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Summ:e.ry 

In the first part,. the reflection of electrons from 

crystals is- considered •. We here treat this problem when 

the potentfaI of the erys·ta! is a compietely gerrera:I 

three <Yimensi'onaI Fourier s·eries, whereas previously 

only ver~t special easeff were treated' ... .iUsct our method 

is qufte transparent while the- previ'ous methods were 

obscured' by frrvoived numerical co'mpute.tions., Also~ we 

show quite generally w,ha:t had· b·eerr inf erred from v.ery 

speei.al aases., ineludtng the Bragg law, of refiectfon. 

The relation of the ft"'ourier e.omponents of the potential 

o,f the crys tail to the optical planes is cle-arly. sho\'m .. 

How, the potential o:f the crystal is to he obtained from 

the e:X:perimental data is disc.ussed ,, and a formula for 

the width o,f the barrd·s: o.f total reflection is giv.en .. 

Irr the second part the energy states of divalent c:rystals 

are corrsid'ered •. '!'he two lil!lit:i'.ng cas·es of week and strong· 

couplifng betw·een the , t.wo valence eie·ctrons of eaeh atom 

a:re· showrr to lead to ene-rgy express-ions o.f the same 

form, and we conclude that thEl're should be no: difference 

in the ferromagnetism of monovalent and divelent crystals 

except as due to differences in the eonstants of the 

energy. 



The Reflec.tiorr af .Kiectrons From Crystals 

The refr'ection of electrons from: crystals,. an experiment 

whic.h was performed by Davisson and' Germer! has heen con-

• 'l. 3 'I s 1dered q;µantum. mechanic.ally by Strut t, Zwi cky ,, Bethe, 

Morse~ eTe Kronig· and Penney~ and Hil1
1
• A crystal is· d.efined 

as a, med'ium in whfeh the potential a.long any line is ·periodic. 

Such a p·otentia! can· therefore be ciescribed1 analytically by 

a three d'imensfcrna:l Fourier Series· ~ However,. thes-e authors 

were· nrrt able to tre·a:t th'is general e:-ase, a.nd' v:ery severe 

restrict fO'ns were fmprrsea· on the potential fn orcf'er to render 

the problem s0Iub0Ie. 

Perhaps the most detailed' treatment fs that of Morse. He 

ta:kes- the potential a:s essentially 

( 1) 

What this potential means i:.n terms of optical planes of the 

crystal, w.e shall see la.ter. At any rate,,, Morse treats the. 

differential equation of the- problem which results in forming 

the usua.1 Sc.hrodinger eq_uatio-n,, by Hill 1 s method •. This metho,d 

is perfectly rigorous and eo~erges for alI values o-f the 

energy of the incident e]ectrons,.. but the solution cannot be 

exh.fbfted1 in exp-licit farm •. More·ov:er,.. the essential con

clus·tons arrived a:t have to. be obtained' through very involved· 

nume-rica:l compu.tati'o:ns.., Thus,. aside · from IacR of generality,. 

the soI.utfon is s·omewhat O'bscure • 



Strutt, ¥ Kronig and Penney,._ and Hill get very explicit 

sol.utfons by making their potentiaI a one dimensional square 

tooth and valiey form. In passing to three dimensions, how~ 

everi they resort to the same restriction as does Morse. 

&s we shall see later, complete generality is essential to 

revealing certain important eha:racteristics of. the various 

ora:ers of reflection from a given set of planes .. 

Our treatment of the differential equation of the problem 
a 

is merery that of Mathieu s-1 ightly. generalized. This method' 

is nothing more or less th:a:n: the orcflnary perturbatio·n theory, 

but whereas· usually difficulties· are encountered in the first 

a.pproximaticm, the n'·th approximation is as easily solved as 

the first ih our case, be<:rnuse of the purely periodic potential. 

It shou:ra be mentioned that this metho.d d.oes not converge 

for a1l values of the energy of the incident electrons,. but 

only when the: energy is sufficiently high .. Fortunately, this 

represe·nts the experimental condition we are int.eres·ted in J 

and fn the. limiting case arrive at our conclusions with co·mplete 

rigor. 



J .. Wave Equation and Its s ·o·Iutions 

In ord"er t.o treat the case. of eharged partie-I.es incident 

cm a semi-infinfte erystaI (Davisson Germer expe1rim·ent) · ft 

is ne·cessary far us tQ consfd:e:r sol.utions of the· Schrod"inger 

equa:tian insfdfe the erystaI 

Vl.'V + srr"L.~ {E-V)'V= o 
~ . (.Q. "'+!!?'.!..1.1+!0-c\ 

00 (.. -"' fr" <:.) 
where y :: _ ~: Vo - -i".;- ;\. L; A.tnr\m ~ ~ ( 2) 

8 /J.. B TT ;P .{m1 m=-oo 

and/" fs the mass· o.f the partieI.e,~ is Planck's constant, 

and Eis the energy O·f the particle. A'.lso,. in order to make· 

A* i( the- potential r ·eaI. we take A,.e,,,,, ,,...-:- -_(-nn-m , where A,,,.,...., 
indicates the· c·onrp!ex e.onjugate· of A~,,,,.,,,,,, , and ..Q,rm,n'I take 

on all po_sitiv:e and negative integral vaiue·s· ... We a!s:o take 

A000 ::: o, so tha:.t-'/tt~. Vo is· the average potential: of the 

crystal below that of the outside w.·hfeh is taken tcr be at 

zero· potential, and A is· the perturbation parame·ter Vfhich

nrust be me:d·e s.ma:Il enough so that t.he solutfo·n converges. 
'l. 

