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Summary

In the first part, the reflection of elsctrons from
crystals is considered. We here treat this problem when
the potential of the crystal is a completely general
three dimensional Fourier series, whereas previously
only very special cases were treated. Also our method
is quite transparent while the previous methods were
obscured by involved numerical computetions. Also, we
show quite generally what had been inferred from very
speéial cases, including the Bragg law of reflection.

The relation of the Fourier ecomponents of the potential
of the crystal ta the optical planes is elearly shown.
How the potential of the crystal is to he obtained from
the experimental data is discussed, and a formula for
the width of the bands of total refleection is given.

In the second part the energy states of divalent crystals
are considered. The two limiting cases of wesk and strong
coupling between the two valence electrons of each atom
are shown to lead to energy exprescions of the same
form, and we conclude that there should be no difference
in the ferromagnetism of monovalent and divalent crystals
except as due to differences in the constants of the

energy.



The Reflection of Electrons From Crystals

The reflection of electrons from crystals, an experiment
which was performed by Davisson and Germer: hgs been con-
sidered quantum mechanically by Strutﬁt Zwickyi Bethe?

Mcrsei de Kronig and Penney? and Hill. A crystal is defined
as & medium in which the potential along any line is periodic.
Such & potentiak can therefore be described analytically by

a three dimensional Fourier Series. However, these authors
were not zble to treat this general case, and very severe
restrictions were imposed on the potentisl in order to render
the problem soluble.

Perhaps the most detailed treatment is that of Morse. He
takes the potential as essentialXy

conax t v BY + coe¥ €X)
What this potential means in terms of optical planes of the
crystal, we shall see later. At any rate, Morse treats the
differential eguation of the problem which results in formihg
the usual Schrodinger equation, by Hill's method. This method
is perfectly rigorous and c&yerges for all values of the
energy of the incident electrons, but the solution cannot be
exhibited in explicit form. Moreover, the essential con-
clusions arrived at have to be obtained through very involved
numerical computations. Thus, aside from lack of generality,

the solution is somewhst obscure.



Strutt, gE/Kronig and Penney, and Hill get very explicit
solutions by making their potentiasl a one dimensional square
tooth and valley form. In passing to three dimensions, how-
ever, they resort to the same restriction as does Morse.

As we shall see later, complete generality is essential to
revealing certain important characteristics of the various
orders of reflection from a given set of planes.

Our treatment of the differential equation of the problem
s merely that of Mathieueslightly generaglized. This method
is nothing more or less thaﬁ the ordinary perturbation theory,
but whereas usually difficulties are encountered in the first
approximation, the n*th approximation is as easily solved as
the first in our case, because of the purely periodic potential.

It should be mentioned that this method does not converge
for all values of the energy of the incident electrons, but
only when the energy is sufficiently high. Fortunately, this
represents the experimental condition we are interested in,

and in the limiting case arrive at our conclusions with complete

rigor.



I. Wave Bquation and Its Solutions

In order to treat the case of charged particles incident
on a semi-infinite erystal (Davisson Germer experiment) it
is necessary for us to consider solutions of the Schrodinger

equation inside the erystal

vy+ 802 (E-V)Y=o
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where \/ _ __“f\l Vo — 'fi A Z A‘Qme (2)
3w M B M = g izt
and/u is the mass of the particle;ﬁ is Planck's constant,
and £ is the energy of the particle. Also, in order to meke
the potential real we take Aann;- -f~m-m , Where o
indicates the complex conjugate of Ay,., ., , and {,mmm take
on all positive and negative integral values. We also tzke
i 8

Acco= O, so that -—é%w‘vo is the average potential of the
crystal below that of the outside which is taken to be at
zero potential, and X is the perturbation parameter which
must be made small enough so that the solution converges.

If W= _8__:”%.4451-\{, , then Eq.(2) becomes
vV 4 (W+/\ U) Y/:-.o

. _—_Q an +/ﬂ2) (5}
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U = z: Aﬂmwn“Q
Now let
V= Yot LY+ (4)

W = Wot+ AW+ Xwy +e



Substituting these expansions into Eg.(3) we obtain the

following set of equations.

V'V +WoWo= © (5)
VY, & Wo ¥ = =W (W +U) (6)
V¥ + Wl = —way, — Vi i (2)

We stop at the second approximation equation merely for
simplicity. As we shall see, we can easily solve the n'th
approximation equation, but the above are enough to give
us a clear idea of what takes place in the general case.

