the curve. At the lowest concentrations the adsorption
follows a linear isotherm and the relative current
enhancement due to adsorption is constant. At the highest
concentrations the surface is saturated, the adsorption
becomes independent of bulk concentration and the ratio
of peak current to concentration falls to the constant
value representative of the absence of adsorption. The
range of concentrations over which the peak current-to-bulk
concentration ratio varies is the range within which the
adsorption isotherm is non-linear.

At dropping mercury electrodes the concentration of
adsorbing reactants may be depleted near the electrode

surface early in drop life even in the absence of a
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FIGURE 2.3

Concentration dependence of normalized peak
currents for Cd(II) in 0.1 M KI. Pulse
amplitude: 25 mV; drop age: (x) 0.5 s;

@™ 1 s; (©) 2 s; (A) 5 s; the effective
sampling time of the PAR 174 instrument is

ca. 48 ms.
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faradaic reaction. 1In the derivation of eqn (2.4) it was
assumed that the concentrations of reactant and product

were uniform before the application of each pulse so that
any depletion of the reactant concentration at the electrode
surface because of its adsorption would result in smaller
measured currents than those calculated according to

eqn (2.4). This additional complication will be independent
of the bulk concentration of reactants which obey linear
isotherms but it will be influenced by the age of the
dropping electrode ty- The systematic decrease in the
normalized peak currents for Cd(II) in iodide (Fig. 2.3)

as the drop times are decreased from 5 to 0.5s is very
likely a manifestation of such reactant depletion.
Adsorptive depletion of the reactant can be overcome by
replacing the DME with a hanging mercury drop electrode
which can be equilibrated with the solution for as long a
time as necessary prior to measurement of the peak current.
However, currents which increase with time at constant
potential are obtained with reactants (both adsorbed and
unadsorbed) which are reduced to amalgams at the HMDE.

This phenomenon results because the amalgam concentration
within the drop increases as the electrolysis proceeds
which leads to a corresponding increase in the concentration

of the reactant in the solution at the drop surface.
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The lack of coincidence of the four curves in Fig. 2.3
at the highest concentrations of Cd(II) is believed to
result from a different effect: The adsorption of a
reactant introduces a large faradaic pseudocapacitance
into the cell impedance faced by the pulse polarograph.

The magnitude of the pseudocapacitance can be estimated
22

n“F*r

as T‘.

of Cd(II) present on the saturated surfaces at the higher

This amounts to ca. 2800 uF cm~? for the amount

Cd(II) concentrations in Fig. (2.3). The presence of

this large capacitance prolongs the effective time

constant for decay of the '"charging current' (both

faradaic and non-faradaic) to the point that it contributes
to the net currents sampled by the PAR 174 instrument

despite the 48 ms delay between pulse application and

current measurement. The charging current contribution

will be larger the longer the drop time because the

electrode area and, therefore, the faradaic pseudocapacitance
will be greater.

The effect is not confined to adsorbing reactants
which are reduced to amalgams. The same behavior is also
observed with anthraquinone monosulfonate which is reduced
to a hydroquinone soluble in the solution phase.11

The explanation of the drop time dependence in

terms of a large pseudocapacitance is supported by the
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fact that with nitrate electrolytes, where there is

no adsorption of Cd(II), plots such as those in Fig. 2.3
are much more nearly coincident at all drop times and
concentrations of Cd(II). Tests of the PAR 174 instrument
with dummy cells also confirmed that the instrument fails
to discriminate completely against charging currents in
the differential pulse mode when capacitances as large

as those produced by extensive reactant adsorption are
introduced in the circuit.

The ways in which reactant (and product) adsorption
alter conventional differential pulse polarograms suggest
that this technique may prove to be valuable in studies
of adsorption: (i) Sensitivity is high. Easily measured
peak current enhancements result from the adsorption of
quantities of reactant much smaller than could be determined
(or, in most cases, even detected) with chronocoulometric
or interfacial tension measurements. However, reasonably
large adsorption coefficients (>10'u cm) are still
essential to produce measurable veak current enhancements
at the small reactant concentrations needed to obtain a
linear adsorption isotherm (Fig. 2.2). (ii) The
differential pulse polarograms allow adsorption coefficients
to be evaluated at the potentials where the absorbate

is reacting at the electrode. This may be an important
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advantage in kinetic investigations of adsorbed reactants
because direct chronocoulometric measurements of adsorption
coefficients are nécessarily restricted to initial
potentials where no electrode process is occurring. (iii)
Although the possible potential dependence of adsorption
coefficients was not considered in the derivation of
eqn (2.4), the shapes of the differential pulse polarograms
should be analyzable to determine whether a significant
potential dependence is present.

The large enhancement of differential pulse polaro-
graphic peak currents resulting from reactant adsorption
is entirely analogous to the well known and large
effects that reactant adsorption produces in faradaic
impedance measurements.l2 However, because of its higher
sensitivity, the differential pulse polarographic
technique can be used to examine adsorption in much more
dilute solutions, thus ensuring that a linear adsorption
isotherm is obeyed. In addition, the quantitative analysis
of faradaic impedance data to determine adsorption
coefficients is considerably more complex and requires
the knowledge of more parameters than is true for

differential pulse polarography.
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CHAPTER III

Effects of Adsorptive Depletion of Reactant, Nonlinear
Adsorption Isotherms and Uncompensated Resistance

on Differential Pulse and D.C. Polarographic Response

INTRODUCTION

The previous chapter described and analyzed some
conditions under which adsorption of the reactants or
products can lead to enhanced peak currents in differential
pulse polarography. The equation which was derived to
account for the current enhancement involved several
simplifying assumptions: (a) depletion of a reactant
from solution near the electrode surface due to its
adsorption was neglected; (b) the cell was assumed to be
free of uncompensated resistance; (c) the adsorption was
assumed to obey a linear isotherm (Henry's law). The
same assumptions were also made by Barker and Bolzanl who
clearly recognized and described the effects of reactant
adsorption in pulse polarography. These assumptions
severely limit the quantitative applicability of the
previous equation because all three assumptions are
frequently not justified in studies of dilute solutions
of strongly adsorbing species. It has proved possible

to calculate the expected differential pulse polarographic



25

currents without the use of these simplifying assumptions
for nernstian reactions involving adsorbing reactants or
products by means of digital simulation techniques.2 The
calculational approach employed and a comparison of
calculated currents with experimental results for the
iodide-induced adsorption of Cd(II) are described in this
report.

The results are relevant to analytical applications
of differential pulse polarography in the presence of
adsorption inasmuch as the calculations show that
significant effects are to be expected on peak currents,

peak potentials and wave shapes.

EXPERIMENTAL
The differential pulse polarograms were obtained
with the PAR (Princeton Applied Research) Model 174
"Polarographic Analyzer" which had been modified to
permitmeasurements at variable pulse widths and sample

5 The

times, following a scheme suggested by Abel et al.
resulting sampling time and pulse widths were calibrated
by means of a Systron Donner Counter, Model 1033.

The polarograms were recorded with an XY recorder.

Most polarograms were recorded with 25 mV pulse amplitudes

and potential scan rates of 0.2 to Z mV s~ '. External
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uncompensated resistance was introduced into the circuit
by means of a decade resistance box inserted between
the working electrode terminal of the PAR 174 and the DME.
The additional adsorption data used to establish an
isotherm for the iodide-induced adsorption of Cd(II)
were obtained by means of double potential step chrono-
coulometry.4 Since rather low concentrations of Cd(II)
were necessarily employed, each hanging mercury drop
electrode was exposed to the solution for 60 s at the
initial potential (-500 mV) to ensure that adsorption
equilibrium had been obtained. (The solution was unstirred,
but increased exposure times produced no changes in the
resulting polarograms.) Initial data points obtained
during the reverse potential step were discarded until
no further changes in the measured adsorptions resulted.
This occurred at times following the second potential
step that were shorter than required for establishing
adsorption equilibrium5 because of the small dependence
of the double layer capacitance on the amount of Cd(II)
adsorbed.6 Solutions were prepared from triply distilled
water and reagent grade chemicals. Dissolved oxygen was
removed by bubbling pre-purified nitrogen through the
solutions. Measurements were made at room temperature:

25 2 2% €.
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RESULTS AND DISCUSSION

Digital simulation. The digital simulation of

differential pulse polarograms was described recently

by Dillard and Hanck.7 Portions of the procedure employed
in this work were similar to those described in ref. 7
but there were also substantial differences resulting
from the more complex boundary conditions which were
required in order to allow for the adsorption of reactant
product according to non-linear isotherms, and for the
presence of uncompensated resistance. In the present
analysis the electrode reactions were assumed to be
reversible and nernstian with both the reactant and
product soluble in either the solution or mercury
electrode. Adsorption equilibrium was assumed to be
established instantaneously and the adsorption was
assumed to produce no effect on the electrode reaction
rates of either reactant or product.

A difference between the present procedure and that
used by Dillard and Hanck7 was the choice of time intervals
in the simulation. The discrete time units utilized by
these authors were of the same magnitude during the
periods before and after the application of each potential
step, while the simulation used in the present work

involved different time intervals for the two periods.
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This tactic was adopted in order to optimize the calculation
of the current after application of the potential step
without committing an unreasonable amount of time to the
calculation during the less critical period prior to the
potential step. For example, a 5 s period prior to the
potential step was typically divided into 100 intervals
of 50 ms, while the 50 ms period following the potential
step was divided into 100 intervals of 500 us. Of course,
when the discrete time unit is changed, a corresponding
change must be made in the discrete distance unit in
order to satisfy the stability criterion for the explicit
difference method8 which was used to simulate the diffusion
of reactant and products. In recalculating the
concentration profile following the changes in time
intervals, a simple linear interpolation method was used.
The presence of uncompensated resistance in the cell
made it necessary to carry out an iterative calculation
for the current and the true electrode potential until
self-consistent values were obtained. It was also
necessary to determine the quantity of adsorbed reactant
and its surface concentration which satisfied simultaneously
the adsorption isotherm, the Nernst equation, and con-
servation of mass at the electrode surface at each time

interval. For a general non-linear isotherm, several
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iterations of a Newton-Raphson procedure9 were required
to obtain self-consistent values. Since this calculation
was nested within the one used to calculate the current
and true electrode potential, this portion of the program
consumed about the same amount of computer time as did
that devoted to the mass transfer calculations.

Ohmic potential drops through the uncompensated
resistance were neglected during the period before each
potential step but adsorption equilibrium was included
in the calculation. The mass transfer calculation during
this period consisted of diffusion to an expanding plane
calculated according to standard procedures. Following
the potential step, further expansion of the electrode
area was neglected, but the ohmic drop through the
uncompensated resistance and double layer charging were
included in the calculation.

The values for diffusion coefficients, double layer
capacitance, uncompensated resistance and adsorption
isotherm parameters which were required in order to
compare the simulated and experimental results were
evaluated in independent experiments. The digital
simulation utilized in this work gave calculated currents
which matched those predicted by the Parry and Osteryoung

equationl0 within a few percent when the adsorption
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coefficients for both reactant and product were set equal
to zero. The simulation converged smoothly to constant
calculated current values as the number of calculational
intervals was increased. The calculational accuracy of
most of the simulated results given in the figures is

estimated to be better than *5%. Listings of the complete

differential pulse simulation programs are shown in Appendix B.

The Adsorption Isotherm. A previous chronocoulometric

study of iodide-induced adsorption of Cd(II) on mercury6

did not extend to concentrations of Cd(II) below 0.2 mM

and contained insufficient data to establish a reliable
adsorption isotherm. Therefore additional chronocoulometric
measurements of Cd(II) adsorption were conducted in the

range between 5 and 100 uM Cd(II) from a supporting
electrolyte containing 0.9 m KNO3; and 0.1 M KI. The
resulting values of FCd(II)’ the surface concentration

of adsorbed Cd(II), were then fitted to a Frumkin

adsorption isothermll by means of the plot shown in Fig. 3.1.

The Frumkin isotherm can be written as in eqn (3.1)
In ¢ - 1In[68/(1-8)] = ln(Fm/K) + A6 (Bl

where ¢ is the concentration of the adsorbate, Cd(II), at

the surface of the electrode, 6 = F/Tm is the coverage,
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FIGURE 3.1

Plot of adsorption data for Cd(II) in 0.9 M
KNO3; - 0.1 M KI according to eqn (3.1).
Coverages, 68, were obtained from double
potential step chronocoulometry. I‘m was

taken to be 2.2 x 10" mol cm™% (@) Data

from this work; (Q) data from ref. 6.
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I' and Fm are the concentrations of the adsorbate on a
partially and fully covered surface, respectively, K is

the Henry's Law adsorption coefficient (I' = Kc at low
coverages) and A is the Frumkin parameter which measures
the strength of the intermolecular interactions between
adsorbate molecules on the surface. Figure 3.1 is a plot

of the 1.h.s. of eqn (3.1) versus 6 for the iodide-

induced adsorption of Cd(II). The best fit of the data

to a straight line resulted when Fm was taken as 2.2 x 10_10
mol cm™’ instead of 1.9 x 10" '° mol em  which was the
value measured previQusly6 at the largest concentration
of Cd(II) studied (1.2 mM). The slope of the line in Fig.
3.1 corresponds to A = 3.6 which implies strong repulsive
interaction between the adsorbed Cd(II) species.

The value of K resulting from the intercept of the
line in Fig. 3.1 is 0.04 cm. These values of the isotherm
parameters were used in the digital simulation calculations
despite the fact that the most negative potential at which
the chronocoulometric data could be obtained (-500 mV)
differed from the pulse polarographic peak potentials
(~625 mV). A preferable approach might be to evaluate

the isotherm parameters at several potentials and attempt

to extrapolate to the pulse polarographic peak potential,



34

Effect of Adsorption on Peak Currents. Figure 3.2

presents plots of normalized differential pulse polarographic
peak currents as a function of the bulk concentration of
Cd(II). The plotted data points are experimental measure-
ments and the solid lines are the result of the digital
simulation.

In general the simulation is reasonably successful
in accounting for the concentration and drop age dependences
of the data. As was noted in the previous chapter, the
largest normalized currents are obtained at the smallest
bulk concentrations where the adsorption isotherm is
approaching linearity and the coupling of adsorption, mass
transfer and the Nernst equation leads to maximum
enhancement of the current. The drop age dependence of
the normalized currents arises from the adsorptive depletion
of reactant from the solution at the electrode surface
which the digital simulation manages to map fairly
successfully. In our earlier chapter asimilar drop age
dependence was attributed to reactant depletion at the
lower bulk concentrations but no quantitative assessment
was possible. The present simulation results show that
the effects of depletion persist up to concentrations as
high as 1 mM. Moreover, the simulation shows that under

some conditions the normalized peak currents can fall
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FIGURE 3.2

Concentration and drop time dependence of
normalized differential pulse polarographic

peak current densities for Cd(II) in 0.1 M KI
-0.9 M KNO3. The plotted points are experimental
values for drop times of 0.5 s (@) and 5.0 s

(©) and curves 1 and 2 are the corresponding
digital simulation results using the Frumkin
isotherm parameters determined in Fig. 3.1.

Curve 3 corresponds to a Langmuir isotherm having

the same values of K, and Fm as in curves 1 and

R
2 and drop time of 5 s. The dashed line corresponds

to no adsorption for both drop times. Parameters

used in the simulation: D, = 10°°% em? 71,

Dp = 1.5 x 10°° em® s™', mercury flow rate =

1.04 mg s—l; double layer capacitance = 65 uF

cm ~; uncompensated resistance - 130 @ (actual
measured values were 100 and 175 © with 5 and

0.5 s drop times).
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below the values corresponding to no perturbation by
reactant adsorption. This behavior results when the
depletion of the concentrations of the reactant because

of its adsorption depresses the current more than the
nernstian coupling of mass transfer and adsorption enhances
it. The Cd(II) adsorption exhibits this feature quite
prominently at the shorter drop time shown in Fig. 3.2
(curve 1).

In order to compare the response obtained with an
adsorbed reactant obeying a Frumkin isotherm with that
expected when the adsorption is langmuirian, curve 3 of
Fig. 3.2 was simulated by employing the same values of
Kps Tp and drop time as were used for curves 1 and 2 but
setting A = 0 in eqn (3.1). The larger predicted current
enhancements at the lower concentrations under these
conditions are the result of the stronger adsorption to
which the chosen value of KR corresponds in a Langmuir
isotherm. The more rapid decrease of curve 3 at higher
concentrations is a reflection of the more rapid rise to
saturation coverage of Langmuir than of repulsive Frumkin
isotherms.

For analytical applicationswhere reactant adsorption
might be induced (by selection of the proper supporting

electrolyte) to enhance sensitivity it is clearly desirable
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to minimize adsorptive depletion of the reactant. This

can sometimes be achieved by utilizing dropping electrodes
with longer natural drop times or hanging mercury drop
electrodes. However complications resulting from spherical
diffusion within the finite electrode may be encountered

at longer-lived drops with amalgam-forming reactions.

Effects of Adsorption on Peak Potentials and Wave Shapes.

Strong reactant (or product) adsorption produces shifts
of differential pulse polarographic peak potentials.
Examples of such shifts are shown in the differential
pulse polarograms in Fig. 3.3 which were simulated for
conditions corresponding to very strong adsorption with

a linear adsorption isotherm. The pronounced drop time
dependence evident in these polarograms results from the
differences in the extent of adsorptive depletion of the
reactant at long and short drop times. Note that the
breadth as well as the peak potentials of the polarograms
are affected by the depletion. Adsorption of the product
instead of the reactant causes greater broadening of the
polarogram (Fig. 3.3) and smaller enhancement of the peak
current.1 However, with equivalent adsorption coefficients,
the peak potential is shifted from the value obtained

10

without adsorption by the same amount (but in opposite

directions) by the adsorption of the reactant or the product.
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FIGURE 3.3

Simulated differential pulse polarograms for strongly
adsorbed reactant or product obeying a linear adsorption
isotherm. Pi= Kicx=o; KR and KP are the adsorption
coefficients for reactant and product, respectively

and —_— is the concentration of adsorbate at the
electrode surface. The potential is referenced to the
standard potential, E°. The ratio of the current

density to the concentration of Cd(II) is plotted as

ordinate.
Curve KR/cm KP/cm Drop time/s
1 0 0 1 or 100 (superimposed curves)
2 G I 0 i
3 0.1 0.0 100
4 0 0.3 1
5 0 0.1 100
h : Dy =D, =10"cen® s'; n=2; ¢, =
Other parameters: R - Pp = cm S ;n 5 CR

100 uM; pulse amplitude = 25 mV; current sampling time =
25 ms; uncompensated resistance and double layer
capacitance were assumed to be negligibly small; mercury

flow rate = 1 mg st
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When non-linear adsorption isotherms are involved,
doubly-peaked differential pulse polarograms can sometimes
result just as reactant adsorption can lead to doubly-

W Figure 3.4 shows some

peaked cyclic voltammograms.
examples of simulated polarograms for very strongly adsorbed
reactants which obey Langmuir isotherms. The peak

appearing near (E-E°) = 0 represents the diffusion-
controlled wave that would be present in the absence of
adsorption. The peak currents for this wave were evaluated
at such long drop times that they suffered no diminishment
from adsorptive depletion of the reactant. These polaro-
grams, therefore, correspond to those that would be

obtained at a stationary electrode of the same area. The
peak appearing at more negative potentials arises from

the reaction of the adsorbed reactant. Its position is
close to that corresponding to the maximum in the faradaic

pseudocapacitance of a nernstian reactant Obeying a

Langmuir isotherm, namely

. owe . b
Ep = B (RT/nF) 1n [(T_ + KC°/T )] (3.2)
The magnitude of the adsorbed reactant peak decreases
more rapidly with increasing sampling time than does

the diffusion-controlled peak. This difference results
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FIGURE 3.4

Simulated differential pulse polarograms for a strongly
adsorbed reactant obeying a Langmuir isotherm. T/(1 -6) =

K.c

RCx=0> & 7 P/Fm; [, = concentration of adsorbate on a

saturated surface. Ordinate as in Fig. 3.3.

Isotherm parameters:

Curve KR/cm 10% Fm/mol cm 2

1 0.5 3

2 0.1 2

3 s 1

4 0.3 i

5 0.6 i

Other parameters utilized in the simulation: DR = Dp =
10°° em” 5-1; n = 2; pulse amplitude = 10 mV; current

sampling time = 50 ms; electrode area = 0.0627 cm’;
uncompensated resistance = 100 Q; double layer
capacitance = 20 pF cmhz; bulk concentration of

reactant = 50 uM.
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from the approximately exponential time dependence of the
former peak compared with the square-root of time dependence
of the latter peak.

In Fig. 3.5 are shown the effects of increasing bulk
concentration of an adsorbate which obeys a Langmuir
isotherm. Adsorptive depletion of the reactant has been
included in the simulation of these polarograms which is
the reason that the first wave essentially disappears at
low reactant concentrations: the adsorption removes almost
all of the reactant from the solution at the electrode
surface under these conditions. At higher reactant
concentrations (curves 3 and 4) the adsorptive depletion
becomes less severe, the height of the first wave approaches
the value that would result in the absence of adsorption,
and the second wave diminishes relative to the first as
the current arising from the diffusing reactant overtakes
that corresponding to the reduction of the adsorbed
reactant.

Figure 3.6 shows some simulated polarograms for
adsorbed reactants which obey Frumkin isotherms. The
double peaks found with Langmuirian adsorbates (curve 3)
become 1less pronounced (curve 2) and eventually disappear
(curve 1) as progressively more repulsive interaction
parameters are introduced into the isotherm. By contrast,

double peaking becomes more prominent in the presence of
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FIGURE 3.5

Concentration dependence of simulated differential
pulse polarograms for a strongly adsorbed reactant
obeying a Langmuir adsorption isotherm. Adsorptive
depletion of the reactant was included in the
simulation. Ordinate as_in Fig. 3.3. Parameters
utilized in the simulation: KR = 0.5 cm; Fm =

3 x 107° mol cm %, Dp = Dp = 107" em® s7'; n = 2;
pulse amplitude = 10 mV; current sampling time =

50 ms; uncompensated resistance = 100 Q; mercury
flow rate = 1.5 mg s '; drop time = 5 s; double

layer capacitance was neglected; bulk concentration

of reactant/ M: (1) 1; (2) 50; (3) 100; (4) 200.
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FIGURE 3.6

Simulated differential pulse polarograms

for a strongly adsorbed reactant obeying a
Frumkin isotherm, eqn (3.1). Values of the
interaction parameters, A, were (1) 5; (2)
1; (3) 0 (Langmuir isotherm); (4) -1. Other
parameters were the same as those for

Fig.: 3.5. Ordinate gs in Fig. 3.3.
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attractive interactions among the adsorbed species
(curve 4).

The adsorption of Cd(II) from iodide electrolytes
appears to correspond to a Frumkin isotherm with a
repulsive interaction parameter (Fig. 3.1). Polarograms
simulated using the isotherm parameters evaluated in
Fig. 3.1 contain only a single peak as do the experimental
polarograms (Fig. 3.8). Detailed comparisons of
simulated and experimental polarograms were not attempted
because the isotherm parameters evaluated chronocoulo-
metrically corresponded to more positive potentials than
those at which the pulse polarograms occur. However,
comparisons between the peak potentials and widths of
simulated and experimental polarograms at several bulk
concentrations of Cd(II) are shown in Table 3.1. There
is fair agreement between the calculated and measured
peak potentials and the observed maximum in half-peak
width as the bulk concentration increases is matched at

least qualitatively, by the simulated results.

Effects of Uncompensated Resistance. The presence

of uncompensated resistance can produce large changes in
differential pulse polarographic current. Figure 3.7
shows a set of differential pulse polarograms recorded

for solutions of Cd(II) in nitrate supporting electrolytes
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TABLE 3.1

Peak Potentials and Half-peak Widths for Differential

Pulse Polarograms of Cd(II) in 0.9 M KNO; - 0.1 M KI

Concn. of —Ep(experi— —Ep(simula~ Half-peak Half-peak
Ccd(In)/ M a £ b width(experi- width(simula-
ment) ”/mV tion)"/mV ment) /mV tion) /mV
10 630 634 40% 47
100 620 614 60 65
1000 609 - 55 53

¢ Experimental parameters: drop time, 5 s; current sampling time, 11.3

ms; pulse magnitude, 25 mV. Frumkin isotherm parameters from Fig. 3.1.

1

b similation parameters: Dp = 1 X 107 an” s . Dp =1.5x10° cm” s '3

double layer capacitance and umcompensated resistance assumed
negligible.

