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ABSTRACT

A study is made of compressible perfect fluid motion in
turbomachines having infinitely many blades and a general theory
is developed. An underlying concept of the theory is that force
fields which represent the action of infinitely many blades belong
to a special class described as pseudo-conservative and can be
expressed as the product of a scalar function and the gradient of
a potential. The scalar function is simply the rate at which energy
is iméarted to the fluid by the blades, and the potential is simply
the family of the equations for the blade surfaces. The introduc~
tion of these two functions to express the force field casts an en-
tirely new light on problems of mixed-flow turbomachines having
infinitely rhany blades of arbitrary shape.

In the formulation of the problem the non-lineakr action of
rotationality and compressibility is regarded as a force tending
to displace the streamsurfaces from their irrotational, incom-
pressible position. It is shown that the character of the problem
is determined by a governing velocity: the velocity relative to the
blades where blades are present, or the meridional velocity,
where blades are not present. Where the governing velocity is
rsubsonic the problem is essentially elliptic, where sﬁpersonic ,

hyperbolic.



The theory and the examples lead to conclusions which
are believed to explain in part the unexpected efficiencies ob-
served for compressors having transonic governing velocities.
These conclusions, which indicate that transonic compressors
could perhaps be profitably developed, are as follows: The de-
flection of the stre‘amsurfaces induced by a given strength of
vorticity at a certain point in the flow has one sense when the
governing velocity at the point is subsonic, the opposite sense
when it is supersonic, and becomes zero as it becomes sonic.
The deflection of the streamsurfaces brought about by a given
distribution of vorticity in a region is less when the governing
velocity in the region is transonic than when it is entirely sub~-
sonic or entirely supersonic.

Examples of incompressible flow through a mixed flow
compressor wifh préscribed blades, and subsonic and transonic
flov# through actuator diské. , were solved by the method of
finite differences, applying simultaneously the relaxation

technique and an iteration process.
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I. INTRODUCTION

In a real turbomachine a viscous, compressible fluid flows
through an axially symmetrical channel. In a region of this channel
a system of blades, either stationary or rotating about the axis of
symmetry, acts on the fluid. The field of the flow, being bounded
by the surfaces of the blades as well as by the chan;nel boundaries,
is not circumferentially uniform. The total energy of the fluid may
\;ary from point to point in the field, the flow is generally rotational,
and if the blade system rotates, the flow is unsteady. The real
problem is thus a vei-y formidable one, and cannot be approached
exactly by methods known today. If viscous effects are neglécted
the problem is greétly simplified. Because of this, and because
viscous effects actually are very slight except near the boundaries, \
the assumption of zero viscosity has always been made.

A brief but excellent review of the earlier important invest:':
gations of the flow in turbomachines is given by Marble (Reference 1}.
Earlier investigations were concerned primarily with the flow through
a typical annulus of small radial extent and hence treated the flow as
essentially two-dimensional, e. g. Traupel (Reference 2). Inteffe;‘-
ence between the flow in neighboring annular regions was assumed
negligible, a condition which is fulfilled only if the centrifugal forces

and the radial pressure gradient forces are in balance, that is, if
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the ‘flow is that of a vortex centered on the axis of rotation. This
is a rather severe restriction, too strong to be imposed in most ap-
plications.

The first detailed analysis of the three-dimensional incom-
pressible flow in turbomachines was given by Meyer (Reference 3).
An exact solution was obtained for machines in which the flow is ir-
rotationalupstream and downstream of the rotor, although the flow
within the rotor may be rotational. 'I\/Ieyer achieved circumferential
uniformity by assuming an infinite number of very thin blades, and
then modified this resulf; by a Fourier ‘analyéis to obtain the solution
for a finite number of blades. This was an important contribution
but the extension to arbitrary blade shape, with rotationgl flow down-
stream of the rotor, has not been made. -

Marble (References 1 and 4) linearized the rotational incom-
pressible problem with an infinite number of blades by the assump-
tion that the vorticity is transported along the streamlineé of an ir-
rotational flow within the same boundaries. He provided examples
of axial flow and conical flow, and stated that the simple linearized
solution was sufficiently accurate if the vorticity effects were not
large. A second order linearization was given to handle problems
~ in which the vorticity effects are large. Using the simple linear-

izations Marble considered three interesting problems: the mutual

interference of neighboring blade rows in a multistage axial turbo-
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machine, the solution for a single blade row of given shape, and
the solution for this blade row operating at a condition different
from the design point.

The "two-dimensional" compressible flow in a centrifugal
compressor with a finite number of straight blades was investigated
by Stanitz and Ellié (Reference 5). Flow was considered in a narrow
passage the center-line of which generated a right circular cone when
rotated about the axis of the compressor. The two—diimensional flow
pattern lay on this cone, and the flow conditions were assumed to be
uniform across the passage normal to the conical surface. The
analysis yielded the first detailed information about compressible
flow between blades with finite spacing, but three-d;mensional ef-
fects were not included, and only the flow between straight blades
was examined.

The present analysis is concerned with an idealized problem
that differs from the real problem only in that the fluid is inviscid
and the number of blades is infinite. The fluid may be compressible
but the occurrence of shock waves is excluded. The more general
mixed-flow, where both the axial and radial velocity components may

be large, is considered. Included are the special cases of axial-

flow, where the axial velocity component is much larger than the

radial component, and radial-flow, where the radia;lvvélocity com=

ponent is much larger than the axial component. The shape of the
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blades is completely arbitrary. The two assumptions which make
the analysis possible are: the fluid considered is non-viscous, and
the number of blades is infinite. The viscosity of the fluid is unim-~
portant except within the boundary layers along all the bounding sur-
faces, and these boundary layers are thin if pressure gradients are
favorable. Furthermore, an elementary consideration of boundary
layers often presupposes a knowledge of the velocity distributions
such as ?btained by this analysis. The assumption that the number
of blades is infinite makes the flow field circumferentially uniform.
This uniformity makes the solution easier in that the flow depends
only on two coordinates, but at the same time it introduces arti=
ficial complications. Generally there will be a discontinuity in
the flow as it enters this blade region if the number of blades is
infinite . Furthermore the force of the blades on the fluid is not
applied on individual blade surfaces, but is distributed throughout
the blade region and actually acts as a body force field distributed
throughout the region. The circumferentially uniform flow field
may be considered as the limiting case of a flow acted upon by a
very large number of closely spaced blades of negligible thickness.

Two distinct problems occur in practise. The design prob-
lem arises when it is desired to design a machine for a particular

purpose. The analysis problem arises when it is desired to
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investigate a given machine under given operating conditions. These
problems were classified by Marble (Reference 4) as the indirect and
the direct problem, respectively, in analogy with the three-dimen-
sional wing theory. This classification is convenient and very sig- -
nificant, Here any problem in which the blade shape is prescribed
will be classified as a direct problem, any other problem as an in-
" direct problem. The full significance of this distinction becomes
clear when the circumstances under which the idealized problem is
actually comparable to a real problem are understood.

In the real machine, which has a finite number of blades,
each blade tr’ansmit; a force to the fluid by maintaining a discontin-
uity in pressure across its two surfaces. If no viscous force is
present this blade force must be normal to the blade surface. In
idealizing the problem these concentrated blade forces are essen-
tially replaced by a body force field. Clearly this body force field
must be normal to the family of blade surfaces throughout the region
of the blades if the two problems are to be comparable, It is im-
portant to note that this imposes a purely geométrical restriction
on the body force field. It will be shown that the necessary and suf-
ficient condition that it be possible to construct a family of surfaces
which are everywhere perpendicular to a given force field is that the
force field is everywhere perpendicular to its own curl. If the blade

shape is prescribed, as in the direct problem, this offers no difficulty.
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However in the indirect problem where the blade shape is one of
the things to be determined, the prescribed quantities, which for
example , may be components of the force field or the energy dis-
tribution, must be prescribed in such a way that the existence of
the family of blade surfaces is assured beforehand. This necessity*
was noted by Meyer (Reference 3) in connection with the prescrip-
tion of vorticity in the indirect problem, but was overlooked by
Reissner (Reference 6), Gravalos (Reference 7}, and several others.
When the streamwise extent of the working region is much less than
its transverse extent, that is, if t};e blade aspect ratio .is large, as
in most axial flow problems, the idealized flow will be comparable
to the real flow even though the blade existence has not been assured.
Thus Marble (Reference 4) \;ras able to obtain good approximate
solutions of the indire‘ct axial flow problem by prescribing blade
force components. However in mixed-flow problems the aspect
ratio is not large, and in the indirect mixed-flow problem the exist-
ence of the blades must be assured beforehand. _

In the real problem one boundary condition is that the fluid
does not flow th?ough the blade surfaces. This cannot be applied

as a boundary condition in the idealized problem since the blade

surfaces, being infinite in number, are not boundaries of the flow.

*Information lately received reveals that this condition for intégra-
bility of the blade surfaces was stated by Bauersfeld as early as
1905 in a paper (Reference 10) not available at the time of writing.
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Instead the fluid in the region of the blades is constrained to move-
ment on the blade surfaces. This constraint, quite different from
the boundary condition of the real problem, plays an important part
in the mathematical formulation of the idealized problem. The
\geometrical relation which expresses the constraint is equal in
significance to the other equations and must be considered simul-
taneously with them. In addition, with uniform inlet conditions and
an incompressible fluid, the differential equation for the flow is
linear in the region of the blades, although it is generally non-linear
downstream of this region. This fact enabled Meyer {Reference 32
to-find exact solutions for flows in which the vorticity downstream
of the blades is zero, although the flow may be rotational and very
complicated in the region of the blades.
e

To summarize, the idealized problem must satisfy the equa-

tions of motion--with the body force field included, thé continuity
-

equation, the isentropic pressure-density relation, and those boun-
dary conditions of the real problem not applied on the blade surfaces.
The two additional requirements which must be fulfilled if the so-
lution of the idealized problem is to be comparable to the real prob-
lem are: the body force field must be normal to the family of blade
surfaces; and the velocity vector field must be parallel to the fam=-

ily of blade surfaces.

In the direct problem the blade shape is known and these
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supplementary conditions can easily be imposed. For the indirect
problem in which force components are prescribed these require-
ments should be expressed in terms of the force components as
follows: the body force field must be normal to the velocity vector
field; and the force vector must be normal to its own curl. These
assure the existence of a family of surfaces which can be chosen
to fulfill the two requirements stated above for the direct problem.
If in the indirect problem other guantities such as energy distribu~
tion are prescribed, equivalent requirements must be satisfied.

The idealized problem is formulated in terms of a stream
function for the velocities in the meridional plane, and the result-
ing differential equation for the stream function is written as a
second order non-homogeneous partial differential equatioﬁ by re-
garding the non-linear terms, representing the effects of rotationality
and compressibility, as forcing functions tending to displace the
streamsurfaces. The differential equation is theﬁ re}alaced by a
finite difference equation which is solved by a simultaneous appli-
cation of the relaxation technique of Southwell (Reference 8) and an
iteration process.

‘The general theory is developed in Parts II through VI, and
the difference formulation and examples are presented in Parts

VII, VIII, IX, and X. The examples were conceived in order to

demonstrate separately the different phases of the problem. Part
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VIII is concerned with incompressible flow through a region of
prescribed blades and is primarily an example of rotationality
in a mixed-flow compressor . Part IX is offered as an example
of the effects of compressibility when the vorticity distribution ;
is approximately constant. Part X is an example of the inter-

action of rotationality and compressibility effects when the total

velocity is transonic but the governing velocity is subsonic.
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II. COORDINATES, NOTATION, SYMBOLS

The flow is described (Figure 1) for the most part in an ab-

solute cylindrical coordinate system r, 6, z by the velocity compon~
)8 :

ents u, v, w respectively. The absolute velocity vector is:

—

V=7/iu+igv + /W
where j,, 7 ,and 7z are unit vectors in the r,0, and z directions

respectively. The vorticity components for circumferentially uni-

form flow are respectively:

v P78
>z ; 8

_ ) - _ _ 2 drv
5——6_2 /’2_()2 or - r or (1)

and the vorticity vector, 2= vx V | is:

Figure 1

The Velocity and the Vorticity Components in the Absolute Coordinate
System

The scalar functions u, v, w, § ,l'l.S are independent of the 6

coordinate in accordance with the requirement of circumferential uni-

formity.
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The force of the blades on the fluid is given by

F ol Fr o+ igFo + 12 F2

length
2

At times the relative cylindrical coordinates r, ¢, z, where

and has the dimensions of force/unit mass, or

time
¢ is measured with respect to the rotor, will be used. If the angular
velocity of the rotor is «) , the absolute and relative velocities are
related by:
L de - d¢ = wdt (2)

The velocity and vorticily vectors in the relative system are respec-

tively:
W=7—7;,wr=i‘,.u+7;(v—wr)+7;w , and
A=0-72w0 =78 +ign +iz({-2)

The intrinsic coordinates n, 0, s will often permit a more
concise presentation (Figure 2) . n is distance normal to the merid-
ional streamline and s is distance along the meridional stfeamline .
The velocity and vorticity vectors are respectively:

V=i—év+75"q5, and

A =iy +7gn +isdls,

where
- ! drv _ 4 orv
f,lh"_ras )ns—’b"’,
P)
Hn = - Ks 9s —-T;_,gs (3)

and where Ks is the curvature of the meridional streamline.

The family of the blade surfaces is given by a scalar function
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Meridional Trece
of Streamsurface

Figure 2

The Velocity and the Vorticity Components in the Intrinsic Coordinate
System

of position, called the blade surface function:

Alr,e,z)= ©-7(r,z) - (4)
A blade surface is defined by B = constant. The function f(r,z}= (8-8)
defines the family ofrthe traces of the blades in a meridional ﬁlane .
The normal to the blade surface is

vE = —irfrtieF ~Tz%s )
Since the blade force F is always normal to the instaﬁtaneous sur-
face of the blades it can be e'kpressed as

FE = Mrz) vB(r, 8 2) (6)
This defines the scalar function A (r,z}s From the second equation
of motion it will be shown léter that «A is the local rate at which
energy is added to the fluid by the action of the blade force-s .8

-1
and f are non-dimensional, 7/3 has dimensions of (length) , and
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length2

has dimension of >

time

Note that v/ , the normal to the blade surface, is not a unit
vector. Instead it is chosen so that its tangential component is unity.
Thus the magnitude of the t»angential component of the force vector
is sifﬁply Fo =4+ A.