First let us take as the solution of Bg.(5)

L (%% v Ly + ¥F2
Vo= @ (8)

where W,= (%)"‘.(%)"4-(%)1‘ There are, of course, an infinity
of solutions of Eq.(5} which we might have combined forY% .
However, if none of these solutions are required by the
succeding approximations to meet conditiong of finiteness,
as will occur in certain cases which we shall investigate,
then we reject these arbitrary terms since physically we
know that if the crystal is behaving as though there were
no periodic potehtial, a plane beam in the crystal proceeds
practically unchanged.

Substituting into kq.(€), we have

L($rr B EY)
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Then B‘Qmm =

and W,=0 .

In general, if &,B, ¥ are non-integral numbers, the
denominator of Bimmwill not vanish. Of course, &,8, ¥
may be chosen so that this happens, but we postpone
discussion of this for the moment.

Substituting ¥ and@ V¥, into Bq.(7) we have

X L (St £yrie) (11)
V'V, +Wol,= - W,
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Kgain we have
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Note that the denominator of Ceoo vanishes. We take care
of this by letting ( 50~ ©and making
e Z: A*va-m B’Qm’" (13}
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At this point we shall draw some conclusions from our
series representation of the solution. These conclusions
can be justified only by showing that we can meet the
proper boundary conditions at the surface of the semi-
infinite crystal, but it is more transparent to draw them

C(RArLyeE 2)

here. We have in the solution a principal term Q
which is a plane beam representing largely the incident
beam. There are in addition, weak secondary beaks (since A
is smell) which represent reflections from various planes

of the crystal. These secondary beams are of Iittle interest,
however, except in the case when £ © where

(22)% (B (T2) - wo=€ | (12)
We see at once that as & decreases, E&,”,n, increases, and
if £ is not too small,XAB;,.. . will outweigh all the other
terms except Y, . Hence we may infer that ABpmmis a
strongly reflected beam, and that €¢=0 1is the condition for
a strong reflection. This, is of course, merely an indication
of what to look for, and we proceed to discuss rigorously
in the next section the case of ¢=0 . In Section 6 we shall
discuss rigorously the case of & & small quantity, for the
solution as thus far given fails to converge for & in the

region of O .



2. First Type of Solution-Exact Resonance

We assume the same series development as before, given
by Eq.(4), but now let _
C(Eafyrka)  (Cfarstnymma)
Vo= A 2 + B 2
Lot § Eseath § Fa (15)
() ( (r)’r(-’”f) ~Wo =4

where

Substituting into Eq.(6) we obtain

(Bx+ L y+ K2
2 L(.a-x-f #”-f C ) )
VYrwel = - (Aw,+ BA, ,_. )= (16)
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The }; indicates the reaining terms which do not interest
us since they do not offer any trouble. We now take care of
the two resonance terms by setting their coefficients equal
to zero, and we obtain the usual seecular equations

AWy #BAy, ™

AApnmn +BW, =0

(17)

From these we obtain the two solutions

A Agon o Wz = P At
¢ IA,QM'«\A,:‘M\M‘ ) | ’ \
_"\____ A.o.o-.m ° W' = IA,gm.mA,:nm,
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We could now solve for \p, without being troubled by infinite

coefficients or lack of convergence, btut this is not



necessary. The important thing to note is that we now have

: (‘{—Xﬂi + Tz
two terms of consequence, the incident beam QL L )

(iég1+ﬁﬂ@ ¥tM
¥ %)of the same intensity

and a reflected beam_e
as the original one, since |€%|: | .
Moreover, these two beams constitute a Bragg reflection
from the plane
Lys 2yt 22 =0 (18)
In the first place it can be easily shown that they make
equal angles with the normal to this plane. Also the Bragg
law is satisfied, for if 6 is the angle between the incident
beam and the normal to the plane considered, then
L, gov . I
oo 6 = l o i " (19)
&)= @)@ V@) (@)

Now we also have the two relations

<°-‘%:@f+ ()% (ﬁé") =Wae

(20)
™+ &~ &
Subtracting, we get
22, po v ¥ =L BRCEE) (21)
So that | 0’(%)1‘{_(%)\:‘- @)1
wlETIT T W (22)
Or we have
2d o 6 = _#ﬁo:aA —
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where d:[}%)+f%)+(§f] “and A is the wavelength of the
electron. This is precisely the Bragg law for the first
order reflection. The minus sign merely means that the

angle should be measured in the opposite sense.
3. The Higher Order Bragg Reflections

