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Abstract

The purpose of this doctoral dissertation is first to show that certain kinds
of invariants for measures, self-adjoint and unitary operators are as far from
complete as possible and second to give new natural examples of complex
Borel and analytic sets originating from Analysis and Geometry.

The dissertation is divided in two parts.

In the first part we prove that the measure equivalence relation and cer-
tain of its most characteristic subequivalence relations are generically Su.-
ergodic and unitary conjugacy of self-adjoint and unitary operators is gener-
ically turbulent.

In the second part we prove that for any 0 < a < oo, the set of entire
functions whose order is equal to « is Hg—complete and the set of all sequences
of entire functions whose orders converge to « is I12-complete. We also prove
that given any line in the plane and any cardinal number 1 < n < Ny, the
set of continuous paths in the plane tracing curves which admit at least n
tangents parallel to the given line is 31-complete and the set of differentiable
paths of class C? in the plane admitting a canonical parameter in [0, 1] and

tracing curves which have at least n vertices is also X{-complete.
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Chapter 1

A strong generic ergodicity property for
measures, self-adjoint and unitary operators



Introduction

The results in this chapter are joint work of the author and A.S.Kechris.
One of the main trends of current research in Descriptive Set Theory is
the study of natural equivalence relations arising in other branches of mathe-
matics, in the sense of determining their relative complexity under the notion

of Borel reducibility.

Definition: Let X, X' be any Polish spaces and let E, E' be any equivalence
relations on X, X' respectively. Then E is said to be Borel reducible to
E' when there exists a Borel function f : X — X with the property that
tBy < f(z)E f(y), whenever z, y are in X.

An important notion in the study of equivalence relations is the notion

of generic S,-ergodicity, where S, stands for the group of permutations of N.

Definition: Let X be any Polish space and let E be any equivalence re-
lation on X. Then I is said to be generically S..-ergodic if every F-
equivalence class is meager and for any Polish space Y and for any Baire
measurable function f: X — YN with the property that zEy = {f(z)(n) :
n € N} = {f(y)(n) : n € N}, whenever z, y are in X, there exist an
E-invariant co-meager subset A of X and a countable subset C of Y such
that x € A = {f(z)(n) : n € N} = C, whenever x € X. In particular,
since by setting u=yv <= {u(n) : n € N} = {v(n) : n € N}, when-
ever u, v are in YN, we may canonically identify YN /=y with the set of all
countable subsets of Y, generic Se-ergodicity implies that any E-invariants
of elements of X, which are computed in a Baire measurable way and can be

represented as countable subsets of a Polish space, must generically trivialize.



The notion of generic S.-ergodicity for equivalence relations is related
to the concept of generic turbulence for Polish group actions. The following

definition is due to G. Hjorth.

Definition: Let GG be any Polish group acting conlinuously on a Polish space
X and let x € X. For any open neighborhood U of x in X and for any sym-
metric open neighborhood V of 1¢ in G, the (U,V)-local orbit O(z,U,V)
of x in X is defined, as follows: y € O(z,U,V) if and only if there exist
90, g1, -+, gk 0V such that if zo = x and z;41 = g; - x; for every index i < k,
then all the z;’s are in U and xi+; =1y. The action of G on X is called tur-
bulent at the point x, symbolically x € TX, if for any such U and V, there
exists an open neighborhood U’ of x in X such that U' C U and O(z,U,V)

1s dense in U’.

The concept of turbulence is a property of the orbits of the action in the
sense that if (G is any Polish group acting continuously on a Polish space X
and EZ stands for the corresponding orbit equivalence relation, then T is
EZ-invariant, while the main result concerning the concept of turbulence is

the following theorem of G. Hjorth [7].

Theorem: Let G be any Polish group acling continuously on a Polish space
X in such a way that the orbits of the action are meager and at least one
orbit is dense. Then the following are equivalent:

(i) The action of G on X is generically turbulent, in the sense that T
18 co-meager in X.

(1) Az € TX)(G -z = X).
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(ii1) EX is generically Seo-ergodic, in the sense that for any Polish space Y
and for any Baire measurable function f : X — YN with the property that
zEZy = {f(z)(n) : n € N} = {f(y)(n) : n € N}, whenever x, y are in X,
there exist an EZ -invariant co-meager subset A of X and a countable subset
C of Y such that x € A= {f(z)(n):n € N} =C, whenever z € X.