If W= j]J2:1£-t-~ , then E·q. ( 2.) beeomes 
~ 

Now let. 

\71.'P -t lW~A U) f=- 0 

t.({x+ ~~+~r) 
u -= ~ A.(/ "" ir'I ..((. 

'IJ -:::: 'IJ 0 + 1 '/1, + ~ i.y;2.- + .. ' . 

W :::. Wo+ AW,+ A.'2.Wt.. + . . , 
(4} 



Substituting these expansions into Eq.. (3) we obtain the 

following set of equations. 

\Tl. \J-1 , + Wo '!J, -::::: - 'Vo ( \N,-rlJ) 

~'P'l.. + Wo'/)l.. -.:: - Wi 'flo - 'iJ, lW1 r V) 

( 6) 

('l) 

We stop at the second approximation equation merely for 

simplicity. As we shall see, we can easi l y solve the n'th 

appro.xi ma ti on equation, but the above are enough to give 

us a elear idea of what takes place in the general case. 

First let us take as the soluti.on of 18q .. (5) 

~ ( ~ x + ~ ~ + -f.c) 
'Vo= ~ 

where W" =:· (~)'"t-(~)'--tl%)1: There are, o·f course, an infinity 

of solutions o·f Eq. ( 5) which we might have combined forYo • 

However, if none of these solutions are rectuired by the 

succeding approximations t o meet condi tio·ns of finiteness, 

a's will occur in certain cases which we shall investigate, 

then we reject these arbitrary terms sirice physically we 

know that if the crystal is behaving as though there were 

no periodic potenti~l, a plane beam in the crystal pr·oceeds 

practically unchanged . 

Substituting into .15q.(E}, we have 

"V'"~, + Wo ~. = -
L. ( ~ -x+ 1-'t -t f~ 

Ji (w,+ tJ) (9) 



Let 

Then 

mrd W,-:::; 0 . 

In general,_ if o( 1f3 i, 'XO are nan-integral numbers', the 

den:omfnat.or af .B,.ll')71'" w.fII not vanish. Of course, ol; fl, a-' 

may b~e cho.sen so thait th:f.s happens.,. but we pos~pone 

discussion af this for th-e moment .. 

Substituting· "I'; and "I'; intcr Eq~( '1) we have 

2. l ( fx-r 4~+~~ 
\I 'llz. + Wo i-= - W').. ..tL 

Agafn we have 

c-t+f,,.,'t.,"' .... ~ ( t1.r:f!+t)\ ( ""''t'f+ (~·:•.,..f-wa 
Note· that the d.eno·mfnator of C<>o o vanishes .. We ta:ke care 

af this. by letting ( 000;:: O and making 

(10) 

(Il) 

(12) 

(13 ) 



0 

At thfs point vte shall draw some cone! usions from our 

series representa.tto·n of the solut.iorr. These cone.lusions 

can be justified only by showing that we can meet the 

pro.per hound;ary cond'i tions at the· surface of the se·mi-

infinite crystall but it is mor.e transparent t.o draw them 
( (. ~i\'.+~ .... + Z!: ;c.' 

here ... We have in the solution a principal ter111 .Q.. 
~ (..11' c. ) 

w.hf ch is a plane bea:m representing largely the incident 

beam .. There a:re in a:dCfitfon, weak second'a:ry ©eaks- ( sinee A. 

is smell) wh±ch represent reflections· from various planes· 

of the crystal. These secondary beams are of Iittie interest, 

howe·ver·,, except in the case when E. ~ o where 

(14} 

We see a:t once that as E decrease·s ,.. B,t t?Y\ ,.,., increases, and 

if L is· no·t to:o sma:Il,, A.8..e_,_"" will outweigh all the other 

terms except 'f 0 • Hence we may infer that A.8-('1'11'1is a 

strongly reflected b.eam.,, and that £. =o is the condition fo.r 

a strong reflectie,n. This, is of course ,,, merely an indics.tion 

of wh.a.t t .o. loo·k for,, and we proceed' to discuss rigorously 

in the next section the case of c:=o ., In Section 6 we shall. 

discuss rigorously the case of t. a smaI.1 quantity,e f.or the 

solution as thus far given fails to converge for £ i.n the 

region O'f O • 



2.. First Type of Solu.tian~Exac: t Resonance 

We assume the same series development as before t given 

by !Sq. ( 4) ,. but now let 
c.: ( ~ xtP-"4.+l(~\ <.. ( clf-~~+ ~t-m1.~t ~:e) 

0.. ~ 0 ~ =J "-- . {:r <:.. 
'Po-= A ..Q.. + B ..IL 

c 15) 

where 

~ 
The r; indicates the re.a.fning terms· IJLhich do not interest 

us sinee they a·o nat offer any trouble •. We now take care o·f 

the tw:o. resonance: teFms by setting their coefficients equal. 

ta zero.,. and: w.e obtain the usual secular eq;ua:.tians 

A w, +- Rl A-.e_-,......-~= o 

From these 

A s :::: 

A 
13-= 

AA.€""""" + B \\11 -::::. o 

w:e- obtain the two solutio.ns 

* A~,.,..,'"" W,= - }AJ"'"' A;'"'_"'\ . 
I A~.""~ A~"' I 

) 

j w, -::::.. 