We have seen from the above that the potential term
(Zrrmyene) ~((§remy+2?)
Ao @ | +h, (24)

alone was responsible for the first order reflection
from the plane whose Miller indices were £, 74, m (LRpmm
are assunmed to have no ccommon factor). We are going to
show that all the higher order Bragg reflections from
this same plane also arise from this same potential term.
The identification between this potential term and the

corresponding optical term will therefore be complete.

Thus, for the second order refleection, we take

v :Aheu(%ﬁ%‘aﬂge)Jr Qt-(i%z_»zxﬂsfzma* “im*)
0 Btamy + 20

and (¢:&2)1+ (f@+;2):»\)z+ ( a/+=2m)1‘ —W, =0 (25)
i <

Upon substituting in Eq.(8) we get
= LB+ By r XE2) L'(°Lt;l§x+ Btamy 4 Ftam 5 (26)
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If we make use of EBq.(25) we get
(A32)"r (e (Egay= (84 (82 ) (22)° (e

We then find that

: ii‘_.e é—*'—- + _‘:——- &
Yo _@Afrmm* BA-.Q-m—m) L( Slds <2 +$%) (28)
(4 () (e
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If we nmow substitute into Eq.(7) we have a precisely
similar equation as Eq.(16) and the final result will
also be that |B|=/.

Thus we see that if we go out to the N'th approximation
we get the N'th order Bragg reflection from the potential
term of Eq.(24).

It should be noticed that we get the same N'th order
Bragg reflection in the first approxzimation if the
potential term

ML xr zyr 22) ~CN(%N’”’E’_'&"%Q)

]
AN-Q)”MJNM'Q +A..M¢,-Nf"‘,-”"\ ¢

Y]
(Ls]
~

is present. We shall see Iater on how to decide exper-
imentally between these two cases.

It is now obvious that the special potential of Eq.{1}
used by Morse restricts the crystal to optical planes

perpendicular to the principazl axes of the crystal, with

]



no other cross planes possible.
Finally it should be remarked that in cased,p,¥ are all
integers, we have Laue beems present, for the incident

beam is then normal to a set of planes in the crystal.
4. Second Type of Jolution

In meeting the boundary conditions, an infinity of solutions
inside the crystal ®ill be found necessary. Physically this
is because the solution given previously introduces inside
the crystal an infinity of beaks whien suffer internal re-
flection at tne face of the erystal (we take this face to
be the plane Xx=0 ).

Now if put A=0 in Bq.(3) we have such an infinite set in

w(g,,{ ((cgIx+ /3:_‘}” rtrs)
o = 2 (30}

where E%,,.]:\jw_(/s_z_g)’:(@‘, if we attribute tog,~ all possible
arbitrary values, although for our purposes they need take
on only all integral values. However, if we use the same
development in series as gi#en previously, the energy of
each solution corresponding to each functionVQ“w)will be
different from each other and the energy of the original

solution W . We therefore assume a development
* e (8
s,,r) (.8 X {gff‘) @)
vi7 s 4 NE APV
(3L)
i +) (g~)
N

tihere 5(%”)15 a parameter which we have introduced in order
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to keep the energy fived and equsl tc W . The reason we
can do this is because if we substitue into Bq.(3) and
obtain the successive approximation equations, the §'%
occur in the same sort of way that the w' occured prev-

iously. Thus for the first approximation we have

L'(:‘%Xf /’i-‘-g+ ’-"E-_%)

-y (87 (3> (g7 o
VYT rwh T =y {Qs,“ )E%fJ ’“F Ao } (32)
So that e " [(L'\H]J-%)z -+ ﬂffﬁw:m g+ X+rf;+fn %]
\ljl = '2 B»Q""\":Q
£ mm (35)

B - Aﬂmm
A (co~2+ %)‘,. (e*t:_”ﬂ)E (*.t:caﬂ)m*-w

and §,=0. We do not proceed any further since the remaining

approximations are obvious.
5. The Boundary Problem

We take the face of the semi-infinite crystal to be at V

and the crystzl to extend in the positive / direction.