€ Calculated by setting the simulated and experimental peak potentials
equal to each other at 1000 uM. In the absence of adsorption the

peak potentials are independent of concentration.10

G The half-peak width is calculated10 to be 54 mV at all concentrations

in the absence of adsorption.
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FIGURE 3.7

Effect of uncompensated resistance on
experimental differential pulse polaro-
grams for a 19.6 uM solution of Cd(II)

in 0.1 M KNO3. Pulse magnitude = 25 mV;
current sampling time = 5.83 ms; drop time =
2 s; drop area = 0.0141 cm?. Residual
uncompensated resistance in cell = 410 Q.
Added uncompensated resistance/kQ: (1) -0;
(2) 0.5; (3) 1.0; (4) 2.05 (5) 5.0; (6) 10;

(7) 20. Each polarogram commences at -450 mV.
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where no adsorption of Cd(II) is detectable and Fig. 3.8
shows a corresponding set in an iodide electrolyte where
strong adsorption of Cd(II) is induced. Note that the
addition of uncompensated resistance increases the back-
ground currents as well as the peak currents. Figures 3.9
and 3.10 show how the peak currents (measured with respect
to the absolute zero current line, not from the extrapolated
background current line) depend on the magnitude of the
uncompensated resistance in the cell circuit. The maxima
in the plots of peak current versus uncompensated
resistance result because the circuit consisting of the
uncompensated resistance in series with the double layer
capacitance leads to a current-time response given by

eqn (3.3).

i= (AE/Ru)exp (-t/Rqul) (3:3)

where AE is the magnitude of the potential pulse applied
across the circuit, Ru is uncompensated resistance, t is
the time at which the current is measured, and Cdl is

the double layer capacitance. This equation predicts a
maximum current when Rqu1 = t. In Fig. 3.9 the current
was sampled 5.83 ms after the pulse and the double layer
capacitance of the dropping mercury electrode at the peak

potential determined in the absence of a faradaic
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FIGURE 3.8

Effect of uncompensated resistance on
experimental differential pulse polaro-
grams for a 19.6 uM Cd(II) solution in
0.1 M KI. Curve numbers and experimental
parameters are the same as in Fig 3.7
except that the residual uncompensated
resistance was 370 Q. Each polarogram

commences at -550 mV.
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FIGURE 3.9

Differential pulse polarographic peak current
vs. uncompensated resistance for Cd(II) in
0.1 M KNO3. Peak currents were measured
with respect to the zZero current line.
Experimental parameters as in Fig. 3.7.
Concentration of CAd(II)/uM: (1) 0; (2) 5.0;

(3) 9.9; (4) 19.6.
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FIGURE 3.10

Differential pulse polarographic peak currents
vs. uncompensated resistance for Cd(II) in

0.1 M KI. Peak currents were measured with
respect to the zero current line. Experimental
parameters as in Fig. 3.7. Concentration of

Cd(II)/uM: (1) 0; (2) 5.0; (3) 9.9; (4) 19.6.
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reaction by a.c. impedance measurements was 0.33 pF.

The calculated value of R, which corresponds to the
maximum peak current is 17.7 kQ which is in reasonable
agreement with the value shown in Fig. 3.9 in the absence
of Cd(II). The maxima remain as Cd(II) is added but they
shift to smaller values of Ru as increasing faradaic
contributions to the total current make eqn (3.3)

(which neglects faradaic current arising from diffusing
reactants) a poorer and poorer approximation.

The presence of reactant adsorption introduces a
large pseudoéapacitance, Ca’ in parallel with the double
layer capacitance and the maximum peak current is to be
expected when t = Ru(cdl + Ca) at reactant concentrations
small enough for contributions to the current from
diffusing reactant to be neglected. Figure 3.10 shows
data for Cd(II) in an iodide supporting electrolyte where
strong adsorption occurs. The current maxima are much
more pronounced and appear at smaller values of Ru as
expected. The double layer capacitance in the iodide
electrolyte was 0.87 uF at the peak potential which
leads to a predicted value of 6.7 k@ for R, at the peak
current maximum. This value matches well the maximum
in curve 1 of Fig. 3.10.

We have explored the possibility of utilizing the

effects of added uncompensated resistance on differential
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pulse polarographic current responses to evaluate Ca

and, thereby, the extent of adsorption of weakly adsorbing
reactants which are beyond the capabilities of chrono-
coulometry. However, we do not believe that this approach
offers significant promise because the double layer
capacitance dominates the current response when adsorption
is weak and accurate evaluation of the small, additional
capacitance arising from the adsorbed reactant is difficult.

The overall shape of the curves in Figs. 3.9 and 3.10
are understandable on the basis of eqn (3.3) at
sufficiently large values of Ru the current is dominated
by the pre-exponential term which does not depend on the
reactant concentration so that at sufficiently large
values of Ru all of the curves approach a current equal
to AE/Ru whether or not there is reactant adsorption.

At lower values of Ru the curves become nearly parallel
and the currents approach the values that would be obtained
in the absence of uncompensated resistance.

A point of some importance to analytical applications
of differential pulse polarography under conditions where
significant uncompensated resistance may be unavoidable
is the lack of a linear relation between peak currents
and reactant concentrations when the peak currents are

measured, as is usual in analytical applications, with
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respect to the extrapolation of the background current.
Figure 3.11 shows the degree of non-linearity introduced
by a modest amount of uncompensated resistance with and
without reactant adsorption. Electroanalysts would have
to be especially wary 1n attempting to execute analyses

in circumstances such as these.

D. C. Polarography. Because in differential pulse

the initial potential is varied within the wave, information
is available from the simulation about the d.c. polarographic
response. Since this work was completed, two papers have
appeared on this subject, both utilizing the diffusion

Lduds Comparison of these results with

layer approach.
the results of digital simulation reveals good qualitative
agreement about the effects of adsorbed reactant and
product under conditions of linear and Langmuir isotherms.
Virtually all the questions treated by this simulation
were treated in the two papers, the most important of
these being the relationship between isotherm parameters
and experimental conditions with wave shapes14 and
current-time response at the growing drop15 (current may
sometimes go through a maximum then decrease rather than
the ordinary behavior, i « tl/s). The one thing

which the diffusion layer treatment was not able to

demonstrate is concentration-distance profile such as
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FIGURE 3.11

Differential pulse polarographic peak current
vs. concentration of Cd(II) in the presence
of uncompensated resistance. Supporting
electrolyte: (A) 0.1 M KNOs; (B) 0.1 M KI.
Total uncompensated resistance present/kQ:
(1) 0.41; (2) 1.41; (3) 2.41; (4) 5.41;. (5)
0.37; (6) 1.37; (7) 2.37; (8) 5.37. Other

experimental parameters as in Fig. 3.7.
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shown in Fig. 3.12. This figure is illustrative of
the '"depletion effect'" noted earlier in connection with
Fig. 3.2. The concentration profiles calculated by
digital simulation show that with short drop time and
strong adsorption, the surface concentrations of both
product and reactant are strongly depleted. The ratios
of product to reactant are equal in both cases, since
even in the presence of adsorption, surface concentrations
must obey the nernst equation. Extrapolation of the
siope (%%)x=0 until it intersects the bulk value can be
used as a measure of the "diffusion layer'" thickness.
Figure 3.12 shows that the diffusion layer thicknesses
for reactant with and without adsorption do not differ
markedly. Thus the diffusion layer approximation used
in refs. 14 and 15 is probably adequate under these
circumstances. There might be occasions when the
diffusion layer approximation would not hold; for example,
when isotherms with large positive or negative interaction
parameters are involved.

Figure 3.13 treats a situation not considered in
the paper of Sluyters-Rehbach, gg.gl.,l4 the case of
interaction between adsorbed molecules on the surface.
The figure shows the effect of attractive and repulsive

interaction parameters in a Frumkin isotherm. As was
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FIGURE 3.12

Simulated concentration profiles with and

without adsorption. D . = 7.8 x.10 " cm®/sec,
Dy = 1.52 x 10" cn’/sec, n = 2, €0 = 1 M,

m=1.129 mg/sec, ty = 0.5 sec,, E = E° +
10 mV. (a) COX (x), no adsorption; (b)

CR (x), no adsorption; (c) COX (%) , KOX =
0.036 cm, KR = 0; (d) CR () Kox = 0.036

(51|18 KR = 0. Dotted lines: extrapolations

dcox)
of (—75? .

=0
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FIGURE 3.13

Simulated d.c. polarograms, Frumkin isotherm.

D, = Dg = 107° em®/sec, n = 2, C__ = 100 uM,
m= 1.5 mg/sec., ty = 5 sec., KOX = 0.5 cm,
=3 x 10 *° moles/cm’. A refers to the

Frumkin isotherm interaction parameter.
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noted for differential pulse and will be seen in the
next chapter for normal pulse, attractive interactions
tend to "sharpen'" the current-voltage responses,.whereas
repulsive interactions tend to smear them out.

The computer programs used to generate the d.c.

polarograms are shown in Appendix C.
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CHAPTER 1V

Effects of Reactant and Product Adsorption

in Normal Pulse Polarography
INTRODUCTION

Perturbations in the shapes of normal pulse polaro-
grams due to reactant adsorption were first reported
by Barker and Bolzanl who correctly interpreted the origin
of the peaked '"maxima'. An additional result of reactant
adsorption is a depression of the limiting current below
the value that would be obtained in the absence of
adsorption. Barker and Bolzan' also mentioned this effect
but discussed it only cursorily. 1In fact, this feature
turns out to be a general consequence of reactant
adsorption. It results whenever the adsorption is strong
enough to lead to a "Barker-Bolzan peak'" in the normal
pulse polarograms and is of obvious importance in
analytical applications of the technique.

The depletion of adsorbing reactants near the
electrode surface which is the origin of the depression
in t he limiting current and the pre- and post-waves which
result from non-linear adsorption isotherms is examined
in this chapter, both experimentally and by means of

digital simulation. The normal pulse polarograms were
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obtained with the modified pulse polarograph (Princeton
Applied Research Model 174) by procedures essentially
the same as those described in the previous chapter on

differential pulse polarography.

RESULTS AND DISCUSSION

Digital Simulation. The digital simulation program

employed was a straightforward extension of that described
previously for differential pulse polarography (Appendix D).
The electrode reaction was assumed to be nernstian and
reversible at all coverages with both reactant and product
soluble in either the solution or the mercury electrode.
Initial and boundary conditions were identical to those
given previously (Chapters II and III), except for the
constant initial potential and increasing pulse amplitude

characteristic of normal pulse polarography.l

Experimental Observations. Figure 4.1 compares the

normal pulse polarograms for Cd(II) in nitrate and iodide
supporting electrolytes. The iodide-induced adsorption
of Cd(II) produces both a current peak of the type
described by Barker and Bolzan1 and a depression of the
limiting current on the plateau of the wave. The
adsorption-induced peaking of the current originates from

the same phenomenon that produces enhancement of peak
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FIGURE 4.1

Normal pulse polarograms for 20 uM Cd(II).
Supporting electrolyte: (1) 1 M KNOj;

(2, 3) 0.9 M KNO; - 0.1 M KI. Current

sampling time: (1, 2) 48.5 ms (current
averaged between 39.7 and 57.3 ms); (3) 22.7
ms (current averaged between 19.9 and 25.5 ms).
Drop time: 2 s. Mercury flow rate: 1.04 mg

s”'. Initial potential: -450 mV vs. SCE.
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currents in differential pulse polarography: For
nernstian reactions the rate of reduction of adsorbed
reactant at potentials in the vicinity of the standard
potential is limited by the rate at which the reaction
product can diffuse away from the electrode surface. As
a result, the additional current corresponding to reduction
of the adsorbed reactant continues to be a significant
component of the total current when it is sampled by the
pulse polarograph. For this reason the prominence of

the current peak is enhanced by decreases in the current-
sampling time (Fig. 4.1, curve 3).

Depletion of the Cd(II) concentration in the solution
at the surface of the dropping electrode because of its
adsorption is responsible for the depression in the
limiting current of the pulse polarogram recorded in the
iodide electrolyte (Fig. 4.1). At potentials on the
limiting current plateau all of the adsorbed reactant is
reduced instantaneously upon application of the potential
step so that when the current is sampled it contains
contributions only from the diffusing reactant whose
concentration has been depleted by the prior adsorption
and reduction of a portion of the reactant initially
present at the electrode surface.

If the normal pulse polarograms for Cd(II) in iodide

electrolytes are recorded in the anodic direction from
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initial potentials on the reduction current plateau, no
current maximum nor limiting current depression result
(Fig. 4.2). In this case the electrode reaction involves
the conversion of an unadsorbed reactant (Cd(Hg)) to an
adsorbed product but the pulse polarogram contains no
clue of the presence of product adsorption. The limiting
current is somewhat larger in the electrolyte containing
iodide because the diffusion coefficients of Cd(II)-iodide
complexes are larger. (Even though a net anodic limiting
current is measured its magnitude should be determined

by the diffusion coefficient of Cd(II) in the solution
phase, not in the mercury electrode according to eqn. 4
in reference 2.)

The iodide-induced adsorption of Cd(II) obeys a (non-
linear) Frumkin isotherm. Before comparing the observed
experimental behavior with that calculated by digital
simulation for this more complex case, the calculated
behavior of adsorbates which obey linear isotherms will

be exposed.

Simulated Polarograms with a Linear Adsorption Isotherm.

Figure 4.3 contains a set of normal pulse polarograms
simulated for the case that the adsorption of reactant
and product obey a linear (Henry's law) isotherm. The

initial potential lies outside the range of faradaic
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FIGURE 4.2

Reverse scan normal pulse polarograms for
20 uM Cd(II). Initial potential: -800 mV
vs. SCE. Supporting electrolyte: (1) 1 M
KNOs;; (2) 0.9 M KNO; - 0.1 M KI. Current
sampling time: 48.5 ms. Other conditions

as in Fig. 4.1.
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FIGURE 4.3

Simulated polarograms for adsorbed reactants
and products obeying linear adsorption
isotherms. Potential scanned in the forward
direction. Adsorption coefficients (cm) for
reactant and product, respectively: (1) 0,0
(i.e., no adsorption); (2) 0.05, 0; (3) 0,
0:.05; (4) 0.05, 0.05; (5} 0.05; 0.,001.
Simulation parameters: Reactant concentration:
100 uM; initial potential: +150 mV vs. E°,

the standard potential of the reactant/product
couple; n = 2 electrons; diffusion coefficient:
107° em™? s™' (for both reactant and product);
drop time: S s; current sampling time: 50 ms;

DME mercury flow rate: 1 mg s
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activity and the potential is scanned into the region
where the faradaic reactions proceeds ('"forward scan",
e.g., a cathodic scan with a solution of a reducible
reactant). Figure 4.4 contains a similar set of
simulated polarograms for which a faradaic reaction is
proceeding at the initial potential which is chosen to
lie on the limiting current plateau. The potential is
scanned in the direction of decreasing faradaic activity
("reverse scan', e.g., an anodic scan with a solution of
a reducible reactant).

Curve 1 in both Figures corresponds to no adsorption
of either reactant or product. Curve 2 in Fig. 4.3
corresponds to a strongly adsorbed reactant being converted
to a non-adsorbed product. Note the large current maximum
and the severely depressed limiting current. Curve 2
in Fig. 4.4 is the result of a reverse scan with the same
system. The shape of this polarogram is identical to
that of Curve 1 because all of the dissolved reactant
which diffuses to the electrode before the application of
each potential step is immediately converted to unadsorbed
product just as is true when the initial reactant is not
adsorbed. Note, however, that the position of the wave
on the potential axis is shifted because of the adsorption.

The magnitude of this shift is determined by the magnitude
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FIGURE 4.4

Simulated polarograms for adsorbed reactants
and products obeying linear adsorption
isotherms. Potential scanned in the reverse
direction. Adsorption coefficients and
simulation parameters as in Fig. 4.3 except
the initial potential was -150 mV vs. E°.
Residual (cathodic) current flowing at the
initial potential was substrated from each

polarogram.
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of the linear adsorption coefficient but it is not
influenced by the bulk concentration of the reactant.

The polarograms labeled 3 in Figs. 4.3 and 4.4 are
just the converse of those labeled 2 and their properties
can be understood on the basis of the discussion in the
preceding paragraph.

Note that normal pulse polarograms corresponding to
an electrode process which converts an unadsorbed reactant
into an adsorbed product are distinguished from the
polarograms corresponding to no adsorption of the reactant
or the product only by a difference in half-wave potential
for the two cases. In the absence of an independent
determination of the standard potential of the system
involved there is no way to deduce the presence of product
adsorption from the normal pulse polarogram. This contrasts
with the behavior obtained with differential pulse polaro-
graphy where enhanced peak currents result from the
adsorption of the product as well as the reactant.
However, for reversible electrode reactions, the presence
of adsorption can easily be verified in normal pulse
polarography by recording the polarogram in the opposite
scan direction, thus interchanging the effective reactant
and product.

If both the reactant and product are adsorbed with

equal adsorption coefficients (curve 4 in Figs. 4.3 and 4.4)
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there is no current maximum nor shift in half-wave potential
but the limiting current is depressed identically in both
the forward and the reverse scan directions.

Finally, the polarograms labeled 5 in Figs. 4.3 and
4.4 correspond to adsorption of both product and reactant
but with much stronger adsorption of the latter. During
the forward scan (Fig. 4.3) a current maximum appears
but its magnitude is considerably smaller than is true in
the absence of product adsorption (compare curves 2 and 5
in Fig. 4.3) despite the fact that the same reactant
adsorption coefficient is involved. Reactant depletion
resulting from the adsorption produces a depressed limiting
current with a magnitude that is independent of the strength
of product adsorption (compare curves 2, 4, and 5).

The polarogram obtained during the reverse scan
(Fig. 4.4, curve 5) shows no current maximum when the
reactant adsorption coefficient exceeds that of the
product but the limiting current is nevertheless depressed
by adsorptive depletion.

Figure 4.5 shows how the shape of the polarogram
changes as the adsorption coefficient of the reactant is
increased in the absence of product adsorption. These
polarograms resemble those given by Barker and Bolzan

(Fig. 6 of reference 1) except that adsorptive depletion
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FIGURE 4.5

Simulated polarograms for adsorption of
reactant but not product. Potential
scanned in the forward direction.
Adsorption coefficient (cm): (1) 0;
(2) 0.001; (3) 0.002; (4) 0.005; (5)
0.01. Other simulation parameters as

in Fig. 4.3.
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of the reactant was not included in their approximate
calculations. It is evident from the curves in Fig. 4.5
that the current maximum is absent when the adsorption
coefficient is 10°° cm or less although significant
depression of the limiting current persists. With non-
linear isotherms similar behavior results at bulk reactant
concentrations where the adsorption approaches the
saturation value. In both cases the behavior can be
dangerous analytically if reactant concentrations are
being determined from limiting current magnitudes.

It should be noted that in the simulation employed
here the adsorption coefficient was assumed to be
independent of potential (Barker and Bolzanl used the
same approximation). However, it is not difficult to
estimate the qualitative effects that would be introduced
by a potential dependence of the adsorption coefficient.
If a reactant is adsorbed at the initial potential but
not at potentials on the plateau of the wave depression
of the limiting current arising from the depletion of
reactant from solution will be the same whether or not
the adsorption coefficient is potential dependent. The
initially adsorbed reactant will react essentially
instantaneously when the electrode potential is stepped
to the diffusion limiting region whether or not it remains

adsorbed.
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In cases where the reaction product is not adsorbed
the effect of desorption of the reactant at potentials
on the rising portion of the wave because of a decrease
in its adsorption coefficient will generally be to produce
a maximum in the current-potential curve resulting from
the enhancement of the reactant concentrations at the
electrode surface. The converse case in which there is no
adsorption of the reactant at the initial potential but
increasing adsorption at potentials where the wave
appears would be expected to exhibit shifted waves with
altered shapes but the limiting current would not be
affected since it remains a function only of the adsorption

coefficient of the reactant at the initial potential.

Simulated Polarograms with Non-linear Adsorption

Isotherms. When the reactant adsorption is governed by
a linear isotherm the current maxima, limiting currents
and half-wave potentials are not influenced by changes
in the bulk concentrations of reactant. However, non-
linear adsorption isotherms cause all three of these
polarographic features to exhibit concentration dependences.
With non-linear isotherms and sufficiently large

adsorption coefficients pre- and post-waves may appear in
normal pulse polarograms. These waves originate for the

same reasons that have been discussed in the cases of
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differential pulse polarography, d.c. polarography,3
linear potential scan voltammetry,4 and chronocoulometry.
Figures 4.6 and 4.7 show a set of simulated polarograms
for adsorbing reactants and products, respectively, which
obey Langmuir adsorption isotherms. With reactant
adsorption (Fig. 4.6) the post-wave appears in the form
of a current maximum (curves 1, 2, 3). At lowconcentrations
this post-wave so dominates the response that no vestige
remains of the unperturbed main wave (curve 4). At
higher concentrations where the electrode surface is
saturated the post-wave becomes insignificant with respect
to the main wave. Only over a rather narrow range of
concentrations does a clear double wave appear (curve 3).
On the other hand, with product adsorption (Fig. 4.7)
flat-topped pre-waves are obtained with shapes reminiscent
of their counterparts in d.c. polarography. However, the
concentration range within which the double waves develop
is also quite restricted, spanning little more than one
order of magnitude. The prominence of the waves is also
a sensitive function of the adsorption coefficients of
the product. As the coefficient is decreased the pre-
waves eventually become imperceptible because their
separation from the main wave decreases correspondingly.
The pre- and post-waves are most clearly separated

from the main wave when the adsorption isotherms rise to
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FIGURE 4.6

Simulated polarograms for an adsorbed reactant
obeying a Langmuir isotherm. Bulk reactant
concentrations, uM: (1) 1; (2) 50; (3) 200;
(4) 1000. Adsorption coefficient: 0.5 cm;
adsorption at saturation of the surface:

3 x 10" '° moles ecm . Other simulation

parameters as in Fig. 4.3.
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FIGURE 4.7

Simulated polarograms for an adsorbed product
obeying a Langmuir isotherm. Bulk reactant
concentrations, uM: (1) 1; (2) 50; (3) 300;
(4) 400; (5) 500; (6) 1000. Other simulation

parameters as in Fig. 4.6.
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saturation coverage over a relatively narrow range of
bulk concentrations as with the Langmuir isotherm or,
especially, the Frumkin isotherm with an attractive
interaction parameter.6 Cd(II) in iodide electrolytes
obeys a Frumkin isotherm with a repulsive interaction
parameter and a smaller adsorption coefficient than was
used in the simulations in Fig. 4.6. The net result is
that a clear current maximum is observed in normal pulse
polarograms for Cd(II) in iodide (Fig. 4.1), but no
clearly separated post-wave (such as curve 3 in Fig. 4.6)
is obtained at any concentration of Cd(II).

Figure 4.8 compares the concentration dependences
of the experimentally measured values of the (normalized)
maximum and limiting currents for Cd(II) in iodide
electrolytes with those obtained from a digital simulation
based on the Frumkin adsorption isotherm parameters that
were determined previously by an independent technique.
The good agreement between the experimental results,
plotted as points, and the simulation which involved no
adjustable parameters (the continuous lines) justifies
the conclusion that the factors responsible for the current
perturbations have been properly identified and satisfactorily
accounted for in the simulation. For example, note that
with the shorter drop time in Fig. 4.8 the current maximum

is essentially absent at a concentration of 200 uM but
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FIGURE 4.8

Concentration dependences of the peak currents and
limiting currents for Cd(II) in 0.9 M KNO; - 0.1 M
KI. The ordinate is the current density divided by
bulk concentration of Cd(II). Experimental points
are plotted, the numbered solid lines are simulated.
1, (©) maximum current, drop time = 5.2; 2, (@)
Maximum current, drop time = 1 s; 3, (A) limiting
current, drop time = 5 s; 4, (&) limiting current,
drop time = 1 s. Mercury flow rate: 1.06 mg s_l;
current sampling time: 48.5 ms; diffusion coefficients:
Cd(Hg) = 1.5 x 10°° em® s~ '; €d(II) = 10°° cm” s '
Frumkin adsorption isotherm parameters [2Z] used in
the simulation: adsorption coefficient = 0.04 cm;

10

o . - -2 .
maximum adsorption 2.2 x 10 moles c¢cm " ; rTepulsive

interaction parameter: 3.6.
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the normalized limiting current is still ca. 15% below
the high concentration (no-adsorption) limit. Just such
behavior was shown in Fig. 4.5 (curve 2) in the case of a

linear isotherm.

CONCLUSIONS

Both the simulated and experimental results presented
above make it clear that reactant adsorption can lead to
normal pulse polarographic waves with anomalous features
such as current maxima, double waves and depressed
limiting currents. Although the shapes of the current
maxima can resemble those of ordinary polarographic maximal
their origin is clearly different depending, as it does,
on the coupling of adsorption, mass transfer and nernstian
electrode kinetics rather than changes in interfacial
tension and streaming at the surface of liquid mercury
electrodes. Adsorption-induced current maxima may also
appear in pulse polarograms obtained at solid electrodes
with reversibly adsorbing, nernstian reactants.

The depression in normal pulse polarographic limiting
currents which reactant adsorption induces can have
serious analytical consequences because the linear
relationship between the limiting current and bulk reactant
concentration is lost. When both the reactant and the

product of an electrode reaction are adsorbed the situation
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becomes particularly troublesome if the normal pulse
polarograms are being used for analytical purposes because
severe depression of the limiting currents may result
while the wave shapes give no hint that the adsorption is
occurring (e.g., curves 4 in Figs. 4.3 and 4.4).

Whenever a current maximum is detected in a normal
pulse polarogram obtained with a dropping mercury electrode
the ensuing limiting current will be depressed but the
electroanalyst has received a clear warning sign. When
no maximum is observed other tests which may reveal the
presence of adsorption include limiting currents which
are very different on forward and reverse scans or
anomalous dependences of the limiting currents on drop -

time or current sampling time.
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CHAPTER V!

Electron Transfer to and From Molecules Containing
Multiple, Non-interacting Redox Centers.