(iv) The same as in (14i) but with ”Baire measurable” replaced by
*C-measurable” and ”co-meager” replaced by "dense Gs.”

(v) For any Polish space Y on which So acts in such a way that the action
1s Borel and for any Baire measurable function f : X — Y with the property
that E&y = f(z)EY_[f(y), whenever z, y are in X, there exists an EX-
invariant co-meager subset A of X for which f[A] is contained in a single
EY_-equivalence class.

(vi) The same as in (v) bul with ”Baire measurable” replaced by
"C'-measurable” and ”co-meager” replaced by "dense Gs.”

(vii) For any relational language L, consisting of countably many symbols,
and for any Baire measurable function f : X — X with the property that
zEXy = f(z) = f(y), whenever z, y are in X, there exists an EZ -invariant
co-meager subset A of X for which all countable models in f[A] are equivalent
up to =2, where Xy, is the Polish space of all countable models for L whose
universe 1is IN.

(viii) The same as in (vit) but with ”Baire measurable” replaced by

"C'-measurable” and ”co-meager” replaced by “dense Gs.”

Remark: Part (v) of the above mentioned theorem of G. Hjorth explains

the terminology S..-ergodic.

Our main purpose in this chapter is to show that any invariants for the



measure equivalence relation and for certain of its most characteristic sube-
quivalence relations and any unitary conjugacy invariants of self-adjoint and
unitary operators, as well, which are computed in a Baire measurable way and
can be represented as countable subsets of a Polish space or more generally
as orbits of an S-action or equivalent countable models up to isomorphism,

must generically trivialize. In fact, we obtain the following results:

Theorem 1: If X is any compact perfect Polish space and P(X) stands
for the Polish space of probability Borel measures on X, equipped with the
weak*-topology, while p ~ v < (p <K< v A v < u), whenever u, v are
in P(X), then ~ is generically So-ergodic. (The same is true if X is any
compact smooth manifold of arbitrary dimension and we replace ~ by ~cgr,
where p~crv iff i ~ v and both Radon-Nikodym derivatives %{f and Z—Z are
differentiable functions of class C", whenever r € N U {o0}.)

Theorem 2: Let H be any infinite-dimensional separable complex Hilbert
space and let U(H) stand for the Polish group of unitary operators on H and
S1(H) stand for the Polish space of self-adjoint operators on H with norm
at most one, both equipped with the strong topology. Then the conjugation
action of U(H) on both U(H) and S1(H) is generically turbulent.

Remark: The key tool for the proof of Theorems 1 and 2 is the above

mentioned theorem of G. Hjorth.



1. Preliminaries
1.1. Measure and integration

The purpose of the present section is to present certain facts from the
theory of measure and integration, which form part of the folklore of the
subject, in order to facilitate the reader with the proof of Theorem 3.1 be-
low. In fact, J.R. Choksi and M.G. Nadkarni proved the above mentioned
result in [1] for the case of the unit circle, but their proof relied on ideas and

results originating from Harmonic Analysis and the Theory of Martingales.

In what follows let X denote an arbitrary but fixed compact Polish space
and let C'(X, R) stand for the Banach space of all continuous real-valued func-
tions on X. Then, by virtue of the Riesz Representation Theorem and the
Banach-Alaoglou Theorem, {A € C(X,R)*: ||A|| <1 A (L,A)=1 A (Vf €
C(X,R))(f 2 0= (f,A) > 0)} equipped with the weak*-topology, can be
viewed as the Polish space of probability Borel measures on X, which is usu-
ally denoted by P(X), and the most central result concerning P(X) is the

so called Portmanteau Theorem:

The following are equivalent:
(¢) pn — pin P(X) as n — o0;
(1) for any f € C(X,R), [x fdu, — [x fdu as n — oo;
(13t) for any open O C X, lim inf pn(0) > p(0);
(tv) for any closed F' C X, limsup p,(F) < p(F);
(v) for any Borel B C X for T\?V_})ﬁoch n(0B) =0, Jim sl B) = u(B).