(o Y
((Rox+Bo Yoz
Suppose a plane beam 4 (“ E%g+— < ) incident on this face.

If 95 amd‘ﬁ?_are solutions outside and inside the crystal

respectively, then we have the ususl boundary conditions

=¥ |
3 27 jno W
Sx | X

Also the energies inside and outside the crystal are equal,
d° -~ . ~ ,/é;o—)l.
so that wW-V,= (-—5) + (%".) ‘/‘( < . Sincef must consist

of only one incident and the several reflected beams, it
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must be of the form
& x {go 2.4\ - y
L(C'“ "]e + zs S""L“_"%ﬁz) (ob)

(e oy 4+ 02
§= - ‘L( 401+%”+‘c"2)+2 - ;‘Q

)m

Y 2 "~ ‘—_——‘-—__-——_—‘-_—-;
where [mnm] = \) (gi_o) + (,_s‘_:) 1 b_éz) = m:,’_m)l—(“tm>

The genersl expression forfp-is

V=¥ + ;ﬁ Cor W (36)

If we substitute into the boundary conditions, we see
first of all that Bo=/® ; ¥o=& since y and = are arbitrary.
Secondly, if we equate coefficients of each different
Fourier component in % =and 2 we obtain an infinite set of
equations with an infinite set of unknowns for the deter-

mination of Qoo ) Fompm , Comm =+ These equations are best

solved by means of successive approximations, but we shall
stop at the first approximation. For the case of non-
resonance, for which the experimental data are most accurate,
we have for the zero'th power of A |
agot oo =1 (50)
Ro(ag, + ¢o0)7 %
For the first powef of A we obtain

/ o
qoo +ﬂoo - % BiOO

(38a)
Ro(ags=Toa) = 7 (*+Q) Brao
£
/ d /
‘é‘rmm = lZ;-'I B-Q/’Am " C”"’"
(38b)

—-E‘Mm]o -@f"’l"\ = Z;' (_"‘_.)*e B,( A + CMM] C""‘m
1 (=S



Where Ago = q?,o +,lao', +- -
)
*6—,,,"“-.-1;_:"+).~6-m”‘+ ~~~~~ (40)

Q 7 /
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We therefore find for the intensity of the reflected

beams
Qoo |* (olo—vl)+ A g("("_x %) Byo o | =
4oo| T (41a)
(Q(o'f"l) + A< (dot "l-h@) Bloo
2
[n-\m]- “‘Q) B,Q/MM
(41b)
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The relation between &, and X is
e
(%‘)xr- Vo + (°§;°—) (42)

These intensity formuIas are rather unwieldy in their

explicit form, so we shazll give them explicitly only

when the single potential term Eq.(24) is present. We

then obtain |

Goo [*. | () - V&I

el | (@) T

op] a8 [NEe EEr- (- V@

Fool lEsve-{eszey(gm)t e (g2 - (B2 [[o(& (Pt (s o

(43b)



mers o= (2)7 (8
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We will also recall that Ei:;;y‘fk , £ being the energy
of the incident beam, while the work function of the
erystal is - 4. "

v P = =N Vo

In comparing these formulas with experiment, it is
perhaps most illuminating to take the experiment of
Davigsson and Germer in which they keep the direction of
the incident beam fixed, and measure the intensity of

the reflected beam as a function of the energy of the

incident beam. This means that in our formulas, we must

s %

2 @as constant, and vary them

take the ratio of %f;-éf
only by multiplying them by the same arbitrary paraﬁeter.
In this way we pass through successive orders of Bragg
reflection.

In the first place, it is clear that Eq.(43a) is of no
interest to us, since it merely represents the reflection
due to the potential drop of the crystal wall, and has
nothing to do with the periodic potential of the crystal.
Bq.(43b), however, gives us the intensity of the N'th
order reflection from the plane (lmn) which is due to the
presence of the term ANQ)MM,NA in the potential. It is
immediately obvious that all the orders of reflection as

are due to these terms are of the same order in A , and

if we are given the coefficients /bﬂnm we can determine



the intensities. Practicsally, however, they are not given,
and since they are unknown, no absolute fit is possible.

In fact, they are to be determined by the experimental dats.
As we have shown in Section S,APMM alone gives rise to
N'th order reflections also given by Awg Nm,#m . Thus, to

render the determination of the 4, ,., . directly, we must
show when this effect can be neglected. Now in fact, it is
easy to see that the intensity of the N'th order will be
of the order of )ﬁ”, and the ratio of two adjacent orders
will be of the order of X .