The Electrochemical Oxidation of Poly(vinylferrocene)
INTRODUCTION

The electrochemical behavior of molecules which contain
several electroactive sites has been the subject of a number
of studies.z’3 The differences in potential between the
half-reactions of the successive electron transfers to such
molecules can depend upon the extent of interaction between
the sites, solvation changes, ion pairing and structural
changes of the molecule, but for molecules containing

identical, non-interacting centers, the successive electron

transfers will follow simple statistics. In the absence of
significant molecular reorganization or solvation changes,

the separations between successive formal potentials (as
defined below) will depend only on the number of centers
present. For example, with two centers present the separation
is equal to (RT/F)1n4.4 This situation is analogous to that
of the separation in pK's of a molecule with non-interacting
acidic groups.5 As Ammar and Saveant have pointed out,4

the nernstian voltammetric wave which results from such a

situation has the shape of a one-electron transfer reaction,

although more than one electron is transferred in the
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overall reaction. In a recent paper6 on the electroreduction
of the polymers poly-2-vinylnaphthalene and poly-9-vinyl-
anthracene evidence was presented for multi-electron transfer
(up to 1200 electrons per molecule!) producing voltammetric
waves with the overall shape of one-electron transfer
reactions. Similarly in a recent study of the electrochemical
oxidation of poly(vinylferrocene) (PVF) multi-electron
transfers were observed.7

We report here a theoretical analysis of the expected
current-potential characteristics for multiple electron
transfers to a molecule containing any number of non-
interacting redox centers and demonstrate that the statistical
factors which govern the behavior produce a current-potential
response with nernstian systems which, except for the larger
limiting currents, has all the characteristics of a one-
electron transfer reaction. Such behavior is demonstrated
by the electrochemical oxidation of PVF for which coulometric
measurements are employed to show that the total number of
electrons transferred is equal to the number of ferrocene

residues present in the molecule.

EXPERIMENTAL
Reagents. N,N-dimethylformamide (DMF) was stirred
over anhydrous copper sulfate for 24 hours, distilled under
reduced pressure, and stored under argon. Tetrahydrofuran

(THF) was refluxed over sodium for 24 hours, distilled under
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reduced pressure and stored under argon. Polarographic
grade tetra-n-butylammonium perchlorate (TBAP) (Southwestern
Analytical Chemicals, Austin, Texas), used as supporting
electrolyte, was used as received after drying under vacuunm.
The samples of poly(vinylferrocene) were generously donated
by Dr. Thomas W. Smith (Xerox Corp.); the synthesis
purification, and measurement of molecular weights of these

samples has been described.7

Apparatus. Cyclic voltammetry and coulometry experiments
were carried out with a PAR Model 173 Potentiostat (Princeton
Applied Research Corp., Princeton, NJ) driven by a PAR Model
175 Programmer. Current-voltage curves were recorded on a
Tektronix Model 564 Oscilloscope or an X-Y Recorder. Pulse
Polarography studies were performed with a PAR Model 174
instrument.

A conventional three-electrode cell was used in all
experiments. The working electrode for voltammetric
experiments'was a platinum sphere with an area of 3.0 mm.
For coulometry a large platinum gauze electrode was
employed. The reference electrode was a silver wire
immersed in the test solution but isolated from the main
chamber by a sintered-glass disk. The potential of this
reference electrode was not particularly stable. Its

potential was measured with respect to an aqueous saturated
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calomel electrode (s.c.e.) to obtain the values of potential
on this scale. The counter electrode was platinum and was
isolated in a separate chamber of the cell. Positive
feedback techniques were employed to minimize the effects

of uncompensated resistance in the cyclic voltammetric

measurements.

THEORY OF ELECTRON TRANSFER WITH REACTANTS
HAVING MULTIPLE ELECTROACTIVE CENTERS
Consider a polymeric molecule cbntaining n independent
centers capable of accepting or donating one electron.
Suppose that each center has the same standard potential,

(0]

Em , and adheres to the Nernst equation independently of

the oxidation state of any of the other centers in the
molecule; i.e., for each center there is a corresponding

half-reaction with standard potential, EmO

(o]
E
XXOXX+ » = «» +e ==l ... XXRXX- -
B (0]
-.-.XXXXO---.+e .‘_.-'_m: -.--XXXXR""
etc

where 0 and R represent the electroactive center in its

oxidized and reduced states, respectively, and X represents
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a center in either oxidation state. The probability that,

at equilibrium, any site, i, is reduced is given by:

P(i=R) = 119 (5.1)
where
o = exp[ﬁ%(E—Emo)} (5.2)

and E is the potential of an electrode with which the
multiple-centered molecule is in equilibrium.

The "oxidation state' of such a polymeric molecule
amounts to the sum of the monomeric components of the
molecule that are in their oxidized states, namely (n-j),
where j is the number of reduced sites. Application of
standard probability theory8 leads straightforwardly to a
binomial distribution of the various forms of partially

reduced polymer:

£y = [?] |155] (n_j)[l-%e]j (5.3)

where fj is the fraction of the polymer molecules present

containing exactly j reduced centers (and (n-j) oxidized

0 1

§ET) 19 are the

%
centers) at each value of 6. and
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probabilities that any particular monomeric center is
oxidized or reduced, respectively.

If Cp is the bulk concentration of polymer, the
equilibrium concentration, Cj, of molecules containing
exactly j reduced sites (produced, for example, by controlled
potential electrolysis of the solution at potential E) is

given by:
Cx = £.1T, CS5.4)

where fj has the value corresponding to potential E. In
many cases (discussed below) the same expression may be used
to calculate concentrations at the electrode surface in
voltammetric experiments.

Figure 5.1A shows calculated fractional concentration-
potential curves for the reduction of a two-center molecule.
The three curves represent the fractions, f,, f; and f,, of
unreduced, half—réduced, and fully-reduced molecules,
respectively. The curves intersect at the potentials for
the two redox couples present. These are identified in
Fig. 5.1 as ElF andEzF. The difference between these two
intersection potentials is 35.6 mV (at T = 297° K), a result
which has been discussed previously for molecules with two

da

non-interacting centers by Ammar and Savéant. For the

general case of molecules containing n non-interacting



108

FIGURE 5.1

Calculated fractional concentration-potential and current-
potential curves for a reactant with two reducible centers.

A - Fractional concentrations of unreduced (1), half-

F F

reduced (2) aﬁd fully-reduced (3) reactant. E; and E:
are the formal potentials corresponding to the transfer of
the first and second electrons to the molecule, respectively
B = Current-potenfial curves for equal concentrations of

(1) one-center and (2) two-center reactants. The currents
have been corrected for differences in the diffusion
coefficients of the one-center and two-center reactants.
id,m is.the diffusion limited current for the one-center

molecule. Curve 3 is the plot of vlog(i}

—) for both
d

current-potential curves. A temperature of 25° C is assumed
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reducible centers it is possible to calculate the formal
potentials, corresponding to each pair of successive
oxidation states of the polymer.
At the formal potential EjF, the concentration fractions
f.. .y and f. are equal:
(5-1) j a

£ (5.5)

G-i) = %

substituting eqn (5.3) into both sides,

[j?l][119](n_j+1)[fg§]j—l B [?J{I%g](n—j)[lfe]j (5.6)

('n 1) _ [(n]f 8
%) (5% - 5 Ik (5:7)
n!
-1 - |
g o (n_J+l%i(J 1) ! (5.8)
m-3)1371
5 = H?%TT (5.9)
Substituting eqn (5.2):
F _ 0 RT j
E;" = B ° - Trln[ﬁj%xf] (5.10)

As an example, Fig. 5.2 illustrates fraction-potential

: 4b
and current-potential curves calculated for n = 5.



112

FIGURE 5.2

Calculated fractional concentration-potential and current-
potential curves for a reactant with five reducible
centers. The numbered curves have the corresponding

significance to those identified in Fig. 5.1.
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The difference between the formal potentials for the
first and last pair of oxidation states in a molecule with
n reducible centers is logarithmically related to n:

g ¥ - EnF = (2RT/F)1ln n (5.11)

For large n, this means that there will be large overlap of
the concentrations of the various partially reduced species
at potentials in the rising portion of a polarization curve,
i.e., that the successive formal potential will fall
increasingly close to each other as n increases. Note that
the spacing between successive formal potentials becomes
non-uniform for n > 4.

Comparison of the A and B portions of Figs. 5.1 and
5.2 reveals that the half-wave potential obtained with
polymeric molecules matches the half-wave potential
obtained with the corresponding molecule with one center

and falls at the formal potential E§+1 when n is odd. For

A
even values of n, the half-wave potential falls between

EX and EL,,.

2

To c%lculate Qn(e) the total number of electrons
consumed by a polymeric reactant of n centers during
electrolysis from the completely oxidized state at a
potential corresponding to 6, we multiply the amount of

each reduced species formed by the number of electrons it
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has accepted and sum for all j:

Q, (8) = BNy ] if, (5.12)

where NT is the total number of moles of polymer taken and
F is the Faraday.
Under conditions where eqn (5.4) applies to concentrations
at the electrode surface during voltammetric experiments,
the shapes of the current-potential curves obtained may be

calculated with the aid of eqn (5.12). (The magnitudes

of currents will, of course, be scaled by diffusion
coefficients and the experimental parameters applicable to
each technique.) Voltammetric techniques in which the
surface Coﬁcentrations of reactant and product are directly
reflected in the current-potential curves include d.c.
polarography, normal pulse polarography, and voltammetry at
rotating disk electrodes.

It can be shown that the shape of the current-potential
curves obtained with these techniques will have the same
shape as the corresponding curve for the species containing
only a single reducible center but the limiting currents
will be larger by a factor of n, the degree of polymerization.
In terms of eqn (5.12) this correspondence can be expressed

as

Q,(8) = nQi(6) (5.13)
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Equation (5.13) can be shown to be an identity by substituting

eqn (5.12) into both sides and performing a few manipulations:

RRE 1
F N j £ = nF N ) j £. (5.14)
Substituting eqn (5.3) into both sides:
n n-j j
- . [n 8 1 2 1
g 1G] (] Prrmlde] s
Noting that the 1.h.s. j = o term is zero, factoring out a

term in Téﬁ’ and expanding the binomial coefficient [?]

yields:
d NT[T%J\J-; j!(i?éil(lge}n_j[l_igjj—l S (5.19)
nE NT[l}«ergl(j-SI%%ij)![1Ee]nbj{[lie]j—1 R Y
Making the substitutions, k = j-1 and m = n-1,
aa NT[lie]kgokl(ﬁik) i [1EeJm_k[‘i—i—e‘]k L (5.18)

The sum is simply the binomial expansion of [T$§J which 1is

unity.

1 = 1
nF NT[1+8]'1 = nF NT{TI§

Which was to be proved.

] (5.19)
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The current-potential identity corresponding to
(5:13) is:

m

p 1P
i (8) = nil(e)[ﬁEJ (5.20)

where in is the current obtained at each value of 6 with a
polymer and i1 the corresponding current for a monomeric
sample when the concentrations of both polymer and monomer
are equal. Dp and Dm are diffusion coefficients for
polymer and monomer, respectively, and the exponent p
depends on the voltammetric technique employed.

Figures 5.1B and 5.2B show the current-potential curves
calculated for the reduction of two-center and five-center
molecules, respectively, along with the corresponding plots

vs potential. The latter pair of plots, whose

of logi;;l
slopes reflect the steepness of the rising portions of the
current-potential curves, are indistinguishable from each
other and are identical to the plot that would result for
the reduction of a monomeric one-electron reactant. Thus,
the magnitudes but not the shapes of the current-potential
curves are affected by the number of non-interacting
reducible centers the reactant contains.

The current-potential responses obtained with techniques
such as cyclic voltammetry, differential pulse polarography

and a.c. polarography bear a more complex relation to the
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concentrations of reactant and product at electrode surfaces
so that simple equations analogous to (5.13) and (5.20) are
not available. However, the shapes of cyclic voltammograms
are discernable from those of corresponding polarographic
or steady-state current-potential curves by means of semi-
differentiation.9 In this way it can be shown that cyclic
voltammograms (as well as differential pulse and alternating
current polarograms) for molecules with multiple, non-
interacting redox centers will also exhibit shapes that
match those of the corresponding species with a single
center. Thus, the anodic and cathodic peak potentials and
the peak and half-peak potentials should both be separated
by 58 mv (25° C)..°

The peak currents of cyclic voltammograms for polymeric
reactants will obey eqn (5.20) with p = %. This is true
despite the fact that in the equation for the voltammetric
peak current with nernstian reactants n, the number of
electrons transferred, appears with the exponent 3/2 not 1.10
The reason is that the equation for the peak current is
derived for an electrode reaction in which n electrons are
assumed to be transferred essentially simultaneously while

the type of multi-centered reactant we have been discussing

undergoes n successive, one-electron transfers per molecule.

Departures from Simple Theory. A variety of factors

could cause departures from the behavior calculated on the
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basis of the simple model employed thus far: Interactions
between adjacent reducible centers; slow electron transfer
at the elecfrode, i.e., non-nernstian behavior; structural
changes in the polymer which accompany its reduction;
adsorption or precipitation of reactants or products at the
electrode surface; or changes in diffusion coefficients of
reactants and products as charge is added or removed from
the polymer.
Thevariety'ofexperimentalexampleslljjlwhichmolecules
bearing several identical reducible (or oxidizable) centers
exhibit multiple waves at separate potentials rather than a
single, larger wave 1s presumably a result of one or more of
these factors but electronic interaction between two centers
seems most likely to be the major source of wave-splitting.
There are also cases in which the current-potential
curves for a multi-centered reactant have slopes even greater
than that for a one-electron reactant.3 This can occur when
the addition of the first electron produces a species which
accepts additional electrons more readily than the original
reactant. Simulated voltammograms corresponding to a variety

of conditions have been discussed by Polcyn and Shain.12

EXPERIMENTAL RESULTS AND DISCUSSION
Voltammetric Studies. As discussed by Smith et gi.,7
finding a solvent in which PVG and its oxidation products

are adequately soluble and in which adsorption or
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precipitation of reactants or products does not distort
cyclic voltammograms is difficult. We had the best success
with DMF and THF. With DMF it was necessary to heat the
DMF-polymer mixture to 150° C and then cool slowly to room
temperature to dissolve mg amounts of PVG. Typical cyclic
voltammograms of the monomer, vinylferrocene (VF), and PVF
are shown in Fig. 5.3 and 5.4. The wave for

VF shows characteristics of a reversible one-electron
transfer with production of a soluble, stable product, i.e.,
ipa(v]"% and Epa independent of scan rate, E - E ~ 60 mV,

pa pc

and lpc/lpa ~ 1 (where 1pa and lpc are the peak anodic and

cathodic currents, respectively, Epa and EpC are the anodic
and cathodic peak potentials, and v is the scan rate). In
DMF the 5 K polymer exhibits generally similar characteristics,
but the 16 k PVF shows evidence of adsorption of the reactant
in the form of overly sharp anodic peak currents (Fig. 5.3).
For THF solutions adsorption of the reactant was not observed
(1:€:; :'Lpa(\))_]/2 was independent of v) but the cathodic wave
on scan reversal showed that the oxidized product had
accumulated at the electrode surface (Fig. 5.4). Smith et
gl.,7 noticed similar behavior with methylene chloride as a
solvent.

While the cyclic voltammetric behavior of the 5 K

polymer in DMF shows the shape and peak separation expected

of a reversible one-electron transfer, the adsorption and
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FIGURE 5.3

Cyclic voltammograms for vinylferrocene (VF) and poly(vinyl-
ferrocene) (PVF) in 10 m of DMF as solvent. A - 1.0 mg VF
(Mol. Wt. = 212); B - 1.2 mg PVF of Mol. Wt. 4930; C - 1.0 mg
PVF of Mol. Wt. 15750. The initial potential for all
voltammograms was +250 mV vs. the silver wire reference
electrode. More oxidizing potentials are to the right;
oxidation currents are plotted upward. Supporting electrolyte:

0.1 M TBAP. Scan rate: 100 mV sec
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FIGURE 5.4

Cyclic voltammograms for poly(vinylferrocene) in 10 ml of
THF as solvent. (——) - 0.94 mg PVF of Mol. Wt. 4930;
(----) - 0.9 mg PVF of Mol. Wt. 15750. The initial
potential was +100 mV vs. the silver wire reference
electrode. More oxidizing potentials are to the right.
Oxidation currents are plotted upward. Supporting

electrolyte: 0.2 M TBAP. Scan rate: 100 mV sec
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precipitation problems led us to use normal pulse Voltammetry13

as a means of determining the wave shape parameters and
estimating the total number of electrons transferred per
polymer molecule. In this technique adsorption or precipitation
of the oxidized product should be of less importance, since

a smaller amount will accumulate on the electrode surface.
during the brief pulse duration (~50 msec) and the oxidized
product is reduced back to starting material during the

time between pulses when the electrode is held at a potential
at the foot of the anodic wave.14 Typical normal pulse
voltammograms are shown in Fig. 5.5 for both VF and PVF in

THF. The limiting diffusion currents (id), slopes of E vs

1573
log( i- ) plots, and half-wave potentials (E%) obtained

from the normal pulse polarograms are given in Table 5.1.
The total number of electrons transferred in the

oxidation wave for the polymer (np] can be estimated from

the 1limiting currents and approximate relative values of

the diffusion coefficients of the monomer (Dm) and polymer

(Dp).6 From previous work on the relation between diffusion

coefficient and molecular weight (Mm or Mp for monomer and

polymer, respectively) the following relation seems most

; 14
appropriate.

~ 0.55
D /D, = (M /M) (5.21)
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FIGURE 5.5

Normal pulse voltammograms for the oxidation of vinyl-
ferrocene (VF) and poly(vinylferrocene) (PVF) in 10 ml of
THF as solvent. A - 0.57 mg VF (Mol. Wt. - 212);

B - 2.0 mg PVF of Mol. Wt. 15750. The initial potential
was 0 mV vs. the silver wire reference electrode for both
polarograms. Supporting electrolyte: 0.2 M TBAP. Scan

Al
rate: 2 mV sec ; Drop time: 5 sec.
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FIGURE 5.5
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Assuming that the oxidation of VF is a one-electron reaction
the value of Mp can be estimated by employing an equation

derived previously for conventional d.c. polarography6

M 0.275

(ig/C)
np = = C

T (5.22)
dm’ "m

m

Values of np obtained in this way (Table 5.1) come close to
matching the degree of polymerization of the polymer (DP),

as was previously found for the reduction of poly-2-vinyl-
naphthalene and poly—9~viny1anthracene.6 Thus, the overall
reaction results in the oxidation of essentially every
ferrocene center in the PVF molecules. Smith and co—workers7
made a similar estimation of np from anodic limiting currents
in voltammetry at a rotating disk electrode with PVF in
hexamethylphosphoramide. They assumed the Stokes-Einstein

_1/3) and reported values of

equation applied (i.e., D ~ (M)
DP/np which varied between 1.4 and 4.1 for PVF of different
molecular weights. If their data are reanalyzed on the

basis of eqn (5.21), we calculate values of DP/np which are
more nearly constant but still vary from 1.3 to 2.6.

Note that the slopes of the log plots in Table 5.1 are quite
close to the values corresponding to nernstian, multi-electron
transfers to non-interacting groups in accord with the theoretical
treatment presented above. Similar slopes were alsoobserved in

the rotating diskvoltammetric studies at low concentrations ofPVF.7
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The difference in the values of El/2 for VF and PVF in
Table 5.2 are not unexpected because the equivalence of 131/2
values for polymeric and single-centered molecules predicted
in the Theoretical Section assumed a comparison between
polymer and '"the corresponding molecule with a single
center'". A better comparison of E% values would be of PVF
with monoethylferrocene. Monoethylferrocene has an E%
value of 80 mV more positive than VF in acetonitrile as
solvent.loa Subtracting 80 vF from the E% value for VF in

Table 5.1 brings it quite close to the observed values for

PVF in good accord with the theoretical prediction.

Coulometric Studies. To confirm the magnitude of the

multi-electron transfers which occur in the oxidation of PVF
without the need to estimate diffusion coefficients,
coulometric oxidations of PVF at a largearea platinum gauze
electrode were carried out. The results are summarized in
Table 5.2. Note the np calculated from the total coulombs
consumed in the oxidation (Qa) is very close to DP in
agreement with the voltammetric results. The higher values
of DP/n_ found in hexamethylphosphoramide as solvent by
Smith, et gl.,7 (even when the diffusion coefficient is
given the smaller value resulting from eqn (5.21) may be due
to differences in the nature of the solvents employed which
could lead to considerable differences in the extent of ion

pair formation.
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TABLE 5.2 Results of Controlled Potential Coulometric

Oxidation of Poly(vinylfcrroccne]é

Amount b Q d

taken, Mol. Dearec Qa, c o
Compound mg Wt. Polymeriz. £ - np G
PVF 518 4930 232 2.35 23.6 1.8
PVEF 4.92 15750 74.3 2.2 . T | 1.3¢
PVF 0.94 15750 74.3 0.435 T 25 0.21

The c¢lectrolysis solution was ca. 15 ml. of THF

containing 0.2 M TBAP.

Charge consumed in the oxidation at +0.35 V vs. Ag
reference electrode (Ek was ca. 0.2 V vs. this

reference electrcde)

np = Qa/moles PVF

Charge consumed in reduction of the oxidized

solution at +0.1 V.
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If a controlled potential reduction of the oxidized
polymer is performed immediately following its oxidation the
amount of charge required is less than was consumed during
the oxidation. This is probably caused by precipitation
of the oxidation product not all of which redissolves during
the reduction step in THF. During the oxidation of the
bright orange PVF a small amount of green, solid oxidation
product is formed which persists following the reduction

step.

Comparison with Results of Other Studies. It is of

interest to contrast the results presented here for PVF with

those that have been reported for several biferrocenes by

Morrison, ggrﬁl,,llb and for 1,1'-polyferrocenes by Brown,

114 In the former study single polarographic waves

et.al.
were obtained with diffusion currents corresponding to a
two-electron process when certain bridging groups connected
the two ferrocene centers (Hg, C:Hy4, (CH3)2CC(CH3z)., and
-CH=CHC¢H,CH=CH-) but separated waves with one-electron
diffusion currents resulted with other bridging groups. The
i
id-l
which exhibited a single wave were 80 to 90 millivolts which

slopes of plots of log( ) vs potential for the biferrocenes
matched the slope obtained with ferrocene itself. The
authors, expecting the slope to be half as large for the
biferrocenes as for ferrocene, explained the larger values

in terms of electrochemical irreversibility. The present



L33

treatment shows that their data are entirely compatible
with comparable reversibility for both ferrocene and the
biferrocenes: polarographic waves with one-electron slopes
and two-electron diffusion currents are to be expected if
the two ferrocene centers do not interact strongly. That
diferrocenylethane exhibits such behavior is consistent with
the results reported here for PVF since the ferrocene
centers are separated by the same CzH4 bridging group in
both cases.

In the previous electrochemical study of the oxidation

kLstsa the successive ferrocene groups

of 1,1'-polyferrocenes
are oxidized in a series of resolvable waves with values of
E% separated by hundreds of millivolts. In these molecules
the polymer chain is formed by direct linkage of the
cyclopentadiene rings so that it is not surprising that
strong interaction between the ferrocene residues apparently
occurs. This is also suggested by the finding that the ease
of oxidation of polyferrocene increases with chain length,
i.e., the E]/2 values for the first electron transfer increase
in the order 1,l-quaterferrocene < 1,1'-terferrocene <
biferrocene < ferrocene. For the PVF molecules the E1/2
values are quite close to that for monoethylferrocene, as is

expected (vida supra) as the ferrocene centers do not inter-

act significantly.
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CONCLUSION

Electron transfer to or from polymeric molecules
containing identical, non-interacting electroactive centers
will involve as many electrons as there are centers and will
yield a voltammetric wave with the shape matching that of
the corresponding molecule with a single electron active
center but with a magnitude determined by the total number
of centers present. This conclusion assumes the absence of
complications arising from adsorption, precipitation or

slow electron transfer kinetics.
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CHAPTER VI

Molecules Containing Two Electron Transfer Centers:
(1) Symmetric Centers with Interaction;

(2) Asymmetric Centers

INTRODUCTION

The material presented here is a direct extension of
the treatment of Chapter V1 of multiple electron transfer
centers. Example calculations are made for molecules
containing two electron transfer centers. The results for
symmetric dimeric molecules with interaction between centers
and two-center asymmetric molecules can be generalized by
the techniques described here and in the previous chapter
to any particular molecule of interest. The dimer cases
have been illustrated in some detail because of some
interesting results relating to the magnitude of the
"statistical factors' for the two cases. It is shown in the
discussion section that these dimer results may in some

cases be generalized to other molecules.

THEORETICAL

Current-potential Behavior of Interacting Electron

Transfer Sites in Dimeric Molecules. Altered voltammetric

response resulting from interactions between sites is
frequently observed for compounds with dimeric or polymeric

electron transfer sites. For simplicity we will discuss
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only the case of an interacting dimer obeying nernstian
electron transfer at both sites. In such a molecule the
standard potential of an electron transfer at each site is
dependent on the oxidation state of the other site. For
the stepwise reduction of a completely oxidized dimer, the
standard potential (Elo) of the first reduction may be
shifted from the standard potential of the corresponding
monomer by interaction with the other site or with the
bridging portions of the molecule. The potential for
reduction of a site when the neighboring site is reduced
(denoted Ezo) may be shifted in either the positive or
negative direction from the first potential. If this shift
is toward negative potentials, as in most of the cases
reported by Ammar and Savéant,2 the resulting reduction
wave will be broadened or split into two waves. The usual
cause for this effect is couloumbic repulsion of the
second electron by the greater negative charge on the
molecule. Occasionally a shift of the second reduction
potential positive of the first is observed. This results
in a wave more acutely sloped than the corresponding monomer
wave.