Miscellaneous 'Syrhbols : |

Y

zZ = raa—-;f

p = static pressure’

p = density /

a = speed of sound

y = ratio of specific heats

t = time

E = ELVZ/-/%/'O = total energy of the fluid

( )4 subscript denotes condition far upstream of the region
"~ 7 of the blades, or at the upstream boundary

( )t' subscript denotes condition at the trailing edge of the
blades

( ), () . partial differentiation with respect to r and z re-
sfectively, unless otherwise defined.

a_ = angle between the blade surface and the meridional
plane measured in a plane where z is constant

a. = angle between the blade surface and the meridional
plane measured in a plane tangent to the surface where
r is constant.

a_ = angle between the blade surface and the meridional

plane measured in a plane normal to their line of inter-
section
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Ks = curvature of the meridional streamline

Kn‘ = curvature of the normal to the meridional streamline
9, = meridional velocity component

Q ='residual" of the difference operator

D( ) = difference operator

7 = circulation about an annular vortex ring
¢ = angle between meridional velocity and axis
aij = influence coefficients
M = Mach number
ro = outer radius
r, = inner radius
r-r:

r = = non-dimensional radius
Y :
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III. THE #SEUDO-CONSERVATIVE FORCE FIELD
AND THE BLADE SURFACE FUNCTION

A) The Necessary and Sufficient Condition for the Existence of the
Family of Blade Surfaces B

The body force field F is normal to the family of glade sur-
faces B8, hence F and v/3 are parallel and can be relateti< by
F=Alrz)v@(r,?,z) | (6)
where A\ (r,z) is a scalar function, and V[J’ is a function of only r
and z because of circumferential uniformity. Writing
(47 - v
and taking the curl of both sides there results:
[+ v« F + v(+)x F =o
Then forming the scalar products with F R
[;\4— F-vaxF =o0
and since A is not zero unless |F| is zero,
EF-pxF =o0 (7)
This is the necessary condition for the existence of the family of
blade surfaces, and is the additional relation which must be fulfilled
in the indirect problem if the idealized problem is to be comparable
to a real problem.
In order to discuss the question of blade existence suppose
that in the indirect problem force components are to be prescribed. .
First consider flow through the channel with no force present. The

flow is completely determined by the equations of motion, the con-

* The applicability of Equation (6) and the subsequent derivation
of Equation (7) were pointed out by Dr. Arthur Erdelyi in personal
conversation.
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tinuity equation, a pressure-density relation, and the necessary
boundary conditions. Now consider flow through the same channel
with force-s'present. Three unknowns, the three force components,
have been added to the problem. Qne equation, the requirement
that the relative streamline be normal to the force field, has been
added:

w-F =0 (8)
At this point it appears that two components of the force can be
prescribed arbitrarily. The third component would then be expressed
by means of Equation (8}, and the problem would be completely de-
fe rmined as in the channel with no force acting. The solution would
describe a flow under the action of the prescribed forces, but would
not necessarily be comparable to a flow acted upon by blades because
the existence of the blade surfaces has not been assured. . If Equation
(7) is imposed the problem is redundant, for with two force compon-
ents prescribed there are more equations than unknowns. An example
will give physical meaning to this difficulty. Suppose the two com-

ponents F and F, are prescribed as:

)
Fr =0 ; Fp= Folrz)

F, can be expressed in terms of these and the velocity by Equation
(8) as:

F V=-wr »
=% = - - )
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The three force components are then known and the problem is com-
pletely prescribed as in the channel with no force acting. The solu=
tion will give u, v, w as functions of r and z. Now the equation as to

the existence of blade surfaces is raised. Egquation (7) for this case is

dFz

; OrFfo
~Fo3y * Fz¥ or = O,
from which
Fz . T
N = functio f z onl 10
S unction o nly (10)

The problem is clearly over prescribed, for F, is restricted when
Equation (10) is imposed. Hrthermore, it is clear what should be
Z

prescribed. If F. is zero, then ;';; can be a prescribed function
8

of z only. From Equations (9) and (10},

V-wr _  _ Fz

= LZ = or ,x function of z
w Fo

This function of z that may be prescribed represents an angle be -
tween the relative velocity and the meridional plane and actually is
the blade shapé parametér -le(z) defined below. Thus when the exist~
ence of blades is assured the indirect problem with force ‘c'orﬁpone‘nts
properly prescribed is equivalent to the dir-elct problem with the
blade shape prescribed.

B) The Most General Form of the Body Force Field

The reason that the two force components cannot be indepen-
dently prescribed is that the force field, although non-conservative,
is restricted in form. The most general force field that will satisfy

1

Equation (7) is given by Equation (6). This is the most general force
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field for which a family of blade surfaces actually exists and is

therefore the most general force field possible in turbomachine

problems where the number of blades is infinite. For this reason
it is proposed for all such problems that the body force field be
expressed as the product of a scalar function and the gradient of
a potential:

F=Avp =Avie-firdf | (11)
This force field has a special place Eetween conservative fields
and non-conservative fields. A conservative force field can be

: T

expressed in terms of one scalar function, its potential. A non-
conservative force field requires three scalar functions for expres-
" sion, one for each Component. The force field of the turbomachine s
being intermediate between these in that it requires two scalar
functions for expression, might be called a pseudo-conservative
force field. Actually its vectors have the same direction as a con-
servative field, but not the same magnitude.

This fact that the force field depends on only two scalar
functions indicates why, in theindirect problem with force compon-
ents prescribed, the two components cannot be prescribed indepen-
dently. It also indicates that considerable simplification might
result from considering the functions A and f instead of the three
force components. This ‘is actually the case. The introduction of
these two functions for the force vector field casts an'entirely new

light on turbomachine problems in which the number of blades is
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infinite. For example, the heretofore more difficult direct prob-
lem becomes relatively simple. Furthermore the functions A and
f have special physical significance: @A (r,z) represents the local
time rate at which energy is added to the fluid by the action of ro~
tating blades, and f(r,z) describes the blade shape completely.

From Equation (11) the force field is finally expressed as

FooM-inth +Tpt-Tots) (12)
When the force field is expressed in terms of the functions

A and f the question of blade existence does not arise and the direct

and indirect problems become quite clear. A direct problem is one

- in which the blade shape f(r,z) is prescribed and A (r,z) is an un-

known determined by the second equation of motion after the solution

is comélete . The function A does not appear in the equation for the v

meridional flow. An indirect problem may be one in which the local

rate of energy input, A (r,z) is prescribed, and the blade surface

functio,nr, f(r,z), is an unknown dependent variable.

C) The Physical Meaning of the Blade Surface Function ﬁ :

It is of interest to note the geometrical significance of A3
and f and their derivatives. The absolute value of ¢/ is
- /vﬁ/r%[/+R2+szé— (13)
where A = r'f,./ aond Z = rfs. |
The relation between the vector v/ and the blade surface is shown

in Figure 3. Using the definitions of a,, a,, a as given in Part
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II it easily follows that

H

R = tan a.
(14)

Z

-tan a
z
with the sign convention shown in Fig. 3.
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Trace of
X p —'/-z

£ e Blade » 7
-(£) \ - ]T OA - - —
’ ar

~“——7race of

ND\ Y~

Blade
+9
"2
Looking Downstream onto Looking Radially inward onto a
a Plane z = constant Plane Tangent to a Surface
r = constant
Figure 3
The Blade Surface Function {(r,z)
In the same way
RZ+ 2% = fan=, (15)
and from Equation (13}
rlepl = sec = (16)

Thus R and Z are merely the tangents of certain angles be-
tween »th'e blade surface and the meridional plane.

The functions B and f were defined in such a way that 3 =
constant is the equation of a blade surface and f = constant is the

equation of the trace of a blade surface in the meridional plane.
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If the blades are so-called radial blades, that is, if the blade sur-
faces are generated by lines that are normal to the axis, the function

f is independent of r. In this case f, = 0 and {, is a function of =

only.
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IV. THE HYDRODYNAMICAL EQUATIONS

A) The Equations in the Various Coordinate Systems

The hydrodynamical equations for the steady, adiabatic,
axially symmetrical, and circumferentially uniform flow of a non-
viscous fluid acted upon by a pseudo-conservative* body force field

are given in the various coordinate systems previously described.

Vector Forms:

The equation of motion:

V- vV -_———é—vp +/'\7/6 (17a)
Vrf2 = vLTVV + & vp-Ava o (17b)

The continuity equétion:
7- PV =0 (18)
The iéentropy condition:

v 75') =0: o%=22- /y_,;/%’_’N P (19)

Absolute Cylindrical (®ordinates:

The ‘equations. of motion:

., U U v _ L 2P
urwsd - = -5 M (20a)
U2 L2 =) (20b)
ar z
2w, . dw _ _Lop_ L
Yir *Vaz =-FSE M (20<)

[\
Y

(21)

* A pseudo-conservative :force field is defined as one which can be
expressed as the product of a scalar function and the gradient of a
potential. See Part III.
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Absolute Intrinsic (Flow) Coordinates:

The equations of motion:

Gs i—‘;’s-—‘f-—z SInG =-—,—g/—-§-§-‘ Afs (22a)
2 =
9s 2L = ) | (22b)
2 /oL .
Ks g2 Y5 cosT = -5 55— Afp (22c)

The coniinuity equation:
aa—s' Py, + P Hp + qu7_/— Sinad = 0O (23}

B) An Integral of the Equation of Motion

Since the flow is steady the equation of motion can be inte-
grated along each streamline. Forming the scalar product of V and

‘Equation (17b), a scalar equation is obtained:

/= = /= — —
Ve vglVV+zVerp-AV-vB=0 | (24)
From Equations (6) and (8) the condition that the relative velocity

vector and the force vector are perpendicular is

w-vB= (V-Tpwr).v@=0 (25)
Consequently
Vird=w , and v-cor = rfdrrow (26)

From the second equation of motion (Equation (20b) };

= 27 ery - 7. 27
w S+ w S = V- g(rv) (27)

Since the flow is isentropic the density is a function of pressure only,
p = p(p), and the pressure term of Equation (24) is: -

Zve =7V %’D | (28)
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Using Equations (26), (27), and (28), Equation (24) becomes
V-v[+% VZ-/-/%’O—— wrv] =0 (29)

Integrating along the meridional streamlines an energy equa-
tion analogous to the Bernoulli equation is obtained.

% VZ+ /_g_p — rv = constant on each streamsurface (30)
Upstream and downstream of the blades rv is constant on each stream-
surface. The total energy is E=z’-l/z+/—%/£. The term —ZL yZis the
kinetic energy per unit mass and f—;—” is the enthalpy. The change
of @ rv which occurs along a streamsurface in the region where the
blades act is the change in the total energy of the fluid occurring on
‘the same streamsurface.

The constant in Equation (30) will have the same value on all
streamsurfaces if the total energy is uniform and the meridional com-
ponent of vorticity is zero upstream of the blades. Under these con-
ditions Equation (30) becomes

—2/—V2+/—gp— Lrv = constant (31)

In a more general case the flow may be rotational and may
have a non-uniform energy distribution at the upstream boundary,
the inlet. Using ’phe subscript ( ).1 to denote these inlet conditions
the "constants' in Equation (30) can be evaluated.

Lv2+ [LP—orv= £, - wlrv), , (32)

The functions E1 and :.c)(rv)1 are constant on each streémsurface and

generally each has a different value on each streamsurface. They
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cannot be evaluated as functions of position unless the streamsurfaces
are known.
The gradient of Equation (32} is taken in order to eliminate

the total energy gradient, v E, from the equation of motion:

vE = vlrv ~vE,— v d(rv], (33)
Since the functions K, aﬁd (rvy1 are constants on each streamsurface
their gradients are normal to the streamsurface and Equation (33)
can be written as

VE = vu)rv-f-T,.,-;—j-g’—f;,w—aa—(’g—V—/’ (34)

where n is distance normal to the streamsurface.

C) Two Identities

Two identities which can be proved for axially symmetrical
flow using only the definition of vorticity are:
A vorvr=o (35)
vOry = Tgwr x£2
(36)
The vector gwr has the dimension of velocity and acts
tangentially.

D) The Concept of Free and Bound Vorticity

The concept of free and bound vorticity provides a useful
means of discussing the properties of rotational flow. Although ro-
tational flow problems are generally non-linea; , they may be linear
if the vorticity is bound. The non-linearity arises ph}isicauy from

the dependence of the solution upon the distribution of vorticity
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which is determined, in turn, by the manner in which the vorticity
is transported by the velocities of the solution. Some knowledge of
the vorticity field can be obtained directly from the equations of
motion.

Consider first rotational flow in a region where no forces
act on the fluid. The equation of motion i‘s simply (from Equation
(L7b)):

Ve = vyvisLvp = vE C o G7)

If the total energy is uniform on the upstream boundary it is uniform
everywhere in the field and v E = 0. This is the simplest example
" of free vorticity, one in which the vorticity vector and the velocity
vectors are parallel¥. If the total energy of the fluid is not uniform,
the velocity and vorticity vectors are not parallel. They are, how-
ever ,. perpendicular to the gradient of the total energy.

Consider next rotational flow in a region where a pseudo-
conservative force field acts on the fluid. The equation of motion
is (from Equation (17b}):

Vx{ = vE-AvA ‘ - (38)

With Equation (33) this becomes

Vx = vwrv—vw(ir, + vE - AvA3 (39)

*Two parallel vectors do not necessarily have the same sense.
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where E1 and (rv)1 describe conditions prescribed at the inlet and
are constant on each streamsurface. Using Equation (36) this be-
comes at once:
(V-Tgar)x Nl = WxTi= VE - vwilrv),-AvA (40)

If inlet conditions are uniform v,E1 and ¢ (rv)l are zero and all of

A~

the vorticity is generated by the blades. In this: case Equation (40)
states that the vorticity vector, as well as the relative velocity vec~
tor, lies in the blade surface /3 = constant; hence the term bound
vorticity. This is the simplest example of bound vorticity.

Forming the scalar product of the vorticity 2 and Equation .
(40), the left side is zero:

n-ve =‘ £ - “,\L v[E- w(rv).] | (41)
Again thisr shows that the vorticity vector lies in the blade surface
if the upstream conditions are uniform.

