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Abstract

Late in 2015, gravitational physics reached a watershed moment with the first di-
rect detections of gravitational waves. Two events, each from the coalescence of a
binary black hole system, were detected by the Laser Interferometer Gravitational-
wave Observatory (LIGO). At present, LIGO comprises two 4 km laser interferome-
ters, one in Washington and the other in Louisiana; a third detector is planned to
be installed in India. These interferometers, known as Advanced LIGO, belong to
the so-called “second generation” of gravitational-wave detectors. Compared to the
first-generation LIGO detectors (Initial and Enhanced LIGO), these instruments
use multi-stage active seismic isolation, heavier and higher-quality mirrors, and
more laser power to achieve an unprecedented sensitivity to gravitational waves.
In 2015, both Advanced LIGO detectors achieved a strain sensitivity better than
10−23 /Hz1/2 at a few hundred hertz; ultimately, these detectors are designed to
achieve a sensitivity of a few parts in 10−24 /Hz1/2 at a few hundred hertz.

This thesis covers several topics in gravitational physics and laser interferome-
try. First, it presents the design, control scheme, and noise performance of the Ad-
vanced LIGO detector in Washington during the first observing run (O1). Second,
it discusses some issues relating to interferometer calibration, and the impact of
calibration errors on astrophysical parameter estimation. Third, it discusses the
prospects for using terrestrial and space-based laser interferometers as dark mat-
ter detectors.

This thesis has the internal LIGO document number P1600295.

https://dcc.ligo.org/LIGO-P1600295
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1 General relativity and
gravitational radiation

In this chapter, we’ll review some basics of general relativity and gravitational radi-
ation. Largely we will follow Creighton and Anderson.1 A good overview of general
relativity is given by Zee.2

1.1 Basic equations

Geodesic equation

A central postulate in general relativity is that massive particles move to extremize
their proper time τ. In other words, the spacetime trajectory Xµ(τ) is found by
extremizing the action

S =
sB∫

sA

ds=
τB∫

τA

dτ
(
gαβ

dXα

dτ
dXβ

dτ

)1/2

. (1.1)

The result of this extremization is the geodesic equation

d2Xµ

dτ2 =Γ
µ
νρ

dXν

dτ
dXρ

dτ
, (1.2)

where
Γ
µ
νρ =

1
2
gµλ

(
∂gρλ

∂xσ
+ ∂gσλ

∂xρ
− ∂gρσ

∂xλ

)
(1.3)

is the connection coefficient. Additional forces (from electromagnetism, elastody-
namics, and so on) go on the right-hand side of equation 1.2.
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Equation of geodesic deviation

How can one tell whether a particular metric describes flat spacetime or a space-
time with gravity? One prescription is to start with two test masses, initially sepa-
rated by a small spacetime vector ζµ, and set them in motion with some four-velocity
Uρ = dXρ/dτ. Then the relative acceleration of the two masses is given by the equa-
tion of geodesic deviation:

D2ζµ

Dτ2 =−Rµ
νρσUνUρζσ, (1.4)

where D2ζµ/Dτ2 =Uλ∇λ

(
Uσ∇σζ

µ
)

and

Rµ
νρσ = 2∂[ρΓ

µ

σ]ν−2Γλ
ν[ρΓ

µ

σ]λ (1.5)

is the Riemann tensor. If D2ζµ/Dτ2 is nonzero, the spacetime is curved. Geodesic
deviation is the principle that underpins gravitational wave detection.

Einstein field equation

The relationship between spacetime curvature and matter/energy is given by the
Einstein field equation, which tells us how to calculate the metric tensor gαβ given
a certain stress-energy tensor Tαβ:

Gαβ = 8π
c4 Tαβ, (1.6)

where

Rαβ =Rγ
αγβ (Ricci tensor) (1.7)

R =Rγ
γ (scalar curvature) (1.8)

Gαβ =Rαβ− 1
2 gαβR (Einstein tensor). (1.9)

In the following sections we will see that in empty space (Tαβ = 0), the Einstein
equation can be linearized and then admits plane wave solutions, which are gravi-
tational waves.

Observations of type Ia supernovae and of anisotropies of the cosmic microwave
background indicate that (at least on cosmological scales) the behavior of “empty”
space is consistent with the presence of a constant, nonzero stress-energy Tαβ =
−Λgαβ (so-called “dark energy”), which is about 70 % of the closure density of the
universe.3
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1.2 Weak-field limit
Many experimental tests of general relativity (including the detection of gravita-
tional waves from distant astrophysical sources) operate in a regime where the
spacetime curvature is small. In this so-called weak-field limit, the metric gαβ is
approximately the Minkowski metric ηαβ with a perturbation hαβ satisfying |hαβ|≪
|ηαβ|. In this regime, terms involving products of hαβ with itself are ignored.

In the weak-field limit, the spacelike components of the geodesic deviation equation
are

ζ̈i =−R i
0 j0ζ

j. (1.10)

This shows that the components R i
0 j0 of the Riemann tensor manifest physically as

tidal accelerations. For example, in the case of a spacetime sourced by a Newtonian
potential Φ(xi), these components R i

0 j0 are the tidal field −∂2Φ/∂xi∂x j. Turning
this statement around, we can say that one can measure the Riemann tensor (and
hence the curvature of spacetime) by measuring a tidal acceleration.

1.3 Gravitational radiation
In the weak-field limit, the Einstein field equations can be recast as a wave equation
in hαβ, sourced by some stress–energy tensor Tαβ. Solving this wave equation in
vacuum (Tαβ = 0) yields a class of plane wave solutions, called gravitational waves.
For a wave travelling along the z axis, the weak-field metric perturbation has the
form

hαβ =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 , (1.11)

where the coefficients h+ and h× are (potentially) time-dependent.a Equivalently,
the line element for this metric is

ds2 =−c2dt2 + (1+h+)dx2+ (1−h+)dy2 +2h×dxdy+dz2. (1.12)
a Note that there are only two independent components in this metric, despite the fact that the

metric can have up to ten independent components in general. In this case, eight of these ten com-
ponents are eliminated when fixing the gauge. This gauge is referred to as the transverse traceless
(TT) gauge, and freely falling masses have fixed coordinates in this gauge, even in the presence of
a time-varying metric.
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In this case, the geodesic deviation equations are

ζ̈x = 1
2

(
ḧ+ζx+ ḧ×ζy

)
(1.13a)

ζ̈y = 1
2

(
ḧ×ζx− ḧ+ζy

)
(1.13b)

ζ̈z = 0, (1.13c)

where the baseline separation vector is ζ = ζxx̂+ ζyŷ+ ζzẑ. These equations show
explicitly that a gravitational wave exerts a tidal force on any matter that it passes
through.

1.4 Terrestrial detection
Terrestrial detection efforts revolve around trying to make very sensitive tidal force
measurements in the audio band.

Bars

Resonant bar detectors are the oldest class of gravitational wave detection exper-
iments.1 In these experiments, a high-Q object (often a bar, and often made of
high-quality aluminum) is used to detect the tidal force of a passing gravitational
wave. A wave with appropriate frequency content can pump energy into one of the
bar’s normal modes, setting the ends of the bar in motion with a strain that is much
greater (by a factor Q) compared to the intrinsic strain of the gravitational wave.
Modern resonant bar detectors are able to achieve narrow-band strain sensitivities
of order 10−21 /Hz1/2.1,4

Planets and moons

Just like a metal bar, a celestial body such as a planet or moon will respond to
the stress of a passing gravitational wave. The response produces local seismic
disturbances at the body’s surface,7 which can be measured using a network of
seismometers. Coughlin and Harms used data from seismometer networks on the
Earth8 and the Moon9 to place upper limits on the stochastic GW background ΩGW

from 0.1 to 1 Hz, yielding a limit ΩGW < 1.2×105.
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Figure 1.1: Strain sensitivities for some past, current, and future gravitational
wave experiments. “Bars” refers to the joint AURIGA–EXPLORER–NAUTILUS–
Virgo run described by Acernese et al.4 “DECIGO” refers to a proposed space-based
laser interferometer experiment with a 1000 km baseline.5 “LISA” refers to a pro-
posed space-based laser interferometer experiment with a 5×106 km baseline.6

Laser interferometers

An optical interferometer monitors the relative displacement (and hence relative
acceleration) of multiple freefalling (or quasi-freefalling) test masses.

In the case of a simple Michelson interferometer, one mirror (test mass) is displaced
by an amount ζxx̂ from a beamsplitter, and another is displaced an amount ζyŷ
from a beamsplitter. One port of the beamsplitter is illuminated with laser light of
wavelength λ0, and a photodetector is used to monitor the amount of light exiting
the other port. If the relative displacement is zero (ζx = ζy = ζ), the interferometer’s
antisymmetric port will be dark, since the round-trip phases ϕx and ϕy are equal.
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Explicitly,

ϕx = 2c

ζ/c∫
0

2π
λ0

dt= 4π
λ

ζ∫
0

dx= 4π
λ

ζ, (1.14)

and the calculation for ϕy yields the same answer.

We now consider what happens when a gravitational wave passes through the de-
tector. We are interested in waves with frequency f of less than a few kilohertz,
so the period T = 1/ f is on the order of milliseconds or more. On the other hand,
the light travel time in a kilometer-scale Michelson is tens of microseconds. There-
fore, the response of the interferometer to the wave can be treated adiabatically.
Suppose at some particular time the GW strain is h+. We again want to compute
the phases ϕx and ϕy of the light that is sent into the interferometer in the pres-
ence of this strain. For light traveling along the x arm, dt and dx are related by
0 = −c2dt2 + (1+ h+)dx2 because light always travels along a null path. Therefore,
the phase accumulated in the x arm isb

ϕx = 2

ζ/c∫
0

2πc
λ0

dt= 4π
λ0

ζ∫
0

√
1+h+dx≃ 4π

λ0

ζ∫
0

(
1+ h+

2

)
dx= 4π

λ0

(
1+ h+

2

)
ζ, (1.15)

and similarly,
ϕy = 4π

λ0

(
1− h+

2

)
ζ, (1.16)

so that
∆ϕ=ϕx−ϕy = 4π

λ0
h+ζ. (1.17)

This shows that a Michelson interferometer will register a phase shift ∆ϕ that is
directly proportional to both the applied spacetime strain h+ and the length of the
interferometer’s baseline ζ.

We assumed the light was sent into the interferometer after the strain had already
been applied, so that the wavelength is the same in both arms. However, any light
already circulating in the interferometer as the strain is applied will be gravita-
tionally frequency-shifted, with the light in one arm being redshifted and the light
in the other arm being blueshifted.10 As the light in the arms returns to the beam-
splitter, a phase difference accumulates, causing power to appear at the dark port.
This is the resolution to the common question of how one can use light to detect
gravitational waves, given that gravitational waves cause redshift of the light in
the arms.

b Even in the presence of nonzero strain, the limits of the integration are still 0 and ζ, because
the masses are assumed to be freely falling, and therefore their coordinates do not change in the
TT gauge.
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1.5 Other detection methods

Pulsar timing

Millisecond pulsars are excellent clocks that can be used for GW detection.11 If
a GW passes between the line of sight from a pulsar to a radio telescope, then
the arrival times of the pulses will be perturbed. There are many non-GW effects
which could perturb the pulse arrival time for a particular pulsar, so in practice
many pulsars are observed simultaneously. This makes it possible to extract the
correlated arrival time perturbation due to the GW. Pulsar timing is particularly
well-suited to measurement of ΩGW( f ) on year-long timescales; the Parkes Pulsar
Timing Array has been able so far to set a limit ΩGW(1 /yr) < 2.3×10−10 assuming
ΩGW( f )∝ f 0.5.12

Cosmic microwave background polarization

A detection of gravitational waves from the early universe can be made by careful
measurement of the cosmic microwave background (CMB) polarization.13 If the in-
flationary paradigm is correct, then the present observable universe evolved from
a small, causally connected region that was blown up by a large factor (∼10 to ∼60

e-foldings) less than 10−32 s after the big bang. Consequently, quantum fluctua-
tions in the fields present during the inflationary period—for example, the inflaton
field and the gravitational field—were similarly blown up and should appear today
as perturbations to the temperature and polarization of the CMB on large angu-
lar scales. While several different fields can produce large-angle curl-free (E-mode)
perturbations in the CMB polarization in the early universe, only the gravitational
field can produce large-angle divergence-free (B-mode) CMB perturbations. There-
fore, detecting primordial B-modes in the CMB would provide evidence for the ex-
istence of gravitational waves in the early universe. Detecting primordial B-modes
is the current aim of several ground-based, balloon-borne, and space-based CMB
polarimetry experiments.
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2 The Advanced LIGO

interferometers: design and
control

This chapter discusses the optical topology of the Advanced LIGO interferometers,
and how the interferometer lengths, angles, and laser are controlled. This thesis
will not discuss the lock acquisition system (green auxiliary lasers for the arms
and third-harmonic heterodyne sensing for the vertex)14 used to bring the interfer-
ometer onto resonance from its initial uncontrolled state. This system has already
been discussed in detail by Staley15 and Martynov.16

We will make heavy use of the analytical formulas found by Sigg17 and Izumi and
Sigg18–21 for length readout and control of resonant interferometers.

2.1 Topology overview
This section will review Michelson and Fabry–Pérot interferometer topologies, and
how these are combined to form a dual-recycled Fabry–Pérot Michelson interferom-
eter.

Michelson interferometer

Consider a Michelson interferometer with two reflective test masses and a 50 %
beamsplitter (figure 2.1).

Suppose the input (symmetric) port of the Michelson is illuminated with a laser
with frequency ω0/2π and field amplitude E0. If ϕX = 2ω0ℓX/c and ϕY = 2ω0ℓY/c are
the round-trip phases from the beamsplitter to the test masses and back, then the
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Figure 2.1: Diagram of a Michelson interferometer. A laser beam is injected into
the symmetric (bright) port, and the differential arm length signal is read out at
the antisymmetric (dark) port.

field at the antisymmetric port is

EAS = E0

2

(
eiϕX −eiϕY

)
(2.1)

= iE0 eiϕ+ sinϕ−, (2.2)

with ϕ± = (ϕX±ϕY)/2. Correspondingly, the power PAS = ∣∣EAS
∣∣2 at the antisymmet-

ric port is
PAS = P0 sin2ϕ−. (2.3)

Implicit in this equation is the statement that common-mode phase fluctuations do
not make a signal at the antisymmetric port. This common-mode rejection is cru-
cial for interferometric gravitational wave detection, since all realistic lasers have
phase noise that is many orders of magnitude higher than the phase fluctuation
induced by a passing gravitational wave.

How is the anti-symmetric fringe condition maintained? One possibility is to servo
the laser frequency so that PAS = P0/2 (the half-fringe condition). This method is
simple, but has the disadvantage that fluctuations in P0 appear directly at the
antisymmetric port.
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Another possibility (closer to what is actually employed) is to modulate the laser
at some radio frequency Ω/2π and then operate the Michelson at a dark fringe
(PAS = 0). This requires choosing ℓX ̸= ℓY by some macroscopic amount (that is, by
many multiples of the laser wavelength), so that the transmission of light from the
input port to the anti-symmetric port becomes frequency-dependent. In the field of
gravitational wave detection, this intentional length offset is called the Schnupp
asymmetry.a

Writing ϕ±(ω)= 2ωℓ±/c, we see that

EAS(ω)= iE0(ω)e2iωℓ+/c sin(2ωℓ−/c) . (2.4)

We write ℓ− = ℓ−+δℓ−, where ℓ− is the Schnupp asymmetry (i.e., the macroscopic
part of the differential length), and δℓ− is the microscopic detuning. We assume
the Michelson is operated at the dark fringe, so we are trying to keep δℓ− at 0. The
field incident on the beamsplitter is

E0 eiω0t eiΓcosΩt ≃E0 eiω0t
(
1+ iΓ

2
eiΩt+ iΓ

2
e−iΩt

)
, (2.5)

where Γ is the modulation index and Ω is the angular modulation frequency. After
some algebra (see section C.3), it can be shown that, to linear order in δϕ−, the
demodulated rf power at the antisymmetric port at Ω is

PAS = P0Γsinϕ− δϕ−, (2.6)

where ϕ− = 2ωℓ−/c is the macroscopic portion of the differential phase.

What is the phase sensitivity of a Michelson interferometer? In the case of either
dc or rf readout, it is set by the power incident on the beamsplitter.

In the case of dc readout, if the antisymmetric port is kept nearly dark, then PAS ≃
P0ϕ

2−, so that the optical gain is sdc = ∂PAS/∂ϕ−
∣∣
ϕ0

= 2P0ϕ0, where ϕ0 is the static
differential phase offset for the carrier in the arms. The shot noise of the light
in the antisymmetric port is S1/2

PP ( f ) = (2hν0PAS)1/2 = (2hν0P0)1/2ϕ0, and hence the
equivalent phase noise is (hν0/2P0)1/2.23

In the case of rf readout, the optical gain is srf = P0Γsinϕ−, and the shot noise
(which comes from the two sidebands) is [(3/2)hν0P0]1/2Γsinϕ−; the shot-noise-limited

a This is the same basic principle that underlies Fourier transform spectroscopy, which has been
used (among other things) to verify the thermal nature of the cosmic microwave background.22
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Figure 2.2: Diagram of a Fabry–Pérot interferometer. The photodiode may also be
placed in so as to monitor the reflected light, rather than the transmitted light.

phase sensitivity is then [3hν0/2P0]1/2, independent of both Γ and ϕ−.b We can re-
fer this noise to strain via the relation δϕ= (π/λ0)Lδh. This results in a shot-noise-
limited strain ASD of

S(shot)
hh ( f )1/2 = 1

πL

(
3hcλ0

2P0

)1/2
. (2.7)

For P0 = 1W, λ0 = 1064nm, and L = 4km, this results in a strain of 4×10−20 /Hz1/2.
This strain sensitivity is good, but not good enough for regular detection of gravita-
tional wave events. Improving this sensitivity requires either increasing the laser
power by many orders of magnitude or augmenting the optical topology to improve
the shot-noise-limited SNR. In the next section we show that the sensitivity can be
greatly enhanced through the use of Fabry–Pérot interferometry.

Fabry–Pérot interferometer

The basic definitions for a Fabry–Pérot interferometer are given in appendix C.
This appendix also reviews the standard control scheme [the Pound–Drever–Hall
(PDH) technique] for locking a laser to a cavity, or vice versa.

We consider a two-mirror Fabry–Pérot interferometer with length L (figure 2.2).
For simplicity we assume the input mirror has transmissivity T, and the output
mirror has zero transmissivity. Therefore, the cavity is overcoupled, with a pole
fp = cT/8πL. We now compute the shot-noise-limited sensitivity of this cavity when
it is kept resonant using PDH reflection locking. Given a modulation depth Γ, the
optical gain (in watts per meter) of the PDH readout isc

s( f )= c
Lλ0

× 4P0J0(Γ)J1(Γ)
/
fp

1+ i f
/
fp

. (2.8)

The shot noise on the photodiode is

S(shot)
PP ( f )= 4hν0P0

[
(1−v)J0(Γ)2+3J1(Γ)2] . (2.9)

b The factor of 3 (rather than 2) in these rf shot noise formulas arises from the cyclostationary
nature of the noise in the demodulated sidebands.24,25

c See appendix C.
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Assuming the visibility is perfect (v= 1), the shot-noise limited strain ASD is there-
fore

S(shot)
hh ( f )1/2 = 1

L
× S(shot)

PP ( f )1/2

|s( f )| = 1
2

(
3hλ0

cP0

)1/2 ∣∣ fp+ i f
∣∣ . (2.10)

For L= 4km and fp = 42Hz, we have S(shot)
hh ( f ≪ fp)1/2 = 2×10−24 /Hz1/2, an improve-

ment of c
/p

2πLfp = 4F/
p

2π≃ 400 over the Michelson sensitivity as given by (2.7).
Above the cavity pole, the sensitivity rises like f , crossing the Michelson sensitivity
at f = c

/p
2πL≃ 17kHz.d

It is therefore highly advantageous to use optical cavities when using a laser to
sense small audio-band strains. In the next section, we examine the Fabry–Pérot-
enhanced Michelson topology that is used in Advanced LIGO and other gravitational-
wave interferometers.

Fabry–Pérot Michelson interferometer with recycling

The Advanced LIGO instruments are dual-recycled Fabry–Pérot Michelson inter-
ferometers, as shown in figure 2.3. This means that they are Michelson interferom-
eters whose arms are Fabry–Pérot cavities. Additionally, a power-recycling mirror
is placed between the laser and the beamsplitter in order to enhance the amount
of power circulating in the Fabry–Pérot arms. Finally, a signal-recycling mirror is
placed between the beamsplitter and the antisymmetric port readout to tune the
bandwidth of the instrument.

A dual-recycled Fabry–Pérot Michelson has five length degrees of freedom:

L+ = LX+LY
2

(2.11)

L− = LX−LY
2

(2.12)

LP =−xP+ xB+ xIX− xB
2

+ yIY− yB
2

(2.13)

LM = xIX− xB
2

− yIY− yB
2

(2.14)

LS =−yS+ yB+ xIX− xB
2

+ yIY− yB
2

. (2.15)

d We note in passing that the shot-noise-limited sensitivity of a Fabry–Pérot cavity is independent
of fp for f > fp; in other words, there is no penalty in terms of shot-noise-limited sensitivity for
choosing fp to be as small as possible.26
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These are, respectively, the common-mode arm length (CARM), the differential
arm length (DARM), the power recycling cavity (PRC) length, the Michelson length
(MICH), and the signal-recycling cavity (SRC) length.e;f

We now want to answer the question: how do we choose the interferometric lengths
and the optic reflectivities?

We should choose the end test masses to be highly reflective, since there is no bene-
fit in letting light leak out the end mirrors, other than the small amount (about
1 W) required for diagnostic and control purposes. In Advanced LIGO, we have
Te = 4ppm.

The input test mass transmissivity Ti and signal recycling mirror transmissivity
Ts are chosen jointly to set the interferometer’s signal bandwidth and to optimize
a number of technical effects; we discuss these transmissivity choices later.

We now discuss how to choose the power-recycling mirror transmissivity Tp. We
want to choose the mirror transmissivity so as to provide the lowest possible strain-
referred shot noise, which means maximizing the amount of power entering the
arms. For the time being, suppose we have chosen some fiducial input test mass
transmissivity Ti, and suppose each arm has a round-trip loss ηa of order 100 ppm.
With ri ≃ 1−Ti/2−ηi/2 and re ≃ 1−ηe/2, the arm reflectivity is18

ra = re(1−ηi)− ri
1− rire

≃ Ti−ηa
Ti+ηa

≃ 1− 2ηa
Ti

, (2.16)

e Note that the differential arm length is sometimes defined as L− = LX−LY, particularly for the
purposes of noise budgeting and data analysis. In particular, the equivalent GW strain estimate
stored in the science data is h= (LX −LY)/L, where L is the nominal average arm length.

f Why are there only five interferometric degrees of freedom if a dual-recycled Fabry–Pérot
Michelson interferometer has seven mirrors? If each mirror is constrained to lie in the xy plane,
then there are fourteen translational degrees of freedom (two for each mirror). Moving any of the
seven optics transverse to their surface normals will obviously produce no signal, so this eliminates
seven degrees of freedom. The other two non-interferometric degrees of freedom involve the simul-
taneous motion of multiple optics:

1. The four test masses move away from the beamsplitter along the beamline directions (which
has no effect on L+, L−, or LM), and the power- and signal-recycling mirrors move toward the
beamsplitter in order to null the change in LP and LS.

2. The IX and EX masses move away from the beamsplitter, and the IY and EY masses move
toward the beamsplitter. This has no effect on L+ L−, Lp, or Ls, but it lengthens LM. There-
fore, the beamsplitter and the recycling mirrors are moved in order to cancel the effect in
LM.
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where ηa = ηi+ηe. Then

Pb
P0

= g2
p =

∣∣∣∣ tp
1− rpra

∣∣∣∣2 (2.17a)

≃ Tp
(Tp/2+ηp/2+2ηa/Ti)2 , (2.17b)

where ηp is the round-trip PRC loss.g If ηp ≪ 4ηa/Ti, the PRC loss is negligible and
hence the PRC gain Pb/P0 is maximized by choosing

Tp = 4ηa/Ti, (2.18)

giving g2
p =Ti/4ηa.

We now discuss how to choose Ti and Ts. In a non-signal-recycled interferometer,
the quantum noise limit depends crucially on the choice of arm finesse. However, a
signal-recycled interferometer has a quantum noise limit that is determined jointly
by the arm finesse and the signal recycling mirror transmissivity. Therefore, the
arm finesse may be determined from any number of other criteria, and the signal
recycling mirror transmissivity may be adjusted to give the desired quantum noise
curve. Some of these finesse criteria are as follows.

• The coupling of Michelson motion into the antisymmetric port is given by
1/Ga = π/2F.27 To ensure that thermal noise from the beamsplitter suspen-
sion contributes negligibly to the differential arm length readout, we should
choose F≥ 350 for Advanced LIGO.28

• The coupling of low-frequency SRC length motion into the antisymmetric port
is proportional to the stored arm power, the arm finesse, and the dc readout
offset.27 To ensure that thermal noise from the signal recycling mirror suspen-
sion contributes negligibly to the differential arm length readout, we should
choose F≤ 625 for Advanced LIGO.28

• A lower finesse arm easier to lock, since it spends more time crossing each
fringe.

• Lower power stored in the arms leads to fewer parametric instabilities.

The Advanced LIGO arms are chosen to have a finesse of 440, corresponding to
an input test mass transmissivity of Ti = 1.4%. This means that each arm has a
natural bandwidth (cavity pole) fa = cTi/8πL= 42Hz. For the final Advanced LIGO
design, the signal recycling mirror is chosen to have a transmissivity Ts = 20%, cor-
responding to a bandwidth (differential arm pole) f− ≃ fa× (1+ rs)/(1− rs)= 750Hz,

g This follows by writing rp =√
1−Tp −ηp ≃ 1−Tp/2−ηp/2.
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where rs =
√

1−Ts. However, for lower power operation (as during the first observ-
ing run), the transmissivity is instead Ts = 37%, giving a bandwidth f− ≃ 365Hz.

The exact expressions for the common-mode (+) and differential (−) arm poles are18

2π f+ = c
2L+

ln
[ 1+ rirp
reri+ rerp(1−ηi)

]
(2.19)

2π f− = c
2L+

ln
[

1− rirs
reri− rers(1−ηi)

]
. (2.20)

Fixing Ti also fixes the value of the PRM transmissivity required to achieve maxi-
mal power buildup (that is, critical carrier coupling) in the interferometer, accord-
ing to equation 2.17b. However, choosing critical carrier coupling means that cer-
tain reflection error signals that depend on the beat of the carrier against the side-
bands will vanish (the 45 MHz reflection angular signals are one such example—
see section 2.5). Therefore, the PRM transmissivity is chosen to be Tp = 3.0%, which
slightly overcouples the carrier.

Finally, we consider how to choose the macroscopic cavity lengths. The macroscopic
lengths of the common-mode and differential arm lengths should be obvious: the
common-mode length should be as long as possible, so as to get the best strain sen-
sitivity, and the differential arm length should be zero, so that the interferometer
is balanced.