( 17) 

We could now solve for "IJ, without being troubled by infinite 

coefficients or lac:k of cronvergence,... but this is not 



u 

necessary .. The· important thfng to note is- tha:.t we now have 
( l"' ;t t-~ 'll t ~~) 

two- te~ms of cons-equence,, the incident b.eam ~ ... <r- c 

Ll~ x T jSf-17'\'"' -t ~1-!f' ~) 
and a reflec.ted beam . ..e. ~ U- o- -r of the s:ame intensity 

aa the original one" since '* (::: / .. 
Moreover, these two beams c.onstitute a Bragg reflection 

from the plane· 

..Y. ,-y>'\, + (!}... ·::t_ -= 0 
trX T (;M c..' (18) 

In the first pJ:ace: it c an be easily shown that they make 

equal ang'les with the normal to this· plane .. Also· the Bragg 

law: is- s-atisfied, for if B is the angle between the incident 

b'eam and' the no.-rmaI to the plane eons idered ,. then 

o(.Q -t ~ + ~ a..... (r.... c. ..... 
~ e = ( 19 ) 

Now. w·e also· h ave the two relations· 

( rJ..t;; ),_-t- ( § t-(;) ').+ ( ~t-f r -We::: o 

(.20) 

Subtracting, we get 

~ + ~ -r ~c.3- =-~ \ (4 f+ (~)+(;)) °'"'\. (;,....... ... L ( 21) 

So: that v~x+ ( %J '"+ l ~J"L 
if \No 

( 22 ) 

Or we have 

I .::-A 
Vwo (23) 



where d=- [~f+l7Y-+ (~)1]-fand A is the wavelength of the 

eie·ctron. Thfs is· pre·cfsei y the Bragg law for the first 

order reflection. The m:fnus sign mere!y means that the 

angl e should" be measure'cl in the o-pposite se-nse ~ 

3 .. The Higher Order Bragg- Reflections 

We· have: seen from the a.bov:e that the potential term 

L·(~?C+-':'a-t-~e) -i (~ x-+ ~ 11+~~ 
A.'1'""'- m. .e. + A & ( 24 ) 

- ..€-....... - ""' 

al.one was respon-s ible for the first ora·er reflection 

from: the plane w.hose Mi.ller indice s 1iuere ...Q ,.,...,., m ( J( ,.,., n\ ) ) > 

are assumedi to hav.e n:a c:ammon fac.tor). We are going to 

s:how. that. all the higher order Bragg ref l ections· from 

this· sam.e plG1~ne al-so· ari.se fr0;m this same potential term .... 

The tdentification between this· potential term. and the 

corresponding 0:pt i c.al term will the.·refore be cqmpI ete· ... 

Thus,.., for thee s·eC'orrd o-rdre r re fl ect.ian ,, we take 

'-·(~x-t ~ ~.,.~~) + B 11t ·(~ -tc:1..-< -ex+ ~-t~,,,..,& -t r+~lll t) 
Ylo == A ..e. -.:.. '1" 

and· 

Upon substituting i'n Bq .. (6} we get 

( 25} 

"- i. (~:i<.-+~\lT ~~) t(d..+;1-x+ (3+;(;~+ o+~-"'71] ( .26) 
V ~1 +Wo~ =-w,[A.Q.. +81 

t. ( d,+-.0 JC + M ·m. ll +- ~ ~'\ L.( tl~;t+ ~ -;-~+ tr'-: ;a.) 
-AA ~ er- "' c. !AA ..Q.. 

.Q/?l'\/n -R_-tk-M -

i.(~x + ~ ... ~ l4-1-a-+3m:r.\ ~(el.+e i!:+ /6+~-a- -t ~~) 
"' ~ (.,.. C1 c. ~, c.. &-

- C) A .Q ml 111 - BA_.e-~-1>\ 



If we i.1ake use of z·q. ( 25) we get 

We then f.ind that 
i ( «.~x + ~ t;:: ~~ r+~ c) 

..Q. 

rr· w·e now substitute- into Eq .. ( 7} W'e have a precfseiy 

si·mr !ar equation as Eq •. ( 16) and' the final result will 

al so· be that ) ~ I~ I • 

( 28) 

Thus we s:ee that if we go out to the N t'th approxima.tion 

we get the iL'·th order Bragg reflecti.on from 1the potential 

term a.f iEq., ( 2.4) ., 

It shoul..d b.e no.tieed' that we get t.he s-ame N"th order 

Bragg reflection in the first a,pproximation if the 

po·tentfal term 

l.H( :£ ;r-#- T ~ .,. ~ ~) - i N ( ~ ~t ~ '& 1- ~ "t. ) 
A .Q A ..o 

N'-J"tM.,fV/'11\ + -/JJ. -fVtw1,-N~ 
J 

fs present ... We sh~l l see Tater on how to decide exp er-

fmentaI'Iy betwe'en these t.w·.o cases. 