Consider last the‘flow downstream of a system of blades.
The equation of motion is simply Equation (40) with A = 0:

Wxldl = vE, -vw(rv), (42)
If the conditions far upstream are uniform, v E1 and v(rv)1 are
zero, and the vorticity vector is parailel to the relative velocity
vector .v Thus vorticity generated by a'moving system of blades will
be parallel to the velocity measured revlative to the moving system,
regardless of the shape of the blades, and regardless of the change

in eh_ergy effected by the blades. This is merely the "upstream! case
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again if relative coordi.nates are used.

The vorticity generated by a system of blades has certain
geometrical properties. In the region of the blades in which the
vorticity is generated the vorticity is 'bound' and lies in the blade
surfaces, Downstream of the blades the vorticity generated by the
blades is 'frge' and is parallel to the relative velocity,

E) The Transport of Vorticity

If a fluid particle has once acquired a rotation it tends to
fnaintain this rotation as it moves along the streamline. In other
words, the vorticity is transported along the streamline with the
- velocity of the fluid. The magnitude and direction of the vorticity
will vary as the fluid expands or contracts, as the velocity vector
changes direction, and of course under the action of non-conserva-
tive forces. With uniform inlet conditions the equation of motion
is giveﬁ by Equation (39) with vE, and v (rv)1 = 0. Taking the curl
of both éides s

B _ = =5 = _= S T

d——+-= Ve = Q-vV +vdxvB-QvV - (43)
This shows how the time‘dérivative of the vorticity vector depends
on the vorticity itself as well as on the velocity and the force field .
If the fluid is incompressible the last term of Equation (43) is zero.

Because of axial symmetry, only the tangential vorticity is

associated with the radial and axial velocities, while the radial and

axial vorticity components are associated with only the tangential
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velocity. The tangential vorticity may be regarded as an infinite
number of vortex rings centered on the axis. The circulation /7
around each ring is given by 77 multiplied by the cross-sectional
area of the ring. As the radius of the ring increases the cross-
secti;jnal area degreases in such a way that the mass of the fluid
in the ring remains constant. It follows that for a given ring, /7
is proportional to rif; as the ring deforms. The tangential com-
ponent of Equation (43) expresses the law governing the time rate
change of circulartion connected with a certain mass of fluid en-
closed in an annular . vortex ring:

G0 _ L2, (A f—A, fr)-L2 (L 2ru 4w (44)

From the continuity equat1on, Equation (21}:

22 2 ___Lgr _ a ¢ :
Fa Yt EW T ar TP E (45)

With this, Equation (44/) can be written:

rPa"—;;} = 2L+ 2 M- LM (46)
The first term on the right is the rate of change in the axial direc~
tion of the centrifugal force, which acts radially; the second term
is the radial rate of change of the axial blade force; and the third
term is the rate qf chaﬁge of the radial blade force in the axial di-
rection. A little thought will show that these terms, in each case,

represent moments tending to cause rotation of a fluid particle

about a tangential axis. It is in this way that non-conservative forces
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tend to e~f.fect a change in the circulation around a vortex ring. If
the centrifugal force is conservative the first term is zero, and if
the blade force is conservative A is constant, and the last two
terms cancel. Then the circulation about the vortex ring is con-
stant.

Vorticity may therefore be considered as a property of the
fluid which continuallyphang'es character as the fluid moves along
the streamsurfaces. T:his concept of the transport o_fk vorticity by
the fluid particles gives physical significance to the non-linear
interaction between the vorticity and the velocity and will be useful

in understanding the various steps of the iteration process to be

developed later.
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V. THE MATHEMATICAL FORMULATION OF
THE IDEALIZED PROBLEM

\A) The Equations, the Variables, and the Boundary Condition

Available for the idealized problem are six equations: the
three equations of motion, Equations (20abc); the continuity equation,
Equation (21); the isentropy condition, Equation (18); and the geo-
metrical relation that the relative velocity is tangent to the blade
surface, Equation (25). These six equations relate seven depen-
dent variables, u, v, w, p, p, A, f,--eéch of which is a function
of the independent variables r and z. Clearly, since there are only
six equations, one of these seven must be prescribed. The angular
velocity of the rotor, W , is a constant parameter.

In the direct problem the blade surface function f(r,z) is
prescribed and there are six equations for the remaining six de- |
pendent variables. The necessary and sufficient boundary conditions
are the same as for flow through the same channel with no blades act~
ing except that a sort of Kutta condition must be applied at the trail-
ing surface of the blade region. The boundary conditions will be
discussed in more detaii after the number of dependent variables has
been reduced.

In an indirect problem where the local rate of energy input,
A(r,z), is prescribed there are again six equations and six depen-

dent variables. The question of blade existence, so important in the
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indirect problem with force components prescribed, does not arise
here, for with the force field expressed in terms of the two functions,
A and f, blade existence is assured. The boundary conditions, how-
ever, are less understood than in the direct problem, particularly
the co\nditioné for f(r,z). It is to be noted also that while the direct
probleri, with f prescribed, can be formulated as a problem in the
meridional plane independent of A , the indirect problem, with A
prescribed, is not independent of f. The two problems are therefore
quite distinct.

The direct problem is formulated below in terms of a stream-
function for the meridional velocity. The discussion of characteris-
tics and general properties in Part VI also refers‘ to the direct prob-
lem,

B) The Differential Equations for the Streamfunction

The continuity equation is identically satisfied by the stream-

function ¢ , defined ¥ by:

u _ B | ¥

ax P T oz (47)
__ P oY C(48)

a. P r or o

For cases in which the fluid is incompressible take a, =1, %-‘-*— L.

The equation of motion is

V2= vE - Nv3 | (38)

# In this definition a* and p* are considered as constants which de-
scribe the initial total energy. If the initial total energy distribution

is non-uniform, a* and p* are constants which describe the total
energy at some representative point on the upstream boundary.
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Upstream or downstream of the blades the force magnitude A is

zero and since the total energy remains constant on each stream-

surface
_ T OF

vE =7, 37 (49)
Written in intrinsic coordinates Equation (38) becomes

in T s

. - DE

o v 9s = in2t (50)

L, N g
Using the definition of ), and (1, , Equation (3), the normal
component is

_ v _2E 51

19 = 7 5 “om (1)
'The other components show that %’é’:! is zero.

Since the total energy is constant on each streamsurface,
Equation (734)\ can be replaced by

vVE = _- > D[ (rv)e = (rv), ] + 7 % | (52)

and Equation (51) can be written for the upstream and downstream

regions respectively as:

nas = ('"V)/ D(r‘V)/ ___SD_,? (53)
- 1 _ 270(rv)e Alrvl: DE,
QQ5 - ,-'z‘[(""/)t U))"_] EYe) an U‘) an - .3_/—‘7_ (54}

In the region of the blades A is not zero and the total energy is
not constant on each streamsurface. An expression for the tangential
vorticity can be obtained from Equation (41):
— )
D-vB = DTy 5 [E- 0] (41)

Expressing the left side in cylindrical coordinates and the right side
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in intrinsic coordinates there results:

/ /
—S"f,.+/7';:~f7[ Ny an[E u)(r-v)] c (55)
But N, =—-,-f- z;y , Equation (3); and A= g, 57 arV , Eq. (22b)
so that ,
) drv
Np . T s - __! (56)
A qs_a__r.'V - rds

P5)
and Equation (55) becomes

= (55 %) - 3 [E- 0] e
Equation (5 7) expresses the tangential vorticity n in the region of
the blades. It is significant that this relation is independent of the
blade force magnitude A

All of the three basic equat)mns , Equations (53), (54), and (57),
are non-linear if the upstream conditions, El and u)(rv)l, are non-
uniform, or if the fluid is compressible. If the fluid is incompres-
sible and,E1 and (rv)l are constant, the equation upstream is linear.
It is Simply rn =0, but the doWnstream equation, Equation (54), is
still non-linear. However, the equation in the region of the blade,
Equation (57), actually is linear if the fluid is incompressible. For,
from Equation (25)

rv = wr*e r*(fiu+r o w) (58)

so that in the region of the blades

n= (s az {“” +r2(fiutty )}

_'E—[E (). ] | 59)
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Note that the operator /Fz -a%_—fr%) represents differentiation
along the trace of a blade in the meridional plane. Equ'ation (59)
is clearly a ylinear equation for u and w when the last term is zero
and f(r,z) is prescribed.
If nis written in terms of the streamfunction in Equations

(53), (54), and (59), the three differential equations for the stream-

function are obtained. By direct substitution, using Equations (47)

and (48),
| _ 24w
n<= 3z ar
_ Boy [FV_ 1 3¢ D o¥iaP oy 1 2F (60)
= Py LOrZ T or 702z or P Ur oz P oz

‘The last two terms can be written more simply after a change of

independent variable as

_2¥ 1 of o 1 2P __2¥ 1 oF
or P or 02zpP 0z ~  om P on (61)

The derivatives taken normal to the streamsurfaces of
functions which are constant on the streamsurfaces can be written
in a very useful form by considering the streamfunction t/l as an
independent variable. For instance, since rv is constant on each

streamsurface downstream of the blades, *(rv),C depends only on the

streamfunction lﬁ . Therefore
d(rrle _ ol(rv)e v _ dirvle [ Qs 1”,.} (62)
orn dy or T dy Oy Fa ‘

 and similarly for any function which is constant on the streamsurfaces.

Using the relations developed in Equations (61) and (62) and
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the definition of ¢f the differential equations for the streamfunction
can now be written for the three regions of the flow. Egquations (53),
(54), and (59) then become:

Upstream of the blades:

%‘r——_risbr "'¢zz = ’#’,-,(/ﬂ)n +FP§)2 re —E’.%‘y ;‘:)] (63)

oy oy

In the region of the blades: :
(142 -2 RZ Yy + (14R¥) Yry + (22,- RZ,=F) Y- (ZR, ~RR2) Y2
=287 [z t-rzd ] (Infl + [(1+R) 42 -RZ 4] (In? ),

O FPx
(L)L [ - ] (64)

where R = rfr y L o= rfz, and the subscripts r and z denote partial
‘differentiation.

Downstream of the blades:

St'rr r¢r+¢zz = "pﬂ(/ﬂ'ﬁ)ﬂ {Lﬂ;} [( ——CI;; )f
2 £ wr o’ :
+/7’3 [r?e—/f ) "oy ay Zﬂ:] (65)

The equations are rewritten below for the flow of an incompressible
fluid with uniform inlet conditions in order to discuss the rotation-

ality effects separately from the compressibility effects. For the

incompressible fluid, a* and P are taken as unity.

P

Upstream of the blades:
/
Y-+ +tzz =0 (66)

In the region of the blades:

(1423 Y ~2RZ D, , + (1#7Z) P2z
+/ZZ,_‘/?ZZ“}—'L-')¢}’ "/Z:?r—/?/?z)()bz = 2“0"2 (67)
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Downstream of the blades:

Yrr 2+ oz = = [(rv)e - 0r*] 2 (rv)E (68)
With uniform inlet conditions the flow upstream of the blades

is irrotational. Equation (66), which is clearly a linear partial dif-
ferential equation, states simply that the tangential vorticity is
zero. In the region of the blades and downstream of the blades the
flow is rotational. However, in the region of the blades the fluid
is constrained to movement on the blade surfaces, and the Vorticity
igs 'bound® and lies in the blade surfaces. Because of this constraint
the equation for the streamfunction in the region of the blades, Equa-
~ tion (67), is linear when the blade shape functions, R and Z, are pre-
scribed. The equation for the downstream region, Equation (68), is
a non-linear equation for ¢ because ) appears as an independent
variable on the right side. However if the right side is a known
function of position the equation is linear, although non-homogeneous,
and can be handled in the same way as Equations '(66) and (67). This
suggests an iteration process in which the right side is estimated and
the equations are solved. A new right side is calculated from this
solution and the process repeated until the desired accuracy is ob-
tained. Actuallyv(r v); is a function of ) only and the non-homogeneous
part, the right side of Equation (68) , can be evaluated as a function of
L/J and r for all the downstream region once the flow conditions at the

blade trailing edge are determined. There are several reasons why
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this iteration process is a practical and relatively simple method
of solving this problem. The non-homogeneous part of Equation
(68) has a simple physical meaning. The right side is simply r# ,
the moment of the tangential vorticity about the axis, and is pro-
portional to rzf’. It was shown that under the action of a2 conserva-
tive force field the circulation /7 remains constant along the stream-
surfaces (Equation (46)). This suggests that a good first approxi=~
mation might be to assume that the circulation is constant on the
streamsurfaces of an irrotational flow through the same channel,
thus neglecting the interaction of n and the other vorticity compon-
~ents. Actually a much better approximation can be made by evalu-
ating the function (rv)t as a function of ¢ at the blade trailing edge
using the blade geometry and the meridional velocity of an irrota-
tional flow through the same channel. Once (rv),c is a known func-
tion of the right side is a known function of ¢ and r. Here the
interaction of the vorticity is accounted for, but the blade trailing
edge conditions, which define rv( ), are of course approximate.
In the numerical method of finite differences used in the following
examples it is only necessary to solve completely the final step of
the iteration procéss . Each step only need be carried far enough
to assure an improvement of the estimate of the right side. The
application is relatively easy when the relaxation technique is used

since the exact status of the solution is clear at all times,
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When the fluid is compressible all of the equations are
non-linear. The term on the right side, ¢, //nF),-, , represents
the entire effect of compressibility if the flow is irrotational. For
rotational flow another effect of compressibility is to modify the
effects of the rotation. Thus the density ratio {?’i )Z;.S a multiplier
of the rotationality terms in Equations (63), (64), and (65). Again
an iteration process is used, in which the term ¢, (/m’},7 is esti-
‘mated and a solution is obtained. This solution is then the basis
for a new estimate of the density term, and the process is repeated
until the desired accuracy is obtained.

The conditions under which the above iteration processés
are convergent have not been rigorously established. For flow in
which a certain governing velocity is supersonic convergence is
questionable. If stagnation points occur in the fluid the question of
convergence is connected with the question of proper boundary con-
ditions and the fact that the streamsurfaces are characteristic sur-
faces of the flow.. Convergence wilyl be discusséd separately for
each example solution.