In addition, when a countable dense subset {c; : £ € N} is fixed, set-
ting B = {UicnB(ck,;;274) 1 (ko, .o, kne1), (lo, -y lne1) € N™ and n € N} and



[ = {i rixs; © (To, -y 7n) € (Q7)"™ and (B, ..., By) € B*™! while n € N},
i=0

where Q' stands for the positive rationals, the following are true:

(a) For any non-empty finite subset M of P(X), for any non-empty Borel
subset A of X and for any e > 0, there exists B € B such that y(AAB) < e
for every p € M.

(b) For any p,v € P(X), u L v < (V(m,n) € N?)(3B € B)(u(B) <
&8 p w{BF < Brimtay

(¢) For any p € P(X), C is dense in the closed convex cone Ll (X, u) =
{felY(X,u): f>0,u—ael}of L}(X,u).

(d) If K(X) stands for the Polish space of all compact subsets of X, equipped
with the Vietoris topology, then P(X) x K(X) 3 (u, K) — u(K) € [0,1] is
upper semi-continuous.

(e) If X is perfect, then there exists a continuous probability Borel measure

on X which is fully supported.

1.2. Functional analysis and topological groups

As before, the purpose of the present section is to present certain facts
from functional analysis and the theory of topological groups, which form
part of the folklore of the subject, in order to facilitate the reader with the
proof of Theorems 3.1 and 4.1 below.

If X, Y are any Polish spaces from which X is compact, then C(X,Y),
equipped with the topology of uniform convergence, constitutes a separable

Frechet space and if dy is any complete compatible metric on Y, then

doeyy(f, 9) = maxdy (f(z), g(2)) (f,9 € C(X,Y))



constitutes a complete compatible metric on C'(X,Y). In particular, C'(X, R)
constitutes a separable Frechet space and the topology of uniform conver-
gence constitutes a Polish group topology on C'(X, R’ ), where R’ stands

for the positive reals.

If X constitutes a compact smooth manifold of arbitrary dimension and
r € N U {oo}, then the least topology on C"(X,R) for which the mappings
C"(X,R) > f— d°f € C(X, L*(R¥™) R)), where s € N and 0 < s < 7,
are continuous (the C'(X, L*(R¥™X) R))’s being equipped with the topol-
ogy of uniform convergence, while for any index s, L*(R¥™X) R) denotes
the linear space of s-linear forms on R4™(*) and LO(RI™X) R) = R) is
called the Whitney topology on C"(X,R) and C"(X,R) equipped with
this topology constitutes a separable Frechet space, a complete compatible

metric for which is given by the formula

Y o do(x,s(reimeo my) (&° f, d°g)

dor (xR (f,9) =
: : 0<s<r;s€N 1+ dC(X,LS(Rdim(X),R))(de7 dsg)

(f,9 € C"(X,R)) .

Proposition: The Whitney topology constitutes a Polish group topology on
X, B

Proof: In order to prove that the Whitney topology on C"(X,R’) con-
stitutes a Polish group topology it is enough to prove that multiplication
is separately continuous and to this end it is enough to prove the following

claim:

If h € C°(X,R), where 0 < s < r and s € N, then there exists a con-



stant C' > 0, which depends only on s and &, such that ||d*(fh) —d*(gh)||e <
C-lld*f = d*glles (f,9 € C"(X,R)).

Setting n = dim(X), it is not difficult to prove by induction on s that if
(i1,...,15) € {1,...,n}* and (U, ¢) is any admissible chart on X, where ¢(u) =
(z1(u), ..., zp(w)) (u € U), then for any f € C"(X,R) and for any p € U,
(d°fpley,....,e,) = %}((ﬁ(p)) ( {e1,...,e,} denoting the standard basis
in R™). In addition, if & = (o, ...,a,) € N”, then we set |a| = i a; and
we denote by D* the product of the commuting partial differential lg;)erators
8%%, 1 <i<nonCll(R"R), while if a, 3 € N*, then a < 3 <= (Vk €
{1: wn})(ax < B) and if o < B, then we denote by C§ the product of
C’O‘:, 1 <k <n. Solet s and h be as in the statement of the claim and let
(U, ¢) be any admissible chart on X, where ¢(u) = (z1(u), ..., z,(v)) (u € U),
while (i1, ...,%5) € {1,...,n}° is arbitrary but fixed. Setting ay, = card({t €
{1,..,n} 4, =k}), 1 <k <nand a=(ay,..,a,), for any p € U,

(@(fh))p(€irs s €1,) = (& (gh))p(esr -, €,)