It fs now- obvfaus that the sp:eciaI pot:entfal of Kq._(l). 

used by M~rse r e stricts the crystal to optical planes 

perpend'icular to· the principal axes of the crystal, with 



no: ather eros-s planes poS'sible.., 

FfnaIIy 1 t s·hould be r emark ed! that in cas ecil, ~, ¥ are all 

integers, w.e have Laue oee.ms .. present,., for the incident 

be-am, is then normal: t o' a set of planes fn the crystal. 

4. Second Type of Solution 

In mee-tfng the ooundary cond'ftfons,,. a:n infinity of solutfons 

inside the crystal w.ill. be found necessary.. Physically thfs 

is·- because the sorution given previo·usly introduces inside 

the c:rystal an :tnfini ty of ~..?~ whi ch suffer internal re

f!ectfon a:t the faee o.f the crystal (we take this f ac.e to 

be the plane x= 0 ) • 

Now ff put. ,:t=o in Eq ... (3) we have such an infinite set in 

(~-4") l. ( cirr) 7' + id~~ .,. ~~,.,-~) 
~ : R ~ (30) 

where [~rrJ = V w- (~)'--l~\ if we at tribute to t )rr al l p-ossibl e 

arbitrary va.lues,.. although for our purposes they need t ake 

on oniy a.11 integral v.aiiues. However, if we use the same 

d'ev-elopment in series- as given previously, the energy of 

- ('«"") -each so!uti.on corresponding to ea.ch function lfo will be 

d'ifferent from each other and' the energy of the original 

solutio-n W .. We therefore assume a development 

. (~..,,..) 

111li"') = tS x fi 11(t,,.r) 111<1~J J 
,, .a. . L'o + ). .,,, + ... . 

(31} 

Where S ('6"') is a parameter whi.eh we have int.ro.duced fn Grder 



J..G 

to keep the energy f i:Y.ed arrd e~ual to W .. The reason we 

can do thfs is because ff we substitue into .Eq .. (3) and' 

obtain the suc·cessive approximat ian equations,.. the $ ~ 

occur fn the same sort of way that the w j occured prev

i ausiy. Thus for t ·he first approximation we have 

'\.-l,,(~~) 1J1 (~"'") <s,..,.J '"·(gx+ 'T\1 +~'i:.) 
v r, + w .,., = 'llo [ ~s/'11 .... )[i-i'"] - ~ A_q,_~ <t } ( 32) 

~"""' 

So that 

(33) 

B = ~~~ ~ 
~lb\ I)\ ( ci---1+ ~ )'-+- (ere:_~}~+ ( d'+re:"y -w 

and; S,=o .. We d'o not pro·ceed any further since the remaining 

approximations are obvio,u:s. 

5. The Bound'ar-y Problem 

I 

We take the face of the semi-infinite crystal to be at J 
' I 

and the crystal to extend in the positive J direction ... 
1..'(o< 0 x+b'"'-t- Tu c) 

SUppo·se a plane beam~ a. tr" c. incident on this face. 

If ~ ana -P- are solutions outside and inside the crystal 

respectively, then we have the usual b0:undary conditions 

(?i4) 

Also the energ·ies inside and outsid'e the c-rysta.1 are equal, 

so that W-V0 = ( ':.~"'"+ (/!f)..._-r {~)l.. .. Since§ must consist 

of only one incident a:nd the several reflected beams, it 



.L ..... 

The general ex pre ssi"on for '"'f'" ts 

~Tr = "\II" ~ ·i.11' ti rr) 
".! T + ~ C ~ ,.. T 

~ ) rl" 

(36) 

If we substitute into the boundary conditions,. we see 

firs..t of all that (Bo-= {-> J b""o-:::. cY since '6 and -r are arbitrary. 

Secondly, if we equate coefficients of each different 

Fourier co·mponent in ~ and :c we obta_in an infinite set of 

equatio-ns with an infinite set of unl-t~nowns for the deter-

mination ,.,f ~ 00 tr,....,.... c ...... ,,. • Thes·e equat±ons are best :> , 

solve a by me· ~ms of successive approximations,,, but we shall 

stop at the ffrst a:ppro·ximation .. For the case of no·n-

resonance t for whic·h the experimental data are most a:ccurate,. 

w:e have for the zero t th power of A. , 

0 0 

~ o o T- ~o o :=. I 

cl o('~:o +- -C ~o) ::;- c<. 

For the first power of .A we obtain 

I I B 
G\.oo + -fr oo ::::. '[ '...Q.oo 

.e 

ol.o( ~~o - t-:0 ) ~ 21 ("'- +-Q) 13;.ao 
-t 

( 3'/.) 