The equat"mn for the flow in the region of the blades is
somewhat simpler than shown in Equation (64) if radial blades are
prescribed. Radial blades, blades which are generated by radial

lines passing through the axis of rotation, are necessary in very
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high speed machines because of the high centrifugal forces. The
trace in the meridional plane of a radial blade is of course a radial
line, hence f(r,z) is actually f(z) only. Then for radial blades:
,?:-‘O,Z—-—'réfz) , Zp = '/Z(z),ev‘c.} (69)
and Equation (64) becomes:
(1 +2%) &, —(/—ZZ}—,,Lt,b,. +tfy, = 2%’{{ z
+ (142G (Inhy + Y (Ind), +/-g zr‘ag:_b[zé - %i_":” (70)
The significance of the simplification is that the cross derivative,
},, » does not appear when the blades are radial.
The most general form of the differential equations for the
" streamfunction is that shown in Equations (63), (64), and (65). These
are the equations for the isentropic, rotational flow of a compres-
sible fluid acted upon by an infinite number of arbitrary blades.
The flow may be“'rotational and the energy distribution may be non-
uniform at the upstream boundary. An energy relation which ex-
presses density in terms of the gradient of the streamfunction and
the total energy of the fluid must be considered with these if the fluid
is compressible, |

C) The Isentropic Energy Equation--Density as a Function of Mass Flow

" The energy equation, Equation (32), can be written as

VZ_,L__C_?_Z. -—u)/-y,uf,-—a/[/"V}/ (71)

A =
> 77

Let a be the velocity of sound when the velocity V is zero. The

constant ay will have a different value on each streamsurface if the
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energy on the upstream boundary is non-uniform. A non-uniform a,

will be denoted by a prime, e.g. a '. Then Equation (71) becomes

_a? / _\_,)‘(21 e ZuJ(rV r-r,Jf (72)

or in terms of density

5
g e o

Introducing the streamfunction defined by Equations (47) and (48),
’ '

‘P l" L ¥-1
_ -1 (4] [t A c//uﬁz/ (v zw(rv-rn)) 74
73 [— 2 {f’ az? ;‘ - as* (74)

This equation gives the density in terms of the local mass flow,

qu"'- = (ﬂz _&t ‘ﬁ;‘z* ¢z1.) (75)

g,'l-ao,z a‘,’z f‘)’,'l. ,,7.
and the effective tangential velocity
2 .
Vetf. _ (VZ- 2w(rv-rv,) ) ~ _ (76)
a;” olg®

This last term includes the effect of changes of total energy as a re-
sult of blade action as well as the actual effect of the tangential ve-
locity.

The solution of Equation (74) is presented graphically as com-
putational curve‘s , Figure 42.

Two other useful forms of the enérgy equation can be derived

from Equation (72):

Pr Qér -/' Wz
2 _ % ,o/ -
R é de'z_ i"} + 2wlrv-rv.) —v?*
Y- d_x:' . Ll a¥1-
/ cﬁz#/';j / 2 a® Zwlrv-ry)-v*
ae _ Z 9455 2= az xE (78)
e Yprr bz 2 [as*_ __}_,_ 2 wlrv-rv,-v*
re -1 \afF & Ayt
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D) The Matching of Solutions in Adjoining Regions

There are three distinct regiéns of the flow corresponding
to the three differential equations, Equations (63), (64), and (65),
and solutions in adjoining regions must be mat\ched on the connect-
ing boundaries. The streamfunction itself is always continuous
across both the leading edge and the trailing edge boundaries, The
Kutta condition imposed at the blade trailing edges to make the so-
lution unique requires that the velocity and pressure be continuous
there. Consequently, the matching conditions at the trailing edges
are that the streamifunction and its first derivatives, as well as the
tangential velocity, are continuous across the trailing edges. This
provides the meanf of evaluating the function (rv)t for the down-

stream region. Since rv is continuous it may be evaluated just up-

stream of the trailing edge by Equation (25), which can be written as
rv = cwor®+ r*f(fru + £ w) | (79)
Tixe matching conditions at the leading edges are generally
much more complicated. In the real problem with a finite number
of blades the fluid flows smoothly through the blade system. A
"stagnation point" occurs at some point near the leading edge and
the fluid flows smo’othly off the trailing edge. The flow is similar

to the flow about an airfoil. However, in the idealized problem the

number of blades is infinite, and the velocity at the 1eading edge
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will generally be discontinuous. The flow is very similar to the flow
through an infinitely closely spaced lattice of airfoils, and the lead-
ing edge discon{inﬁity is the same as that occurring at the leading
edge of the lattice. In problems of practical interest the pressure
and tangential velocity will generally be discontinuous at the leadi;xg
edge. Continuity of the first and higher derivatives of the stream-
function depends on the shape of the blade near the leading edge. It
can be shown that the first derivativéof fhe streamfunction are con-

tinuous across the leading edges provided only that the leading edges

lie in meridional planes (Figure 4).

r p 4
} ! /
Leading
T Edge
av
Figure 4
The Flow Across the Blade lL.eading
Edge

It is supposed that the taﬁgential velocity v jumps discontinuously
across the leading edge. This implies that a discontinuity in density,
pressure, and velocity may also occur there. The first derivatives

~of the streamfunction are proportional to pqg , the local mass-velocity
in the directions of the derivatives. pqﬁis of course continuous on

both sides of the leading edge, and continuity of mass require that
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’0//‘7)(/, = @(qx)z in Figure 4. Therefore pqis continuous every-
where, and the first derivatives of the streamfunction are continuous
everywhere. For Blade:surfaces which satisfy this condition, the
matching conditions at the leading edge are that the streamfunction
and its first derivatives are continuous there. The tangential, ra-
dial, and axial velocity components and the pressure and density
may be discontinuous. If the blades do not satisfy this condition
the streamfunction derivatives will generally be discofitinuous.

E) The Boundary Conditions

A typical region of flow is shown in Figure 5, The axially

Downstrearm

Upsitream Bounadlary
Xﬁju"ddw . 8 /

e—

7 7 | Trailing
Edge
Leao’/h_g/ | Regior of
Edge the Blades
Figure 5

A Typical Region of Flow
symmetrical surfaces AB and CD are boundaries of the channel and
are strgamlines of the flow. The upstream and downstream boun-
~daries are the sﬁrfaces AC and BD respectively. The region of the
blades or the body force field, over which the blade surface function

f(r,z) is prescribed, is shaded.
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For each step of the iteration the equations for the stream- .
function, Equations (63), (64), (65), are non-homogeneous linear
second order partiél differential equations. The necessary and suf-
ficient boundary conditions for this problem are well known. The
streamfunction ¢/ , or a linear combination of its derivatives, /-
and ‘rbz , must be prescribed at every poinfp on the boundary. The
boundary conditions on the streamfunction for a typical region of

flow (Figure 5) are:
7

constant on surface AB

H

constant on surface CD

I

¢/ (r) on surface AC

Y
Py
oz

1"

0 on surface BD
The functions v, p, and p, which can be prescribed only once on:each
streamsurface, are prescribed at the inlet, on surface AC.

At the leading edge the matching conditions are that the
streamfunction and its first derivatives are continuous. At the
trailing edge the streamfunction and its first derivatives, as well
as the pressure, density and tangential velocity, are continuous.
This is the Kutta condition.

The iteration process is based on an elliptic ﬁartial differ-
" ential equation. In Part VI it is also shown that the complete non-
linear differential equation, which includes the compressibility

term, becomes 'hyperbolic' when the meridional velocity or, if
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blades are present, the relative velocity, becomes supersonic,
The boundary values for this case are quite complicated and solu-
tions may not be u'x:ique. In all the examples solved here the gov-
erning velocity is subsonic, although the total velocity may be

transonic, as in Part X.

F) The Limiting Flow Far Downstream of the Blades

If at a finite distance downstream of the blades the channel
boundaries become concentric cylindrical surfaces and if these
surfaces extend unchanged downstream to infinity, general quali-
tative statements can be made concerning the limiting flow at in-
finity. It is supposed that the total energy of the fluid is uniform
and that the vorticity and tangential velocity are zero on the up-
stream (inlet) boundary. The energy of the fluid is changed and
vorticity is created by the action of an infinite system of blades
rotating at a constant angular velocity <« . Nothing is said about
the channel boundaries upstream of the cylindrical region or about
the shape of the blades.

It is clear that in such a region the flow is independent of
the axial coordinate and the radial velocity is zero. Then radial
equilibrium of the 'centrifugal force and the pressure gradient

 force requires that (from Equation (20a)):

_v® (80)
r

NI

A
,o
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The vorticity, being generated by rotating blades, is parallel to

the velocity relative to the blades. Therefore from Equation (42):

dw?_ wr-v drv 81
ar =2 = ar (81)

From Equations (80) and (81) and the isentropy condition, Equation

(19), the following relations are derived:

P ; vZ
da? v2 825)
;;- = [)/—/}7:' (
o My _ _é_y_z(,_ ar %:_V/
= 2 z r
ar "oy v (82¢)
dMZ_ 2 VZ(,+J-_I Mz_ﬂzcv)
ar ~ T r az z vz dr
(824)
The ener equation, Equation (72), can be written as
g8y €q q
Y—1 , .2 o Y-l Zwrv
/ + TM = __C;Ez + = o =
Using this,
CLA WAg- [y R =Y |
ar ~  r ao* a* / 2 > (82e)

If rv is a known function of r or of 5& in this region the flow
can be completely determined by the above equations. It can be
seen directly from Equations (80), (82a), and (82b) that the pressure,
the density, and the local speed of sound are minimum on the inner

boundary and increase monotonically to a maximum on the outer
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boundary. This general result is completely independent of the blade
shape and the channel shape. If the. blades are stationary it follows
from Elquations (82c) and (82e) that the total velocity and the corres-
ponding Mach number are maximum on the inner boundary and de-
crease monotonically to a minimum on the ou;:er boundary. The axial
.Velocity may have a maximum or minimum anywhere, depending on
rv, but if rv is monotonic then the axial velocity is also monotonic.

In order to examine the total mass flow the channel is given
the same cross-sectional area far upstream and far downstream.
The total energy of the fluid is constant. If the tangential velocity

'is zero upstream and constant downstream the total mass flow equa~-

tion is

, e /5
° =
where ( )1 and ( )2 denote values far upstream and far downstream
respectively.
Using the isentropic relation,
= (r— Elm? £
¥+/

and integrals of Equation (82) Equation (83) becomes

ﬂ_;’fl_,v/x _IM,*_ ///-,“ ME \/2/ Z/ /;W* 2(/4-lnrz_)]ra’r(84)

2
where /V/ ( ) + dV is the maximum which occurs at the inner
¥

radius, taken here as unity.

The solution of Equation (84) is shown in Figure 43 where
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w % . . x2 v2
(F‘) is plotted as a function of M;" for several values of - .
*I27 ) dyg
These results are expressed in terms of local Mach numbers in Figure
2
44, where the axial Mach number /%} . 5 is plotted as a function of
21 .
' 2
the inlet Mach number M,% for several values of Z\?Z . It is seen
2./
. . 2 . . v ]2
that for a given inlet Mach number, #,” , and a given deflection, /74 O
/
there may be two solutions for the maximum axial Mach number
2 :
downstream, but if /aLz) is above a certain critical value there will
FA .

be no solution. When two solutions exist one value of the axial ve-

locity may be subsonic and the other supersonic, or both values

may be supersonic., It must be understood that (FW-) . and —!V—) :
2i dx | 2i

are maximum values on the downstream boundary and that when
these are supersonic the minimum velocities, and even the .mean.
velocities, may still be subsonic.
These results depend only on the limiting flows far upstream
and far downstream and are independent of the intermediate flow.
It is assumed, however, that the intermediate channel and the blades
are such that an isentropic transition from the upstream flow to the
downstream flow is possible. Nevertheless, this analysis shows
that for a given inlet Mach number there is a maximum tangential
velocity that may Ee generated by stationary blades., No isentropic
- solution exists for tangent'ial velocities exceeding this maximum.

Similar results would be obtained for distributions of tangential

velocity other than constant, and for rotating blades.
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VI. PROPERTIES OF THE TRANSONIC FLOW

OF A PERFECT FLUID UNDER THE ACTION
OF A PSEUDO-CONSERVATIVE FORCE FIELD

A) The Characteristics of the Problem--The Governing Velocity

The applicable equations upstream and downstream of the
force field are shown in Equations (19), (20), and (21) with = 0.
Adding to these the four differentials for u, rv, w, Inp, and using
Equation (19) to eliminate the pressure terms, eight algebraic equa-

tions for the eight partial derivatives are obtained:

ou ou 2 ( af _ vZ
Uzr +W 57 + o For - F
rv orv = O
“ar +Woz.
ow ow 2190 = O
Wom W 52—+ 9 52
du ow ' OF /1 aP U
or 7oz TY oo " Wo oz T T F
Ju
a’rg—,f‘ +dz 55 =du
| (85)
rv orv '
a’/‘g—r +OIZE- = dry
d37_+°lz 0z
1 dF 14 !
d/pa_ dz.oaz POIP

The differential equations for the characteristics are obtained when

the determinant of the coefficients is set equal to zero:

i
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u W 0 0 0 0 a 0

0 0 u \ 0 0 0 0

2

0 0 0 0 u W 0 a

1 0 0 0 0 1 u w

=0 (86)

dr dz 0 0 0 0 0 0
0 0 dr dz 0 0 0 0

0 0 0 0 dr dz 0 0

0 0 0 0 0 0 dr dz

Expanded, this equation is:

w2(wt P dr*+2uw(2 w2 aaridz + [6u*w*- (u* w?) afalridz?

t 2uw(2uaa)drdz® + urlutd)dr¥= o

which on féctoring yields:

adr ul® _

o ;7) =0 (87)
d!‘ _ Uw = a‘/uz-;(-wz_aL

dz ~ Wi g* (88)

Equations (87) and (88) are the differential equations for the physical
characteristics of the problem. These equations represent, respec-
tively, the streamsurfaces and the '"meridional Mach surfaces''.

Thus th¢ character of the flow upstrgam and downstream of the blades
depends on the meridional velocity, not the total velocit);.; That is,

the problem is "elliptic' with respect to the variables u and w if the

meridional velocity is subsonic, and is "hyperbolic" if it is supersonic.
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The velocity which determines the characier of the problem is-
called the '"'governing velo»city" , kthus the governing velocity up-
stream and downstream’of the blades is the meridional velocity.