For the vertex lengths, the rough goal is to have one set of sidebands (at frequency
f1) resonant in the PRC and another (at frequency f2) resonant in the SRC, with both
sidebands nonresonant in the arms. To achieve nonresonance in the arms, the side-
band frequency must be significantly different from a multiple of c/2L+ = 37.5kHz.
Once the sideband frequencies are chosen, the macroscopic PRC and SRC lengths
(and the Schnupp asymmetry for the Michelson degree of freedom) must be chosen
to give the appropriate resonance condition. In particular, the PRC length ℓp must
be a half-integer multiple of c/2 f1, so that the carrier and the sideband are simulta-
neously resonant. If the rf modulation is applied before the input modecleaner (as
is the case in Advanced LIGO), the modecleaner length must also be a multiple of
c/2 f1. The SRC length ℓs is then chosen to be a half-integer multiple of c/2 f2, such
that the f1 sidebands do not also resonate. Finally, the Schnupp asymmetry ℓm is
chosen to critically couple the f2 sidebands into the SRC.27

Numerical values for the Advanced LIGO optical configuration are given in table 2.1,
and an overview diagram is given in figure 2.3.
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Figure 2.3: Overview of the Advanced LIGO interferometer. Optics and photodetec-
tors inside the dashed box are in vacuum and seismically isolated. Numbers next
to photodetectors indicate resonant rf detection at those frequencies. Additionally,
each resonant rf length sensor has a corresponding broadband rf detector placed in
air (for detecting frequencies from 9 to 135 MHz). Numbers next to optics indicate
transmissivities. The signal recycling mirror has a transmissivity of 37 % for O1
and O2; the design value, for use at full laser power (125 W), is 20 %.
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Arm length 3994.5 m
PRC length 55 m

Michelson length 3 m
Schnupp asymmetry 8 cm

SRC length 56 m
Input modecleaner length29 33 m

Output modecleaner length30 1.132 m

End test mass transmission 4 ppm
Input test mass transmission 1.4 %

Power recycling mirror transmission 3.0 %
Signal recycling mirror transmission 37 %

Arm loss31 100(20) ppm

Interferometer rf modulation frequency 1 9.100230 MHz
Interferometer rf modulation frequency 2 45.501150 MHz

IMC rf modulation frequency 24.078360 MHz
OMC dither frequency 4.1 kHz

Interferometer rf modulation depth 1 0.22 rad
Interferometer rf modulation depth 2 0.28 rad

IMC rf modulation depth 0.01 rad

Laser wavelength 1064 nm
Interferometer input power 19 to 21 W

Carrier power recycling gain 38 to 42 W/W
Carrier arm gain 280 W/W
Carrier visibility > 97 %

Table 2.1: Optomechanical parameters for the Advanced LIGO Hanford detector
during the first observing run. The parameters for the Livingston detector are sim-
ilar.

2.2 Laser frequency control

Overview

Reducing the laser frequency noise to an astrophysically competitive level is chal-
lenging. As said above, the interferometer’s Michelson topology should reject common-
mode noises such as laser frequency noise. However, this common-mode rejection is
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Reference cavity length32 20.3 cm
Reference cavity spot size32 290 μm

Reference cavity pole32 30 kHz
Reference cavity servo bandwidth 200 kHz

Input modecleaner round-trip length33 32.9 m
Input modecleaner spot size34 2–3 mm

Input modecleaner pole 9 kHz
Input modecleaner servo bandwidth 40 kHz

Common-mode arm length33 3994.5 m
Common-mode spot size34 5–6 cm
Common-mode cavity pole 0.63 Hz

Common-mode servo bandwidth 15 kHz

Table 2.2: Paramters for aLIGO H1 laser frequency stabilization.

finite; in practice, it is a factor of a few hundred. To make the laser noise contribute
negligibly to the interferometer’s GW strain readout, a phase noise of 10−8 rad/Hz1/2

at 100 Hz is required at the interferometer’s input.35 (The common-mode cavity
then provides a factor of ∼ 100 suppression for light circulating in the arms.) On
the other hand, the fractional phase fluctuation of a good solid-state laser such as a
1064 nm Nd:YAG NPRO has a freerunning noise of about 100 Hz/Hz1/2 at 100 Hz,36

which amounts to a phase fluctuation of 1 rad/Hz1/2.

How can we achieve eight orders of magnitude of phase noise suppression below
1 kHz? First, we need an optical reference cavity whose phase noise is at least as
good as the phase noise requirement. Such a length reference is handily furnished
by the interferometer’s common-mode arm length: within the gravitational wave
band (10 Hz to 7 kHz), the displacement noise of this degree of freedom should be
limited by radiation pressure noise, coating thermal noise, squeezed film damping,
and perhaps a few other displacement noises which nonetheless are too small to
cause the resulting laser phase noise to contaminate the differential arm length
readout.

How do we build a loop to frequency-stabilize the laser to the common-mode arm
length? We might imagine building a simple frequency-locking loop in which the
freerunning laser is directly locked to the common-mode arm length. However,
this loop would need its final unity-gain frequency to be 1 MHz or more. Such a
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Figure 2.5: Open-loop transfer function of the reference cavity stabilization servo,
with no feedback from the input modecleaner or the interferometer. The dip in the
transfer function around 26 kHz arises from the actuation crossover between the
laser PZT and the broadband EOM.

high UGF is difficult to achieve, since a 4 km cavity has a phase delay of L/c =
13μs in its PDH signal.37 Instead, Advanced LIGO (as with other initial/advanced
gravitational-wave laser interferometers) employs a multi-cavity stabilization ap-
proach: the laser is first stabilized to a table-top reference cavity using a loop with
a bandwidth of hundreds of kilohertz, then to a suspended cavity (the input mod-
ecleaner) with a bandwidth around 50 kHz, and finally to the common-mode arm
length with a bandwidth of about 20 kHz. Table 2.2 gives parameters relevant to
the laser frequency stabilization, and a diagram of the frequency (and intensity)
stabilization scheme is shown in figure 2.4.

Reference cavity stabilization

The goal of the reference cavity loop is to suppress the freerunning frequency noise
of the NPRO—about

(
100Hz/Hz1/2)× (

100Hz
/
f
)
—down to the length noise of a
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20.3 cm fused-silica reference cavity. The noise performance of this stabilization
scheme was investigated at length by Chalermsongsak et al.32

This cavity is 20.3 cm long, has a finesse of roughly 104, and is designed to be crit-
ically coupled. It is suspended inside a small vacuum chamber that sits on the
main pre-stabilized laser table. In the absence of scatter, rf amplitude modula-
tion, excess intensity noise, and so on, this design should produce a cavity fre-
quency noise that is limited by the Brownian noise of the mirror coatings—about(
6mHz/Hz1/2)× (

100Hz
/
f
)1/2.

About 20 mW of light from the main laser beam is incident on the cavity. 21 MHz
phase sidebands are applied with a resonant electro-optic modulator, and the re-
sulting beat note is sensed in reflection of the cavity. The cavity visibility is typically
80 %.

The servo loop is designed to have a UGF of more than 100 kHz (in principle, nearly
1 MHz), so that several orders of magnitude of noise suppression can be achieved in
the GW band. A typical open-loop transfer function (OLTF) of the reference cavity
stabilization servo from O1 is shown in figure 2.5.

The main features of the optical (frequency-to-power) transfer function in this loop
are the reference cavity pole at 25 kHz, and the pole of the pre-modecleaner36 at
560 kHz (since the frequency actuator is located before the PMC, but the reference
cavity is located after it). On the actuation side, we need an actuator that can ac-
tuate with minimal phase delay up to 1 MHz, with enough range to cancel the
freerunning NPRO noise in and above the GW band. Additionally, it must be able
to adjust the laser frequency by several gigahertz on thermal timescales (≲ 1Hz), in
order to compensate for long-term drifts in either the NPRO length or the reference
cavity length. To achieve all these requirements, three actuators are employed:

1. on thermal timescales, control is applied to a thermoelectric cooler attached
to the NPRO crystal, with a coefficient of order 1 GHz/V;

2. for frequencies between ≃ 1Hz and ≃ 10kHz, control is applied to a piezoelec-
tric transducer mounted to the NPRO crystal, with an actuation coefficient of
order 1 MHz/V; and

3. for frequencies above ≃ 10kHz, control is applied to a broadband electro-optic
modulator placed at the output of the laser resonator, with an actuation co-
efficient of order 10 mrad/V.

Finally, we note here that the light used to illuminate the reference cavity is frequency-
modulated at 79 MHz with an acousto-optic modulator (AOM) placed in a double-
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Figure 2.6: Open-loop transfer function (model and measurement) of the input mod-
ecleaner frequency locking loop, with no feedback from the interferometer.

pass configuration.h This provides a mechanism for changing the main laser fre-
quency while keeping the light in the reference cavity on resonance: within the
bandwidth of the reference cavity servo, adjusting the rf modulation frequency of
the AOM produces an offset in the PDH error signal, which the servo cancels by
adjusting the frequency of the main laser.

Input modecleaner stabilization

The input modecleaner consists of three mirrors suspended in vacuum, forming a
ring cavity with a 32.9 m round-trip length. The input and output coupling mirrors
each have a 0.6 % transmissivity, and the third mirror is a high reflector. The cavity
pole is fIMC = 8.8kHz.

The resonance condition between the main laser and the input modecleaner is
sensed with PDH reflection locking, using 24 MHz sidebands with a modulation

h That is, the beam is sent through the AOM, then the first-order diffracted beam is retrore-
flected (with a 90 ° polarization rotation) back into the AOM, producing light modulated at twice
the AOM’s rf modulation frequency. This cancels pointing fluctuations in the first-order modulated
beam induced, for example, by variations in the rf modulation frequency.38
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index of Γ ≃ 0.01rad. With 20 W of laser power incident on the modecleaner, the
power on the PDH photodiode is PIMC = 50mW when the modecleaner is unlocked.
If the modecleaner is critically coupled (carrier visibility v = 1), the reflected light
on the photodiode when locked is entirely from the PDH sidebands, and this sets
the shot-noise-limited performance of the loop at

√
3(hc/λ0)PIMCΓ2/

(
2PIMCΓ/ fIMC

)=(
fIMC/2

)√
3(hc/λ0)/PIMC ≃ 15μHz/Hz1/2. In practice, the modecleaner is not criti-

cally coupled (v< 1) and the reflected light on the photodiode (when locked) is dom-
inated by a few milliwatts of carrier light, giving a shot-noise limited performance√

2(hc/λ0)(1−v)PIMC/
(
2PIMC/ fIMC

)= (
fIMC/2Γ

)√
3(hc/λ0)(1−v)/PIMC ≃ 0.4mHz/Hz1/2.

Resonance is maintained by feeding the servo control signal to the AOM in front
of the reference cavity, yielding a loop with roughly 50 kHz bandwidth (figure 2.6).
When the interferometer is not locked, the low frequency portion of the AOM control
signal is relieved by adjusting the modecleaner length, with a crossover frequency
of a few tens of hertz. When the interferometer is locked, the modecleaner length
is instead adjusted using the PDH error signal from the main interferometer (ex-
plained below).

Common-mode arm length stabilization

Frequency stabilization of the laser to the common-mode arm length is again achieved
with PDH locking, using the 9.1 MHz signal in reflection of the power recycling mir-
ror.

The optomechanical transfer function from common-mode arm length fluctuation
to reflected demodulated power is18

δP(9I)
refl = 4ℵ1 g2

p ra
′ rsb

(2π/c)(ν0δL++L+δν)
1+ i f

/
f+

, (2.21)

where ℵ1 = 2J0(Γ9)J1(Γ9)P0, g2
p is the power recycling gain, r′a is the derivative of

the arm reflectivity for the carrier, rsb is the arm reflectivity for the sidebands,
and f+ ≃ 0.6Hz is the common-mode pole (defined in equations 2.19). Based on
budgeting of the test masses and the laser, we assume that in the GW band the
length fluctuations δL+ are negligible compared to the frequency fluctuations δν.
Additionally, δP(9I)

refl is sensitive to fluctuations in the PRC length δLp, albeit to a
lesser extent than common-mode fluctuations.

On this basis, δP(9I)
refl is used as an error signal for frequency-stabilizing the laser to

the common-mode arm length. Feedback is achieved by adjusting the modecleaner
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Figure 2.7: Open-loop transfer function (model and measurement) of the laser fre-
quency locking to the interferometer common-mode arm length.

length, which is equivalent to adding an error point offset to the modecleaner fre-
quency servo loop. Because this actuator is mechanical, it is not feasible to achieve
a multi-kilohertz actuator this way. Therefore, in addition to the mechanical mode-
cleaner length adjustment, the common-mode error signal is also summed directly
into the modecleaner’s electronic error point (another example of “additive offset”).
The open-loop transfer function of the common-mode loop is shown in figure 2.7,
and the crossover between the mechanical feedback and the additive offset is shown
in figure 2.8. This electronic additive offset scheme causes the modecleaner to be
slightly detuned from resonance for frequencies above the additive offset crossover,
but the bandwidth of the modecleaner is wide enough ( fIMC = 8.8kHz) that this
detuning is negligible.

The final piece of the common-mode arm length stabilization scheme is the tidal
feedback. The above servo topology uses the common-mode error signal to adjust
the modecleaner length, and the resulting modecleaner error signal is used to ad-
just the rf drive frequency of the reference cavity AOM. As the common-mode arm
length drifts relative to the reference cavity length, a low-frequency control signal
accumulates on the VCO driving the AOM. This VCO has a control range of ±1MHz,
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Figure 2.8: Crossover (model and measurement) from the laser frequency feedback
to the modecleaner length feedback.

which means that the common-mode arm length can drift by at most ±13μm before
the VCO saturates. On the other hand, daily earth tides can produce several hun-
dreds of microns of displacement over a 4 km basline. To keep the interferometer
locked for many hours, tidal compensation is required. To do this, the VCO control
signal is offloaded to the upper-intermediate end masses, which each have a dc lon-
gitudinal range of 13 μm.39 The bandwidth of this offloading is of order 1 Hz. The
low-frequency control that accumulates on each upper-intermediate mass is then
offloaded to the hydraulic isolator supporting the suspension,40 with a bandwidth
of about 10 mHz. The range of this actuator is about 1 mm.

Block diagram

A block diagram of the laser frequency stabilization system is given in figure 2.9.
The open-loop transfer function of the common-mode arm length stabilization loop
is

H = GAKP
(
F/K +M

)
1−GAK

, (2.22)
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Figure 2.9: Block diagram of the Advanced LIGO frequency stabilization system.
G( f ) refers to the main laser and the reference cavity stabilization. A( f ) refers to
the AOM and its VCO, and servo electronics for feeding the input modecleaner error
signal to the VCO. K( f ) refers to the modecleaner and its PDH photodiode. P( f )

refers to the interferometer, its PDH photodiode, and the servo electronics common
to the fast and slow feedback paths. M( f ) refers to the slow feedback electronics.
F( f ) refers to the fast feedback electronics. T( f ) refers to the tidal feedback path.

where G =G/(1−G) is the closed-loop transfer function of the reference cavity stabi-
lization, and we have neglected the tidal offloading T. Since the UGF of G is above
100 kHz, we have G ≃−1 below a few tens of kilohertz. Note that since

J ≡GAK (2.23)

is the open-loop transfer function of the input modecleaner length loop in the ab-
sence of any interferometer feedback, we can write H as

H = JP
(
F/K +M

)
1− J

= JP
(
F/K +M

)
, (2.24)

with J = J/(1− J).

The crossover transfer function from the modecleaner length control to the additive
offset control is given by

X = GAKMP

1−GAK
(
1+FP/K

) = JMP
1− J

(
1+FP/K

) . (2.25)

2.3 Differential arm length control
Differential arm length is controlled by sensing the fluctuations in the carrier light
at the inteferometer’s dark port and feeding the signal back to one of the end test
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masses. Since dark port fluctuations are also used to estimate the strain h(t) in-
cident on the detector, the sensing and control of this degree of freedom must be
exceptionally low noise, and the transfer function from differential test mass force
to dark port power must be well characterized. Table 2.3 lists parameters relevant
to the differential arm length control.

Optomechanical response

The inteferometer’s optomechanical response determines how differential test mass
force F (for example, from a GW strain h) produces power fluctuation P at the
dark port. While this quantity is fundamentally a force-to-power transfer function
P(ω)/F(ω), we often cast it instead as a displacement-to-power transfer function
P(ω)/L−(ω), where L− = F/(−Mω2) is the differential arm length displacement for
free masses each with mass M. In the GW band, deviation from the free-mass as-
sumption can arise if the interferometer is operated with a microscopic phase offset
in the SRC length, as such detuned configurations induce an optical spring.41

While the initial LIGO detectors used PDH sensing to read out the dark port signal,
the enhanced and advanced detectors instead use a self-homodyne technique called
“dc readout”.42 The differential arm length is held with an intentional dc offset (of
order 10 pm), so that carrier light from the arms appears at the dark port. When
the differential arm length fluctuates (for example, from a GW), it creates carrier
audio sidebands that also appear at the dark port and modulate the amplitude
of the dark port field. For pure signal extraction, the transfer function from free
differential test mass displacement to antisymmetric port fluctuation is18

δPas( f )= 2ℵdc g2
p g2

s ra
′ 2

(
2π
λ0

)2 δL(0)− δL−( f )
1+ i f

/
f−

, (2.26)

where δL(0)− is the microscopic differential length offset, f− is the optical pole given
by (2.20), and

ℵdc = 4J0(Γ9)2J0(Γ45)2Pin. (2.27)

In any case other than pure signal extraction or pure signal recycling, the optome-
chanical response involves two additional quantities.

The first parameter is the homodyne angle. Homodyne detection techniques such
as dc readout work by beating a signal-modulated field

p
2E0[1+α(t)]cos[ω0t+ϕ(t)]

against an unmodulated local oscillator field
p

2E0 cos[ω0t+ ζ], where ζ is a static
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phase offset known as the homodyne angle. For certain homodyne detection topolo-
gies (for example, a Mach–Zender interferometer), the homodyne angle may be
adjusted by varying the relative path length traveled between the local oscillator
field and the signal field (for example, using a piezoelectrically actuated mirror).
In ideal dc readout, however, both the local oscillator field and the signal field co-
propagate inside the interferometer, meaning that the homodyne angle is fixed at
ζ=π/2= 90°. The addition of a contrast defect produces carrier light in the quadra-
ture orthogonal to the local oscillator light, causing a rotation of the homodyne
angle. The condition ζ= 90° is known to have been satisfied to better than 3 ° dur-
ing O1, based on the total amount of contrast defect light exiting the dark port with
no dc readout light.

The second parameter is the SRC detuning. The static, one-way microscopic SRC de-
tuning phase is ϕ(0)

s = (2π/λ0)δL(0)
s . ϕ(0)

s = 0 corresponds to pure signal recycling, and
ϕ(0)

s =π/2 corresponds to pure signal extraction. Other detuning phases result in an
optical spring that reduces the displacement-to-power transfer function below the
spring frequency; a fuller discussion of this effect is given in chapter 5. Nominally,
Advanced LIGO is configured to operate with pure signal extraction for the first few
observing runs. However, during O1, H1 operated with about 0.5 ° of unintentional
positive (antispring) detuning, likely due to an offset in the angular control of the
signal recycling mirror. This was observed as a loss of gain in the optomechanical
response around 10 Hz and below, as measured by a calibrated differential arm
length radiation pressure actuator (the photon calibrator). The antispring effect
was subsequently confirmed by measuring the optomechanical response as a func-
tion of (intentional) microscopic SRC length detuning (figure 2.10).

Readout

The laser light exiting the antisymmetric port contains the dc readout carrier light,
the audio-band signal field, the rf control sidebands (mostly the 45.5 MHz side-
bands), and carrier light that is not mode-matched into the arm cavities (the “con-
trast defect” light).

The goal of dc readout is to sense the audio-band beat note between the dc car-
rier light and the carrier audio sidebands (rather than the rf beatnote between
the 45.5 MHz light and the carrier audio sidebands, which is the idea of PDH). To
do this, an output modecleaner is used to separate the carrier light from the rf
sideband light; the carrier light (and its audio sidebands) are then directed onto
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Figure 2.10: Optomechanical response of the interferometer’s differential arm
length, shown for several different SRC detunings at 10 W of input power. Solid
lines show estimated theory curves. Fundamentally, this transfer function is a
force-to-power transfer function P( f )/F( f ), but here (as is customary) the force is
referred to the displacement x=−F/Mω2 of a free mass.

two InGaAs photodiodes, each with a 3.0 mm diameter. Each photodiode is reverse-
biased with +12 V.49 In vacuum, the photocurrent from each photodiode is shunted
across a resistor, and the resulting voltage is read out with an LT1128 op-amp. The
shunt resistor is selectable, and may be either 100 Ω or 400 Ω.50 The summed pho-
tocurrent of these two photodiodes is the differential arm length error signal. Two
photodiodes (rather than one) allow for a greater amount of dc offset light to be
used, and also provide an important diagnostic tool (the “null stream”), formed by
differencing the two photocurrents.

The output modecleaner is kept resonant by adjusting one of its two piezoelectri-
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Photodiode current (total) 20 mA dc
Photodiode quantum efficiency 0.88

Photodiode responsivity 0.75 A/W
Optical gain43 4.2(2) mW/pm
Optical pole43 340(20) Hz

Microscopic arm detuning (Lx−L y) 12.5(4) pm
Microscopic RSE detuning (one-way)44 1.5(6) nm

Homodyne angle45 90(3) °
Time delayi;46 427 μs

Freerunning noise47 0.6 μm rms
Residual noise47 60 fm rms

Actuator EY
Loop bandwidth 45 Hz

Relief bandwidth to penultimate mass 20 Hz
Relief bandwidth to antipenultimate mass 2 Hz

Relief bandwidth to hydraulic actuator 11 mHz
iIncludes optical time delay (L/c= 13μs),37 digital delays,48 and the delay from

uncompensated high-frequency transfer function features.46

Table 2.3: Parameters for differential arm length sensing and control for aLIGO
H1 during the first observing run. The parameters for L1 are similar, although no
RSE detuning was observed.

cally actuated mirrors. The resonance condition is sensed by applying a 4.1 kHz
dither to this mirror and demodulating the resulting line in the GW signal.

Control

The differential arm length control signal is fed back to one test mass only. This
also alters the interferometer’s common-mode arm length, but the frequency sta-
bilization servo strongly suppresses these fluctuations. The UGF of the differential
arm length loop is about 50 Hz. The OLTF is shown in figure 2.11. Three out of
the four stages of the suspension are used to displace the test mass; the crossover
transfer functions for this control hierarchy are shown in figure 2.12.
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Figure 2.12: Crossover transfer functions for the penultimate and upper-
intermediate actuator offloading for the differential arm length control.

Since dc readout is intrinsically quadratic, differential arm length motion at a fre-
quency f can produce upconverted fluctuation in the readout at a frequency 2 f . To
keep this upconverted noise well below the true differential arm length noise, the al-
lowed residual differential arm length fluctuation is set at 1 fm.35 During the first
observing run, the residual fluctuation was instead a few tens of femtometers.47

However, dc readout upconversion could not be shown to limit the interferometer
noise performance in the GW band.52

2.4 Noise from vertex length controls
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PRC Michelson SRC

Photodiode power 17 mW dc 17 mW dc 17 mW dc
Optical gain 3.6 W/μm 0.60 W/μm 0.13 W/μm

Freerunning noise 0.9 μm rms 0.4 μm rms 0.1 μm rms
Residual noise 1.0 pm rms 5 pm rms 20 pm rms

Actuator PRM Beamsplitter SRM
Loop bandwidth 65 Hz 10 Hz 25 Hz

Upper mass relief bandwidth 60 mHz 30 mHz 60 mHz

Table 2.4: Parameters for vertex length sensing and control for aLIGO H1 during
the first observing run. The parameters for L1 are similar.
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Figure 2.13: Sensing matrix of the vertex degrees of freedom. The cross-coupling of
the beamsplitter from a Q (pure Michelson) signal into I (PRC or SRC) signal can be
seen in the 45 MHz channel. In the 9 MHz measurement, the PRC and beamsplitter
elements are on top of each other.

Optical response and readout

Per watt of incident photodiode power, the vertex degrees of freedom are best
sensed at the power-recycling pick-off port (POP), rather than the reflected port or
the antisymmetric port. Using POP to sense the vertex lengths requires very strong
suppression of common-mode fluctuations, as this signal shows up more strongly
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in POP9I and POP45I than any of the vertex lengths. Once this requirement is sat-
isfied, the next strongest signal is the PRC length, which shows up most strongly
in POP9I. The Michelson length shows up most strongly in POP45Q. Finally, the
SRC length shows up most strongly in POP45I. However, the PRC length also shows
up in POP45I, with greater strength than the SRC length.18 Therefore, the error
signal for the SRC length control uses a combination of POP45I and POP9I which
is insensitive to PRC length fluctuation. The sensing matrix of the POP sensors is
shown in the radar plots in figure 2.13.

There remains the question of how to choose the UGFs of these three loops. First,
PRC length fluctuations show up more strongly than SRC length fluctuations in
both POP9 and POP45; therefore, the PRC length UGF should be higher than the
SRC length UGF. Second, if the beamsplitter is used to control the Michelson length,
there will be cross-coupling of Michelson actuation into power- and signal-recycling
lengths; therefore, the UGF of the Michelson loop should be lower than either the
PRC and SRC loops. These two considerations set the Michelson loop as the low-
est UGF loop, and the PRC loop as the highest UGF loop. Table 2.4 gives relevant
parameters for these loops.

The residual rms requirement for the vertex length loops is set at 1 pm, based on
the linearity limit of the photodetector.35 During the first observing run, the actual
residual rms of the loops was less than 20 pm (figures 3.8, 3.9, and 3.10).

The OLTFs of the vertex loops are shown in figure 2.14.

Cross-coupling into differential arm length

Optomechanical cross-coupling

The differential arm length error signal e− has contributions not only from freerun-
ning displacement noise (L−) and photodiode sensing noise (n−), but also from resid-
ual noises from other degrees of freedom—particularly the Michelson length and
the SRC length.

The Michelson coupling into the differential arm length readout is a straightfor-
ward phase coupling: Michelson motion produces differential phase sidebands, which
are converted to amplitude sidebands at the antisymmetric port in the same man-
ner as differential phase sidebands from the arms. Because the length-to-phase
conversion for differential arm length fluctuations is enhanced by g2

a = 2F/π≃ 280
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Figure 2.15: Illustration of optomechanical coupling and feedforward subtraction,
here for the SRC length loop coupling into differential arm length. Residual SRC
length fluctuation rs, which comprises both suppressed displacement noise xs/(1−
Hs) and impressed sensing noise Hsns/(1−Hs), couples into the differential arm
length readout via some optomechanical coupling Ξ. To reduce the influence of
this coupling on the differential arm length readout, the SRC length control signal
ks is summed (either mechanically, digitally, or analogly) into the differential arm
length error point via some feedforward filter F. In general, it is not possible to
construct a filter F which simultaneously cancels the displacement and sensing
noise contributions to rs.

relative to the length-to-phase conversion for Michelson fluctuations, the expected
coupling of Michelson motion into differential arm length readout (expressed as an
equivalent differential arm length motion) is27

Ξm = 1
g2

a
= π

2F
≃ 3.6×10−3 m/m. (2.28)

The measured coupling is shown in figure 2.17.



37

101 102 103
10−6

10−5

10−4

10−3

M
ag

ni
tu
de

[m
/m

]

Without feedforward

101 102 103

Frequency [Hz]

−180◦
−135◦
−90◦
−45◦

0◦
45◦
90◦

135◦
180◦

Ph
as

e

Figure 2.16: Coupling of power recycling mirror motion into differential arm length
readout.

The signal recycling length coupling into the differential arm length readout has
several parts. The first is a 1/ f 2 coupling mediated by radiation pressure: SRC
phase sidebands propagate into the arms and produce differential intensity fluc-
tuations, which are converted to differential length fluctuations via radiation pres-
sure.18,27 The second is a high-frequency coupling rising like f 2; it appears if the
SRC is microscopically detuned from pure resonant sideband extraction.27 These
two effects together imply a coupling of SRC motion into differential arm length
motion:27

Ξs = 0.012m/m× Pa
750kW × δL(0)−

10pm × F

450
×

(
10Hz

f

)2

+3×10−5 m/m× ϕ(0)
s

10° ×
δL(0)−
10pm × F

450
×

(
f

100Hz

)2
. (2.29)
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Figure 2.17: Coupling of beamsplitter motion into differential arm length readout.

Finally, another class of high-frequency couplings, generally rising like f or faster,
can arise from nonidealities such as arm imbalances and angular control offsets,53

but these effects are not easily quantified analytically. The measured SRC length
coupling into the differential arm length readout is shown in figure 2.18.

Additionally, the measured PRC length coupling into the differential arm length
readout is shown in figure 2.16.