Now experimentally, the energy of the incident beam was
of the order of two hundred volts, while the work function
was of the order of ten volts, éo that A in this case would

be approximately lfoo. For this reason it is quite safe to

make the neglection considered above. The distinetion or
recognition of these two effects does not seem to have
been noticed before. Indeed, Morse takes the term of Eq.(1}
to be generally a fairly good approximation to an actual
crystal for high energies.

In actual shape, we find that Eq.(43b) is in fair
agreement with the lower parts of the experimental curves.
This should hardly be taken as a test, however, since

neither theory or experiment are very sensitive in this

region.



6. The Width of the Bands of Total Reflection

Strutt, Morse, and Hill show in their special cases
that the energy for which total reflection occurs (which
they call a florbidden energy) does not occur for single
discreet values, but in a continuous range of values in
certain regions. We thus have bands of total reflection,
and moreover these bands become wider as the energy of the
electrons approach that of the periodic potential.

We shall show all this quite generally, and also obtain
explicitIy the width of these bands for the case of
perpendicular incidence of the beam. In the first place,
we will notice in Section 2 that we obtained total
reflection for two values of the energy. The reason we
did there get a continuous range of values was that we
obtained a less general solution than is possible.

Instead of expanding like Eq.(4) or like Bq.(3l), we

can combine the two, so that we assume a development

{ §x
V= & [Y’;'f'/\yj;""]

§= NS+ A S+ (44)

1 .~
W= Wo + AW+ A Wt

Also, since we are considering resonance, we take
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A o ( A4Y Bt m
g = 4 SR farke) | (e SR )
B+ (8) (D= e
() ) ()W
We then find that )
VWiweb = [A (&6 ) A, TBAL ] " (46)

C(gbxr Biy 1T D)
+[—/]A s B(l%‘i S,—w.)A_ﬁ_m_M]e_ ¢ = i

+Z

The Zj indicates the remaining non-resonance terms.

The secular equations are now

i (47)
~AApnm  + B (23H s, Z°
and we have the condition
z(%g,-m) S {=0
(48)

e (rigne)
Now w, can take on only real values and for a certain
range of w, , S,becomes complex throughout this region.
This means that we have total reflection, for then|B3|=1.
It is easily found that &, is complex if W (§)%< i(é})"-[(’%’)‘+(%)1]15A£MAZM
and is real when W, lies outside this region. We thus
pass from a region of perfect reflection to only partial

reflection.
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To find the angular width of the bands, we must
remember that the energy of the outside incident beam
is kept constant and the angle varied. This means that
in the Bragg formula, 4d'«w'é = ﬁ; , which we have
derived, N varies, andAN=4Aw,

Therefore, differentiating

Gdremp apdb = 4%

par o8 VB[ +(2) 1 A Afmm
Nr 28 g,%)" A=)

and we get 48 =

Graphically, this formula can be represented as in
Morse's paper, and it is also equivalent to Darwin's
well known formula for x-rays.

Conclusion

The differenee between this and previous treatments
mgy be summed up as follows. We have shown quite
generglly what had been inferred from very special cases.
The Bragg law was derived, and only relations analogous
to it were previously derived. We have shown how the
potential of a crystal can be determined from the
experimental data, a problem not hitherto econsidered.
Finally, we give a formula for the width of the bands

of total reflection.



The States of Divalent Crystals

The problem of monovalent crystals in connection with
ferromagnetism for tightly bound electrons was first
treated by BIochqusing'a method due to Slaterf Bloch,
however, made several questionable assumptions which
were corrected and their consequences investigated in
a paper by EpsteinC;In this Iatter paper it was surmised
that if the crystal consisted of divalent atoms instead
of monovalent atoms, then the analysis would hold good
if the two electrons belonging to the same atom were in
widely separated states; if, on the other hand, they
were in nearly equivalent states this would not be true.

It is this point which we shall investigate here.
1. The Secular Equations

In our treatment we also use Slater's method, and,
inasmueh as very clear expositions are given by the
above authors, we shall suppose that they have been
studied by the reader and therefore omit derivations
given by them.