In the region of the blades the applicable equations are
those given above but with A# 0. In addition Equation (25), which
states that the relative velocity is tangent to the blade surfaces,
must be included. Equation (19) can again be used to eliminate
the pressure and Equation (20b) can be used to eliminate A
Because of the constraint imposed by the blade surfaces (Equation
(25)) it is also possible to eliminate the angular momentum rv.
‘The blade surface function, f(r,z)"is ‘pr‘escribed. Then, including
the differentials for u, w, and ln p, there are six linear algebraic

equations for the six partial derivatives:

r4
(+Rz)ﬂ4-a—r—+w az) +/?z(u—+w 3—;‘-’}+a2—;—3{= V+%
Kz ' __) u dw z / af _ /
@ +W '/‘(/7‘2}( )+a 73z = —726
o, ow / of 1 P u
artoz Y T E oz » = -5
ou Ju - (89)
0’/’57 + dz 22 du
a’rf—w-fa’zi'f’ = ow
P J)p = L
a’Pa,_ a’z 5% =g
where
G = 2wru+u2‘)"'?+ uw arz ar:?+WZ§£Z
Vs

v2= (wr+ KFu +Zw)?
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Setting the determinant of the coefficientsequal to zero the

following equation is obtained:
w [(/ +RZ2+Z% ) wr- (1 + F?z)az} ar’- {3(1+R%Z*)unw- [(#RYu-2RZ w]az} draflz
+ [3(/+,Pz+,z‘)u"w - [(1+Z%w - 2 PZ u]az/a’r adz*®

—u[(1+,?z+zz}u‘—(/+zz}a’) dz =0 (90)

On factoring this yields:

wdr-udz =0, and
// +REEZZ O,}(/+ﬁ 2)olp2_ //*”z*z"aw L RZ2ar )./ﬁTPiﬁ-Tz_idrc{z
I+R* WirRI1+2* Vis V2>
I+ +ZL 2 z) z) - v
u=—az/{1+z7/ dz o
[ u )l
The differential equations for the physical characteristics are
therefore:
ar . u ' | 1
dz T w | (91)

dr _ (1+rR"™+Z )uw+ RPZo :ed/(/+ﬁ+z")[u +W e (Ru+Zw)%- ":7
dz ~ | (/+/?’-+Z‘}w —(r+R¥ a?

(92)

wherer RutZw is the relative tangential velocity, (v-wr).

The characteristics of the flow in the region of the blades
are the streamsarféces (Equation 91) and the surfaces given by Equa-
tion (92). Whether or not the characteristics given by Equation (92)
are real depends on the total relative velocity, not on the meridional
' gomponent of the velocity as in the upstream and downstream regions,

The governing velocity in the region of the blades is therefore the
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velocity relative to the blades.

The form of.Equation (92) suggests the following transform-

ation:

W= T tze s Ji+R?
(93)

dr = JI1+R*dr . oz=/1+2% dz

3|

After this transformation Equations (91) and (92) become:

ar | &
az w
- ZFPZaz' 2 _2 2R% {/+ﬁ‘+z‘) e R4 ZT 94
A7 UW T LW eIt z) A (aaTe2) (94)
] I a*

This is no great simplification except when R or Z is zero everywhere

For radial blade R is zero, the transformation is:

aZ =u ;w= JI+Z* w
— - 95
ar =dr )C/Z: \/l_+—Z—de ’ ( )

and the equations for the characteristics, in terms of the transformed

variables are:
dr _ &

oaF awtaJacHwi-a*

2 = ———

oz W
Thus the characteristics for the transformed problem are the same

as for two-dimensional flow with velocities W and W in the T, Z space.
T

vB) The Complete Non-linear Forms of the Equation

With uniform inlet conditions the equation for the stream-

function for compressible flow downstream of a system of blades
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rotating at angular velocity ) is (from Equation (65)):

G- rl¢ +dz = Yy (In€ly - (&} LY u;_'; 3/4} Z (97)

The density derivatives can be written using Equation (78) as

V‘L

R R e X A A

7 or P(L) (L) (7% b5 (98)
e dadan-r (B B
FAL)(E) — (492

Then, eliminating the density derivatives from Equation (97) and

12 _
P o

introducing the velocity components, the complete non-linear form

of the equation for the downstream region is obtained.

(/- c%:)sbrr +2-Z_l:/{’b"z +”'%{1—)¢zz B ﬁ- f%:z%_‘a)—ré:)%Sbr

Bak 0 / [rv wr*] d rv}[ aﬁw’}
e e - (a2

The non-homogeneous part, 'the right side", represents the effect

(99)

2
of rotationality. The terms containing the derivatives of '?;/"'é. are
»

connected with the fact that part of the total energy occurs as kinetic
energy due to the tangential velocity. It is clear that the effect of
rotationality becomes zero if the meridional velocity is sonic, and
that the rotationality effect on one side of the sonic line is exactly
opposite the effect on the other side.

The equation for the streamfunction for compressible flow

in a region of radial blades is (from Equation (70)):

(142%) by - (=29 by + g = (1629 5 S~ L 2£4,= 25 52 (100)
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The density derivatives, from Equation (78), can be written as:

O a4//+z}w

/AP _ az* ~ rPa %ﬁ rz+(/+2/¢ ¢rr sz-# 7
P oor / — W (rzYw™

a‘l—

(1o1)
Jor (B bl bt 23R
P oz /- & 4 (/+2Ywr
a'l—

The complete non-linear equation for the region of the blades is ob-
tained by eliminating the density derivatives from Equation (100) and

introducing the velocity components in the coefficients:

ﬁ—a—‘f/(/ sZW, o+ B a2yt [ —(147) 2] e
-(11-2] +(1+2} i‘;—i’? [2£ e 0 2] 2 32)

(2B = perez[) wrlele] (008

C) The Cushioning Action between Subsonic and Supersonic Regions

The complete non-linear equations (Equations (99) and (102))
are obviously quite complicated. It is believed, however, that the
transformation suggested (Equation (95)) would lead to some simpli-
fication of Equation (102). Unfortunately, time has not permitted
a more thorough investigation of the possibilities of this transfform-
ation.

Examination of Equations (99) and (102) and the characteris-

tic equations, Equations (88) and (92), reveals that the non-homo-

geneous part, the right side of the equation, changes si.gn whenever
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the character of the flow changes from 'elliptic' to "hyperbolic".

Furthermore, for flows of practical interest the vorticity term

P\ rv  wr*ld rv wr P
//p_,,) as  ox ﬁd{}) d Za-v- P¥Z

will have the same sign throughout the flow region. The right side
of the equation can be regarded as a forcing function acting to dis-
place the streamlines. In regions where the flow is entirely sub-

sonic or entirely supersonic the foi‘cing function will have one sign
throughout the region. But if the flow is transonic, i.e. part sub-
sonic and part supersonic, the forcing function ha;q one sign in the

subsonic part and the opposite sign in the supersonic part. There~

fore the deflection of the streamlines, brought about by vorticity,

will be less if the governing velocity is transonic than if it is en~
tirely subsonic or entirely supersonic, Consequently the meridi-
onal flow will be "smoother'", for the vorticity in one region tends
to counteract that of the other region. It is believed that this mu-
tual cushioning effect is the explanation of the phenomenal effic-
iences observed in compressors in which the relative velocities
in a region near the tip are supersonic.

The fact that the forcing function, the non~homogeneous
part of the equation, contains a factor of the form (1—Mg2')', where
M, is the "'governing' Mach number, leads to the following general

g

conclusions:
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1. The deflection of the streamsurfaces induced by a given

strength of vorticity at a certain point in the flow is zero

when the governing velocity is sonic at this point, has one
sense when the velocity is subsonic, and the opposite sense
when it is supersonic.

2. The deflection of the streamlines brought about by vor-

ticity in a region is less when the governing velocity is

transonic in the region than if the velocity is entirely sub-
sonic or entirely supersonic.

These conclusions are confirmed in all of the examples of
compressible flow which follow. In fact, it seems that even stronger
statements should be made. A comparison of the deflection of the
streamsurfaces brought about by vorticity indicates that the deflec~
tions increase from zero to a maximum and then decrease as the
vorticity (the strength of the actuator) is increased from zero.

The governing velocity is subsonic in both examples.
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VII. THE FORMULATION OF THE FINITE
DIFFERENCE PROBLEM

The finite difference problem differs from the differential
equation problem in two ways: in the finite difference problem,
the boundary conditions are prescribed at a finite number of points
on the boundary and the desired function is to be determined at a
finite number of points within the boundary; the differential equa-
tion is essentially replaced by a number of simultaneous approxi-
mate difference equations which are themselves only approximately
solved. However, the set of points at which the desired function is
‘sought can be made very dense, and the system of difference equa-
tions can be solved as accurately'as desired. Therefore, barring
unaccounted for singularities, any degree of agreement between
the two solutions may be obtained. The two problems are neverthe-
less quite distinct. The finite difference problem is solved by South-
welll's relaxation method (Reference 8), which is defined as "a sys=-
tematic sequence of localized changes of the ‘wanted function that
steadily brings the 'residuals® toward their desired value."

The fact that the physical aspects of the problem are always
evident and that the status of the solution is always apparent is a
great advantage of the relaxation method. This is a great aid in
solving the non-linear turbomachine problem, for the action of the
vorticity and the compressibility is apparent as a '"force' which

causes the streamlines to deform from their incompressible, irro-
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tational positions.
The power of the relaxation method is indicated in the fol-
lowing quotation from Southwell (Reference 8, p. 3]
"(The) use of finite differenées is not new, nor (is the)
evaluation of the wanted function at nodal points of a regu-
lar net. But in concentrating attention on the data, and in
recognizing that these are never exact, they subordinate
mathematical to physical aspects in a way that can alter
drastically the course of a theoretical research. Dis~
cardiné orthodox for relaxation methods, an investigator
finds his outlook quite transformed: full scope remains
for ingenuity and special artifice, but any problem that
can be formulated can be solved."
It is not clear how solutions which are unstable can always be found
by the method of finite differences. Intuitively it seems that if the
configuration is unstable the disturbances inherent in the relaxation
process may be amplified by the relaxation, thus making converg-
ence questionable,

A) The Difference Equations

The most general form of the differential equation for the

- streamfunction is that shown by Equation (64):

Ay + 28,4 Cilyy + D=0 (103)
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where A,B ;C are functions of r and z, and D is a function of
Sbr s }l‘_’_ , T, and z. As written for each step of the iteration with
the non-homogeneous part known, Equation (64) is an elliptic equa~
tion, for

AC-B* = /+RrR%*22*% >0,
and can therefore always be transformed into the normal form

%x ‘f'}//g«j"" o'(x, ‘7)50:-) ‘/Jz) =0 (104)
When the cross derivative term cﬁrz occurs, as in Equation (64), the
difference equation may be written for either the original equation
or the transformed normal equation. Because of the added difficulty
‘of matching solutions when one region has been transformed, the
difference equations are writter} here for the original form.

If the streamfunction 5& , which is a solution to a partial
differential equation such as 'Eciuation (64), is regular in some neigh-
borhood of the point (r, Zo)" it may be represented in this neigh—

borhood by the Taylor's expansion: -

drz) = & + Gplrry) + ¥ (2-2.)
+ Z%[¢,,(r—n)7—+ 2y (r-To)(Z-2a)+ Yy (z_z,)’:]

R (105)
where ¢° is the value of 7& at (r,,z,) and all the derivatives are
' , r § -
 evaluated at (ro,zo). There- te f; £
fore if (ro,zo) is one point of 3 o A -
&
a square lattice with an in- 7 < 8 i z
terval between points of Y s
Figure 6

The Square Lattice or Net
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the value of 470 at thé surrounding points can be expressed by means
of Equations (105). | If fourth and higher poWers of § are neglected
the result is a system 6f simultaneous linear algebraic equations

which can be solved for the derivatives to give:

o Lam e ¢, - ¢
7 R R

%‘r": Y+ da-24 . ‘/Iz — Dtdz-2%
z\/‘ -— S ———————

ST Y g™ (106)
o Pt dy-by

On eliminating the first order derivatives it follows that:

W,+¢Z+</'3+¢4_-4-$‘o S ( oy + H22) 8™
¢;*¢ef¢’7+¢8 "4%: i(sarr"'sbzz)‘rb (107)

i\

The difference equation is obtained when Equation (106) is
substituted into the differential equation. Thus for Equation (64),
which is

(1429 brr=2 RZ by + (1+@ Dby, + (22~ R Zy~ =], - (2 R-RF2) 4= R (108)

the difference equation is:

[(1+-%-(2fr-RE)E]Y + [(1+29+(227R2Z5 ‘rjsbz
+ J(1477)+ /Z/?r-/?'?z)%jsfng [(#Z%- (22, -RZz-+) ;‘z,.] e

TEREMs b ety da) - 4142 (722 = R 5™ (109)

"where

R = 22 £ % 2+ [(1¢24, -R24] (108 + [l+574, - #24,] (1n 1]

th g g
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When the biade shape function f(r,z) is prescribed all the coeffic~
ients can be determined. Equation (109} is then the difference equa-
tion applicable in the région of the blades. The residual,® S
a complicated function of position which is estimated for each step
of the iteration by means of the solution of the previous step.