Feedforward subtraction

The cross-couplings described above seem to set a hard limit on the allowed residual
fluctuation of the vertex degrees of freedom, based only on the desired differential
arm length sensitivity and the magnitude of the cross-coupling. However, because
the residual vertex fluctuations are witnessed by other sensors, it is possible to sub-
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Figure 2.18: Coupling of signal recycling mirror motion into differential arm length
readout. Note in this case that because the bandwidth of the SRC loop is low, the
application of feedforward subtraction does not worsen the displacement noise cou-
pling into the differential arm length readout.

tract off these cross-coupled signals from the differential arm length.54 This may
be done after the fact—using stored sensor data—or it may be done mechanically
in real time by feeding the expected cross-coupled signals forward onto the test
masses. This latter strategy was employed for the first observing run.

Figure 2.15 shows an implementation of feedforward subtraction of SRC length into
differential arm length. The residual SRC length noise is

rs = xs+Ksns
1−Hs

, (2.30)

where xs is the loop’s freerunning displacement noise, and ns is the loop’s sensing
noise. The term Ksns/(1−Hs) is therefore the “control noise” impressed onto the
SRC length by the sensor.
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An optomechanical coupling Ξ( f ) produces an apparent noise Ξ×rs in the differen-
tial arm length readout. To cancel this coupling, we can design a filter F( f ), apply it
to the SRC length control signal ks, and apply the product F×ks to the differential
arm length actuation to cancel Ξ× rs. However, since

ks = Psxs+Ksns
1−Hs

̸= rs, (2.31)

it is in general not possible to design a filter F which simultaneously cancels the
couplings from both xs and ns. If we wish to cancel the coupling from xs, we should
choose F =Ξ/Ps. On the other hand, if we wish to cancel the coupling from ns, we
should choose F =Ξ. Note that feedforward that is tuned to cancel the coupling of
xs may worsen the coupling of ns, and vice versa.

For the first observing run, feedforward was employed for the Michelson and SRC
lengths by actuating on the penultimate stages of the input test masses. The feed-
forward was tuned so as to cancel sensing noise, since this noise was expected to
dominate over the intrinsic cavity noise. However, because the Michelson and SRC
loop bandwidths are relatively low, the feedforward filters are able to cancel sens-
ing noise without appreciably worsening the displacement noise couplings.

2.5 Angular control
This section presents an overview of the angular sensing and control for the Han-
ford interferometer. Table 2.5 enumerates the angular loops and gives their band-
widths.

Readout techniques

Two general classes of interferometric angular readout are employed in Advanced
LIGO: wavefront sensing, which is an extension of the PDH technique, and audio-
band pointing.

Both types of loop operate on the principle that misalignment of a TEM00 beam
relative to an optical cavity (and vice versa) generates TEM01 light. Beat notes
involving TEM01 light against TEM00 light are sensed using quadrant photodetec-
tors, with the photocurrents differenced as appropriate to generate either pitch or
yaw signals. In the case of wavefront sensing, the signal of interest is generated
from the beat of TEM00 audio-band light against TEM00 rf sideband light, or vice
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Loop Sensor
Bandwidth [Hz]

Pitch Yaw

Diff. hard AS 45 MHz 2.1 ♢ 3.6 ♢

Comm. hard Refl. 9 MHz <0.1 <0.1

Diff. soft Arm trans. dc <0.05 <0.05

Comm. soft Arm trans. dc <0.05 <0.05

PRM POP dc 0.03 0.2

PR2 — — —
PR3 Refl. 9+45 MHz 0.12 0.08

Beamsplitter AS 36 MHz 2 ♢ 3 ♢

SRM AS 36 MHz 0.13 0.4

SR2 AS dc 1.2 ♢ 2 ♢

SR3 Shadow sensor ∼0.03 —
ITM Optical lever —

Input pointing Refl. 9 MHz 0.10 0.06

Table 2.5: Sensors for and bandwidths of the angular control loops for H1. Values
marked by ♢ were determined by OLTF measurement, and refer to the highest UGF
where applicable. All others were determined by step response. No yaw control was
implemented for SR3, and no control was implemented for PR2.

versa.j;55,56 In the case of audio-band pointing, the signal of interest is generated
by TEM01 audio sideband light against TEM00 carrier light, or vice versa.

Beam misalignment may take the form of a tilt, a translation, or both, and hence
fully sensing the misalignment requires at least two quadrant detectors, separated
by some amount of Gouy phase (preferably 90°).

Arm loops

Optomechanical plants

The eight arm loops constitute the most phenomenologically rich angular control
loops. The power stored in the arms generates not only radiation pressure that
affects the interferometer’s length responses, but also radiation torques that affect

j That is, TEM01 rf light against TEM00 carrier light.
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hard

soft

Figure 2.19: Diagram of hard and soft cavity optic motions. The hard mode is so
named because the radiation torque enhances the mechanical stiffness of the optic
suspensions, while the soft mode diminishes it.

the interferometer’s angular responses. The effect of these radiation torques was
first analyzed by Sidles and Sigg,57 and we summarize the relevant points here.

In the absence of radiation pressure, the transfer function taking test mass torque
to test mass angle is determined only by the mechanics of the mass and its suspen-
sion; for Advanced LIGO, the relevant torsional constants are κp = 9.7N m/rad and
κy = 9.4N m/rad.58 The corresponding angular frequencies are fp,y = (1/2π)

√
κp,y/Ip,y.

In the presence of radiation pressure, the four test masses are coupled together,
and the eigenmodes of the coupled system involve simultaneous motions of the
test masses together. The eigenvalues of the system give two optical torsional con-
stants:58

κs,h = LP
c

× (ge+ gi)±
√

(ge− gi)2 +4
gegi−1

, (2.32)

where gi,e = 1−L/Ri,e is the g factor of each test mass. These torsional constants
are added to the mechanical torsional constant of the suspension in order to give
the overall torsional constant of the mode. The hard and soft modes of a two-mirror
cavity are illustrated in figure 2.19.

An important consequence of this particular eigenvalue problem is that one of these
eigenvalues (κh) is always positive, and the other is always negative (κs). There-
fore, one set of modes has a torsional constant κ= κp,y +κh that is stiffer than the
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Figure 2.20: Open-loop transfer functions for angular control of the differential
hard mode. The multiple UGFs arise from imbalances between the test mass actu-
ators, overly aggressive test-mass bounce-mode cutoff filters, and insufficient boost-
ing in the digital compensator. These issues were resolved after O1.

mechanical torsion (the “hard modes”), and the other set has a torsional constant
κ= κp,y+κs that is softer than the mechanical torsion (the “soft modes”). If |κs| > κp,y,
the soft modes become unstable, and require active control with a bandwidth suf-
ficient to stabilize the unstable poles. In Advanced LIGO, the test mass g factors
(gi = −0.78 and ge = −1.06) are chosen in part to make |κs| small: with 800 kW of
power in each arm, the primary hard mode resonance frequency is expected to be
around 3 Hz, and the soft mode resonance is expected to be around −0.3 Hz.
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Sensing and actuation

Based on simulations by Barsotti et al.58 and some experimental trial and error,
the following sensors were chosen for the arm modes:

• the 45 MHz antisymmetric port WFSs are used to sense the differential hard
mode (OLTF shown in figure 2.20);

• the 9 MHz WFSs in reflection are used to sense the common hard mode; and
• the end station dc QPDs are used to sense the common and differential soft

modes.

For the WFS loops, the general procedure for producing a suitable error signal is
given in the following.

1. Ensure that a suitable centering loop is closed around each WFS.
2. Drive a line in the relevant DOF. Verify that the line appears in every quad-

rant of the relevant WFSs.
3. Rotate the (digital) demodulation phases so that the signal shows up in the

same quadrature for each quadrant. Verify that the line appears with roughly
the same amplitude in each quadrant.

4. Choose a linear combination of the WFSs that gives a usable error signal. “Us-
able” here is somewhat ill-defined, but we can identify some desirable char-
acteristics.

a) The error signal crosses zero in the appropriate place; for example, in a
place where some power buildup is maximized. If each individual WFS
signal has an undesired dc offset, an appropriate combination of two
signals may sometimes be found with a zero crossing in the right place.

b) The error signal is relatively insensitive to other DOF(s). If each individ-
ual WFS senses some DOF much more strongly than the DOF of inter-
est, an appropriate combination of two signals may sometimes be found
which is sensitive to the DOF of interest but insensitive to the other DOF.
Rejection of other DOFs in the error signal may be achieved after the fact
by diagonalizing the interferometer’s angular sensing matrix.

For the hard loops, the error signals were initially chosen to give good zero cross-
ings (no suppression of other DOFs was considered). For the differential hard loops,
a relatively high bandwidth (more than 3 Hz) is required to keep the antisymmet-
ric port power stable enough to keep the interferometer locked with zero common-
mode arm length offset. The common-mode hard loops may also be operated at
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similarly high bandwidths. However, during O1, the coupling of the sensor noise
from the 9 MHz reflection WFSs into the differential arm length readout was so
high that these loops were operated with lower bandwidth.

For the pointing loops, the procedure signal selection procedure is similar, although
no phasing is required. For the soft loops, the QPD combination at each end station
was chosen to minimize the sensitivity of the signal to motion of the suspension
which supports the QPDs.59 Importantly, this does not minimize the sensitivity of
the resulting error signals to hard motion, and indeed hard motion is seen with
good SNR in the soft loop error signals. Therefore, the stable operation of these
loops relies on gain hierarchy, with the soft loop UGFs kept well below the hard
loop UGFs. The positions of the end station spots were chosen to maximize the
interferometer recycling gain.

For all the arm loops, the penultimate test masses are used as actuators. Impor-
tantly, in order for the loops to be properly coupled into the hard/soft basis, the
test mass actuation transfer functions must be made uniform; this requires that
top-stage local damping is uniform, and that the penultimate stage actuators are
balanced. The relatively sharp zeros observed in 2.20 are indicative of actuator
mismatch between test masses.

In addition to the interferometric loops listed here, local pitch damping (via optical
levers) was also applied to the input test masses during O1 in order to avoid the
common-mode soft instability (see below). This also contributes to the actuator
mismatch for the hard and soft loops.

Symmetric port loops

On the symmetric port side, six degrees of freedom are controlled.

1. The difference of the 9 MHz reflection WFSs is used to sense the input pointing
of the beam into the interferometer. The actuator is the final steering mirror
into the interferometer (IM4).

2. During O1, a combination of the 45 MHz reflection WFSs is used as an error
signal to control the angle of the large PRC folding mirror (PR3). The 9 MHz
WFS were also used to subtract common-mode hard motion from the PR3 error
signal.

3. The pointing of the PRC light onto one of the PRC QPDs is used to control the
angle of the power recycling mirror.
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Figure 2.21: Open-loop transfer functions for angular control of the beamsplitter.

For both H1 and L1, the 45 MHz reflection error signal suffered from the problem
that the optical gain would flip sign as the interferometer’s recycling gain crossed
a certain threshold (somewhere in the region from 30 to 33 W/W). For H1, this
so-called “Arai singularity” was avoided in practice by adjusting the green initial
alignment references so that the interferometer would have a high recycling gain
(more than 36 W/W) as soon as arm resonance was achieved. To get rid of the Arai
singularity for good, both L1 and H1 installed an in-air WFS to monitor the PRC
light, with L1 using the 36 MHz signal and H1 using the 45 MHz signal.

Beamsplitter and antisymmetric port loops

Four degrees of freedom are controlled:

1. A combination of 36 MHz antisymmetric port wavefront sensors are used to
control the beamsplitter angles (OLTFs shown in figure 2.21).
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Figure 2.22: Open-loop transfer functions for angular control of the signal recycling
cavity pointing.

2. A combination of 36 MHz antisymmetric port wavefront sensors are used to
control the angles of the signal recycling mirror.

3. A QPD at the output of the SRC is used to control the angles of the small SRC
folding mirror (SR2) (OLTFs shown in figure 2.22).

4. A shadow sensor is used to control the pitch of the large SRC folding mirror
(SR3).

The antisymmetric port 36 MHz wavefront sensors presented little difficulty for
L1, but were extremely problematic for H1, and their (mis)behavior is part of the
constellation of issues surrounding the Hanford signal recycling cavity. Phasing
the 36 MHz sensors was difficult: certain quadrants showed little to no response to
optical signals, or sometimes showed different responses depending on whether an
optic was driven in pitch or yaw. Loops could still be closed around the beamsplitter
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and SRM angles, but the error signals at 2 W were unusable at 25 W. For O1, stable
25 W operation was achieved by choosing a combination of 36 MHz signals that kept
the rf sideband powers high in the recycling cavities.

Input modecleaner

Angular control of the input modecleaner is achieved with a combination of rf wave-
front sensing and dc pointing sensing. Two wavefront sensors are placed in reflec-
tion of the modecleaner, and these are used to control (relative to the input beam)
the angle of the high reflector and the common-mode angle of the input/output cou-
pling mirrors. The third degree of freedom of the mirrors (the differential angle of
the input and output coupling mirrors) is left uncontrolled. Finally, the pointing of
the beam on the high reflector is controlled by closing a loop around a dc quadrant
photodetector placed in transmission of the high reflector.

Output modecleaner

To keep the output modecleaner aligned with respect to the antisymmetric port
beam, four dither lines are applied to the first and third (out of three) antisymmetric-
port steering mirrors that steer the beam from the output Faraday isolator into the
output modecleaner. These lines are demodulated in the GW signal and used as er-
ror signals to drive the third steering mirror and the modecleaner suspension.60,61

For future observing runs, this dither alignment scheme may be replaced by a test
mass drumhead sensing scheme, as was employed in Enhanced LIGO.26

Cross-coupling into differential arm length

Several effects cause angular control signals to produce differential arm length
motion via simple linear coupling. First, if the beam spot is miscentered on the
test mass by an amount δ, angular motion θ of the mass will produce a length
coupling θδ. Second, imbalance of the suspension actuators can convert an angular
drive signal into a partially longitudinal drive signal. Finally, when driving the
penultimate stage in pitch, there is an intrinsic mechanical coupling to test mass
length.

To reduce this linear angular coupling, frequency-independent feedforward is em-
ployed on each test mass. A line in pitch or yaw is injected into the relevant penul-
timate stage angular control signal, and this line then appears in the differential
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arm length readout because of the linear angular cross-coupling. The angular con-
trol signal is then summed into the penultimate stage longitudinal control signal,
with some coefficient that is optimized to minimize the appearance of the line in
the differential arm length.

More generally, the differential arm length noise due to angular fluctuations is
the frequency-domain convolution of the motion of the interferometer mirrors.58,62

This means that the angle-to-length mechanism is bilinear, and therefore cannot
be subtracted off with linear feedforward. When the dominant angular noise con-
tribution to the differential arm length is no longer linear, the best strategy may
be to reduce the mirror motion, for example, by improving the seismic isolation of
the mirrors or decreasing the angle-referred shot noise of the sensors.

2.6 Suspension control

Test mass suspensions

Each test mass suspension comprises two quadruple suspensions, mounted from
an active seismic isolation platform40 inside the vacuum system. One of these sus-
pensions contains the test mass as its final payload; it serves to isolate the test
mass from external vibrations, with a transfer function magnitude of

(
10−15 m/m

)×(
100Hz

/
f
)8 in the GW band. The upper three masses are fitted with permanent

magnets so that they may be magnetically actuated. The other suspension contains
masses fitted with sensors and actuators for controlling the main suspension. On
the upper three masses, the actuators are solenoids that act on the permanent
magnets of the main suspension masses, and the sensors are shadow sensors. On
the bottom mass, the actuator comprises a set of electrodes which actuate capaci-
tively on the test mass itself. The choice of electrostatic—rather than magnetic—
actuation is driven by the desire to avoid direct coupling of ambient magnetic fields
to the test mass, and to avoid spoiling the Q of the test mass by attaching magnets
onto it. The angle of each test mass can be sensed with an optical lever. A diagram
of the test mass and the associated suspensions is shown in figure 2.23.

Test mass and electrostatic actuator

To actuate on the test mass, the outer annulus of the face of the glass reaction
mass is patterned with five interdigitated gold electrodes. Four of these electrodes
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Figure 2.23: Diagram of the Advanced LIGO quadruple suspension. The test mass
and penultimate mass are made from fused silica, and are attached with four fused
silica fibers. The reaction mass is also made from fused silica. The remainder of the
masses and wires are steel.

are each confined to a specific quadrant of the reaction mass; the fifth extends
throughout the patterned area. Applying differential voltage between any of these
electrodes produces a fringing field E inside the test mass, which induces a polar-
ization field P= ε0χE, and hence a force F=∇[∫

d3r P ·E]
.

Since F is proportional to E2, this actuator is intrinsically nonlinear. To achieve
linear actuation, a fixed bias voltage Vb is applied to the fifth, extended electrode.
Then applying a signal voltage v to any of the other electrodes will produce a corre-
sponding force proportional to (Vb+ v)2 ≃V 2

b +2Vbv. For longitudinal actuation on
the end test masses, the proportionality constant is α≃ 1.5×10−10 N/V2. This is set
by the geometry of the fringing field with respect to the test mass, as well as the
presence of charge on the mass.16 For the input test masses, the proportionality
constant is weaker, because the gap between the reaction mass and the test mass
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is larger for the input suspensions (20 mm versus 5 mm) in order to reduce squeeze
film damping.

During O1, the end Y electrostatic actuator was used to control the differential
arm length, with 380 V of bias, and a signal range of ±20V on each quadrant. The
electrostatic actuation strength is affected by the presence of charge on and around
the test mass.16

Penultimate mass

The penultimate mass is fabricated from fused silica, and is fitted with four mag-
nets. On all four suspensions, this stage is used as the main actuator for the test
mass angular control. On the end Y suspension, this stage is used for differential
arm length feedback (along with the upper intermediate and test stages). On the
input X and input Y suspensions, this stage is used for feedforward cancellation of
Michelson and SRC length control.

Additionally, this stage is used to damp the eight silica violin modes on each test
mass. The first harmonics of these modes have frequencies close to fv = 500Hz.
These modes become problematic if their rms amplitude produces more than 10−14 m
of differential arm length motion, as this will saturate the dc readout photodiodes
when operated in high-sensitivity mode. Worse still, violin modes exhibit dilution
damping,63 with Q > 108. This implies a time constant τ=Q/π fv > 17h, so it is im-
perative that they be actively damped if they ring up. Violin modes are sensed in
the differential arm length readout, which is bandpassed to produce various con-
trol signals. These signals are sent to the penultimate stage, with the option of
driving in some combination of length, pitch, or yaw.

Upper intermediate mass

The upper intermediate mass is made from steel, and is fitted with four magnets,
giving longitudinal, pitch, and yaw control. During the first observing run, the end
Y upper intermediate mass was used to offload differential arm length control from
the test mass. Additionally, both the end X and end Y upper intermediate masses
were used to offload the VCO control signal for the reference cavity AOM. The input
X and Y upper intermediate masses were not used for H1.
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Top mass

The top mass is made from steel, and is fitted with six magnets. A key feature of
the suspension design is that all degrees of freedom of the pendulum masses are
supposed to be observable using the top mass sensors. This allows six ac-coupled
servo loops to be closed around the top mass in order to damp these degrees of
freedom from roughly 0.1 to 1 Hz. The modes are considered well damped if a step
response applied to each top mass degree of freedom produces a response with a Q
of a few.

In the lead-up to O1, it was found that the test mass bounce and roll modes could
not adequately be damped using the top-mass sensors alone; the modes would ring
up and saturate the differential arm length readout. The bulk of the energy in
these modes is stored in the silica fibers between the penultimate mass and the
test mass, so these modes are long-lived, with a Q of the same order as the in-
trinsic silica Q (more than 105). Generally, these modes are considered problem-
atic if their amplitude in the differential arm length readout exceeds 10−13 mrms.
The coupling of the bounce mode is thought to be well understood: if the local
gravity at the test mass does not lie in the plane normal to the beamline, then
bounce mode motion produces a small amount of beamline motion. For a perfectly
spherical earth with a homogeneous local gravity field, the expected bounce cou-
pling is (2.0km/6400km) = 3×10−4 m/m; in reality, gravimetry measurements im-
ply bounce couplings ranging from 8×10−6 m/m to 6.4×10−4 m/m.64 The coupling
of the roll mode occurs when the plane of the mode rotation is not parallel to the
test mass face; this could arise, for example, from the wedge of the test mass sub-
strate.65 During O1, the four bounce modes were sensed by bandpassing the differ-
ential arm length readout, and feeding the resulting to the vertical actuators on
the top mass with an experimentally determined phase delay. The four roll modes
were sensed by bandpassing the 45 MHz antisymmetric-port wavefront sensor sig-
nals and feeding the result to the top mass vertical actuators.

Additionally, the top mass receives low-frequency pitch and yaw control signals
from the penultimate stage.

2.7 Intensity control
Several orders of magnitude of intensity noise suppression are required for Ad-
vanced LIGO to achieve its designed sensitivity. The injection-locked amplifier pro-
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duces a typical RIN of less than
(
10−5 /Hz1/2)× (

100Hz
/
f
)

for f < 1kHz. The re-
quirement for the light at the interferometer input is 10−7 /Hz1/2 at 100 Hz and
2 × 10−9/Hz1/2 at 10 Hz.35 Two intensity stabilization loops are implemented to
achieve this suppression. A third loop is available to suppress optomechanical in-
stabilities around the test mass suspension resonances.

Inner loop

For the inner loop, a pair of photodiodes (one in-loop and one out-of-loop) is used to
sense the light exiting one of the high-reflector ports of the pre-modecleaner. The
in-loop signal is filtered and then used to actuate on a single-pass AOM located
immediately before the pre-modecleaner (figure 2.4). The bandwidth of this loop is
approximately 50 kHz, and the shot-noise-limited performance of the loop is suffi-
cient to achieve a RIN of a few parts in 10−8 /Hz1/2 from 30 Hz to 1 kHz.36

However, after the high-power oscillator was activated in H1, the inner loop ceased
to properly stabilize the laser intensity, leading to 40 times more RIN entering the
interferometer at 100 Hz.66,67 This behavior could be explained by the inner loop
diodes seeing a common intensity noise (for example, from jitter or polarization)
that is not seen on the other two transmission ports of the pre-modecleaner.

Outer loop

Additional intensity noise suppression is achieved with an outer loop located in
transmission of the input modecleaner. This loop uses an array of four in-loop and
four out-of-loop photodiodes, and the loop bandwidth is about 10 kHz. In principle,
at 10 Hz the loop can achieve a RIN of 2×10−9 /Hz1/2. Additionally, the interfer-
ometer passively filters the intensity noise above the common-mode cavity pole,
f+ ≃ 0.6Hz.

Outermost loop

For powers above 10 W in H1, an optomechanical instability was sometimes ob-
served, producing test mass pitch motion in the common-mode soft degree of free-
dom at a frequency close to the primary suspension resonances (around 0.5Hz).
This instability could not be cured by adjusting spot positions on the test masses.
To reduce the frequency of occurrence, optical lever damping was applied to the
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input test masses. While generally sufficient for O1, this did not resolve the issue,
and the instability again started to appear as commissioning progressed to more
than 30 W.

Driggers et al.68 eventually determined that this instability could be explained by a
nonzero coupling from test mass angle into arm power (of unknown origin), with a
magnitude ∂P/∂θ∼ 1010 W/rad at 0.5 Hz. The arm power fluctuation drives the test
masses longitudinally, which also drives the test mass angles (in a common-mode
soft configuration) because of mechanical length-to-pitch coupling in the test mass
suspensions, with an expected magnitude ∂θ/∂F ≃ 4×10−2 rad/N at 0.5 Hz. There-
fore, common-mode soft test mass motion propagates around an optomechanical
feedback loop, with an open-loop gain (2/c)(∂P/∂θ)(∂θ/∂F) that can exceed unity at
0.5 Hz.

To suppress this instability, a third intensity stabilization loop was created in order
to stabilize the power in the arms around the suspension resonance frequencies.
The transmitted powers from each end station (measured by the in-vacuum QPDs)
are summed, giving an error signal that measures the average transmitted arm
power. The digitally filtered error signal is summed electronically into the outer
loop, giving an open-loop gain that is above unity between 0.2 and 0.7 Hz.69,70
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3 Noise in the Advanced LIGO

detectors

This chapter presents a budget of the noise in the Advanced LIGO Hanford detector.
Noise analysis of the Livingston detector is given by Martynov16 and Martynov
et al.43 Similar budgets for the initial detectors have been given, for example, by
Adhikari71 and Ballmer.72 As of this writing, the budgets for both Advanced LIGO
detectors fail to explain the differential arm length sensitivity between 50 Hz and
200 Hz; the source of this noise is under active investigation.

3.1 Quantum noise

Overview

Quantum noise refers to the joint contributions of radiation pressure noise (a dis-
placement noise) and shot noise (a sensing noise) to the differential arm length
readout. Quantum noise has been explained by Caves73 as the effect of vacuum
fluctuations which enter the unused ports of the interferometer—particularly the
antisymmetric port.

In the case of no signal recycling mirror, the quantum noise of a lossless interfer-
ometer is41,74

Shh( f )=
(
K+ 1

K

) h2
SQL
2

, (3.1)

where
h2

SQL = h
π3ML2 f 2 (3.2)

and

K= Pbc
π3λ0ML2 f 2

a f 2
× 1

1+ ( f / fa)2 .
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Figure 3.1: GW photodiode auto- and cross-spectral densities from the first observ-
ing run, referred to freerunning differential arm length. The photodiode sum is the
usual freerunning DARM estimate. The photodiode null shows only uncorrelated
noises, such as shot noise and photodiode electronics noise. The cross-correlation
shows only correlated noises, such as displacement noise and sensing noises arising
in the interferometer.

The effect of adding a signal recycling mirror with resonant sideband extraction
(that is, π/2-detuned signal recycling) is to make the substitutions

fa → yfa and Pb → Pb/y, (3.3)

with y = (1+ rs)/(1− rs). The effect of resonant sideband extraction, then, is to de-
crease the effective power on the beamsplitter and broaden the linewidth of the
arms.

Photodiode cross-correlation

The GW readout is sensed with two photodiodes (called “A” and “B”), each receiving
half the light transmitted through the output modecleaner. The shot noise on these
photodiodes is uncorrelated. Therefore, the cross-spectral density SAB( f ) of the two
photocurrents iA and iB can be used to estimate the amount of correlated noise i0

present in the interferometer or the GW readout, since the shot noise will average
away. An example is provided in figure 3.1, which shows the correlated differential
arm length noise during the first observing run.
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How many averages are required to resolve the correlated noise? The estimated
coherence γ̂2

AB,(N) after N averages is

γ̂2
AB,(N)( f )=

∣∣〈i∗A iB〉N ∣∣2
〈i∗A iA〉N〈i∗B iB〉N

(3.4a)

=
∣∣〈i0

∗i0〉N +〈i′A∗i0〉N +〈i0
∗i′B〉N +〈i′A∗iB〉N

∣∣2
〈i∗A iA〉N〈i∗B iB〉N

, (3.4b)

where i′A,B = iA,B − i0 is the uncorrelated noise component of each diode. In the
limit that |i0|≪

∣∣i′A,B

∣∣ (that is, we are trying to resolve a small coherent component
buried underneath shot noise), then the middle two terms will always be subdomi-
nant to the last term, regardless of N, so we can ignore them.

Upon each noise realization, the vectors i0, i′A, and i′B have magnitudes which
are drawn from Rayleigh distributions with means

√
S00,

√
SA′A′ , and

√
SB′B′ ,

respectively. Their phases are all random. However, the two products i∗0 i0 and
i′∗A i

′
B behave differently upon summation over a large number N of noise real-

izations. Since i∗0 i0 is always real (i.e., the phase is always 0), the summation∑
k i

(k)
0

∗
i(k)
0 grows like N. On the other hand, since i′∗A i

′
B has a random phase, the

summation ∑
k i

′(k)
A

∗
i′(k)
B grows like

p
N. Hence, after a large number of averages,

〈i∗0 i0〉N → S00 and 〈i′∗A i′B〉N → √
SA′A′SB′B′ /N. Therefore, these two terms will be

equal when N = SAA( f )SBB( f )/S2
00( f ) = 1/γ2

AB. So at least 1/γ2
AB averages are re-

quired to resolve a coherence γ2
AB in this case.

3.2 Thermal noise

The fluctuation–dissipation theorem

The fluctuation–dissipation theorem is a general result in statistical mechanics
that quantifies how losses in a system give rise to fluctuations of the system’s coor-
dinates. A derivation of this theorem was first given by Callen and Welton.75 The
theorem has found wide use in various areas of precision measurement. In gravi-
tational wave physics, it provides important results for thermally driven noise in
mirrors, suspensions, and electronics.