The essential difference between the divalent and
monovalent cases is that in the former case we have to
do with orbital degeneracy for the eleetron pair

belonging to the same atom, whereas in the latter case
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the valence electron is taken to in the S state, for
which no degeneracy in orbit is present.

However, it is difficult enough to treat the orbital
degeneracy of just a molecule formed by two divalent
atoms, let mlone a crystal. Instead, we shall proceed
Just asg though no orbital degeneracy eristed, but in
place of the hydrogenic functions used for no orbital
degeneracy we insert conbination funetions as indicated
by‘SIatert No discussion e¢f how this function is to he
formed will be given sinece it does not arise explieitly
except In certain exchange integrals which cannot be
evaluated anyway.

Suppose the crystal to contain 2N electrons. Each
electron has either & positive or negative spin along
a fixed axis. As in the notation of Bpstein let r
electrons have negative spins and 2N - r positive. Let
the electrons be suecessively denoted by 1,2, """ aN
and those electrons with negative spin by 4,6, € »
The anti-gymmetric function corresponding to this
arrangement is then denoted by Y ({,4.-~ p~) « The total
eigenfunction is then given by

V)= S a(f 1) V(g1 (13
G-
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The coeffiecients a(g,-~3~) are determined by the

secular equations
E“(fl ~fe) "E‘flmh')idﬁ’f’]*'ﬂ th( fll" '64’)““ M;"‘Jn)]c){‘l - Es{g' a('gll'"f"l)} (2)

The summgtion is extended over all pairs of electrons
having opposite spins, the total number of negative
épins being kept constant. Here Jﬁd ig the Heitler and
London exchange integral and $4ﬁ is the same integral

but without the interaction term in the integrand.
2. Solution In a Special Case

We are going to solve a special case as illustrative
of the general procedure and take a linear chain with
r V2. Furthermore, we shall suppose that all the intsr-

change integrals, except those indicated by the diagram,

are zero.
Jd
i s, KJN i I
o o k“jk\~_’//z

Jo 3
Here Jo is the interchange integral between the two
electrons helonging to the same atom, while % is the
interchaenge integral belonging to two electrons on
different atoms a2nd in different states (the states of
the electrons are designated by s, and S,). The meaning
¢f the remaining integrals is self evident. We also

suppose that only §, is significantly different from
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zero (Bloch and ®pstein suppose all the Ss are zero).
It is convenient for us to divide the ecoefficients

in the following four groups when r 2.

i f,: Len,+1 ) Ba= 2 m, +/ Ui g=)=a(m, )
IT 4 = <my+i 5 ba=3my A (4 4.)= G (m ma) 2
3
IIT o4 = Am, 5 L= Mt q“’{z):c.(m;'nz)
w 1= w5 fa= R, A4 #2)= d (01, )
Whereupon we obtain from Eg.(2) the following four sets
of equations corressponding to each of the four arrange-
ments above
I Ea(mms) ~ [K + (m+m')'5_\)“7_la(m,fm)
- ESO[C (m,-H)m;) + 6 (m,, m,;ﬂ)—]
+Jo [, mY 46 (o1, myt) —R ﬂ(/n,/nv.)j
(4)

+\)| [c(mlamt) + .G_(”'l ”‘1.) -4 (’”l”’z) ]

+Jz [Q (1, ”’z) + a(m,~/ ”"7_) ~4(m, 72)

+Q(m,)mz+/)+a (my, mz-l) -4 (M) ’”1.)}= 0




IX

E €(m m) = [KH@+7)Z dgpr ) $(mima)

~ Es, [a((m,+l,m.) + 4("7:,”’:"”J

R A
o [alm m) va(mio,) 2t (mm] )
+ [ Clmtt,m) 44 (m—t,m) —3 ﬁ—(m,'"z)]

+ J% [ﬁ(’”!,mzﬁ‘") .,.-(,[m“m,_—l) ""02'6-[07/011)] = 0

111 B el ma) ~ [Kttatn!) TIgg] Gnrmy)

Iv

=ESo[ d (i, mt) + a (-1, )

* oL d o omrd) +agam, 1, ) —xe(mm) 63
+J, [q(m,m;) ted (71 m2) ~-1C(”'l,mz)]

+ J..[c(m. MaH) + ¢ (M) —ac(m, ’”1)_7

+ J3 [C(M,""/,mt) s C(”’/"’,M;)—AC(M; /711) }3 o

Edimon) = [Kt (mta1) S dpp1] d (o ma)