I 2

=D*((fo¢™")(hod™))(d(p)) — D*((go¢™")(ho¢™"))(¢(r))
= C5-DP(hod™")(g(p)) - (D*P(fo o™ )(d(p) — D*P(god™)(6(p)))

asfp

where for any § € N™ such that § < «, there exists (41, ...,75) € {1,...,n}’
such that
D*P(f o™ )(¢(p)) — D*P(g 0 671)(6(p))
as o -1 as o —I1
= P20 ) 4y - 21929 ) )

O, ... 0%, Qs coslOiy,

= (dsf)P(ejn "‘)ejs) - (dsg)P(ejla "'7ejs) g
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Therefore, the compactness of X is easily seen to imply that there ex-
ists a constant C' > 0, which depends only on s and h such that ||d*(fh) —
d*(gh)|leo < C - ||d°f — d°9||co, Whenever f,g € C"(X,R).

Omep eder detéan

Proposition: If p € P(X), then the least topology 7, on C"(X,Ry) which
extends the Whitney topology on C™(X,R.) and for which the inclusion map
CT(X,Ry) — LL (X, ) is continuous, is Polish and

p#(f;.g) = dC’"(X,R)(f?.g) —}_)j(\ [f - g|d/1’ (f)g = CT(X7 R‘+))

constitutes a complete metric on (C™(X,Ry),7,).

Proof: If A and B are any countable bases for the topologies on C"(X,R)
and L'(X,u) respectively, then it is not difficult to verify that C = {A N
BNC'(X,Ry): A€ A, BeBand ANBNC"(X,R;) # 0} consti-
tutes a countable base for 7, and 7, is easily seen to coincide with the
topology induced by the metric p, on C"(X,R;), while if (fx)ken is any
Cauchy sequence in (C"(X, Ry ), p,) then (fx)renw constitutes a Cauchy se-
quence in both C"(X,Ry) and LI (X, p); therefore, (fi)ren converges to
some function f in C"(X,R;) and to some function g in LI (X, u) as well.
But since convergence in C" (X, R) obviously implies uniform convergence on
compacts and therefore pointwise convergence, while convergence in L (X, i)
implies convergence in measure and therefore the existence of a subsequence
(fi,)ien of (fx)ren which converges to g almost everywhere with respect to
i, it follows that f = kh_)rgo = llggl() fr, = ¢ almost everywhere with re-
spect to p, which implies that f = g in (C"(X,R4), pu) and pu(fx, f) =
dor(x,re) (fe, £) + [x | fe — fldp — 0 as k — oo.

Omep €der det€au
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1.3. Operator theory

The purpose of the present section is to give a brief survey of some basics

in Spectral Theory.

In what follows let H denote an arbitrary but fixed infinite-dimensional
separable Hilbert space and let L(H) stand for the space of all bounded
linear operators on H, equipped with the strong topology. A function F
that assigns to every Borel subset B of a given Polish space X a projec-
tion E(B) in L(H) in such a way that F(X) is the identity operator / on
H and for any sequence (B,),en of pairwise disjoint Borel subsets of X,
E(UpenBr)z = § E(B,)z (x € H), with respect to the strong topology,
of course, is ca,llgg Oa spectral measure. Spectral measures correspond to
complex measures and give rise to spectral integrals in the following sense: If
F is any function that assigns to every Borel subset B of a given Polish space
X, a projection E(B) in L(H), then F constitutes a spectral measure, if and
only if, £(X) = I and for any z,y € H, E,,(B) = (E(B)z,y) (B € B(X))
constitutes a complex Borel measure on X, and if ' constitutes a spectral
measure, then for any bounded Borel function f : X — C, there exists a
unique operator [y fdF in L(H), which is usually refered to as the spectral
integral of f with respect to ' and is characterized by the property that

(([x fdE)z,y) = [x fdEy for every z,y € H.