Consider a system with some generalized coordinate x, and a corresponding gener-
alized force F. If an oscillatory force F(t) = F0( f )cos(2π f t) is applied to the sys-
tem at frequency f , the system’s coordinate will respond with a velocity ẋ(t) =
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ẋ0( f )sin[2π f t+ϕ( f )], where the amplitude ẋ0( f ) and phase lag ϕ( f ) are determined
by the system’s equation of motion. Often, ϕ( f ) arises from some kind of loss mech-
anism; for example, mechanical, electrical, or thermodynamic dissipation in the
system.

The fluctuation–dissipation theorem says that the time-averaged power dissipation
W( f )= ⟨

F(t)ẋ(t)
⟩

causes stochastic fluctuation Sxx( f ) in the coordinate x:a

Sxx( f )= 2kBT
π2 f 2

W( f )
F0( f )2 . (3.6)

Note that

W( f )= ⟨
F(t)ẋ(t)

⟩= F0 ẋ0
⟨
cos(2π f t)sin(2π f t+ϕ)

⟩= 1
2F0 ẋ0 sinϕ≃ 1

2F0 ẋ0ϕ, (3.7)

where the approximation holds for ϕ ≪ 1. This shows that the energy dissipated
(and hence the amount of fluctuation) depends on the phase lag ϕ.

Equivalently, if we can express the system’s equation of motion in the Fourier do-
main, then we can extract the transfer function Y ( f ) = ẋ( f )/F( f ) (commonly called
the admittance) which relates the complex amplitudes ẋ( f )= ẋ0( f )eiϕ( f ) and F( f )=
F0( f )eiψF ( f ). Then by computing W( f ), we find

Sxx( f )= kBT
π2 f 2

∣∣ReY ( f )
∣∣= 2kBT

π f
∣∣Imχ( f )

∣∣, (3.8)

where χ( f )= x( f )
/
F( f )=Y ( f )

/
(2πi f ) is the system’s susceptibility.

Types of thermal noise

The fundamentals of mechanical and thermodynamical thermal noises are described
by Saulson.77 A more detailed overview of thermal noises relevant to gravitational
wave detection is given by Narwodt et al.78

Brownian noise

Brownian noise refers to fluctuation arising from friction in a mechanical system.
Such friction may arise from rubbing, gas damping, or—of particular concern to low-
noise mechanical experiments—internal friction within the bulk or on the surface

a This is the classical version of the fluctuation–dissipation theorem, valid in the limit kBT ≫
2π× f . The fully quantum version of the theorem is obtained by the substitution76

kBT → 2π× f
1−exp(−2π× f /kBT)

. (3.5)
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of the system. In solid materials like glasses, metals, or plastics, internal friction
is quantified by the material’s mechanical Q factor or, equivalently, the loss angle
ϕ= 1/Q (which may be frequency-dependent). This loss angle produces a phase lag
in the system’s response to an applied force, and therefore produces a loss in accor-
dance with equation 3.6. In the particular case that ϕ is frequency-independent,
the loss is called structural. If ϕ∝ f , the loss is called viscous.

Thermodynamic noise

Every macroscopic system in thermodynamic equilibrium continually wanders be-
tween the many different microstates available to it. This wandering leads to ran-
dom fluctuations in the system’s state variables, such as temperature, entropy,
pressure, volume, and so on. In particular, temperature fluctuations will propa-
gate to fluctuations in other material parameters—such as volume, refractive in-
dex, elasticity, and so on—because of the temperature dependence of these param-
eters.79 The effects of these fluctuations on the optical readout of a mechanical sys-
tem due to temperature fluctuations are collectively referred to as thermodynamic
noise. In particular,

• fluctuation from the coefficient of thermal expansion α= (1/L)∂L/∂T is called
thermoelastic noise;

• fluctuation from the coefficient of thermorefraction β = ∂n/∂T is called ther-
morefractive noise;

• fluctuation from α and β considered together coherently is called thermo-optic
noise; and

• fluctuation from the fractional temperature dependence (1/E)∂E/∂T of the
Young modulus E is also said to contribute to thermoelastic noise.

Johnson–Nyquist noise

Johnson–Nyquist noise80,81 refers to the thermal noise in an electronic circuit aris-
ing from its lossy (that is, resistive) components.

Consider the simple case of computing the charge fluctuation (or equivalently, the
voltage fluctuation) across a capacitor with capacitance C whose plates are con-
nected by a resistor with resistance R. From elementary electrodynamics, we know
that if a voltage V is applied to the capacitor, then the charge q on the plates
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amounts to a stored energy U = qV . Therefore, we can view q as the coordinate
for the system and V as the corresponding force, and we should be able to use the
fluctuation–dissipation theorem to calculate the stochastic fluctuations in q (or V )
even in the absence of an applied voltage.

The system’s admittance can be read off from the system’s equation of motion,
which in this case is already known from elementary circuit analysis:

q̇( f )=Y ( f )V ( f )= 1
ZR ∥ ZC

V ( f )= 1+2πi f RC
R

V ( f ). (3.9)

We now suppose we are only interested in the effect of the resistor; that is, we
stick to frequencies f ≪ 1/RC, where the dynamics of the capacitor does not affect
the behavior of the circuit. Then Y ( f )≃ 1/R. Then from the fluctuation–dissipation
theorem, the charge fluctuation across the capacitor in the absence of an applied
voltage is

Sqq( f )= kBT
π2 f 2

∣∣ReY ( f )
∣∣= kBT/R

π2 f 2 , (3.10)

and the voltage fluctuation is

SVV ( f )= Sqq( f )
|Y ( f )/2πi f |2 = 4kBTR, (3.11)

which is the usual expression for Johnson–Nyquist noise in terms of the voltage
fluctuation across the resistor.

In suspensions

Suspension thermal noise has both Brownian and thermoelastic contributions, which
have been characterized by Cumming et al.82 in a modal analysis that considers
the suspension fibers, the test mass ears, and the welds connecting the fibers to
the ears.

Brownian noise

Each element of the suspension has Brownian dissipation in the bulk of the glass,
and on the glass surface. The bulk loss is very small and nearly viscous, with a loss
angle ϕb = (

1.2×10−11)× ( f /1Hz)0.77. The surface loss is structural, and depends
on the intrinsic loss angle ϕs of the surface material, the depth h of the surface,
and the thickness d of the suspension element: the loss is 8hϕs/d ≃ 1.2×10−7 for
d = 400μm, which is the thinnest element (highest surface-to-volume ratio) of the
suspension.82
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Thermodynamic noise

The thermoelastic loss angle ϕ(susTE) of each suspension element depends on con-
tributions from the CTE α of the silica, and the temperature dependence ∂E/∂T of
its Young modulus. At each point z along the fiber, the loss is given by82

ϕ(susTE)(ω, z)= ET
C

(
α− σ(z)

E2
∂E
∂T

)
× ωτ(z)

1+ [ωτ(z)]2 , (3.12)

where σ(z) is the static stress in the fiber, C is the volumetric heat capacity of
the silica, and τ(z) is the thermal time constant of the suspension element, which
depends on its material properties and geometry. The negative sign between the
thermoelastic and Young modulus terms in equation 3.12 indicates that the ther-
moelastic loss can be minimized by engineering the appropriate amount of static
stress σ. In the Advanced LIGO suspensions, thermoelastic cancellation in the fiber
is achieved by making the end portions of the fiber twice the diameter of the central
section (800 μm versus 400 μm).82

The main suspension thermal noise contributions to differential arm length fluc-
tuation are from the longitudinal and bounce modes, since these modes produce
motion in the beamline direction.

In substrates

Brownian noise

Levin83 computed the Brownian noise for a cylindrical mirror substrate of radius R
interrogated by a Gaussian beam with spot size w≪R; this was later extended by
Bondu et al.84 and Liu and Thorne85 for cases where w≪R is violated. The Levin
expression is

S(subBr)
xx ( f )= 4kBT

f

p
2

π3
1−σ2

Ew
ϕI, (3.13)

where E is the Young modulus, σ is the Poisson ratio, ϕ is the loss angle in the bulk,
and I ≃ 1.9 is a numerical factor. For Advanced LIGO, with w≃ 6cm and R = 17cm,
the corrections of Bondu et al. and Liu and Thorne amount to a substrate Brownian
noise that is roughly 70 % of the Levin expression in terms of amplitude. The bulk
loss angle is assumed to be ϕ= (

7.6×10−12)×(
f
/

1Hz
)0.77.86 Additionally, Brownian

loss at the substrate surface can be treated in the same way as coating loss, with
a thickness–loss product of dϕs = 5×10−12 m.86
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Thermodynamic noise

The thermoelastic noise of test mass substrates have been described by Braginsky
et al.79 and Cerdonio et al.87 This noise (per test mass) is given by

S(subTE)
xx ( f )= 4kBT2

π1/2
α2(1+σ)2w

κ
J

(
f
/
fT

)
, (3.14)

where88

J(Ω)=−Re
{

eiΩ/2(1− iΩ)
Ω2 erfc

[
Ω1/2(1+ i)

2

]}
+ 1
Ω2 − 1

(πΩ3)1/2 (3.15)

and fT = κ/πw2C, and the material parameters refer to the substrate. The function
J(Ω) has asymptotes 1/

p
8Ω for Ω≪ 1 and 1/Ω2 for Ω≫ 1.

In coatings

Brownian noise

Brownian noise in coatings is analyzed in detail by Hong et al.,89 who derive a
general expression for the noise in a multilayer dielectric stack interrogated by a
laser beam. In general, any isotropic and homogeneous material has two elastic
loss angles: a loss angle ϕK corresponding to the bulk modulus K , and a loss angle
ϕG corresponding to the shear modulus G. However, these individual loss angles
are (so far) poorly constrained in the coating materials used in GW detection, and
are usually assumed to be equal.

The Advanced LIGO coatings consist of multilayer stacks of silica (SiO2) and titania-
doped tantala (Ti:Ta2O5). Silica has a loss angle of about 5×10−5, while titania-
doped tantala has a much larger loss angle—about 3×10−4.90 The tantala loss is
the dominant thermal noise contributor to the Advanced LIGO strain sensitivity.
Measurements by Gras et al.90 on Advanced LIGO coating witness samples indicate
that the expected coating thermal noise contribution to the differential arm length
sensitivity is

S(cBr)
xx ( f )1/2 = (

1.15×10−20 m/Hz1/2)×(
100Hz

f

)1/2
. (3.16)

Thermodynamic noise

Thermodynamic noise in coatings is computed by finding the spectrum STT of tem-
perature fluctuations corresponding to a Gaussian pressure profile.79,85,91–93 This
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spectrum is

STT( f )= 23/2kBT2

πκsw

∞∫
0

du Re

[
ue−u

2/2(
u2 − i f

/
fT

)1/2

]
, (3.17)

with fT = κc/πCcw2. The integral goes to
p
π/2 for f ≪ fT, and to

√
fT

/
2 f for f ≫ fT.

For the Advanced LIGO coatings, κc ∼ 10W/(m K) and Cc ∼ 1J/(m3 K), so for w≃ 6cm
we have fT < 10−4 Hz.

Evans et al.92 then considered thermo-optic noise by propagating STT( f ) to re-
flected phase fluctuations arising from the coefficient of thermal expansion α =
(1/L)∂L/∂T and coefficient of thermorefraction β= ∂n/∂T for the coating layers. The
resulting reflected phase noise (referred to effective mirror displacement) is

Sxx( f )= STT( f )Γ( f )
(
αcd−βcλ−αsdCc/Cs

)2 , (3.18)

where

• αc, βc, and Cc are the CTE, CTR, and heat capacity of the coating;
• αs and Cs are the CTE and heat capacity of the substrate;
• d is the coating thickness; and
• Γ is a frequency-dependent factor accounting for the nonzero thickness of the

coating.

Importantly, the relative sign of the αc and βc is negative, indicating that an un-
correlated analysis of the thermoelastic and thermorefractive noises overestimates
the thermo-optic noise for positive αc and βc (as is the case for silica/tantala coat-
ings). In fact, the coating layer structure can be optimized to cancel the thermoelas-
tic and thermorefractive terms, thereby suppressing the total thermo-optic noise.94

The Advanced LIGO coatings were not optimized in this way, but nonetheless some
thermo-optic cancellation is present.

For Advanced LIGO, the expected thermo-optic noise contribution to the differen-
tial arm length sensitivity does not exactly follow a power law. It is expected to be
4.1×10−21 m/Hz1/2 at 10 Hz and 2.2×10−21 m/Hz1/2 at 100 Hz.92

Photothermal noise

For a homogeneous test mass, the photothermal transfer function, taking incident
power to mirror surface displacement, is79,87,95

x( f )
P( f )

=−α(1+σ)
π2w2C

× A

i f
, (3.19)
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Figure 3.2: Cross-sectional diagram of the signal recycling mirror holder. The SRM
is 5.08 cm in diameter and is held inside an aluminum ring with two PEEK set
screws.

valid for f ≫ fT ≡ κ/πCw2 ≃ 0.1mHz.

The absorptivity of the test mass coatings is excellent, with typical values that are a
few hundred parts per billion. With α= 5.1×10−7 K−1,σ= 0.17 C = 1.6×106 J/(m3 K),
and w= 5cm, this implies a transfer function magnitude∣∣∣ x

P

∣∣∣= (
5×10−19 m/W

)×(
100Hz

f

)
×

(
A

1ppm

)
. (3.20)

With Parm = 100kW, this implies a shot noise
p

2hνP ≃ 2×10−7 W/Hz1/2, this im-
plies a photothermal shot noise per test mass of 2.5×10−26 m/Hz1/2 for A= 250ppb.
This is completely negligible for Advanced LIGO even at design sensitivity. Even
with excess intensity noise in the arms arising from a RIN of 10−8 /Hz at the inter-
ferometer input (figure 3.5), the resulting photothermal noise is 7.5×10−25 m/Hz1/2

per test mass at 100 Hz, which is still negligible.

A more exact expression for the test mass photothermal transfer function, includ-
ing terms accounting specifically for coating thermo-optic noise and substrate ther-
moelastic noise, is given by Farsi et al.;95 however, this will not bring the expected
photothermal noise (either from shot noise or classical intensity noise) to a level
which limits Advanced LIGO.

Elsewhere

During O1, the signal recycling mirror was unique among the interferometer op-
tics in that it was set inside a metal holder using two 8–32 PEEK plastic screws
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(figure 3.2). Finite element analysis of the assembly indicated the shear vibration
of these screws should have a resonance at about 3 kHz,96 and indeed a resonance
in the transfer function from SRM motion into POP45 light was seen at 3.3 kHz in
H1 and 2.4 kHz in L1.97,98 This frequency is consistent with an effective free vi-
bration length ℓ of roughly 0.9 mm: the shear compliance per screw is x/F = ℓ/GA,
where G ≃ 1.4GPa is the shear modulus for PEEK and A =π

(
4.2mm

)2 = 54.5mm2 is
the area of each screw. With an effective mass m= 100g for this mode, the resonant
frequency is then f0 = p

GA/2ℓm
/

2π. The width of the resonance in H1 implies a
Q factor of 170, or equivalently a loss angle ϕ= 1/Q = 6×10−3, assuming structural
damping. This implies a Brownian SRM motion of77

Sxx( f )= 2kBT
π f

ϕ
/(

4π2mf 2
0
)(

1− f 2/ f 2
0
)2+ϕ2

, (3.21)

which amounts to an SRM displacement of
(
6×10−17 m/Hz1/2)× (

100Hz
/
f
)1/2 for

f ≪ f0. The agreement between the expected peak height from equation 3.21 and
the observed peak height in the displacement-calibrated SRC length error signal is
excellent,99 as is the agreement between the expected peak height and the observed
height in the differential arm length readout (using the measured coupling shown
in figure 2.18). Note, however, that the behavior of the noise around the resonance
frequency cannot constrain the slope of the loss angle, so the assumption here that
the loss is structural has not been confirmed.

The thermoelastic contribution from the plastic is expected to be small: most of the
energy of the mode is stored in shear strain, while thermoelastic noise arises only
from bulk strain.

3.3 Seismic and Newtonian noise

Seismic noise

Ground motion is subject to daily and seasonal variations, particularly for frequen-
cies below 1 Hz.100 However, for quiet above-ground sites like Hanford and Liv-
ingston, the motion above 1 Hz in each direction has the approximate displacement
ASD101

S( f )= (
10−8 m/Hz1/2)×(

1Hz
f

)2
. (3.22)

Coupling of this noise into differential arm length comes from ground motion in
the beamline direction for each test mass, and from ground motion in the verti-
cal direction that couples to beamline motion because the earth’s curvature (see
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section 2.6). Below the GW band, seismic noise is suppressed by an active seismic
isolation system,40 and within the GW band the noise is passively filtered by the
mechanical transfer functions of the mirror suspensions.

Newtonian noise

Newtonian noise refers to displacement caused by fluctuations in the gradient of
the Newtonian potential Φ(r) at each test mass. Such gradient fluctuations can be
sourced by seismic noise, vibration of structures and equipment nearby the masses,
and (of lesser concern to current gravitational wave detectors) fluctuations in at-
mospheric pressure.102

In future observing runs, the effect of Newtonian noise on the differential arm
length readout may be estimated using seismometer arrays. This effect can then
be subtracted from the differential arm length signal, either online or offline.103

3.4 Gas noise
The LIGO vacuum system is designed to be held at about 0.1 μPa, with the domi-
nant species of residual gas being H2.104 The small amount of residual gas leads
to two kinds of gas noise; these are included in the budget in figure 3.12.

Optical scattering

The first kind of gas noise is a sensing noise induced by gas molecules wander-
ing across the beam path and scattering light out of the beam. This noise has a
flat phase spectrum up to a cutoff frequency that depends on the species of the
gas.101,105 For some particular species of gas, the displacement-referred noise in-
duced along a single arm is

Sxx( f )= (4πα)2n
v

L∫
0

dz
exp[−2π f w(z)/v]

w(z)
, (3.23)

where α, n, and v are the polarizability, number density, and speed of the gas, and
w(z) is the spot size along the arm.
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Squeeze film damping

The second kind of gas noise is a displacement noise induced by gas molecules hit-
ting the test masses.106,107 This is particularly problematic for the Advanced LIGO
end test masses because of the small gap (5 mm) between the test mass and the
reaction mass. A single molecule may bounce between the masses many times as
it passes through the gap; this is referred to as “proximity-enhanced gas damping”
or “squeeze-film damping”. For a given test mass geometry, the presence of the gas
induces a mechanical impedance Z( f ) = F( f )/ẋ( f ) that is proportional to the gas
pressure p and the time τ required for the gas to diffuse into or out of the gap. Ad-
ditionally, the impedance has a pole at 1/τ. The full expression for the force noise
from squeezed-film damping is well-modeled by the formula106

S(sfd)
FF ( f )= S(∞)

FF + ∆SFF

1+ (
2π f τ

)2 , (3.24)

where S(∞)
FF is a white force noise that accounts for molecular collisions against the

test mass in the absence of the reaction mass, and ∆SFF accounts for the proximity-
enhancement effect.

To accurately compute the quantities in equation 3.24, numerical simulations are
required (and the results are quoted below). However, analytical calculations by
Dolesi et al. yield approximate expressions for τ and ∆SFF :106

τ=
(
πmg
2kBT

)1/2 R2/d
ln

[
1+ (R/d)2

] (3.25)

∆SFF = 4kBT×πR2× pτ/d

1+ (
2π f τ

)2 , (3.26)

where T is the temperature, R is the test mass radius, d is the gap size, p is the
pressure, and mg is the mass of the gas species.

Numerical simulations of the Advanced LIGO end test mass geometry indicate that
for 1 μPa of H2, the expected force spectrum for a single end test mass is flat up to
1/2πτ = 1/(2π×800μs) = 200Hz, with a dc value

√
∆SFF = 1.2×10−14 N/Hz1/2. The

ac value is
√

S(∞)
FF = 1.4×10−15 N/Hz1/2.108

We can use the known compliance of the test masses to convert the force spectrum
into a displacement spectrum. The displacement noise from squeeze-film damping
for two independent end test masses in the presence of residual H2 is then

S(sfd)
xx ( f )= (

1.2×10−20 m/Hz1/2)×( pH2

1μPa

)
×

(
30Hz

f

)2
for f < 200Hz. (3.27)
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3.5 Frequency noise

Budget of frequency noise in the interferometer

In this section we discuss the noises contributing to the frequency stabilization
system. The topology of the frequency stabilization loop was discussed in detail in
section 2.2, and a block diagram reduction of the loop was given in figure 2.9.

Our objective in this section is to produce a budget of the residual frequency noise
r at the input of the interferometer; this input frequency noise is filtered by the
common-mode cavity and then propagates to the differential arm length readout
via a coupling function presented later. A loop analysis will show that

r = 1
1+ i f / fIMC

× −A
[(
F+KM

)
Pnp+Fn f +KMnm+Knk+na

]−ng

A
[(
F+KM

)
P+K

]+1
, (3.28)

where nX refers to noise injected immediately before block X in the figure 2.9. The
budget of noises considered in this section is shown in figure 3.3.

Noise in the laser

The typical freerunning noise of the NPRO (including the injection-locked oscillator)
is

(
100Hz/Hz1/2)×(

100Hz
/
f
)
.36 At sufficiently high frequencies, this noise eventu-

ally becomes subdominant to the Schawlow–Townes limit109

S(ST)
νν ( f )= 1

2πτ

√
hν0

P
, (3.29)

which is a fundamental limit depending only on the laser frequency ν0, the out-
put power P, and the storage time τ of the laser resonator. For a resonator round-
trip length L ∼ 10cm and a coupler transmissivity T ∼ 1%, the storage time is
τ = −2L/c ln(1−T) ∼ 70ns. For P ∼ 1W of output, the Schawlow–Townes limit is
then S(ST)

νν ( f )1/2 ∼ 1mHz/Hz1/2, which is subdominant to the aforementioned 1/ f
noise below 1 MHz.

Noise in reference cavity

The goal of the reference cavity loop is to stabilize the laser frequency noise down
to the (apparent) length noise of the fused-silica reference cavity. The performance
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Figure 3.3: Budget of frequency noise of the light at the input of the Advanced LIGO
Hanford detector.

of the Advanced LIGO reference cavity stabilization system was investigated ex-
tensively by Chalermsongsak110 and Chalermsongsak et al.32 in a test setup at
Caltech. At best, this stabilization system should be limited by the Brownian noise
of the reference cavity mirrors, about

(
6mHz/Hz1/2)×(

100Hz
/
f
)1/2. However, even

in the test setup this performance was degraded by a number of technical noise
sources below a few tens of hertz, with the largest technical noise contributors be-
ing scattered light and seismic motion. Additionally, the apparent length noise at
a few hundred hertz is additionally susceptible to acoustic noise.32 Therefore, one
might say more conservatively that in the presence of some common technical is-
sues, the reference cavity stabilization loop is able to stabilize the laser frequency
to better than 0.1 Hz/Hz1/2 above 30 Hz.

One must also consider the frequency noise on the VCO used to drive the refer-
ence cavity AOM. Modeling111 and measurement112 indicate that the double-pass
frequency noise is better than 6 mHz/Hz1/2 above 10 Hz.
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Noise in the input modecleaner

In the GW band, the frequency stabilization to the input modecleaner should be
limited by the shot noise of the light on the PDH photodiode. With 25 W of input
light into the modecleaner, about PIMC = 50mW is incident on the PDH photodiode
with the modecleaner unlocked. Assuming the reflected light from the locked mode-
cleaner is dominated by sideband light, and assuming ΓIMC = 0.01rad, this sets the
shot noise limit at ( fIMC/2)

√
3hc/λ0PIMC = 15μHz/Hz1/2. Because the bandwidth of

the IMC loop is tens of kilohertz, the loop impresses this shot noise onto the laser
frequency. In practice, because of imperfect modematching into the modecleaner,
a few milliwatts of carrier light remains on the PDH detector even when the mod-
ecleaner is locked, making the shot-noise-limited frequency spectrum more like a
few parts in 10−4 Hz/Hz1/2.

Noise in the common-mode and PRC lengths

The noise performance of this loop is limited by the shot noise on the PDH photodi-
ode, along with the photodiode dark noise and the electronics noise of the first few
electronic amplifiers. With 25 W of power at the interferometer input, these sources
together limit the frequency noise performance to roughly 1μHz/Hz1/2 between 10

and 100 Hz, and roughly 10 μHz/Hz1/2 at 1 kHz. The interferometer passively filters
this input frequency noise above the common-mode pole f+ ≃ 0.6Hz, attenuating
the frequency noise on the circulating light to less than 10−8 Hz/Hz1/2 at 100 Hz.

The 9.1 MHz reflection PDH sensor additionally senses PRC length fluctuation, as
seen in equation 2.21; therefore, PRC length fluctuation acts as an error point offset
for the common-mode arm length stabilization loop.

Coupling into differential arm length readout

The basic coupling mechanism can be understood by considering an asymmetric
Michelson with differential mirror reflectivities:

Eout(ω)= Ein(ω)
2

[
rXe2iωℓX/c+ rYe2iωℓY/c

]
=Ein(ω)e2iωℓ+[

r+ cos(2ωℓ−/c)+ ir− sin(2ωℓ−/c)
]
, (3.30)

with r± = (rX±rY)/2 and ℓ± = (ℓX±ℓY)/2. The cosine term in brackets in equation 3.30
is the usual Michelson response given a certain amount of length offset ℓ−. This
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Figure 3.4: Frequency noise coupling into the differential arm length readout.

offset may include a macroscopic Schnupp offset ℓ−, as well as a microscopic dc
readout offset δℓ(0)− . The sine term in brackets in equation 3.30 is the “contrast de-
fect” light. It converts phase sidebands at the interferometer input into amplitude
sidebands at the output: a sideband of the form ±iΓei(ω0±ω)t at the input emerges
as ∓Γr− sin[2(ω0±ω)ℓ−/c]ei(ω0±ω)t at the output.

Importantly, in the plane-wave approximation, and in the absence of radiation pres-
sure, both a reflectivity imbalance and a length imbalance are required to produce
a contrast defect. Advanced LIGO has two (intentional) sources of length imbal-
ance; namely, the macroscopic Schnupp asymmetry in the Michelson length and
the microscopic dc readout offset in the differential arm length. There are also
(unintentional) arm reflectivity imbalances, which can manifest as dc reflectivity
imbalances or as imbalances in the arm pole frequencies.

If radiation pressure is included, then a length imbalance alone is sufficient to pro-
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Figure 3.5: Relative intensity noise at the interferometer input, as measured by
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duce a frequency noise coupling into differential arm length. In Advanced LIGO,
the dc readout offset in the differential arm length causes laser frequency fluctu-
ations to convert to differential arm power fluctuations, since each arm is slightly
detuned from resonance.21

Approximate analytical expressions for frequency coupling into differential arm
length readout have been computed by Izumi and Sigg,20,21 taking into account the
aforementioned length and reflectivity imbalances, radiation pressure, and also a
static common-mode arm length offset.

The measured H1 frequency noise coupling into the differential arm length readout
is shown in figure 3.4.

3.6 Intensity noise
The out-of-loop sensor of the outer loop measures the amount of RIN at the inter-
ferometer input. A plot of this RIN is given in figure 3.5.

Coupling into differential arm length readout

Approximate analytical expressions for intensity coupling into differential arm
length readout have been computed by Izumi and Sigg.18,20,21 The intensity cou-
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pling arises through a few different mechanisms.

1. dc readout: Input intensity fluctuation modulates the amount of dc readout
light exiting the interferometer.

2. Contrast defect: Similarly, input intensity fluctuation modulates the amount
of contrast defect light exiting the interferometer. As with the frequency noise
coupling, the magnitude of this effect depends on arm imbalances such as
Schnupp asymmetry and differential frequency-dependent reflectivity.

3. Radiation pressure: Input intensity fluctuations produce radiation pressure
fluctuations in the arms. If the arms are perfectly balanced, this fluctuation
is purely common-mode. However, any of the aforementioned arm imbalances
(as well as an imbalance in the reduced masses of the arms) will produce a
differential signal.

