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Abstract 

The purpose of this doctoral dissertation is first to show that certain kinds 

of invariants for measures, self-adjoint and unitary operators are as far from 

complete as possible and second to give new natural examples of complex 

Borel and analytic sets originating from Analysis and Geometry. 

The dissertation is divided in two parts. 

In the first part we prove that the measure equivalence relation and cer­

tain of its most characteristic subequivalence relations are generically S00 -

ergodic and unitary conjugacy of self-adjoint and unitary operators is gener­

ically turbulent. 

In the second part we prove that for any 0 :::; a < oo, the set of entire 

functions whose order is equal to a is II~-complete and the set of all sequences 

of entire functions whose orders converge to a is rrg-complete. We also prove 

that given any line in the plane and any cardinal number 1 :::; n :::; ~0 , the 

set of continuous paths in the plane tracing curves which admit at least n 

tangents parallel to the given line is L:i-complete and the set of differentiable 

paths of class C 2 in the plane admitting a canonical parameter in [O , 1] and 

tracing curves which have at least n vertices is also L:i-complete. 
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A strong generic ergodicity property for 
measures, self-adjoint and unitary operators 
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Introduction 

The results in this chapter are joint work of the author and A.S.Kechris. 

One of the main trends of current research in Descriptive Set Theory is 

the study of natural equivalence relations arising in other branches of mathe­

matics, in the sense of determining their relative complexity under the notion 

of Borel reducibility. 

Definition: Let X 1 X' be any Polish spaces and let E 1 E' be any equivalence 

relations on X 1 X' respectively. Then E is said to be Borel reducible to 

E' when there exists a Borel function f : X --+ X' with the property that 

xEy {::::=} J(x)E
1

f(y) 1 whenever x 1 y are in X. 

An important notion in the study of equivalence relations is the notion 

of generic B00-ergodicity, where B00 stands for the group of permutations of N. 

Definition: Let X be any Polish space and let E be any equivalence re­

lation on X. Then E is said to be generically B00 -ergodic if every £­

equivalence class is meager and for any Polish space Y and for any Baire 

measurable function f : X --+ yN with the property that xEy ::::} {f( x)(n) : 

n E N} = {f(y)(n) : n E N}i whenever x 1 y are in X 1 there exist an 

£-invariant co-meager subset A of X and a countable subset C of Y such 

that x E A ::::} {f( x)(n) : n E N} = C1 whenever x E X . Jn particular1 

since by setting u~yv <====? {u(n) : n E N} = {v(n) : n E N}i when­

ever u 1 v are in YN 1 we may canonically identify yN /~y with the set of all 

countable subsets of Y 1 generic B00 -ergodicity implies that any £-invariants 

of elements of X 1 which are computed in a Baire measurable way and can be 

represented as countable subsets of a Polish space1 must generically trivialize. 
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The notion of generic S00-ergodicity for equivalence relations is related 

to the concept of generic turbulence for Polish group actions. The following 

definition is due to G. Hjorth. 

Definition: Let G be any Polish group acting continuously on a Polish space 

X and let x E X. For any open neighborhood U of x in X and for any sym­

metric open neighborhood V of le in G, the (U, V)-local orbit O(x, U, V) 

of x in X is defined, as follows: y E O(x, U, V) if and only if there exist 

go, g1, ... , gk in V such that if xo = x and xi+l = gi · xi for every index i::; k, 

then all the xi's are in U and xk+l = y. The action of G on X is called tur­

bulent at the point x, symbolically x E TrJ, if for any such U and V, there 

exists an open neighborhood U' of x in X such that U' ~ U and O(x, U, V) 

is dense in U' . 

The concept of turbulence is a property of the orbits of the action in the 

sense that if G is any Polish group acting continuously on a Polish space X 

and Elf stands for the corresponding orbit equivalence relation, then TrJ is 

Elf-invariant, while the main result concerning the concept of turbulence is 

the following theorem of G. Hjorth [7]. 

Theorem: Let G be any Polish group acting continuously on a Polish space 

X in such a way that the orbits of the action are meager and at least one 

orbit is dens e. Then the fallowing are equivalent: 

(i) The action of G on X is generically turbulent, in the sense that TrJ 

is co-meager in X. 

(ii) (3xETrJ)(G·x=X). 
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(iii) E§ is generically B00 -ergodic1 in the sense that for any Polish space Y 

and for any Baire measurable function f : X ----+ yN with the property that 

xE§y::::} {f( x)(n) : n E N} = {f(y)(n) : n E N}, whenever x, y are in X , 

there exist an E§-invariant co-meager subset A of X and a countable subset 

C of Y such that x EA::::} {f(x)(n): n EN}= C, whenever x EX. 

(iv) The same as in (iii) but with "Baire measurable" replaced by 

"C -measurable" and "co-meager" replaced by "dense G 0 . " 

( v) For any Polish space Y on which B00 acts in such a way that the action 

is Borel and for any Baire m easurable function f : X ----+ Y with the property 

that xE§y ::::} f(x)E}=f(y), whenever x, y are in X, there exists an E§­

invariant co-meager subset A of X for which f[A] is contained in a single 

E}= -equivalence class. 

(vi) The same as in (v) but with "Baire measurable" replaced by 

"C-measurable" and "co-meager" replaced by "dense G0 ." 

(vii) For any relational language L , consisting of countably many symbols, 

and for any Baire measurable function f : X ----+ XL with the property that 

xE§ y ::::} f ( x) ~ f (y) , whenever x, y are in X, there exists an E§ -invariant 

co-meager subset A of X for which all countable models in ![A] are equivalent 

up to ~, where XL is the Polish space of all countable models for L whose 

universe is N. 

(viii) The same as in (vii) but with "Baire measurable" replaced by 

"C -measurable" and "co-meager" replaced by "dense G 0 . " 

Remark: Part (v) of the above mentioned theorem of G. Hjorth explains 

the terminology B00-ergodic. 

Our main purpose in this chapter is to show that any invariants for the 
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measure equivalence relation and for certain of its most characteristic sube­

quivalence relations and any unitary conjugacy invariants of self-adjoint and 

unitary operators, as well , which are computed in a Baire measurable way and 

can be represented as countable subsets of a Polish space or more generally 

as orbits of an S00-action or equivalent countable models up to isomorphism, 

must generically trivialize. In fact, we obtain the following results: 

Theorem 1: If X is any compact perfect Polish space and P(X) stands 

for the Polish space of probability Borel m easures on X, equipped with the 

weak* -topology, while µ rv v {:::::::} (µ « v /\ v « µ), wheneverµ , v are 

in P(X), then rv is generically S 00 -ergodic. (The same is true if X is any 

compact smooth manifold of arbitrary dimension and we replace rv by rvcr, 

where µrvcrV iff µ rv v and both Radon-Nikodym derivatives rljj; and ~~ are 

differentiable fun ctions of class er, whenever r E NU { oo}.) 

Theorem 2: Let H be any infinite-dimensional separable complex Hilbert 

space and let U(H) stand for the Polish group of unitary operators on H and 

S1 (H) stand for the Polish space of self-adjoint operators on H with norm 

at most one, both equipped with the strong topology. Then the conjugation 

action of U(H) on both U(H) and S1 (H) is gen erically turbulent. 

Remark: The key tool for the proof of Theorems 1 and 2 is the above 

mentioned theorem of G. Hjorth. 
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1. Preliminaries 

1.1. Measure and integration 

The purpose of the present section is to present certain facts from the 

theory of measure and integration , which form part of the folklore of the 

subj ect, in order to facilitate the reader with the proof of Theorem 3.1 be­

low. In fact, J.R. Choksi and M.G. Nadkarni proved the above mentioned 

result in [1] for the case of the unit circle, but their proof relied on ideas and 

results originating from Harmonic Analysis and the Theory of Martingales. 

In what follows let X denote an arbitrary but fixed compact Polish space 

and let C(X, R ) stand for the Banach space of all continuous real-valued func­

tions on X. Then, by virtue of the Riesz Representation Theorem and the 

Banach-Alaoglou Theorem, {A E C(X, R)* : If All ::::; 1 /\ (1 , A) = 1 /\ (V f E 

C(X, R) ) (! ~ 0 =? (!,A) ~ O)} equipped with the weak*-topology, can be 

viewed as the Polish space of probability Borel measures on X , which is usu­

ally denoted by P(X), and the most central result concerning P(X) is the 

so called Portmanteau Theorem: 

The following are equivalent: 

(i) µn---+ µin P(X) as n--+ oo; 

(ii) for any f E C(X, R) , f x fdµn--+ f x fdµ as n--+ oo; 

(iii) for any open 0 ~ X , liminf µn(O) ~ µ(O) ; 
n->oo 

(iv) for any closed F ~ X, limsup µn(F) ::::; µ(F); 
n->oo 

(v) for any Borel B ~ X for which µ(8B) = 0, lim µn(B) = µ(B). 
n->oo 

In addition, when a countable dense subset {ck : k E N} is fixed, set­

ting B = {Ui<nB(ck;; 2- 1
; ) : (ko , .. ., kn-1), (lo , .. ., ln-1) E N n and n EN} and 
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n 
C = {I: riXBi : (ro, ... , rn) E (Q~r+ 1 and (Bo, ... , En) E 5n+l while n EN}, 

i= O 
where Q~ stands for the positive rationals, the following are true: 

(a) For any non-empty finite subset M of P(X) , for any non-empty Borel 

subset A of X and for any E > 0, there exists B E B such that µ(AD.B) < E 

for everyµ E M. 

(b) For any µ,v E P(X), µ l_ v ~ (V(m,n) E N 2)(:JB E B)(µ(B) < 
2-n /\ v(Bc) < 2-(m+n)). 

(c) For anyµ E P(X), C is dense in the closed convex cone L~ (X, µ) = 

{f E L 1 (X,µ): f ::'.:: O,µ- a.e.} of L 1(X,µ). 

(d) If K(X) stands for the Polish space of all compact subsets of X, equipped 

with the Vietoris topology, then P(X) x K(X) 3 (µ, K) f-+ µ(K) E [O, 1] is 

upper semi-continuous. 

(e) If Xis perfect, then there exists a continuous probability Borel measure 

on X which is fully supported. 

1.2. Functional analysis and topological groups 

As before, the purpose of the present section is to present certain facts 

from functional analysis and the theory of topological groups, which form 

part of the folklore of the subject, in order to facilitate the reader with the 

proof of Theorems 3.1 and 4.1 below. 

If X, Y are any Polish spaces from which X is compact, then C(X, Y), 

equipped with the topology of uniform convergence, constitutes a separable 

Frechet space and if dy is any complete compatible metric on Y, then 

dc(XY)(f,g) = maxdy(f(x),g(x)) (f,g E C(X, Y)) 
' xEX 
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constitutes a complete compatible metric on C(X, Y). In particular, C(X, R) 

constitutes a separable Frechet space and the topology of uniform conver­

gence constitutes a Polish group topology on C(X, R~ ), where R~ stands 

for the positive reals. 

If X constitutes a compact smooth manifold of arbitrary dimension and 

r EN U { oo }, then the least topology on Cr(X, R) for which the mappings 

Cr(X, R ) 3 f 1-t d5 f E C(X,U(Rdim(x), R )), wheres EN and 0 :S s :Sr, 

are continuous (the C(X, U(Rdim(X) , R ))'s being equipped with the topol­

ogy of uniform convergence, while for any index s, L5 (Rdim(X), R ) denotes 

the linear space of s-linear forms on Rdim(X) and L0 (Rdim(X), R ) = R) is 

called the Whitney topology on cr(X, R) and cr(X, R) equipped with 

this topology constitutes a separable Frechet space, a complete compatible 

metric for which is given by the formula 

Proposition: Th e Whitney topology constitutes a Polish group topology on 

Cr(X, R~ ). 

Proof: In order to prove that the Whitney topology on cr(X, R~ ) con­

stitutes a Polish group topology it is enough to prove that multiplication 

is separately continuous and to this end it is enough to prove the following 

claim: 

If h E Cs(X, R) , where 0 :S s :S r and s E N , then there exists a con-
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stant C > 0, which depends only on sand h, such that llds(fh)-d3 (gh)ll=:::; 

C · lldsf-dsgll= (f,g E Cr(X,R)). 

Setting n = dim(X) , it is not difficult to prove by induction on s that if 

(i1, ... ,i3 ) E {1, ... ,n}3 and (U,¢) isanyadmissiblechartonX, where¢(u) = 

(x1 (u), ... , xn(u)) (u E U) , then for any f E Cr(X, R) and for any p E U, 

( d3 f)p( ei1 , . . . , eiJ = ~:;~.~~~:; ( ¢(p)) ( { e 1, ... , en} denoting the standard basis 
n 

in Rn). In addition, if a = (0:1 , ... ,an) E Nn, then we set ial = Lai and 
i = l 

we denote by na the product of the commuting partial differential operators 

8~:i, 1:::; i:::; non Ciai(Rn,R), while if a,{3 E Nn, then a:::; {3 ~ ('Ilk E 
' 

{1, ... ,n})(ak :::; f3k) and if a:::; {3 , then we denote by Cff the product of 

C%: , 1 :::; k :::; n. So let s and h be as in the statement of the claim and let 

(U, ¢)be any admissible chart on X, where ¢(u) = (x1(u) , ... , xn(u)) (u EU), 

while (i1, ... ,i3 ) E {1, ... , n}3 is arbitrary but fixed . Setting ak = card({t E 

{1, ... , n} : it= k} ), 1 :::; k:::; n and a= (a1, ... ,an) , for any p E U, 

( ds (! h) )p( ei1' ... , eiJ - ( ds (gh) )p( ei1 ,. .• , eiJ 

= ()3 ( (! h) 0 ¢-
1

) ( ¢ (p)) - ;y ( (g h) 0 ¢-
1

) ( ¢ (p)) 
axi1 ... axis axi1 .•. axis 

= Da((J O </J-1)(h O </J-1))(</J(p)) - Da((g o </J-1)(h O </J-1))(</J(p)) 

= LC$. Df3(h 0 ¢-1)(¢(p)). (Da-(3(! 0 ¢-1)(¢(p)) - na-f3(g 0 ¢-1)(¢(p))) ' 

where for any {3 E Nn such that {3:::; a, there exists (j1, ... ,js) E {1, ... ,n}3 

such that 

na- (3(! 0 ¢-1)(¢(p)) - na-f3(g 0 ¢-1)(¢(p)) 

= asu 0 ¢-1) (¢(p)) - as(g 0 ¢-1) (¢(p)) 
axj1 .•. ax]s axj1 .•• ax]s 

= (d3 J)P(ej1' ... , ejJ - (d3 g)p(eJ1' ... , ejJ . 
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Therefore, the compactness of X is easily seen to imply that there ex­

ists a constant e > 0, which depends only on s and h such that lld8 (f h) -

ds(gh)ll= :Se· lldsf- dsgll=, whenever f,g E er(X,R). 

OnEp EOEl oa~m 

Proposition: Ifµ E P(X), then the least topology Tµ on er(x, R +) which 

extends the Whitney topology on er(X, R +) and for which the inclusion map 

er(X, R +) "-' L~(X, µ) is continuous, is Polish and 

Pµ(f,g) = dcr(x,R)(f,g) + f lf-gldµ (f,g E er(X,R+)) 
x 

constitutes a complete metric on (er (X, R +) ,Tµ). 

Proof: If A and B are any countable bases for the topologies on er(X, R) 

and L1 (X, µ) respectively, then it is not difficult to verify that C = {An 

B n er(X, R +) : A E A, B E B and An B n er(X, R +) i- 0} consti­

tutes a countable base for Tµ and Tµ is easily seen to coincide with the 

topology induced by the metric Pµ on er(x, R +), while if (fk)kEN is any 

Cauchy sequence in (er ( X, R +)) Pµ) then (f k) kEN constitutes a Cauchy se­

quence in both er ( x) R +) and L ~ ( x) µ); therefore, (! k )kEN converges to 

some function fin er(X, R +) and to some function g in L~(X, µ) as well. 