The most central result in Spectral Theory is the so called Spectral

Theorem which states the following:

Spectral Theorem: If T is any normal bounded linear operator on H and
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o(T) stands for the spectrum of T, then there exists a unique spectral mea-
sure ET : B(o(T)) — L(H) for which T is the spectral integral of the iden-
tity function on o(T) with respect to ET. In addition, if for any z € H,
HT stands for the closure of the linear subspace of H generated by the fam-
ily {ET(B)x : B € B(c(T))}, then there exists a unique cardinal number
1 < k(T) < N, which is usually refered to as the spectral multiplicity of
T, for which there exists a sequence (U;);<x(r) of unit vectors in H such that
the following conditions are satisfied:

(1) The HL ’s are pairwise orthogonal;

(17) H = ®icunyHL;

(t9) i < j < w(T) = B, < By .5

() EL ., constitutes a representative of the maximal spectral type of T,

in the sense that for any x € H, Efx < E;{O,UO ¥
(v) For any i < &(T), if U : L*(o(T), EL ,,) — H denotes the Hilbert
space isomorphism defined by the relations (U )xp = ET(B)u; (B € B(o(T))),
then for any f € L*(o(T), EL ) and for any z € o(T),

(UHTTUINNSf(2) = 2+ [(2).

When a complete orthonormal system {e, : n € N} in H is fixed, to
every normal bounded linear operator T on H a canonical representative of

its maximal spectral type is assigned, as follows:

€n,en

pr(B) = > IEL _ (B) (B € Bo(T)),

while for any bounded Borel function f : 0(T") — C, the spectral integral of
f with respect to ET also constitutes a normal bounded linear operator on
H and is usually denoted by f(7'). The importance of the canonical repre-
sentative of the maximal spectral type of a normal bounded linear operator

on H is demonstrated by the following proposition:
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Proposition: If T and T,,n € N are any normal bounded linear opera-
tors on H whose spectrum is contained in K € K(C)\ {0} and T,, — T in
L(H) asn — oo, with respect to the strong topology, then g, — pr in P(K)
asm — oo.

Proof: We will first prove the following claim:

For any continuous function f : K — C, f(1,) — f(T) in L(H) as

n — 00, with respect to the strong topology.

Let u, v be any unit vectors on H and let p(z) € C[z]. Then, the proof
of the Spectral Theorem shows that

(f(Tn) = F(T))u, )

=~ p)dELn + ((p(Ty) — p(T))u, v) + fAC fdEL,
[((f(Tn) = F(T))u, )|
S[{lf—PlldEi’;\ + [(p(Tr) — p(1))u, v)| +If(|f—p||dEf:v
<2 |If = plleo - [Jull - Jv]] + [((p(T) — p(T))u, v)]

for every n € N and consequently

1(f(Tn) = f(T))ull = sup |[((f(Tn) = F(T))u,v)]

lloll=1

<2 [If = plleo - llull + sup |[((p(Tn) — p(T))u,v)|

v||=1
=2-|If = Plloo - [l + [I(p(T) = p(T))ul]
for every n € N. Hence, by virtue of the Stone-Weierstass Theorem, it is

enough to prove that ||(p(T5.) — p(T))u|| — 0 as n — oco. Indeed, if p(z) has
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N
degree N and p(z) = 3 ay2*, where the a;’s are in C and ay # 0, then the
k=0

proof of the Spectral Theorem shows that

I(p(Tn) = p(T))ull

N
<> o] - [(TF = T*yul]
k=0

N k-1
<3 Jou] - k- <sup |z|) (T = Tl = 0
k=0 zeK

as n — OQ.

Now to prove the proposition, by virtue of the Portmanteau Theorem,

given any closed F' C K, it is enough to show that limsup ur, (F) < pur(F)

N
and since for any n,N € N, ur, (F) < ¥ 276tV ER (F) 4 3 2=+,
k=0

= o k>N
it is enough to prove that for any k£ € N, limsup Eg::ek(F) < Eg;)ek(F),
whenever I C K is closed, or (equivalently) that El, — EI _ in P(K)

as n — o00; but this follows from the above mentioned claim, since for
any f € C(K,O), | fic fAETa, — [ic fAET o] = |(J(T) = J(T))ex, e0)] <
[(f(Tn) = f(T))ex]| — 0 as n — oo.

Omep ede det€an

In the sequel we will focus on the Polish group U(H) of all unitary opera-
tors on H and the Polish space S;(H) of all self-adjoint operators on H with
norm at most one, considered in Theorem 5.1 below. U(H) acts on both
U(H) and S;(H) by conjugation, the actions being continuous since they are
separately continuous, and the most important Baire category results con-

cerning these actions are summarized in the following theorem due to J.R.