In the same way the difference equation upstream of the
blades is, from Equation (63):

(= )y 4y e (1455 ) e — 2y = RS™ (110)

where

£,
= ne, + prd Lo d /
ﬁ 54-,- [/7 / /p / 7 Q,.,_ > 0’40 )
The difference equation for the downstream region is the
same as Equation (110), but the residual, from Equation (65), is

given by

ﬁ ‘p //ﬂP//; (pp/ [(al‘t_b;:

z E‘, *
() [rg B -erd (o) ]

(111)

The difference equation for each of the three regions is
shown in Equations (109), (110), and (111}. A general form might be
written as

o, (¢) = 5K (112)
Here D/(t/l) represents the left side of one of the difference equa~-
. . .th . 2p . » .
tions written for the i point of the net and 3 R is the residual

there, D;( ) is the "difference operator", and is itself a function
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of position. That is, the coefficients of the left side of the differ-
ence equations have different values at each net point and these
values depend on the prescribed shape of the blades.
If the blades are prescribed as radial, the expression for
D, is more simple than in the general form (Equation (109)). For
radial blades
Di(¥) = o, + [ (1429~ (1-29L [ 4, + s
+ /(1429 + (/—Z‘};%j—];& - 4[/-#;_—’27:]5[’,, (113)
in the region of the blades. The Q,- are correspondingly more
simple for radial blades. However, the complexity of ® is pri-
marily due to rotationality and cbmpressibility. For example, if
the fluid is incompressible and the inlet conditions are uniform the
right side of Equation (64) becomes simply
R, = 2wrZ (114)
regardless of the blade shape prescribed.
Specialized forms of the difference equations will appear in

the various examples, Parts VIII, IX, and X. The general form of

the difference operator is written as the sum:

D (¢) = JZO'/J

¢'/' (115)
The subscript i denotes the point of the net for which the operation
is performed and the subscript j denotes the values of the stream-

function which enter into the difference equation. Thus for the

simplest difference operator, from Equation (110):
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D:(9) = b+ (1-55 )b, +by (14 £ ), — 44,

Dy, T Dy o=/ J Dy = = 4 (11 6)
= g J
C7/ 2 = /= Z_f_‘/— ) CJ’.4 = [+ z—r;-

The «,; are called "influence coefficients' in that they indicate the

U
. 2 . . . /
change in by 6?/- ; corresponding to a unit change in SZ’/‘J‘ ; or ——
v

represents the change in 5&,:/. due to a unit change in the "forcing
function" le‘f:. when all other ‘4;/' are held constant. The @, from

Equation (116) are shown for some point i:

s
Dz = (-5, ‘/j/z
* ’ *
;3 =_/ o= a/‘/" ! s o Ll’,/
- f/l'lpoinﬁ
s ) ® .
Dg= [+ z—‘f—; Figure 7 TF

The Nomenclature of the Difference Operator

The difference equations must be satisfied at every point
in the net. This is accomplished by Southwell's relaxation tech-
nique, whereby the streamfunction is modified until the desired
residuals are obtained.

The solution of a finite difference problem is generally
not the same as the solution of the corresponding différential equa-

tion problem. The amount of the discrepancy depends on the nature
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of the function involved and on the size of the net used. There-
fore it is only necessary to obtain an accuracy in the solution of
the difference problem commensurate with the discrepancy already
involved.

B) The Iteration Process

It is not practical to attempt to formulate a general set of
rules which will gOvern the iteration process in all conceivable
problems. It is, however, appropriate to discuss generally the
two separate effects--compressibility and vorticity. For the initial
step of the iteration it is necessary to estimate the right sides of
~ the equations, Consider, for example, the right side of Equation
(65):

(el S [0 - 2] 2 (2, ]

The manner in which rv(¢ ) may be estimated has already
been discussed. In the examples solved the first estimates of
rv(¢), so obtained, were accurate to within three percent of the
final values (Figures 21 and 23). The complete effect of rotation-
ality, represented by the term in the bracket above, can likewise

be expressed as a function of ¢ and r with comparable accuracy.

In the relaxation process it is possible to improve the desired
residual each time the streamfunction is improved, so that the

relaxation and the iteration are actually performed simultaneously.
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Periodically rv(c,;/ ) must be recalculated and a new, more accurate
function of ¢ and r obtained.

The compressibility effect cannot be handled so easily. If
the Mach number is low and the rotationality effect is strong, as in
the examples of Part IX, the first term, ¢,(/k¢), , is much smaller
than the last term and can be disregarded for the first estimation.

In this case the effect of compressibility is not completely neglected,
but appeérs in the (g)v. factor multiplying the rotationality term.

It is true that under these circumstances the main effect of compres~
sibility is its "influence' on the rotationality., For large subsonic
Mach numbers this approach is not possible . The first term may

be of the same order as the second. In fact, in the examples of Part
X, where a constant tangential velocity was prescribed at the down-
stream boundary, the two terms were exactl;.r equal at the point on
the downstream boundary where the axial velocity became sonic.
This can be seen by writing Equation {65), with @ = 0and ¢,, =0,
as

r2 (L) 2 (Pr) - R
It is well known that if the energy is uniform the local mass flow
is a maximum when w is sonic, hence ® is zero when w is sonic.

Another viewpoint is to regard the residuals as forcing functions

which act to displace the streamlines. Since the axial velocity can
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only be sonic at a "throat", the forces must act toward the sonic
line so as to contract the streamlines there. The residuals, having
a different sense on each side of the sonic line and being ''continu-
ous', must therefore be zero on the sonic line. When v is not con-
stant or when the energy is non-uniform, Aw will not necessarily
be maximum when w is sonic. The exact circumstances under
which the residuals change sign were derived in Part VI, where it
was shown that the residuals are zero on the line separating the
"hyperbolic" and the "elliptic'" regions, or, in other words, where
the '$overning velocity' is sonic.

It is extremely important to use every means available to |
make the first estimate of the compressibility effect as good as
possible. The rapidity of convergence depends on the judgement
used in the first estimation and each successive approximation. No
general rules can be stated. In regions where the meridional velocity
is nearly sonic, the streamsurfaces obtained during .the iteration may
be such that the channel between adjacent surfaces is f'choked".
When this happens the mass flow ,o% falls to the right of the density
curve in Figure 42 and the density is imaginary. If it is not possible
to adjust the streamlines so as to have real densities, then it may be
that the governing velocity is supersonic and the "elliptic" form of
the equation is not applicable, or even that no isentropic éolution

exists. If there is reason to believe isentropic solutions exist,
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the ""complete non-linear' equations derived in the appendix may
be used for the transonic problem. Convergence is always slow
when the governing velocity is nearly sonic, for the p vs pgscurves

S
have nearly vertical tangents then.
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VIII. AN EXAMPLEE OF INCOMPRESSIBLE FLOW IN A MIXED
FLOW COMPRESSOR WITH BLADE SHAPE PRESCRIBED.

This analysis of the flow in a mixed-flow compressor with
blade shape prescribed is presented as an example of the three-
dimensional motion of an incompressible fluid under the action of
a system of rotating blades. First a solution is obtained for the
irrotational flow through the channel with no blades present. This
serves as a basis of comparison for determining the additional
velocities induced by the blades, and is also useful in making the
first approximation to the rotational flow when blades are present.

The particular channel chosen is shown in Figure 8. The
curved part of the channel boundary can be expressed analytically

as

. z
sin 2T
27

= . (117)

where T is the initial radius, rs is the final radius, and L 1is the
length of the curved portion. The coordinates of the channel boun-
daries are given in Table I.

In this example the total energy is uniform and the vorticity
is zero at the inlet, station 0. More precisely, the tangential ve-
locity is zero, the meridiezn;al velocity is axial, and the préssure
is constant on the upstream boundary. In the blades and downstream
of the blades the total energy is non-uniform and the flow is rota-

tional. The downstream boundary conditions are essentially those
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that might be expected if the channel extended downstream to in-
finity: the flow is independent of the axial coordinate. Thus the
radial velocity is zero and the pressure gradient forces and the
centrifugal forces are in balance on the downstream boundary.

A) Irrotational Flow with no Blades Present

For irrotational flow with no blades present the governing
differential equation for the streamfunction (Equation (63} ) is simply:

94—-;—_‘,.‘,' ¢r+ ‘pz;:O (118)/
and from Equatjon (110} the corresponding difference equation is:

Lo (-5, oty # (455 ) e =445 = (119)
‘The boundary conditions are: 55 = constant on the hub and shroud
contours ,—,—%;ﬁr =w= |/ on the upstream boundary, and -,—f-(éz = =0
on the downstream boundary. Upstream ¢,. is taken along ‘the boun-
dary, so that ¢ can be determined by simple integration and pre-
scribed directly. Downstream the normal derivative is prescribed
and ¢ cannot be determined by integration along the boundary. The
k boundary value problem is therefore of the mixed type. However,
since the flow far downstream is entirely independent of the axial
coordinate all axial derivatives vanish and the differential equation
(Equation 118) can be integrated easily. By this means Sb itself can
be prescribed over all of the boundary. The mathematical problem
for the irrotational flow is therefore relatively simple and consists

. of satisfying simultaneously the difference equations for all points

3
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in the net.

The flow region is divided into a net or lattice and influence
‘coefficients are calculated for each point. The net, the influence
coefficients, and the boundary conditions are shown in Figure 9.
The influence coefficients near the boundaries were calculated in
the same way as Equations (106) and (108), but with a different &
for the ''short legs' of the net.

For a first approximation {o ¢ the sireamsurfaces were
assumed to have the same shape as the boundaries. This is equiva-
lent to assuming that the axial velocity is constant on each radial
line. The actual residuals R, for the smooth values of sb were
calculated by means of the difference operator with a high degree
of accuracy. These served as basic values of ¢ and (R,q . The
change in ¢ to make the residuals as small as possible was then
determined by the relaxation process. ‘As a final check residuals
were again calculated by the difference operator.

The final values of the streamfunction and the corrésponding
actual residuals are shown in Figure 10. Upstream of station 12
the smallest residual may be as large as 2 and downstream as large
as 5. This error c'o-rresponds to an error in the solution of the dif-
 ference problem of about one part in 2000.

The axial and radial velocities for several repfesentative

stations are shown in Figures 11 and 12, respectively. The abscissa
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of Figure 1l is the deviation from the mean axial velocity:

ATV = W~ W
Wo

where W is the inlet velocity and Won is the mean axial velocity.

The ordinate is the non-dimensional radius: v

_r=ry
To-7;

4

where r, is the radius of the inner boundary and r is the radius
of the outer boundary.

The abscissa of Figure 12‘is simply:

7 5

Lines of equal pressure are shown in Figure 13 for flow
" through the channel with no blades present. The decrease in pres-
sure occurring far downstream is due to the decrease of the cross-
sectional area of the channel and the corresponding increase of the
mean velocity. This should be taken into account when evaluating

O

the pressure increase when the rotating blades are present.

B) Rotational Flow with Blades Present

Rotational flow through the channel of the previous example
is considered here, The vorticity is generated by a rotating sys-
tem of blades which acts on the fluid between stations 7 and 14. Ra-
dial blades are prescribed, hence the blade shape function f(r,z)
depénds only on the axial coordinate z. Based on the irrotational

meridional velocities of the previous example the function f(z} was
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chosen so that the rate of energy input, i.e. the rate of change of
the moment of angular momentum rv, was very small near the
leading and trailing edges. The discontinuity in v across the lead-
ing edges cannot generally be avoided, however the blades were
selected such that the jump in v is positive. The rate of energy
input is indicated by the slopes of the curves in Figure 20, where
the desired and the actual Zov_r- on the radius r = 2.5 are compared.
The blade shape function is chosen to give the desired w—v"r on the
basis of the irrotational meridional velocities. The actual 75; is
determined from the final meridional velocities with the prescribed
blades present. The shape of the blades is shown in Figure 8 and
the blade surface function is given in Table I.

The applicable differential equations for the three regions
of flow were derived in Part V-B.

&, - 7’"/;—" b, =0 upstream of blades (66)

(14234, - (-2 & + 422

=2wrs . in region of blades (67)

4, ;’-¢}_ +dy, = (rr- wrz}g:/)’“V downstream of blades  (68)

where rv = rv(cﬁ) only and is evaluated at the trailing edge by Equa-

tion (58), which here becomes:

)y = wrl[1+ (;,“—;Z)t] (120)
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The corresponding difference equations in regions where the net
interval is § were given by Equations (110}, (111}, (113) and (114},

which for the three regions become, respectively:

51;+//-2—‘§)¢z+¢3+//+;—fj¢¢—454, = O (121)

¢ +//—z—{}+//+z—f)2_z/gg + &, +[7/+-§_}+//—§)Zj¢‘
ca 1422 =2 w0rZ 8T (122)

bt li=53) b # s 2145 s - 49, = (rr-cor) Gy rv 5 (123)
where rv(f ) is evaluated by Equation (120).

The influence coefficients for these équations and for the
' equations which hold near the boundary where J is not constant are
shown in Figure 14.

The boundary value problem is Vthe same as in Part VIII-A,
except that here the streamfunction can not be prescribed exactly
on the downstream boundary. Instead new downstream boundary
conditions must be found for each approximation to rv(¢)}. This is
easily done by one-dimensional relaxation on the downstream boun-
dary. The first approximation to the downstream boundary values
was based on rv determined from the irrotational flow. For com-
parison, the initial and final downs‘trream boundary values are:

r 3.25 3.0 2.75 2.5 2.25 2.0
Initial ¢ 0 973 1857 2654 3367 4000

Final ¢ 0 977 1863 2660 3371 4000
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The parameters of the problem, based on the maximum

radius of 3.25, are:

Pressure coefficient: :._az__z = 3.55
45 (wr)
Flow coefficient: f’}_ =0.769
Root-tip ratio: —,fé ='3 upstream
4
= 1.625 downstream
fo/, = 2 upstream
,',. -

.625 downstream

Blade aspect ratio: 0.232

Static pressure increasen /C—‘;—PH _(lgf} ot 1.570 at tip,
. 2 ‘blacles > /1o blades

= .756 at root

The extreme tip-root ratio was chosen so as to amplify the
three-dimensional properties of the flow, and blades of very low
aspect ratio were prescribed in order to stress the importance of
blade geometry.

There was nothing unusual in the analy®is. Relaxation and
iteration were performed simultaneously, and the function rv(¢ )
only had to be determined once after the first estimation. The
initial and final values of rv(¢/) are plotted in Figure 21. The final.
values of the streamfunction and the corresponding desired and ac-
tual residuals are shown in Figure 15. The axial and radial veloci-

ties are plotted for several stations in Figures 16 and 17, using the

same variables as already described. Lines of equal pressure are
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shown in Figure 18 and lines of equal total energy in Figure 19.