But since convergence in er(X, R) obviously implies uniform convergence on 

compacts and therefore pointwise convergence, while convergence in L1(X, µ) 

implies convergence in measure and therefore the existence of a subsequence 

(fki)lEN of (fk)kEN which converges to g almost everywhere with respect to 

µ, it follows that f = lim fk = lim fk1 = g almost everywhere with re-
k--->= l--->CX) 

spect to µ, which implies that f = g in (er(X, R +), Pµ) and pµ(fk, !) 

dcr(X,R+)(fk, !) + f x lfk - fldµ-+ 0 ask-+ oo. 

OnEp EOEl OEl~m 
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1.3. Operator theory 

The purpose of the present section is to give a brief survey of some basics 

in Spectral Theory. 

In what follows let H denote an arbitrary but fixed infinite-dimensional 

separable Hilbert space and let L(H) stand for the space of all bounded 

linear operators on H, equipped with the strong topology. A function E 

that assigns to every Borel subset B of a given Polish space X a projec­

tion E(B) in L(H) in such a way that E(X) is the identity operator I on 

H and for any sequence (Bn)nEN of pairwise disjoint Borel subsets of X, 
00 

E(UnENBn)x = I: E(Bn)x (x E H), with respect to the strong topology, 
n=O 

of course, is called a spectral measure. Spectral measures correspond to 

complex measures and give rise to spectral integrals in the following sense: If 

Eis any function that assigns to every Borel subset B of a given Polish space 

X, a projection E(B) in L(H), then E constitutes a spectral measure, if and 

only if, E(X) =I and for any x, y EH, Ex,y(B) = (E(B)x, y) (B E B(X)) 

constitutes a complex Borel measure on X, and if E constitutes a spectral 

measure, then for any bounded Borel function f : X ---+ C , there exists a 

unique operator J x f dE in L(H), which is usually refered to as the spectral 

integral of f with respect to E and is characterized by the property that 

((Jx fdE)x, y) = f x fdEx,y for every x, y EH. 

The most central result in Spectral Theory is the so called Spectral 

Theorem which states the following: 

Spectral Theorem: If T is any normal bounded linear operator on H and 
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O"(T) stands for the spectrum of T, then there exists a unique spectral mea­

sure ET : B(cr(T)) ----+ L(H) for which T is the spectral integral of the iden­

tity function on cr(T) with respect to ET. In addition, if for any x E H , 

H ; stands for the closure of the linear subspace of H generated by the fam­

ily {ET(B)x : B E B(cr(T))}, then there exists a unique cardinal number 

1 :S rt,(T) :S N0 , which is usually refered to as the spectral multiplicity of 

T, for which there exists a sequence ( ui)i<K(T) of unit vectors in H such that 

the following conditions are satisfied: 

( i) The H~i 's are pairwise orthogonal; 

(ii) H = EBi<K(T)H~i; 

(iii) i < j < rt,(T) ==? EJ u « EJ u·; 
J) J t) t 

(iv) EJ u constitutes a representative of the maximal spectral type ofT, o, 0 

in the sense that for any x E H , EI x « EJ u ; 
l 01 0 

(v) For any i < rt,(T), if UT : L2(cr(T), EJ u) ----+ H~ denotes the Hilbert 
t) t t 

space isomorphism defined by the relations (UT)XB = ET(B)ui (BE B(cr(T))), 

then for any f E L2 (cr(T), E~,uJ and for any z E cr(T), 

((UT)- 1T(UT))f(z) = z · f(z). 

When a complete orthonormal system {en : n E N} in H is fixed, to 

every normal bounded linear operator T on H a canonical representative of 

its maximal spectral type is assigned, as follows: 
(X) 

µT(B) = L 2-(n+ l) E~n,en (B) (BE B(cr(T))) , 
n=O 

while for any bounded Borel function f : cr(T) ----+ C, the spectral integral of 

f with respect to ET also constitutes a normal bounded linear operator on 

Hand is usually denoted by f(T). The importance of the canonical repre­

sentative of the maximal spectral type of a normal bounded linear operator 

on H is demonstrated by the following proposition: 
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Proposition: If T and Tn, n E N are any normal bounded linear opera­

tors on H whose spectrum is contained in K E K(C) \ {0} and Tn -r T in 

L(H) as n -r oo, with respect to the strong topology, then µT,, -r µT in P(K) 

as n -r oo. 

Proof: We will first prove the following claim: 

For any continuous function f : K -r C, f(Tn) -r f(T) in L(H) as 

n -r oo, with respect to the strong topology. 

Let u, v be any unit vectors on Hand let p(z) E C[z]. Then, the proof 

of the Spectral Theorem shows that 

((f (Tn) - f(T))u , v) 

= J(f-p)dE~":v + ((p(Tn) -p(T))u,v) + J(p- f)dE~v 
K ' K ' 

so 

l((f(Tn) - f(T))u, v)I 

:::; J lf-plldE~":v l + l((p(Tn) -p(T))u, v) I + J If- PlldE~vl 
K ' K ' 

:::; 2 · llf- Plloo · llull · llvll + l((p(Tn) - p(T))u, v)I 

for every n E N and consequently 

ll(f(Tn) - f(T))ull = sup l((f(Tn) - f(T))u, v)I 
llvJJ=l 

:::; 2 · llf-pll oo · llull +sup l((p(Tn) -p(T))u,v) I 
JJvll=l 

= 2 · llJ - Plloo · JluJI + ll(p(Tn) - p(T))ull 

for every n E N. Hence, by virtue of the Stone-Weierstass Theorem, it is 

enough to prove that ll(p(Tn) - p(T))ull -r 0 as n -r oo. Indeed, if p(z) has 



14 

N 
degree N and p(z) = I: akzk, where the ak's are in C and aN =/:- 0, then the 

k=O 
proof of the Spectral Theorem shows that 

ll(p(Tn) - p(T))ull 

N 

~ L lak l · ll(T: -Tk)u ll 
k=O 

N ( ) k-1 
~ L lakl · k · sup lzl · II (Tn - T)u ll ___, 0 

k=O zEK 
as n ___, oo. 

Now to prove the proposition , by virtue of the Portmanteau Theorem, 

given any closed F ~ K, it is enough to show that lim sup µTn (F) ~ µr(F) 
n-->co 

N 
and since for any n , N E N , µTn (F) ~ I: 2-(k+ l) Ein e (F) + I: 2-(k+l), 

k=O k, k k> N 
it is enough to prove that for any k E N , limsupEI;,eJF) ~ Eik,eJF), 

n-->oo 

whenever F ~ K is closed, or (equivalently) that EI;,ek ___, E~ ,ek in P(K) 

as n ___, oo; but this follows from the above mentioned claim, since for 

any f E C(K, C) , lfKfdE~n,ek -fKfdE~ ,ek l = l((J(Tn) - f(T))ek,ek)I ~ 

ll(J(Tn) - f(T))ekll ___, 0 as n ___, oo. 

0-rrEp EOEl ba~m 

In the sequel we will focus on the Polish group U( H ) of all unitary opera­

tors on H and the Polish space S1 (H) of all self-adjoint operators on H with 

norm at most one, considered in Theorem 5.1 below. U( H ) acts on both 

U (H) and S1 (H) by conjugation, the actions being continuous since they are 

separately continuous, and the most important Baire category results con­

cerning these actions are summarized in the following theorem due to J.R. 

Choksi, M.G. Nadkarni [1], [2] and B. Simon [14]. 



Theorem: The sets 

and 

U1 = { U E U (H) : U (H) · U = U (H)} , 

U2 = {U E U(H) : <Y(U) = T} 

U3 = {U E U(H) : K,(U) = 1} 

constitute conjugacy invariant dense G8 's in U(H) , and the sets 

and 

l::1 ={SE S1(H): U(H) · S = S1(H)} , 

l::2 ={SE S1(H) : <Y(S) = [-1 , 1]} 

l::3 ={SE S1(H): K,(S) = 1} 

constitute conjugacy invariant dense G8 's in S1 (H). 

15 
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2. Generic 8 00-ergodicity for equivalence 
relations and the pseudo-Vaught transforms 

Definition 2.1: Let X be any Polish space and let E be any equivalence 

relation on X. Then E is said to be generically S00 -ergodic if every £­

equivalence class is meager and for any Polish space Y and for any Baire 

measurable function f : X--+ yN with the property that xEy =;. {f(x)(n) : 

n E N} = {f(y)(n) : n E N} , whenever x, y are in X, there exist an £­

invariant co-meager subset A of X and a countable subset C of Y such that 

x EA=;. {f( x)(n): n E N}= C, whenever x EX. 

Definition 2.2: We shall say that an equivalence relation E on a given 

Polish space X admits an approximation by a Polish group action, 

when the following conditions are satisfied: 

( i) For any x E X, there exists a Polish space r x and a continuous mapping 

<Px : r x --+ x such that <Px [r xl = [x]E. 

(ii) There exists a Polish group G acting continuously on X with the property 

that for any x E X, there exists an embedding G '---' r x such that G = r x 

and <Px(g) = g · x, whenever g E G. 

(iii) For any x E X and for any 'Y E r x, there exists a homeomorphism 

1/Jx,-y: rx--+ f q,x('Y) with the property that <Px(5) = ¢<Px('Y)(1/Jxn(5)), whenever 

0 E f x· 

Definition 2.3: Let E be any equivalence relation on a given Polish space X 

and assume that it admits an approximation by a Polish group action. Then, 

keeping the same notations as in Definition 2.2, for any subset A of X its 

pseudo-Vaught transforms , A* and A 6 , are defined as follows: 

A*= {x EX: (V*'Y E f x)(¢xb) EA)} , 
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and 

A6 = {x EX: (3*'Y E rx)(¢x('Y) EA)}. 

The following proposition summarizes the basic properties of the pseudo­

Vaught transforms: 

Proposition 2.4: Let E be any equivalence relation on a given Polish space 

X and assume that it admits an approximation by a Polish group action. 

Then, keeping the same notations as in Definition 2.2, we have the follow­

ing: 

(a) The pseudo- Vaught transforms P* and P 6 of any subset P of X are 

E-invariant and 

(P)E ~ P* ~ P 6 ~ [P]E , 

where (P)E = {x EX: [x]E ~ P} and [P]E = {x EX: [x]E n P #- 0}. 

(b) For any P ~ X, 

X \ P 6 
= (X \ P)* 

and 

X \ P* = (X \ P) 6 
. 

(c) If P, Q are any subsets of X, then 

p ~ Q :::} ( pL. ~ QL. /\ P* ~ Q*) . 

(d) If P ~ X and Pn ~ X, whenever n EN, then 

and 
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(e) For any open P ~ X, P* constitutes a G0 . 

(!) If P ~ X is E§-invariant and constitutes a G01 then P is contained in 

P*. In particular1 if P ~ X is E§-invariant and constitutes a dense G01 

then P* is E-invariant and constitutes a dense G 0 . 

Proof: Parts (b) - ( d) are fairly straightforward and we will restrict our­

selves in proving (a), (e) and (!). 

(a) Since the fact that (P)E ~ P* ~ P 6 ~ [P]E is an immediate consequence 

of the definitions, we will restrict again ourselves in proving that both P* and 

P 6 are E-invariant. Indeed , if x E P* and y E P 6 , while / E r x and 6 E r y, 

then {QI E rx : ¢x(QI) E P} is co-meager in r x and {,6 E ry : </Yy(,6) E P} 

is non-meager in r y, hence since the mappings 'l/Jx,-y : r x --+ r ¢:z:(I') and 

'l/;y,o : r y --+ r ¢y(o) constitute homeomorphisms, while for any QI E r x and 

for any (3 E ry, ¢x(QI) = ¢<Pxh)('l/Jx,,,(QI)) and </Jy(,6) = ¢<Py(o)('l/Jy,o(f3)), it fol­

lows that 7/Jx,,,[ {QI E r x: ¢x(QI) E P}] = { 'l/Jx ,,,(QI) : QI E rx /\ ¢x(QI) E P} = 

{ 'l/Jx,,, (QI): QI E r x /\ ¢<Pxh)('l/Jx,,,(QI)) E P} = {Ql
1 

E r <Pxh): ¢<Pxh)(Ql
1

) E P} 

is co-meager in r <Pxh) and consequently ¢x (!) E P*, while 'l/Jy,o[ {,6 E r y : 

</Yy(,6) E P}] = {'l/Jy,o(f3) : (3 E ry /\ ¢v(f3) E P} = {'l/Jy,o(f3) : (3 E 

ry /\ ¢<Pv(o)('l/Jy,o(f3)) E P} = {,6
1 

E r¢y(o): </J.py(o)(,6
1

) E P} is non-meager in 

r <Pv(o) and consequently </Jy( 6) E P6
. 

(e) We choose at random a countable dense subset C of G and let d be 

any complete compatible metric on G. Given x E X , since the mapping 

¢x : r x --+ X is continuous, { / E r x : ¢x(!) E P} is open in r x and 

consequently it is co-meager in r x iff it is dense in r x or (equivalently) 

(Vn E N)(Va E C)(::Jb E C)(d(a, b) < 2-n /\ b · x E P), which is easily 

seen to imply that P* constitutes a G0 . 

(!) If x E P, then our assumptions imply that G is contained in { / E r x : 



<Pxh) E P} which constitutes a G8; therefore, x E P*. 

OnEp Ebfl OEl~m 
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The relation between the notion of generic S=-ergodicity and the notion 

of approximation by a Polish group action for equivalence relations is demon­

strated by the following proposition: 

Proposition 2.5: Every equivalence relation all of whose equivalence classes 

are meager and which admits an approximation by a generically turbulent 

Polish group action is generically S 00 -ergodic. 

Proof: Let E be any equivalence relation on a given Polish space X and 

assume that all its equivalence classes are meager and that it admits an 

approximation by a generically turbulent Polish group action. Then, keep­

ing the same notations as in Definition 2.2 , the fact that the action of G 

on X is generically turbulent implies that if Y is any Polish space and 

f : X --+ yN is any Baire measurable function with the property that 

xEy:::} {f(x)(n) : n EN} = {f(y)(n) : n EN}, whenever x, y are in X, 

there exists an E§-invariant dense G8 subset B of X and a countable subset 

C of Y such that x E B:::} {f(x)(n) : n E N} = C, whenever x E X. Thus, 

setting A = B *, Proposition 2.4 is easily seen to imply that A constitutes an 

E -invariant dense G8 subset of X such that x EA:::} {f(x)(n) : n EN} = C, 

whenever x E X. 

OnEp EOEl OEl~m 
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3. Baire category in the space of probability 
Borel measures 

Theorem 3.1: If X is any compact perfect Polish space, then Pc(X) = 

{~l E P(X) : µ is continuous}, P*(X) = {µ E P(X) : supp(µ) = X} and 

T/1- = {µ E P(X) : µ 1- u} constitute "'-invariant dense G0 's in P(X), while 

{µ E P(X) : µ « T/ and 1J!; E C(X, R~)} is dense and meager in P(X), 

whenever T/ E P* ( X). In particular, if X constitutes a compact smooth man­

ifold of arbitrary dimension, then{µ E P(X) : µ « u and 1j;; E cr(X, R~)} 

is dense and meager in P(X), whenever T/ E P*(X) and r EN U {oo}. 