4. rf sidebands: Because the attenuation of the rf sidebands through the OMC is
finite (T = 60ppm for the 45.5 MHz sidebands), intensity noise of the sideband
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Figure 3.7: Noises associated with the test mass electrostatic actuator, along with
the Advanced LIGO design sensitivity. The noises shown here scale with the bias
voltage Vb applied to the test mass.

light can create signal on the GW photodiodes. Furthermore, because the rf
sidebands are not resonant in the arms, they are not filtered by the common-
mode cavity pole, so input intensity fluctuations light appear directly on the
sideband light at the antisymmetric port.

The measured H1 intensity noise coupling into the differential arm length readout
is shown in figure 3.6. The projection onto the differential arm length readout is
then given in figure 3.12.

3.7 Photodiode noise
The photodiodes, their readout electronics, and the analog-to-digital conversion
produce noise even in the absence of light. This noise amounts to 1.0×10−8 mA/Hz1/2

(equivalent to 0.3 mA of photocurrent) per diode, with a 1/ f knee around 60 Hz.113

3.8 Actuator noise
In this section we discuss some actuator noises associated with the test masses.
Estimates of these noises are shown in figure 3.7.
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DAC noise

The 18-bit DAC used to drive each suspension actuator has a typical voltage noise
of114

S(DAC)
VV ( f )1/2 = (

300nV/Hz1/2)×
√

1+
(
50Hz

f

)2
. (3.31)

Only the test mass DACs are expected to have the capacity to significantly impact
the differential arm length sensitivity. During O1, the low-noise test mass actuator
electronics had a dc gain of 2 V/V, with poles at 2.2 Hz, 2.2 Hz, and 152 Hz, and zeros
at 50 Hz and 50 Hz. Combined with a force coefficient of 2αVb ≃ 2×(2×10−10 N/V2)×
(380V)= 1.1×10−7 N/V and a mechanical compliance of 2.6×10−3 m/N× (0.4Hz/ f )2,
this implies a DAC-induced displacement noise of 1.2×10−22 m/Hz1/2 at 50 Hz for
each test mass, rising like f 3 below 50 Hz.

Electrostatic damping

Dielectric loss

In this section we examine noise arising from dielectric loss in the test mass sub-
strate, which couples into test mass displacement via the electric field of the elec-
trostatic driver.

The principle of the electrostatic driver is that an electric field E applied to the
test mass creates a polarization density P = ε0χE in the substrate. Here χ is the
susceptibility of the substrate. To include the dielectric loss, we add a small imagi-
nary component to the susceptibility: χ= χ0(1+ iϕχ). Equivalently, if the test mass
and the electrostatic driver are viewed as a capacitor, then the dielectric loss of
the substrate makes the capacitance complex: C =C0(1+iϕC). The dielectric loss of
Suprasil glasses is quoted as 5×10−4 at 1 kHz,b although other measurements on
fused silica indicate a much lower audio-band dielectric loss—less than 4×10−6.c

If a significant fraction of the capacitance comes from the field in the substrate
(rather than field in the vacuum gap between the masses), then the loss angle of
the capacitance will nearly equal the loss angle of the substrate.

b Heraeus, Quartz Glass for Optics: Data and Properties, HQS-MO_01.4/E/07.2015
c Dynasil quotes this measurement as being “performed at Laboratory of A. R. Von Hippel,

Laboratory for Insulation Research, Massachusetts Institute of Technology, May 1970.” (http:
//www.dynasilfusedsilica.com/techinfo.phtml?tid=9)

http://www.dynasilfusedsilica.com/techinfo.phtml?tid=9
http://www.dynasilfusedsilica.com/techinfo.phtml?tid=9
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If a sinusoidal voltage V (t) = V0 cos(ωt) is applied to the ESD, a charge q will ac-
cumulate on the electrodes, with q(t) = C0V0

[
cos(ωt)+ϕC sin(ωt)

]
. Then the time-

averaged power dissipation in the dielectric is

W = ⟨
q̇V

⟩= 1
2C0V 2

0 ϕCω, (3.32)

and from the fluctuation–dissipation theorem, the PSD of voltage fluctuation is
therefore

SVV ( f )=
∣∣∣∣V ( f )
q( f )

∣∣∣∣2× 2kBT
π2 f 2

W( f )
V 2

0
= 2kBT

π f
ϕC

C0
. (3.33)

Given a drive voltage V on the electrode, the force exerted on the test mass is

F =− ∂U
∂x

=− ∂

∂x

[
1
2
C(x)V 2

]
=−1

2
∂C
∂x

V 2. (3.34)

The coefficient α = 1
2 ∂C/∂x is known from measurement to be about 2×10−10 N/V2.

Given some static bias voltage Vb, the small-signal voltage-to-force coefficient is
then (∂C/∂x)Vb ≃ 8×10−8 N/V for Vb = 380V. This measurement can also be used
to infer the capacitance of the system: assuming C0(x) = 2αd

/(
1+ x/d

)
, we have

∂C/∂x
∣∣
0 ≃ 2α, so C0(0) ≃ 2pF for d = 5mm.d These numbers are sufficient to com-

pute SVV ( f ) and SFF ( f ). Sxx( f ) is then computed from SFF ( f ) via the free-mass
compliance 1/Mω2, with M = 40kg.

The resulting estimate for the displacement noise from dielectric loss is

Sxx( f )1/2 = (
9.2×10−24 m/Hz1/2)×(

ϕC
1×10−6

)1/2
×

(
Vb

100V

)
×

(
100Hz

f

)5/2
, (3.36)

which gives Sxx( f )1/2 = (
7.0×10−23 m/Hz1/2)× (

100Hz
/
f
)5/2 for ϕC = 4×10−6 and

Vb = 380V. This noise term is shown in figure 3.7.

This estimate does not consider effects from nearby conductors (for example, the
ring heaters) or other capacitive effects from the cables connecting the electrodes
to the flange.

d Numerical simulations by Evans and Miller115 instead suggest

C0(x)≃ 2αd/b
(1+ x/d)b

(3.35)

with b= 1.38, but quantitatively this does not affect the result too much.



77

Circuit damping

We now examine noise arising from the circuit that drives the reaction mass elec-
trodes.116,117 Between each amplifier and each electrode there is a series resis-
tor that protects against overcurrent. Each resistor injects Johnson–Nyquist noise
(that is, charge fluctuation) into the electrodes, which adds damping to the test
mass.

Assuming the bias electrode is held at Vb = V0 and each signal electrode is held
at 0 V, the steady-state relationship between the bias voltage and the charge on
the electrode is V0 = q0/C0. Here we assume (again) that the position-dependent
capacitance is given by C(x) = C0

/
(1+ x/d), where d = 5mm is the position of the

mass when the bias is 0 V.

We’ll compute the Q of the pendulum mode in the presence of damping by first
computing the peak energy stored in the mode, and the energy dissipated per cycle
in the resistor.

The position dependence of the potential energy of the total electromechanical sys-
tem is

U(x)= 1
2C(x)V 2

0 + 1
2µω

2
0x

2 (3.37a)

= αdV 2
0

1+ x/d
+ 1

2µω
2
0x

2 (3.37b)

≃ αdV 2
0

(
1− x

d
+ x2

d2

)
+ 1

2µω
2
0x

2 (3.37c)

= 1
2k(x− x0)2 +U0 (3.37d)

≡ 1
2kξ

2 +U0, (3.37e)

where

ξ= x− x0 (3.38)

k= 2αV 2
0

d
+µω2

0 ≃µω2
0 (3.39)

x0 = αV 2
0 /k≃ αV 2

0 /µω2
0, (3.40)

and U0 is a constant energy which we ignore henceforth. Note that the approxima-
tion in equations 3.39 and 3.40 is good to about 100 ppm for Advanced LIGO; in
other words, the presence of the charged electrode does not significantly alter the
pendulum dynamics.
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Suppose the pendulum oscillates by an amount ξ(t) = Ξcosωt. The peak energy
stored is U(Ξ) = 1

2kΞ
2. To compute the energy ∆U dissipated as the pendulum

swings, we need to compute the current flowing through the resistor. First, we
compute the charge stored on the capacitor:

q=C(x)V0 ≃ 2αdV0

(
1− x

d
+ x2

d2

)
. (3.41)

Therefore, the current flowing across the resistor is

q̇= 2αV0ξ̇

(
2x
d

−1
)
≃−2αV0ξ̇, (3.42)

where we have used the facts that ẋ = ξ̇ and x/d≪ 1. The energy dissipated in the
resistor over one cycle 2π/ω of the pendulum motion is therefore

∆U(Ξ)= 2π
ω

×⟨
q̇2⟩R (3.43a)

= 2π
ω

× (2αV0)2⟨ξ̇2⟩R (3.43b)

= 2π
ω

× (2αV0)2× (ωΞ)2

2
×R (3.43c)

=πω(2αV0Ξ)2R, (3.43d)

and therefore the Q factor of the motion is

Q(ω)= U(Ξ)
∆U(Ξ)

=
1
2kΞ

2

πω(2αV0ωΞ)2R
= µω2

0

2πω(2αV0)2R
. (3.44)

Since 1/Q∝ω, the damping is viscous. Setting ω=ω0 gives the Q for the pendulum
mode:

Q(ω0)= µω0

2π(2αV0)2R
. (3.45)

For µ = 16kg, ω0/2π = 0.4Hz, α = 2×10−10 N/V2, V0 = 380V, and R = 10kΩ, the ex-
pected Q is then 1.1×1010 , which is greater than the expected mechanical Q of the
pendulum alone. However, the shallower slope of the electrical damping

(
1/ f 2) com-

pared to the mechanical damping
(
1/ f 5/2) means that the resistive damping noise

overtakes the structural mechanical noise above 10 Hz.

The same answer could have been reached more simply by computing the Johnson–
Nyquist noise of the electrode resistors and propagating the resulting voltage noise
into test mass displacement. However, the above calculation shows that this sim-
plified approach is not guaranteed to work if (1) the electromechanical stiffness
k (equation 3.39) is significantly different from the mechanical stiffness µω2

0, or
(2) the thermal motion of the pendulum is a significant fraction of the gap size, so
that the approximation x/d≪ 1 in equation 3.42 does not hold.
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Figure 3.8: Freerunning and residual length noises for the power recycling cavity.

3.9 Noise from vertex degrees of freedom
Figures 3.8, 3.9, and 3.10 show the residual and freerunning displacement noises
for the power-recycling cavity length, the Michelson length, and the signal-recycling
cavity length. The residual displacement noise of each degree of freedom—particularly
the Michelson and SRC lengths—can couple into the differential arm length read-
out. Above a few tens of hertz, the residual displacement noise comes mostly from
sensing noise that is injected into the loops. The effect of this reinjected sensing
noise is cancelled in the differential arm length readout using feedforward subtrac-
tion for the Michelson and SRC lengths, as described in 2.4. Nonetheless, residual
noises in these three degrees of freedom can still couple into the differential arm
length readout, potentially because of imperfect feedforward cancellation, the pres-
ence of significant displacement noises not arising from sensing noise, or bilinear
couplings (which cannot be subtracted with an LTI feedforward scheme).

To measure the amount of vertex noise in the differential arm length readout, noise
is injected into each vertex degree of freedom, with an amplitude sufficient to pro-
duce a clear excess in the differential arm length readout above the quiescent level.



80

10−2 10−1 100 101 102 103

Frequency [Hz]

10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

as
d
of

di
ps

la
ce
m
en

t[ m
/H

z1/
2]

Freerunning
Residual

Figure 3.9: Freerunning and residual length noises for the signal recycling cavity.

One could use this data to produce a transfer function from the vertex degree of free-
dom to the differential arm length (as is shown in figures 2.16, 2.17, and 2.18), and
then use the transfer function to propagate the quiescent vertex residual noise into
the differential arm length. However, to account for bilinear couplings it is better
to compute the excess power ratio between the vertex residual and the differential
arm length readout, and use this power-based coupling to propagate the quiescent
vertex residual noise into the differential arm length. This is the technique that is
used for the noise budget presented in this chapter.

3.10 Noise from angular degrees of freedom
The impact of residual angular fluctuations on the differential arm length read-
out is budgeted in a fashion similar to the vertex length degrees of freedom, as
described in section 3.9. Only the differential hard loops, the Michelson loops, and
the SRC pointing loops are measured and budgeted, because the other loops are
low-bandwidth and their impact on the differential arm length noise is expected to
be minimal.
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Figure 3.10: Freerunning and residual length noises for the Michelson degree of
freedom.

3.11 Jitter noise
Jitter coupling was measured by exciting the pointing into the input modecleaner,
and using the modecleaner wavefront sensor error signals as a witness for the
amount of jitter being injected. The modecleaner suppresses, but does not com-
pletely remove, the jitter that is sent into the interferometer. The quiescent level
of the wavefront sensor error signals represents an upper limit to the amount of
jitter entering the interferometer.

3.12 Noise budget
In figure 3.11 we show a budget of fundamental noises limiting the differential arm
length sensitivity for H1 during the first observing run. In figure 3.12 we show a
budget that includes both the fundamental noises and the known technical noises
described previously.
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Figure 3.11: Noise budget of Advanced LIGO fundamental noises for the first ob-
serving run, computed using GWINC.86
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4 Observational results

Advanced LIGO’s first observing run resulted in the first detection of gravitational
waves,118 with the second detection following soon after.119 Both events resulted
from the coalescence of heavy stellar-mass black holes (on the order of tens of solar
masses) merging at redshift z∼ 0.1. In addition to furnishing the first direct detec-
tion of gravitational waves, these events also provide the first evidence for binary
black hole systems and binary black hole coalescences.120

This chapter recapitulates the main astrophysical results of the first observing run;
these results are the culmination of work performed by the entire LIGO–Virgo scien-
tific collaboration. We will not comprehensively review the great variety of searches
that are performed on the strain data, or the technical details of these searches.

4.1 GW150914
GW150914118,122 was a gravitational wave event generated by the coalescence of
two black holes, each a few tens of solar masses. The waveform was loud enough
that it could be seen by eye in the bandpassed strain time series. The signal spent
8 cycles between 35 and 150 Hz. At 150 Hz, the strain reached its peak of about
1.0×10−21, after which the signal rang down. A time–frequency plot of the signal
is shown in figure 4.1, and the noise performance of the Hanford detector during
this event (and the subsequent events) is shown in figure 4.2.

This event was initially found in low-latency by the burst pipeline,123 and was later
also extracted from the data using the compact-binary-coalescence pipeline.124 The
parameters of the event (masses spins, and so on) were later estimated using a
dedicated parameter estimation pipeline.125

GW150914 enabled new tests of general relativity126 and inferences about the rate
of binary black hole mergers.127,128
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Figure 4.1: Spectrogram of the GW150914 signal in the H1 detector. Reproduced
from Abbott et al.118

4.2 LVT151012

LVT151012122 was a 1.7σ eventa that showed up with an SNR 9.7 between the two
detectors. If indeed it came from a binary coalescence, it would correspond to a
binary black hole system that is somewhat lighter than GW150914 (a chirp mass
≃ 15M⊙) and somewhat further away (z≃ 0.2), with a ringdown frequency of 400 to
500 Hz.

4.3 GW151226

GW151226119,122 was produced by another lighter binary black hole coalescence.
Compared to GW150914, the SNR is slightly lower and accumulated over a larger
number of cycles: the waveform spent about 45 cycles between 35 and 100 Hz, and
then about 10 cycles from 100 to 450 Hz.

a The low statistical significance of this signal (< 5σ) is the reason that is designated “LVT” (LIGO–
VIRGO trigger) and is not given the “GW” designation.
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Figure 4.2: Advanced LIGO H1 strain spectra during the three events GW150914,
LVT151012, and GW151226. The peaks around 300 Hz are jitter from a piezoelec-
trically actuated mirror mount that is used to inject the laser light into the vacuum
system. These peaks were reduced midway through the observing run by applying
epoxy to the mount.121 The change in the noise floor between 40 Hz and 200 Hz
occurs in the region where the spectrum is dominated by unknown noise. In addi-
tion to the mains line (60 Hz) and harmonics, one can see calibration lines at 35,
332, and 1080 Hz, the test mass roll mode at 13 Hz, a triple suspension roll mode
at 41 Hz, test mass violin modes at 500 Hz and harmonics, the OMC length dither
line at 4.1 kHz, and the OMC angle dither lines around 2.1 kHz. Noise analysis of
these spectra can be found in chapter 3 and the references therein, particularly
Martynov et al.43
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5 Some topics in calibration

This chapter aims to introduce some concepts and computations that will be useful
for current and future calibration efforts.

• In section 5.1 we give a brief overview of why and how GW interferometers
are calibrated into strain.

• In section 5.2 we review the differential arm length optomechanical plant
in the case of detuned signal recycling and arbitrary homodyne angle. We
present a reparametrization of this function that is amenable to real-world
calibration.

• In section 5.3 we examine how systematic errors in the interferometer calibra-
tion induce systematic errors in the parameter estimation of compact binary
systems.

• In section 5.4 we show how to choose calibration line frequencies so as to
minimize the uncertainty in the estimated calibration parameters.

5.1 Overview
The goal of interferometer calibration is to take the GW readout signal δP(t) (mea-
sured in counts, milliamps, milliwatts, or some other kind of hardware unit) and
produce an estimate of the freerunning spacetime strain δh(t) = δL−/L incident
along the detector arms. This requires characterizing both the optical dynamics
of the interferometer (that is, the transfer function describing how length fluctua-
tion δL− is transduced into power fluctuation δP) and the feedback control system
(figure 5.1), since this system suppresses power fluctuations within the servo band-
width.

Currently, Advanced LIGO uses several methods to calibrate the interferometer
readout.51 The “photon calibrator” is the main method used to measure the interfer-
ometer’s inverse sensing function, and can be operated while the interferometer is
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Figure 5.1: Simplified diagram of the Advanced LIGO differential arm length sens-
ing and control. The summed photocurrent (“SUM”) is directly proportional to
the power fluctuation δP at the interferometer’s antisymmetric port, which is re-
lated to the differential arm length fluctuation δL− by a transfer function C( f ) =
δP( f )/δL−( f ). The photocurrent is amplified and fed back to one of the end test
masses with a bandwidth ∼ 50Hz; the open-loop transfer function of this feedback
loop isG( f ). Relating the observed power fluctuation δP to the incident freerunning
strain requires characterizing the response function [1−G( f )]/C( f ). The differenced
photocurrent (“NULL”) is used for diagnostic purposes only. Numbers next to the
mirrors give the power transmissivities. (For certain portions of this chapter, the
SRM is assumed to be 20 % transmissive.)
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in its nominal operating state. An auxiliary, amplitude-modulatable 1 μm laser is
reflected from one of the end test masses, thereby producing a radiation force. The
applied power is measured with a NIST-traceable photodiode, so that the amount
of applied force (assuming no in-vacuum clipping or other nonidealities) is known
to better than 1 %.129 With a knowledge of the test mass suspension dynamics, this
known force can be expressed as an equivalent free-mass displacement. Therefore,
when the interferometer is locked, the inverse sensing function [that is, the trans-
fer function from freerunning free-mass displacement (in meters) to GW readout
(in milliwatts, milliamps, or digital counts)] can be measured directly.

Two other methods are used as cross-checks, and require the interferometer to
unlocked.

1. One method method uses a simple Michelson formed by the beamsplitter and
the input test masses to calibrate an input test mass actuator against the
main laser wavelength. Then a single arm is locked with the main laser, al-
lowing the end test mass actuator to be calibrated against the input test mass
actuator. Therefore, the end test mass control signal (in counts) can be cali-
brated into meters.

2. The other method uses the auxiliary green locking system. A green laser is
locked to each arm, producing an rf beat note. A VCO with a known voltage-
to-frequency actuation strength is locked to this beat note. An end test mass
actuator (with a control signal in counts) can then be calibrated against the
VCO control signal (in hertz).

5.2 Differential arm length optomechanical plant
In chapter 2 we showed that the differential arm length optomechanical plant dur-
ing the first observing run corresponded to nearly pure resonant sideband extrac-
tion, with a small amount of antispring detuning. In this section we explore more
fully the effect of optical springs on this optomechanical plant.

Buonanno and Chen41 derived input-output relations for a signal-recycled Fabry–
Pérot interferometer including radiation pressure. From this one can write down
the displacement-to-power transfer function,a up to a constant (see, for example,

a This transfer function is fundamentally a force-to-power transfer function. However, for consis-
tency with the simple RSE case, the force is referred to an equivalent freerunning displacement via
the free-mass compliance 1/Mω2.
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Figure 5.2: Advanced LIGO differential arm length plant, shown for both O1 (Ts =
37%, Pbs = 700W) and for the final design (Ts = 20%, Pbs = 3500W). In both cases,
20 mA (= 27mW) of dc readout light is assumed.

Ward130):

δP
δL−

∝ tseiβ [(
1− rse2iβ)cosϕcosζ− (

1+ rse2iβ)sinϕsinζ
]

1+ r2
se4iβ−2rse2iβ

[
cos2ϕ+ (K/2)sin2ϕ

]
√√√√ 2Pbsω

2
0

ω2
a+ω2

, (5.1)

where the quantities are defined in appendix D.

With some algebra (done in appendix D), this can be transformed to

δP
δL−

= g× 1+ i f
/
z(

1+ i f
/|p|Qp− f 2

/|p|2)−ξ2
/
f 2

, (5.2)

with quantities defined as follows.

• g is an optical gain (in milliwatts per picometer, or something similar).
• z is a zero of the transfer function, given by

z= fa× cos(ϕ+ζ)− rs cos(ϕ−ζ)
cos(ϕ+ζ)+ rs cos(ϕ−ζ)

, (5.3)
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fa 42 Hz 42 Hz 42 Hz 42 Hz
Ts 37 % 37 % 20 % 20 %
ϕ 90 ° 90.5 ° 90 ° 74 °
ζ 90 ° 90(3) ° 90 ° 100 °

Pbs 700 W 700 W 6250 W 6250 W

g 4.4 mW/pm 4.4 mW/pm 9.8 mW/pm 9.8 mW/pm
z 365.2 Hz 365.2 Hz 753.7 Hz 396.3 Hz

|p| 365.2 Hz 364.2 Hz 753.7 Hz 143.8 Hz
Qp 0.5 0.501 0.5 2.422

ξ2 02 Hz2 −4.932 Hz2 02 Hz2 +63.452 Hz2

Table 5.1: Parameters for the Advanced LIGO optomechanical plant.

where fa is the arm pole.
• p is a complex frequency given by

p= fa× 1− rse2iϕ

1+ rse2iϕ , (5.4)

so that

|p| = fa

√
1−2rs cos2ϕ+ r2

s
1+2rs cos2ϕ+ r2

s
(5.5)

and

Qp = |p|
2Re p

= 1
2

√
1−2r2

s cos4ϕ+ r4
s

1− r2
s

. (5.6)

Note that Qp attains a minimum value of 1/2 when p is real.
• ξ2 is the square of the spring frequency:

ξ2 = f 2
a × 2αrs sin2ϕ

1−2rs cos2ϕ+ r2
s
, (5.7)

and may be positive or negative. Here α= 4Pbsω0
/(
ω4

aML2).
The transfer function in equation 5.2 is not given in a pole-zero representation,
since the denominator has not been factorized. Because the denominator is quartic,
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one can always write down analytic expressions for its roots (that is, the poles of
the transfer function), but these expressions are quite complicated. Instead, we
will make some general remarks and then give pole-zero representations of this
transfer function in some limiting cases.

First, we remark on the general features of this transfer function, which has three
zeros and four poles. In both the spring and antispring cases, it has two zeros at
0 Hz, a left-handed real zero at the frequency z, and a left-handed complex pole pair
with a magnitude roughly equal to the frequency |p|. In the spring case, the final
two poles constitute a right-handed complex pair with magnitude roughly equal to∣∣ξ2

∣∣1/2. In the antispring case, the final two poles are both real, with one left-handed
and one right-handed, and the magnitudes are again roughly equal to

∣∣ξ2
∣∣1/2.

Second, we remark that this transfer function reduces to the simple RSE case in
the limit that ϕ=π/2. In this case, we have Im p= 0, so α= 0. The denominator then
comprises exactly two real poles at the RSE pole frequency f− = fa×(1+rs)

/
(1−rs). In

the numerator, the zero becomes f− (regardless of the value of ζ), and it therefore
cancels one of the poles in the denominator. Therefore, the bracketed portion of
equation 5.2 becomes 1

/(
1+ i f

/
f−

)
, as expected.

Third, we quantitatively analyze the limit that the frequency of the spring is much
less than the frequency of the RSE pole. This situation may be encountered if either
ϕ−π/2 or PBS is sufficiently small, or if M or L are sufficiently large. In this situation,
the denominator can be written approximately as the product of two pole pairs:

1. One pair, located in the left-hand s plane, is complex and produces the high-
frequency rolloff in the RSE response. The magnitude and Q of this pair are
|p| and Qp, as given above.

2. The second pair produces the spring (or antispring) feature at low frequen-
cies.

a) In the spring case (ξ2 > 0), the pole pair is complex and lies in the right-
hand s plane. The magnitude of this pair can be determined by examin-
ing the phase θD( f ) of the denominator:

tan[θD( f )]= f
/|p|Qp

1− f 2
/|p|2 −ξ2/ f 2

≃ f
/|p|Qp

1−ξ2/ f 2 . (5.8)

The maximum of the spring feature should occur when θD( f )=−π/2; that
is, tanθD =−∞. This occurs when f =±∣∣ξ2

∣∣1/2. So
∣∣ξ2

∣∣1/2 is the magnitude
of this right-handed pole pair. To find theQ of the pair, we note that when
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f = ∣∣ξ2
∣∣1/2, the denominator is (approximately) i

∣∣ξ2
∣∣1/2/|p|Qp. Therefore,

Qξ ≃ |p|∣∣ξ2
∣∣1/2 Qp. (5.9)

b) In the antispring case (ξ2 < 0), the pole pair is real, with one pole being
right-handed and the other left-handed. Correspondingly, there is a gen-
tle rolloff instead of a sharp resonance feature, and there is no phase loss
at low frequencies.

In either case, the denominator can be written as(
sgnξ2− i f∣∣ξ2

∣∣1/2Qξ

− f 2∣∣ξ2
∣∣
)(

1+ i f
|p|Qp

− f 2

|p|2
)
. (5.10)

The optomechanical plant parameters for various Advanced LIGO configurations
are given in table 5.1, and the corresponding transfer functions are shown in fig-
ure 5.2.

5.3 Systematic calibration errors
In this section we will examine how systematic errors in the interferometer cali-
bration affect astrophysical parameter estimation.

General discussion and formalism

Suppose we have some frequency-domain detector waveform d( f ) which is known to
contain an astrophysical signal—here assumed to be a compact binary coalescence.
We want to estimate the astrophysical parameters θ that best correspond to d. This
analysis is commonly done in a Bayesian framework,131 where the name of the
game is to use Bayes’s theorem arrive at a probability density function (pdf) for θ

given the measured waveform.

Bayes’s theorem says
p(θ|d)= p(d|θ) p(θ)

p(d)
, (5.11)

with the quantities defined as follows.

1. p(θ) is the prior pdf for θ (that is, our initial guess at a pdf of θ).
2. p(d|θ) is the probability of observing the waveform d given a certain value of θ.

This conditional pdf is determined by the underlying physics that is assumed
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to generate d from θ (in our case, a combination of analytic and numerical
relativity). Any quantity proportional to p(d|θ) is referred to as a likelihood
function.

3. p(d) is a normalizing constant referred to as the evidence.
4. p(θ|d) is the posterior pdf for θ (that is, our updated pdf for θ in light of d).

If the detector noise in each frequency bin is Gaussian, we can assume the following
for the logarithm of the likelihood function:

ℓ≡ ln p
[
d( f ;λ)

∣∣θ]∝−1
2

∞∫
0

df

∣∣h( f ;θ)−d( f ;λ)
∣∣2

Snn( f ;λ)
. (5.12)

Here h( f ;θ) is the relativistic waveform expected from a system with parameters
θ, and Snn( f ) is the noise PSD of the detector. d( f ) is (again) the waveform from
the detector. For both d and Snn we have now explicitly written the dependence
on λ, which refers to the calibration parameters used to estimate the freerunning
strain from the detector error signal e( f ). Estimating d from e requires estimating
a transfer function referred to as the interferometer’s response function, R:

d( f ;λ)=R( f ;λ) e( f ) (5.13)
Snn( f ;λ)= ∣∣R( f ;λ)

∣∣2See( f ). (5.14)

We now want to know how the maximum of ℓ shifts if small calibration errors are
introduced.