The pressure was calculated by a relation derived from Equation

(31):

L)

-Po - 2wrv +[/ _ U+ v:s W”]
L e wi Wo? Wo > (124)

A comparison of the two solutions, with and without blades,
does not lead to any extraordinary or unexpected revelations.
There are, however, some interesting points that should be dis-
cussed:
1. The general effect of the blades on the meridional flow
pattern is to increase the velocities ‘hear the shroud and
decreéase those near the hub. This may be considered as
an improvement of the meridional flow, for the most likely
place for separation is on the hub near station 13. Decreased
velocities on the hub therefore lessen the likelihood of sepa-
ration.
2. The direction of the streamlines, givencbyw"’- , is changedv

very little by the action of the blades.

op
IZP%L

 hub, is increased from -1.000 to -0.166 by the action of the

at station 13 on the

3. The lowest static pressure,

blades.
4. Although relatively large changes of axial velocity occur

within the blade region, the downstream equilibrium values
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differ very little (4.6 percent) from the axial velocity
with no blades present. However, the tangential velocity
far downstrearmn is approximately proportional to the ra-
dius, and is of the same order as the axial velocity:
-;"70- = 1.146 at tip, 7,"; = 0,720 at root. Considerable
diffusion would therefore be necessary to recover, as
static pressure, all of the kinetic energy added.
5. Considerably more energy was added near the shroud
than near the hub. This is unavoidable for radial blades,
or, in fact, for any '"'practical” blades of low aspect ratio.
6. The total velocity increases discontinuously across
the leading edge and it might seem that the pFessure
should decrease correspondingly. There is, however, a
sufficient increase of total energy to cause the pressure
to increase. This is because the term wrv is always
greater than the term > v%in Equétion (124).
7. The fact that the residuals are nearly constant on
cylindrical surfaces extending downstream from the
trailing edge of the blades means essentially thét the
“tangential vorticity is nearly constant oﬁ these surfaces.
This confirms, for this particular example at least, the

linearizing assumption used by Marble (Referénces 1 and
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4), when he assumed in the axial flow problem that the
vorticity was transported unchanged on cylindrical sur-~
faces. It is surprising that this is also true in this
region, bounded by cylindrical surfaces but located

downstream of a complicated region of mixed flow.
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IX. AN EXAMPLE OF SUBSONIC FLOW
THROUGH AN ACTUATOR DISK

An example of the motion of an incompressible fluid acted
upon by an infinite system of blades was presented in Part VIII. As
regards rotationality effects, compressible fluid motion through a
system of blades can be analyzed similarly, the main difference
being the density ratio multiplying the vorticity term. Furthermore,
it was shown in Part V-B that the flow in the region of the blades,
where the vorticity is bound, is much less complicated than in the
region downstream of the blades, when the vorticity is free .‘ There-
fore the present example, conceived in order to isolate the role
compressibility plays in altering the rotationality effects, is con-
cerned only with the more complicated upstream and downstream
regions. The blade region is therefore concentrated into an "ac-
tuator disk' in which the tangential velocity jumps discontinuously
from zero to some finite value. It is assumed that the ""blade sys-
tem' is stationary, hence the total energy of the fluid is constant
throughout the field. The matching conditions for the meridional
flow at the discontinuity are the same as stated in Parf V-D for
leading edge discontinuities.

The channel boundaries are concentric cylindrical surfaces,
and at the entrance the axial velocity is constant and the radial and

tangential velocities are zero. The jump in tangential velocity is



-82-
equal in magnitude to the inlet velocity of the incompressible example.
For the downstream boundary condition the flow is independent of the
axial coordinate. This problem is solved for two values of the inlet
Mach number (0 and 0.2), the inlet mass~-velocity and the tangential
velocity being the same in both cases.

The applicable equations, obtained from Equations (63) and

(65) with > = 0, (rv); =0, and E; = constant, are:

{
A AP

Yy (InPln upstream

(125}

it

G (In ), -+ (;i—f/z.%(%: *  downstream
where rv(¢) and d%p(ﬁ}z are functions of only and are evaluated
at the downstream side of the discontinuity.

The boundary conditions are: 5[/ = constant on the cylindri-
cal boundaries, -7’_- ;br = 1 on the upstrgam boundary, and sz =0
on the downstream boundary. For each approximation to rv(¢ }
the downstream boundary condition can be modified so that ¢ is pre-
scribed, as in the previous example (Part VIII-B).

A) Incompressible Flow Through the Actuator

The difference equation corresponding to Equation 125 for

incompressible flow is:

J d _
5[, +[/-.;_-;)51/z .,.%,(.[/,‘.;;)%_4(/‘,— o upstream
(126)
__t1d(rv)%2
=-Z a0 S downstream

The inlet velocity is taken as 1000 and the boundary conditions are:
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500 (9 - rz) on upstream.boundary

QOonr =3

4000 onr =1

0 on downstream boundary

n

NNE = e €
n

The influence coefficients and the net points of the flow field are
shown to scale in Figure 22.

The first approximation to rv(¢ )} was based on irrotational
flow within the same boundary. That is, it was assumed that the
upstream value of ¥ held throughout the field. The rv so obtained
is shown in Figure 23. Before relaxation, the corresponding down-
stream boundary values were further improved by assuming half
the change in ¢ occurred upstream of the actuator, thus ol\ataining :
an approximate value of ¢ at the actuator and consequently a new
rv(¢ ). The boundary values corresponding to this last rv were '
then used for the first complete relaxation, after which rv(y ) was
found to be unchanged. The result of this complete relaxation was
therefore the final solution of the problem.

Values of the axial, radiél, and tangential velocities at sev-
eral répresentative stations are shown in Figures 24, 25, and 26.
Lines of constant static pressure are shown in Figure 27. Far down-
‘stream of the actuator the ax‘ial velocity is much greater near the

hub than near the shroud. The maximum value of the radial velocity

occurs just below the ''center' of the channel. The pressure is
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discontinuous across the actuator, and most of the pressure changes
occur downstream of the actuator.

Perhaps the most significant feature of the solution is that
the radial velocity and the changes in axial velocity are approximately
§ymmetrica1 about the actuator. It is cleaf, however, that they are
not exactly symmetrical since the forcing function is not symmetri-
cal. One consequence of linearization (Reference 4) is that the mer-
idional flow is symmetrical about the discontinuity.

The solution of this example will be discussed and compared
with the compressible solution of the next section.

B) Compressible Flow Through the Actuator-M;j,jet = 0.2

The difference equation corresponding to Equation (125) is:

b+ (1= )y + (14 5 )dy — 44,

=[G (Int),] ™ upstream (127)*

= [‘/’n (/€ - z/‘(f;)tglglf””‘} SL downstream
The boundary conditions for the streamfunction* were essentially
the same as for the previous example (IX-A). On the upstream
boundary _}L‘/fffw = 1000, and M = 0.2. Other parameters on the

upstream boundary were:

,_g;_ = (1+¥ MY =1.020
1
< . ¥-' 11?2 =
g - (1+ & m) 1.004
= 2 -
w = /000 5% =1020

* For this example only, the streamfunction is defined by:

= Lo/ . -
u—‘;",':sbz) W—"g‘—";l—‘//r
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o= = 5100
Ao = 5080
The tangential velocity jumped discontinuously to 1000 in the actuator.

The influence coefficients and the net points of the field are
the same as in the previous example (Figure 22).

The first step in obtaining a solution was to estimate as ac-
curately as possible, by any means whatever, the ‘right side of the
equation. This was done aé follows: The vorticity term, 2’—-2‘-’-;01/)2
was very closely approximated by simply using the value from the -
incompressible solution just obtained., The extreme accuracy of
this choice is indicated in Figure 28, where the initial and final val-
ues of rv(¢) are plotted. The first estimation of the density term
was likewise based on the irrotational velocities, but only values
on the downstream boundary were calculated first. When this was
done it was clear that the étreamlines deflected less when compres-
sibility was present, for the compressibility term, ¢',7 (Infl, 8%, was
negative and subtracted from the vorticity term,

which was positive. In addition /P'?} % | which decreased according

to the increase in total velocity downstream of the actuator, also

acted to reduce the right side of the equation. However, the right
side of the equation was estimated on the downstream boundary using
the density term just calculated, and the streamfunction and the cor-

responding density were calculated there. These values were treated
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as downstream boundary values for the first complete relaxation.
In order to complete the estimation of the residuals throughout the
field the density changes calculated from the irrotational stream-
lines were corrected by a factor chosen to give the correct density
on the downstream boundary. In this way it was possible to make
a rather accurate estimate of the right side of the equation, and
the desired residuals for the first complete relaxation.. From the
results of the first relaxation the densities and velocities, and
finally new desired residuals, were obtained. The new desiréd
residuals agreed very well with the previous ones except in'regions
where the Mach number was greatest. Small changes of the stream-
function brought the residuals into satisfactory agreement and led
to the final solution, presented in Figures 28 through 32.

The velocities are expressed in terms of the inlet axial
velocity, rather than a velocity of sound, for comparison with the
incompressible solution. The Mach number based on the total ve-
locity is shown in Figure 32. The velocity components are similar
to those of the incompressible solution, except of course for the
discontinuities at the actuator.

C) A Discussion of the Solutions

In the two foregoing examples an otherwise axial flow is
distorted by vorticity generated by a so-called actuator disk. The

strength of the vorticity and the boundary conditions of the flow are
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the same in both examples, yet the solutions, although generally
similar, differ distinctly in at l%ast two ways: the total deflection
of the flow brought about by the vorticity is decidedly less when
the flow is compressible; the axial variations of‘the compressible
flow are concentrated more in the vicinity of the actuator, the
concentration being more intense where the Mach number is higher,

The first point of difference was discussed in the previous
section and is confirmed by Figure 33, where the streamlines of
the two solutions are c;mpared. A general conclusion set forth
in Part VI is that the local effect of vorticity, as regards deflec~
tion of the streamsurfaces, reduces to zero as the ''governing"
Mach number increases to one, and then increases, but with oppo-
site sense, as the Mach number increases above one. The secénd
point of difference could probably be predicted by the Prandtl-
Glauert similarity transformation, applied to linearized equations.
Its occurrence here is evident in Figure 32, and to some extent
in Figures 25 and 30 where the maximum of the radial velocity
for the.compressible flow occurs nearer the center of the channel,
indicating more rapid axial changes near the hub where the Mach

o
number is larger.
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X. EXAMPLES OF TRANSONIC FLOW
THROUGH AN ACTUATOR DISK

This section provides examples of flow through actuator
disks with maximum Mach numbers near one. Two examples,
with the same inlet Mach ﬁumber (0.555), but with actuator disks
of different strength, are considered. In one example the maximum
Mach number attained is one, in the other, 1.12. The actuator
model is the same as described in Part IX but the tangential ve-
locity induced at the actuator is not constant there. Instead the
tangential velocity is prescribed on the downstream boundary, and
the jump at the actuator is not known until the problem is solved.

With this prescription it is possible to replace the downstream

2

boundary condition, 52 = 0, with the condition that the stream-
function itself is prescribed, for the downstream conditions can
be determined without knowing the intermediate flow. The limit=-
ing flow far downstream of the blades was discussed in Part V-F,
For the particular case where the tangential velocity is constant,
Figures 43 and 44 show the maximum Mach number as a function
of the inlet Mach number and the tangential velocity. It was also
shown’in Part V-F that there is a maximum tangential velocity |
that can be imposed by an actuator disk and that this maximum
corresponds to the choking condition. The limiting conditions
C

for these examples are indicated by the two points shown in Figure

43.
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The differential equation (Equation 125)) of the previous
examples is applicable here but the definition of the streamfunc-
tion* is slightly different. The difference equation for both ex-
amples is (from Equation (111)}):

b (1= 1+ by (12 5ty = 40
=L Infl /T upstream (128)

= [¢” (e, - é(—g}zi(gljg" downstream

A) Flow with Maximum Mach Number of One

The following conditions are prescribed:
Inlet Mach number: M = 555, M* = .584
Tangential velocity: v = 0 at inlet
v\ %
(=)= .21 on downstream boundary

¥

and calculated from these are;

Maximum axial velocity: -‘g—’*- = .888
Maximum Mach number: %,‘;’-1:}::- 1

The influence coefficients for each point in the net and the boundary

values for (¥ are shown in Figure 22.
o

The method of solution was essentiallysthe same as de-
scribed in the previous example. In determining the approximate

residuals for the first relaxation the value of the rotationality term

2
z"% %) obtained on the downstream boundary was assumed constant

* For these examples the streamfunction (ﬁ is defined as:-

— — ——

« Pe | . Py |
——z_——"'pz];:— p¥r$bf‘
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on cylindrical surfaces extending upstream to the actuator. The
density throughout the field was estimated using the known values
of the density upstream and downstream and the approximate mag-
nitude of the density discontinuity at the actuator. The first de-
sired residuals were obtained in this way and a complete relaxa-
tion performed. The final solution then followed simple iteration
in which the desired residuals were obtained from the solution of
the previous step. After two complete relaxations the residuals
were in good agreement except in the region where the Mach num-
ber was largest. Minor modification then led to the final solution.
The axial and radial velocities are shown for representa~-
tive stations in Figures 35 and 36. The Mach number based on
the total'velocity is shown in Figure'37 .
This solution exhibits the properties already discussed in
the previous compressible example of Part IX, as noted in the
comparison of the next section.

B) Flow with Maximum Mach Number of 1.12

The following f:onditions are prescribed:
Inlet Mach number: M = .555, M* = ,584
Tangential velocity v = 0 at inlet
(é’—ﬂlz .264 on downstream boundary

and calculated from these are:
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Maximum axial velocity = ¥ = ,966
E 3
Maximum axial Mach number = f’- = .985

Maximum total Mach number = {‘—N%'—L—)L: 1.12

The influence 'coefﬁcients for each point of the net and the boundary
values for ‘b are shown in Figure 38. In addition the velocity, den-
sity, etc., at the downstream boundary, are recorded in Table II.

The residuals were first estimated using the meridional
streamlines of the previous solution. A complete relaxation was “
performed and the iteration started. Unfortunately the densities
obtained from the second c':omplete relaxation were imaginary and
straightforward iteration could not be continued. kTo remedy this
the axial mass-velocity, -- ¢, , was changed just enough to make
the densities real. Then the iteration could be continued. It was
observed that the numerical solution of this example was less ac-

3

curate than the solution of the previous example, although the net
points (Figures 34 and 38) were four times as dense. This is due
to the nearly vertical tangent of the density curve (Figure 42) when
the meridional velocity is nearly sonic, and to the fact that the ra-
dial derivati\;e of ’Ehe streamfunction could not be accurately deter-
mined on the inner radius where the large Mach numbers occur.

The axial and radial velocities are shown in Figures 39 and

40, the Mach numbers in Figure 41. The solution exhibits the same

properties as have already been described in the preceding examples,
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It is surprising that the streamsurfaces are deflected less in this
second example where the tangential velocity is greater. This can
be seen by comparing the downstream values of the streamfunction
in Figures 34 and 38, and indicates that there is a certain tangen-
tial deflection for which the deflectign of the streamsurfaces is

maximum.
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XI. CONCLUSION

A theory has been developed which permits the analysis of
compressible flow in turbomachines having infinitely many blades
when the governing velocity is subsonic. Several examples, solved
by the method of finite differences, have been presented. The funda-
mental idea underlying the theory is that the force field represent-
ing the infinitely many blades is necessarily a '"pseudo-conservative"
field. Because of this the three components of the field v;an be ex~
pressed in terms of two functions, one describing the input of
energy, the other the shape of the blades. The functions which
must be prescribed and the boundary conditions which must be im-
posed are then quite clear, and the heretofore more difficult direct
problem becomes relatively easy.