It will be shown that statistical factors derived in
Chapter V for non-interacting centers are still applicable
when there is interaction. The total potential shifts are

due to energetic component and a statistical component,
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which are completely independent and add to determine the
"formal potentials' of the complex formed by the sequential
oxidation states of the total molecule. This result is as
expected from simple thermodynamic considerations.3

The standard potential for either site to undergo
electron transfer when the other site is oxidized is given

by Elo, the resulting nernst equation expression is thus:

8, = exp[g%(E—Elo)] - fO’O = fo,o (6.1)
o,R R,o0
where f denotes the concentration fraction in which the

b

first site is in state x and the second is in state y. The
fractions £ and f will be combined below, so that
o,R R,0
distinguishability of sites is not necessary.
With the other site reduced, the standard potential of

. . 0
a site is Eo ",

82 = eXP[RET"(E"EZO)] = f B = fR (6.2)

The difference E,° - E;° is directly related to the energy
of interaction AU = nF(Ezo—Elo).

The fraction present with net molecular oxidation
state one (one site oxidized, one reduced) is defined as

f1:

£, = 2f = 2f = f + £ (6.3)



141

The fractions add up to unity:

fo,o + Fq ¥ fR,R =1 (6,
Deriving from these equations the concentration fractions:
fR,R = 1/(1 + 28, + 6,8,) (6.
fl = 262/(1 + 262 i 8182) (6.
f0,0 = 9192/(1 + 28, + 8192) (6.
Let the Q.(6) function be defined as in the previous
section:
QZ(H) = = =
FNT £y # ZfR,R 2(1 * 62)/(1 + 20, + 6162] (6.
The formal potentials are given by:
f = fi =—>E' =E°+ n2 (6
£y = g =, = E,° - 2linz (6.

4)

6)

7)

8)

10)

Thus the differences in these formal potentials as tabulated

by Ammar and Savéant for some (interacting) organic dimers
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includes an invariant statistical contribution of
%gln4.

Figure 6.1 shows concentration-potential and current-
potential curves calculated assuming unfavorable energetics
(first reduction makes second more difficult by 100 mV).
Figure 6.2 was calculated assuming the first electron
transfer more favorable energetically. Note that the
results of the equations above are duplicated in the
graphical determination of EF'S.

Transposition from the notation used here to the
notation of Polcyn and Shain4 is quite simple. They
considered the reaction sequence:

E,° . E,° ,
As=—>A = A (6.11)

These E10 and E20 are identical to the ElF and EZF of the
treatment given here. Thus, for interacting dimeric
centers, it 1s always necessary to include the factor of

len4 when converting from the formalism of eqn (6.11) to

F

that employed here. Extension of this simple calculational
method to polymers obeying linear free energy relationships
with respect to number of sites oxidized or reduced should
be trivial.

An example in which the statistical factor was

properly taken into account was the study7 of the electron
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FIGURE 6.1
A, Calculated fractional concentration-potential
curves for dimeric molecule with interaction.

Elo - Ezo = 100 mV. Curve (1): fo o’ Curve (2):

b
£i15 Curve (3): fR,R'
B. Current-potential curves for same molecule.
Current referred to hypothetical monomer limiting
current of same diffusion coefficient. Note that

the potentials corresponding to fE = 0.5 and 1.5

are almost exactly equal to EIP and E2F respectively.
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FIGURE 6.2
A. Calculated fractional concentration-potential
curves for dimeric molecule with interaction.

E:° - E,® = -100 mV. Curves have corresponding

significance to Fig. 6.1.

B. Current-potential curves for same molecule.
Current normalized as in Fig. 6.1. Potentials
corresponding to gg = 0.5 and 1.5 no longer equal

F,

E-"8,
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transfer and intervalence transitions of the compound

[ (bpy) 2C1Ru(pyz) RuCl (bpy) 2]

two waves for the couples denoted [3,3]/[2,3] and

+2 43 44
4 7 . The authors found

[2,3]/[2,2] where the abbreviations stand for the oxidation
states of Ru in the compound. The waves appeared to be
separated by ca. 120 mV, from which they calculated that
the conproportionation constant, K = [2,31%/[2,2]11[2,2],
equal to about 100. Examination of Fig. 6.1 shows

that even with closely spaced waves (AEF = 136 mV),

the '"half wave potentials" of each of the poorly resolved
waves (i.e., potentials corresponding to 0.25 and 0.75

of the eventual limiting current) correspond almost

exactly to the EF'S from the concentration-potential

curves.

Binuclear Noninteracting Electron Transfer Sites. For

a molecule A-B composed of two nonidentical electron
transfer sites, it is desired to calculate current-potential
behavior. Since the centers are noninteracting, the
standard potential EAO of center A is constant independent
of the state of site B, and likewise for the standard
potential EBO of site B. The fractions of the A or B sites

oxidized or reduced are given by the nernst equation:

£
OR - 00 . oxp|RE(E - E,%) (6.12)



Ro 00 nF 0
B, = —— = — = exp[mw(E - E )J (6.13)
B fRR foR RT A
Where the foR etc denote concentration fractions: the

first subscript is the state of center A; the second, center

B. The compounds AOX—B and AR—BOX, corresponding to the

R
fractions foR and fRo respectively, are of course chemically
different. It is useful, however, when spectroscopic or
other methods for distinguishing these two species are for
some reason not available and since electrons from either
center are indistinguishable, to add their concentrations

together and refer to them collectively as that fraction

with one center oxidized and one center reduced, denoted f;:

£1 = £ o+ fo (6.14)

The conservation of mass condition is:

foO + £3 + fRR = 1 (6.15)

From the above equations it 1s possible to derive expressions

for the fractions of each species:

oo = BABB/(eAeB 14, 4 eB) (6.16)

£, = (6A+-6B)/(6AGB + 1 + eA + BB) (6.17)
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£ = 1/(GA6B + 1+ 06,6 (6.18)

RR A B)
The Q function denoting the charge passed to bring NT
moles of completely oxidized compound to equilibrium with

an electrode at potential E is:

M=2f +f; = (2+06,+06,)/(6 +1+8, 48._) (6.19)
N, F RR ™ ! A "B A B A "B :
It is convenient to extend the analogy with Polcyn and

Shain,4 and derive '"formal potentials' for the couples

foo/fl and fl/fRR' This choice of reference potential allows

transposition to the following formalism:

E;F EzP

(A-B) =——> (A-B)  =——> (A-B) °

(6.20)

Thus the EF'S can be extracted by mathematical analysis
already developed for this simple mechanism.
The "formal potential" E;F is defined as that potential

; F
at which fOO = £, and E;  such that f; = fRR:

[ Egpo _Egp O]

F RT RT™A RT™B o] o}

E1 = —F—ln e + e + EA + EB (6.21)
Fpo _Fgo

EZF = ;%Iln e RIVA o RT'B J (6.22)

Results calculated from these equations reveal that the

statistical factor of %;1n4 between formal potentials
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similarly defined for the symmetrical dimer case, both with
and without interaction, is no longer constant and decreases
0 o}
A and EB

this behavior.

rapidly as E diverge. Table 6.1 illustrates

From the table it will be seen that for AE° up to
about 10 mV, the-resulting wave 1s indistinguishable from
an ordinary one-electron wave. For larger splittings
observed in the wave it is necessary to apply results of
the equations to calculate that portion due to the
statistical factor. For very large splittings it is
incorrect to use a statistical correction at all.

When a binuclear molecule of this type exhibits
interaction between centers, it is necessary to determine
if the a priori probability (i.e., the EAO and EBO) of
reduction of one center is significantly different than
the other, when both sites are oxidized. If so, it will
be necessary to decrease the statistical correction below
that applicable to the case of identical interacting
Centers,

The approach above using the nernst equation to
derive equilibrium conditions as a function of potential
and combining these with simple statistical theory has the
advantage of being intuitively simple and providing
concentration fractions and currents directly. Identical

results could be obtained by a route couched in the
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TABLE 6.1

Statistical Factors for Binuclear, Noninteracting Centers

(T = 298° k)
EAO T EB0 AEF AEFSTATISTICAL

0 mV 35.62 mV 35.62 mV
1 35.63 34.63
5 35.86 30.86

107 36.59 26.59

20 39.42 19.42

50 56.86 : 6.86

100 101.04 1.04

200 200.02 _ 0.02
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traditional thermodynamic formulation.SSome of the simple
equations of thermodynamics may be invoked to enhance
understanding. For example, the well known expressions,

AG = -nFAE and AG = AU - TAS, where AG is free energy;

AE is equilibrium potential; AU is enthalpy of reaction;

AS is entropy andn, Fand T have their usual significance.
One observation which can be made from these simple
equations is that energetic and entropic terms can affect
the equilibrium potentials completely independently.

Thus, in the section on dimeric interacting centers earlier
in this chapter, it was shown that the entropic part of

the wave separation was constant independent of the energetic
part.

A case in which energetics does directly affect the
entropic term is illustrated in this section on asymmetric
noninteracting centers. In this case, the difference in
standard potential of the two centers causes a change in
the statistical contribution to the '"formal potential™
difference. It is possible to solve for the statistical
contribution by considerations similar to those of Benson.3

- For the molecule A-B where center A is more easily
reduced than B, E © 5 E_%.  The probability pAthat A is

A B
reduced is:

R S (6.23)
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and for site B reduced:

1
Py & (6.
B 1 =+ SB
from (6.12) and (6.13), we have
F
Pg = P, XD (gr(E2-ED)) (6.

If Py = Pg>» then we would have an (entropic) formal
potential difference of 2%?1n2 for a two center symmetric
molecule. Since P < Py 1t is convenient to say that
the molecule contains one-and-a-fraction A type centers.
That is, the molecule contains the equivalent of (1 + Ef)
centers of type A. From this point it is easy to invoke

3 .
the arguments of Benson with the result that,

F €
AEF =28n(1 + exp (Rp(E2-ED))) (6.

STATISTICAL

which gives results identical with the last column of

Table 6.1.

24)

25)

26)
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The study of bi-, ter- and quaterferrocenes of

Brown et. El.6

offers an opportunity to speculate

on the operation of the factors reported here and in

the previous chapter. These compounds, in which the
ferrocene residues are directly linked without
intervening atoms by single bonds between rings, exhibit
cyclic voltammograms which have as many reversible

waves as there are ferrocene residues in the compound.
All such waves appear to be approximately reversible

by the criteria of the authors.6 This appears to be
clear evidence for interactions of the type discussed

in the first part of this chapter. Table 6.2 reproduces
some of the observations for halfwave potentials for
these compounds, ferrocene to quaterferrocene, The
roughly equal separation of waves in quaterferrocene

and the roughly equal average of the E1/2 values from
one compound to the next, suggests that a sort of linear
free energy relationship exists between net charge and
redox potentials. These compounds further illustrate
the point of the second part of this chapter, that
although two different sites exist in ter- and quater-
ferrocene (i,e., -fc- and fc-), the waves still appear
to be reversible. Any small difference in intrinsic

standard potential between the two types of sites

was probably compensated for by the AEgrat
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Table 6.2
Electrochemical Data for 1,1'-polyferrocene Compounds,

Data from Brown et al.6

—

Compound E%(l) E%(Z) E%(S) E%(4) Average E;5
Ferrocene (fc) 0.40 0.40
Biferrocene .51 0.65 0.48
(fc-fc)

1-1'-Terferrocene 0.22 0.44 | 0.82 0.49
(fc-fc-fc)

1-1'-Quaterferrocene| 0.16 0.36 | 0,61 |0.89 0.51
(fc-fc-fc-fc)




(1)

(2)

(3)

(4)

(5)

(6)

I

J
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CHAPTER VII
Large Step Coulostatics

INTRODUCTION

A relatively new electrochemical technique called
coulostatics has been proposed by Reinmuthl and Delahay2
which has certain advantages over existing techniques. The
experiment consists of injecting a charge onto an electrode
and observing the open-circuit potential decay with time
because of an electrochemical process of interest.
Experimental application of large step coulostatics as
reported here has been very limited, primarily because of
the mathematical difficulties of predicting the response
curves for the general case. Various approximationss’4
have been proposed, but the limitations on experimental
conditions have proved so severe that other "large step"
methods such as chronocoulometry and chronopotentiometry
have been preferred. The approach used here is similar
to that proposed by Reinmuth3 -~ the numerical solution of
integro-differential equations. This numerical technique
has been applied to a variety of electrochemical
situations by Nicholson.5 This numerical technique is to
be differentiated from "digital simulation”6 in that no

concentration profile is generated. For this reason it 1is

somewhat less flexible in the handling of second or higher
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order solution reactions. The integro-differential equation
method is, however, very amenable to certain numerical
"tricks" to accelerate convergence. This numerical solution
can be combined with nonlinear regression analysis to
provide quantitative evaluations for experimental unknowns,
in this case k® and o for a simple electrode reaction.
Coulostatics was first proposed and is of interest
now because of several significant advantages over other
techniques for observing electron transfer kinetics:
1) Because no current is passed during the experiment,
IR drops in dilute solutions are avoided. 2) The
instrumentation is, at least in principle, rather simple
since it is not necessary to use extremely fast and accurate
potentiostats in order to look at processes in the
microsecond region. 3) Since a potential range is spanned
by the decay transient, it 1is possible to see potential
dependent behavior in a single experiment. There are, of
course, some disadvantages: 1) Certain parameters must
be known a priori to high accuracy, especially double layer
capacity and concentrations and in certain cases, the
standard potential. Diffusion coefficients are less
important, but must be known to within about 10% for both
species. 2) Double layer reorganization and RC time delay
reduce the ability to work at very short times in dilute

supporting electrolytes. 3) Reliable switches and data
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acquisiton hardware must work in the time range of one
microsecond.

The form of the coulostatic response curve is shown
in Fig. (7.1). 1In this figure, Epre is the pre-potential
imposed on the electrode by a potentiostat before charge
injection. This potential should be well below the
standard potential so that no current flows. The purpose
of pre-potentiostating the electrode is to insure that the
double layer is charged and the electrode potential stable

before charge injection. E is the maximum value of

init
the voltage achieved the instant after injection. The

dotted line represents ideal response, while the solid

line indicates the nature of nonidealities in actual response
due to the RC time constant of the injection capacitor
discharging through the solution resistance. Another

method of injecting charge 1is by current pulse methods.

The curve in Fig. (7.1) can be divided into two regions.
Region I is a section of the curve in which the potential

is decaying rapidly and is controlled only by the
hetergeneous electron transfer rate. If it were possible

to extrapolate to t = O the initial slope would be

dependent only upon the initial bulk concentrations and

the effective rate constant at Einit' In region II, the
slope is much smaller because of concentration polarization

and back reaction if any. Although mass transfer seems
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FIGURE 7.1

General representation of a coulostatic transient.

Epre - potential imposed by potentiostat before

injection; t=0 - instant of injection; Einit" instan-

taneous potential achieved after "ideal' charge injection;

Region I - region of greatest charge transfer information;

Region II - region in which diffusion control becomes

important,
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Qhﬂm

FIGURE 7.1
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to be the limiting process in the potential decay, it will

be shown that this region contains much useful information.

Instrumentation. A schematic diagram of the

experimental setup used in the bulk of the experimental
work is shown in Fig. (7.2). The working electrode may

be solid, hanging mercury drop or dropping mercury.

Because of the high precision required in drop area and
surface reproducibility, a mercury electrode is preferred
in the present study. Referring to the figure, Cinj is

the injection capacitor, charged by Vinj which is on the
order of 10 to 40 volts. A few microseconds before the
charge is to be injected, the potentiostat is disconnected
from the cell by opening S1. The follower is also
disconnected at this time by S2 in order to protect it from
the potential surge to be expected the reference electrode.
Note that diode clamping of the follower will not work,
since the current will flow through the reference electrode,
causing its potential to shift from its equilibrium values.
At t = 0, S3 is closed, injecting the charge that was on
Cinj onto the working electrode. A few microseconds later
S2 is closed again, reconnecting the follower which follows
the potential decay and relays it to the data acquisition
device, a fast A/D converter. The switches are driven

and the data stored by the PDP 11/40 digital computer. The

ability to switch and acquire data digitally on the
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FIGURE 7.2

Block diagram of experimental setup.
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microsecond time scale has not been possible until
recently with the advent of the laboratory computer.

The switches are nonmechanical solid state devices made
by Teledyne Co. The A/D conversion and rapid storage are
done by a Biomation 802 transient recorder, which is
capable of converting and storing 1000 8-bit data points
in 500 microseconds. The follower which relays the analogue
signal is a Burr Brown 3400B op-amp with extremely high
slewing rate and frequency response. The potentiostat
circuitry is not at all critical since the prepotential is
applied for several seconds at low current.

The circuit described above is extremely simple but
has the drawback that if solution resistance is high the
RC injection time constant may become very long. An
alternative approach is to apply a current pulse for a

known time interval.

THEORETICAL

"Electrode Kinetics. Let us now investigate the

coulostatic experiment in more detail. The process of
interest in the present work is the heterogeneous electron

transfer process

- kf
A + ne E=?==§ (7.1)
T

The only restrictions on A and B are that they are soluble
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in a liquid phase, either the solvent or the mercury
electrode. Adsorption, homogeneous kinetics, double layer
effects and similar complications will not be discussed

in detail below, but are simple extensions of the apnroach.
The forward and reverse rate constants are given by

the standard expressions (notation in Table 7.1):

ke = k° éxp(%(ﬁ-ﬁo)} (7.2)
k= k5{§xp((1—a)%%(E-Eoi} (7.3)

Coulostatics takes advantage of the fact that the electrode
immersed in the solution acts as a capacitor. A typical
graph of differential double layer capacity as a function
of potential in a simple electrolyte (0.01 m NaF) is shown
in Fig. (7.3).7 The differential capacitance is the

quantity
_d
B{E} = a% (7.4]

where q is double layer charge as a function of potential.

Net capacity for a finite potential step is given by

E+AE
C(E)dE
_ JE

dl AE (7.5)

C
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167

Sumary of Notation

Symbol

Explanation

E
pre

Einit

q

L
inj

Co. .
inj
E(t)

n

= T e |
8 o>X> 0 ka

f")o_l wU :QU

Potential just before charge injection

Potential just after charge injection

Injected charge

Voltage to which Vinj is charged
Injection capacitance

Potential as a function of time
Time after injection

Gas constant

Temperature

Number of electrons

Faraday constant

Apparent standard rate constant
Surface concentration of oxidant
Surface concentration of reductant
Transfer coefficient

Diffusion coefficient of oxidant
Diffusion coefficient of reductant

Initial bulk concentration of A

Units

coul

V

fd

Vv

sec
1-atm/deg-mole
°K
coul/mole
cm/sec
moles/cm3
m_oles/cm3
cmz/sec
cmz/sec

moles/c:m3
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FIGURE 7.3

Typical double layer capacity-potential curve.7
Mercury electrode in aqueous 0,01 M NaF, 25° C.

Potentials referred to potential of zero charge,
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When C(E) is relatively constant as at potentials well
anodic of the zero charge potential, the effective
capacitance is very close to the differential capacitance.
Capacitance of the electrode will be considered constant
in the analysis below although it is simple extension to
use an empirical fit of C vs. E in the simulation. Using
this approximation, the initial charge injected on an

electrode of double layer capacitance Cdl and area A is

given by
Cinj " Vinj
AE = e (7.6)
dl inj
LE cinj is small in comparison with Cdl'A, this becomes
- S P
AE = 1C“ _Am (7.7)
dl

If Cin' is not small its effect must also be considered in
the more complex relations to follow. In order to avoid
this, Cinj is kept at about 0.1% of the total electrode
capacitance or about 500 - 2000 pfd. The current pulse
technique, of course, has very low load capacitance.

Let us now consider the events taking place during the
course of a single experiment in more detail. The DME is

knocked from the capillary when a pulse is sent to the

drop knocker from the computer. The computer times the
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life of the drop from this point. While the drop is
growing the prepotential Epre is imposed on the electrode.
If no current is drawn at this potential, no potential
relaxation will occur during the period between disconnectio
of the potentiostat and the time at which charge is
injected. The potential then takes an excursion from E

pre

pre + AE (from eqn. (7.7). The potential

to B, ..  which is E
init

will then relax toward the prepotential as electrons

charging the double layer are consumed in a Faradaic

process. The general equation governing the rate of this

process 1is

dq _ dA _ o _ 0
a% nFy = k. Cp - kyCQ (7.8)
dA . ; ’ . 0
where T 1s the conversion rate of species A, and the C
are surface concentrations of the two species refered to

in eqn. (7.1). The change in potential as a result of

this process is

dE _ 1 d
iRl ey o - (781
dl
The problem which must be solved by simulation is the
0
derivation of the C as a function of time, a problem
involving diffusion to an electrode of varying potential.

Data acquisition on the Biomation transient recorder

is initiated by the computer at the same instant that the
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switch injecting the charge is closed. Total acquisition
time can range from 500 microseconds to 500 milliseconds,
the range being chosen as a function of the magnitude of the
standard rate constant k- and the potential. As will be
shown below, the information content varies widely with

the rate of the process. A few (less than 30) data points
are selected from the digitized data for least squares
nonlinear regression analysis. Since the curve is rather
uninteresting visually, the conventional approach of
comparing the experimental transients with complete "working
curves' generated by simulation is not the approach of
choice. Only a few points from the curve need be selected
since the curve is monotonic and if a smoothing procedure

is used on the raw data, not much additional information

is gained by using additional points. For the purposes

of the information density study it was found that 5
generated data points including typical random errors
contained enough information to very adequately fit k>

and o,

Nonlinear Regression. Nonlinear regression refers

to methods of evaluating implicit parameters in
equations of the form

1 2

Yi = f(xi s X5 goem By s 8% grmanDiyboee.) (7.10)
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where the X, are independent variables such as time,
injection charge, etc., which serve to distinguish data
points. The a;, a,... are the parameters to be determined -
in this case k° and o The b1, bz... are constants such as
diffusion coefficients, concentration and temperature which
are not varied independently and which are the same for

all points in a single fit. The parameters to be determined
are varied systematically in order to minimize the sum of

squares of the deviations S?;
2 = _ 2
S Z(Yi yi) (7.11)

where the y; are experimental data points and Yi are the
function evaluations using a trial set of unknowns. The
procedure for locating the minimum is based on iterative
numerical procedures for searching the S? hypersurface.

The method used in this study is that due to Marquardt.8
The fortran programs for this segment of the problem were
adapted from Bevington.9 The Marquardt procedure is a

very fast efficient method which is an empirical combination
of gradient search and parabolic expansion methods.
Gradient search is simply following the path of steepest
descent on the S? surface. This method is good for
convergence far away from the true minimum, because it will
avoid false minima as long as S? decreases along some

path to the true minimum. Near the minimum, however, it
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becomes quite slow and inaccurate. The parabolic expansion
technique involves taking the derivatives of S? numérically
with respect to the "a'" parameters and expanding the surface
in a Taylor series truncated after the quadratic term.

This method is valid only very near the true minimum where
the surface is approximately parabolic. In the Marquardt
combination, these procedures complement each other to

make a very fast and accurate routine. Another advantage

of the Marquardt program is that the curvature of the S?
surface is known at its minimum. This curvature may be used
to estimate information density, since the steeper the
curvature, the more precise the estimate of the true value
of the unknown. This is analogous to a Gaussian distribution
in which the standard deviation is related to the curvature
and therefore the width of the curve.

Since the fitting routine is an empirical iterative
process, the function Y in eqns (7.10) and [7.11) must be
called many times, typically 10 - 50 times per data point.
Since the numerical derivatives of S? are taken by finite
difference of two function evaluations, the function must
be highly accurate and consistent. In order to use a
digital simulation for the generating function Y, it was
necessary to satisfy both of these criteria simultaneously.
This problem has now been partially solved using classical

numerical techniques,
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Numerical Methods. Digital simulation refers to

numerical techniques used to model physical problems
mathematically, using a digital computer to carry out the
extensive iterative calculations usually required. In
electrochemistry, simulation 1is used to solve diffusion-
boundary value problems which frequently arise. A typical
electrochemical simulation consists of some or all of the
following: diffusion, heterogeneous kinetics, hydrodynamics,
complex geometric complications, homogeneous kinetics,
adsorption and double layer effects. The central problem

is that of diffusion-boundary value problem, which is
coupled to the other features in a complex way. A large
amount of work has been done on simulating the diffusion
problem alone because of its importance in heat conduction
problems which arise in many engineering applications. When
the other conditions of the experiment are suitably coupled
to the diffusion problem, the computer can approximate the
behavior of the experiment. In recent years, digital
simulation has been used to model thin layer electrodes,

ESR cells,11 homogeneous kinetics in solution preceeding or

12,13

following the electrode reaction, perturbations in

response due to geometry,l4 and the geometric and hydro-

dynamically complicated problems of the rotating ring-

15,16 17

disk and tubular electrodes. At least two major

approaches have appeared in the electrochemical literature.
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The first, due to Nicholson,5 is based on calculation

of the semi—integral of the current numerically. In

the second method, popularized by Feldberg,ﬁand discussed
in many engineering texts (e.g., reference 18), a
diffusion profile is calculated explicitly. The second
method is considerably more general than the first in

its ability to handle arbitrarily complicated problems,
but it has the drawback of being somewhat slower due

to the necessity of calculating a large number of
concentrations in the diffusion layer, The latter
approach was used in Chapters II, III and IV and will not
be discussed here. The integral equation method of
Nicholson has been modified for the coulostatic work.

In this method the problem is couched in integral
equation form which still requires numerical techniques
to evaluate. Because of the preliminary mathematical
processing required in setting up the integral equations,
this approach may under certain circumstances be more
limited than the simulation based on explicit calculation
of the diffusion profiles. Such cases include solution
reactions and two dimensional diffusion.

For coulostatics the appropriate integral equation

is given by Reinmuth:3



1 %7

¥ U
dE _ .sfo b 3, -2 d1 (dE/d 1)
C,. <L = nrkS{c, - (nF(xD,) ) J dt
% {A A 0 JET

. exp ((-onF/RT) (E-E?))