{:38a) 

( ~18b) 



Where 
0 , 

C\oo= ~oo +.A~oo +· · · 

We therefore firtd for the intensity of the reflected 

he ams 

\ ~ ''1..- \ (olo-ol}#- A"{ (ol..o-ol. --q} 8-'" o -\'I.. 
'too - ' l~o+cl} +- ').CZ:.. (_olo+ol+.(>)8_.'100 

.q_ 

The reia:tion between o{
0 

and "<. is 

Threse · intensity formuia:s are rather unwieldy in their 

explicit form~ so we sh~Il give them explicitly only 

when the single potential term E·q •. ( 24) is· prese·nt. We 

then obtain 

.froo 1'2= 
qoo 

(40) 

(4la) 

(4lb)_ 

(42) 

( 43a) 

{. ~ ~~ol [ \[E0+Vo-(~~t-lK0~'J~- v-(~0)~V: -~JA~/1>\')\ 
1-ei; u F.+v.-~-1f!~t-(tnyi )'+~E·-(~t -( ~j ][<( ~ -t>.'f (~)'wo +""( ~) +"' ( ~ 

(43b} 



Where 

We will also• recall that E= -f.,_l. Eo 
?71':fa 

, 1=. being the energy 

of the incident oe·am, ·while the work function o,f the 

crystal is m = -t.... -i. V
0 

.. 

T ~"/' 
In comparing these formulas with experiment, it is 

perhaps· most illuminating to take the experiment of 

Davisson and Germer in which they keep the direction of 

the incident beam fixed'.- and measure the intensity of 

the reflected beam as a functio·n of the energy of the 

incident beam· .. This means that in our formulas, we must 

take the ratio of ~0 
• .b : ¥0 as constant. and var" them . ~ • -& c ' .) 

only by multiplying them by the same arbitrary parameter •. 

In this way we pass· through successive orders o-f Bragg 

reflection. 

In the first place~ it is clear that Eq.(43al is of no 

interest to us,, since it mere ly re pre sen ts t he reflection 

due ta: the po.tential dro.p of the crystal wall, and has 

nothing to do with the periodic potential of the crystal. 

&q_.(43b) ,, however" gives us the intensity of the N' th 

order reflection fr om. the pl !iline ( lmn) which i .s due to the 

presence of the term A N.Q) N.-., f'l1n in the potential . . It is 

immediately obvfo:us that all the orders- of refiectiop as 

are d'ue to these terms are of the same ord'er in /l , and 

if we ·,are given the coefficients A_etrn ~ we can determine 



the fntensities· .. Pr~ctically, however,. they are no't given, 

and since they are unknown, no absolute fit is possibie. 

Th fact. they are to be determine~ by the expetimental data~ 

As w·e have showa fn :Sectf'on 3 ,. A;,,,... /"\ alone g ives rise to 

N'th order re·flectfans ais·o given by AwJ.., N,,....,N1>1 • Thus·,. to 

render the determination of the A.l ,'1'¥1"" directly, we must 

show w.hen this effec:t ean be neglected'. NO\_\( in fact> it is 

easy to s·e·e that the intensity of the tP th order will be 
J..N 

of the order of X , and' the rati.o of two adjae..ent o.rders 
~ 

will be of the order of ~ • 

Now experimenta:lly, the energy of the incident beam was 

of the order o·f two huncred' vol ts,. \.Yhile the work function 
"l.. 

was of the ord·er of t.en volts,. so that A. in this case would 

be approxfmately I/loo., For this reason it is quite safe to· 

make the neg!ectio·I). consid'ered' above .. The distinction or 

recogni tfon of these two effects· does not seem to hev·e 

been not iced' before •. Indeed,. Morse takes the term of Eq .. ( l) 

to· be generally a fa:fr!y good a:pproximati'on- to an actual 

crystal for high energies •. 

In actual shapei we find that Eq.(43b) is in fair 

agreement w,i th the lower parts of the ex perimental curv·es. 

This sho'uld hardly be taken as a test,. however, since 

neither theory or experiment are_ very sensitive in this 

region. 



.I. ( 

6 • The· W-idth of the Bands of Total Reflection 

S-trutt" Morse,. and' Hiil show in their special eases 

that the energs~ for w,-hfch total re·flection occurs (which 

they ealI a: florbidden energy) does not o-cc.ur far single 

discreet values., but in a c.ontinuous range of values tn 

c·e·rtain regions •. We thus hav·e· bands o.f total reflection,. 

and moreov.er these. bands. become wider as the energy o·f the 

eJ'.eetrons approach t.hat o·f the periodic potential. 

We shall show all this quite gen·era.l'ly, and also obtain 

expiieitiy the width of these bands· for the ·, case of 

perpendicular inc-fd-enc·e of the beam .. In the ffrst plaee,, 

we will notic·e in Section 2 that we obtained total 

re fleet ion for two values of the energy •. The reason we 

dfd there get a contfnuous range of values· w~rn that w·e 

obtained a less general solution than is possible~ 

Instead o·f expanding like Eq •. (4) o.r like Eq .. (31),. we 

can eombine the two,.. so that. we assume a dev:elopment 

s:;; .A6 ,+ )..\ ~ l..,. .. . 