Proof: We divide the argument in four steps: 

a) P*(X) constitutes a rv-invariant dense G0 in P(X): 

If {On : n E N} is any countable basis for the topology on X, then 

P*(X) = nnEN({µ E P(X): µ(On)= OY) and by virtue of the Baire Cate­

gory Theorem and the Portmanteau Theorem it is enough to prove that for 

any non-empty open 0 S:: X, int({µ E P(X) : µ( 0) = O}) = 0. Towards 

a contradiction we assume the contrary and let ,\ E P(X), {f0 , ... , fn} S:: 

C(X, R ) and E > 0 be such that{µ E P(X) : (Vi :S n)(I fx fidµ- fx fid>-1 < 

E)} S:: {µ E P(X) : µ(O) = O}, while x E 0 and 17 > 0 are such that 

f+ry 0~[i~(I fx fid.AI + lfi(x) I) < E. Then K = "{2~x E P(X) and K(O) = 

f+ry > 0, while for any 0 :S i :S n, f x fidK- f x fid>. = 1!T/ (J x fid,\ + 17fi (x)) -

f x !id,\= f+ryUx fid,\ + fi(x)) :::} If x fidK - fx /id.Al < E, a contradiction. 

b) For any I/ E P(X), u1- constitutes a rv-invariant dense G0 in P(X): 
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Since the set {x EX : 1!({x}) > O} is countable, if {On : n E N} is 

any countable basis for the topology on X, an application of the Cantor­

Bendixson Theorem shows that for any n E N , there exists Xn E On such 

that 11( { Xn}) = 0. Hence, D = { Xn : n E N} is countable dense in X and 

1!(D) = 0, which implies that {µ E P(X) : supp(µ) is finite and contained 

in D} ~ 11.L and consequently 11.L is dense in P ( X). In addition, if {ck : 

k E N} is any countable dense subset of X and B = {Ui<nB(cki; 2-1i) : 

(ko, ... , kn-1), (lo, .. . , ln-1) E Nn and n EN}, then 7/.L = n(m,n)EN20mn' where 

for any (m,n) E N 2
, Omn = UBEB;v(Bc)<2-<m+n){µ E P(X) : µ(B) < 2-n}, 

and consequently given any ( m, n) E N 2 , we need only prove that Omn is 

open in P(X). 

So let A E Omn and let B EB be such that 11(Bc) < 2-(m+n) and >.(B) < 

2-n. Since >.(X) = 1 and >.(B) < 2-n ::S 1, it follows that Be -/= 0 and the 

regularity of 11 implies that there exists an open subset 0 of X which contains 

Be such that 0 ::S 11( 0) - 11(Bc) < 2-(m+n~-v(Bc). Thus, in particular, 11( 0) -

11(Bc) < 2-(m+n) -1!(Bc) :::} 1!( 0) < 2-(m+n) ::S 1 :::} oc -/= 0 and consequently 

Be, oc are disjoint non-empty closed subsets of X and an application of the 

Urysohn Lemma shows that there exists a continuous function f : X --+ [O , 1] 

such that f = 1 on oc and f = 0 on Be. It is enough to prove that {µ E 
2- n >.(B) 

P(X) : I fx fdµ- f x fd>.I < ~ } ~ Omn· So letµ E P(X) be such that 

If x fdµ- f x fd>.I < 2-n~>.(B). By virtue of the regularity ofµ, 11, there exist 

open subsets u' v of x containing oc such that 0 :::; µ( U) - µ( oc) < 2-n~>.(B) 

(v) (0 ) 2-(m+n) v(Bc) U V and 0 :::; 11 -11 c < 
2 
-; obviously, W = n is an open subset 

of X containing o c such that 0 :'.S µ(W) - µ( oc) < 2 -n~>.(B) and 0 ::S 11(W) -

11( Oc) < 2 -<m+n~-v(Bc). Since { B( ck; 2-1) : (k, l) E N 2 } constitutes a basis for 

the topology on X and W ~ X is non-empty open, there exists a sequence 

((ki, li))iEN of pairs of natural numbers such that W = UiENB(cki; 2-1i) and 
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W = UiENB(cki; 2-1i) and consequently there exists j E N such that 0 ::; 
2-(m+n)_v(Bc) _ . -/ 

v(W) - v(C) < 2 , where C - Ui<jB(cki' 2 i) EB. We remark 

that 

and hence 

cc<;;_ (Cc n B) u BC= (B \ C) u BC 

<;;_ (B \ oc) u (Oc \ C) u BC= (B n 0) u (Oc \ C) u BC 

= ( 0 \ BC) u ( oc \ C) u BC <;;_ ( 0 \ BC) u (W \ C) u BC 

l/(Cc)::; v(O \ Bc) + v(W \ C) + v(Bc) 

= (v(O) - v(Bc)) + (v(W) - v(C)) + v(Bc) 

2-(m+n) - v(Bc) 2-(m+n) - v(Bc) 
< + + v(Bc) = 2-(m+n) 

2 2 , 

while 
2 - n - >-.(B) 

µ( C) ::; µ(W) < µ( o c) + 
2 

J fd 
2-n - )..(B) J jd 2-n - )..(B) 

= µ+ < µ+----'---'--
oc 2 - x 2 

2-n - >-.(B) 
::; J ! d>-. + I J ! d>-. - J f dµI + 

2 x x x 

= J f d>-. + I J f d>-. - J J dµI + 2-n -
2 

>-.(B) 
B X X 

::; J ld>-. +I J J d>-. - J f dµI + 2-n - >-.(B) 
B X X 2 

= A(B) +I J J d).. - J J dµI + 2-n -

2 
)..(B) 

x x 

)..(B) 2-n - )..(B) 2-n - )..(B) = 2-n 
< + 2 + 2 . 

We have thus proved that there exists C E B such that v( cc) < 2-(m+ n) and 

µ(C) < 2-n, i.e. , µ E Omn· 
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c) Pc(X) constitutes a "-'-invariant dense G0 in P(X): 

We will first prove that Pc(X) constitutes a G0 . Since Xis compact, both 

P(X) and K(X) are also compact and since projP(X) : P(X) x X 3 (µ, x) 1-t 

µ E P(X) is obviously continuous, while X 3 x 1-t { x} E K(X) constitutes 

an embedding, it follows that the function P(X) x X 3 (µ, x) 1-t µ( { x}) E 

[O , 1] is upper semi-continuous and consequently its upper sections are closed 

and therefore compact, which implies that P(X) \ Pc(X) = {µ E P(X) : 

(3x E X)(µ({x}) > 0)} = UnENprojp(x)[{(µ,x) E P(X) x X: µ({x}) ~ 

2-n}] is Ku in P(X) . The fact that Pc(X) is dense in P(X) will follow once 

we prove the fourth step of the argument , since Pc(X) n P* (X) I- 0 and 

if v E Pc(X) n P*(X), then {µ E P(X) : µ « v and ¥v E C(X, R~)} ~ 

Pc(X) n P*(X) . 

d) We divide the fourth step of the argument in two parts: 

For any v E P*(X), {µ E P(X) : µ « v and ¥v E C(X, R~ )} is dense 

and meager in P(X). 

By virtue of b), it is enough to prove that the set in question is dense. 

To this end given K, E P(X) such that supp(K,) = { Xo, ... , x1}, {Jo, ... , fn} ~ 

C(X, R) and E > 0, we need only prove that there existsµ E P(X) such that 

µ « v and ¥v E C(X, R~ ) , while for any 0 :Si :Sn, If x fidµ-f x fidK,I < E or 
l 

(equivalently) I fx fidµ - 2::: akfi(xk)I < E, where ak = K,({xk}), 0 :S k :S l. 
k=O 

We set M = max llfilloo and choose c5 > 0 such that the balls B(xk; 6), 
o:::;i:::;n 

0 :S k :S l are pairwise disjoint and sup lfi(Y) - fi(xk)I <~ ' for any pair 
yEB(xk;o) 

of indices i, k. Given any 0 :::; k :::; l, an application of the Urysohn Lemma 
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for locally compact Hausdorff spaces shows that there exists a continuous 

function 'lfJk : X ~ [O, 1] such that 'lfJk = 1 in B(xk; 6/2) and 'lfJk = 0 out of 

B(xk; 6), and if f3k = f x 'lfJkdT/, then, since 'lfJk = 1 in B(xk; 6/2) and 'lfJk = 0 

out of B(xk; 6), it follows that f3k 2: f B(xk;8; 2) ldl/ = 1/(B(xk; 6/2)) > 0 and 

f3k = J B(xk .8) 'lfJkdT/. We set /3 = min f3k > 0 and let 0 < 77 < 1 be such that 
' O~k~l 

l 
_.!J_+l M(/3-1 + 77) < ~ and 77M < ~ · Setting h = I:: akf3"k1'1/Jk + 77, it is not 
ry k=O 
difficult to see that 77 S h S 13-1 + 77, h : X ~ [17, 13-1 + 77] is continuous and 

fx hd1/ = 1+77. Therefore, if dµ = l~rydl/, thenµ« T/ and ¥i; E C(X, R~). 

Moreover, given any 0 Si Sn, 

where 

l 

l 

I !idµ - 2= akfi(xk) 
X k=O 

1 l 

= -- J !ihdl/ - 2= akfi(xk) 
1+77 X k=O 

77 l 
= --- f fihd1/ + f fihdl/ - L CY.kfi(xk) 

1+77 X X k=O 

= - _'17_ f fihdT/ 
l+17x 

+ L CY.k f (Ji(Y) - fi(xk))/3"k 1'1/Jk(Y)d1/(y) + 77 f fidl/ , 
k=O B(xk;8) X 

I J fihdl/I s J l!ilhdl/ s M(/3-1 + 77) ' 
x x 

I J fidl/\ s J l!ildl/ s M 
x x 

and given 0 S k S l, 



25 

which implies that 

If X constitutes a compact smooth manifold of arbitrary dimension, v E 

P* (X) and r E NU { oo }, {µ E P(X) : µ « v and ¥u E Cr(X, R~)} is dense 

and meager in P(X). 

By virtue of b), it is enough to prove that the set in question is dense. 

To this end given "' E P(X) such that supp("') = { xo, ... , x1}, {Jo, ... , fn} ~ 

C(X, R) and E > 0, we need only prove that there existsµ E P(X) such that 

µ « v and ¥v E cr(x, R~), while for any 0::; i::; n, If x fidµ - f x fidK,I < E 

l 
or (equivalently) I fx fidµ- L akfi(xk)I < E, where ak = "'({xk}), 0::; k::; l. 

k=O 
We set M = max llfill= and choose 6 > 0 and admissible charts ¢k : Uk ---+ 

o::;i::;n 
B(O; 6), 0::; k::; l on X such that the Uk's are pairwise disjoint and for any 

0::; k::; l, Xk = ¢k" 1 (0) and sup lfi(Y) - fi(xk)I < ~' 0::; i::; n. Then there 
yEUk 

exists a c=-function ¢ : Rdim(X) ---+ [O, 1] such that ¢ = 1 in B(O; 6 /2) and 

¢ = 0 out of B(O; 26 /3) and for any 0 ::; k ::; l, we set 

and thus obtain a c=-function 'l/Jk : X---+ [O, 1] with the property that 'l/Jk = 1 

in ¢k" 1 [B(O; 6/2)] and 'lfJk = 0 out of Uk= ¢k"1 [B(O; 6)]. Given 0::; k::; l, if 

fJk = f x 'lfJkdv, then since 'lfJk = 1 in ¢k"1 [B(O; 6/2)] and 'lfJk = 0 out of Uk= 

¢k"1 [B(O; 6)], it follows that fJk 2: I¢;;1[B(O;o/2)] ldv = v(¢k" 1[B(O; 6/2)]) > 0 
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and f3k = f u 'lj;kdv. We set /3 = min f3k > 0 and let 0 < 'r/ < 1 be such that 
k 05,kS:l 

l 
-Ti_ lvl(/3- 1 + 'r!) < ~ and 'f/M < ~· Setting h = I: akf3"k 1'1/Jk + 'r/, it is not 
~ k=O 
difficult to see that 'r/ ::::; h ::::; 13-1 + 'r/, h : X ----+ ['T/ , 13-1 + 'T/] is differentiable 

of class er and f x hdv = 1 + 'r/. Therefore, if dµ = 1 ~~ dv, then µ « v and 

1J!; E Cr(X, R~) . Moreover, given any 0::::; i :Sn, 

l 

f fidµ - L akfi(xk) 
X k=O 

l 

+ L ak f (fi(Y) - fi( xk))/3"k1'1/Jk(y)dv(y) + 'r/ f fidv , 
k=O Uk X 

where 

If fihd1/I :S f lfi lhdv :S M(/3-1 + 'r!) , 
x x 

If fidvl :S f lfildv :S M 
x x 

and given 0 ::::; k ::::; l , 

which implies that 

l 'r/ E l 

If fidµ - L akfi(xk) I < --M(/3-1 + 'r!) + -
3 
L ak + 'r/M < E. 

X k=O 1 + 'r/ k=O 

OnEp EOEl OEl~m 
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4. Generic 8 00-ergodicity for measures 

Theorem 4.1: If X is any compact perfect Polish space and P(X) stands 

for the Polish space of probability Borel measures on X, equipped with the 

weak* -topology, while µ rv v {::::::::} (µ « v /\ v « µ), whenever µ, v are 

in P(X), then rv is generically S::o-ergodic. (The same is true if X is any 

compact smooth manifold of arbitrary dimension and we replace rv by "-'er, 

where µrvcr1.1 iff µ rv 1,1 and both Radon-Nikodym derivatives ~ and ~~ are 

differentiable functions of class er) whenever r E N U { oo}.) 

Theorem 3.1 is easily seen to imply that every rv-equivalence class is 

meager and consequently it is enough to prove that the equivalence relations 

considered in Theorem 4.1 admit approximations by generically turbulent 

Polish group actions. To this end we will first reveal the Polish group actions 

that approximate, in the sense of Definition 2.2, the equivalence relations 

considered in Theorem 4.1, and we will then prove that they are generically 

turbulent. 

Proposition 4.2: If X is any compact perfect Polish space, then we have 

the following: 

(i) For anyµ E P(X), 

L~+ (X, µ) = {f E L1(X, µ) : f > 0, µ-a.e.} 

constitutes a dense G 0 in L ~ ( X, µ), and the mapping 

<Pµ: L~(X, µ) \ {O}----> P(X) 

defined by the relation 

d(<Pµ(f)) = (J fdµ)- 1 f dµ (! E L~(X, µ) \ {O}) 
x 
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is continuous and satisfies the condition 

<Dµ[L~+ (X, µ)] = [µ] ,_, . 

(ii) C(X, R+) acts continuously on P(X) via 

C(X, R~ ) x P(X) 3 (!, µ) r-> <Dµ(J) E P(X) 

and for any µ E P(X) , 

C(X, R+) = L~+ (X, µ) . 

(iii) For anyµ E P(X) and for any f E L~+ (X, µ), the mapping 

WµJ: L~+ (X, µ) 3 gr-> g(J fdµ)/ f E L~+ (X, <Dµ(J)) 
x 

costitutes a homeomorphism with the property that 

whenever g E L~+(X, µ) . 

Proof: ( i) We divide the argument in two steps: 

a) L~+(X, µ) constitutes a dense G0 in L~(X, µ): 

If E, 6 are arbitrary positive rationals , then we set H~o) = {f E L~(X, µ) : 

µ( {x E X : f( x ) > E}) > 1 - 6} and let H = noEQ'.f_ UEEQ '.f_ H~0l . It is not 

difficult to verify that H = L~+ (X, µ) and consequently we need only prove 

that for any 6 E Q+, the set fl(o) = UEEQ'.f_ H~0) is open and dense in L~(X, µ). 

We shall first prove that fl(o ) is open in L~(X, µ). So let f E fl( o) 

and let E E Q+ be such that µ({ x E X : f( x) > E}) > 1 - 6. We set 
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T/ = µ({x EX : f(x) > E}) - (1 - 0) > 0 and let g be any non-negative 

function in L 1 (X, µ)such that fx If - gldµ < 5!j. If E = {x EX: lf(x) -

g(x)I > n, then obviously ~µ(E) :::; fE lf(x) - g(x)ldµ(x) < 5!j and hence 

µ({x E X : lf(x) - g(x)I > H) < Tl· Thus, since {x E X : g(x) :::; 

n n {x E x : f(x) > E} ~ {x E x : lf(x) - g(x)I > n and hence 

{ x E x : g(x) :::; n ~ { x E x : f(x) :::; E} u { x E x : If (x) - g(x) I > n, it 

follows that µ({x EX: g(x):::; H):::; µ({x EX: f(x):::; E}) + µ({x EX: 

lf(x) -g(x)I > H) < l -µ({ x EX: f(x) > E}) +T/ = 0 and consequently 

µ({x EX: g(x) > H) > 1 - O, i.e., g E H;J~. We have thus proved that 

{g E L~(X,µ): fx lf-gldµ < 5!j-} ~ f1( 5
) and consequently fJ(J) is open in 

L~(X,µ). 