Two principal effects of compressibility were ﬁoted: the
deflection of the streamsurfaces brought about by a given vorticity
distribution decreased as the Mach numbers (subsonic) were in-
creased; the streamwise variations of the flow became more con=-
centrated as the Mach numbers were increased.

'rhe foregoiné theory is limited in that the fluid must be
non~viscous and the number of blades must be infinite. In addition
the application of the theory when the ''governing'" velocity is super-
sonic is questionable. It is clear that non-viscous flow under the

action of a finite number of blades must be completely understood
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before the viscous problem is attacked. Viscosity has no place in
problems in which the number of blades is infinite, for the blades
do not act as boundaries of the flow.

The extension to machines with a finite number of blades
could conceivably be carri.ed out by three-dimensional finite differ-
ence methods but the analysis would be very lengthy. A first order
approximation to the pressure and total energy is indicated in the
appendix. Perhaps the least understood problems are those in which
the governing velocity is transonic. The equations erre developed
and discussed generally in Part VI. A suggested approach might
be to consider only the region in and upstream of the blades, where
the vorticity effects are linear. Prescription of radial blades
would allow further simplification by means of the transformation
given in Equation (121). Then a perturbation equation analogous to
the transonic equations could be developed. Any analysis which
will lead to a better understanding of the cushioning effect men-

tioned in Part VI would be a worthy contributi on.



-95 -
APPENDIX

A First Order Approximation to
the Flow with a Finite Number of Blades

A first order approximation to the flow with a finite number
of blades can be obtained from the solution with an infinite number
of blades by replacing‘ the body force field acting in a sector between
two blades with a pressure gradient force, thus essentially revers-
ing the reasoning which first led to the assumption of infinite blades.
Then integration of the pressure gradient from one blade to another
will give the circumferential pressure distribution between the blades.
The mean value of the pressure, as obtained from the anal-
ysis with an infinite number of blades, is denoted by P Let p!
denote the deviation of the total pressure from the mean: p = pm+p' .

The force field is then replaced by the p'ressure gradients as follows:

1 dp’

F,— =_A'Fr =—F;5_,"
L4

Fo = Ay = Tz D8
- op’

o= =M= mg 5

va there are n blades distributed uniformly around the axis, the
second equation can be integrated from one blade to the next to give
the pressure discontinuity across a blade:

%e: ~ A(s8) = AZT
Because A is independent of © , the tangential variation of the pres-
sure is linear between blades. The deviation from the mean pressure

can therefore be easily determined at all points in the region of the
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blades. The corresponding approximation of the total energy, W rv,
can be obtained from a form of Equation (31}, using the velocities of
the solution with an infinite number of blades.

It is significant that the equilibrium of the fluid has not been
disturbed by the ‘introduction of the pressure force for the force field,
nor has fulfillment of the continuity requirement been altered. Ac-
tually the oﬁly assumption involved is that the tangential variation
of the pressure is linear, i.e., A is independent of © . This first
order approximation therefore seems very reasonable, particularly
when there are many blades, and may be satisfactory in other cases.

Unfortunately exact solutions with a finite number of blades are not

available for determining the accuracy of the approximation.
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TABLE I

The Channel Boundaries and the Blade Shape Parameters for
the Mixed Flow Example

Station

0~ ~N O
U1

81

= O O 00
(8]

10.5

11.5
12

12.5
13
13.5
14

15-25

Hub
Radius

.0000.
.0000
.0000
.0000

[ e T

.0038
.0288
.0908
.1955

bt ot Pt fod

.3371
.5000
.6629
.8045

[T S —

.9091
.9712
.9962
.0000

[ SR e ]

2.0000

Shroud
Radius

3.0000

w Ww Ww Ww ww wWw w W W

w w wWw

.0000
.0000
.0000

.0009
.0072
.0227
.0489

.0843
1250
1659
.2011

L2273
.2428
.2491
.2500

.2500

Blade Shape
Param .¥, fz

-.371
-.364
_0350

.328
-.300
.270
.238

.202
.166
-.132
.098

4

.072
.052
-.038
-.032



1
1.125
1.25
1.375

1.5
1.625
1.75
1.875

2
2,125
2.25
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TABLE II

Limiting Values Far Downstream for Transonic

I

(=4
2
Q*

.9607
.9731
.9843
.9943

1.0035
1.0120
1.0198
1.0271

1.0339
1.0403
1.0463
1.0520

.0575
.0626

0722
L0767

1
1
1.0675
1
1

Actuator Example with M _

Y

Px

.9046
.9341
.9612
.9858

1.0088
1.0303
1.,0503

1.0691

1.0869
1.1038
1.1198
1.1351

1.1500
1.1639
1.1774
1.1904
1.2029

127
¢ or

.27480
.24176
.21456
.19310

.17539
.16054
.14793
~13709

.12767
.11942
11214
.10566

.09985
.09464
.08993
.08564
.08173

w
e

.9658
9330
.9027
.8744

.8476
.8224
. 7982
L7751

7527
L7311
.7102
.6899

.6700
.6506
.6312
.6123
5937

=1.12

ax

- Y-

.8737
.9805
1.0846
1.1852

1.2826
1.3769
1.4671
1.5538

1.6362
1.7149
1.7893
1.8599

1.9262
1.9877
2.0437
2.0955
2.1425

=4
SZ

.0072
.0278
.0484
.0688

.0892
.1098
.1304
.1512

.1724
.1937
.2156
.2379

.2608
.2841
.3086
.3338
.3599

.1872

.9422

.6460

.3200

.9137

.4852

.0204

5236
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TABLE III

Tabulated Values of the Isentropic Energy Relation
Density Ratio vs. Mass Flow and Effective Tangential Velocity

0 .0012 .0046 .0110 .0205 .0330 .0500 .0715 .0995

b .0025 .0100 .0225 .0400 .0625 .0900 .1225 .1600
.0029 .0208 .0438 .0719 .1052 .1436

.0016 .0251 .0538 .0878 1272

.0063 .0357 .0705 .1108 -

.0176 .0532

.08
.10
12
.14

.16
.18

.20
.22
.24
.26
.28

.30
.32
.34
.36
.38

.40
.42
.44
.46
.48

.50
52
.54
.56
.58
.60

.0358
.0185
.0011



.02
.04
.06
.08

.10
.12

.14
.16

.18

. 20
.22
.24
.26
.28

.30
.32
.34
.36

.38

.40
.42
.44
.46

. .48

50
52
.54
.56
.58
.60

.1132

.1764
.1605
.1445
.1286
L1126

.0967
.0807
.0648
.0488
.0329

.0169
.0010

.1290

.1936
.1782
L1627
.1473
.1318

.1164

.1009

.0855

.0700

.0546

.0391
.0237
.0082
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TABLE III (Cont'd)

.1458

L2116
.1967
.1817
.1668
.1518

.1369
L1220
.1070
.0921
.0771

.0622
.0473
.0323
..0174
.0024

. 1655

.2304
.2160
.2017
.1845
.1729

.1586
.1437
.1298
.1155
L1011

.0867
.0724
.0580
.0436
.0293

.0149
.0005

.1882

.2500
.2363
.2226
.2089
.1952

.1814 -
L1677
.1540
.1403
.1266

.1129
.0992
.0855
L0717
.0580

.0443
.0306
.0169
.0032

.2022

L2601
.2468
.2334
.2201
.2067

.1934
.1800
L1667
.1533
.1400

.1266
L1133
.0999
.0866
.0733

.0599
.0406
.0332
.0199
.0065

.2173

.2704
.2574
.2444
.2314
.2185

. 2055
.1925
.1795
.1665
.1535

. 1405
L1276
.1146
.1036
.0886

.0756
0626
.0466
.0367
.0237

.0107

.2350

.2809
.2684
.2559
.2434
.2309

.2184
.2059
.1934
.1809
.1685

.1560
.1435
.1310
.1185
.1060

.0935
.0810
.0685
.0560
.0435

.0310
.0185
.0015

.2550

.2916
.2796
L2676
.2556
.2436

.2315
.2195
.2075
.1955
.1835

L1715
.1595
. 1475
.1354
.1234

L1114
.0994
.0874
.0754
.0634

.0514
.0393
.0273
.0153
.0033



.02
.04
.06
.08

.10
.12
.14
.16
.18

.20
.22
.24
.26
.28

.30
.32

.34 .

.36

.38

.40
.42
.44
.46
.48

.50
.52
.54
.56
.58

.60

.2800

.3025
.2911
.2796
.2682
.2568

.2453
.2339
.2225
L2111

.1996

.1882
.1768
.1653
.1539
. 1425

.1310
.1196
.1082
.0968
.0853

.0739
.0625
.0510
.0396
.0282

.0167
.0053

.3090

.3136
.3028
.2920
.2813
.2705

.2597
.2489
.2382
.2274
.2166

.2058
.1951
.1843
.1735
L1627

1520
1412
.1304
.1196
.1089

.0981
.0873
~.0765
.0658
.0550

.0440
.0334
.0226
.0119
.0011
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.3300 .3525
.3192 .3249
.3089 .3150
.2985 .3051
.2882 .2952
.2778 .2854
.2675 ,2755
.2572 ,2656
.2468 - ,2557
.2365 ,2458
.2261  .2359
.2158 ,2261
.2055 .2162
.1951 ,2063
.1848 .1964
.1744 .1865
.1641 .1766
.1538 .1668
.1434 1569
L1331 .1470
.1227  .1371
L1124 .1272
.1021 .1173
.0917 .1075
.0814 ,0976
.0710 .0877
.0607 .0778
.0504 .0679
.0400 .0580
.0297 .0481
.0193 ,0383
.0090 .0284

.3836

.3306
.3213
.3120.
.3027
.2934

. 2841
. 2748
.26 55
2562

.2969

.2376
.2283
.2190
.2097
.2004

L1911
.1818
1725
.1632
.1539

.1446
.1353
.1260
L1167
.1074

.0981
.0889
.0796
.0703
L0610
0517

4550

.3345
.3264
.3184
.3103
.3023

.2942
.2862
.2781
.2701
.2620

.2540
.2459
©.2379
.2298
.2218

L2137
.2057
.1976
.1896
.1815

1735
.1654
.1574
.1493
L1413

.1332
.1251
1171
.1090
.1010
.0929

.5350

.3306
.3237
.3169
.3100

.3032

.2963

.2895
.2826
.2758
.2689

.2621
.2552
.2484
.2415
.2347

L2278
.2210
.2141
.2073
.2004

.1936
.1867
.1799
.1730
.1662

.1593
.1525
.1456
.1388
.1319
L1251

.5800

.3249
.3186
.3124
.3061
.2998

.2936
.2873
.2811
L2748
.2685

.2623
.2560
. 2497
. 2435
.2372

.2309
L2247
.2184
2121
.2059

.1996
.1934
.1871
.1808
.1746

.1683
.1620
.1558
.1495
1432
.1370

.6140

.3192
L3134
.3075
.3017
.2958

.2900
.2841
.2783
.2725
. 26606

.2608
.2549
.2491
.2433
L2374

.2316
.2257
.2199
.2140
.2082

.2024
.1965
.1907
.1848
L1790

L1731
.1673
.1615
.1556
.1498
.1439



.02
.04
.06
.08

.10
.12
.14
.16
.18

.20
.22
.24
. 26
.28
.30
.32
.34

.36 -

.38

.40
.42
.44
.46
.48

.50
.52
.54
.56
.58
.60

.6450

<3136
.3081
.3026
.2971
.2916

.2860 .

. 2805
.2750

L2695

.2640

.2585
.2530
. 2475
.2419
.2364

.2309
.2254
.2199
.2144
.2089

.2034
.1978

.1923 -

.1868
.1813

.1758

.1703
.1648
.1593
.1538
.1482

.6955

.3025
.2975
.2925
.2875
.2826

L2776
.2726
.2676
.2626
.2576

.2527
.2477
.2427
L2377
L2327

L2277
L2228
.2178

.2128
.2078

.2028
.1978
.1929
.1879
.1829

L1779
L1729
.1679
.1629
.1580
.1530
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741

.2916
.2871
.2825
. 2780
.21735

.2689
.2644
.2599
.2553
.2508

.2463
2417
.2372
L2327
.2282

.2236
.2191
.2146
.2100
.2055

.2010
1967
.1919
.1874
.1828

.1783
.1738

L1692

.1647
.1602
.1556

;785

.2809
L2767
.2726
.2684
.2643

.2601
.2560
.2518
.2477
.2435

.2393
.2352
.2310
.2268
L2227

.2185
.2144
L2102
L2061
.2019

L1977
.1936
.1894
.1853

1811

.1769

1728

.1686
.1645
.1603
.1562

..824

.2704
. 2666
2627
.2589
. 2550

.2512
.2474 .
.2435
.2397
.2358

.2320
2282
.2243
. 2205
.2166

2128
.2090
.2051
.2013
.1974

.1936
.1896
.1859.
.1821
.1782

.1743
.1706
L1667
.1629
.1590
.1552

{863

.2601
.2565
.2530
.2494
.2459

.2423
.2388
.2352
L2317
.2281

.2246
.2210
.2175
.2139
.2103

.2068

.2032

.1997
.1961
.1926

.1890
.1855
.1819
.1784
<1748

1712
L1677
.1641
.1606
.1570
.1535

4902

.2500
.2467
.2434
.2402
.2369

.2336
.2301
.2270
.2238
.2205

.2172
.2139
.2106
.2074
.2041

.2008
1975
.1942
1910
1877

.1844
L1811
.1778
.1746
L1713

.1673
.1643
1614
.1582
. 1549
.1516

974

.2304
2276
.2247
.2219
.2190

2162
.2133
.2105
2077
.2048

.2020
.1991
.1963
.1935
.1906

.1878
. 1849
.1821
.1792
.1764

.1736
L1707

.1679

L1650
L1622

.1593
.1565
.1531
.1508
.1480
.1451