' •. , .... ,i.w + .... w= W o + ,.._..., , ,.. ,... "-

lll}g'"" s1·nee we are considering resonance .. we take ·2'·• v ,. , 

(44} 



18 

(~ r+ (~) ~ 1- c~)" ~ w 0 

~~~s-+ ~t+ (r±zr~ w0 

+L:, 
The lj fm!icates: the remaining no.n-resonance terms. 

'the- se·cular equations are now 

A ( ~ ~ S, -w,)A~-m- - BA-~ ----,.. = o 

(45) 

(4.7.) 

range· of w, , S1 be·c.o·mes cromplex thro.ughout this region •. 

Tnfs- means that we have total reflectf on, for th err 11" I::: I • 

It is easily: found'" that b, is co,m.plex if w,'l. {%)~~ i(~r-[ (?)\(.z.J] "l.~At,.,._A;,,,. ,., 
and is rea! whe-n w, lies autsid'e this region. We thus 

pass fro.m a region of perfect reflection to only partial 

ref le ct.ion •. 



To find the angular width of the· ban<fs- ,.. we must 

re,member that the energy of the .. outside incric!ent 'Deam 

ts· ke:pt constant and the angle varied. This means that .. 
tn the- Bragg formula, 4J.,,c..r:.1B = ~ , which wg have 

ae·rived, N'l.. varies-, ancJAN"'t,-=.dW. 

Therefore·,_. d'ifferent.fatfng 

4- cJ!c.o e ~e 4 e = 4W 
and' we get. 

l.fd ,_ l<PB \) @)"-[~)1+(~f J'A t,,,,-A;..,,.. 
d G = N "2.. ""- B ~r 

Graphically,, this formula ean be represented as in 

Morse's paper ,, amf it is· also e-quiva:Ient to- Da:rwfn' s 

we!I knawn formula for x-rays- ... 

C'o·nc!usicm· 

The· d'ffferemre between thfs and' previous treatments 

may oe summed up as fo'1Iows. We h-ave· shown ciuite· 

( 49) 

ge-nera;lly what had! been inferred' fro'm. very special cases-. 

The Bragg law' wa:s derived, and an!y relatio'ns analogous 

to it were prevfo-usly d'erive·d' •. We have s·hown how the 

potential of a cryst.aJ:· can be c!etermined' from. the 

experimental d·ata, a problem not hi t.hert.o considered ... 

Finally, __ we· give a formula for the· width of t.he band's 

of total reflection. 
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The States of Divalent Crystals 

The problem of monovalent crystals in connection with 

ferromagnetfsm for tightly bound electrons was first 
G 1 0 

treated by BTo:crh using a m.ethod due to Slater •. Bloch, 

howeve,r, made se·veraI questio·naole assumptions which 

weTe correc·ted' and' their consequences inveS'tiga:te·a tn 
, ... 

a paper by Epstein. In this latter paper it was surmised 

that if the crystal consisted of divalent atoms instead 

of monova1e:nt atoms, then the a:nalysi~ would hold good 

if the two elerntrons- oeiong-i'ng to the same atom were- in 

widely separate,d' states; if,. on the other hand,.. they 

were in nearly equival ent states this would not be true .. 

It is this point which we shall investigate here. 

1.- The See:ul.ar Ec.tuations· 

In our treatment w.e also use Slater 1 s metho.d, and,. 

inasmuch as very c.lear expositi.c:ms- are: given by the 

above authors,. we shall suppo,se that they have been 

studied' by the rea.d'er and t herefore omit derivations 

given by them .. 

The essential differenae between the divalent and 

monovalent cases is that :in the former case we have to 

do- with orbital deg·enera.ey for the elee,tron pair 

belonging to the same atom, whereas in the latter case 
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the valence eiec:trorr is taken to in the s state
1 

for 

which. no clegenerae-y in orbit fs pres.ent. 

Hew.ever,. it is. diff.ic:ult enough to treat_ the orbital 

degeneracy of just a molecule fo·rm-ed: by two divalent 

a.toms, Iet elone a crystal. Instead, we shall. procee·d 

just ag tho·ugh no· orb-ital degeneracy exf st ea·,. but in 

plac-e of the hydrogenic functf ans used for no oTbfta.! 

degeneracy w.e- insert co-mbinatfon funetfcms as fnafcated 
II 

by Siater .. No· discussion of how this functi on is. to he 

formed 11LflI be giv·en sinee ft does· not ari'se explief tly 

except fn certain ex.change fntegral'.s which c:annot be 

eva!uated arryway~ 

Suppose the crystal ta contain 2N electrons .. Bach 

elec·tron. has· e-i ther a posi ti v-e or negative- spin aro·ng 

a fi'X!ed a:x:fs_.._ As- in the rro..t!iltion o;f Epstein let r 