What is left to show is that fJ( 8) is dense in L~(X, µ). So let f be 

any non-negative function in £ 1 (X, µ) and let E E Q~. Then evidently 

f + ~ E L~+ (X,µ) and f + ~ E fJ(
8l. 

b) <I>µ : L~(X, µ) \ {O} -+ P(X) is continuous and satisfies the condition 

<I>µ[L~+ (X, µ)] = [µ]~: 

If fn -+ f in L~(X, µ) \ {O} as n -+ oo, then evidently If x fndµ -

fx fdµI :::; fx lfn- fldµ-+ 0 as n-+ oo and for any g E C(X, R), I fx gfndµ­

f x gfdµI :::; llglloo · f x lfn - fldµ-+ 0 as n-+ oo. Therefore, 

as n -+ oo, whenever g E C(X, R), and consequently <I>µ(jn) -+ <I>µ(!) in 

P(X) as n -+ oo, which implies that the mapping <I>µ : L~(X, µ) \ {O} -+ 

P(X) is continuous. The fact that it satisfies the condition <I>µ[L~+ (X, µ)] = 

[µ]~ follows immediately from the Radon-Nikodym Theorem. 
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(ii) It is straightforward to verify that C(X, R~) x P(X) 3 (!, µ) f-----7 <Pµ(f) E 

P(X) constitutes an action whose continuity follows from part ( i), while the 

density of C(X, R~) in L~+(X, µ) will follow once we prove the following 

claim: 

Let {ck : k E N} be any countable dense subset of X and given 

(ko, ... , kn-1) E Nn and ri < si (i < n) in Q~, where n EN\ {O}, let 

h(ko,.-.,kn-1;ro, ... ,rn-1;so, ... ,Sn-1) : X----+ [O, 1] 

be a continuous function satisfying the conditions 

h(k k ·r r ·s s ) = 1 in U"<nB(ck. · r") Oi···1 n-1, Q, .. ., n-1, 01···i n-1 c, i ' c, 

and 

(whose existence is implied by Urysohn's Lemma for locally compact Haus­

dorff spaces). If 7-{ consists of all functions of the form: 

m-1 
L a-Jh <il Ul . Ul <il . <il <il + a , . (ko , ... )kn·-1,rO , ... ,rn·-1 ,80 , ... ,sn·-1) 
3= 0 J J J 

where for any 0 ~ j < m, (kbjl, ... , k~)_ 1 ) E Nni and r~j) < s~j) (0 ~ i < nj) 

are in Q~, while nj EN\ {O} and a, aj E Q~ (m being a positive integer), 

then 7-{ n C(X, R~) constitutes a countable set which is dense in L~(X, µ). 

Let (ao, ... , O:'.m-1) E (Q~)m and for any 0 ~ j < m, let (kbj), ... , k~)_i) E 

Nni and (s~), ... , s~]_ 1 ) E (Q~ri, where nj E N \ {O}, while m E N \ {O}. 

We set ¢ = I: O:'.]Xu B( . . <il) and let E > 0 be arbitrary but fixed. It is 
j<m i<nj \<1) ,si 

' 
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enough to prove that there exists h E '}-{ for which f x J¢ - hJdµ < E. Since 

for any 0 :::; j :::; m, 

given fJ > 0, there exists an integer n > 0 such that 

for every 0 :::; j < m. We take fJ = 2 E °'i and if k is the least positive integer 
j<m 

for which k-1 < ~' then setting 

it is not difficult to see that 

J l<P - hJdµ 
x 

< I: aj. J ( 1 -
j<m U;<njB(ck(i);s~i)) 

' 

(Ui<niB(ckcil; s~j) - n-1
)) ) + k-1 < E. 

' 

(iii) It is not difficult to see that 

8: L 1(X, µ) 3 g 1--7 g(J fdµ)/ f E L 1(X, if!µ(!)) 
x 

constitutes an isometric isomorphism with inverse 
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mapping L~(X, µ) onto L~(X, <I>µ(!)) and in particular L~+ (X, µ) onto 

L~+ (X, <I>µ(!)), which implies that iJ! µJ constitutes a homeomorphism, while 

J (g(J fdµ)/f). (J(g(J fdµ)/f)d(<I>µ(f)))- 1
. d(<I>µ(f)) 

B X X X 

J (g(J f dµ)/ !) . ( J (g(J fdµ)/ !) . (J fdµ)-l f. dµ )-1 . (J fdµ)- 1 f. dµ 
B X X X X X 

= J (J gdµ)- 1g dµ = <I>µ(g)(B) 
B X 

for every Borel B ~ X and consequently <I><I>µ(f)(iJ!µ,1(g)) = (_[)µ(g), whenever 

g E L~+ (X, µ). 

07r€.p €.6€.l 6€.l~CXl 

Proposition 4.3: If X is any compact smooth manifold of arbitrary di­

mension and r E N U { oo}, then we have the following: 

(i) For anyµ E P(X), cr(X,R~) constitutes a dense G8 in Cr(X, R+) with 

respect to Tµ, and the mapping 

<I>µ : cr(X, R +) \ {O} --+ P(X) 

defined by the relation 

d(<I>µ(f)) = (J fdµ)- 1 fdµ (! E Cr(X, R +) \ {O}) 
x 

is continuous with respect to Tµ and satisfies the condition 

(ii) cr(X, R~) acts continuously on P(X) via 

Cr(X, R~) x P(X) 3 (!, µ) t--t <I>µ(!) E P(X) . 
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(iii) For anyµ E P(X) and for any f E Cr(X, R~), the mapping 

costitutes a homeomorphism with the property that 

whenever g E Cr(X, R~ ). 

Proof: ( i) We divide the argument in two steps: 

a) cr(x, R~ ) constitutes a dense Go in cr(x, R +) with respect to Tµ: 

Since L~+ (X, µ) constitutes a G0 in L~(X, µ) , say L~+ (X, µ) = niENUi, 

where the U/s are open in L~(X, µ), while Cr(X, R~) = UoEQ+ C(0), where 

for any 6 E Q~, the definition of the Whitney topology is easily seen to imply 

that C(o) = {f E Cr(X, R+) : min J(x) > 6} is open in Cr(X, R +), it follows 
xEX 

that cr(x, R~ ) = n iEN(Ui n (UoEQ+ C(o)) n cr(x, R +)) constitutes a Gs in 

cr(x, R +) with respect to Tµ,- Therefore, the claim will follow once we prove 

the density of cr(x, R~) in cr(x, R +) with respect to Tµ: 

So let f E cr(x, R+) and let E > 0 be arbitrary but fixed . Then evidently 

f + ~ E Cr(X, R~) and for any s EN for which 0 < s :Sr, ds(J + ~) = ds f, 

which implies that pµ(J, J + ~) < E. 

b) <I>µ : cr(x, R+) \ {O} -t P(X) is continuous with respect to Tµ and 

satisfies the condition <I>µ[Cr(X, R~) ] = [µJ~cr: 
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The continuity of <Pµ with respect to Tµ follows from the definition of Tµ 

and part ( i) of Proposition 4.2, while the fact that it satisfies the condition 

<Pµ[Cr(X, R~)] = [µJ~cr follows from the Radon-Nikodym Theorem. 

(ii) The fact that Cr(X, R~) x P(X) 3 (!, µ) r--+ <Pµ(f) E P(X) consti­

tutes a continuous action follows from the definition of Tµ and from part (ii) 

of Proposition 4.2. 

(iii) It is not difficult to see that 

constitutes a bijection with inverse 

which maps cr(X, R~) onto itself and in order to prove that w µJ constitutes 

a homeomorphism what we have to show is that 8 constitutes a homeomor­

phism. By symmetry, it is enough to show that 8 is continuous. Indeed, if 

9k---? gin (Cr(X,R+),Tµ), then dcr(X,R)(9k,g)---? 0 and fx l9k -gldµ--? 0 

ask---? oo, hence an application of the Radon-Nikodym Theorem shows that 

J lgk(J fdµ)/ f - g(J fdµ)/ fld(<Pµ(f)) = J l9k - gldµ---? 0 
x x x x 

as k ---? oo, while since given any natural number s and any function w E 

C8 (X, R), there exists a constant C > 0 depending only on sand w, for which 

llds(uw)-ds(vw) II= ::::; C · lldsu-dsvll=, whenever u, v E Cs(X, R), it follows 

that dcr(X,R)(gk(Jx fdµ)/ f, g(Jx fdµ)/ !) ---? 0 ask---? oo, which implies that 

9k---? gin (Cr(X,R+),Tµ)· Finally, the fact that <Pµ(g) = <P<I>µ(f)(Wµ,1(g)) 

for every g E Cr(X, R~) follows from part (iii) of Proposition 4.2. 
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Lemma 4.4: Let G be any Polish group acting continuously on a Polish 

space X and let x E X. Suppose G · x is dense in X and there exists a fun­

damental system of open neighborhoods U of x in X with the property that 

for any g E G for which g · x E U, there exists h E G and a continuous path 

[O , 1] 3 t !----? ht E G such that g · x = h · x, h0 = 1G1 h1 = h and ht· x EU, 

whenever t E [O, 1]. Then the action of G on X is turbulent at the point x. 

Proof: Let V be any open neighborhood of x in X and let W be any 

symmetric open neighborhood of the identity in G. Then there exists an 

open neighborhood U of x in X which is contained in V and satisfies the 

condition stated in the formulation of the lemma. We need only prove that 

O(x, U, W) = Un (G · x). So let g E G be such that g · x E Un (G · x) 

and let h E G and [O , 1] 3 t J---? ht E G be as in the statement of the 

lemma. Then there exists a positive integer N such that for any s, tin [O, 1], 
Is - ti ::; JV- 1 =;, hs · h"t1 E W. Hence, setting to = 0, tk = tk-1 + JV-1 and 

gk = htk · ht,_~ 1 , whenever 1 ::; k ::; N, it follows immediately that gk E W 

and gk···gl · x = htk · x E U , whenever 1 ::; k ::; N , while 9N···91 · x = g · x . 

We have thus proved that O(x, U, W) =Un (G · x) . 

07rEp Eba 6a(m 

Proposition 4.5: If X is any compact perfect Polish space1 then the ac­

tion of C(X, R~) on P(X) described in Proposition 4.2 is turbulent at every 

µ E P*(X) and therefore generically turbulent. The same is true if X is any 

compact smooth manifold of arbitrary dimension and we replace C(X, R~) 

by Cr(X,R~ ) for every r E NU {oo}. 
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Proof: By virtue of Theorem 3.1, it is enough to verify that the system 

of open neighborhoods ofµ E P*(X), which consists of the sets of the form 

Uµ;J0, ... Jn;E = {v E P(X) : (Vi:::; n)(I J fidv - J fidµI < E)} , 
x x 

where {Jo, ... , fn} ~ C(X, R) and E > 0, satisfy the condition stated in the 

formulation of Lemma 4.4. Indeed, if g is any function in the group consid­

ered, such that g · µ E UµJo, .. Jn;E' then we need only take h = (J x gdµ)- 1 
• g 

and ht= (1 - t) +th, whenever t E [O, l]. 

OnEp EDEl OEl~m 

Keeping the same notations as in Definition 2.2, in view of Propositions 

4.2, 4.3 and 4.5, the following table indicates that the equivalence relations 

considered in Theorem 4.1 admit approximations by generically turbulent 

Polish group actions. 

X a compact X a compact 
perfect smooth manifold 

Polish space and r E N U { oo} 
f µ 

for L~+(X, µ) (Cr(X, R~), Tµ) 

µ E P(X) 
G C(X, R~ ) cr(X, R~ ) 

</>µ J f-7 Ux fdµ)- 1 J dµ J f-7 Ux fdµ)- 1 fdµ 
for whenever whenever 

µ E P(X) f E fµ f E fµ 

1/Jµ,J 

for g f-7 9Ux f dµ)/ f g f-7 g(Jx fdµ)/ f 
f E fµ whenever whenever 

and g E fµ g E fµ 

µ E P(X) 

TABLE 4.1 
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Finally, we should mention that Theorem 1 goes through for any perfect 

Polish space X by considering a compactification of X: 

Indeed, since X is homeomorphic to a G0 subset of the Hilbert cube 

[O, l]N, the closure X of X in [O, l]N obviously constitutes a compact perfect 

Polish space and if ( Om)mEN is any descending sequence of open subsets of 

X with the property that X = nmENOm, then it is enough to notice that 

constitutes a dense G0 in P(X), something that follows from the fact that 

the Om 's are dense in X and the functions P(X) 3 µ 1--+ µ(Om) E [O, 1], 

m E N are lower semi-continuous and consequently their lower sections are 

closed. 
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Theorem 5.1: Let H be any infinite-dimensional separable complex Hilbert 

space and let U(H ) stand for the Polish group of unitary operators on H , 

while S1 (H) stands for the Polish space of self-adjoint operators on H with 

norm at most one, both equipped with the strong topology. Then the conju­

gation action of U( H) on both U(H ) and S1(H) is generically turbulent. 

Since the functions that assign to every operator in U (H) a measure in 

P(T) and to every operator in S1(H) a measure in P([-1, 1]) as a canonical 

representative of its maximal spectral type are continuous, we will reduce the 

proof of Theorem 5.1 to Theorem 4.1. To this end we will first prove that 

there exist Borel inverses of the functions mentioned above that assign to 

every measure in P* (T) n Pc (T) an operator in U (H) and to every measure 

in P* ( [-1, 1]) n Pc ( [-1, 1]) an operator in 51 (H) and we will then prove that 

the Polish group actions considered in Theorem 5.1 are generically turbulent 

by proving that they satisfy the antecedents and part (iv) of the succedents 

of the theorem of G. Hjorth mentioned in the introduction. 

Definition 5.2: Givenµ E P *(T)nPc(T) andv E P*([-1 , l])nPc( [-1 , 1]), 

let fµ stand for the function e27rit 1--+ µ({ e27ris: 0 ~ s < t})modl (t E [O, 1)), 

which constitutes a homeomorphism of T onto R / Z, and let gu stand for the 

function x 1--+ v([-1, x]) (x E [-1, 1]) , which constitutes a homeomorphism 

of [-1 , 1] onto [O, l]. 

Lemma 5.3: For anyµ E P*(T) n Pc(T) and for any v E P *( [-1, 1]) n 

Pc([-1, 1]), the mapping <Pµ : L2 ([0, 1), mi) 3 J 1--+ f ofµ E L2 (T, µ) , if we 
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consider [O, 1) as a fundamental region ofZ in R 1 and \If// : £ 2 ([0, 1], m 1 ) 3 

g r--7 g o gl/ E L 2 
( [-1, 1], v) constitute Hilbert space isomorphisms. 

Proof: It is enough to prove that for any f E £ 2 ([0, 1), m 1) and for any g E 

£ 2([0, 1], m1), JJ lf(x)l 2dx = fT If o fµl 2dµ and JJ lg(x)l2dx = f~ 1 lg o gl/l 2dv. 