Suppose e( f ) is generated from a GW waveform h( f ;θtrue) with parameters θtrue.
Suppose also the interferometer’s calibration parameters are λtrue, but we’ve in-
stead made a slightly wrong estimate λ. Then d( f )= h( f ;λtrue)×R( f ;λ)

/
R( f ;λtrue),

and Snn( f )= S(true)
nn ( f )× ∣∣R( f ;λ)

/
R( f ;λtrue)

∣∣2.

Therefore,

ℓ(θ,λ)≡ ln p(d|θ,λ)

∝−1
2

∞∫
0

df

∣∣h( f ;θtrue)
∣∣2

S(true)
nn ( f )

×
∣∣∣∣1− R( f ;λtrue)

R( f ;λ)
h( f ;θ)

h( f ;θtrue)

∣∣∣∣2 , (5.15)

where we now explicitly indicate the functional dependence on λ as well as θ.

For brevity, we’ll find it convenient to define

r(θ,λ)= R( f ;λtrue)
R( f ;λ)

h( f ;θ)−h( f ;θtrue). (5.16)
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We want to know how the maximum of ℓ changes in the presence of nonzero ∆λ=
λ−λtrue, and how this maps to an equivalent ∆θ= θ−θtrue.

With a little calculus, it is straightforward to show
ℓθ1θ1 ℓθ1θ2 · · · ℓθ1θM

ℓθ2θ1 ℓθ2θ2 · · · ℓθ2θM
... ... . . . ...

ℓθMθ1 ℓθMθ2 · · · ℓθMθM


︸ ︷︷ ︸

≡H


∆θ1

∆θ2
...

∆θM

=


ℓθ1λ1 ℓθ1λ2 · · · ℓθ1λN

ℓθ2λ1 ℓθ2λ2 · · · ℓθ2λN
... ... . . . ...

ℓθMλ1 ℓθMλ2 · · · ℓθMλN


︸ ︷︷ ︸

≡M


∆λ1

∆λ2
...

∆λN

 , (5.17)

where ℓµiµ j is the second partial derivative of ℓ with respect to parameters µi and
µ j:

ℓµiµ j =
∂2ℓ

∂µi∂µ j
=−1

2

∞∫
0

d f

S(true)
nn ( f )

×2Re
[

∂2r∗

∂µi∂µ j
r+ ∂r∗

∂µi

∂r
∂µ j

]
. (5.18)

In equation 5.17 we have made note of the fact that the matrix H on the left-hand
side is the Hessian of ℓ with respect to θ. Additionally, to the matrix on the right-
hand side we have assigned the letter M. This allows us to write the relationship
between calibration errors ∆λ and parameter estimation errors ∆θ as

∆θ=J∆λ with J=H−1M. (5.19)

The letter J is chosen to remind the reader of a Jacobian matrix, since this equation
expresses how first-order changes in λ are related to first-order changes in θ.

Application to 2 pN parameter estimation

For the purpose of this simulation, we want to examine the effect of calibration
errors on a simple Bayesian parameter estimation using stationary-phase 2 pN
waveforms (see Röver et al.132 for an example of this kind of parameter estimation).
In the 2 pN approximation, the parameters comprising θ are

• the total mass M =M1 +M2,
• the symmetric mass ratio η=M1M2/(M1 +M2)2,
• the coalescence time tc,
• the coalescence phase ϕc, and
• the luminosity distance D, which is degenerate with the inclination angle of

the source.
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The 2 pN stationary-phase waveform (expressed as a frequency-domain strain) is
then

h( f ;θ)= 1
2π2/3c3/2

(GM)5/6

D

(
5η
6

)1/2
f −7/6×exp

{
− i

[
2π f tc+ϕc+ψ2pN( f ;M,η)

]}
, (5.20)

where ψ2pN is a polynomial in (πGMf )1/3/c, with coefficients involving η.132

For the calibration model, we assume λ comprises six parameters (g, z, |p|, Qp, ξ2,
and a), and the response function is given by

R( f ;λ)= 1
C( f ; g, z, |p|,Qp,ξ2)

−A( f ;a)D( f ). (5.21)

Here C is the interferometer sensing function, with parameters given by equa-
tion 5.2. A is the suspension transfer function. In this simulation, the ultimate (elec-
trostatic) and penultimate (magnetic) actuators are used, with a crossover around
20 Hz. The strength of the penultimate actuator is assumed to be constant for the
duration of the run, while the strength a of the ultimate actuator (in newtons per
volt) is assumed to drift because of charge accumulated on or near the test mass. D
is a set of (known) analog and filters connecting the error signal (in milliamps) to
the control signal (in volts). The resulting open-loop transfer function has a UGF of
180 Hz, which is required to stabilize the right-handed poles of the spring feature;
this OLTF is shown in figure 5.3. The total response function R = 1/S is shown in
figure 5.4.

The true astrophysical parameters were chosen to be M = 65M⊙, η = 0.247, tc =
0.250ms, ϕc = 0.60rad, and D = 410Mpc. The true calibration parameters were
chosen to be the detuned RSE NS/NS-optimized configuration given in table 5.1 We
compute J in equation 5.19 using an automatic differentiation routine.b This yields
the following relationship between systematic errors in the calibration parameters
and systematic errors in the astrophysical parameters:



∆M/M
∆η/η

∆tc
/

(1ms)

∆ϕc
/

(1rad)

∆D/D

= 1
103



−80 −21 −80 −64 −51 −129

177 40 198 136 94 274

260 851 −1689 812 857 570

−2174 −819 −1218 −1913 −1751 −3148

−180 −71 329 3 194 961





∆g/g
∆z/z

∆|p|/|p|
∆Qp/Qp

∆ξ2/ξ2

∆a/a


.

(5.22)
b ad in python.
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Figure 5.3: Open- and closed-loop transfer functions of the differential arm length
loop used in the simulations in this chapter corresponding to NS/NS-optimized de-
tuned RSE. Compared to O1, the UGF has been increased by a factor of 3, the time
delay of the loop has been reduced, and additional digital shaping is applied to
compensate the complex RSE feature around 150 Hz.

We can use this matrix to set astrophysically motivated requirements on our cali-
bration. For example, if we wish to determine the system’s total mass to better than
1 %, then we should aim for no more than 2.4 % fractional systematic error on each
of the calibration parameters, since 2.4%×(80+21+80+64+51+129)×10−3 = 1.0%.

Application to tests of general relativity

The above analysis can be used to examine the impact of calibration errors on GW-
based tests of general relativity (GR). These tests often involve augmenting the
waveform model with adding additional parameters that should be equal to zero
in GR.126,133 One example is the use of GW merger data to bound the mass m (or
equivalently the Compton wavelength λ= h/mc) of the graviton.134
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Figure 5.4: Response function 1/S for the 125 W detuned RSE scheme considered
here.

A massive graviton is subject to the dispersion relation E2 = m2c4 + p2c2, which
implies that a gravitational wave with wavelength λ propagates with a speed given
by

v2

c2 = p2c2

E2 ≃ 1−
(
hc
λE

)2
. (5.23)

For a GW inspiral, this has the effect of introducing a 1 pN phase term ϕg( f ) to the
inspiral waveform:

ϕg( f )=− πDc
λ2(1+ z) f

≡−B
f

, (5.24)

where D is a distance-like quantity (not necessarily equal to the luminosity dis-
tance D) defined by Will,134 and z is the source redshift. Note that B has the di-
mensions of a frequency. In standard GR, m = 0, so λ = ∞ and hence B = 0Hz.
Analysis of the GW150914 signal set a limit λ> 1013 km at 90 % confidence.126
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Repeating the above analysis with the B parameter included yields the following
matrix equation:

∆M/M

∆η/η

∆tc
/

(1ms)

∆ϕc
/

(1rad)

∆D/D

∆B
/

(1kHz)


= 1

103



−2392 280 −6577 −1003 1111 −2769

3563 −401 9713 1512 −1607 4140

2723 530 5231 1812 −380 3382

−10380 250 −24280 −5246 2373 −12518

−414 −40 −327 −92 312 694

2259 −294 6349 918 −1135 2580





∆g/g

∆z/z

∆|p|/|p|
∆Qp/Qp

∆ξ2/ξ2

∆a/a


.

(5.25)

In the standard GR case B= 0 (that is, λ=∞), a systematic error ∆B will result in
a reportedly finite wavelength λ according to equation 5.24. For D/(1+ z)∼ 400Mpc
and ∆B ∼ 100Hz (a typical value expected from equation 5.25 assuming a few-
percent systematic error in the calibration parameters), the resulting Compton
wavelength is λ ∼ 1013 km. Note that this is of the same order as the upper limit
placed on GW150914. This indicates that unmodeled systematic calibration errors
at the few-percent level could already produce a fictitious finite value for the gravi-
ton Compton wavelength, at least in the detuned interferometer configuration dis-
cussed here.

5.4 Optimal transfer function measurements from the
Fisher matrix

Many optical, mechanical, and optomechanical systems are often assumed to be
linear and time-invariant. Under this assumption, the parameters of such a system
can be estimated by measuring the system’s transfer function. Although one can
always measure a transfer function with a standard swept-sine routine, there are
several situations that lead us to think more carefully about our measurement
strategy.

1. In the case of systems such as alignment control systems, seismic isolation
systems, and mechanical suspensions, transfer function measurement can
be quite expensive, as it can require exciting the system down to millihertz
frequencies.

2. In the case of important data channels such as the differential arm length
readout of Advanced LIGO, transfer function measurement is expensive be-
cause such measurements necessarily invalidate certain parts of the data.
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This is particularly true for the continuous transfer function measurement
required to track time-varying changes in the interferometer calibration (the
“calibration lines”); data at the line frequencies must be thrown out.

With a little forethought, one can choose the measurements so as to maximize the
amount of information learned about the system’s parameters. One method for
quantifying the amount of information gained is to compute the Fisher matrix of
the measurement.135 The inverse of the Fisher matrix provides a lower bound (the
so-called Cramér–Rao bound) on the covariance matrix of the estimated parame-
ters. Good, straightforward explanations of the Fisher matrix and the Cramér–Rao
bound are few and far between. Two such resources are David Wittman’s “Fisher
Matrix for Beginners”136 and the technical appendix to the Dark Energy Task Force
report.137

General discussion

We define the following notation: we have a linear, time-invariant (LTI) system
whose transfer function H( f ) depends on a certain set of parameters θ= (θ1,θ2, . . . ,θM).
We can probe this system by exciting its input with a signal x( f ) and reading back
the response y( f )=H( f )x( f )+n( f ), where n( f ) is some readout noise. Our goal is to
produce an estimate Ĥ(θ; f ) given our observed response y( f ), our excitation x( f ),
and our estimate of the noise n( f ).

In practice, we excite the system with sinusoids at frequencies f1, f2, . . . , fN . We
record the complex excitation amplitudes x1,x2, . . . ,xN and the response amplitudes
y1, y2, . . . , yN . These amplitudes have been corrupted by noise whose amplitudes are
n1,n2, . . . ,nN ; in general, we have

yα =Hαxα+nα; α= 1,2, . . . ,N, (5.26)

where Hα =H( fα). On the other hand, given an estimate Ĥ(θ; f ) of the system, we
can write down a set of estimated amplitudes ŷ1, ŷ2, . . . , ŷN , with

ŷα = Ĥα(θ)xα; α= 1,2, . . . ,N, (5.27)

Our goal is to find the value of θ which makes the estimated responses { ŷα} ap-
proach the observed responses {yα}. To this end, we can write down a likelihood
function L(θ) ∝ p({yα}|θ), where p({yα}|θ) is the probability of having observed the
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amplitudes {yα} given a certain value of θ. From here on we will assume that the
noise is Gaussian, which results in a likelihood functionc

L(θ)∝ exp

[
−

N−1∑
α=0

|yα− ŷα(θ)|2
2|nα|2

]
. (5.28)

How should we place our N frequencies so as to maximize the amount of informa-
tion we can learn about H? Intuitively, we know we should choose our frequencies
so as to maximize the curvature of L (or, equivalently, the curvature of lnL) with
respect to θ. To find an expression for the curvature, we vary θ and keep track of
terms up to second order:

lnL(θ+δθ)≃ lnL
∣∣
θ+

∑
i

∂[lnL]
∂θi

∣∣∣∣∣
θ

δθi+ 1
2

∑
i

∑
j

∂2[lnL]
∂θi∂θ j

∣∣∣∣∣
θ

δθi δθ j. (5.29)

Once we have found parameters θ0 which maximize lnL, the first-derivative terms
will vanish, leaving only the second-derivative (that is, curvature) terms. These
curvature terms are the elements of the Fisher matrix F:d

Fi j =− ∂2[lnL]
∂θi∂θ j

∣∣∣∣
θ0

(5.30a)

= ∂2

∂θi∂θ j

[∑
α

|yα− ŷα(θ)|2
2|nα|2

]∣∣∣∣
θ0

(5.30b)

= ∑
α

1
2|nα|2

[
∂ŷ∗α
∂θi

∂ŷα
∂θ j

− (
y∗α − ŷ∗α

) ∂2 ŷα
∂θi∂θ j

+cc
]∣∣∣∣

θ0

. (5.30c)

If our estimate ŷ is unbiased, we expect yα− ŷα → 0, and thus

Fi j =
∑
α

1
|nα|2

Re
[
∂ŷ∗α
∂θi

∂ŷα
∂θ j

]∣∣∣∣
θ0

. (5.31)

Since ŷα = Ĥαxα, we have

Fi j =
∑
α

|xα|2
|nα|2

Re

[
∂Ĥ∗

α

∂θi

∂Ĥα

∂θ j

]∣∣∣∣∣
θ0

, (5.32)

c If one is not comfortable with likelihood functions, note that − lnL is equivalent to the usual χ2

statistic used for curve fitting.
d Note that F = −H, where H is the Hessian of lnL evaluated at θ0. Strictly speaking F is the

observed Fisher information, which is to be contrasted with the expected Fisher information. See
Efron and Hinkley138 for more information.
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which is the discrete-frequency equivalent of the expression found by L. Price.135

Following the usual convention, we’ll write σ(Hα)= |nα/xα|.e

The inverse of the Fisher matrix provides a lower bound for the covariance matrix:

Σ≥F−1, (5.34)

where the inequality is understood to be elementwise. This is the so-called Cramér–
Rao bound.

Single-frequency excitations

As an example, we apply the above concepts to the problem of estimating the pa-
rameters of a single-pole system H( f )= g/(1+ i f /p) using an excitation at only one
frequency. This system describes, for example, the optical response of a resonant
Fabry–Pérot cavity to length or frequency perturbations. In this context, g is called
the optical gain and p is called the cavity pole. For concreteness we can consider
the Advanced LIGO differential arm length plant, for which (during O1) we have
g≃ 3.2mA/pm and p≃ 350Hz.

For this system, our parameter vector is θ = (g, p), so the Fisher matrix will be
2×2. As a start, we’ll consider the case where we have only a single excitation at a
frequency f1. This results in only a single observation y1.f

In this instance, the Fisher matrix is

F= 1
σ2

1


p2

p2 + f 2
1

gpf 2
1(

p2 + f 2
1
)2

gpf 2
1(

p2 + f 2
1
)2

g2 f 2
1(

p2 + f 2
1
)2

 , (5.35)

and as a result, the covariance matrix Σ is bounded elementwise from below by
F−1:

Σ≥σ2
1


1
p4

(
p2 + f 2

1
)2 −

(
p2 + f 2

1
)2

gp3

−
(
p2 + f 2

1
)2

gp3

(
p2+ f 2

1
)3

g2p2 f 2
1

 . (5.36)

e Alternatively, we can decompose each observation into real/imaginary parts: yα = y(r)
α +iy(i)

α , and
likewise for Hα and nα. Then we can write down an alternative Fisher matrix

Fi j =
N∑

α=1

∑
β∈{r,i}

|xα|2∣∣n(β)
α

∣∣2 ∂Ĥ(β)
α

∂θi

∂Ĥ(β)
α

∂θ j
. (5.33)

In the case n(r)
α = n(i)

α , this reduces to the definition given above.
f However, since y1 is complex, it contains two pieces of information: y1 = y(r)

1 + iy(i)
1 .
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Figure 5.5: Normalized Cramér–Rao bounds on the covariance matrixΣ for a single-
frequency transfer function estimate of the system H( f ) = g/(1+ i f /p), with g =
3.2mA/pm and p= 350Hz. Here we have assumed a white readout noise and a flat
excitation amplitude.

From here, the goal is to choose f1 so as to provide the “optimal” Σ. To make
progress, we need to make assumptions about σ1, which means making assump-
tions about the excitation amplitude x1 and the readout noise amplitudes n1. The
next sections explore two simple cases for x1 and n1.

Flat excitation and white readout noise

To start with, we’ll assume that the readout noise nα is Gaussian and white as a
function of frequency. (In the case of the differential arm length in Advanced LIGO,
the assumption of whiteness is true only above 100 Hz or so.) We’ll also assume
that the excitation amplitude is flat: xα = x0 for all α. Then σ1 = σ( f1) ≡ σ (that is,
it is independent of frequency). In this case, the elements of Σ are minimized as
follows:

1. To minimize Σ(g, g), one should choose f1 = 0Hz. This results in

Σ(0)≥
[

σ2 −σ2p/g
−σ2p/g ∞

]
, (5.37)

which is evidently unacceptable for simultaneous estimation of g and p.
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Figure 5.6: Normalized Cramér–Rao bounds on the covariance matrix Σ for a
single-frequency transfer function estimate of the system H( f ) = g/(1+ i f /p), with
g = 3.2mA/pm and p = 350Hz. Here we have assumed that the response y has a
constant SNR ρ above the readout noise n.

2. To minimize Σ(g, p), one should again choose f1 = 0Hz.
3. To minimize Σ(p, p), one should choose f1 = p/

p
2. This results in

Σ
(
p/
p

2
)≥ 9

4

[
σ2 −σ2p/g

−σ2p/g 3σ2p2/g2

]
. (5.38)

4. To minimize detΣ, one should choose f1 = p/
p

3. This results in

Σ
(
p/
p

3
)≥ 16

9

[
σ2 −σ2p/g

−σ2p/g 4σ2p2/g2

]
. (5.39)

In figure 5.5 we plot the elements of Σ, along with detΣ, as a function of f1, assum-
ing that the Cramér–Rao bound is saturated.

Constant-SNR excitation

Often we can do better than a flat excitation amplitude. If we already have reason-
able knowledge of g, p, and n, it is desirable to aim for the measurement to have
a constant SNR. For our purposes, we define this as ρα = |yα/nα| = |xαHα/nα|. There-
fore, we choose |xα| = ρ|nα|/|Hα|, where ρ is our target SNR, and hence σ

(r,i)
α = |Hα|/ρ.
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With this choice of excitation amplitude, the Fisher matrix is

F= ρ2


1
g2

f 2
1

gp
(
p2+ f 2

1
)

f 2
1

gp
(
p2 + f 2

1
) f 2

1

p2
(
p2 + f 2

1
)

 (5.40)

and the covariance matrix satisfies

Σ≥ 1
ρ2


g2

p2

(
p2+ f 2

1
) − g

p
(
p2+ f 2

1
)

− g
p

(
p2+ f 2

1
) 1

f 2
1

(
p2 + f 2

1
)2

 . (5.41)

As expected, the bound on the covariance goes down like ρ2. To minimize the bounds
on both Σ(g, g) and Σ(g, p), one should again choose f1 = 0Hz. However, this again
results in Σ(p, p)=∞:

Σ(0)≥
[

g2/ρ2 −gp/ρ2

−gp/ρ2 ∞

]
. (5.42)

This time, the bounds on both Σ(p, p) and detΣ are minimized by choosing f1 = p:

Σ(p)≥ 2

[
g2/ρ2 −gp/ρ2

−gp/ρ2 2p2/ρ2

]
. (5.43)

In figure 5.6 we plot the elements of Σ, along with detΣ, as a function of f1, assum-
ing that the Cramér–Rao bound is saturated.

Application to differential arm length calibration

For NS/NS-optimized detuned operation at full power

We want to apply the above formalism to the problem of estimating the parame-
ters of the differential arm length loop using photon radiation pressure. A known
radiation force F( f ) = −Mω2x( f ) is applied to the test mass, resulting in a power
fluctuation P( f ) at the dark port. x( f ) and P( f ) are related via the reciprocal re-
sponse function S( f ) = 1/R( f ), whose parameters g, z, |p|, Qp, ξ2, and a we would
like to constrain. We assume the calibration will consist of five lines placed some-
where between 7 Hz and 3 kHz, each with the same, fixed SNR ρ. The Fisher matrix
in this case is

Fi j = ρ2
5∑

α=1

1∣∣Ŝα

∣∣2 Re

(
∂Ŝ∗

α

∂λi

∂Ŝα

∂λ j

)
, (5.44)
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Figure 5.7: Posterior distribution of optimal line frequencies for differential arm
length optical plant estimation, as determined by maximizing the volume of the
Fisher information of the measurement. The differential arm length optical plant
assumed here is the 125 W NS/NS-optimized plant described in table 5.1, with a
loop shown in figure 5.3.

with λ =
(
g z |p| Qp ξ2 a

)⊺
. The Fisher matrix determinant detF is maxi-

mized with respect to the five line frequencies via MCMC. In the MCMC, it is im-
portant to enforce f1 ≤ f2 ≤ f3 ≤ f4 ≤ f5 in order to produce well-localized posteriors
on the frequencies. The posterior pdf of the frequencies is shown in figure 5.7. The
maximum a posteriori frequencies are 82, 133, 145, 359, and 2847 Hz.

The Fisher matrix (evaluated at the maximum a posteriori frequencies) is inverted
to yield a bound on the covariance matrix Σ. The resulting relative covariance ma-
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ters g, z, |p|, Qp, ξ2, and a for the response function 1/S corresponding to the NS/NS-
optimized, detuned, full-power operation described in the text. The green diamonds
indicate the chosen calibration line frequencies. The realizations are drawn accord-
ing to the covariance matrix given in equation 5.45 with an SNR of ρ= 100. The blue
dashed lines give the envelope of the 3σ uncertainties associated with these errors.
This shows that the frequency-dependent statistical error of the five-line sensing
scheme considered here is better than 3 % in magnitude and 2 ° in phase in the GW
band.

trix Σ(rel) (with elements Σ(rel)
i j =Σi j/λiλ j) is

Σ(rel) = 1
ρ2



1.122

0.8552 1.052

−0.5562 −0.2032 0.3872

−1.172 −0.9882 0.6062 1.492

−1.022 −0.5352 0.6562 1.042 1.402

0.5332 0.3412 −0.4242 −0.7812 −0.622 0.6582


. (5.45)
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Since none of these values is significantly larger than unity, if the line SNRs are
chosen to be ρ = 100 then the parameter uncertainties and covariances can be
constrained to about 1 % or better. In figure 5.8 we show the expected frequency-
dependent statistical uncertainty in the interferometer response function, with the
errors drawn from a distribution given by the optimal covariance matrix written
above with ρ= 100. Evidently, the Cramér–Rao bound implies that we can achieve
better than 3 % uncertainty in magnitude and 2 ° in phase with this scheme.

For nearly pure RSE operation at lower power

We repeat the above analysis for an O2-like configuration with 50 W of input power,
no significant homodyne angle offset, and an 8 Hz antispring. Explicitly, g= 6.0mW/pm,
z = 365.2Hz, |p| = 364.2Hz, Qp = 0.501, ξ2 = −8.0Hz2, and a = 2.2×10−7 N/V. Be-
cause z and |p| are nearly equal, and Qp is nearly 1/2, attempting to estimate all
six parameters will result in excessively large uncertainties. Therefore, we assume
that z and Qp are known and fixed, and we include only g, |p|, ξ2, and a in the
Fisher matrix.

For O2, a sensible “by-hand” choice of lines is 8, 37, 330, and 1080 Hz. This results
in a relative covariance matrix

Σ(rel) = 1
ρ2


0.8862

−0.6252 0.6022

−0.6512 0.4612 1.292

−0.1022 −0.02252 0.1022 0.2912

 . (5.46)

Figure 5.9 shows the resulting frequency-dependent errors in the response func-
tion.

On the other hand, optimizing the four calibration line frequencies to maximize the
determinant of the Fisher matrix yields lines at 10.4, 49, 199, and 2807 Hz. The
resulting relative covariance matrix is

Σ(rel) = 1
ρ2


0.6522

−0.4472 0.5132

−0.5382 0.3572 1.252

−0.1982 −0.06912 0.2462 0.2742

 . (5.47)

Figure 5.10 shows the resulting frequency-dependent errors in the response func-
tion.
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Figure 5.9: Response function errors (analogous to figure 5.8) for four calibration
line frequencies picked by hand for an O2-like configuration.

The hand-picked calibration lines result in a Cramér–Rao bound detΣ ≥ 2.6×109

for ρ = 100, while the optimized calibration lines have a bound detΣ ≥ 1.0×109.
By comparing figures 5.9 and 5.10, one can see that this does correspond to an
improvement in the response function uncertainty; however, the improvement is
modest: the maximal error of 3.6 % and 1.6 ° is reduced to 3.0 % and 1.4 °.
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Figure 5.10: Response function errors (analogous to figure 5.8) for four optimized
calibration line frequencies for an O2-like configuration. Compared to the hand-
picked frequencies in figure 5.9, the optimized frequency choice improves the re-
sponse function magnitude uncertainty around 200 Hz and improves the phase un-
certainty between 30 and 500 Hz.
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6 Searching for dark matter with
laser interferometers

This chapter considers the possible use of laser interferometers to detect large
macroscopic dark matter objects interacting gravitationally with the interferom-
eter test masses. Numerical simulations are presented showing detection rates for
both a Newtonian gravitational coupling and a Yukawa coupling. The work pre-
sented here also appears in a preprint by Hall et al.139

6.1 Previous work
Laser interferometers have already received some consideration as dark matter
detectors, either because of possible GW signatures of dark matter, or because of
the possibility of local dark matter interaction with the interferometer itself.

In terms of GW signatures of dark matter, Bird et al.140 argue that some of the
universe’s dark matter density may consist of primordial black holes (PBHs) with
masses between 20 M⊙ and 100 M⊙, and that GW150914 could have been generated
from a binary system of two such black holes. A PBH scenario was also considered
by Sasaki et al.141

Brown142 and Hanna143 conducted searches in Initial LIGO data for sub-solar-mass
binary systems; these searches are motivated in part by the possibility of binary
MACHOs, which may have component masses from 0.15M⊙ to 0.9M⊙ based on mi-
crolensing surveys.

In terms of non-GW tests of dark matter using laser interferometers, Stadnik and
Flambaum144 consider the case of a dark matter scalar field which couples quadrat-
ically to the electromagnetic field in a laser interferometer. Additionally, Seto and
Cooray (whose results we will quote below) considered direct Newtonian pertur-
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bations of LISA test masses from PBH flybys, with masses of order 1014 kg ( ∼
10−17 M⊙).145

Rather than a primordial black hole or an aggregation of baryonic matter, a macro-
scopic dark matter object could be a gravitationally bound aggregate of nonbaryonic
particles. Such macroscopic objects can form from the gravitational infall of dark
matter particles into primordial overdensities, and these objects can subsequently
be broken apart by tidal disruption.146

6.2 Newtonian and Yukawa-type interactions
In this chapter we consider the possibility of Yukawa gravitational interactions
between standard and dark matter particles, with a potential

Vi j(r)=−Gmim j

r

[
1+ (−1)sδiδ je−r/λ

]
, (6.1)

where i and j may each refer to either standard matter (SM) or dark matter (DM).
mi and m j are the masses of the particles. If the interaction is mediated by a scalar,
then s = 0; if it is mediated by a vector, then s = 1. δSM and δDM are Yukawa cou-
plings for SM and DM, and λ is a Yukawa screening length. For the problem of
detecting a DM object with a test mass made of SM, we are particularly interested
in the SM–DM coupling g= δSMδDM. Note that this Yukawa interaction reduces to
the usual Newtonian interaction for either δSM = 0 or δDM = 0. This potential leads
to a central force

Fi j(r)=− ∂Vi j

∂r
r̂=−Gmim j

r2

[
1+

(
1+ r

λ

)
(−1)sδSMδDMe−r/λ

]
r̂. (6.2)

Torsion balance tests of the equivalence principle by, for example, Schlamminger
et al.147 set an upper limit of 10−3 for δSM, assuming λ> 10m.