electrons have nega:.tiv.e spins and 2N - r positive. Lst 

the e.lectrons be su.ecessi veTy denoted- by I, 2,. · · · · · 2N 
I 

and those electrons with negative spin by -8, ~z.. · - - - · -G,..,. • 

Th'e· anti - symmetric func:-t.io·n aorrespondi:ng to this 

arrangement. is then denoted by lJI { / , {z. - -· -b"J .. The total 

eT'genfunction fs· then giv-en by 

'\j'(~)= ~ a.(f, -··l-r) l/'(f,·---f-<) 
«· .. -~" 

{l) 
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The c·oeff'ic.ients O.( f ,· ·· 6~) are dete rmined by the 

se0'ular eq;ua ti ans 

The summation fs extended over all pairs of electrons 

having opposfte sp-fns,, the total number of negative 

spins being kept constant. Here J-t6' iH the Heitler and 

London exchange int.egraI and St&! is the same integral 

but viithou:t the interaction term· in the integrand. 

2~ Solution In a Special Case 

\Ve are going tcr solve a. special case as· illustrative 
I 

o.f the gBneral pro.cedure and take a l inear chain with. 
I 

r V2 .. Furthermore, w-e shall suppo·se that all the inter-

cha:nge integrals, exc.ept those indicated by the diagram, 

are zero; . ._ 

s, .$.._ 

• • 

s , s .... 
• • 

Here Jo is th:e interchange integral between the two 

eiectro.ns belong·fng to the· same a.tom·, while J, is the-

interchange integreI helonging to. two elec-trons on 

ciffferent atoms and' in different stat.es (the- stat.es of 

the electrons a:re des·ignated by s, and S'2-). The meaning 

of the remaining inte·grals is s elf evident •. Vie also 

suppose that only S 0 ts significantly di ffererrt from 



I 
zero (Bloch and Epstein suppose all the S s are zero) .. 

It is convenfent for us to divid'e the coefficients 

in the followfng four groups w.hen r 2~ 

I f 1= ~,,.,,,+/ ) -8-i.= ~ n)2.. +/ ~{~, f -i.) =ti (m1 ma.) 

II -!1 = ~f'l'l , t-/ .) t 2.. = ~ 1'))"1. O.. (-Cd,_)= 6- (tn1 m ... ) 
( ~')) 

III -f, :=. ~,,.,., , ) f'l-= ~ni'Z.+ 1 4( ~ d\) = c.. ( />1 /"'17,.) 

IV -ti= ;;\.">! , ·, {1:: ~ /)?'2.. ~ ( ( I f 7. )':: q ( t>11 t?l;i) 

Whereupon we obtain from E'q_ •. ( 2) the following four sets 

o·i equattons co.rressponding- to each O'f the four a rrange-

ments above 

I 

- ESo[ C ( ,..,., ,+1 , m.._) + &- (m,, 1>11.. +1 )l 
+ j 0 [ c {m1+-IJ 1111.) + -e- { ,,.., , J /)'la. t-1) -Dl '\( m1 m'L)J 

+J1 [ C(m1,1'1i.) + fr{111 1 m7..) - ~4 ("11 fl1'l.) J 
( 4) 

+ J 1. [ ~ ( m1+-I> n12) + a. ( 1>1 1 -1, m'l...) - ~ (( ( l>'J 1 mi) 

+C\("l11,m 1 +-l)+a (IYI,, 1>12.-1) -~a.(m 1 ml.)1= 0 



II 

IV 

£ -a, ( m' m2) - [ K +-( r>1 -t .,,1yL dt-6'']-g (m, 11'1z.) 

_ Es
0

[ o(,(t711r1,ma.) + tt(111,,m2-1)] 

+ Jca [ i((t>1,+J,mz.) +~(m1 "112 -I) -~ "C- (M1""1.)] 

+ J, [ ~ ( lt\ 1 /)ta.) + ~ (m 1 1112.) -~ fr {hl1 MJ] 

+ J.,_[ -e {"''+I> n1>) + "-(,,.,-I,"'•) -< £-( _,,, "'•) J 

(5) 

1" j"\ [ ~ ( ,.,,, ,l'li.. +1} 't 11-( -n,, m1 -1) -ol t- {,.,, 1111 2)] = 0 

-~.S0 [ 4 ( m, ) nii. +1) + '% (m1-1,,.,,,.)] 

+ Jo [ d ( nf I h'l'l. ·H) + 4 { '>'! / - / J 1'>1 i. J - J.. (. ( / YI 1 rn ... )] 

+J, [ C\ (1>1 11>1i.) +c{ (1711 ">Ii.) -~c.(m 1, 1H"l )] 

+ J'l. [ (. ( l'l'i 1 '111 '1. ·f-1) + ( ( nJI hl-i.-1) - ~ ( (h! I /')') ~] 

+ J 3 [ c. ( 111 1 + /1 ,,,.,..._) +- c ( ,-,,1- 1, "'-i-) - J. c ( r?t, mi.) J = O 

E ~ ( 1'11 mi.) - [ ~ t- ( m +,,. i) '2. J-f-d' I J <.( {m
1 
m

2
) 

- ESo[ --e,(m,-1, hli.) + c. (l)J , ,/1\'l.-1)] 

+ J. [ c 1~.-•, "'·> + c c~ . , ,,,,-1) -~4 r"' • "'~>] 
+ J , [ -fr (m , m.J+ c(m1 nii.) -~c.l(?'l , 1>11.J] 

+ J3 [ti ( flll 1 + IJ mi.) t q ( tll/ i -1, 111i.) -J,q ( ">f i ni
2

) 

(6-) 

(7) 

+'4(,,,,) ....,,l.+1) +4 (1>1,, ">'li.-1) -a~(n, ,1112) J ==- 0 



Vfe try to solve thfs set of four simultaneous 

d'i ffererree equations by s·ettfng 

t.' t°(C1 ""1 1+C-z.1'>1..,) 
C( "'1 1"'11.) .c ..e., 

upon substituting,. w·e immed'ietely obtain four homo

genous· linear equations in the unknown coefficients 

'l{/"11 ,.,.4 ... ) ; --6 t~ , '""-..) ,; c l"'l 1 --... ) J 4 (,,, 1hl-i.} 

Now. Vile kno.w from. tile elementary theory of such eq_uati.ons 

that we get 

where c,, c"J C1.1 c,,. are independent of m 1 amd' l?'Jz. ... 