Indeed, since the half-open intervals [a, /3), where 0 :::; a < f3 :::; 1, and ( "(, c5], 

where -1 :::; 'Y < c5 :::; 1, form semi-algebras which generate the Borel sub­

sets of [O, 1) and ( -1, 1] respectively, while setting ¢ : t r--7 e2
7rit ( t E [O, 1)), 

(jµ o ¢)(/3) - (jµ o ¢)(a)= (¢- 1µ)([a,/3)) , whenever 0:::; a< f3:::; 1, an ap­

plication of the Caratheodory Measure Extension Theorem shows that ¢-1 µ 

is the Borel measure that corresponds to the strictly increasing function 

fµ o ¢ and the restriction of v on (-1, 1] is the Borel measure that corre­

sponds to the strictly increasing function g,/ I ( -1, 1] , which implies that for 

any f E £ 2 ([0, 1), m 1) and for any g E £ 2 ([0, 1], m 1), 

and 

1 1 / 
f If (x) l2 dx = J If(!µ( cp(x))) 1

2 (!µ o ¢) (x )dx 
0 0 

1 

J lg(x)l2dx = J lg(x)l 2dx 
0 (0,1] 

= J lg(gl/(x))l 2g;)x)dx = J lg o gl/l 2dv 
(-1,1 ] (-1,1 ] 

1 
=Jlgogl/l2dv. 

-1 

Lemma 5.4: Given K, E P*(T) n Pc(T) and>. E P*([-1, 1]) n Pc([-1, 1]) 1 

if we consider [O , 1) as a fundamental region of Z in R the mapping U,J = 
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f;: 1 · f (! E L2([0, 1), m 1)) constitutes a unitary operator on L2([0, 1), m 1) 

with spectral multiplicity one and with µu"' = K with respect to the standard 

basis in L2 ([0, 1) , m1) which consists of the functions en : x 1---t e2ninx (x E 

[O, 1); n E Z), while the mapping S>.g = g): 1 
· g (g E L2 ([0, 1], m 1)) constitutes 

a self-adjoint operator on L2 ([0, 1], m 1) with norm at most one, with spec­

tral multiplicity one and with µs>- = ,\ with respect to the standard basis in 

L2 ([0, 1], m 1) which consists of the functions en : x 1---t e2ninx (x E [O, 1]; n E 

Z). 

Proof: For any f E L2 ([0, 1), m1) and for any g, h E L2([0, 1], m1), 

2 1 2 1 1 2 
(llU~fll2) = f IU~fl dm1 = f If: ·fl dm1 

0 0 

1 1 

= J lf:112 . lfl2dm1 = J lfl2dm1 = (II! 112)2 ' 
0 0 

1 1 

(llS>.gll2)2 = f 19">:1 · gl2dm1 ::::; (ll9">:1 ll oo)2 · f lgl 2dm1 ::::; (llgll2)2 
0 0 

and 
1 -1 - 1 --=1 

(S>.g, h) = J 9>. g · h · dm1 =Jg· 9>. h · dm1 = (g, S>.h) , 
0 0 

which implies that U~ E U(L2([0, 1),m1)) and S>. E S1(L2([0, 1],m1)). More-

over, if f E L2 (T, K) and g E L2 ([-1, 1], >.),then 

(<I>~U~<I>~ 1 
/)(() = (<I>~U~(f o t:1

))(() 

= (<I>~U:1. U o f:1)))(() = ((!:1 o !~). ((! o f:1) of~))(()= (. f(() , 

whenever ( E T, and 

(w>-S>- 'Vi: 1g)(x) = (w>-S>-(g o g):1))(x) 

= (w>.(g-;1 . (go g):1)))(x) = ((g):1 o 9>.) ·((go g):1) o 9>.))(x) = x · g(x) , 

whenever x E [-1, 1], which implies that <I>~U~<I>~ 1 has spectral multiplicity 

one and E<I>"'U"'<I>;;;\B)f =XE· f (BE B(T); f E L2(T, K)), while W>.S>. '11):1 



41 

has spectral multiplicity one and EiJl>-S>-iJl),
1
(B)g = XE·g (BE B([-1, l]);g E 

L2 ([-1, 1], .\)). Therefore, we deduce that U,,,, has spectral multiplicity one 

and Eul<(B) = <I>~ 1 E<I> l< ul< <I>;
1 

(B)<I>,,,, (B E B(T)), while S>. has spectral mul­

tiplicity one and E 8 >- (B) = w_;:- 1Ew>-S>- iJl),
1
(B)W>. (BE B([-1, 1])). Hence 

= J XE· (en of,,.,)· (en of,,.,) dK, = J len o f,,.,l 2dK, = K,(B) , 
T E 

whenever B E B(T), and 

E::,eJB) = (E8 >- (B)en , en) = (Ew>- 3 >- w-;
1 

(B)w >.en, W >.en) 

1 

= J XE· (en of>.)· (en of>.) d,\ = J len o f>..l 2d.\ = .\(B) , 
-1 E 

whenever B E B([-1, 1]), which implies that E~",en = K, and E:,;,en = .\, 

whenever n E Z and consequently µu" = K, and µs>- = .\. 

07rEp EbEl bEl~O'.l 

Lemma 5.5: The mappings F: P*(T) n Pc(T) 3 µ f----7 fµ E Hom(T, R/Z) 

and G: P*([-1,1]) nPc([-1,1]) 3 v f----7 g,, E Hom([-1,1],[0,1]) constitute 

Borel injections. 

Proof: We will first prove that the mappings in question are injective: So 

let K, , ,\ E P*(T) n Pc(T) andµ , v E P*([-1, 1]) n Pc([-1 , 1]) be arbitrary but 

fixed and let f,,., = f>. and 9µ = 9v · Then 

K,( { e 27rit : a ::::; t < ,B}) = f,,,, ( e27ri/3) _ f,,., ( e27ria) 

= f>. ( e 27ri/3) _ f>. ( e27ria) = .\( { e 27rit : a ::::; t < ,B}) , 

whenever 0 ::::; a < ,B ::::; 1, and 
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whenever -1 ::; '"'! < c5 ::; 1, and since the sets { e27rit : a ::; t < ,B}, where 

0 ::; a < ,B ::; 1, and the half-open intervals ('"'!, c5], where -1 ::; '"'( < c5 ::; 1, 

form semi-algebras which generate all the Borel subsets of T and (-1, 1] 

respectively, an application of the Caratheodory Measure Extension Theo­

rem shows that /'\, = ,\ and the restrictions of µ, T/ on ( -1, 1] coincide and 

consequently µ = 7/. 

If we prove that graph(F) and graph(G) constitute Borel subsets of 

the product spaces (P*(T) n Pc(T)) x Hom(T, R / Z) and (P*([-1, 1]) n 

Pc([-1, 1])) x Hom([- 1, 1], [O , 1]) respectively, then since the mappings F 

and G are injective, an application of the Souslin Theorem will show that 

they are Borel, for 

p- 1[U] = projp•(T)nPc(T)(graph(F) n ((P*(T) n Pc(T)) x U)) 

and 

c-1[V] = proj p•([-l ,l])nPc([-l,l])(graph(G)n((P*([-1, l])nPc([-1 , 1])) x V)), 

whenever U ~ Hom(T, R / Z) and V ~ Hom([-1, 1], [O, 1]) are non-empty 

open. So let (µ, f) E (P*(T) n Pc(T)) x Hom(T, R/Z) and let (v, g) E 

(P*([-1, 1]) n Pc([-1, 1])) x Hom([-1, 1], [O, 1]) be arbitrary but fixed. Then 

(µ,!) E graph(F) ~ (Vx E Qn [O , l))(µ({ e2
7riy: 0::; y < x}) = f(e2

7rix)) 

and 

(v, g) E graph(G) ~ (Vt E Q n [-1, l])(v([-1 , t]) = g(t)) , 

which implies that graph(F) and graph(G) are Borel in (P*(T) n Pc(T)) x 

Hom(T, R/Z) and (P*([-1, 1]) n Pc([-1, 1])) x Hom([-1 , 1], [O, 1]) respec­

tively, since for any x E [O, 1) and for any t E [-1, 1], the mappings 

Hom(T, R / Z) 3 f f---7 f(e2
7rix) E R/Z 
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and 

Hom([-1 , 1], [O, 1]) 3 g f-; g(t) E [O , 1] 

are obviously continuous, while the Portmanteau Theorem is easily seen to 

imply that the mappimgs 

P* (T) n Pc(T) 3 µ f-; µ( { e27riy : 0 :S y < x}) E [O, 1] 

and 

P*([-1 , 1]) n Pc([-1, 1]) 3 v f-; v([-1, t]) E [O , 1] 

are also continuous. 

Proposition 5.6: (i) Vi ewing H as being L2 ([0, 1) , mi) and considering 

[O, 1) as a fundamental region of Z in R , the mapping 

is Borel and 

whenever K, , K,
1 E P* (T) n Pc(T). 

(ii) Viewing H as being L2 ([0, 1], m 1) , the mapping 

P*([-1 , 1]) n Pc([-1 , 1]) 3 .A f-; S>. E ~2 n ~3 

is Borel and 

whenever A, A' E P* ( [-1, 1]) n Pc ( [-1 , 1]) . 

Proof: By virtue of Lemma 5.4, Lemma 5.5 and the Spectral Theorem, 
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it is enough to prove that the mappings Hom(T, R/Z) 3 f 1-7 Uj E U(H) 

and Hom([-1, 1], [O , 1]) 3 g 1-7 S~ E S1(H) defined by the relations 

Uju = f · u (! E Hom(T,R/Z);u E L2([0, 1),m1)) 

and 

S~v = g · v (g E Hom([-1, 1], [O, 1]); v E L2([0, 1], mi)) 

are continuous. Indeed, if fn ---+ f in Hom(T, R/Z) and 9n ---+ g in 

Hom([-1 , 1], [O , 1]) as n---+ oo, then for any u E L2([0, 1),mi) and for any 

V E L2([0, 1], m1), (ll(Ujn - U1 )ull2)2 :::; (llfn - /lloo) 2 · (iiull2) 2 
---+ 0 and 

(ll(S~n - Sg)vll2)2 :::; (ll9n - 9lloo)2 · (llvll2) 2
---+ 0 as n---+ 00. 

OnEp Eba 6a~cxl 

Our next task is to show that the actions considered in Theorem 5.1 

satisfy the antecedents of the theorem of G. Hjorth mentioned in the intro­

duction. 

Proposition 5.7: (i) For any SE L:2 , U(H) ·Sis dense in S1(H). 

(ii) For any U E U2 , U(H) · U is dense in U(H). 

Proof: We will first prove the following claim: 

Let x1, ... , Xn be n unit vectors in H such that 1 :::; i < j :::; n ==} 

l(xi, Xj)I < 6, where 0 < 6 < 7-n. Then the unit vectors e1, ... ,en ob­

tained from x1, ... , Xn by the standard orthogonalization process satisfy the 

conditions llxi - eiil < 7i6, 1 :::; i:::; n. 

m-1 

By definition em = ...11.!rl_ll "'ii and Ym = Xm - :Z::::: (xm, ek)ek for every 1 :::; m :::; 
Yrn k=l 

n, and we argue by induction on n. So let n > 1 and assume the claim for the 
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natural number n - 1. Then llxi - eill < 7i5, 1 :Si < n and what we need to 
n-l 

show is that llxn-enll < 7n5. Butsettingp(n) =(I: (1+7k) 2) 112 , 3p(n) < 7n 
k=l 

n-l n-l 
and 11Yn-Xnll2 

= L l(xn,ek)21:SLl(xn,Xk)+(xn,ek-xk)l 2 <52p(n) 2
, 

k=l k=l 

which implies that 1 - 5p(n) < llYnll < 1 + 5p(n) and llxn - en ll = llxn -
xn+yn -Xn II < lllYnll -ll+llYn-Xn ll < 28p(n) < 35p(n) < 7n5 

llYnll - llYnll 1-8p(n) - · 

Now let S E 2:;2 and let U E U2 be arbitrary but fixed. If { tn : n E N} is 

any countable dense subset of [-1, 1] and Tis the unique operator in S1(H) 

defined by the relations Ten = tnen (n E N), then given N E N, we need 

only prove that there exist V, WE U(H) such that vsv-1 E {S' E S1(H): 

(Vn :S N)(ll(S' - T)enll < 2-N)} and WUW-1 E {U' E U(H) : (Vn :S 

N)(ll(U' - exp(inT))enll < 2-N)}. Since a(S) = [-1, 1] and a(U) = T, the 

fact that the spectrum of a normal bounded linear operator on H coincides 

with its approximate point spectrum implies that there exist unit vectors 

Xo , ... , XN and Yo, ... , YN in H such that for any 0 :Sn :SN, both llSxn-tnXnll 

and llUYn - ei7rtn Ynll are less than 

Hence, given 0 :Si < j :S N, 

so 

while 
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and 

which implies that 

and consequently 

. . < ll ei11"ti Yi - Uyill + llei11"tjY1 - Uy1ll 
l(Yi,Y1) I _ lei?rti - ei?rtj l < 2-(N+2) . 7-(N+1). 

Thus, an application of the claim proved above shows that the unit vec­

tors u 0 , . .. , u N, obtained from x 0 , . . . , XN by the standard orthogonalization 

process, and the unit vectors v0 , ... , v N, obtained from y 0 , ... , YN by the stan­

dard orthogonalization process, satisfy the conditions llxi - ui II < 2-(N+2), 

0 :::::; i :::::; N and llYi - viii < 2-(N+2l, 0 :::::; i :::::; N. Therefore, by ex­

tending {u0 , ... ,uN} and {v0 , .. . ,vN} to two complete orthonormal systems 

{un : n E N} and {vn : n E N} in H and setting V and W to be the 

unique elements of U (H ) defined by the relations V Un = en ( n E N) and 

Wvn =en (n E N ), it follows that for any 0:::::; n:::::; N, 

= llSun - tnun ll = llS(un - Xn) + (Sxn - inXn) + tn(Xn - Un) ll 

:S 2llun - Xnll + ll Sxn - tnxnll < 2 · 2-(N+2) + 2 · 2-(N+3) · 7-(N+l) < 2-N 

and 
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= llUvn - eintnvnll = llU(vn - Yn) + (Uyn - eintnYn) + eintn(Yn - vn) ll 

~ 2llvn -Ynll + llUYn - eintnYnll < 2 · 2-(N+2) + 2 · 2-(N+3) · 7-(N+l) < 2-N . 

Proposition 5.8: (i) For any K, E P([-1, 1]) , {S E S1(H) : µ 8 l_ K,} 

constitutes a conjugacy invariant dense G 0 in S1 (H), which implies that for 

any SE S1 (H), U(H) · S is meager in S1 (H). 

(ii) For any A E P(T), {U E U(H) : µ u l_ ,\} constitutes a conjugacy in­

variant dense G 0 in U (H), which implies that for any U E U (H), U (H) · U 

is meager in U (H). 

Proof: (i) As there exists a countable dense subset {tn: n EN} of [-1, 1] 

such that K,( { tn : n E N}) = 0, setting Ten = tnen ( n E N) we obtain a 
00 

unique operator in S1 (H) for which µy = I: 2-(n+l\)tn l_ K, and since unitar-
n=O 

ily equivalent normal bounded linear operators on H have unitarily equivalent 

spectral measures , it follows that for any R, S E S1 (H), REi(~) S ::::} µR ,...., 

µs, hence U (H) · T ~ { S E S1 (H) : µs l_ K,} and we need only appeal to 

the facts that U(H) ·Tis dense in S1(H), S1(H) 3 Sc---+ µ 8 EP([-1 , 1]) is 

continuous and{µ E P([-1, 1]): µ l_ K,} constitutes a G0 in P([-1, 1]). 

(ii) As before, there exists a countable dense subset { tn : n E N} of [-1, 1] 

such that ,\( { eintn : n E N}) = 0. Hence, setting Ten = tnen (n E N) and 

W = exp(iKT), the fact that for any BE B(T) , Ew(B) = Er({t E [-1, 1]: 
00 

eint E B}) implies that µw = I: 2-(n+l)5ei"tn l_ A and since unitarily equiva-
n=O 

lent normal bounded linear operators on H have unitarily equivalent spectral 

measures, it follows that for any U, VE U(H), U E~~~jv::::} µ u ,._.., µv, hence 

U (H) · W ~ { U E U (H) : µu l_ A} and we need only appeal to the facts 

that U(H) ·Wis dense in U(H), U(H) 3 Uc---+ µ u E P(T) is continuous and 



{µ E P(T) : µ J_ A} constitutes a G;s in P(T). 