1 t C
“anS{CBb"(nF(WDB)é] _IJ dl(dE/dT) dT
0 Yt-T

- exp((1-a)nF/RT) (E-E®)) (7.12)

Note that the integral expression in the above is
identical to the semi-integral which has been used recently

1Hg2lyel The only other

in other electrochemical studies.
place in eqn (7.12) where finite differences are necessary
is in calculation of the integral. Since the quantity

dE/dt is already known as a function of time, the

integral can be approximated as a sum:

" n=t/At
[ dE/dt dt = 2 : _AE (7.13)
o Yt°T =1 ¥n-j+1

For the first iteration from t = 0 to t = At, the integral
is taken to be zero. Subsequent iterations calculate the
surface concentration by means of the sum in eqn (7.13).
Note the similarity between eqn (7.12) and eqn (7.8). The
expressions in brackets are the instantaneous surface

concentrations. For the coulostatic simulation, egn (7.12)
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was evaluated as in implicit difference equation in

AR.

A Method of Accelerating Convergence. In this

simulation approach an error in time of order At to the
first power is the leading term of the truncated Taylor
series. It is possible to use this fact in order to
increase the speed and accuracy of the simulation, something
which is very desirable when it is to be used as a fitting
function, If f(t) is the true value of a function and

f;(t) is an approximate numerical value achieved after

j iterations, then since At = t/j, we have:
)
£(t) = fj(t) + g1 (At) + e2(At) + ... (7.14)
by doubling the number of iterations, we have,
: £ t
£(t) = £, + e1(F) * e2(3) + ... (7.15)

Subtracting eqn (7.15) from twice egn (7.14) yields:

2

£re) = 2f'2j(t) - fJf(t) + e;(-%—t- " (7.16)

1 1 !
;j Zij - fj is clearly a better approximation

to the true value than either of the others. This procedure

0}

The quantity £

of doubling the number of interactions and eleminating terms
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in the error series is widely known as the Richardson
extrapolation method and has been applied in many different
sorts of numerical calculations. By repeating the process
above, succeeding terms in the series can be eliminated.
This method applied to the coulostatic simulation has
resulted in accuracy of 0.001% in only a few total
iterations. It is to be noted that this technique will
work only if the original simulations are convergent.
Nonconvergent simulations cannot be saved. Table 7.2
shows results using the technique on a typical coulostatic
simulation. The generating parameters are chosen to be
somewhat similar to those of zinc and are given in Appendix
A. This simulation is of a long time, 10000 usec., and the
first few results are therefore nonconvergent. Note that
the 4-iteration row is missing because of overflow errors
caused by violent nonconvergence. Following rows with
larger numbers of iterations and smaller At begin to
converge. The last two columns converge in a total of

127 iterations. After 512 iterations the uncorrected
column has not quite converged. The saving in computation
time is the ratio of the number of iterations squared, so
the net savings is a factor of 16. The time reQuired

for the first 127 iterations is approximately 1.5 seconds

on the PDP 11/40 with floating point hardware.



Table 7. 2

180

An Example of a Coulostatic Simulation with Accelerated

Convergence.

Total time 10000.usec.

Other Parameters

Given in Fig. 7.4.

! 5 f £

il 0.11816E 00

2 -0.20403E 02

8 -0.13398E 00

16 -0.13419E 00 -0.13441E 00

32 -0.13439E 00 -0.13458E 00 -0.13464E 00
64 -0.13449E 00 -0.13460E 00 -0.13460E 00
128 -0.13455E 00 -0.13460E 00 -0.13460E 00
256 -0.13457E 00 -0.13460E 00 -0.13460E 00
512 -0.13459E 00 -0.13460E 00 -0.13460E 00
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RESULTS AND DISCUSSION

Information Density Study. Before doing an experiment,

it is necessary to determine time scale of the experiment
which will yield optimum accuracy in the results. Since
the reciprocal square root of the curvature of the S2
surface is proportional to the standard deviation of the
quantity involved, it was possible to use generated data

to investigate the information content of coulostatic
transients. Results of such a study are shown in Fig. 7.4,
7.5 and 7.6. Five equally spaced data points were generated,
and they were used as input to the fitting routine. After
the program had converged to the correct k® and o, the
"standard deviations'" were scaled and plotted as a function
of the interval between points. Figure 7.4 shows the
information densities of k° and o when the potential was
stepped from an overpotential of +200 mV to +20 mV by means
of an injection voltage of -50 v. The parameters used to
generate the data are given in the caption of Fig. 7.4, and

are similar to those for zinc reduction in a typical
experiment. In this region, the reaction is rather slow
and back reaction is very important. Also plotted in all
these figures is the potential spanned by the five points
used. The minima are quite pronounced and coincide with
the maximum in the potential spanned by the points. This

is exactly as would be expected, especially for a, since
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FIGURE 7.4

Information density study for k> and a. Five points
used in fit. Interval between points = (time span)/S5.
Parameters used for data generation and fit:

k°=0.001 cm/sec; a=0.4; Cd1=20 ufd/cmz;

b_ , PR
€°=1.0 mM; D,=Dy=10

Curve 1 - Potential spanned by the 5 data points

cmz/sec; n=2,

Curve 2 - ¢
&

Curve 3 - 0yS
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FIGURE 7.5

Information density study for ks and a. Five data points
used, Parameters and numbered curves as in Fig. 7.4.

Vinj=-70 V.
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SLIINN AdVilldyVv

FIGURE 7.5

TIME SPANNED / ms
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FIGURE 7.6

Information density study. Vinj=~80 V. Parameters

and numbered curves as in Fig. 7.4.
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SLINN A¥VYlIgyY

FIGURE 7.6
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its influence on rate is especially pronounced as the
potential changes. Figures 7.5 and 7.6 are the information
studies for injection voltages of -70 and -80 volts
respectively. The same general behavior is observed, but
the minima occur at shorter times, as would be expected
since the forward rate constants are faster at the higher
overpotentials and concentration polarization would be
expected to set in sooner. Figure 7.7 shows the raw
transients generated by the simulation. The effect of
concentration polarization can be seen at the trailing end
of the transients.

Figure 7.4, 7.5 and 7.6 showed that near the beginning
of the transient the information density is strongly
dependent on potential span., In order to avoid this effect
and to look directly at the information density in different
parts of the curves, sections of one. curve were sampled
at constant potential span. Five equally spaced points were
taken from different areas of the Vinj = -50 v transient,.
Since the slope of the curve was decreasing, it was
necessary to take longer segments of the curve at longer
times. The results are shown in Table 7.3. The effects
of concentration polarization decreasing the available
information is clearly evident here, although the
potential span remains nearly constant.

Another effect which has been noted in these studies

of generated data is that in some cases a sample of data
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FIGURE 7.7

Simulated raw coulostatic transients, The potential
axis is referenced to Epre’ which is 200 mV positive of
E® for the A-B couple. Parameters as in Fig. 7.4.
V. .: Curve 1, -80 V.
inj
Curve 2, -70 V.
Curve 3, -60 V.

Curve 4, -50 V.
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Table 7.2

Effect of Concentration Polarization Constant Potential Span

of 10 mV. Vinj = -50 v.

Times Potl Potl Span ”oa” i s”
sec mv mv k
1000 -179.7

1650 -176.6

2300 =175.9 10.5 40.8 0.0721
2950 -171.5

3600 -169.2

10000 -154.5

12500 =15 L1

15000 -148.3 14, 2 156.6 0.454
17500 -146.1

20000 -144.2

30000 -139.4

47500 =135.0

65000 -132 ;0 9.8 487.8 1.84
82500 -1.30.9

100000 0129.6
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taken in a narrow band of times may have higher information
than samples taken over a much wider range. For example,
Table 7.4 shows two simulation-fits of 5 data points each.
The first fit is of points taken at 2000 upsec. intervals to
10000 psec. The second is a fit to five points taken

from the interval 6000 - 7000 upsec. Even though the
potential span is much smaller in the second case, the
information density is greater. This phenomenon has not
been studied in detail, but it is possible that by taking
closely spaced points, more information about the details
of the curvature of the transient is available. A detailed
study of other methods of sampling such as geometric
spacing, random spacing or taking points from several

transients could be done to optimize the experiment.

Error Propagation Study. A knowledge of the effects

of inaccuracies in the parameters assumed as known for the
fit is very important in assigning confidence limits in

the results. This points out a problem with the coulostatic
method, namely that preliminary experiments must be done

to determine these constants to high accuracy. Probably

the most important of these measurements 1is the very

precise determination of the double layer capacitance which
can be estimated with the coulostat using a blank solution,

if it is assumed that the reactant does not change Cdl'
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Table 7.4

Information Density of Closely vs. Widely Spaced Points.

Einj = =80 w.

Time Potl Potl Span ”Gu” g 5"
sec mv mv k
2000 -215.6
4000 =195.0
6000 -180.5 §2.1 3.69 0.0147
8000 3 s Py ¢
10000 -163.6
6000 -180.5
6250 <179.2
6500 =177 .9 5.0 3.04 0.0078
6750 -1%6:7

7000 -175.5
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The technique is similar to that of the previous
section on information density - points are generated by
simulation and then fit. Between generation of the raw
data and the fit to that data, one of the assumed constants
is changed slightly. It was found in general that even
when such a change affected the fit values of k® and Ol
the curvature of the S? surface as reflected in the information
density coefficients remained rather constant. This can be
expresséd as the relative error derivative, RED, or the
derivative of the relative change in k> or a with respect
to relative change in the parameter in question. For

example,
RED = {rel. change in a}/{rel. change in parameter} (7.17)

Using the parameters in Appendix A and choosing 5 equally
spaced points which yield maximum information density as
determined in the previous section, the error propagation
was studied for several different parameters. The results
are shown in Table 7.5. The data were generated assuming
k® = 0.001 and o = 0.4. The resulting values of kS and o
are shown as well as the RED for each case. Although these
results are valid only for these numbers, they should be
qualitatively similar for other electrode reactions

following the simple mechanism of eqn (7.1). The results
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Table 7.5

Error Propagation Study. Zinc Parameters (TFig. 7.4)

Used. Vinj = -60 v., 5 points at 2500 us. intervals.
Changed oy k> _. RED RED
Parameter fit fit W ks
D =D = 1.5 x 10 >  .417 .00099 .085 -.02

00X T

D,.=1.1 X 10°° 400 .00100 small small
D_ = 1.1X 10°° 404 .000999 .1 -.01
ox = 00101 401 .000990 .25 -1.0
Gy = 2042 . 382 .000971 -4.5 2.9

C. . = .00101 .415 .00104  3.95 4.0

inj
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show that diffusion coefficients are relatively unimportant
but that parameters directly affecting the double layer
capacitance or the initial potential have a large effect.
For example, a 1% error in the double layer capacitance

will induce a -4.5% error in a and a -2.9% error in k°.

This points out the high accuracy which must be maintained
in calibrations and measurements before the experiment
itself. Careful determination of the capacity-potential
relationship is especially important and should be done

with a blank solution on the same apparatus as the actual
experiment. The effect of errors in the standard potential
were not simulated since it could not be changed in the

same way as the other parameters, but its effect is expected
to be large. The accurate determination of this quantity
must be done by a separate experiment such as D.C. polaro-
graphy with correction for diffusion coefficients and for
spherical diffusion. Large error propagation might be
partially overcome by using other data sampling schemes or
by changing the approach of the fit to include extrapolation

An analogous sort of extrapolation to zero time
22

B0 Binger

was done by Abel to find the initial charge in a non-
linear regression for chronocoulometry. There may be
problems with this approach, however, since it introduces
another adjustable parameter which might cause bias in

the fit for k° and a.
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The Zn*?/Zn(Hg) Reaction and an Alternative Data

Analysis Technique, An example of some experimental

considerations in coulostatics is illustrated here by its
application to the Zn+2/2n(Hg) reduction, using a simplified
data analysis scheme. The inherent experimental advantages
of coulostatics - speed and usability with highly resistive
solvents as well as the flexibility of the simulation
method will be discussed in the context of this reaction.
Some question exists as to the mechanism of the zn"?

23,24,25,26

reduction because of a break in apparent

transfer coefficient. The net reaction is:

+2

In = + 2e == In(llg) (7.18)

The break in apparent transfer coefficient can be
explained quite easily in a qualitative way if the two step

. 20 =
mechanism is assumed:

zn™?+ e = In" (7.19)

zn" + e = zn(lg) (7.20)

Evaluation of eqn (7.12) at the instant of charge injection,

yields:

= — X exp (“pp- (B, .. -E°) (7.21)
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Taking the natural logarithm of both sides of egn (7.21)
yields,

dE| _ ~onF .0
1“[3‘5] =X + (B¢ E ) (7.22)

where K is a collection of constants, If the quantity

1n[dh] at t = 0 is plotted against E - E°, the slope will

dt .
be jﬁ%F. Such a diagram is similar to a Tafel plot with
back reaction correction. Thus, if 1n[%%] is plotted
; It =
: 0 ‘ ~anF
against Einit ~ E° the slope will be =T

Figure 7.8 shows the results of a Tafel-like plot
constructed from coulostatic data for 1.05 mM Zn'* in 0.1 M
NaCl0, at a DME. Only oxidant was present in the bulk at
the beginning of the experiment. The overpotentials
available start at about +50 mV and extend cathodic to an
overpotential of -300 mV. The transients all appeared
similar to those in Figures 7.1 and 7.7. The t = 0 decay
slope needed for the Tafel analysis was obtained by the
crude but effective strategy of fitting the initial portions
of the decay transient to a three-point parabola, The

value of Ein was calculated from the known double layer

it
capacity, drop area, and injection charge. The other two
points needed for the parabola were obtained from the
experimental transient. The slope of the parabola was

then calculated at t = 0 and plotted as a function of
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Einit' The error bars in the figure represent the scatter
due to taking different points of the transient to define
the parabola. Clearly, as the figure shows, the crude
application of coulostatics qualitatively confirms the
results, The simple parabolic fit method is rather useful
in qualitative understanding of this electron

transfer. This experiment shows clearly one advantage of
coulostatics - its ability to deal with fast reactions at
large overpotentials. Since there is no curvature or
systematic deviation at these very high overpotentials,

it is likely that the method might be used for even faster
rates.

Attempted application of the nonlinear regression
technique developed in the beginning of this chapter was
not found to be very effective with an actual experimental
system, Zn+2/2n(HgJ. Table 7,6 illustrates some of the
results of the technique for the simultaneous fit of IS
o and Cdl to raw data, Even when care was taken to include
points in potential ranges in which one reaction step was
rate limiting (i.e., on linear portions of the plot of
Fig. 7.8), large uncertainties are found in the resulting

parameters., This may be due to strong cross-correlations

of parameters similar to effects to be discussed in Chapter

VIII,
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Table 7.6

Results of Large Step Nonlinear Regression Procedure on

Raw Data for Zn+2/Zn(Hg) Systems.

Cp +2 = 1.00 mM in 1M NaCl0,, pH 5
D, = 8 x 10°°, Dp = 1.6 x 107 ecm’/sec

E°=-1000 mV vs. SCE
vV,

1] -8 and -40 V‘Epre = -800 mV vs. SCE

- .002 - .004 pfd.
inj

C
A = 0.032 cm®

I

No. Points Vinj Cinj Potl. Span k° o Cdl
-- | V ufd % cm/sec - jufd/cm?
5 | -40 .004 =1.22% = =1L.099( .0025 .0 16.2
10 [ -40 .0025|¢-1.095 - -1.044| .0045 .20 16.8
l -40 .0020
20 . - 40 .004 [Y-1.227 - -1.044| .0048 16 18:2
|-40 .003
d—40 L0025 r
.(40 .002 ¥
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FIGURE 7.8
Tafel-like plot generated by parabolic extrapolation
of coulostatic transients. 1.05 mM Zn' ° in 0.1 M
NaC10,, pH 3.: Values for an were found to be 0.75
and 0.30 for the segments anodic and cathodic of

the breakpoint potential.
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CHAPTER VIII

Alternative Data Analysis Schemes in the Use of Small Step
Coulostatics with In éiEE Generation of Reactants

For the Measurement of Electrode Kinetics

INTRODUCTION

Small step coulostatics refers to the technique in
which the charge injected onto an electrode perturbs the
potential only a few millivolts from the equilibrium
potential established before charge injection. This
technique is valuable in the coulostatic evaluation of
electron transfer rate constants because it allows closed-
form equations describing the relaxation of potential
toward the equilibrium potential to be used. The in situ
generation of reactants at the surface of the electrode is
important because it is an alternative to the troublesome
procedure of mixing known quantities of oxidant and
reductant before each experiment. This procedure which
is analogous to the d.c. component of the potential
applied in a.c. polarography or the initial potential
applied in differential pulse polarography is the source
of some difficulty in the analysis-of the results of
coulostatics, particularly at higher rates of electron
transfer. Some alternative methods of dataanalysis will

be presented in the following to illustrate some of these
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difficulties and the importance of careful choice of
unknowns in the nonlinear regression analysis.

When used to experimentally determine the rates of
electron transfer processes, the small step technique has
the advantages discussed in the previous chapter for
coulostatics 1n general: Freedom from uncertainty in
potential due to uncompensated resistance and very rapid
application of the perturbation compared with potential
step techniques. Only A.C. methods seem at present to
offer competition with coulostatics in the ability to
measure very rapid electron transfer rates in solutions
of high resistivity., The ultimate limit on the ability
of coulostatics to measure fast rates is finally determined
by the electronics of charge injection and data acquisition
and by the solubility of the reactant.

It is in the small step format that the coulostatic
technique was first proposed by Reinmuth1 and Delahay.z
A thorough summary of the equations governing use of
the small step technique for electrode kinetics was given
by Reinmuth.3 Kudirka and Enke4 showed by numerical
calculations that the potential change induced by the
charge injection could be larger than was previously
thought for the linearization condition used by Reinmuth
to continue to hold.

Small step coulostatics shares with differential pulse

polarography and A.C. polarography the feature that the
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measurement is made as a perturbation of an electrode
initially at equilibrium. As in the two techniques cited,
the equilibrium may be virtual rather than real 6 the

only requirement being that the D.C. component of the
response be much smaller than, or at least separable from
the response resulting from the perturbétion. In AC.
techniques, the D.C component is removed by phase-
selective detection or high pass filtering. In differential
pulse, the correction is made by subtraction of the current
flowing just before the potential perturbation from the
sampled current. In coulostatics, the optimum technique

is probably analogous to that used in alternate drop
differential pulse polarography: The potential decay
experienced by the electrode without charge injection is
subtracted from the observed experimental transient.

This component is usually very small on the time scales to
be considered and could even be neglected in most of the

work presented below.

THEORETICAL
The basis for the evaluation of small step data 1is
the theory developed by Reinmuth.3 The electrode is
initially assumed to be in quasi equilibrium at potential
- corresponding to overpotential n = 0, A small
charge, q, is injected a few microseconds after potential

control (if any) is released, The initial perturbation of



potential is:

o = Wgy = (Viny*Cingd/ (Ggq+Cn4] (8.1)

where notation is summarized in Table 8,1.

The relaxation of potential for purely diffusion-

controlled electron transfer (0Ox + ne == R):
5
n(t) = njexp(t/ty)erfc(t/ty) (8.2)

A rational function approximation developed by the author
for exp(x?®)erfc(x) is given in subroutine E2EC in AppendixA.
Equation (8.2) is the limiting case for very rapid charge
transfer, the Nernstian case, The time constants Te and

T, are given by

D
T = RTCdl/nFIO (8.3)
where
1° = anSCSXexp((—unF/RT)(E—EO)) (8.4)
and

1

= 212

vy = {(RTCy /*F?) (5=~ + =
C_.D C

0X 0X R

)} (8.5)
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Table 8.1

Summary of Notation

Potential just before charge injection
Potential just after charge injection

Voltage to which Cinj is charged

Double layer capaciatance

Overpotential as a function of time

Diffusional time constant

Charge transfer time constant

Exchange current density
Apparent standard rate constant
Surface concentration of oxidant

Surface concentration of reductant

Diffusion coefficient of oxidant, reductant

0,0 ' .
(CO§F1§ from Nernst equation

Symbol Explanation
n=0
o

inj
Cinj Injection capacitance
Ca
n(t)
t Time after injection
D
b+
R Gas constant
T Temperature
n number of electrons
F Faraday constant
1°
k

S
c©

0X

0
CR
o Transfer coefficient
%X,R 1/2
2 (R¥¢Dp)
8

b

Initial bulk concentration of Ox

Units

= = =

sec

sec

sec
1-atm/deg-mole
°K

coul /mole
A/cm2
cm/sec
moles/cm3
moleS/cm3
cmz/sec

moles/cm3
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For relaxation of the perturbation with charge transfer

limiting conditions:
n(t) = nexp(-t/t.) (8:8)

Finally, for mixed control of the electrochemical

discharge of the perturbing charge:
= ._J‘_ 2 = Y _ 2 L
n no(y—éT{YexP(B t)erfc(pt?) -Bexp(y?t)erfc(yt®)} (8.7)

where,

w
i

!ﬁ ) L
TD/ZTC+(TD/4TC 1) /TC (8.8)

and,

e
I

= T%/ZTC-(TD/4TC~1)%/TC (8.9)

Curve Fitting. The Marquardt Algoritth and the

criteria forrnonlinear least squares analysis of data are
discussed in the previous chapter. Briefly, it was desired
to solve for certain unknown parameters subject to the
criterion of least squares:

aldl data
$2 = 3 (£(t,C49,Tps T -E(E))? = min  (8.10)
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where (£(t,C TD,q) refers to the potential calculated

41 '
via eqns (8.1), (8.3) or (8.6). Unlike the situation in
the previous chapter, all data used in the fit refer
to a single initial potential and injection charge. No
attempt is made at this stage to calculate directly IS
and a as before.

After eqn (8.10) is solved by the fitting routine
for the parameters which minimize S%, it is possible to
use eqn (8.4) to solve for I° and by (8.4), if Coy 15

accurately known, it is possible to find kf. If B° is

known, it is possible to make a plot of the forward rate

constant, kf which is given b_v:6
ke = k®exp (1-anF/RT) (E-E®)) (8.11)
or from eqn (8.4):
.
k., = - - : (8,12)
£ amc®
ox

It C o and CR could be known a priori, it would be possible
to derive the k. vs potential relations independent of
knowledge of E° for the reaction. If the reaction is
assumed to Be Nernstian on the time scale of the pre-

electrolysis, the surface concentrations are calculated

; . 7
from simple Nernstian polarographic theory:



o _ to

Vox ™ 1+E8 (8.13)
o _ 1

CR = 1769 (8.14)

Thus, if E® and diffusion coefficients are known, it is
possible to construct the graph of kf vs E - E° from which
k® and o may be extracted. Correction for double layer
effects via conventional Frumkin correctionl4 may be

applied after reduction of raw data to the kf vs E format.

EXPERIMENTAL

Coulostatic injection, data acquisition and experimental
control functions were performed on the computerized
instrumentation described in the previous chapter. The
only change in experimental procedure relative to that
work was use of smaller injection capacitors and/or
injection voltages. The electrode used was a conventional
hanging mercury drop electrode of area 0.032 cm® or a
PAR universél electrode model 802 which could be triggered
by computer and which yielded a drop of area 0.0192 cm?.
Ordinary blunt capillaries were used,

Solutions of 2 mM Eu'~ in 9.5 mM C10, and 3.5 mM I
were prepared by Bruce Parkinson. Cr(III)(edta) was
prepared and three times recrystallized by Akifumi Yamada.

Analytical reagent grade sodium chloride, glacial acetic
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acid and sodium hydroxide were used as received in
preparation of the electrolyte for the Cr(edta) experiments.

All measurements were made at room temperature 23 +2° C.

RESULTS

One major problem with coulostatic analysis is the
strong dependence of the transient shape on double layer
capacitance. This dependence is not present in potentio-
static methods because the faradaic current is not at all
dependent on Cdl' Equations (8.1), (8.2), (8.6) and (8.7)
illustrate the direct interrelationship between observed
potential and the double layer capacitance. In the
analysis of real data, the random errors and the inability
to record the potential at its instantaneous value just
after charge injection, but before any decay occurs,
combine to make data analysis quite difficult without a
priori knowledge of the double layer capacitance. Consider
the simulated potential decay transients in Fig. (8.2),
where curves 1 and 2 correspond to curves 3 and 4,
respectively, of Fig. (8.1), but on a shorter time scale.
Curve 2 is the diffusion controlled limit, eqn (8.2), and
curve 1 is for mixed diffusion-charge transfer. Clearly
from the figure it can be seen that if the first 0.01'TD
sec. of the transient were unavailable it would be impossible
to differentiate curve 1 from curve 2, apart from the

uniform displacement in overpotential. This difference
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FIGURE 8.1

Potential relaxation with mixed charge transfer
and diffusion control.

Curve 1 - TC/TD = 10

Curve 2 - TC/TD = ]

Curve 3 - TC/TD = 0.1

0. (diffusion control)

Curve 4 TC/TD
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FIGURE 8.2

Potential relaxation, expanded time scale.

Curve 1 - TC/TD = 0.1

Curve 2 - TC/TD = 0. (diffusion control)
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overpotential due to charge transfer kinetics could be
confused with uncertainty in double layer capacitance.

Thus it is necessary to have a priori knowledge of the double
layer capacity in the presence of reactants in situations

in which the mixed control equation (8.7) is to bhe applied.