Choksi, M.G. Nadkarni [1], [2] and B. Simon [14].
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Theorem: The sets
U, = {UG UH):UH)-U= UH)},

Uy = {U € UH) : o(U) = T}

and

Uy ={U e UMH): x(U) =1}

constitute conjugacy invariant dense Gs’s in U(H), and the sets

L ={SeSH):UMH)-S=S5H)},

S = {S € Si(H) : o(S) = [-1,1]}

and

S = {S € Si(H) : 5(S) = 1}

constitute conjugacy invariant dense Gs’s in Sy (H).
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2. Generic Sy -ergodicity for equivalence
relations and the pseudo-Vaught transforms

Definition 2.1: Let X be any Polish space and let ¥ be any equivalence
relation on X. Then E is said to be generically S..-ergodic if every F-
equivalence class is meager and for any Polish space Y and for any Baire
measurable function f: X — YN with the property that xEy = {f(z)(n) :
n € N} = {f(y)(n) : n € N}, whenever x, y are in X, there exist an E-
invariant co-meager subset A of X and a countable subset C of Y such that

z € A= {f(z)(n) :n € N} =C, whenever z € X.

Definition 2.2: We shall say that an equivalence relation E on a given
Polish space X admits an approximation by a Polish group action,
when the following conditions are satisfied:

(¢) For any x € X, there ezists a Polish space T'; and a continuous mapping
¢z : Ty — X such that ¢,[I';] = [z]E.

(17) There exists a Polish group G acting continuously on X with the property
that for any x € X, there exists an embedding G — Ty such that G = Ty,
and ¢.(g) = g - ©, whenever g € G.

(151) For any x € X and for any v € Ty, there exists a homeomorphism
Yoy 1 o = Ty, (y) with the property that ¢-(0) = ¢, (1)(Yaz~(0)), whenever
4 € 'y

Definition 2.3: Let E be any equivalence relation on a given Polish space X
and assume that it admits an approximation by a Polish group action. Then,
keeping the same notations as in Definition 2.2, for any subset A of X its

pseudo-Vaught transforms, A* and A®, are defined as follows:

A ={z e X : (Vyel,)(d(7) € 4)},
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and

A2 ={z e X: (TveT)(4:(7) € A)} .

The following proposition summarizes the basic properties of the pseudo-

Vaught transforms:

Proposition 2.4: Let E be any equivalence relation on a given Polish space
X and assume that it admits an approximation by a Polish group action.
Then, keeping the same notations as in Definition 2.2, we have the follow-
mng:

(a) The pseudo-Vaught transforms P* and P® of any subset P of X are
E-invariant and

(P)g C P*C P*C [Plg,

where (P)gp={z € X :[z]g C P} and [Pl ={z € X : [z]g N P # 0}.
(b) For any P C X,
X\ P2 =(X\P)

and
X\P'=(X\P~.

(¢) If P, Q are any subsets of X, then
PCQR=>(PPCQQ* AP CQY).
(d) If P C X and P, C X, whenever n € N, then
P =UpenP, = P2 = UpenP2

and

P:mneNPnip*:mneNP:.
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(e) For any open P C X, P* constitutes a Gj.
(f) If P C X is EX-invariant and constitutes a G5, then P is contained in
P*. In particular, if P C X is EZ-invariant and constitutes a dense Gj,

then P* is E-invariant and constitutes a dense G.

Proof: Parts (b) — (d) are fairly straightforward and we will restrict our-
selves in proving (a), (e) and (f).

(a) Since the fact that (P)p C P* C P® C [P]g is an immediate consequence
of the definitions, we will restrict again ourselves in proving that both P* and
P? are E-invariant. Indeed, if z € P* and y € P®, whiley € I'; and § € T,
then {a € 'y : ¢,(a) € P} is co-meager in I'; and {8 € Ty : ¢,(8) € P}
is non-meager in I'y, hence since the mappings ¥, : I's — I'g,(,) and
Yy + Ty — T’y (s) constitute homeomorphisms, while for any a € I'; and
for any 8 € Ty, 92(0) = Gy (o (@)) and 6, (8) = i) (a8, it fol-
lows that ¥, ,[{a € Ty : ¢z() € P} = {¢z4(c) : €Ty A ¢z(a) € P} =
{Yoy(@) 1 @ €To A 94,0 (¥ay(0)) € P} = {& € T, () : Ppuim(a) € P}
is co-meager in Ty, (,) and consequently ¢.(y) € P*, while ¢,s{8 € Ty :
6,8) € PY = {s(8) : B €Ty A 6,(8) € P} = {$,s(8) : B €
Ty A ¢g,0)(%ys(B)) € P} ={B €Ty, : do,6(8) € P} is non-meager in
T4, (5 and consequently ¢,(d) € P2.