OrrEp EOEl oa~m 

We are finally in position to prove Theorem 5.1. 
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Since U2 nU3 constitutes a conjugacy invariant dense G ;s in U (H) and :B2 n 

:B3 constitutes a conjugacy invariant dense G;s in S1 (H), while the mappings 

and 

are continuous and the mappings 

and 

are Borel, Lemma 5.4 and the proof of Theorem 4.1 show that if Y is any 

Polish space and f: U(H)--+ YN, g: S1(H)--+ yN are any C-measurable 

functions with the property that 

UE~fi:jV ~ {f(U)(n): n EN}= {f(V)(n): n EN} , 

whenever U, V are in U (H) , and 

SEi(iZ)T ~ {g(S)(n): n EN}= {g(T)(n): n EN}, 

whenever S, T are in S1 (H), there exist rv-invariant dense G;s subsets B of 

P*(T) n Pc(T) and B 1 of P*([-1 , 1]) n Pc([-1, 1]) and countable subsets C 

and C1 of Y such that 

"'EB~ {f(<I>("'))(n) : n EN}= C , 



49 

whenever K E P* (T) n Pc(T), and 

whenever,\ E P*([-1 , 1]) n Pc([-1 , 1]). Thus, setting A= <P-i[B] and Ai= 

<P1i [Bi], we obtain unitary conjugacy invariant G8 subsets of U2 n U3 and 

E2 n E3 respectively such that w[B] ~ A and wi[Bi] ~ Ai, while the facts 

that U2 ~ Ui and E2 ~ Ei show that A and Ai are also dense in U(H) and 

Si (H) respectively. Indeed, the implications 

and 

show that A and Ai are unitary conjugacy invariant, while the facts that 

<Pow = id and <Pio Wi = id show that w[B] ~ A and wi[Bi] ~ Ai. 

Therefore, by virtue of part (iv) of the theorem of G. Hjorth mentioned in 

the introduction, we need only prove that A and Ai are contained in the 

saturation of w[B] and wi[Bi] respectively according to unitary conjugacy: 

Indeed, if U E A ~ U2 n U3 and S E Ai ~ E2 n E3, then µu = <P(U) E 

B ~ P*(T) n Pc(T) and µ5 = <Pi(S) E Bi ~ P*([-1, 1]) n Pc([-1, 1]) , 

hence µ..Y(µu) = µu and µw 1 (µs) = µ5 and the Spectral Theorem implies that 

UE~(~3 W(µu) E w[B] and SEB(~f3 Wi(µs) E wi[Bi] . 

OnEp EOEl Oa~al 

Finally, we should mention that a new proof of Theorem 1 was given 

by S. Solecki [15] and a new proof of the part of Theorem 2 concerning the 

equivalence relation induced by the action of the group of unitary operators 

on itself by conjugation was given by G. Hjorth [8]. 
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Chapter II 

New natural examples of complex Borel and 
analytic sets 
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Introduction 

Descriptive Set Theory is the study of definable sets in Polish (i.e., sepa­

rable completely metrizable) spaces and one of the main trends of current re­

search in the field is the classification of natural sets arising in other branches 

of mathematics, in the sense of computing their exact complexity (see, for 

example, the Introduction and Sections 23, 27, 33 and 37 of [5]) . 

Our main purpose in this chapter is to give new natural examples of com­

plex Borel and analytic sets originating from Analysis and Geometry. In fact, 

we obtain the following results: 

Theorem 1: The set of Dirichlet series whose abscissa of absolute con­

vergence is equal to -()() is rrg-complete. 

Theorem 2: Given any non-negative real number a 1 the set of entire func­

tions whose order is equal to a is rrg- complete and the set of all sequences 

of entire functions whose orders converge to a is rrg-complete. 

Theorem 3: Given any line in the plane and any cardinal number 1 ~ 

n ~ ~01 the set of continuous paths in the plane tracing curves which admit 

at least n tangents parallel to the given line is :Ei-complete. 

Theorem 4: Given any positive integer N and any cardinal number 1 ~ 

n ~ ~0 1 if -oo < a < (3 < +00 1 then the set of all functions in C([a, (J]N, R) 

whose graph in RN+l admits at least n tangent N-dimensional hyperplanes 

parallel to R N is :Ei-complete. 

Theorem 5: For any cardinal number 1 < n < ~01 the set of differen-
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tiable paths of class C2 in the plane admitting a canonical parameter in [O , 1] 
and tracing curves which have at least n vertices is :Ei-complete, while the 

set of differentiable paths of class C 3 in the plane admitting a canonical pa­

rameter in [O, 1] and tracing curves which have at least n vertices is :Eg if 

n < ~O and ITg if n = ~O · 

At the end of section 23 of [5], A.S . Kechris states: In conclusion, we 

would like to m ention that we do not know of any interesting "natural" ex­

amples of Borel sets in analysis or topology which are in one of the classes 

:E~ or II~ for~ ~ 5, but not in a class with lower index. Thus, Theorem 2 

provides for the first time natural examples of complex Borel sets in Analysis 

or Topology that live in the fifth level of the Borel hierarchy. In addition, 

Theorem 5 was motivated by and should be contrasted with a generaliza­

tion of the Four Vertex Theorem (see, for example, [11] on page 48 or [7] on 

pages 28-30) proved in [2]: Every simple closed differentiable curve of class 

C 3 has at least four vertices. Geometric properties that give rise to analytic 

sets which are not Borel were also given by 0. Nikodym and W. Sierpinski 

(see, for example, [8], [9] and page 216 of [5]). Finally, to the best of our 

knowledge natural examples of complex Borel sets originating from Number 

Theory were given for the first time by H. Ki in his thesis [6]. As ill-founded 

trees on N form perhaps the archetypical :Ei-complete set (see, for example, 

[5] on page 209), the main tool for the proof of Theorems 3, 4 and 5 is the 

result proved in section 3, while on that what concerns the proof of Theorems 

1 and 2 we should mention that [., .] stands for any standard coding of pairs 

of natural numbers by natural numbers and (.) 0 , (.)i stand for the associated 

decoding functions, in the sense that [(n)0 , (n)i] = n for every n E N. 



1. Complex Borel sets associated with 
Dirichlet series 

00 
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By a Dirichlet series we mean a series of the form I: a~, wheres is a real 
n = l n 

number and (an)nEN\{O} a sequence of complex numbers, and, by identifying 
00 

I: ';':; with ( an)nEN\ {O}, we may view CN\ {O} as the family of all Dirichlet se-
n=l 

ries, while for any a= (an)nEN\{O} E cN\{O}' (]'a =inf { s E R: n~l l~~I < +oo} 
00 

is called the abscissa of absolute convergence of I: ';':; (see, for example, [1] 
n = l 

on page 225). It is not difficult to prove that the set of Dirichlet series whose 

abscissa of absolute convergence is less than +oo is :Eg-complete and we con­

fine ourselves in proving the following result: 

Theorem 1.1: The set of Dirichlet series whose abscissa of absolute con­

vergence is equal to -oo is II~-complete. 

Proof: If a E cN\{O} then 
' 

n 

(]'a= -oo {=} \:/v 2 ElN 2 1\:/n 2 l(L laklk'/ ::::; N) , 
k= l 

which implies that the set {a E cN\{O} : (]'a = -oo} is II~, since the mapping 

CN\{O} 3 a i--7 an E C is obviously continuous, whenever n E N \ {0}. 

To prove that {a E cN\{O} : (]'a = -oo} is II~-hard, it is enough to show 

that a set which is known to be II~-hard is Wadge reducible to {a E cN\{O} : 

(]'a = -oo} (see, for example, [5] on pages 156 and 169). Since P3 = { x E 

2(N\{O})x(N\{o}) : \:/m\:/00n(x(m, n) = O)} is II~-complete (see, for example, [5] 

on page 179), what we have to show is that {a E CN\{O}: (]'a= -oo}::::;wP3. 

So let 
, if x((n)o, (n)1) = 0 

, if x ( ( n) 0 , ( n )i ) = 1 
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whenever x E 2(N\{O})x(N\{O}) and n EN\ {O}. Given x, y E 2(N\{O})x(N\{O}) 

and n EN\ {O}, if x(i,j) = y(i,j) for 1:::; i,j:::; n, then for any 1:::; k:::; n, 

a% = a~ and consequently 2(N\{o})x(N\{O}) 3 x r--t (a~)nEN\{O} E cN\{o} is 

continuous. What is left to show is that for any x E 2(N\{O})x(N\{O}), x E 

P3 {::::===> (a~)nEN\{O} E {a E cN\{O}: O'a = -oo}. 

If x ~ P3 and m EN\ {O} is such that {n EN\ {O} : x(m, n) = 1} is 

infinite, then 

f la%1km = L (k)2 ~ k(k)o . km ~ L m2. [~ n]m . [m, n]m 
k=l x((k)o,(k)i)=l 0 x(m,n)=l ' 

1 
~ -=+oo 
L m2 

x(m,n)=l 

and hence (a~)nEN\{O} ~ {a E cN\{O} : O'a = -()() }. 

If x E P3 and v E N \ { 0}, then 

00 1 00 1 
~ laxlkv - ~ · kv - ~ ~ · [m n]v 
L k - L (k)2 . k(k)o - L L m2 . [m n]m ' 
k=l x((k)o,(k)i)=l 0 m=l x(m,n)=l ' 

v+l 1 
= L L . [m nt + L L 

m=l x(m,n)=l m2 . [m, n]m ' m=v+2 x(m,n)=l m
2 

00 1 1 
[m,n]m-v 

v+l 1 oo 1 1 
< ~ ~ · [m nt + ~ ~ 
- L L m2 . [m n]m ' L L m2 [m n]2 m=l x(m,n)=l ' m=v+2 x(m,n)=l ' 

v+l 1 oo 1 oo 1 
:::; L L m2 . . [m n]m · [m, nt + L m2 L k2 < +oo 

m=l x(m,n)=l ' m=v+2 k=l 

and hence (a~)nEN\{O} E {a E cN\{O}: O'a = -oo}. 

07rEp EbEl bEl~O'.l 
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2. Complex Borel sets associated with entire 
functions 

Let H(C) stand, as usual, for the Polish space of entire functions, equipped 

with the topology of "almost uniform convergence," namely the topology of 

uniform convergence on compacts, and for any f E H(C), let M(r; J) = 
max IJ(rei8)1, whenever r > O; then p(J) = limsup loglo,!~(r;J) is called 

O:S0<27f r--++oo g 

the order of the entire function f (see, for example, [4] on page 182) and 

if Cn = f(nl,(o), whenever n E N , and hence f( z ) = E CnZn (z E C), then 
n. n=O 

p(J) = limsup ,:·logt (see, for example, [4] on page 186). 
n--+oo g lcn l 

Theorem 2.1: For any 0 :S a < oo, {f E H(C) : p(J) = a} is rrg­
complete and {(Jk)kEN E H(C)N: lim p(Jk) =a} is rrg-complete. 

k--+oo 

Proof: If J E H(C) and (Jk)kEN E H(C)N , while Cn = J<n\(O) and Ck n = n. , 
/nl(o) 
~ whenever k n E N then 

n! ' ' ' 

and 

lim p(Jk) = a ~ VdjVk 2: jVl3m 2: Nn 2: m 
k--+oo 

(
m · log m . n · log n . 1) --=-

1 
- 2: a - 2-i /\ 

1 
:S a + 2-i + 2- , 

log -I -I log -I -I 
Ck,m Ck ,n 

which implies that the sets A°' = {f E H(C) : p(J) =a}, Ba = { (Jk)kEN E 

H(C)N : lim p(Jk) = a} are rrg and rrg respectively, since the mapping 
k--+oo 

H(C)N 3 (Jk)kEN 1---+ fk E H(C) is obviously continuous, whenever k E N , 

and so is the mapping H(C) 3 f 1---+ J(v)(O) E C (see, for example, [3] on 

page 192) , whenever v EN. 
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To prove that Al'. is II~-hard , it is enough to show that a set which is 

known to be II~-hard is Wadge reducible to Aa (see, for example, [5] on 

pages 156 and 169), and as P3 = {x E 2NxN : YmY00n(x(m, n) = O)} is 

II~-complete (see, for example, [5] on page 179) , we will show that Aa:s;wP3 . 

So let 
, if n EN\ {O} 

, if n = 0 

where 

¢x([m, n]) ~ { 
, if x(m, n) = 1 

a+ 3- [m,n] , if x(m, n) = 0 

whenever x E 2NxN and m, n E N. Given any x E N , it is not difficult to 
1 00 

prove that lc~ I Ti' _____, 0 as n _____, oo; therefore, by setting fx(z) = L c~zn (z E 
n=O 

C) we obtain an entire function (see, for example, [3] on page 118) and what 

we want to show is that the mapping 2N xN 3 x t-? fx E H(C) is continuous. 

Indeed, we need only remark that for any integer N, if x, y E 2NxN and 

x((n) 0 , (n) 1) = y((n) 0 , (n)i) , whenever 0 ::=:; n < N , then c~ = ci;,, whenever 

0 ::=:; n < N, and since for any u E 2N xN and for any integer n ~ N, 

lc~I ::=:; --1rr-- , it follows that 
no+T 

where L ~ _____, 0 as n _____, oo, whenever R > 0. What is left to show is 
n?_N no+T 

that for any x E 2N xN, x E ?3 -<====? p(Jx) =a. 

If x ~ P3 , then there exists m E N such that 300n(x(m, n) = 0), which 

implies that 

:::ioo (n · log n -m) :::in 
1 1 =a+2 
og l c~ I 

and consequently p(Jx) = a + 2-m. 
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If x E ?3, then for any m E N, there exists nm E N such that for any 

integer n 2 nm, x(m, n) = 0 and hence 

[m, n] · log[m, n] 
3

-[m n] 
2

_m 
1 =a+ ' <a+ ; 

log Tl 
[m,n] 

therefore, given M E N, 

[m, n] · log[m, n] -M 
a< 1 :::;a+2 

log Tl 
[m,n] 

for every natural numbers m, n apart from the values 0 :::; n < nm, which 

proves that p(Jx) = a. 

To prove that Ba is rrg-hard, as before, it is enough to show that a 

set which is known to be rrg-hard is Wadge reducible to Ba. Since 54 = 

{ x E 2NxN : 't/00m't/00n(x(m, n) = O)} is ~~-complete (see, for example, 

[5] on page 181), it is not difficult to prove that so is S,i = { X E 2N : 

't/00m't/00n(x([m, n]) = 0) }. Indeed, we need only remark that the mapping 

2N 3 x 1---+ (x([m, n]))(m,n)ENxN E 2NxN constitutes a homeomorphism whose 

inverse is 2NxN 3 x 1---+ (x((n)o, (n)i))nEN E 2N . Therefore, P5 = {x E 

2NxN : Vl(x1 E 54)} is rrg-complete (see, for example, [5] on page 180), and 

what we have to show is that P5 = { x E 2NxN : 't/N00m't/00n(x(l, [m, n]) = 

0)} is Wadge reducible to Ba. So let 

, if n EN\ {O} 

, if n = 0 

where 

.Px(l, [m, n]) = { 
, if x(l, [m, n]) = 1 and n E N \ {O} 

, if x(l, [m, n]) = 0 and n E N \ {O} 

whenever x E 2NxN and l, m EN. Given any natural numbers l, m, it is not 

difficult to prove that for any x E 2NxN, lc[z,mJ,nl~ ----+ 0 as n----+ oo; therefore, 
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00 

by setting f[t,m] ( z) = n~O c[i,mJ,n zn ( z E C) , we obtain an entire function (see, 

for example, [3] on page 118) and what we want to show is that the mapping 

2NxN 3 x 1---+ f[t,m] E H(C) is continuous. 