TES[ (- + e (o maci)]

+ \_)0[ ﬁ(m,-l) 011.) + ¢ (ﬂn > Ma~1) -—14{41;”11):) (7)
£ )

+ ) ['6'(”71”‘1) + el m) —ad(m, m-,,)]

& ‘)3 [4 ('""H) ’"’-) +4 (’"; =/, M) ‘34(’"1 my)

o (o, myt1) +d (o, 1y —34(”’""’)] =



We try to solve this set of four simultaneous

difference equations by setting

L V(¢S M+ Camy)

£R(Q m, t+Arma) Cloum)e o

R = (8)

R/, 4 CE(d oy dy M)
.ﬁ'(mlr“‘\m) = -QL ﬁ<v‘m‘+ ‘”‘) a((m. M‘):— £ o :

Upon substituting, we immediately obtain four homo-

genous linear equations in the unknown coefficients
Almina) 5 6 (™, Mx) § ClmyMmi) 4 Ad(mima)

Now we know from the elementary theory of sucn equations

that we get
Q{MIM;)'.-t’f-/m,m;) v efmima)id (myma)= C iCy: Ty v Cy (93

where (,,¢,,Cs, ¢y are independent of ., and m,.

We must therefore conclude that
dd,= BG, = Ve,= §d, = UK,
(10,
0(41=/3{,_1:5’C‘,_= Scdy = XKy,
It is important that these conditions hold in order
that the energy of the system, which we next determine,
be real. We might have solved the equations with these
conditions in the first place, but the reader might
then suspect lack of generality.
In order that these four simultaneous equations have

a solution, we must have the determinant of their

coefficients vanish, giving us
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The energy of the system is thus given us as the
roots of this fourth degree eguation. We shall not,
however, solve it rigorously, but only approximately
in the two limiting cases that interest us.

The first case is when the two electrons of each
atom are in widely separated states and eacn electron
interacts with neighboring electrons in the same state
as itseIf. This means analytically that J.,J,, So
are small compared with J, J, . 4lso in Epstein's
language, this means that each electron is in resonance
with its own kind. Now we see immediately from the
deterninant that neglecting J.,9, s, , it factors into
four factors each of which is of the type obtained
for the monovalent case by Slater. If we now treat
Jo,h,Ss as small quantities, we still get expressions
of the same form, but with‘JLandJ3 changed slightly
due to the inclusion of these small terms. ¥e do not
give the explicit expressions since only the form of
the energy is important.

The second case is when the two electrons of each
atom are in nearly equivalent states. This means that
Jbgt>gg are small compared to \)o)so . W¥e solve by
approximations, first setting J,2d,=d,=0 . We

then find the following equation for E .



A Et 14,63+ a7+ AsEtay=0 (11;

Where Ao, Ay b, 4,4y BT constants independent of Koo
This fact is important to us, for it means that in the
first approximation ' /is independent of K, K, We are
thus enabled to find the dependence of £ omky., with—
out solving a quartic equation, by introducing J, J.J;
as small quantities and solving approximately. We then

find that £ is of the form

20 2
£ = C,+C,_M~__f_'+<;”°"‘*i§ (18)

where ¢, is a constant depending onl,5, and < ,c, are
constants depending ond, J.d; .

Thus we see that in this limiting case, we also get
an energy expression of the same form as the monovalent

case.

3. The General Gase

In general, when we have r spins, we get & deter-
minantal equation of the Z2r*th order. We cannot, of
course, solve this exactly, but if we carry out the
same sort of approximation as before, we find an exactly
analogous state of affairs as prevailed when r= 2.
For this reason the general energy expression remains
of the same form as the monovalent case.

We have neglected to mention thus far degeneration

of the electrons as a whole. In the first limiting case



for two valesncs electrons it Is obvious that we have
a doutle degeneration so that in order to obtain the
total energy of the system from Eqg.(12) we have to
take twice the value obtzined from this expression.
Now this also holds in the other Iimiting case, and
we conclude that since the discussions of ferromagnetisn
depend on the energy, there should be no difference
in the ferromagnetism of monovelent and divalent
crystals except what can be attributed to differences
in the vélues of the energy coefficients.

I wish to express nmy grateful thanks to Prof. P.S.
Epstein, who suggested these problems, for his continuous

help in carrying them out.
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