A limit on δDM is set by the self-interaction cross section σDD of dark matter, which
is constrained by structure formation to be σDD/m ≲ 0.1m2/kg for v/c ≃ 103. This
leads to a constraint

δDM ≲ 5×109×
(

1kg
mDM

)1/4
. (6.3)

Here and below we assume that the radius rDM of the dark matter objects are much
less than the interferometer arm length, and that the Yukawa screening length is
much less than n1/3

DM, where nDM is the number density of dark matter objects in
the universe.
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6.3 Detection with laser interferometers

Analytical Newtonian case

Seto and Cooray145 considered the Newtonian interaction of primordial-mass black
holes (1013 to 1017 kg) with test masses of a LISA-like detector (arm length L =
5×106 km), and derived the expected event rate given the measured local dark
matter density in the galaxy (ρ = 0.011M⊙/pc3 = 7×10−22 kg/m3). We will briefly
review their analysis and results before moving on to the new numerical analysis
performed in this work.

They performed an analytical analysis in which each black hole (with mass M)
flies at normal incidence through the plane of the detector, with a fixed speed v =
350km/s. If the distance of closest approach to a particular test mass is R, then the
acceleration time series of the test mass is

a(t)= GMR[
R2 + (vt)2

]3/2 , (6.4)

which in the frequency domain is

a( f )= 2GM
Rv

K1

(
2π f R

v

)
, (6.5)

where K1 is the first modified Bessel function of the second kind. With the frequency-
domain acceleration in hand, the optimal matched-filter SNR ϱ can be computed via

ϱ2 = 4
∞∫

0

df

∣∣a( f )
∣∣2

Saa( f )
, (6.6)

where Saa( f ) is the PSD of the detector’s acceleration noise. Seto and Coray assume
a flat acceleration noise of S1/2

aa = 3×10−15 m s−2 Hz−1/2, so that ϱ can be computed
analytically in terms of M, R, and L.a

To compute the expected rate η̇ (in events per year) of events above a certain critical
SNR ϱ∗, Seto and Cooray assume that the entire dark matter halo consists of black
holes of a particular mass M. If R∗ is the radius which yields an SNR of ϱ∗, then

a The derivation and rates quoted here implicitly assume R < L, since the acceleration of only
one test mass is considered; Seto and Cooray refer to this as the “close-approach” regime. They
additionally give a derivation for the “tidal” regime in which R > L and the accelerations of all test
masses must be considered.
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Figure 6.1: Example acceleration time series for dark matter interactions with Ad-
vanced LIGO, here shown for 1000 kg objects.

the number of flybys per unit time with SNR ϱ≥ ϱ∗ is πR2∗F ≡ η̇(ϱ∗), where F = ρv/M
is the event flux. Seto and Cooray derive the following formula for this rate:

η̇(ϱ)= (
0.01yr−1)(1×1014 kg

M

)1/5 (
5
ϱ

)4/5 ( v
350km/s

)3/5
(

ρ

7×10−22 kg/m3

)
(
3×10−15 m s−2 Hz−1/2

S1/2
aa

)4/5 (
L

5×106 km

)
, (6.7)

suggesting that the prospects for primordial black hole detection with LISA are
quite marginal, with less than one high-SNR event expected even after 10 years of
observation.

Numerical Newtonian analysis

We performed a Monte Carlo simulation of the interaction of compact objects (such
as primordial mass black holes) with laser interferometer test masses, both for
Advanced LIGO and for LISA.

In this simulation, a dark matter object is incident on the plane of the detector with
a random impact parameter and random angles of incidence. The speed is chosen
from a distribution that takes into account both the zero-mean, randomly oriented
thermal velocity distribution of the dark matter in the halo as well as the nonzero,
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Figure 6.2: Example acceleration spectra for dark matter interactions with Ad-
vanced LIGO, corresponding to the time series in figure 6.1. The dashed line shows
the assumed acceleration noise of Advanced LIGO for the purposes of the simula-
tions in this chapter.

nonrandom velocity of the solar system through the halo. This distribution is a dis-
placed Maxwell–Boltzmann distribution (that is, the three-dimensional analog of
a Rice distribution), which we now derive. The joint distribution for the individual
components ẋ, ẏ, and ż of the clump velocities is

p(ẋ, ẏ, ż)= 1(
2πσ2

)3/2 exp
[
− (ẋ⊙− ẋ)2+ ( ẏ⊙− ẏ)2+ (ż⊙− ż)2

2σ2

]
, (6.8)

where v⊙ =
√

ẋ2⊙+ ẏ2⊙+ ż2⊙ = 220km/s is the speed of the solar system, andσ= 270km/s
is the thermal velocity spread of the clumps in the halo. The corresponding speed
distribution p(v) can be found by changing variables into spherical coordinates
(ẋ = vcosϕsinθ, ẏ= vsinϕsinθ, and ż = vcosθ), and assuming (without loss of gen-
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Figure 6.3: Cumulative event rate η̇(ϱ) for the number of dark matter events per
year with SNR of at least ϱ, assuming a Newtonian interaction.

erality) that the solar system velocity lies entirely in the z direction. Then

1=
∞∫

−∞
dẋ

∞∫
−∞

d ẏ
∞∫

−∞
dż p(ẋ, ẏ, ż) (6.9a)

=
2π∫
0

dϕ
π∫

0

dθ
∞∫

0

dvv2 sinθ
1(

2πσ2
)3/2 exp

[
− ẋ2 + ẏ2+ (v⊙− ż)2

2σ2

]
(6.9b)

=
∞∫

0

dv
(

2
π

)1/2 v
σv⊙

exp
(
−v2⊙+v2

2σ2

)
sinh

(v⊙v
σ2

)
︸ ︷︷ ︸

≡p(v)

, (6.9c)

where the integrand in the last line is the expression for the speed distribution p(v).
Example acceleration time series for 10 kg objects interaction with an Advanced
LIGO detector are shown in figure 6.1, and the corresponding spectra are shown in
figure 6.2.

Additionally, in this simulation the effect of the flyby on all test masses is accounted
for when computing the differential acceleration, and the matched-filter SNR is
computed using the full, frequency-dependent acceleration noise PSD.
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Figure 6.5: Cumulative event rate η̇(1) in LISA for the number of dark matter
events per year with SNR of at least 1, as a function of Yukawa coupling g and
screening length λ.

For each detector and each DM object mass, several thousand events are simulated,
and the histogram of SNRs is recorded. From this, the cumulative event rate η̇(ϱ) is
computed. The results are shown in figure 6.3. Consistent with the Seto and Cooray
analysis, the prospects for DM detection with LISA are not promising. Further, the
prospects for DM detection with Advanced LIGO are even less promising.

Numerical Yukawa analysis

The numerical Yukawa analysis is similar to the numerical Newtonian analysis,
with the Newtonian force law replaced with the Yukawa force law given in equa-
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tion 6.2. For each value of the DM mass, the simulation is run for several values of
coupling g and screening length λ, and the unity-SNR event rate η̇(1) is recorded.
The results are shown in figure 6.4 for Advanced LIGO and 6.5 for LISA. In the
lightest-mass case considered (M = 0.1kg), detection rates become promising for
g≳ 104, with a screening length λ∼ 1km.

Shapiro delay

One effect not considered in the above analysis and simulation is the Shapiro de-
lay in the interferometer arms. Shapiro delay in laser interferometers has already
been analyzed, for example, in the context of intentional modulation for Fabry–
Pérot cavities by Ballmer et al.148 and in the context of asteroid flybys for LISA by
Chauvineau et al.149

In the simple case of a stationary mass M located a distance d along an arm of
length L at an impact parameter b, the round-trip time delay is150

∆t=−2GM
c3 ln

4d(L−d)
b2 . (6.10)

For a given mass and impact parameter, the delay is maximized for d = L/2, giving
∆t = −(

4GM/c3) ln
(
L/b

)
. For Advanced LIGO, a 1000 kg mass located 1 m from the

midpoint of an arm (corresponding to a characteristic interaction frequency v/b ∼
300Hz) would produce a peak displacement c∆t of about 10−23 m, which is too small
to be detected. The logarithmic dependence of the time delay on b means that a peak
displacement of 1×10−21 m (which might be detectable) would require an impact
parameter that is smaller than the Planck length.

6.4 Search strategy
A significant practical impediment to this kind of search in Advanced LIGO is
the lack of colocated interferometers. The screening lengths considered here (λ≲
10km) are much smaller than the current (and planned) baseline separations of
advanced laser interferometers (typically thousands of kilometers). Therefore, a
putative DM interaction event would register in only one interferometer at a time.
However, a search could be conducted over data from the H1 and H2 initial LIGO
interferometers. Additionally, some third-generation interferometers such as the
Einstein Telescope151 and LISA6 are planned to have colocated interferometers.
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7 Future work

In this chapter we give a few suggestions for how to improve the current Advanced
LIGO detectors and what to think about for future detectors.

7.1 Interferometery

Suggestions for sensitivity improvements have been given by Miller et al.152 Some
possible minor alterations to the interferometer configuration or sensing are as
follows:

• The use of paired in-vacuum length sensors to facilitate out-of-loop and cross-
correlation noise estimates. An out-of-loop reflection sensor would be partic-
ularly useful, since it is difficult to estimate the residual frequency noise by
other methods.

• The inclusion of pick-off sensors for the signal recycling cavity.
• Greater jitter suppression before the laser is injected into the vacuum sys-

tem. Pointing noise from the injection-locked oscillator greatly contaminated
the interferometer’s differential sensitivity. While one can attempt to miti-
gate the jitter coupling through careful thermal tuning and alignment offset
adjustment, it is much less painful to mitigate the jitter itself by using a
higher-finesse pre-modecleaner, or two pre-modecleaners in series.

• Active optical stabilization of the rf sideband amplitudes. Residual amplitude
modulation (RAM) has the potential to introduce extra sensing noise into
length and angular control loops, including dc error point offsets.153 Active
RAM suppression could be achieved via heterodyned electrical and thermal
EOM feedback154 or direct rf feedback to the EOM.155

A more drastic configuration change may be made by removing the signal-recycling
mirror in order to alleviate some technical issues associated with the presence of
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Figure 7.1: Expected frequency noise coupling into differential arm length for the
case of a 37 % signal recycling mirror and for the case of no signal recycling mir-
ror. In each case the input test mass transmissivities have been adjusted as de-
scribed in the text to give a differential arm pole f− ≃ 350Hz. The assumed input
power is 25 W. The calculation is done according to equation 29 in Izumi et al.21

The assumed arm reflectivity imbalance is δra = 0.0029, the arm pole imbalance
is δ fa = 0.24Hz, the differential reduced mass is δµ= 5g, and the differential arm
amplitude gain is δga =−0.036.
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Figure 7.2: Expected intensity noise coupling into differential arm length for the
case of a 37 % signal recycling mirror and for the case of no signal recycling mirror.
In each case the input test mass transmissivities have been adjusted as described
in the text to give a differential arm pole f− ≃ 350Hz. The assumed input power is
25 W. The calculation is done according to equation 26 in Izumi et al.21
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a signal recycling cavity. Here we consider a scenario in which the interferometer
is operated at O1 power (25 W) with no signal recycling mirror. To maintain the
differential arm pole at f− ≃ 350Hz, the input test mass transmissivity can be set
to Ti = 11.5%, giving an arm finesse F = 52. Some consequences of this optical
configuration change are as follows.

• Sensing and control issues. Eliminating the SRM simplifies the interferome-
ter sensing-and-control scheme by removes the signal-recycling length degree
of freedom and the two angular degrees of freedom of the mirror.

• Frequency and intensity noise couplings. Removing the SRM (and subse-
quently altering the input test mass transmissivities) makes the interferome-
ter less susceptible to frequency noise, but more susceptible to intensity noise
(figures 7.1 and 7.2). However, the changes in susceptibility are modest (about
a factor of 5 at most).

• Modematching. With the SRM, the signal-recycling cavity must be mode-
matched to the arms, and the output modecleaner must be matched to the
signal-recycling cavity. Eliminating the SRM simplifies this problem, requir-
ing only that the output modecleaner be matched to the arms. This reduces
the potential for modematching-induced output port losses, which degrade
the shot-noise-limited SNR and limit the achievable amount of squeezing.

• Power-recycling losses. With the lower arm finesse, the circulating power in
the interferometer becomes more sensitive to losses in the power-recycling
cavity. To ensure the circulating arm power drops by no more than a few per-
cent of its zero-loss value, a PRC loss on the order of 10−4 or less is required
(equation 2.17b).

• Michelson motion. The coupling Ξm = π/2F of Michelson motion into differ-
ential arm length readout increases by roughly a factor of 10. Since the shot
noise of the Michelson sensor can be subtracted from the GW readout signal
with feedforward, this means that the Michelson displacement noise must be
kept sufficiently small.

Looking further into the future, we can ask how the frequency coupling trans-
fer function could look for a 40 km interferometer of the type considered for the
so-called Cosmic Explorer.156 We consider a dual-recycled Fabry–Pérot Michelson
with input test mass transmissivity Ti = 7%, PRM transmissivity Tp = 0.5%, SRM
transmissivity Ts = 10%, a circulating arm power Pa = 2MW, test masses weigh-
ing 320 kg, and a Schnupp asymmetry LM = 0.8m. The frequency-to-displacement
coupling transfer function is shown in figure 7.3. For the chosen parameters, the
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Figure 7.3: Expected frequency noise coupling into differential arm length for a
possible 40 km detector as described in the text. The calculation is again done ac-
cording to equation 29 in Izumi et al.21 The various imbalances are the same as the
imbalances assumed for the Advanced LIGO coupling transfer functions described
above. The magnitude of the coupling for the 40 km detector is similar to the magni-
tude of the Advanced LIGO coupling. If the displacement noise of the 40 km detector
is similar to the displacement noise of Advanced LIGO, this indicates that the laser
frequency noise requirement need not be significantly more stringent than the cur-
rent Advanced LIGO requirement.
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transfer function is well approximated by (10−15 m/Hz)× (100Hz/ f ). If the sensi-
tivity of the Cosmic Explorer is about 8×10−21 m/Hz1/2 between 20 Hz and 1 kHz,
then the required frequency noise at the interferometer input must be less than(
1μHz/Hz1/2)× (

100Hz
/
f
)

in order to contribute negligibly to the total displace-
ment sensitivity. In fact this is not so different from the requirements for Advanced
LIGO.35 However, the controls problem must also be considered. For a 40 km in-
terferometer the interferometer’s response to frequency fluctuations (using PDH
reflection locking) will have infinitely deep notches at positive integer multiples
of the arm FSR c/2L = 3.7kHz. This restricts the bandwidth of the common-mode
frequency stabilization loop to less than a few kilohertz, and hence restricts the
amount of suppression that can be achieved. However, if a macroscopic differen-
tial arm length offset L− is incorporated into the interferometer topology, the FSR
notches acquire a finite depth. Either L− could be made large enough to make the
notches negligibly deep, or the first few notches could be electronically compensated
to produce a stable servo loop.

7.2 Calibration
Some possible future directions in interferometer calibration are as follows:

• Repeating the analysis given in chapter 5 using waveforms that include merger
and ringdown signals (for example, those described by Ajith et al.157).

• Investigating other methods of optimizing calibration line placement. In chap-
ter 5 we minimized the volume of the covariance of the interferometer’s op-
tomechanical plant parameters. However, in the end we are actually inter-
ested in minimizing the volume of the covariance of the astrophysical param-
eters (mass, spin, and so on) of a particular signal. To this end, we may want
to minimize a different quantity, such as the uncertainty in the interferome-
ter response function in a particular frequency band.

Additionally, the line optimization technique described in the calibration chapter
could be put to work more generally as a way to optimally extract information about
the dynamics of LTI systems. For example, this technique could be applied to optical
plant measurement for angular control loops, where the timescale of the dynamics
(seconds or tens of seconds) typically require long transfer function measurements.
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A Preliminary notions about loops

This appendix presents a basic overview of feedback loops. Deeper discussion can
be found in various controls textbooks and review articles, such as the article by
Bechhoefer.158

A.1 Introduction
Let P( f ) denote the transfer function of some linear, time-invariant system (the
plant) which we want to control. The plant takes some input x( f ) and produces
some output y( f ) = P( f )x( f ). We want to take y (in this context called the error
signal), pass it through some filter K( f ) (the compensator) to produce a control
signal k( f ), and feed this control signal back into the input of P( f ).

The resulting servo loop is characterized by its open-loop transfer function (OLTF)
H( f )=K( f )P( f ). The OLTF indicates to what extent (and at what frequencies) the
feedback system can suppress external fluctuations. If an external fluctuation x( f )

is injected into the loop, then after one trip around the loop it will arrive just before
the injection point as a fluctuation b( f ) =H( f )x( f )/[1−H( f )]. Just after the excita-
tion point, the fluctuation is a( f )= b( f )+x( f )= x( f )/[1−H( f )]. We call H/(1−H) the
system’s closed-loop transfer function and denote it as H. We call 1/(1−H) the
system’s loop suppression function and denote it as H.a

For the feedback system to be stable, an external perturbation x( f ) must not pro-
duce an infinite in-loop perturbation a( f ); that is, we must have a/x= 1/(1−H) ̸=∞,
or

H( f ) ̸= +1. (A.1)
a Sometimes 1/(1−H) is referred to as the closed-loop transfer function.159
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Figure A.1: Anatomy of a generalized servo loop, consisting of a plant P and a
compensator K , which together form an open-loop transfer function H = PK . Any
external noise x injected into the loop causes a fluctuation in the error signal e.
The error signal is fed through K to produce a control signal k, which is summed
back into the loop in order to suppress the external noise, so that its contribution
to the residual loop noise r is x/(1−H). In general, the equipment used to construct
the servo loop will also introduce sensing noise n, which appears in the residual
loop noise as Hn/(1−H). Also depicted is a loop excitation point u; the OLTF H
can be measured by monitoring the signals a and b just after and just before this
excitation.

Said another way, if the OLTF has unity gain
(∣∣H( f )

∣∣ = 1
)
, the phase must not be

zero
(
argH( f ) ̸= 0◦).b

Any frequency f0 for which
∣∣H( f0)

∣∣ = 1 is called a unity-gain frequency (UGF) for
H, and argH( f0) is called the phase margin at that particular UGF. A small phase
margin causes the magnitude of the loop suppression function H to exceed 1 around
the UGF, meaning that the loop amplifies noise rather than suppressing it; this is
called gain peaking. Additionally, at any frequency f1 for which argH( f1)= 0◦, the
quantity

∣∣H( f1)
∣∣ is called the gain margin at that particular frequency.

b Warning: there exist two popular sign conventions for loop analysis, depending on how the con-
trol signal k is fed back into the loop. This appendix is written with the convention that k is summed
into the loop, as depicted in figure A.1. If instead one uses the convention that k is differenced into
the loop, then a number of statements made in this appendix must be modified. Among other things,
loop instability occurs when H =−1 (that is, |H| = 1 and argH =±180◦), and the expressions for the
closed-loop transfer function and loop suppression function are H =H/(1+H) and H = 1/(1+H).
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A.2 Crossovers
Sometimes, a feedback loop employs multiple LTI blocks in parallel. Such loops
are common in systems which rely on multiple actuators to provide feedback. For
example, when frequency-locking a solid-state laser such as an NPRO to an optical
cavity, feedback to the length of the laser crystal can be applied using a PZT to
strain the crystal, or a heater to control the thermal expansion of the crystal. The
former provides several megahertz of actuation range with a bandwidth of a few
tens of kilohertz, and the latter provides several gigahertz of actuation range with
a bandwidth of a few hertz. For robust, long-lived locks, both actuators are needed.

Consider a loop with OLTF H = H1 +H2 (i.e., two blocks H1 and H2 are added in
parallel). The usual loop stability condition requires H( f )=H1( f )+H2( f ) ̸= +1; i.e.,
H1/(1−H2) ̸= +1. We define

Ξ≡H1/(1−H2) (A.2)

to be the crossover transfer function of H1 and H2; it characterizes the relative
strength of H1 versus H2 at various frequencies. Any frequency f0 for which

∣∣Ξ( f0)
∣∣=

1 is a crossover frequency between H1 and H2.c

A.3 Measurements
We now turn to some topics in how to measure transfer functions. Again let P( f )

denote some LTI system, with an input and output. The canonical measurement of
the transfer function P( f ) is done by injecting random noise x( f ) into the output,
which will generate a signal y( f )= P( f )x( f ) at the output. The estimate P̂( f ) of P( f )

is made by computing160

P̂( f )= Sxy( f )
Sxx( f )

, (A.3)

where Sxy( f ) is the (complex) cross-spectral density of x and y, and Sxx( f ) is the
(real) auto-spectral density (or power spectral density) of x. Equivalently, we will
write the cross-spectral density as 〈x∗y〉, as this notation is more suggestive of how
spectral densities are estimated in practice. A common figure of merit for the qual-
ity of a particular measurement is the coherence

γ2
xy( f )=

∣∣Sxy( f )
∣∣2

Sxx( f )Syy( f )
, (A.4)

c Sometimes the crossover transfer function is instead defined as H1/H2.159
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which can attain any value from 0 (no correlation between x and y) to 1 (perfect
correlation between x and y).

We consider a loop whose OLTF H( f ) we would like to measure. In order to do this,
we inject some excitation u into the loop, and we measure just after (a) and just
before (b) the excitation (see figure A.1). As mentioned above, these test points are
given (in the frequency domain) by

a= u
1−H

(A.5)

b= Hu
1−H

. (A.6)

With a, b, and u in hand, one can see that there are (at least) four ways to extract
the OLTF.

1. Compute an estimate of the CLTF

Ĥ = 〈u∗b〉
〈u∗u〉 (A.7)

and then do algebra to compute Ĥ.
2. Compute an estimate of the loop suppression function

Ĥ = 〈u∗a〉
〈u∗u〉 (A.8)

and then do algebra to compute Ĥ.
3. Compute an estimate of the OLTF directly using a and b only

Ĥ = 〈a∗b〉
〈a∗a〉 . (A.9)

This is the technique used with network analyzers (such as DTT161) when
making Fourier-based (for example, broadband) transfer function measure-
ments.

4. Compute an estimate of the OLTF directly using a, b, and u:

Ĥ′ = 〈u∗b〉
〈u∗a〉 . (A.10)

This is the technique used with network analyzers when making demodulation-
based (for example, swept-sine) transfer function measurements.

The last of two these is often the most convenient: the estimated OLTF can be read
directly off a network analyzer, with no algebra required. However, we will now
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show that the third estimator (Ĥ) has the drawback of being biased, while the
other three do not.

All realistic loops have some noise x which is also injected into (or generated within)
the system under feedback control. In the presence of both noise x and excitation
u, the test points for our measurement are

a= u+ x
1−H

(A.11)

b= Hu+ x
1−H

, (A.12)

and so, assuming that x and u are uncorrelated, the direct OTLF estimate is

Ĥ = 〈a∗b〉
〈a∗a〉 =

H〈u∗u〉+〈x∗x〉
〈u∗u〉+〈x∗x〉 . (A.13)

This equation is telling us that attempting to directly estimate H in this fashion will
succeed only if the excitation u is much stronger than the other noise x in the loop.
If |u| ≫ |x|, then Ĥ → H, as desired. But if |u| ≪ |x|, then Ĥ → 1, regardless of the
true value of H. In other words, Ĥ is a biased estimator of H. Moreover, examining
the coherence of the test points may be misleading, since in the limit u→ 0, a and
b are both perfectly correlated with x. Then γ2

ab → 1.

One can show that Ĥ, Ĥ, and Ĥ′ are all unbiased estimators, converging respec-
tively to H, H, and H for any u ̸= 0, regardless of the relative strength of u and x.d

In situations where it is hard to satisfy |u|≫ |x| (for example, angular loops which
cannot tolerate much excitation beyond the quiescent noise level of the loop), it may
be advantageous to use these alternative estimators if possible.

A.4 Noise
Let us again focus on the example of locking a laser to an optical cavity by monitor-
ing the phase fluctuation ϕ( f ) of the light in reflection. The phase fluctuation may
arise either from length fluctuation L( f ) of the cavity, or from frequency fluctuation
ν( f ) of the laser light:

ϕ( f )= (2π/c)[ν(0)L( f )+ν( f )L(0)]. (A.14)

The former noise is an example of a displacement noise — a noise in the error
signal arising from actual motion of the system of interest. The latter noise is an

d Of course, if |u|≪ |x| by many orders of magnitude, extracting a good transfer function estimate
may be impractical.
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example of a sensing noise — a noise in the error signal arising from whatever is
used to sense the system of interest.

A closely related concept has to do with what kinds of noise limit the performance
of a servo loop. Consider again loop with OLTF H. Suppose the loop has a certain
amount of displacement noise x( f ), as well as some sensing noise n( f ) injected after
the displacement noise. Now suppose we were able to measure the true residual
r( f ) between x and n. We would find

r = x
1−H

+ Hn
1−H

. (A.15)

This first term on the right-hand side of this equation says that as the gain |H| is
increased, the loop’s displacement noise is more aggressively suppressed. The sec-
ond term says that when |H| > 1, the sensing noise is impressed onto the residual.
If the first term dominates the residual, the loop is said to be gain limited, and the
residual r within the loop bandwidth can be reduced by increasing the loop gain.
If the second term dominates the residual, the loop is said to be sensing-noise lim-
ited, and the residual r within the loop bandwidth cannot be reduced by increasing
the loop gain.

Note that the loop’s error signal e( f ) in general does not accurately represent the
true in-loop residual, since

e= x
1−H

+ n
1−H

̸= r. (A.16)

In other words, continuing to increase the loop gain |H| will make the error signal
smaller, even if the loop’s actual residual is sensing-noise limited. This is the mo-
tivation for placing an “out-of-loop” sensor at nearly the same place as the in-loop
sensor; this out-of-loop sensor will see the true in-loop residual in combination with
the sensor’s own sensing noise.e

e However, the out-of-loop sensor will not see sensing noises common to both sensors.
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B Median estimation of amplitude
spectral densities

Bin-by-bin median averaging of amplitude spectral densities (ASDs) is sometimes
preferred over traditional rms averaging for its increased robustness against tran-
sients.162 In this note we examine some of the subtleties of median averaging tech-
niques, with a particular focus on Gaussian noise.

The central result of this appendix—that in the limit of large sample size, the me-
dian is biased downward from the mean by a factor of (ln2)1/2—is already known
in the gravitational-wave data analysis community.163–165 Here we give a simple
demonstration of this fact using the aLIGO H1 OMC null stream.

B.1 Problem statement
Given a time series h(t), how does one arrive an an estimate of the ASD Shh( f )1/2?
Spectrum analyzers, DTT, Matlab’s pwelch, etc., usually produce an ASD estimate
using some flavor of the Welch method:166

1. Split h(t) into N segments, each of length T. The segments can be chosen to
overlap by some factor (often 50 %).

2. Apply a windowing function w(t) to each segment hi(t) and compute the Fourier
transform Hi( f ) of w(t)hi(t).

3. At each Fourier frequency f , compute the rms of the magnitudes of the Fourier
transforms (and then apply a normalization factor C) in order to arrive at an
estimate of the ASD:

Ŝhh( f )1/2 =C

(
1
N

N−1∑
i=0

∣∣Hi( f )
∣∣2)1/2

. (B.1)
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Note that rms averaging of the ASDs amounts to mean averaging of the PSDs, so
this step is often referred to as “mean averaging”.