Indeed, we need only remark that for any integer N 2: 21, if x, y E 2NxN 

and x(l, [m, n]) = y(l, [m, n]) , whenever 0 :S n < N, then since for any 

u E 2NxN and for any integer n > N, lcu[I m] nl :S 1 
, it follows that 

' ' na+2-l+1 

where I: Rn ---+ 0 as N ---+ oo, whenever R > 0. Therefore, the 
n>N na+2- 1+1 

definition of the product topology is easily seen to imply that the mapping 

2NxN 3 x 1---+ (ff)kEN E H(C)N is continuous and what is left to show is 

that for any x E 2NxN , x E P5 {:::==:> (fk)kEN E Ba, i.e., x E P5 {:::==:> 

lim p(ff) = a. 
k-->oo 

If x tj_ P5, then there exists l E N and natural numbers m 0 < m 1 < ... 

such that for any index i, 300n(x(l, [m, n]) = 1) , which implies that 

and consequently 

x . n · logn 
p(f[l,mi]) = hmsup l 1 2: a+ 2-1 

, 
n-->oo og lex I 

[l,m;[,n 

whenever i E N, which implies in its turn that the sequence (p(fk) )kEN does 

not converge to a. 

So let x E P5 and let l E N. Then there exists m 1 E N such that for any 

integer m;::: m1 , 'v'00n(x(l, [m, n]) = 0), which implies that 

00 ( n · log n -l) 'v' n 1 =a+n 
log Ix I 

c[l,m],n 



and consequently 

x . n · log n . _ 1 
p(f[l mJ) = hmsup 1 1 = hm (a+ n ) =a ' 

) n--too og n--too 
lcft,mJ) 

while if 0:::; m < m 1 and n EN\ {O}, then 

{ 

a+2-1 +n-1 

n · logn 
1 -

log x -l lc[!,mJ) a + n 

which is easily seen to imply that 

, if x(l, [m, n]) = 1 

, if x(l, [m, n]) = 0 

x . n · logn 1 a:::; p(f[l,m]) = hmsup l 1 :::; a+ 2- . 
n--too og 1cx I 

[l,m],n 
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Therefore, given N E N, a :::; p(f(f,mJ) :::; a+ 2-N, for any natural numbers 

l, m , apart from the values 0 :::; m < m 1, 0 :::; l < N, which proves that 

lim p(fk,) = a. 
k--too 

OrrEp EOEl OEl~al 

Corollary 2.2: The order of an entire function is a Baire class two function 

which is not Baire class one. 

Proof: Since for any particular 0 :::; a < oo, p-1 [{a}] = {f E H(C) : 

p(f) = a} is II~-complete and therefore not rrg, p is not Baire class one, 

while since if f E H(C) and Cn = J(~!(O) for every n E N, then 

m · logm 
p(f) = lim sup 1 , 

n--too m?.n log lcm I 

in order to prove that p is Baire class two, it is enough to prove that for any 

nEN, 
m · logm 

Sn : H(C) 3 f c---+ sup 1 E [O, oo] 
m?.n log IJ(:\O)I 
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is Baire class one. 

But if UC [O, oo] is non-empty open and oo t/:. U, then given f E H(C), 

sn(f) E U if and only if 

( 
w ( m · logm ) 3r,sEQ (r-s,r+s)~U /\ vm?:_n m' <r+s 

log IJCmi°(O)I -

/\ 3m ?:_ n ( m · 
10

!,m ?:_ r - s) ) 
log lf(m).(O)I 

and consequently {f E H(C) : sn(f) E U} is bg. If oo E U, then U = 

VU (a, oo], where V C [O, a) is non-empty open and 0 <a< oo, hence 

Sn(!) E U ~ (sn (!) E V V 3m ?:_ n ( m . 
10

!,m > a) ) , 
log lf(m)(O)I 

which implies that {f E H(C) : sn(f) E U} is bg and consequently Sn is 

Baire class one. 

It is not difficult to prove that A= = {f E H(C) : p(f) = oo} is rrg­
complete and a straightforward computation shows that B= = { (f khEN E 

H(C)N : lim p(fk) = oo} is II~. 
k-->CXl 

Open Problem: Is B= II~-complete? 
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3. Trees and functions in L1 

Let 1 ~ n ~ N0 and let -oo < ex < j3 < oo. For any i < n we set I~~~ = 

[ ] 
( ') [ i i+ 1 l . (3-o: . (3-o: . i - (3-o: (3-o: ex + i , ex + ( i + 1) , if n < No, and IN .0 - ex + I: 21 , ex + I: 21 , 

n n o, j = l j = l 

and if s E N<N is such that the 1~~1 's are already defined, then for any 

i < n , we define the !~~~~k's, as follows: If 1~~1 = [a, b], then for any k E N, 

(i) [ 2k+l b-a 2k+ 2 b-a] 
In;s~k = a+ L V' a+ L v . So let T be any tree on N and let </>n;T = 

J= l J= l 

TI (i - L 2-length(s)X
1
ciJ) and K,n;T(x) = J~ </>n;r(t)dt (x E [ex ,/]]). 

i<n sET\ {0} n;s 

Theorem 3.1: Given 1 ~ n ~ N0 and given any tree T on N, 

I I 1 
if ( K,n;T) _ (/3) exists, then ( K,n;T) _ (/3) 2 6 , 

TE IF=} (Vi< n)(3exi E lnt(J~~~))(K,~;r(exi) = 0) 

and 

TE WF =} (\:/x E [ex,/3))((K,n;T ) ~ (x) > 0), 

while both mappings 

Tr 3 T r-t </>n;T E L 1([ex ,j3]) 

and 

Tr 3 T r-t K,n;T E C([ex, /3], R) 

are well-defined and continuous. 

( i) Proof: We fix a tree T on N and for convemence we set <Pn;T = 1 -

" 2-length(s)X · whenever i < n. We remark that if i < n, J. < n L., I(i) ' 
sET\{0} n;s 



64 

d . _j_ . th ,.1,(i) 1 I(j) h' h . l' th ,./, ,.1,(i) I(i) an 'l I J, en '+'n;T = on n;©' W lC lmp ies at 'f'n;T = '+'n;T on n;©' 

while our construction implies that for any x E I~~& and for any s E N<N, 

there exists at most one k E N for which x E I~~~~k' which implies that 

¢~!r(x) ~ 1 - f 2-k = 0 and ¢~.~(x) = 0 iff there exists a E [T] such that 
I k=l I 

(') x E nkENin~alk' In addition, for any positive integer i, 

> 

f3 

( 
2i ~) K,n;T (f3) - K,n;T a + L -:;t 

J=l 

f3 - (a+ ~ 9) . 1 2 J= 
1 (3 

. ) J </>n;r(t)dt 
2i ~ 2i 

~ ;°' °'+I: 13;" 
J-1 j=l 

1 00 {3-a 1 
2i ) 2= 22i+2k+l = 6 , 

+ I: f3-a k=1 
. 1 2J J= 

f3 - (a 
which implies that if ( "'n;T) ~ ((3) exists, then ( "'n;T) ~ ((3) ~ i. 

So let T E W F and let i < n, while x E I~~& . Then there exists s E T of 

maximum length such that x E IA~~ and maximality implies that x E IAi~ \ 
I I 

UvEN;s~vETIA~~~v· If xis either the left endpoint or lies in the interior of IA~~' 
. length(s) 

then there exists E > 0 such that for x < y < x+E, </>~)r(Y) = 1- I: 2-k, 
I k=l 

length(s) 
which implies that (11,n;T)~(x) = 1- I: 2-k. So let x be the right endpoint 

k=l 
of IAi~. If s # 0, then there exists E > 0 such that for x < y < x + E, 

I 

. length(s)-1 length(s)-1 

<P~(r(Y) = 1- I: 2-k, which implies that (11,n;T )~(x) = 1- I: 2-k, 
k=l k=l 

while ifs = 0 and i+ 1 < n, then there exists E > 0 such that for x < y < x+E, 

¢~;tl) (y) = 1, which implies that (11,n;T )~(x) = 1. We have thus proved that 

TE WF =} (\:/x E [a,(3))((11,n;T)~(x) > 0). 

So let T E IF and let a E [T]. If i < n, and ai is the unique point 

contained in nkENI~~~lk' then we claim that K,~;T(ai) = 0. Indeed, if k E 
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N d . I(i) (i) (i) 
an x, Y are m n;alk' then l</>n;r(x) - </>n;T(Y)I l<f>n;T(x) - <f>n;T(Y)I ~ 

L 2-Jength(s)lx
1

c;> (x) - x
1

c;> (y)I :=:; 2 L 2-j = 2-k+l and hence if x ¥- ai 
sET\{0} n;s n;s j>k 

lies in the interior of I~~~lk' while I stands for the interval defined by x and ai, 

then, as </>~(r(ai) = 0 =? </>n;r(ai) = 0, we obtain that IK:n;r(x) - K:n;r(ai)I = 

J A-. . (t)dt = J (A-- . (t) - A-. . (a·))dt < 2-k+l ·Ix - a·I =? I Kn;r(x)-Kn;T(a;) I < I 'f'n,T I 'f'n,T 'f'n,T i - i x-a; -
2-k+l, and the claim follows. We have thus proved that T E IF =? (Vi < 

n)(3ai E Int(I~~~))(;;;~;r(ai) = 0). 

What is left to show is that the mapping Tr 3 Ti---+ </>n;T E L1 ([a, ,BJ) is 

continuous, as the continuity of the mapping Tr 3 Ti---+ K:n;T E C([a, ,B], R) 

will then follow. (Indeed, it is enough to notice that for any f, gin L 1 ([a, ,BJ) 

and for any x E [a, ,B], I J~ f(t)dt - J~ g(t)dtl :::; J~ lf(t) - g(t)ldt.) Given 

i < n, s E N<N and k E N, it is not difficult to see that m(I~?;0 ) = ~~~ 

d (!Ci) ) - m(I~i~) h"l · T T'. T rf3 IA-- ( ) A-- ( )Id -an m n;s~k - 4k+ 1 , W 1 e given , In r, Ja 'f'n;T' X - 'f'n;T X X -

- (i) (i) _L f1c;> l</>n;T1 (x) -</>n;r(x)ldx - _L f1 c;> l<f>n;T'(x) - <f>n;T(x)ldx, where for any 
i<n n;0 i<n n;0 

i < n and for any x E I~i~' </>~)T' (x) - </>~-~(x) = L 2-Jength(s)x
1

c;> (x) -
' ' ' sET\{0} n;s 

L 2-Jength(s)x1c;l (x), which implies that I</>~-~, -</>~-~I ~ 1 and </>~!T' -</>~-~ 
sET'\{0} n;s ' ' ' ' 

vanishes on I~~~ \ U kEN I~~~~k for every s E N<N; therefore, for any i < n 

and for any s E N<N, f1c;l l</>~)r,(x) - </>~-~(x)ldx = f f/il l</>~-~,(x) -
n;s ' ' k==-0 n;s ,.......... k ' 

0) 0) 0) 0) <f>n;T(x)ldx, where for any k EN, f1~~~d l<f>n;T'(x)-</>n;T(x)ldx ~ m(In;s~k) = 
() 

m(In';s) 
4i'+!· 

So let TE Tr be arbitrary but fixed and given N EN\ {O}, let Vr;N = 

{T' E Tr: (Vs E {O, 1, ... , N - l} <N+l)(s ET' ¢::::::? s ET)}. It is not diffi­

cult to see that the Vr;N's form a fundamental system of open neighborhoods 

of Tin Tr. So let N E N \ {O} be arbitrary but fixed and let T' E Vr;N· 

Then, for any i < n and for any s E N<N, f1~~~ l</>~(r,(x) - </>~(r(x)ldx :::; 
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N-1 (i) (i) oo m(I~~~) - N-1 (i) (i) 
k~O f1~~~ l<Pn;T'(x) -¢n;T(x)ldx+ k'fN 4k+1 - k~O f1~;;~ l<Pn;T'(x) - ¢n;T(x) ldx+ 

m(J~~1) 3.!N and hence we obtain that 

(i) 1 1 1 ) ) (i) 1 1 ) (i) 1 
m(In;0) 4ko+ l ... 4kN-2 + l 3. 4N ... + m(In;0) 4ko+l 3 . 4N + m(In;0) 3. 4N . 

So let (k0, k1, ... , kN-i) E {O, 1, .. . , N - l}N be arbitrary but fixed. Then, 

given s E N<N , sl_(ko, k1, ... , kN-1) ~ (Vx E I~~~ko,ki,. . .,kN-i))(X1~~~ (x) = 0) 

and s ~ (ko, k1, ... , kN-i) ~ (s E T {::::::::} s E T'). Therefore, for any x E 

I (i) 1 "'"" 2-k ,i...(i) ( ) ,i...(i) ( ) "'"" 2-k 1 h' h n;(ko,k1, .. .,kN-1)' - 2N = - ~ ::; 'f'n;T' X -'f'n;T X ::; ~ = 2N' W lC 
k>N k>N 

. i· h f 1,1...(i) () ,i...(i) ()Id i (I(i)) i i lillp leS t at l(i) 'f'n;T' X - 'f'n;T X X ::; 2 N m n;0 4k0 +1 ... 
4
kN-l +1 

n;(ko,k1,.-.,kN-i) 
N -l 1 1 ( 1 ) · and as L 4k+ 1 = 3 1 - 4N we obtam that 
k=O 

( i) ( i) f l<Pn-r'( x) - <Pn-r(x)ldx 
l(i) ) ) 

n;© 
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1 (i) ~ ( 1 ( 1 ) ) k < 3 (i) < 2N m(Jn;0) · t:o 3 1 - 4N - 2N-l m(Jn;0) 

for every i < n, which implies that J~ 1¢n;T'(x)-¢n;r(x) ldx::::; 3(,6-a)2-N+i 

for every T' E Vr;N. 

OrrEp E<5El ba~al 
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4. Analytic sets and tangents of continuous 
curves in the plane 

A continuous path in the plane is a continuous mapping sending the in­

terval [O, 1] into the Euclidean plane E 2. Therefore, we may view the Polish 

space C([O, 1], E 2) as the family of all continuous paths in the plane. 

Theorem 4.1: Given any line in the plane and any cardinal number 1 :::; 

n :::; ~0 , the set of continuous paths in the plane tracing curves which admit 

at least n tangents parallel to the given line is :Ei-complete. 

Proof: Once 1 :::; n :::; ~o is given, by choosing appropriately a coordi­

nate system in the plane, it is enough to prove that the set of continuous 

paths in R 2 tracing curves which admit at least n tangents parallel to the 

real line is :Ei-complete. 

The fact that the set in question is :Ei-hard follows immediately from 

Theorem 3.1. Indeed, we need only consider for a = 0 and (3 = 1 the mapping 

that assigns to every tree T on N the continuous path t f---7 ( t , ""n;T ( t)) ( t E 

[O, 1]) in R 2 . Thus, what is left to show is that the set in question is actually 

:Ei, in case n < ~0 . 

But this follows from the fact that given any (x , y) E C([O, 1], R 2
), (x , y) 

traces a curve which has at least n tangents parallel to the real line iff there 

exists (a1, ... ,an, b1, ... , bn) E [O, 1in X Rn with the properties 

(Vi E {1, ... ,n})(bi -j. 0) and 

(Vi E {1, ... ,n})(VE E Q~)(3c5 E Q~)(Vr E [O, 1] n Q) 
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Theorem 4.2: Given any positive integer N and any cardinal number 1 ::=:; 

n :S ~o, if -oo < a < (3 < oo, then the set of all functions in C([o:, (3]N, R) 

whose graph in RN+l admits at least n tangent N-dimensional hyperplanes 

parallel to RN is :Ei-complete. 