A nonlinear regression procedure which finds simultaneously
Cdl and a parameter related to charge transfer (usually IO

or TC) is subject to this difficulty. Martin and D8V158
probably encountered this phenomenon in their coulostatic
study of the kinetics of cyanide hemichrome and ferri/ferro
cyanide, using simultaneous nonlinear regression to determine

(0]

I and C In varying the bulk concentration of reactants

d1l-
between 11.0 and 30.7 mM, the value of cdl derived varied
from 17.3 to 21.7 uF/ecm?, or about 22%. The values of k’
found varied by 100%, from 0.045 cm/sec to 0.088 cm/sec,
very poor results for a rate of reaction 102 slower than
the upper 1limit reached by A.C. techniques. TFor the
cyanide hemichrome system it was necessary to manually vary

C and diffusion coefficients in order to estimate a range

dl
of possible rate constants of 2 to 7 cm/sec.

A further illustration of this interrelationship was
observed in a simulation study to determine if the rate

Faju couple could be determined

constant of the Ru(NHj3)g
coulostatically. Table (8.2) shows the results of

generating data via eqn (8.7), adding a known amount of
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+2 /43

Curve Fit to Synthetic Data With

Random Noise Added. For simulation of Ru(NHj3)g case,
. - & -6 T B b
Dox 4,75 x 10 . DR 4,9 x 10 cm®“/sec. n = 1, CRu =
~ .0 _ - o
1.67 mM. Einit 0. g 00625 uC/em=~ .,
Times Used, us Input Parameters Results of Fit
tmin tmax At Cdl Te T ag Cdl Te T o
us us  us | pfd us us mV ufd us us my
z
cm cm’
100 500 10 35 112.5 104.9 Q.05 | 31.8 80.8 86.7 0.055
50 250 5 35 112.5 104.9 0.05 | 33.7 75.4  97.5 0.052
5 50 5 35 112.5 104.9 0.05 | 32.4 88,3 89.6 0.048
5 50 5 35  112.5 104.9 0.25 | 24.9 51,7 52.% 0.251
100 500 20 35 11.3  104.9 0.025| 32.4 0.4 90.0 0.030
5 50 5 35 11.3 104:9 0.025|:11.3 96.6 33.6 0.026
5 50 5 35 11.3  104.9 0.05 | 11.5 89.3 32.3 0.052
5 50 5 35 11.3  104.9 0.1 127 77.8 30.0 0.103
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random noise, then using a three term regression (TC, T
and Cdl) to try to recover the original information present.
The added random noise is of a magnitude comparable to
that found in experiment. The results illustrate the
inaccuracies inherent in trying to determine several
strongly cross-correlated parameters simultaneously as is
the case here. Results of actual experiments on the
RU(NH3)+2/+3 couple were inconclusive and no reliable
differentation from diffusion control could be made.

For reactants with rate constants yielding e long

with respect to T the (linear) logarithmic fit may be

Ik
used. This procedure has the advantage that the double
layer capacitance can be calculated directly from the
t = 0 intercept of the 1n(n) vs t plot. TFigure (8.3)
illustrates the results of eqns (8.6) and (8.7), plotted
as forward rate constant vs potential. Thus it appears
that for the slower electron transfer rates (relativé
to data acquisition rates and reactant concentrations,3
the exact function (8.7) is nearly as well behaved as the
logarithmic analysis. In situ generation of Fut’ was
used.

With the in situ generation of reduced product, the
back-calculation of kf from To or 1° via eqns (8.11) -

(8.14), contributes another source of uncertainty because

of the necessity of knowing the standard potential very
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FIGURE 8.3

Results of logarithmic fit (eqn (8.6)) vs. eqn (8.7)

+2/+3

for Eu (O) log approximation (yields Tc and

£ (®) exact (simulation fit to To and Cdl).

a1’ -
Assumed:

puts = 9 X 10°°. Dpy+2 = 7 X 107° cm?/sec.

n=1. E° = -620 vs SCE.

D

Solution contained: 2 mM Eu+3,'9.5 mM C10, and

3.5 mM H .
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accurately. Consider the Cr(edta) couple which has a
relatively large standard rate constant of electron
transfer. Yamada and Tanaka9 have determined by
chronoamperometry in 0.4 M NaCl with 0.1 MpH 5 acetate
buffer electron transfer parameters k° = 0.2 cm/sec and

o = 0.6. Figure (8.4) compares their results with the
results of small step coulostatics. These results are for
a two-term regression in Te and Cdl' Although the
coulostatic results are of the same order of magnitude

as theirs, there is a marked disagreement in slope, and
hence in a. Much of the vertical scatter may be attributed
to the simultaneous fit of Caq1 and Te discussed above.

The filled circles represent calculation of kf and Tc
using our best estimate of E® of -1220 mV vs. SCE. The
open circles represent the results of similar data
evaluated for gl = -1215 mV. That this difference is due
to the difference of standard potentials assumed in

translating t,. to kf can be seen by the comparison of the

C
line in Fig. (8.4) with the open triangles. The line
represents the findings of Yamada and Tanaka,9 of k° = 0.2,
a = 0.6. The open trangles are the result when data
generated artificially using these values and E® = -1220 mV
are fit by a program assuming E° = -1215 mV. Thus it is

seen that even a small error in assumed standard potential,

such as could be caused by a liquid junction potential,
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FIGURE 8.4

Formal rate constant vs potential for Cr(edta),
0.4 M NaCl and 0.1 M pH5 acetate buffer.

Regression 1in Te and Cdl'

(®) E® assumed -1220.
(©) E° assumed -1215

+ 5 mV.

. : o) _ 10
(a) Regression on simulated data, Eerr Ecen

/ - Calculated for kz = 0.2, a_ = 0.6 (reference 9).

= 6.33 x 10" ° cm?/sec

0X
Dy = 5.63 x 10~ ° cm?/sec
n =1
= 2
Adrop_ 0.032 cm
Cinj = -10 V
V. . = 100 pfd
inj

Data taken at various intervals and ranges between

10 and 500 usec.



LA

Q5 o

0.01

| | | I

- 150 — 1200
E vsSCE/mV

FIGURE 8.4



226

a defective reference electrode, or a change in electrolyte
composition can cause severe problems, particularly in
the interpretation of a.

Figure (8.5) shows the reduction in vertical scatter
resulting from a single-term regression, Te only, with Cdl
estimated from coulostatics of electrolyte solution without
reactant present. The reduction in vertical scatter
over Fig. (8.4) may be due to choosing a uniform sampling
frequency and range. The potential of -1220 vs SCE for E°
assumed for the fit apparently causes the slope to match
closely that obtained assuming the literature value of 0.6
(solid line).

Since the results shown in Fig. (8.4) imply that
exact knowledge of the standard potential is necessary in
order to obtain information about the transfer coefficient
in the in situ generation experiment, it would be
desirable to obtain this parameter directly, if possible,
from the coulostatic results.

Information about the surface concentrations is

present in Ty through eqns (8.5), (8.13), (8.14),
L} S o
and & = (ﬁg)f Let us define K such that:
R
K= (5ogp * o) (8.15)
2
gl CLD
0X 0X R™R
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FIGURE 8.5

Single term regression for Cr(edta) data. (@) -
. _ 2 B}

regression assumes Cj; 15.0 ufd/cm?. (0O) Cq1

assumed 15.3 pfd/cm?. Points taken 25 to 100 usec

in intervals of 5 usec. Other parameters as in

Fig. (8.4).
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so that,
Y 2n24b
I WEFLT q4pe 1+£6
K= —=x1c = =gt
a1 £6D 2  ED,?
o] R
rearranging,
_ 1+2£06+02%E?
k= 5
£6D

O

whence,
0 = g292+e(2g-KgD§)+1
or finally,

0 = £202+9(2&-

s
RTC 41Dp

which can be solved directly for 6:

g = -bxvb2-4ac
2a
where
a = 5262 1 b
TSnZFZDOC
b = 28 - o
RTCdlDR

(8.

(8.

(8.

(8.

(8.

(8.
(8.

(8.

16)

17)

18)

19)

20)

21)
22)

23)
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Assuming that all the parameters in (8.20) are known to
high accuracy, one can now calculate directly the surface
concentrations and hence the standard potential directly
from coulostatic data. Of course, the cost of this
advantage is the necessity of another unknown to be found
by regression.

Figure (8.6) is the result when this theory is
applied to experimental results on the Cr(edta) system.
The undesirable result of an imaginary root near the
standard potential is the result of eqn (8.20). The
reason for this imaginary root is a slight error in the
assumed parameters, particularly the diffusion coefficients,
bulk concentration, double layer capacitance or temperature;
or it could reflect a value of ™ from the regression
routine which was too small because of the difficulties
alluded to above for strongly cross-correlated unknowns.

An attempt was made to avoid the problem of
imaginary roots qf eqn (8.19) by changing some of the
assumed iﬁput parameters until the minimum value of

2

b” - 4ac in eqn (8.20) no longer became negative at any

potential. The resulting 'fudge factor" was incorporated

in two different parameters, Cb

and Dox' The two methods
give slightly different results in both the values of

6 and k.. The potential corresponding to 6=1 which
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FIGURE 8.6

Regression in e and T for Cr(edta) system illustrating
use of eqns (8.19) - (8.22). (@) - Cd1 = 16 pufd/cm?.
(©) - C4y = 15 ufd/cm?. / - drawn for k° = 0.2,

o = 0.6 (reference 9 ).

A. Computed standard rate constants vs, potential.

B. 6 vs Potential via eqn (8.20).

Note imaginary roots at E = -1240 mV (corresponding
kf was calculated assuming 6 = 1). Simulation

parameters as in Fig. (8.4).
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FIGURE 8.7

Reanalysis of data in Fig. (8.6) incorporating
parameter adjustments which avoid imaginary roots

in eqn (8.20). (@) - D, = 6.33 x 10°° ecm?/sec;

cP = 1.13 mmj Cqq = 16 ufd/cm*. (0) D = 8.08 x

107° em2/sec; C° = 1,00 mM: Cqp = 16 mM. ALl

other regression parameters as in Fig. (8.4),
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theoretically would be E° for the reaction varies between
1225 and -1230 mV vs SCE, slightly higher than the

literature values,

CONCLUSIONS
It was found that strong cross-correlations exist in the
data analysis of coulostatic transients via eqn (8,7)
between double layer capacitance, charge transfer
parameters, and the diffusional relaxation parameters.
In order to separate and quantize any one of these factors,
it is necessary that the other two be well defined
a priori. The logarithmic approximation eqn (8,6) is
better suited to the analysis of data because it yields
an independent estimate of Caz and during the fit of the
raw data is independent of the diffusional factors, Under
those conditions in which this approximation can be
made to hold by increasing the reactant concentration and
decreasing sample time, this alternative should yield more

consistent results.
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APPENDIX A

Computer Program to Calculate Differential

Pulse Current Function

INTRODUCTION

Equation 2.4, an approximate analytical expression
for current-potential response of a nernstian system
with adsorbed product and/or reactant, was evaluated by
means of a computer program on the PDP-11/40. Because
of the extreme complexity of this equation, use of the
computer was a virtual necessity to generate simulated
differential pulse polarograms.

Main program All.FTN was used for all input/output,
scanning of potential, and calculation of eqn (2.4).
Subroutine E2EC.FTN generator the function exp(x?)erfc(x)
by means of rational function approximation developed
by the author. Subroutine VARIN.FTN is a utility keyboard

I/0 program. Listings are shown on the following pages.
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BYTE PRINT

CALL VARINCFN,“N = 7,4,0..18.>

CRLL VARINCDOYX, ‘DDX= 7,5,0..,.81)

CALL VWRRIMCDRED, DRED= “,6.,8..,.81>

CALL VARINCCSTRAR, “C«, MOLAR= 7,11,8.,28.>
CSTAR=CETRR*1. E-3 ‘

CALL VARINCT, SAMF. TIME, SEC= “.,41i7.8.,1i@8.>
CALL VARIMCDE. "DELTR E, MV= 7,413, -1088.,1808.>
DE=ABSCDE>~/1888. :

WRITE (6.3)

FORMAT C“ §PRINTOUT? 7>

READ (6, 4> PRINT

FORMAT <4RL> _
CALL VARIMCFKD, “K DX, CH-1= 7,12,08..,0.)
CALL VRARINCFKR, K RED, CM-1i= 7,132,8.,0.>
CFHD=8.

CPADS=0.

pD 5 I=1,1i88

E=¢Sp-15/1888.

EJ=E~DE

THETRAB=EXPC(IB. 92+*FN*E)>

THETRL=EXP(3B. 92*FN*EJ>

KI=SERTCDOX/DRED>

SDO=SERTCDOK)

SDR=SQRTC(DRED>

CPT=SERTC2. 14159%T)

BETR=CTHETRAL*SDO+SDRY /CFKO*THETRL+FKR>
CO=CSTRFE*THETRO*XI/CTHETRB*XI+1. >
CRP=CSTAR*XI/CTHETRB*XI+1. >

G=CO/THETR1-CR

COTRLL=FN*964@8. /SPT#SDOD
COTRLL=COTRLL*G*THETR4/CL +THETRL*XI>
CUR1=FN*26400, *G*THETAL/CFKD*THETRL1+FKR>
CURP=(SDhO*FKR+SDR*FKD-BETR*FKO*FKRYASPT
CURZ=C(FKO#FKR*BETA*BETA-BETR*(SD0O*FKR+SDR*FKD>+SD0O#*5DR>
CURP=CURL*¢CUR2+CURI*E2ECCBETA®SRART(T>>>
RATIO=CURR/COTRLL

CO=CSTAR

CR=CSTRAR/THETRB

G=CO/THETRL1-CR

CUR1=FH*96400. *G*xTHETRL/(FKDB*THETRL+FKR>
CUR2=C(SDO*FKR+SDR*FKD-BETR*FKO*FKR>/SPT
CURZ=CFKO*FKR*BETA*BETR-BETR*(SDO*FKR+SDR*FKD>+5SD0O*SDR>
CURRL=CUR1*¢CUR2+CURI*E2ECCBETAR*SRARTC(T>>>
IF ¢ABSCCURR>. LT. RBSCCPADS»>» GD TD 6
CPRDS=CURR

EFRDE=E

IF (RBS<COTRLL>. GE. RBSC(CPND>> CPND=CDTRLL
IF ¢PRIMT. ME. "431) GO TD 5

WRITE ¢6,418> 1,E.CURR,COTRLL, RATID, CURRL
FORMART (IS5, SCiPEL2. 3>

CONTIMNUE

FATCP=CPADS/CPHD '

WRITE ¢E.,21> FKD, FKR, EPADS, RATCP

FORMAT C4F1B. 4>

GO TD 1

END
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REAL®B FUNCTION E2EC(XX)

IMPLICIT RERL=*=8 (R-H),(D-2)

IF (XX.GT 2.)> GO 7O 2@

P=1 QrEEABE4GL0A+XX*(. 5441779390306+ XKK *(. 14536556998
1 ~XKK* BEBES2B25@512ED8))

B=1 DB+XK*(1l e7206222X1DB+XX*(1 6325541783608
1 +RKX*® 2447326247300))

GO TO 30

Y=1. /XK/KK

P=¢ 5641B95DB+Y%(1 7e3660BtY* 473275D8)) /KX
R=1 DO+Y*(3 €£25876+Y*1 918e12)

E2EC=P/Q

RETURN

END
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SUBROUTINE VARINCX, RLPHA, IPRINT, XMIN, KMAX)

¥=1NFUT VARIREBLE

fLPHR=A STRING OF RLPHR-NUMERIC CHRRACTERS
IFFINT=# OF CHRRACTERS IK RLPHAR ({81
KMIK=MIN BOUND DK X

NMBER=MARN BOUHD ON X

IF XMIN=HMRX, KHO BOUNDS TEST WILL EBE MADE
SUEROUTINE VARINCH, RLFHA, IPRINT, KMIN, XMRX)

BYTE RLFHRACBB)
CRLL SETERR (€,-1>

IF C1FRINT GE. 1> WRITE ¢€&, 28> CRLPHACI>, I=1,IFRINT)

FORMART < %7, 8BR1, X>

RERD «6,38)> X

FORMRT (F28. 8>

CARLL TSTERRCE, IERD

GO TO «S6,4@8>, 1ER

IF (HMIK EGQ XMRR> RETURN

IF C¢¥% LT XMIN. OR. X GT XMAX> GO TO 7B
RETURN

WRITE <6, 682

FORMART ¢* CONVERSION ERROR”)

GO TO 1@

WRITE ¢€,88) XMIN, XMAX

FORMAT ¢ ERROR “,G18. 4,7 < X <7, GiB 4>
GO TD 1@

END
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APPENDIX B

Digital Simulation Program for Differential Pulse

INTRODUCTION
This digital simulation calculates differential

pulse currents for the following Nernstian electron

transfer reaction

Ox + ne = Red (B.1)

In which either or both reactants may be adsorbed

according to (independent) Frumkin isotherms:

nll=1 =— e i i (B.2)

where Ki is the Henry's law coefficient (units of cm),

Pim is maximum coverage, 6 is Fi/rim, Ai is the Frumkin
interaction parameter (positive = repulsive; negative =
attractive). If A is zero this reduces to a Langmuir

isotherm:

;1 - P (B.3)
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If ™ is very large, this in turn reduces to a linear

isotherm (Henry's law):

= 0
rs Kici (B.4)
dr.
The subroutine FMKISO calculates Fi and Efi given
i
Fim, Ko Ay and Ci°. If the isotherm reduces to

(B.3) or (B.4), a direct calculation of Pi is possible.
If not, an iterative Newton-Raphson procedure is used

to calculate Fi.

The 1long pre-electrolysis drop-growth period

0 <t < tg is divided into ITER discrete steps of
t
5 _ d
duration At; = TTER The much shorter stage

after the potential step td < t < td + ts

is 1likewise -divided into ITER steps of duration
i\

_ s
Atz = TTER
During the drop-growth phase, concentrations

are evaluated at large grid spacings, Ax;:

Axy = /ﬁax(Dox,DRED)-At1/0.45 (B.5)

So that the stability criterion T%%§T < 0.5 is satisfied.

A similar formula is used to calculate Ax; given At,. In
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order to convert the old concentration profile to the new

grid spacing, a linear interpolation scheme is used.

Boundary Conditions

The boundary conditions during the second phase,
after the applied potential is stepped to E + AE, is
perhaps the most unusual aspect of this simulation.
Because of uncompensated resistance in the circuit, it
was necessary to calculate the potential loss as a
function of the cell current at each time step. Since
the current drawn is a function of potential of the
working electrode through the Nernst equation and
through the equation for charging the double layer
capacities, it was necessary to solve for i and Ew
self-consistently. Another problem was the fact that it
was necessary to solve for the amount of surface material
in the adsorbed state and in solution at X = 0. If all
that is known is conservation of mass in the zeroth

volume element,

(: g 0 0
Ctot = COX ¥ CR + FOX/AX + FR/AX (B.6)

and

0 -
C £(T

- )5 CR° = g(ry) (B.7)

X
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and the Nernst equation, it is necessary to calculate
simultaneously for C°'s and I''s which satisfy the isotherm
For a general nonlinear isotherm, it takes a few iterations
of a Newton-Raphson calculation to solve for the C°'s and

I''s. Since this calculation is nested within the

0

R

of Ew via the Nernst equation) the boundary value

calculation for Ew and 1 [qﬁf and C being a function
calculation requires as much or more computer time as
diffusion and drop growth. The complete flow chart is
in Fig. B.1. A flow chart of the boundary condition

calculation is given in Fig. B.2.
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FIGURE B.1

Flowchart of differential pulse simulation.
Includes drop growth, diffusion, uncompensated
resistance, adsorption of both reactant .and
product with linear isotherm or either

reactant or product with nonlinear isotherm.
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= E -5mV
pre pre

INITIALIZE
C(X) ARRAYS

CALCULATE
Aty , AX,

K=K+1
t=KAt;; AREA=f(1)

0 0 .0 .
ror C8+Cp*T /DX

v

BOUNDARY
CONDITIONS

i

¥

DIFFUSION

34

DROP GROWTH

v

TERATE IF
ONLINEAR
SOTHERM

YES

K < ITER?
NQ

FIGURE B.1

STORE
CALCULATE
At;  AXp

i(ty),

LINEAR
INTERPOLATION
C(X) » C(Xz)

pre

BOUNDARY
CONDITIONS
SEE FIG. B.Z

.

DIFFUSION

4 1%
. > =100 mV?
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FIGURE B.2

Boundary condition calculation for t > ty
Illustrates how current and potential are
calculated self-consistantly in the presence

of adsorption and uncompensated resistance.
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t =1t % .4t

E = ESTIMATE
+ I

o, &, R
Cror = Cox * Cr S

NO

Ew CONVERGE?

GIVEN E_,
¢
CALC COk’ CRD
Tox* Tro
) e c (OX)
lfar ~ D( )
; _ PiE)e T[t 4t)
lads At
Ton E(t)-E(t-At)
i = Carar
iror =
ifar * jads * jch
E = R

W Eapp " 1tot™u

FIGURE B.2

ITERATE FOR SELF-
CONSISTENCY WITH
ISOTHERM, NERNST
EQN. AND KNOWN

CTOT
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DHFPFHK. FTN

DIFFERENTIARL PULSE PODLREROGRRFHY SIHULRATION

INCLUDING RDSORPTIVE DEFPLETIDRKR OF REACTANT,

DROF GROWTH,

CHOICE OF LINEAR, LANGMUIR, Ok FRUMKIN ISDTHERHN

UNCOMPENSRTED RESISTHRNCE INCLUDING ARER DEFENDENT
SOLUTION RESISTANCE COMPONENT

CKARRGING DF DOUBLE LRYER THROUGH RU

BLL CRICULATIONS APE DONE TN CGES UNITS

STATEMENT FURCTIONS:

BRERCHGR, T>= BOESBEE*»(HGR*T)#» EEEEGEE
DIFNCDHM, CIM, CJ, CIF =CT+DM®(CIN+CIP-2 &CJ>
OXISOCCBY=FMKISOCCH, GOXKMK, ¥KDL, AOX, DGODCH
RDISD(CBY=FMIKISO(CA, GRDOMK, XKR1, ARD, DGRDCO

DIMENSIOKR TDSC1B)
DIMENSIDON COMES(i8>, CAPRESC(1B>
DIMENSION COXc288>, CRDC2BRD>, CNENC2BB>

INPUT SIMULARTION FPRRRMETERS
CALL VYARINCFITER, “ITER= 7, 6,2 1.,1686. )
ITER=FITER

CRLL VARIN <DOX¥, "DOK= 7,5,1 E-7.1 E-3)
CALL YARIN C(DRED, DRED= 7, 6,1 E-7,1 E-3)
CALL VARIN C(CDL.“CDL, UFD/CHMER= 7, 45,8 .8 )

CONVERT TD FD/CHSR

COL=CDL#*1. E-6

CALL YARIN C(XN,“H ELECTRONE= “,13,.9.89.>

CALL YARIN CTS,”SRMPLE TIME, #MS= -,417.41.,1888 )
CONVERT TO SEC

TS=TS*1 E-3

CALL YARIN <DE, "PULSE HWEIGHT, Mv= 7,47,1. .4888 >
CONVERT TO V¥

DE=DE#*1i. E-3

SIG 1S SCRN DIRECTION, -41=CARTHDDIC SCAN

81G=-1.7

151G=1INTC(SIG>

DE=ABSCDE>=ISIG

RCDEF IS SOLH RESISTANCE COEFF:
RU=RC(CAPILL>+RCOEF*(DROFPARRERD> **1/2

THIS IS USEFUL IN CRSES OF VERY LOW SOQOLUTION

CONDUCTIVITY, IN WHICH UNCOMPENSRTED RESISTRANCE

CHANGES GRERTLY WITH DROP RREA

CALL VYRRIN C(RCOEF,“R COEF, DHM-CHM= 7,46.,8..8. )

CALL YRRIN C(CRN,“# CRP R= 7,5,.9,18. 1)
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NCAPFE=CRN
DD ée@BB JCRPR=1, HCAPR

epook CRLL VARIN C(CHPRESCJCRPRY, “CRAFIL R, OHMS= 7,1€.8 ,8 >
CALL VARINCCOXN, “# CO¥= “,7,1 .18 >

¥BE 413 6o g0 oo 11-RUG-VE PRGE 2

NCDK=COXN
DD 38BB1 JCOX=1, HCOX
3eeel CRLL VARINCCOXESCJCOKY, “CDX= 7,5.41 E-28.1.)
CALL YARIN C(HGR. “HG FLOW RRTE= ", %14, B1,18 >
CALL VYARIN ¢TIHES, 4 DROF TIMES= “,14.8 ,18 D
NTIMES=TIMES
DO 46088 JTIMES=1, NTIMES
CALL VARIN (TDSCJTIMES), "DROP TIME= 7,11, 81,1888 >
480806 CONTINUE
INPUT 1SOTHERM PARAMETERS
KEOL, XKR1--HENRY"S LAKW COEFFICIENTS
GORMY . GRDMR--CGRMMA MARN
: ROX, ARI--FRUMKIN INTERACTION FRRARMETERS
eaeea CALL VARINCXKOL,“K OX= “,6,8. .,8.°
CALL YARIN C(XKR1i.7 K RED= *,7.,0.,8.)

b e e Nl

CRLL VARINCGOXMX, " GOXMAX= 7, 8, 8.
CALL VARINCGRDMY, " GRDMAKR= 7, B.8
CALL VARINCAROM, “INTERACTION FARE. “,28,-8,,5.
CRLL VARINCARRD, "INTERACTIOR PAE, ‘3208, -5.,5.
DEFARULT VRLUE FOR GAMMR MAX'S IS VERY LARGE, SO THAT
R LINERF 1SOTHERM 1S RSSUMED

IF (BOXMX. EQ. B > GOXMx=1

IF ¢GRDMX. EQ € > GRDMX=1.