We mus·t therefore conclude tha t 

DCq , = f36 , = oc. ,= s 4, ::: 0<.K , 

o{, ll'l."' (Bfr~ = ~ c"2. = ~.l 'J,: o( K,. 

rt is important that these cond'i tiorrs h:old in order 

that the energy of the system,> which we next determine-, 

be real .. We might h~ve solved the equetions wi th these 

conditions in the firs~ place, but the reader might 

then suspect lack of generality .. 

In ord'er that these four simultaneous equations ha.ve 

a solution, we must have the determinant of their 

coefficients vanish, giving us 

(8) 

(10) 
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G f, 

The energy o·f the system is thus given u:s- as the 

roots O'f this fourth a·egree eq_uatfan._ We shall not, 

however ,c so-Ive it rigoro·usiy·., out only approximately 

tn the two lfm±ting cases- that i:nterest us •. 

The first ca:s·e is when the two eiectrons of eaeh 

ato.m ar01 in w-f cleiy separated states and· each electron 

interacts· with ne ighb'orfng electrons· in the same state 

as its·eif •. This· means analytieal l y: that Jo, J ,, So 

are smal l. com.pared wd th J ..... , J3 .. Also in Epstein 1 s 

language, . this means that each e1ee.tron is in resonance 

with its own kind. Now we see immediately fro~ the 

de·terminant that negJ:ecting J.,,J,, .s
0 

>- it factors into 

four factors each of which is of the type oht.e.ined 

for the monovalent ce.se by :Slater .. If we now treat 

J0 ,J1 , S0 as sma1I quantities, we still get e11;.pressions 

o·f the same form·, but with J'l.. and J3 c·hanged slightly 

d·ue to t he inelusfon of these sma:lI terms .. We do not 

give the explicit e}!:preS"sforrs sinee only the form of 

the energy f's important.-

The secorrd' case fs- when the two el.ectrons· of each 

at om are in nearly equivalent states .. This means that 

J,)'l. > J 3 are- sma:l! emnparecl to Jo .> S 0 .. W.e solve by 

a)pproxtmat:tonst. first setting J,::: J'l.= J 3.=-o ... We 

then find the fo'llowing eq_uatiorr for E .. 



Where &i~, ~ , a~ a}4ua:re constants independent of>(, J{1- .. . , , ., , ) 

This f'act is importa:nt to us,. for ft means that in the 
I 

first approxfma:tiorr \/ is independent of K,,><-a.• We are 

thus en a.bled to find· the dependence· of E on x, ~h .. ,, with~ 

out so·lving a quartic equati on, by i ntroduc ing· J, J.._ J 3 

as small qu.rultfties and solv:tng approxfmater.y •. We then 

find that t= fs o;.f the form· 

E = c: , + c'l. -o ... ._."2·cll(, -+c l .-o.- l. cit 1(.2. 
"';L 2.. 

where c., is a:. constant depending on J0 5
0

, and 

c·onsta:nts depending on J ,,.J .... J3 • 

c c are ... ,) 3 

Thus we see that in this limiting case,, we also get 

an energy expres·sfon of the same form as the monovalent 

case. 

:3. The GenereI 1Gase 

In general, when we have r spins,. we get a: deter-

minantal equation of the 2r'th ord'er. W:e cannot,. of 

c o·urse, soJ:\fe this· e»ac·tly ,. but if we carry out the 

s·a:me sort of approximati'on as befo·re ,. 111e find an exactly 

analogous state of affairs as prevailed when r = 2. 

F'or this reasan th·e general energy expression remains 

of the same form · ~s the monav:alent case~ 

w-e· have neglected· to mention thus- far degeneration 

of the electrons as a who-l e. I n the first limiting case 

( 11) 

( 12.) 



for two vaience elec·trons rt is obvious· that we have 

a a·ouble degeneration s o that :i.n order to obte.in the 

total energy o·f the system from Eq . ( 12) we have to 

take twice the value obtained from this expression. 

Nov'.! this a:lso ho-Ids tn the other limiting eas·e,_ and 

we conclud"e that since the discussions· of ferromagnetism 

d~pend on the energy,,, there should' be no: difference 

in the fe'rromagrretfsm af mcmovelent and divalent 

ery-sta.Is- exc·ept w.hat can be attributed to differences 

in th.e valu.es af the enerBY co.e.fficierrts. 

I wish to express IDj'. grateful thanks t.o· Prof. P .. s . 

Epstein, who suggested these problems,. for his continuous 

help in carrying them out ... 
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