B.2 Gauss and Rayleigh distributions
When one says that h(t) consists of Gaussian noise, one means that in each fre-
quency bin, the quadrature components x=ReH( f ) and y= ImH( f ) of the noise are
independent, identically distributed, Gaussian random variables with zero mean
and variance σ2. That is, their joint pdf is

p(x, y)= p(x)p(y)= 1
2πσ2 exp

(
− x2 + y2

2σ2

)
. (B.2)

When estimating the ASD, we are interested not in x or y individually, but rather
the quantity r = (x2+ y2)1/2. (We often discard the phase information ϕ= arctan y/x.)
This quantity does not follow a Gaussian distribution, but rather a Rayleigh distri-
bution:160;a;b

p(r)= r
σ2 exp

(
− r2

2σ2

)
for r ≥ 0, (B.3)

and p(r)= 0 otherwise. For this distribution, we will be interested in the following
quantities:

• the mode
M =max

r
p(r)=σ; (B.4)

• the mean

µ=
∞∫

0

r p(r) dr =
(π
2

)1/2
σ≃ 1.25σ; (B.5)

• the rms

ψ=
 ∞∫

0

r2 p(r) dr

1/2

=
p

2σ≃ 1.41σ; (B.6)

and
a Explicitly: writing x = r cosϕ and y = rsinϕ, the pdf p(x, y) transforms to

p(r cosϕ, rsinϕ)
∣∣detJ(r,ϕ)

∣∣, where J(r,ϕ) is the Jacobian of the coordinate transformation.
Integrating over ϕ gives the Rayleigh distribution p(r).

b If one recasts this analysis in terms of PSDs rather than ASDs, then the quantity s= r2 follows
an exponential distribution, with p(s)= exp(−s/ζ)/ζ and ζ= 2σ2.163,164
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• the median m, which is defined as follows:

1
2
=

m∫
0

p(r) dr = 1−exp
(
− m2

2σ2

)
(B.7)

⇒ m= (ln4)1/2σ≃ 1.18σ. (B.8)

For the Rayleigh distribution, these four quantities are distinct, with σ < m < µ <
ψ.c

B.3 rms versus median averaging
The usual algorithm for estimating an averaged ASD from multiple data segments
is to compute the rms: that is, for each bin, we compute a quantity proportional
to r = (

r2
0 + r2

1 + ·· ·+ r2
N−1

)1/2/N. Therefore, this estimate r is an estimate of ψ, as
defined above (and hence we can write this estimate as ψ̂). Conversely, the median
estimate m̂ = med

{
r0, r1, . . . , rN−1

}
converges to m.d Therefore, in each frequency

bin of a Gaussian-noise ASD, the median value is biased downward from the corre-
sponding rms value by a factor b∞ =m/ψ= (ln2)1/2 ≃ 0.83, in the limit of an infinite
number of non-overlapping segments.

The papers by Abbott et al.163 and Allen et al.164 discuss the value of the bias
when the two foregoing assumptions are not satisfied. For a finite number of non-
overlapping segments, the sample median is not equal to the true median of the
underlying Rayleigh distribution. Instead, the bias is given by

b(N)=



[
N∑

n=1

(−1)n+1

n

]1/2

if N is odd,

b(N−1) if N is even.

(B.10)

As one might anticipate, b(N) → (ln2)1/2 as N →∞. Table B.1 gives the value of b
for several values of N.

c We note in passing that in the case of Gaussian noise superimposed on a coherent line—for
example, shot noise superimposed on the vibrational mode from some optic—the ASD will instead
follow a Rice distribution:

p(r)= r
σ2 exp

(
− r2 +ν2

2σ2

)
I0

( rν
σ2

)
, (B.9)

where I0 is the modified Bessel function of the first kind, and ν describes the height of the line in
the ASD.

d Note that since the function x 7→ x2 is strictly increasing for x ≥ 0, one does not need to square
the ASDs before computing the median.
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N b

1 1.0000
3 0.9128

10 0.8635
30 0.8427

100 0.8356
300 0.8336

1000 0.8328
∞ 0.8326

Table B.1: Median bias factor b (to four decimal places) for N non-overlapping seg-
ments.

In the case of overlapping segments, the above formula for b is still not correct,
since the data in adjacent segments are correlated (i.e., one does not truly have N
independent samples from the underlying distribution). If median averaging with
overlap is desired (and the overlap is ≤ 50%), Allen et al. suggest computing the
medians m and m′ of the k even-numbered and k′ odd-numbered segments indi-
vidually, correcting by the appropriate bias factors b and b′, and then taking the
weighted rms of the two values:

ψ̂=
[
k(m/b)2+k′(m′/b′)2

N

]1/2

. (B.11)

This prescription is referred to as mean–median averaging.

B.4 Real-world example
We now demonstrate some of the above claims using data from the Advanced LIGO
H1 null stream.

The Advanced LIGO instruments read out the light at the antisymmetric port us-
ing two photodiodes (labeled A and B), each with photocurrent IA(t) and IB(t). The
sum I+ = IA + IB is the error signal for the differential arm length. The difference
I− = IA− IB is the null stream. Since A and B are balanced, the null stream should
contain only those noises which are uncorrelated between the two photodiodes.e

e Of course, it is only approximately true that A and B are balanced. In practice, the balancing
of A and B is tuned digitally in order to minimize the appearance of correlated noise in the null
stream. For H1 the required digital balancing is 0.3 %.
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Figure B.1: Three ASD estimates of the H1 OMC null stream. The first is the usual
bin-by-bin rms averaging of the 720 individual ASDs. The second is the bin-by-bin
median estimate, divided by (ln2)1/2. The third is the bin-by-bin median estimate,
without this correction factor incorporated.
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Figure B.2: Histogram of the H1 OMC null stream ASD at f = 100 Hz, assembled
from N = 720 individual segments. The observed median m was used to estimate
the parameter σ for the underlying Rayleigh distribution.

In particular, the null stream should be dominated by (1) the shot noise of the
light from the interferometer, and (2) the electronics noise of the photodiodes and
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their readout chains. In both cases we can reasonably expect that the noise in each
quadrature of each frequency bin is Gaussian.

We have taken two hours of raw H1 null stream data ( fsamp = 16384 Hz)f and pro-
cessed it as follows using gwpy:

1. We split the data record into N = 720 segments (with 50 % overlap and T =
10 s).

2. We apply a Hann window to each segment, and then apply a discrete Fourier
transform.

3. We take the magnitude of each DFT and normalize it, thereby producing 720
individual ASD estimates (with units of mA/Hz1/2). (The time stream I− is
already calibrated into milliamps.)

4. We produce averaged ASD estimates, either by rms averaging, or median av-
eraging. No rebinning is performed.

5. We undo the magnitude of the digital decimation filter, which otherwise pro-
duces significant rippling of the spectrum above 1 kHz.

Figure B.1 shows the rms and median ASD estimates for these two hours of null
stream data. The median is plotted twice, both with and without the (ln2)1/2 cor-
rection. Only with the correction factor applied does the median estimate coincide
with the rms estimate for this Gaussian channel.

Figure B.2 shows a histogram of the 720 ASD estimates at f = 100 Hz. We compute
the mean, median, and rms values, and use the median to estimate the parameter
σ (i.e., the mode) of the underlying Rayleigh distribution. The Rayleigh distribution
is then plotted on top of the histogram.

f More specifically, the data record is H1:OMC-DCPD_NULL_OUT_DQ, from 00:00:00Z to 02:00:00Z
2015–06–07.
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C Optical cavities

In this appendix we will review some concepts related to optical cavities and Pound–
Drever–Hall locking.

C.1 Definitions
We consider a Fabry–Pérot interferometer of length L, and with optics of reflectivity
ra and rb.

The circulating field Ecirc, the reflected field Erefl, and the transmitted field Etr are
given by

Ecirc(ω)=E0(ω)
ta

1− rarbe2iωL/c (C.1)

Erefl(ω)=E0(ω)
−ra+ rbe2iωL/c

1− rarbe2iωL/c (C.2)

Etr(ω)=E0(ω)
tatbeiωL/c

1− rarbe2iωL/c . (C.3)

By examining (C.1), we see that the frequency response is characterized by periodic
resonance: when e2iωL/c = 1, the denominator becomes very small since rarb ≃ 1 for
reasonably reflective mirrors.

We now define some commonly-used quantities relating to Fabry–Pérot cavities.
The periodicity of the frequency response is called the free spectral range (FSR):

fFSR = c/2L. (C.4)

The width of the resonance is characterized by the cavity pole fp = ωp/2π, which
is found by setting the denominator of (C.1) to zero and solving for ω. The result
is18,37

2πi fp =− c
2L

∣∣ln rarb
∣∣; (C.5)
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in other words, it is a single, real pole on the left-hand side of the s-plane. To derive
the next three quantities, we examine the circulating power

Pcirc(ω)
P0(ω)

=
∣∣∣∣Ecirc(ω)
E0(ω)

∣∣∣∣2 = t2a∣∣1− rarb e2iωL/c
∣∣2 = t2a

/
(1− rarb)2

1+ 4rarb
(1− rarb)2 sin2

(
ωL
c

) . (C.6)

The ratio Ecirc(0)/E0(0) is the cavity amplitude gain

g= ta
1− rarb

, (C.7)

and the cavity power gain is G = g2. The frequency for which Pcirc/P0 = 1/2 is the
half-width half-max frequency:

fHWHM = c
2L

× 1
π

arcsin
[

1− rarb
2(rarb)1/2

]
. (C.8)

In combination with the FSR, we can now define the finesse

F= fFSR
2 fHWHM

= π/2

arcsin
[

1− rarb
2(rarb)1/2

] . (C.9)

In the high-finesse limit, we have

fHWHM ≃ fp (C.10)

and
F≃ π(rarb)1/2

1− rarb
≃ 2π

L
, (C.11)

where L is the round-trip loss in the cavity (including transmission loss). This last
approximation follows by writing ra =

√
1−La and rb = √

1−Lb, with La,Lb ≪ 1,
and L=La+Lb.

Finally, some words about coupling. If ra < rb, the cavity is said to be overcoupled;
if ra = rb the cavity is said to be critically coupled, and if ra > rb, the cavity is said
to be undercoupled.

In the high-finesse limit, G and F have the following relationships in the strongly
overcoupled (rb = 1) and critically coupled cases:

G ≃ 2F/π (strongly overcoupled) (C.12a)
G ≃F/π (critically coupled). (C.12b)

Another important quantity is the visibility:

v= 1− Prefl(0)
Prefl( fFSR/2)

. (C.13)
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C.2 Pound–Drever–Hall locking
In the Pound–Drever–Hall technique,167 the light into the cavity is phase-modulated
with an index Γ at an rf frequency Ω/2π, and the rf beatnote is read out in reflection
of the cavity.

We assume the cavity is on resonance at dc, and is subject to a phase modulation
of index γ at audio-band frequency ω/2π.

The field into the cavity is

Ein =
p

2E0 cos
[
ω0t+ΓcosΩt+γcosωt

]
(C.14a)

= E0p
2

eiω0teiΓcosΩteiγcosωt+cc (C.14b)

≃ E0p
2

eiω0t
{

1+ iΓ
2

eiΩt+ iΓ
2

e−iΩt+ iγ
2

eiωt+ iγ
2

e−iωt

− Γγ

4

[
ei(Ω+ω)t+ei(Ω−ω)t+ei(−Ω−ω)t+ei(−Ω+ω)t

]}
+cc, (C.14c)

where we have kept terms of order 1, Γ, γ, and Γγ.

Upon reflection from the cavity,

Erefl = E0p
2

eiω0t
{
r0 + iΓ

2
rΩeiΩt+ iΓ

2
r−Ωe−iΩt+ iγ

2
rωeiωt+ iγ

2
r−ωe−iωt

− Γγ

4

[
rΩ+ωei(Ω+ω)t+ rΩ−ωei(Ω−ω)t+ r−Ω−ωei(−Ω−ω)t+ r−Ω+ωei(−Ω+ω)t

]}
+cc.

(C.15)
We have made the assumption that the carrier is exactly resonant, so r0 is real. We
further assume the rf sidebands are exactly antiresonant, so rΩ is real and equal
to r−Ω. This means additionally that r−ω = r∗ω and rΩ−ω = r∗Ω+ω. Then

Erefl = E0p
2

eiω0t
{
r0 + iΓrΩ cosΩt+ iγRe(rω)cosωt− iγIm(rω)sinωt

−Γγcos(Ωt) [Re(rΩ+ω)cosωt− Im(rΩ+ω)sinωt]
}+cc (C.16)

≡ E0p
2

eiω0tψ+cc, (C.17)

where ψ refers to the terms in curly brackets. Then the detected optical power is

Prefl =E2
refl (C.18a)

= E2
0

2

[
eiω0tψ+e−iω0tψ∗

]2
(C.18b)

= P0

2
×2ψ∗ψ+ (terms at 2ω0) (C.18c)

= P0ψ
∗ψ. (C.18d)
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The PDH error signal is made by demodulating the reflected power Prefl at the rf
frequency Ω/2π. If we are interested at the error signal response at audio frequency
ω/2π, then when computing Prefl we therefore need only to consider terms that
oscillate at ±Ω±ω. Then

Prefl = 2P0Γγcos(Ωt)
{
[−r0 Re(rΩ+ω)+ rΩRe(rω)]cosωt

+ [r0 Im(rΩ+ω)− rΩ Im(rω)]sinωt
}+ (other terms). (C.19a)

Demodulating at Ω/2π and low-pass filtering yields the following phase-to-power
transfer function: 〈Prefl〉Ω

γ
= P0Γ

(−r0r∗Ω+ω+ rΩr∗ω
)
. (C.20)

We can recast this as a frequency-to-power transfer function by recalling the Laplace-
domain relation 2πν(s) = γ̇(s) = sγ(s). Additionally, in the more general case that Γ
is not much smaller than 1, we can replace Γ by 2J0(Γ)J1(Γ). Therefore, the PDH
reflection transfer function is

D( f )= P( f )
ν( f )

= 2P0J0(Γ)J1(Γ)
−r(0)r( fFSR/2+ f )∗+ r( fFSR/2)r( f )∗

i f
. (C.21)

To calculate the expected dc gain |D(0)|, we apply L’Hôpital’s rule to the fraction in
equation C.21. We can write r( f )≃ (∂r/∂f )

∣∣
0 f . The derivative is

∂r
∂f

∣∣∣∣
0
= 2π

∂r
∂Φ

∂Φ

∂ω

∣∣∣∣
0
= 2π

t2arb
(1− rarb)2︸ ︷︷ ︸

≡r′0

×
(
i
2L
c

)
= 2πir′0

fFSR
, (C.22)

where Φ= 2ωL/c is the round-trip phase of the cavity, and hence r′0 = ∂r/∂Φ
∣∣
0 is the

derivative of the reflectivity with respect to the phase. Therefore,

D(0)=−2P0J0(Γ)J1(Γ)
2πrΩr′0
fFSR

. (C.23)

We now want to derive the frequency dependence of D( f ) for f ≪ fFSR. In this
limit, we have r( fFSR/2+ f )≃ r( fFSR/2), so the numerator in equation C.21 becomes
approximately

r( fFSR/2)
[−r(0)+ r( f )∗

]
, (C.24)

which has 0 as its lowest-order zero and fp as its lowest-order pole. This means that
equation C.21 behaves as a single-pole filter with dc gain |D(0)| and pole fp:

D( f )≃ D(0)
1+ i f / fp

. (C.25)
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In the limit of critical coupling (ra = rb ≡ r) and high finesse (1− r2 ≪ 1), we have
r′0 = r/(1− r2)=F/π= fFSR/2π fp and rΩ ≃ 1, so

D(CC)(0)=−2P0J0(Γ)J1(Γ)/ fp. (C.26)

On the other hand, in the case of strong overcoupling (rb = 1), one finds r′0 = 2F/π,
and hence

D(OC)(0)=−4P0J0(Γ)J1(Γ)/ fp. (C.27)

C.3 Michelson locking
Here we examine rf Michelson locking. Again the input light is phase modulated
with an index Γ at an rf frequency Ω. The field incident on the Michelson’s symmet-
ric port is

Ein(t)=
p

2E0 cos[ω0t+ΓcosΩt] (C.28a)

≃ E0p
2

eiω0t
[
1+ iΓ

2
eiΩt+ iΓ

2
e−iΩt

]
+cc. (C.28b)

Upon transmission through the Michelson, the field at the antisymmetric port is

Eas(t)= iE0p
2

eiω0t
{

eiω0ℓ+/c sin
(
ω0ℓ−
c

)
+ iΓ

2
ei(ω0+Ω)ℓ+/c sin

[
(ω0+Ω)ℓ−

c

]
eiΩt

+ iΓ
2

ei(ω0−Ω)ℓ+/c sin
[

(ω0−Ω)ℓ−
c

]
e−iΩt

}
+cc. (C.29)

We assume that the interferometer is operated close to a dark fringe; that is, the
microscopic phase offset δϕ− =ω0δℓ−/c ≃ sin(ω0ℓ−/c) is small. However, the macro-
scopic phase offset (Schnupp asymmetry) is large, so that we have non-negligible
sideband transmission to the antisymmetric port.

We want to keep all terms only to linear order in δϕ−. The carrier term itself is
linear in δϕ−, so we will keep only the dc sideband terms. To that end, we note that
(to zeroth order in δϕ−) we have

sin
(ω0 ±Ω)ℓ−

c
= sin

(
ω0ℓ−
c

)
cos

(
Ωℓ−
c

)
±cos

(
ω0ℓ−
c

)
sin

(
Ωℓ−
c

)
(C.30a)

≃ sin
(
Ωℓ−
c

)
(C.30b)

≡Φ−, (C.30c)
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so

Eas(t)≃ iE0p
2

eiω0teiω0ℓ+/c
[
δϕ−+ iΓ

2
Φ−eiΩℓ+/ceiΩt− iΓ

2
Φ−e−iΩℓ+/ce−iΩt

]
+cc (C.31a)

=−
p

2E0 sin(ω0t+ω0ℓ+/c)
[
δϕ−−ΓΦ− sin(Ωt+Ωℓ+/c)

]
. (C.31b)

The power sensed by the photodiode is

Pas = 〈E2
as〉ω0 (C.32a)

= P0
[
δϕ−−ΓΦ− sinΩt

]2 (C.32b)
= P0

[
δϕ2

−−2ΓΦ−δϕ− sinΩt+Γ2Φ2
− sin2Ωt

]
(C.32c)

with P0 =E2
0. Therefore, demodulating at Ω/2π yields

〈Pas〉Ω = P0Γsin(Ωℓ−/c)δϕ−. (C.33)
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D Some algebra for the differential
arm length plant

This section records some algebra for transforming the optomechanical plant for
detuned resonant sideband extraction from the Buonanno and Chen formalism
to a version that is more friendly to hands-on control room measurements and
calibration (chapter 5).

We start with the transfer function extracted by Ward from the Buonanno/Chen
input/output relations:

δP
δh

∝ tseiβ [(
1− rse2iβ)cosϕcosζ− (

1+ rse2iβ)sinϕsinζ
]

1+ r2
se4iβ−2rse2iβ

[
cos2ϕ+ (K/2)sin2ϕ

]
√√√√ 2Pbsω

2
0

ω2
a+ω2

(D.1)

with β=−arctanω/ωa ≡ arctan(−x) and

K= 8Pbs
ML2

ω0

ω2(ω2
a+ω2)

= 8Pbs
ML2

ω0

ω2
aω2

1
(1+ ix)(1− ix)

. (D.2)

Note

eiβ =
√

1− ix
1+ ix

. (D.3)

The prefactor in equation D.1 can be rewritten as

ts

√
1− ix
1+ ix

√√√√ 2Pbsω
2
0

ω2
a(1+ ix)(1− ix)

= ts
√

2Pbsω0/ωa
1+ ix

. (D.4)
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The numerator in equation D.1 can be rewritten as(
1− rs

1− ix
1+ ix

)
cosϕcosζ−

(
1+ rs

1− ix
1+ ix

)
sinϕsinζ (D.5a)

= cos(ϕ+ζ)− rs
1− ix
1+ ix

cos(ϕ−ζ) (D.5b)

= 1
1+ ix

[
(1+ ix)cos(ϕ+ζ)− rs(1− ix)cos(ϕ−ζ)

]
(D.5c)

= cos(ϕ+ζ)− rs cos(ϕ−ζ)
1+ ix

[
1+ ix× cos(ϕ+ζ)+ rs cos(ϕ−ζ)

cos(ϕ+ζ)− rs cos(ϕ−ζ)

]
. (D.5d)

The denominator can be rewritten as

1+ r2
s

(
1− ix
1+ ix

)2
−2rs

1− ix
1+ ix

[
cos2ϕ+ α

x2(1− ix)(1+ ix)
sin2ϕ

]
(D.6a)

= 1
(1+ ix)2

[
(1+ ix)2+ r2

s(1− ix)2−2rs(1− ix)(1+ ix)cos2ϕ−2rs
α

x2 sin2ϕ
]

(D.6b)

= 1
(1+ ix)2

{[
(1+ ix)− rse2iϕ(1− ix)

][
(1+ ix)− rse−2iϕ(1− ix)

]
− irs

(
e2iϕ−e−2iϕ

) α

x2

}
(D.6c)

= 1
(1+ ix)2

{
[(1− p)+ (1+ p)ix]

[
(1− p∗)+ (1+ p∗)ix

]− i(p− p∗)
α

x2

}
(D.6d)

= 1
(1+ ix)2

{
(1− p)(1− p∗)

[
1+ ix× 1+ p

1− p

][
1+ ix× 1+ p∗

1− p∗

]
− i(p− p∗)

α

x2

}
(D.6e)

= (1− p)(1− p∗)
(1+ ix)2

{[
1+ ix× 1+ p

1− p

][
1+ ix× 1+ p∗

1− p∗

]
− i(p− p∗)

(1− p)(1− p∗)
α

x2

}
, (D.6f)

where p= rse2iϕ and α= 4Pbsω0/(ω4
aML2).

Therefore, an equivalent representation of equation D.1 is

δP
δh

∝ ts
√

2Pbsω0

ωa
× cos(ϕ+ζ)− rs cos(ϕ−ζ)

1−2rs cos2ϕ+ r2
s

×


1+ i f

fa
× cos(ϕ+ζ)+ rs cos(ϕ−ζ)

cos(ϕ+ζ)− rs cos(ϕ−ζ)[
1+ i f

fa
× 1+ rse2iϕ

1− rse2iϕ

][
1+ i f

fa
× 1+ rse−2iϕ

1− rse−2iϕ

]
− 2αrs sin2ϕ

1−2rs cos2ϕ+ r2
s

f 2
a
f 2

 .

(D.7)

We can tidy this up by defining the complex RSE pole

p= fa× 1− rse2iϕ

1+ rse2iϕ , (D.8)

the square of the spring frequency

ξ2 = f 2
a × 2αrs sin2ϕ

1−2rs cos2ϕ+ r2
s
, (D.9)
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which may be positive or negative, and the (real) RSE zero

z= fa× cos(ϕ+ζ)− rs cos(ϕ−ζ)
cos(ϕ+ζ)+ rs cos(ϕ−ζ)

(D.10)

so that equation D.7 becomes

δP
δh

∝ ts
√

2Pbsω0

ωa
× cos(ϕ+ζ)− rs cos(ϕ−ζ)

1−2rs cos2ϕ+ r2
s

×
[ 1+ i f

/
z(

1+ i f
/
p
)(

1+ i f
/
p∗

)−ξ2
/
f 2

]
. (D.11)
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E In-situ test mass ringdown
measurement

Here we present an in-situ estimate of the coating and substrate thermal noise of
an Advanced LIGO test mass, determined from the ringdown times of several of the
test mass body modes.

The loss angle ϕ= 1/Q of a particular test mass mode is related to the loss angle of
the substrate and of the coating by

ϕ= Usϕs+Ucϕc
Us+Uc

, (E.1)

where Us is the portion of the mode’s strain energy stored in the substrate, and Uc

is the portion in the coating. Because the volume of the coating is much smaller
than the volume of the substrate, it is almost always the case that Us ≫Uc, and in
this situation we can say to very good approximation

ϕ=ϕs+Uc
Us

ϕc. (E.2)

If we know the loss angles and energy configurations of several modes, we can
estimate the underlying loss angles ϕs and ϕc.

Three modes were measured: a butterfly mode, the lowest-order drumhead mode,
and the next-lowest-order drumhead mode (with a horizontal nodal line). Each
mode was excited electrostatically using the high-frequency actuation path nor-
mally used to damp parametric instabilities;168 the ringdown was observed in the
differential arm length readout. The Q factor of each mode was determined with
least-squares fitting and the uncertainty was determined by examining the χ2 of
the fit. The energy configurations were determined by finite element analysis: a
simple Comsol model of a cylindrical piece of fused silica (with dimensions match-
ing the test mass) was used to extract the bulk energy Us of the optic (in joules)
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f (Hz) Q
∂Uc/∂z
Us

(
m−1)

Butterfly 6054 2.53(26)×107 13.3

Drumhead 1 8158 2.13(45)×107 13.9

Drumhead 2 9830 4.69(59)×107 3.3

Table E.1: Data for determining the test mass coating and substrate loss from mea-
sured end Y optic ringdowns. The frequencies and Q factors are measured, and the
energy ratios are determined via finite-element analysis.

and the surface energy ∂Uc/∂z of the optic face (in joules per meter). The energy
in the coating is then Uc = (∂Uc/∂z)d, where d = 6.2μm is the thickness of the end
test mass coating. The measured frequencies, modeled energy configurations, and
measured Q factors are given in table E.1.

To estimate ϕs and ϕc, we now turn to Bayesian analysis. As usual, our goal is to
compute a posterior probability on ϕs and ϕc given our measurements {ϕi}:

p
(
ϕs,ϕc

∣∣{ϕi}
)= p

(
{ϕi}

∣∣ϕs,ϕc
)
p(ϕs,ϕc)

Z
. (E.3)

Since in principle either ϕc or ϕs could range over several orders of magnitude, we
choose the log-uniform prior

p(ϕs,ϕc)= 1
ϕsϕc

. (E.4)

Our log-likelihood function is

lnL∝ ln p
(
{ϕi}

∣∣ϕs,ϕc
)∝−∑

i

(
ϕi− ϕ̂i

)2

2σ2
i

, (E.5)

where ϕi is the measured loss angle of mode i, σi is the uncertainty of the measure-
ment, and

ϕ̂i =ϕs+ ∂Uc/∂z
Us

dϕc. (E.6)

Here we are assuming that both the coating and the substrate losses are struc-
tural. Our overall log-probability function for the Monte–Carlo simulation is then
proportional to lnL+ ln p(ϕs,ϕc). The simulation yields the joint posterior shown
in figure E.1. The 1D marginalizations of the posterior yield the following median
values (with 1σ uncertainties):

ϕs = 1.56(39)×10−8 and ϕc = 2.8(8)×10−4. (E.7)
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Figure E.1: Posterior pdf of Advanced LIGO test mass loss angles ϕs and ϕc, as
determined from end Y ringdown data. Dashed lines in the 1D (marginalized) pos-
teriors show 16th, 50th, and 84th percentiles of the posterior. The solid contours
in the 2D (joint) posterior show 0.5σ, 1σ, and 1.5σ contours.

With our knowledge of ϕs and ϕc, we can estimate the expected coating thermal
noise level in Advanced LIGO. Implicit in our finite-element analysis is the assump-
tion that the coating has the same material properties as the substrate. This is not
correct (nor is it correct to speak of a single “loss angle” common to both bulk and
shear strain),89 but nonetheless it is consistent with the theoretical analysis of
Nakagawa et al.,169 who computed the Brownian noise of a test mass coated with a
single lossy layer whose material properties match those of the substrate. In terms
of displacement noise, their result is

Sxx( f )= kBT(1−σ2)
π3/2 f wE

[
ϕs+ 2

π1/2
(1−2σ)
(1−σ)

d
w
ϕc

]
. (E.8)

With E = 72GPa, σ = 0.17, w = 62mm, and T = 300K, and with the loss angles
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inferred in this appendix, this yields

Sxx( f )1/2 = [
8.1(8)×10−21 m/Hz1/2]×(

100Hz
f

)1/2
(E.9)

for the end Y test mass. This is somewhat higher than—but consistent with—direct
audio-band measurements by Gras et al.90 on end test mass coating witness sam-
ples, where the reported value is Sxx( f )1/2 = [

7.1(3)×10−21 m/Hz1/2]×(
100Hz

/
f
)1/2.
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