EHD IKPUT SECTION

el e

onoDO0non

EPE 1S CONVERGENCE CRITERION FOF WORKING ELECTRODE PDTL
EFS=5 E-7
D0 18862 JCOX=1, NCOX
C INITIRL CONC OF RED IS SET TD ZERO
CIrk=8.
C IHITIAL CONCENTRRTION DF DX 1& TAKEN FROM ARRAY
C OF INITIAL CONCENTRATIODHS RND CONVERTED TO MOLES/CMSO
CI0=COXESCJICOR> 71088,
DO 1862 JTIMES=1, NTIMES
c DROP TIME TAKEN FROM ARRAY
Tb=TDSCJTIMESD
DO 18BB2 JCRPR=1, NCRPR
CONSTANT FART OF UNCOMPENRSATED RESISTANCE 1S5 CHOSEN

oo

PRINT RERDINGS

WRITE (6,18083> C10.TD, CRPRESCJCAPR?

WRITE (6,18884)

igpg2 FORMART ¢//, " CDX= °,41PE12 2,5K, " DROP TIME = “,BPFS 4,
i SX, "CRPRES= 7, F7. 1>

i16p84 FORMAT <77 EPRE’. 4¥, “RU*CURR",7X,"C1 -, 8X, “CURDOX", 5K,

1 “DIFF CURR .5X,"I/[R")
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INITIALIZE POTENTIRL SCAN VARIARBLE

1EPRE=8

INCREMENT POTENTIAL SCARN VARIABLE

1EFRE=1EPRE+1

EFPRE=FLOATCIEPRE-21>/288 =510

MANJ 1S MAXKIMUM NUMBER OF SPRCE INCREMENTS TO BE
USED IN CONCENTERARTION PROFILE

MANI=4. S4+CERTCFLORTCITERDY>#+5

DI=TD/1TER

CRLCULATE FI1RST DX TOD SATISFY STARABILITY CRITERION
(SEE WRITEUPD

DH=SQRT¢(AMAX1<(DOX, DRED>*DT /DM

CALCULARTE DIMENSIONLESS DIFFN COEFFICIENTS FOR ERCH
DMO=D0X*eDT/DR/DX

DMF=DRED*DT/DX/DX

INITIRLIZE CONCENTRRTION RRRAYS

b0 & J=1, 288

COXcJ>=CID

CRDCJI>=CIR

CBOX=CID

CORD=CIR

INITIRLIZE SOME NUMERICARL CONSTRNTS

NEL=DOK*SESBD *=XH/DX

KK2=28. 92%XN

INITIRLIZE GOX AND GRD, THE GRMMR"S TO ZERD
GOX=8.

GRD=0.

GORTOT=8

GRDTOT=0.

INITIAL ESTIMRTE OF WORKING ELECTRODE FOTL IS EPRE.
AFPLIED POTENTIAL

E=EPRE

BEGIN TIME ITERATIONS

DO 16868 K=1, ITER

UPDATE RARER

DARER=RRERCHGR, DT%K>

CALCULRTE UNCOMPERSRTED RES1ISTANCE C(SEE WRITEUF)
RU=CRPRESCJCAPR>+RCOEF/SRRTLCDRRERD

CONSERVATIDN OF MRSS IN SURFACE

VOLUME ELEMENT
CTOT=CBOX+CBRD+(GOXTOT+GRDTOT>/DX/DARER

TRKE INTO ARCCOUNT DROF GROWTH ON SURFRCE COVERRARGES
GOX1i=GORTDT/DRRER

GRD1=GRDTOT/DRRER

BEGIN BOUNDRRY CONDITION LOOP FOR WORKING POTL.

EL=E
THETR=EXP(XK2*EL)>
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EEGIN BCOUNDARY CONDITION LOOF FOP SURFACE CONCENTRATIONS

caoxL=Cce0xn
CBRD=COOX/THETA
CBNUM 1S NUMERATOR IN NEKTOK-RAFPHSON CRLCULATION
FOR HEW CBOX
ceoy =Ce0%-CBNUMACBDEN
CBNUM=CBOX®C1 +1 ATHETRY+(O¥ICOCCROXI+ROISOCCBRDY ) /DR-CTOT
CBDEN=1 +1 ATHETR+DGODC/CX+DGRDC/DR/THETA
Ca0x=CAOXL-CONUM/CBDEN
TEST RND CORKECT IK CRSE NEWTON-RERFHSEON CORKECTION
CAUSES AN DVERSHOOT OUTSIDE PERMITTED RANGE OF

CONCEMTRRTIDNS. THIS TEST 1S VERY IMFORTANT.
IF «Ce0 LT 8 > CBOM=CEAOXL/Z

IF «LBO% GT CTOT> COBOX=¢CRBOXL+CTOT>/ 2

TEST FOR CONVERGENCE TO CONSTRNT VARLUE

IF (RBRS«CBOXL-CBOX> GT. EG8BO1«CTOTY GO TO 380
END OF NEWTON-RRPHSON CONCENTRATION CRLCULATION
CONTINUING KWORKING FPOTENTIAL ITERATION
CEaRD=CR0OX/THETR

GON=0QXRIS0CCB0X)

GRI:=RDISDCCARDD

GOXTOT=GCHR*DARERA

GRDTOT=GRE+DARER

CALCULKTE CURRENT FLOMWING
CURDN=KK1#%iCOX¢1>-CBOR>*DARER
CURD®=CURON+3€400 *XhH»x(GOX1-GOK>/DT*DRRER
CALCULATE DERIVRTIVES FOR

CHARIN-RULE CALCULRTION OF DCCURREHNT/DCPOTL)D
DTHDE=XKZ2*THETAR

DCDTH=1 +DGRDC/DX
DCDTH=DCDTH*CBOX/THETAH/THETHA

DCOTH=DCDTH/¢L +DGODC/DX+C(1 +DGRDC/DX)/THETR)
DCORDE=DCDTH®DTHDE
DIDE=(-DOX/DX*DCOXDE-DGOPC*DCDTH®DTHDE/DT?
DIDE=DIDE#364086 *XN=xDRREFA

DEHOM=RU=DIDE-1.

NEWTON-RAPHSON CORRECTION FORMULA FOR WORKING POTL
E=EL~(EFRE+CUROX=RLU-EL>/DENDM

TEST FOR CONVERGENCE

IF ¢(RBSCE-EL> LT EPS> GO TO B8

GO TC B

EHND OF WORKIMG POTL LOOP

CONTIRUE

DIFFUSION CALCULRTION
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DROP GROWTH
CRLCULRATED RS R HYDRODYKAMIC FLOKW DF
MERTERIAL TOWRRD THE SURFRCE RS R RESULT
OF STRETCHING OF THE SuFFRCE LAYER
WITH DROP GROWTH THE RPFRORCH RND TERMINOLOGY
ARE WKOT EXACTLY THE SAME RS FELDEERG’S

CHEWZ1>=DIFNCDMO, CBOX, COXCL), COXL2D)D
CAON=CCOXCL-CAON»«DMO+CBON

JHMAN IS MAXIMUM CONCENTRARTION ITHDEX THIS ITERATION
JHMFAK=4 S¢SQRTC(FLORTCK)>+4

DO 18 J=2, JMRX
CNEWCI>=DIFNCDMO, COXCJI=1>, COXCID>, COKCI+1D)
DO 11 J=1, JMAX

COXCID=CHEUWC(JID
CHEWCA=DIFNCDME, CARD, CRDCL1>, CRDC2DD
CBRL=CCRDCL>-CORLO*LMR+CBRD

DO 12 J=2, JMRX

CNEWC T 3=DIFNCDME, CRDCJI=1), CRDCJID, CRDCJI+43)
DO 43 J=1, JMAX

CRDCJII=CNEWCJID

ERTA=RREACHGR, DT*=(K+1)>)/DRRER

DO 28 J=1, JMAK

Fd=J

FJIOLD=FJI*RATA

JOMIH=INTCFJOLDDY

JOMAN=JOMIN+1

IFCJOMIN GE JMRX> GO TO 21
FR=FJOLD-FLORTCJOMIN?

COXCID=C1 -FROI=COXCIOMIKRY>+FR*COXCJOMAKD
CRDCI>=C1 ~FROI»CRDC(CJOMIN)+FR#CRDCJOMAY)
CONTINUE

GO TO 1ee

COX(J>»=CID

CRDCI>=CIR

G0 TO 28

END DROP GROWTH SECTION

LREEL 488 IS END OF PREPOTENTIAL SECTION <(BCTCTD)
CONTINUE

BEGIN POTENTIRL STEP SECTION (TDCTCTD4+TS)

SRVE CURRENT RT END OF PREELECTROLYSIS STAGE

C1=CURDK

E1=E

CALCULATE NEW DT AND DX RND DIMENSIONLESS DIFFN COEFS
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DT=TS/ITER

DXOLD=DX
DN=SRRTCAMARKLC(DOX, DREL»*DT /DD
DHRAT=DX/DXOLD
DMC=DOR*DT/DR/DX
DMR=DREDL=*=DT/DX/DX

CRLCULATE NEW CONCENTRATION PROFILE BY LIKERE INTERF

DO 49 J=1, MRKXJ

FJOLD=DXRAT*J

JOLD=FJOLD

FR=FJOLD-JOLD

1F ¢JOLD EQ B> GO TO 41°

CNEWCI>=C1. ~FR>®*COXCJOLDY+FR*COXKCIOLD+1)
CONTINUE

DO 115 J=4i, MAXJ

COXCIY=CHREWCID

DO 218 J=1, MRXJ

FIOLD=DXRAT*J

JoLb=FJ0LD

FR=FJOLD-JOLD

IF ¢JOLD EQ B> GO TO 5189

CNEWCIY»=¢4. -FRO®CRD¢JOLD>+FP*CRLCIOLD+1)
CONTINUE

DO 349 J=1, MRXJ

CRDCJII=CHEMWCT)

GO TO 649

CHEWC(JI»=C1L -FR)*CBCX+FR«COX(1D

GO TO0 45

CHEWC(JI3=C1 -FR>*CBRD+FR*CRDCL)
GO TO 219

CONTINUE

END LINERR INTERPOLATION

CALC SOME NUMERICARL CONSTRNTS
XK1=DOR+SE4B0 *=XN/DX
KK2=328. 92%XN

ESTIMRTE A STARTING VYARLUE FOF ELECTRODE POTL

E=E+DE

BECRUSE THE CONCENTRATION PROFILE 1S PERTUREED,

IT IS HWECESSARY TO CALCULRTE DIFFUSION TO
EARCH TIME
JHMAK=MAXJ -1

BEGIN TIME ITERATIONS FOR SECOND PHRSE
D0 2BR K=1, ITER

THE LINMIT
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BEGIN BOUNDARRY CONDITION CRLCULATIDON RS RBODVE
CTOT=CBOX+CBRD+GOXN/DR4GRD/DX

GOX1i=G0OX

GRD1=GRD

EL=E

THETA=EXPC(XK2%EL>

capxL=Ca0xX

CBRL=CBOX/THETA

CANUM=COOX*C(1. +1. /THETR>+COXISOCCBOXI+RDISOCCORDI D ADXK-CTOT
CBDEH=1. 41 /THETAR+DGODC/DR+DGRDCADNATHETA
CBOX=CB0NL-CONUM/CBDEN

IF C(CeDX. LT. 8 > Ceox=Ce0XL /2

1F «CB0X. GT. CTOT>» C@OM=cCBOXL+CTOTY>/ /2

IF <CABS(CADXL-CBOX>. GT.. @@GEL+CTOT> GO TO 281

T CEBRD=CBOX/THETR

GOX=0X1S0C(CBON)

GRI'=RD1SOCCBRD>
CURDN=XK1*(COXC1)-CBOX)*DARER-CRRER*CDL*CEL-EL>/DT
CURDX=CURDOX+964B0. #XN*(GOX1-GOX>/LT#DRARER
DTHDE=XK2+THETA

DCDTH=41, +DGRDC/DXK
DCDTH=DCDTH=CBOXR/THETR/THETR

DCOTH=DCDTHACL +DGODC/DX+CL +DGRDCADKI /THETAD
DCOXDE=DCDTH#DTHDE
DIDE=¢-DON/D¥*DCOXNDE-DGODC*DCUTH*DTHDE/DT)
DIDE=DIDE#3£4BE +XKN*DRRER
DIDE=DIDE-DRREAR*CDL/DT

DENONM=RU*DIDE-1
E=EL-CEFRE+DE+CUROX*RU~EL>/DENOM

1F CRBSCE>. GT. B 2> E=(EL*28 +E>/180

IF <RBSCE-EL>. LT.EPS> GO TO 180

GO TO 1B

END BOUNWDARY CONDITION CRLCULRTION

CORTINUE

Ei=E

DIFFUSION CRLCULRTION

CNEKWCL>=DIFN(DMO, CROX, COXC(1)>, COX(2>?>
Ce0H=CO0X+DMD*={COXC(1>-CBOXD

00 118 J=2, JMAX
CHEWCIY=DIFNCDMO, COXCI=-1), COXCIY, COXCI+1))
DD 141 J=1, JMRX

CORCII=CHEWCID
CNEWCLY=DIFN(DMR, CBRD, CRDC1>, CRDC23D
CBRL=CBRD+DMR*CCRD(1>-CBRD?

DO 4142 J=2, JMRX
CNEMCJIY=DIFHCDMR, CRDCJI-41>, CRDCJI>, CRDCJI+13)D
DO 113 J=1, JHAX

CRDC(JI>=CNENWCJID
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LABEL 286 ENDS TIME ITERATIONS IN SECOWND FHRSE DF
THE DROP LIFE ¢TDCTCTD+TS>
CONTINUE
CRALCULRTE DIFFERENCE CURRENT
CUREIF=CUROX-C1
CALCULRTE UNCOGMFENSARTED RESISTRNCE POTENTIARL DROFP
THIS VRLUE SHOULD EBUARL CURRENTsEU
RI=E-EPRE-DE
c CARALCULATE J1/CAR, NORMALIZED CURRENT DENSITY®
CUFCCA=CURDIF/CID/DRRER
HRITE <&.1080804> EPRE,RI.Ci, CUROK, CURDIF, CURDCH
ieget FORMAT (F? 3, SE12. 4>
IF C1EPRE GT. 38> G0 TO 18882
IF SCRN WOT COMPLETE, GO TO STRTEMENT ¥ 16666 AND
INCREMEKRT POTENTIAL
GO TO 1epB60
STRTEMENT #180682 1S TERMINATION OF LOOPE IN CONCENTRATIODN
DROF TIME, RND RU
apge CONTINUE
STRTEMENT # cBEBe RSKS FOR NEW 1SOTHERM FRRRMETERS
GO TO 26Bee
END

OO
©=
Ler)

o0

OornNn no0

ROUTINES CARLLED
FRELISO, WARIN . INT + RABS » FLORT , S@RT ., RHARXA

EXP
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FUNCTIOM FHMKISOCCO, GM, XK, A, DGDCH
IF CYE. LT. eacpeegi» GO TO 4@
CK=CB*¥K
CKOGM=CK/GN
IF ¢RESCAY LT..08801» GD TO 3B
LANGMUIR SOLUTIDH TO STHRT
G=CK/€1. +CKOGH>
BEGIM MEWTOHN-RRPHSON ITERATIOHNS
TH=G/GM
EXRTH=EXPCLRA®THY
R=G/¢1. ~-TH»*EXRTH-CK
Y=EXRTHACL —THYX*C1. +G/C(GH-GX+RA*TH>
GN=G-X/Y
IF ¢(RBSC¢G-GN». LT. 1. E-16> GO TO 208
IF C¢GMN. GT. GM> GH=C(G+GHx/2
IF (GM. LT.B.» GH=RES¢3. *G+GN>/18
G=GN
GD TO 1B

RETURN WITH COMVERGED VARLUE

FMKISO=GH
DGDC=RK/Y
RETURHN

LANGMUIR ISOTHERM CRLC & RETURHN

FMKISO=CK/C1. +CKOGHMX
DGDC=XK/ 1 +CKOGHI®%2
RETURN

ZERD RETURN IF K=8

FMKISO0=8.
DGDC=8.
RETURN
END
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APPENDIX C

Digital Simulation of D.C. Polarography

with Adsorbed Reactants

INTRODUCTION
The computer program given in this Appendix is
logically similar to the differential pulse program
outlined in flowcharts B.1l and B.2Z, for the part of
the simulation before the step (t ¢ td). Subroutine

FMKISO.FTN and VARIN.FTN are also required,.
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DCPOL. FTN

DC POLAROGRRPHY PROGRAM

INCLUDING RDSORPTIVE DEPLETION OF RERCTARHNT

DEOP GROWTH,

CHDICE OF LIHERR, LANGHUIR, OR FRUMKIH ISOTHERM

UHCOMPENSATED RESISTAHCE INCLUDING RRER DEPENDENT
SOLUTION RESISTRANCE COMPOMENT

ALL CRALCULRTIONS RARE DONE IN CGS UNHITS

OODOODOOCOOO0O0

STRATEMENT FUNCTIONS:

RRERCHGR, T>=. BBEB5BEE*(HGR*T)#% BLEEEEEE
DIFHCDM, CJIM, CJ, CIP=CI+DH*=CCIM+CIF-2. *CJT>
OKISOCCAr=FMKISDICA, GOXMY, KKD1, ROK, DGDLCS
RDISOCCB>=FMKIS0CCD, GRDMX, KKRL1, RRD, DGRDC>

o000

DIMENSION TDS<iB>
DIMENSIDH COXESC10>, CRPRESC1OX
DIMENSION COKCL2062, CRDC2BON, CHEWC2080>

c INPUT SIMULRTION PRRAMETERS
CALL VARRIHCFITER. "ITER= “, 6,2 1,1688.>
ITER=FITER
CRLL VARIN <DOX,"DDOX¥= 7, 5,1 E-7.,1 E-3>
CALL VARIM <DRED.,"DRED= “,6,1. E-7.1. E-3>
CALL VYARIN <(XHN,“H ELECTROHS= “,13,.9,8.>
RCOEF IS SOLM RESISTARHNCE COEFF:
RU=RCCRPILL>+RCODEF*CDROFPRRERI % %1 ,/2
THIS IS USEFUL IMN CRSES OF VERY LOW SOLUTION
CONDUCTIVITY, IH HHICH UNCOMPERSATED FESISTRKCE
CHANGES GRERTLY HITH DROP RRER
CALL VRRIN C(RCOEF,“R COEF., OHM-CH= 7,16,B..8. >
CALL VARIHN (CRH,“® CRP R= “,9,.9,18. 1>
NCAPR=CRN
p0 €0oeB JCAPR=41, HCAPR
eppee CALL VARIMN ¢CAPRESCJICAPRY, "CRPIL. R, OHME= ", 16,8 .8 0
CALL VRARINCCOXM,"# COX= 7,7,41..,18.2
HCOM=CORN
b0 2pREL JCOM=1, NCOX
kgatalshy CALL VARINCCOXESCJCODH>, “COR= 7,5, 1. E-28,1. 3
CALL VARIH (HGR, HG FLOW RATE= *, 14, 81,18 5
CALL VARIN (TIMES, # DROP TIMES= “.14,8.,18. >
NTIMES=TIHES
DO 46BR6B JTIMES=1, NTIMES
CALL VARIN ¢TDSCJITIMES>, ‘DROP TIME= 7,11, DBi,10888. >

ippee CONTIHNUE

aOOoOO0On

C INFUT ISOTHERM PRRRMETERS

C WEOL, NKR1--HEHRY’S LRM COEFFICIENTS

C COMHE, GRDM:--GAMHA MAX‘S

C RO, ARD--FRUMIKIN INTERACTION FARAMETERS

zeape CALL VARINCREDL, K DK= 7,€,8.,0.>
CALL VARIM C(HKRi, K RED= “,7,0..,8.>
CRLL VYRRINCGDXMY, "GOXMAX= 7, 8,8.,8.7
CALL VARIWCGRDMH, GRDMAK= 7, B, 0. .08. 5
CALL VARINCADHX, INTERACTIOM PRR, DX=,28,-5..5.2
CRLL VRRINCHRD, *THTERACTION PRAR, RD=7,2RA, -5 ,5 >
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FEFRULT YRLUE FDR GARHMMR MRKR'S IS VERY LRRGE, 50 THAT
A LINERR ISCOTHERM IS5 RESSUMED

IF (GOEMM. EQ. O. > GOKMK=1.

IF <GRDMX ER. 8. > GRDMX=1.

END INPUT SECTION

EPS IS CONVERGENCE CRITERION FOR WDRKING ELECTRODE POTL
EPS=8 E-7

LO L866Z JCOX=1, NCDK

INITIARL COWC OF RED IS SET TOD ZERD

CIR=0.

INITIRL CONCEWTRATION OF OXK IS TAKEHW FROM RRRAY

OF IMITIAL CONCENMTRATIONS RANWD CONVERTED TO MOLES/CHSR
CIO=COMESC<JCOR:/10B0B.

DO 1G8B2 JTIMES=1, HTIMES

ROP TIME TRKEN FRDM RRRAY

TO=TDSCJITIMES?

0O 16082 JCRPR=1, NCAPR

CONSTANT PRRT DF UWCOMPEHSATED RESISTRHWCE IS CHOSEN

PEINT HERDINGS

INITIARLIZE POTEHWTIRL SCAN VYRRIABLE

IEFRE=08

IHCREMENT POTEMTIRL SCRH VARIRBLE

WRITE ¢6,10603> CID, TD, CAFRESCJICAFRY

FORMAT <¢~¢y " COH= *,1PEL2. 2,54, DPOP TIME = 7, BPFS5. 1,
1 t-'l\.l CRPRES"‘ ,J F? 1) -
IEFRE=1EPRE+1

EFRE=-CIEPRE-11>/188.

MEITE (E,1B8084> EPRE

FORMAT ¢° EPRE=7,E12. 4>

MAXJ IS MAKIHMUM HUMBER DF SFRCE INCREMEMTS TO BE

LUSED IM COMCEMTERARTIOH PROFILE

MANJI=4 SxSQRTCFLORTCITERY>+S.

DT=TD/ITER

CALCULATE FIRST DX TO SATISFY STREBILITY CRITERION
DH=SQFT CHMARLLLODR, DRED %D 400

CRALCULHTE bINENCIDHLESS DIFFH CDEFFICIENTS FOR ERCH SPECIES
DMO=DOR#DT /DK D

DHE=DRED®DT., DH#D:

IMITIARLIZE COMCEMTRATIOM RRRAYS

po 9 J=1, 200

co¥cI»=CID

CRDCIN=CIR

ceor=CcIO

CarD=CIR

INITIALIZE SOME MUMERICAL CONSTRHNHTS

WEL=D0KH*2E6400, #XN/DX

KE2=2B. 92%KH

INITIRLIZE GO¥ RMND GRD, THE GRAMMA"S TO ZEROD

GOX=6.

GRD=8.

GOXTOT=8.

GEDTOT=8.

IMITIAL ESTIMATE DF WORKIHG ELECTRODE POTL IS EPRE, THE
ARFPLIED POTENTIAL.

E=EPRE
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BEGIM TIME ITERATIODMS

DD 186 K=1, ITER

UPDRTE RRER

DARER=ARERCHGR, DT*K2>

CALCULARTE UNCOMPEHSRTED RESISTARMCE CSEE HWRITEUFR:
RU=CAFRESCJICAPR:+RCOEF/SQRTCDARRERDY

COMSERMRTIOH DOF MASSE IMN SURFACE

VOLUME ELEMENT
CTOT=CQ0OK+CORD+¢GOKTOT+GROTOT>/DRA/DRARER

TAKE INTO ACCCQUMT DROP GROWTH OM SURFACE COWERAGES
GOX1=GOXTOT/DRRER

GRD1=GRDTOT/DRRER

BEGIN BODUMDARY CONDITION LDOP FOR WORKING POTL.