Proof: We will first prove that the set in question is :Ei-hard. To this 

end we consider the mapping that assigns to every tree T on N the continu­

ous function fr : [a, (3]N 3 (x1, ... , XN) t------t Kn;r(x1) + ... + Kn;r(xN) E R . We 

remark that given (a1, ... ,aN) E [o:,(3]N, the graph of fr in RN+l admits a 

tangent N-dimensional hyperplane at the point ( a1 , ... , aN, fr( a1 , ... , aN)) iff 

fr is differentiable at the point (a1, ... ,aN) or (equivalently) Kn;r is differen­

tiable at the points a1 , ... , aN, while the tangent N-dimensional hyperplane 

in question, if it exists, is perpendicular to the vector ( - \l fr( a1 , ... , aN), 1) = 

(-r;;~·r(a1 ) , .. . , -r;;~·r(aN ), 1) and consequently it is parallel to RN iff K~-r(ai) = , , , 

... = r;;~·r( aN) = 0. Therefore, an application of Theorem 3.1 shows that the , 

set in question is :Ei-hard and what is left to show is that it is actually :Ei, 

in case n < ~O· 
But again this follows from the fact that given f E C([o:, (3]N, R), the 

graph of f in RN+l admits at least n tangent N-dimensional hyperplanes 

parallel to RN iff there exists (a1, ... ,an) E ([a, (3JNr with the properties 

1 :S i < j :S n => ai =/= aj and 

(V(i, v) E {1, ... , n} x {1, ... , N} )(VEE Q~)(:3c5 E Q~)(Vr E [a, (3] n Q) 



(o <Ir - a~I d '* lf(ai + (r ~ ~~~") - f(ai) I :0 ') , 

where e 1, ... , eN denote the standard basis vectors in RN. 

OnEp E&l bEl~<Y.l 
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5. Analytic sets and vertices of differentiable 
curves in the plane 

By analogy to continuous paths in the plane we can define differentiable 

ones of any class. At this juncture we will restrict ourselves to the case 

when the differentiability class is C2 or C3 and identifying E 2 by R2 , say by 

choosing a coordinate system, we view the Polish space 

P
2 = { (x, y) E C2

([0, !], R
2

) • ( ~:) 
2 

+ ( ~~) 
2 

= 1} 
as the family of all differentiable paths of class C2 in the plane which admit 

a canonical parameter in [O, 1] and the Polish space 

3 3 2 dx dy 
{ ( )2 ( )2 } P = ( x, y) E C ( [O, 1], R ) : ds + ds = 1 

as the family of all differentiable paths of class C3 in the plane which admit 

a canonical parameter in [O, 1], since we are interested in the notion of cur­

vature of a curve. Thus, if ( x, y) is any path in P 2 or P 3 , then the curvature 

K, of the curve traced by (x, y) is given by the formula K, = ~~ · fs¥ - ¥s · ~:; 
and depends at least continuously on the canonical parameter s E [O, 1], 

while a point A on the curve traced by ( x, y) is called a vertex if (~;)A = 0, 

i.e., ( ~;) s=a = 0, where a is the value of the canonical parameter for which 

(x(a), y(a)) constitutes the pair of Cartesian coordinates of the point A in 

the Euclidean plane E 2 (see, for example, [11] on page 26). 

Theorem 5.1: For any cardinal number 1 ~ n ~ ~01 the set of differ­

entiable paths of class C2 in the plane admitting a canonical parameter in 

[O, 1] and tracing curves which have at least n vertices is I:~ -complete, while 

the set of differentiable paths of class C3 in the plane admitting a canonical 
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parameter in [O, 1] and tracing curves which have at least n vertices is I:g if 

n < ~o and IT~ if n = ~O· 

Proof: We will first prove that the set of differentiable paths of class C 2 

in the plane admitting a canonical parameter in [O, 1] and tracing curves 

which have at least n vertices is I:i-hard. To this end we consider for a= 0 

and {3 = 1 the mapping that assigns to every tree Ton N the path in P 2 de­

fined, as follows: Xn;r(s) =jg cos(1/Jn;r(0)d( and Yn;r(s) =Jg sin(1/Jn;r(())d( 

for every s E [O, 1], where 1/Jn;r(s) = jg K,n;r(()d( for every s E [O, 1]. It is 

not difficult to verify that the mapping Tr 3 T 1--7 (xn;T, Yn;T) E P 2 is well­

defined and given any T E Tr, T E IF iff (xn;T, Yn;T) traces a curve having 

at least n vertices; this follows from Theorem 3.1 and the fact that for any 

T E Tr, the curvature of the curve traced by (xn;T, Yn;T) is given by the 

function K,n;T, as it follows from the proof of the theorem on the existence 

of a plane curve with given curvature (see, for example, [11] on page 27). 

What we need to show is that the mapping Tr 3 T 1--7 (xn;T, Yn;T) E P 2 

is continuous. By virtue of Theorem 3.1, if </> is either the identity, the 

sine or the cosine function, it is enough to show that the mappings ~1 : 

C([O, 1], R) --t C 1 ([0, 1], R) and ~2 : C 1([0, 1], R) --t C 2 ([0, 1], R), defined 

by the relations ~1 (f)(x) = ft </>(f(t))dt (x E [O, 1]; f E C([O, 1], R)) and 

~2 (f)(x) = J; </>(f(t))dt (x E [O, 1]; f E C 1([0, 1], R)) , are continuous. 

The proof of the continuity of ~1 is left to the reader and since, for 

complete metric spaces, uniform convergence on compacts is equivalent to 

continuous convergence (see, for example, [10] on page 162), if fk --t f 

in C 1 ([O,1], R) and Xk --t x in [O, 1] as k --t oo, it is enough to show 

that ~2(fk)(xk) --t ~2(f)(x), ~2(fk)'(xk) --t ~2(f)'(x) and ~2(!k)"(xk) --t 

~2 (f)"(x) ask --too. Indeed, the continuity of both</> and</>', the Lebesgue 
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Dominated Convergence Theorem (see, for example, Part One of [10]) and the 

fact that both fk(xk) _, f(x) and f~(xk) _, f'(x) as k _, oo are easily seen 

to imply that <I!2(fk)(xk) = JJ <f>(fk(t))X[O,xk](t)dt _, JJ </>(f(t))X[O,xj(t)dt = 

<I!2(/)(x), <I!2(fk)'(xk) = <f>(fk(xk)) _, </>(f(x)) = <I!2(/)'(x) and <I!2(fk)"(xk) = 

</>'(fk(xk)) · f~(xk) _, </>'(f(x)) · f'(x) = <I!2(/)"(x) ask_, oo. 

Our next step is to show that the set of differentiable paths of class C2 in 

the plane admitting a canonical parameter in [O, 1] and tracing curves which 

have at least n vertices is hi, in case n < ~O· 

Indeed, we need only remark that given any (x, y) E P 2 , the curve traced 

by (x, y) has at least n vertices iff there exists (a1, .. . , an) E [O, l]n with the 

properties 

(Vi E {1, ... ,n})(VE E Q~)(:38 E Q~)(Vr E [0, 1] n Q) 

( 0 < Ir _ a.I < 0 * x'(r)y"(r) - y'(r )x"(r) r-_x~a;)y"(a,) + y'(a,)x"(a;) S ,) 

Finally, we will prove that the set of differentiable paths of class C3 in the 

plane admitting a canonical parameter in [O, 1] and tracing curves which 

have at least n vertices is hg if n < ~o and rrg if n = ~0 . To this end, 

given any positive integer N, it is enough to prove that the set CN 

{(x,y) E P3 : (:3(a1, ... ,an) E [O, l]n)(l :::; i < j :::; n =? lai - ail 2: 

N-1 /\ (Vi E {1, ... ,n})(x'(ai)y111 (ai) - y'(ai)x111 (ai) = O))} is closed, if 

n < ~o. So let (xk, Yk) _, (x, y) in P 3 as k _, oo and let (xk, Yk) E CN, 

whenever k EN. Then, for any k EN, there exists (a~, ... , a~) E [O, l]n such 

that 1 :::; i < j:::; n =? laf - aJI 2: N-1 and x'(af)y 111 (af) - y'(af)x 111 (af) = 0, 

whenever 1 :::; i :::; n. The compactness of [O, 1r implies that there exists 

a subsequence ((a~j, ... , a~))jEN of ((a~, ... , a~))kEN which converges to some 

point (a1 , ... , an) in [O, l]n, and it is not difficult to prove that 1 :::; i < j :::; 
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n =? lai - ail ;?: N-1, while, as, for complete metric spaces, uniform conver­

gence on compacts is equivalent to continuous convergence (see, for example, 

[10] on page 162) , we deduce that x'(ai)y111 (ai) - y'(ai)x"'(ai) = 0 for every 

1 :::; i :::; n and consequently (x, y) E CN. 

07rEp E8El 8a~CY.l 

Open Problem: Is the set of differentiable paths of class C3 in the plane, 

which admit a canonical parameter in [O, 1] and trace curves having infinitely 

many vertices, rrg-complete? 
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Summary 

Two of the main trends of current research in Descriptive Set Theory 

are the study of natural equivalence relations arising in other branches of 

mathematics, in the sense of determining their relative complexity under the 

notion of Borel reducibility, and the classification of natural sets arising in 

other branches of mathematics, in the sense of computing their exact com­

plexity. 

Definition: Let X, X' be any Polish spaces and let E 1 E' be any equivalence 

relations on X, X' respectively. Then E is said to be Borel reducible to 

E' when there exists a Borel function f : X ---+ X' with the property that 

xEy {::::=? f(x)E' f(y), whenever x, y are in X. 

An important notion in the study of equivalence relations is the notion 

of generic B00-ergodicity, where B00 stands for the group of permutations of N. 

Definition: Let X be any Polish space and let E be any equivalence re­

lation on X. Then E is said to be generically B00 -ergodic if every E­

equivalence class is meager and for any Polish space Y and for any Baire 
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measurable function f : X---+ yN with the property that xEy =? {f(x)(n) : 

n E N} = {f(y)(n) : n E N}, whenever x , y are in X, there exist an 

E-invariant co-meager subset A of X and a countable subset C of Y such 

that x E A =? {f(x)(n) : n E N} = C, whenever x E X. In particular, 

since by setting u~yv ¢=::? {u(n) : n E N} = {v(n) : n E N}, when­

ever u, v are in yN, we may canonically identify yN /,....,y with the set of all 

countable subsets of Y, generic B00 -ergodicity implies that any E-invariants 

of elements of X, which are computed in a Baire measurable way and can be 

represented as countable subsets of a Polish space, must generically trivialize. 

The notion of generic B00-ergodicity for equivalence relations is related 

to the concept of generic turbulence for Polish group actions. The following 

definition is due to G. Hjorth. 

Definition: Let G be any Polish group acting continuously on a Polish space 

X and let x E X. For any open neighborhood U of x in X and for any sym­

metric open neighborhood V of 1° in G, the (U, V)-local orbit O(x, U, V) 

of x in X is defined, as follows: y E O(x, U, V) if and only if there exist 

go, 91, ... , gk in V such that if xo = x and xi+ 1 = gi · xi for every index i :::; k, 

then all the xi's are in U and xk+l = y. The action of G on X is called tur­

bulent at the point x, symbolically x E TJ, if for any such U and V, there 

exists an open neighborhood U' of x in X such that U' ~ U and O(x, U, V) 

is dense in U'. 

The concept of turbulence is a property of the orbits of the action in the 

sense that if G is any Polish group acting continuously on a Polish space X 

and E§ stands for the corresponding orbit equivalence relation, then TJ is 
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E§-invariant, while the main result concerning the concept of turbulence is 

the following theorem of G. Hjorth. 

Theorem: Let G be any Polish group acting continuously on a Polish space 

X in such a way that the orbits of the action are meager and at least one 

orbit is dense. Then the fallowing are equivalent: 

(i) The action of G on X is generically turbulent 1 in the sense that TB 
is co-meager in X. 

(ii) (:3x E TJ)(G · x = X). 

(iii) E§ is generically B00 -ergodic1 in the sense that for any Polish space Y 

and for any Baire measurable function f : X ---+ yN with the property that 

xE§y::::} {f(x)(n) : n E N} = {f(y)(n) : n E N} 1 whenever x 1 y are in X 1 

there exist an E§-invariant co-meager subset A of X and a countable subset 

C of Y such that x EA::::} {f(x)(n): n EN}= C1 whenever x EX. 

(iv) The same as in (iii) but with 11Baire measurable 11 replaced by 

))C-measurable'1 and ))co-meager 11 replaced by 11 dense G0 . 
11 

(v) For any Polish space Y on which B00 acts in such a way that the action 

is Borel and for any Baire measurable function f : X---+ Y with the property 

that xE§ y ::::} f ( x) E.'LJ (y) 1 whenever x 1 y are in X 1 there exists an E§­

invariant co-meager subset A of X for which ![A] is contained in a single 

E"'f
00 

-equivalence class. 

(vi) The same as in (v) but with 11Baire measurable)) replaced by 

))C-measurable 11 and 11 co-meager)) replaced by '1dense G0 .)) 

(vii) For any relational language L 1 consisting of countably many symbols1 

and for any Baire measurable function f : X ---+ XL with the property that 

xE§ y ::::} f ( x) rv f (y) 1 whenever x 1 y are in X 1 there exists an E§ -invariant 

co-meager subset A of X for which all countable models in J[A] are equivalent 
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f[A] are equivalent up to ~, where XL is the Polish space of all countable 

models for L whose universe is N. 

(viii) The same as in (vii) but with "Baire measurable" replaced by 

"C-measurable" and "co-meager" replaced by "dense G0 ." 

Remark: Part (v) of the above mentioned theorem of G. Hjorth explains 

the terminology B00-ergodic. 

Our first purpose in this doctoral dissertation is to show that any invari­

ants for the measure equivalence relation and for certain of its most char­

acteristic subequivalence relations and any unitary conjugacy invariants of 

self-adjoint and unitary operators, as well, which are computed in a Baire 

measurable way and can be represented as countable subsets of a Polish space 

or more generally as orbits of an B00-action or equivalent countable models 

up to isomorphism, must generically trivialize. In fact, we obtain the follow­

ing results: 

Theorem 1: If X is any compact perfect Polish space and P(X) stands 

for the Polish space of probability Borel measures on X, equipped with the 

weak* -topology, whileµ rv v ¢::::::} (µ « v /\ v « µ), wheneverµ, v are 

in P(X), then rv is generically B00 -ergodic. (The same is true if X is any 

compact smooth manifold of arbitrary dimension and we replace rv by "'er, 

where µrv0 rv if!µ "' v and both Radon-Nikodym derivatives ¥v and ~~ are 

differentiable functions of class er, whenever r E N U { oo}.) 

Theorem 2: Let H be any infinite-dimensional separable complex Hilbert 

space and let U(H) stand for the Polish group of unitary operators on H and 
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S1 (H) stand for the Polish space of self-adjoint operators on H with norm 

at most one, both equipped with the strong topology. Then the conjugation 

action of U(H) on both U(H) and S1 (H) is generically turbulent. 

Our second purpose in this doctoral dissertation is to give new natural 

examples of complex Borel and analytic sets originating from Analysis and 

Geometry. In fact, we obtain the following results: 

Theorem 1: The set of Dirichlet series whose abscissa of absolute con­

vergence is equal to -oo is II~-complete. 

Theorem 2: Given any non-negative real number a, the set of entire func­

tions whose order is equal to a is II~-complete and the set of all sequences 

of entire functions whose orders converge to a is rrg- complete. 

Theorem 3: Given any line in the plane and any cardinal number 1 ::; 

n ::; f<0 , the set of continuous paths in the plane tracing curves which admit 

at least n tangents parallel to the given line is ~i -complete. 

Theorem 4: Given any positive integer N and any cardinal number 1 ::; 

n ::; f<o, if -oo < a < f3 < +oo, then the set of all functions in C([a, f3]N, R) 

whose graph in RN+l admits at least n tangent N-dimensional hyperplanes 

parallel to R N is ~i -complete. 

Theorem 5: For any cardinal number 1 ::; n ::; f<o , the set of differen­

tiable paths of class C2 in the plane admitting a canonical parameter in [O, 1] 
and tracing curves which have at least n vertices is ~i-complete, while the 
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set of differentiable paths of class C 3 in the plane admitting a canonical pa­

rameter in [O, 1] and tracing curves which have at least n vertices is ~g if 

n < N0 and IT~ if n = No. 