EL=E
THETR=EXP(RK2#%EL>

BEGIN BOUMDARRY CONDITION LODP FOR SURFACE COHCENTRRTIDMS

ceoxL=Ce0oxr
CBRD=CEBOR/THETA
caNUM IS HUMERATDOR IH HEWTOHN-RAPHSOW CRLCULATION
FOR MEW CBOX

Co0XN" =CBON-CBHNUM/CBDEH
COMUM=CBON*.1. +1 ATHETR >+ 0OXISDCCOOR +RDICOCCBRD > »ADK-CTOT
CADEN=1. +1. /THETR+DGODC/DR+DGRDCA/DHATHETH
CoOX=CBDXL-CBHNUM/CBDEHN
TEST AHD CORRECT IW CRSE HEWTOH-RAPHSOM CORFRECTION
CAUSES AN QOVERSHOOT OUTSIDE PERMITTED RAKGE OF
COMCENTRATIONE. THIS TEST IS VERY IMPORTANT.
IF <CBOK. LT. 8. » CBON=CRDKL. 2.
IF <CAOX. GT. CTOT> CAOXK=CCBOXL+CTOT>»/2
TEST FOR CONVERGEMCE TD COHSTRHT VALUE
IF (ARSCCHOXL-COOH>». GT. . 8@ROL«CTOT» GO0 TD 388
END OF MEWTON-RAPHSOH COHCENTRATIOM CALCULATIOM
COMTIHUING WORKING POTEHTIARL ITERATION
CBRD=CBOX/THETR
GO¥=0X1S0CCO0OK>
GRD=RDISDCCBRD>
GORTOT=GOK+DARER
GRDTOT=GRD*DARER
CRALCULATE CURREMHT FLDHIHNG
CUROR=HKi%(CORCL>-CBOR>*DRRERA
CURDH=CURDX+964B0. «RN«(GOR1-GOX/DT+«DRRER
CALCULATE DERIVATIWES FOR
CHAIN-RULE CALCULRTIDON OF DC(CURRENT>/DC(PDTL>
DTHRE=XKZ*THETHA
DPCOTH=4. +DGRDC/DNK
DCDTH=DCDTH+=CRBOX/THETA/THETA
DCOBTH=DCDTHA/CL. +DGODPC/DR+CL. +DGRDC/DKY /THETAY
DCOXDE=DCDTH*DTHDE
DIDE={-DOX/DR«DCORDE-DGODC*DCDTH*DTHDE/DT>
FIDE=DIDE+S64080. *XH«DARER
DEMOM=RU=DIDE-1
NEWTON-RRPHSON CORRECTIDH FORMULAR FOR WORKING FOTL
E=EL-C(EFRE+CUROX#RU-EL>/DENDH
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TEST FOR COMVERGEMNCE

IF ¢RBSCE-EL> LT EPS> GD TD 88
GO TO B

EHD OF WORKING POTL LOOP
CONTINUE

TIME=K&DT

IF ¢1D*C(K/1B>. ER. K> HWRITE (€&, 288> K, TIHE, CURDXK
FORMAT (IS5, 2E12. 4>

DIFFUSION CRLCULRTIOM

CHEWCLY=DIFNCDMO, CBOR, COXCL>, COKC25D
CEOE=CCOXCLY-CBOXxDMD+CBDX

JMAY IS MAXIMUM CODHCEMTRATION IWNDEK THIS ITERRTION
JMAN=4. S*SORTCFLORTCKY >+4

DO 4@ J=2, JHAK
CNEMCIY=DIFHCDHO, CORCIT-42, CONCIY, COKCT+L5D
DD 11 J=1, JUR¥ ’
CHEMc1>=DIFH{DMR, CBRD, CRDC1 >, CRDC2>>
CBRD=CCRDLCL»-CBRD >«DMR+CBRD

oo 12 J=2, JMARK
CHEMCJI»=DIFNCDMR, CRDCJI=-412, CRDCJI>, CRDCI+45D
pO 12 J=1, JURK

CRDCJI>=CHERCT

DROP GROKWTH
CALCULARTED RS A HYDRODYWAMIC FLOW OF
MATERIAL TOWMRRD THE SURFRCE AS R RESULT
OF STRETCHIWG OF THE SURFACE LAYER
WITH DROP GRDHWTH. THE APPROACH AND TERMIHOLODGY
RRE MOT EXACTLY THE SRME RS FELDEBERG’S.

RRTR=ARREACHGR, DT*C(K+1>>/DRRER

DO 28 J=1, JHAX

Fd=J

FIOLD=FJ*RATRA

JOMIN=INTCFJOLD>

JOMAN=JOMIN+1

IFCIJOMIN. GE. JTHR¥> GD TO 21
FR=FJOLD-FLORTCJOMIMND

COMCIY=CL. =FR>*COXCIOMIN+FR&CORCIOMARKD
CRDC(JI»=C¢4. ~FRY*CRDCIOMINY+FR*CRDCIDOMAKDY
CONTINUE

GO TO ie8

COXCI>=CID

CRDCI>=CIR

GO TO 28
CUNI fNULE

IF CIEPRE.GT.2B8» GO TD i@RB2

IF SCAN NOT CDMPLETE, GO TO STRTEMENT # 1pB8ag AND
IMCREMENT FOTENTIRL

GO TO 16000

STRTEMENT #1i0@02 IS TERMINATIOH OF LOOPS IN COHCENTRRTIOHN,
DROP TIME, RHD RU.

CONTINUE
STATEMENT # 28888 ASKS FOR HEW ISDTHERM PARAMETERS

GO TO 2Q0e8
EMD
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RRERCHGR, T>=. BBB5ABE#(HER®T)** E6E66666
DIFHCDM, CIM, CJ, CAP»=CI+DH*(CIN+CIP-2. «CJ>
O8ISOCCBr=FMKISOCCH, GOKME, XKO, ADX, DGODC>
RDISOCCEY=FMKISDCCE, GRDMK, ¥KR, RRD, DGRDC?
DIMENSION TDSC1B3

DIMENSION COXESC1B>

DIMEHSIOM COXC2BB>, CRDC200Y, CNEHC288>
CALL SETERRC4, -1>

CRLL SETERRC(3, -1>

DH=. 45

CALL WRRIM ¢SIG,“SCAN DIR: 41=FOR; -1=REV: 7,25,-1. 4,1 1>
IF (SIG. HE.-1. > SIG=1.

CALL YARRIMN <(DOX,"DOX= 7,5, 1. E-7, 1. E=3D

CARLL VARIMN ¢DRED, ‘DRED= “,6,1 E-7,1 E-3>

CALL VRRIM (XN, “N ELECTROMNS= -,13,.8.9.5

CRALL VARIMW (TS, SRMPLE TIME, MS= 7,17,1.,1i@88. >

TS=TS*1 E-3
CALL WRRIMNCCOXM, “# COX= 7, 7,4.,10.>

HCOX=COXKN
DO x@EBL JCOK=1, NCOX
CARLL VARIWCCOMESCJICOKY, “COM= 5 E °Ga1 b

UHLL VWHREIMN CHGR, "HG FLOHM RHTE—
CALL VARIM ¢TIMES, “# DROF TIMES-
NTIMES=TIHES

DO 408 JTIMES=1, NTIMES

CALL VARIM CTDSCJTIMESY, “DROP TIME= 7,41, 04,1800 >

‘HD—'
o
=
[
L]
~

14 9 18, >

COMTINUE

WRITE <&, 200102

FORMAT (777" INITIRL POTL ISOTHERM:">
CALL VARIMCRXKDL, "K OX= 7, 6,8 .8 D

CALL VARIM ¢XKR1i, K RED= 7,7,8.,08. 2

CARLL VARIMNCGOXMH, *GOXKHMRN= 7,8,08..,0. 2

CRLL VARIMCGRDMH, “GRDHMAX= *, 8, 8..,8.>

CRLL VARIMCRDX,"A 0H= 7,6,-5..,5. 2>

CALL VARIMNCARD, "R RD= 7,6,-5.,.5. 2

IF C(GOHMK ER. 8. > GOXMR=1.

IF (GRDMN. ER. B. > GRDHMR=1.

MRITE (6, 280267

FORMAT (A¢7 RFTER STEP ISOTHERM:“>
CARLL VARIMCKKO2, K DOK= 7,6,0..,08.2

CALL VARIN ¢XKR2, K RED= 7,7.8.,0.2
CALL VRRINdDH.’DH= " 4,B,,.5)

CALL VARINCFITER, "ITER= 7,6,2. 1,1608. 5
ITER=FITER

DO 100882 JCOX=1, NCOXN

CIR=0.

CIO=COXESCJICOR>/1B8068.

DO 16862 JTIMES=1, HTIMES
TD=TDSCJTIMES?

WRITE ¢6,100602> CIO,TD

WRITE (E,1080084>

FORMAT ¢//,° COX= <, 1PEi2 2,5%X,” DROP TIME = 7, BPFS. 1//>
FORMAT </ E", 7%, “Ci 7, BX, "CURDK’, 5K,
i ‘DIFF CURR’, 3K, "I/CR">

CURLST=8.

IEPRE=8

CRLL SSWTCH<B, IRITB?

IF ¢IBIT@ EQ@ 1> IEPRE=34
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IEPRE=IEPRE+1

EFRE=. 15510

DE=-FLORTCIEPRE>»* B81ix*SIG

MRAXJI=4 S#SERTCFLORTCITER ) +5.

DT=TD/ITER

DXR=SORTCAMARKLCDOX, DRED>*DT/DM>
DMO=DOR*DT/DK/DK

DMR=DRED®*DT/DX/D¥

KKO=¥XKD1

KKR=XKR1

D0 S J=1, 2068

CORCI>=CID

CRDCJID=CIR

Co0X=CID

CBRD=CIR

KK1=DOX+26400, #*XN/DK

KK2=328. 92%KN

GOX=8.

GRD=8.

GOXTOT=08

GRDTOT=0

E=EPRE

DD 180 K=1, ITER

DRRER=RRERCHGR, DT*K>
CTOT=COON+CORD+C(GOXTOT+GRDTOT>/DX/DRRER
GOX1=GOXTOT~/DARRER

GRDL=GRDTOT/DARRER

EL=E

THETR=EXP(RK2%*EL)

CADHL=CO0DK

CBRD=CBOX/THETR )
CONUM=COBOX*C1. +1. /THETR>+(OXIS0CCBOXY+RDISDCCBRDY>/DK~CTOT
CBDEN=1. +1. /THETR+DGODPC/DK+DGRDC/DXA/THETA
CBOX=CB0XL-CBNUM/CBDEN

IF <CBO¥. LT.B. > CBOX=ABSCCBOXL /2. >

IF ¢CRO¥. GT.CTDT> COOX=CCOOXL+CTOTO>/2.

IF (RES(CPOXL-CODX>. GT.. BDOBRL*CTOT> GO TO 388
CBRD=CBOX/THETR

GOM=0X1IS0CCROKY

GRD=RDISO{COBRD>

GONTOT=GOXK*DRRER

GRDTOT=GRD*DARER
CUROY=KELI*C2 =COXC(L>-1. S«COOK-. S*COXC2>>*DRRER
CURDX=CURDOX+96400. «XN+(GDRL-GOX>/DT«DRRER
CONTINUE

CHEWCYL y=DIFNCDMO, CBOX, COKCLD>, COXC2DD
CROX=CCONC1>-CBOX>=DMD+CBDX

JMAR=4. S+SORTC(FLOATCK>>+4

Do 16 J=2, JMAX
CHEMCI>=DIFHNCDMOD, COXCI-1>, COKCID>, COKRCI+1D>
DO 11 J=1, JHRX

CORCTID)=CHEMWCJI>
CHEWCL2=DIFNC(DMR, CBRD., CRDCL>, CRDC22>>
CORD=CCRD{1>-CORD>*«DMR+CORD

p0 42 J=2, JMAK
CHEWCI»=DIFHC(DMR, CRDCJI=-1>, CRDCJIY, CRDCJI+4>>
b0 42 J=1, JHAK

CRDCIX=CNEKNCJI

RATR=ARERCHGR, DT*«C(K+1>>/DRRERA
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DO 26 J=1, JMAX

Fa=J

FJOLD=FJ*RATA

JOUMIN=INTCFJCLD?

JOMAX=JOMIH+1
IFCJOMIN. GE. JMAK> GO TOD 21
FE=FJOLD-FLORTCJOMINS
COXCI3=C1. ~-FRY*COKCIOMIHI+FR&CONCIOMAKD
CRDCI>=C4L. -FR»*CRDCJIOMIN:+FR«CRDCJIOMAKD
CONTINUE

GO TO 1880

CONCJI>=CID

CRDCI>=CIR

GO TO 28

CONTINUE

C1=CURDX

E1=E

DT=TS/ITER

DMOLD=DX

DH=SRRTCAMARLCDOX, DRED>*DT/DM>
DMRAT=DH/DXOLD
DMO=DOXADT/DK/DK
DMR=DRED*DT/DR/DX

nEO=XKD2

HKR=KKR2

0o 19 J=1, MAXJ

FIOLD=DXRAT*J

JOLD=FJOLD

FR=FJOLD-JOLD

IF <JOLD EQ. B> GO TO 419
CHEMCI)=C1. ~FRY*CONCJIOLD>+FR*CORCIOLD+15
COKRTINUE

DO 119 J=1, MARJ

COXCI3=CHEWCI?

PO 219 J=1, MAKJ

EJOLO=DRRATR]

JOoLD=FJOLD

FR=FJOLD-JCLD

IF ¢JOLD. EQ. @8> GO TD 519
CMEMCTIy=C¢1. —FRy*CRDCJOLD > +FR*CRDCIOLD+1D
CORTIMNUE

DO 219 J=1, MAX

CRDCIY=CNEWCT?

GO TO €19

CHEWCTI»=¢1. —-FRY*CBOR+FR*COXCLD
GO TD 1°

CHEW(JI>=C¢1. ~-FRO*COBRD+FR*CRDCLD
GO TO 219

CONTINUE

KE1=D0KX+9E400. *XN/DKH

KK2=38. 82*KH

E=E+DE

JMAK=MAKI-1

DO 288 K=1, ITER
CTOT=COOX+CBRD+GON/DN+GRD/DX
GOXL=GON

GRD1i=GRD

EL=E

THETR=EXPC(HK2+ELD
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201 LBUXL=LbuA
CeRD=CRBOX/THETA
CBNUH=CBOM®<1. +1. /THETAY+<¢0QXISDLCOOKI+RDISOCCBRD > >/DX-CTOT
CADEH=41. +1. /THETA+DGODCA/DNK+DGRDC/DRATHETA
Ce0R=COOKL-CBNUM/CBDEHN
IF (COOX. LT. B, > CBOX=ABRSCCBOXLA2. >
IF (CEB0¥. GT. CTOT» CPAOX=CCOOXL+CTOT>/2
IF ¢CABSCCOOXL-COONY. GT. . BBDBL*CTOT> GO TO 301
CORD=CRA0OX/THETR
GOK=0DXISODCCBOX>
GRD=FDISOCCORD»
CURON=¥KIi%(2 *COHCLy-1 S*CO0OK-. S*COXC22>*DARER
CURDY=CUROR+964680. *}H«(GDOX1-G0K>/DT*DARER

b 1) CONTINUE
Ei=E
CHEWCL)=DIFNCDMO, CBOK, COXCLY, CORC2ND
COOX=COOX+DMO*cCONCLY-CO0OKD
DD 116 J=2, JHAX

119 CHEWCI»=DIFHCDMO, CONCI-12, COXRCIS, COXCT+1DD
DO 111 J=1, JHAX
114 COXCIH=CHEWCT>

CNEWCL)=DIFHCDMR, CBRD, CRDC1>, CRDC22D
CBRD=CORD+DHMR*CCRDCL>-CBRDS
pPD 412 J=2, JHRX

112 CHEWCI)=DIFHLDHR, CRDCI-12, CRDCJID>, CRDCI+4133
DO 112 J=1, JMAX

i1z CRDCJI»=CHEWCJI>

2p8 CONTIMUE

CURDIF=CURDR-C1

EPLUS=EPRE+DE

CURDCA=CURDIF/CID/DRRER

MRITE ¢6,18081> EPLUS, C1, CURDOHX, CURDIF, CURDCA
iepet FORMAT C(F7. 2, 4E12. 45

CALL SEWTCHc@, IBITHY

IF (IBITB ER 1>G0 TD ieeB2

IF CIEPRE.LT. 48> GO TOD 188086
ieepe CONTINUE

GG TO c26Beee

END
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APPENDIX D

Digital Simulation Program for
Normal Pulse Polarography with

Adsorbed Reactants

INTRODUCTION

Program NPPFMK.FTN is the main program for the
digital simulation of normal pulse polarography with
uncompensated resistance, drop growth and nonlinear
adsorption isotherms for either reactant. The logical
flow of this program is similar to that given for
differential pulse in Appendix B, Figs. B.1 and B.Z2.
Subroutines FMKISO.FTN and VARIN.FTN, discussed in

Appendices A and B are also required.
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NPF2 FTH
AUG 27, 1976
DEFLETION. DROF GROWTH, FRUMKIH 1S0THERM

AREACHGR, TX)= BRABSEBE«(HGR*T)*+ ELEEEGE

DIFNCDM, CIM, CJ, CIFx=CI+DMCCIN+CIP-2 *CT>
OXISDCCEs=FMKISO(CB, GDXMK, KEQL, ROK, DGODCD

EDISOCCE =FMKISDCCE, GRDMK, KKRL, RRD, DGRDCY

DIMENSION TDSCLBD

DIMENSION CONESCiBY

GIMENSION COXe288>, CRD(2BB,, CNEWNC2BBY

CALL SETERR(4,-1>

CALL SETERRC(3, =17

DM= 4%

CALL VARIN <SIG, “SCAH DIR: 1=FOR; -1=REV: *.,285.-1 1,1 1>
IF ¢SIG NE -1i. > SIG=1.

CALL VARIN (DO¥, “POX= ", 5,1 E-7, 1 E-3)

CALL VYARIN ¢DRED, "DRED= *, 6,1 E-7,1 E-3>

CALL VARIN C(XHW,”N ELECTRONS= “.413,.8,9. 5

CALL VARIN (TS, ' SRMPFLE TIME, #®S= 7,47, 1 .i888 >

TE=TS#L E-2

CRALL VRRINCCOXN, “# COR= ,7,1..,18.°>

NCOM=COXN

DO ZBBBaL JCOR=1, HCOX

CRLL VARIW(COXESCJCOH>, “COH= 7,5,1 E-28.,1. >

CALL VARIN CHGR, “HG FLOW RRTE= <., 44, @41,18 >

CALL VARIN ¢TIMES, & DROF TIMES= ",14.B ,18 )
NTIMEE=TIMES

DO 4mEBE JTIMES=1, NTIMES

CRLL VRRIN CTDSCJITIMESY, "DROFP TIME= “,11, 81,18B6 >
CONTINUE

CRLL VAHRINCKXKOL, 7K DX= 7, 6. 8.
CALL VARIN C(KKRi, ‘K RED= “.7V,
CRLL VARINCGOKMY, “GODRMRK= 7,8
CALL VARINCGRDMH, “GRDMRK= 7. B
CALL VAFINCADY, "R DR= 7,6, =5
CRLL VARINCARD, "R RD= ‘,6,-5
IF ¢GOXMY ER. B. > GORMX=1

IF (GRDMX EQ. 8. > GRDHKR=1
CALL VARINCDM, “DM= ., 4,8.,.5%

CRLL VARINCFITER, “I1TER= “,E,2 1,168B. 2

ITER=FITER

DO 1@BB2 JCOM=41, NCOX

CIr=8.

CI0=COXESCJICOR /188D

DO 1e@B2 JTIMES=4, NTIMES

TD=TDSCITIMES>

WRITE ¢€,188B3> LID. TD

WRITE C6€,18884>

FORMAT ¢//,* CO¥= 7,41PE12 2,54, DROF TIME = °, BPF5. 1//
FORMRT </ E“. 7%, “CL “, BR, “CURDK", 5¥,s

i "DIFF CURR’, 5K, “I/CR"D

LURLST=8.

1EPRE=B

CALL SSWTCHC(B, 1BITE>

IF (IBITR ER 41> IEPRE=34

1EFRE=1EPRE+1

EFPRE= 415+51G
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DE=-FLORTCIEPRE)* Bi=S5I(G

MANTI=4 S*SORT(FLOATCITERY>*S

DT=TD/ITER

La=SERT{AMRX1CDOX, DRED>&«DT/DHM>
DMO=DOX*DT/DX/DX

DHME=DRED*DT/DK/DX

DO & J=1, 2BB

CDOX(J>=CID

CRDCJI>=CIR

CBDX=CID

CBRD=CIR

Kr1=DOKX+3£4808 =XN/DK

KEZ=38. 92%KKN

GOX=8,

GRD=B

GOXTOT=PB

GRDTOT=B.

E=EPRE

p0 108 ¥=1, ITER

DRREFR=RREACHGR, DT=K>
CTOT=CEON+CBRD+CGOXTOT+GRDTOT > /DX/DRRER
GO¥1=GOXTOT/DRARER

GRD1=GRIM D1 DHKEH

EL=E

THETR=EXP{KK2*EL>

cenxL=Ceox

CeRL=CBO0R/THETR

CEHUM=CRON®CY +1. /THETRY+(0OXISOCCRON)+RDISOCCBRDY > /DR-CTOT
CRUEN=L +1. /THETR+DGODCA/DR+DGRDC/DRA/THETR
cani=cenML-CeHUM/CODEN

IF (CBOX LT. 8 > CBOu=RRScCBOXL/2. >

IF <Ce0¥ GT. CTOT> CEBOX=CCROXL+CTOT2/ 2

IF (RESc(CRONL-CBOXY GT. @omei=CTOT> GO TD 388
CerRD=CBOX/THETR

GO¥=0X1S50CCBORY

GRI'=R0OISOCCBRDS

GO¥TOT=GOX*+DRRER

GRLTOT=GRU*DARER

CURDM=MEL® (2 &CONCLY-1 S*CBOH-. 5*xCOKCZY »+DRRER
CURDX=CUROY+5€E4B0B *¥H&CCOHL-GOR/DT#DARER
CONTIHUE

CHEWCL )=DIFHCDMO, CBOY, COXCLY, CORCESD
COON=(COXCL»-CBON«LMO+CBON

JMBY=4 S5+#SRARTCFLORTCKI 2+4

po 18 J=2, JHRY
CNEWCTIY=DIFHCDHMD, COKCI=-12, COXCTD, CORCI+4DD
DO 11 J=1, JHMRX

COXCI»=CHEMWCID
CHEW(L)=DIFNCDHMRE, CBRD, CRDCL>, CRDC2D Y
COBRL=CCRD:4>-CORD>«DHR+CBRD

DO 12 J=2, JHARX

CHEWCI =DIFHCDMR, CRDCI=1>, CRDCI 2, CRDCI+4LDD
DO 42 J=1, JMRK

CEDCJI»=CHENCIY

RERATR=RFPER.HGR, DT+«CK+41>>/DRARER

D0 28 J=1., JMRX

FJ=J

FJOLD=FJ«RATA

JOMIN=INTCFJOLD>

JOMRY=JOMIN+1

IFCJOMIN GE. JMRH> GD TD 21
FR=FJOLD-FLORTCJOMIK:

COXCId=C1 -FR)*COXCIOMIN)>+FR&COXNCJIDMAKY
CRDC(JI>=CL. —-FR>®=CRD{JIJDOMIND>+FR*CRDCJOMAND
CONTINUE
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GO TO 188
21 COoXCJI>=CIOD
CRDCI>=CIR
GO TO 28
iea CONTINUE
Ci=CURDXK
Ei=E
LT=TSCITER
DXOLD=DX
A=SHRTCRMARLCDOX, DRED>«DT /DM
DHRART=DX/DROLD
CMO=DOR=DT/DX/DR
DMRE=DRED«DT/DX/DX
DD 18 J=1, MRXJ
FIOLD=DXRAT*J
JOLD=FJOLD
FE=FJOLDP-JOLD
IF ¢JOLD EQ. 8> GD TO 419
CNEWCTI)=C1. -FRY*COXCJIDLDI+FReCOXCIDOLD+1>

i9 CONTINUE
DO 14& J=1, MRXJ
115 CORCI>=CHEWCJID

DO 249 J=1, HRXJ

FJOLD=DXRRAT*J

JOLD=FJOLD

FR=FJOLD-JOLD

IF ¢JOLD EG B GO TO 5489

CHNEWCI>=C1. ~FRX®CRDCJOLD ) +FP*CRDCIOLD+1)>

218 CONTINUE
DO 218 J=1, MRNJ

319 CRLCT»=CNEWCTD
GO TD €18

419 CHEMWCJIs=C1 -FR>«CBOXR+FR&«CDXCLD
GO TO 419

548 CHEMCTIy=CL -FR>*CBRD+FR&CRDCLY
GO TO 218

EL9 COHTINUE

KE1=D0K+2£400, ®«KHA/DK

KED=3E. S2%KN

E=E+DE

JHRM=MRRJI-1

Do 286 K=1, ITER -
CTOT=CROX+CORD+GON/DH+GRD/DN

GOxi=GOX
GRDL=GRD
1B EL=E
THETH=EXPCKK2*EL>
et CenyrL=CBOX

CBRD=CBOX/THETA
CEHUM=CBOX*(1 +1 /THETR>+¢0OMISDCCAOKI+RDISOCCBRDY »/DR-CTOT
CBDEN=L +1 /TRETA+DGOLC/DN+DLGRDC/DXR/THETA
Ceox=CeD¥L-CBNUM/CBDEN
IF (CRD¥ LT.B.> CRBOX=RABSCCBOXL/2. >
IF «CBOX. 6T CTOT> COOX=<COBORL+CTOT>/2.
IF (RES(CBDXL-CBDX> GT. 88RRL1«CTOT> GD TD 2B
CorlL=CB0R/THETA
GOR=0X150CCBOXD
GRI'=RDISDCCBRD>
CURDKX=XEL#C2. «CONC1>-1 S5*CBOX- S5«COXC27»+DRRER
CUROX=CURDN+964B0B. «XN=(GORL-GOX>/DT*DARER

i8e CONTINUE
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Ei=E

CHEWCL =DIFHNCLMD, CBOX, TOXCLD, COXC2DD
CODN=CBCH+DMO*=CCONCL>-CBDOK

DO 116 J=2, JMRKX

CHENCIY=DIFNCDMO, CONCI-4>, CORCTIY, CORCI+LDD
DO 111 J=1, JMRR

COXCTr=CHERCT
CHEW(LY=DIFNCDHME, CBRD, CRDCLY, CRDC2D D
LORL=CERL+IME*C(CRDCLY-CBRDY

DD 112 J=2, JMAR
CNEMCI>=DIFNCDMR, CRDCJI~1>, CRDCID, CRDCI+4DD
DO 142 J=1, JMARR

CRDCJIT X =CHERWNCIS

CONTINUE

CURDIF=CURDX-C1

EFPLUS=EPRE+DE

CUROCE=CURDIF/CIO/DRRER

WRITE (6, 16B@R1> EPLUS. C1.CUROX, CURDIF, CURDCR
FORMAT (F7. 3, 4E412 43

CRLL SSWTCH(B. 1BITB2

IF ¢IBITE EO 1>G0 TOD 1BBER2

IF ¢JEPRE LT 48> GO TD 18808R

CONTINUE

GO TO zBBBe

END