(e) We choose at random a countable dense subset C' of G and let d be
any complete compatible metric on G. Given z € X, since the mapping
¢s : I'y — X is continuous, {y € Ty : ¢.(y) € P} is open in I'; and
consequently it is co-meager in I'; iff it is dense in I', or (equivalently)
(Vn € N)(Va € C)(3b € C)(d(a,b) < 27™ A b-z € P), which is easily
seen to imply that P* constitutes a Gj.

(f) If z € P, then our assumptions imply that G is contained in {y € T, :
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¢-(y) € P} which constitutes a Gg; therefore, z € P*.
Omep €der deéan

The relation between the notion of generic S.-ergodicity and the notion
of approximation by a Polish group action for equivalence relations is demon-

strated by the following proposition:

Proposition 2.5: Fvery equivalence relation all of whose equivalence classes
are meager and which admits an approximation by a generically turbulent

Polish group action is generically Sy, -ergodic.

Proof: Let I be any equivalence relation on a given Polish space X and
assume that all its equivalence classes are meager and that it admits an
approximation by a generically turbulent Polish group action. Then, keep-
ing the same notations as in Definition 2.2, the fact that the action of G
on X is generically turbulent implies that if Y is any Polish space and
f + X — YN is any Baire measurable function with the property that
zBy = {f(z)(n) : n € N} = {f(y)(n) : n € N}, whenever z, y are in X,
there exists an F3-invariant dense G's subset B of X and a countable subset
C of Y such that z € B = {f(z)(n) : n € N} = C, whenever z € X. Thus,
setting A = B*, Proposition 2.4 is easily seen to imply that A constitutes an
E-invariant dense G subset of X such that x € A = {f(z)(n) : n € N} =C,
whenever z € X.

Omep eder detan
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3. Baire category in the space of probability
Borel measures

Theorem 3.1: If X is any compact perfect Polish space, then P.(X) =
{pn € P(X) : p is continuous}, P*(X) = {u € P(X) : supp(u) = X} and

L ={pe P(X):pLv} constitute ~-invariant dense Gs’s in P(X), while
{nePX): p<vand % € C(X,R%)} is dense and meager in P(X),
whenever v € P*(X). In partzcular, if X constitutes a compact smooth man-
ifold of arbitrary dimension, then {u € P(X): p < v and % € C"(X,R%})}
is dense and meager in P(X), whenever v € P*(X) and r € N U {o0}.

Proof: We divide the argument in four steps:
a) P*(X) constitutes a ~-invariant dense G5 in P(X):

If {O, : n € N} is any countable basis for the topology on X, then
P*(X) = Npen({1 € P(X) : u(0,) = 0}°) and by virtue of the Baire Cate-
gory Theorem and the Portmanteau Theorem it is enough to prove that for
any non-empty open O C X, int({p € P(X) : u(O) = 0}) = 0. Towards
a contradiction we assume the contrary and let A € P(X), {fo,..., fa} C
C(X,R) and € > 0 be such that {y € P(X) : (Vi < n)(|[x fidu— [x fid\| <
)} € {p € P(X) : u(O) = 0}, while z € O and > 0 are such that
]—f_zorgax(lfxfidk\ + |fi(z)]) < €. Then k = ’\i}s— € P(X) and k(0) =
1+ > 0, while for any 0 <4 <n, [x fidk— [x fid) = H—'r/(fX fidd+nfi(z)) -
Ix fidh = {5 ([x fidd + fi(z)) = | [x fidk — [x fidA] < ¢, a contradiction.

b) For any v € P(X), vt constitutes a ~-invariant dense G5 in P(X):
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Since the set {z € X : v({z}) > 0} is countable, if {O, : n € N} is
any countable basis for the topology on X, an application of the Cantor-
Bendixson Theorem shows that for any n € N, there exists z, € O, such
that v({z,}) = 0. Hence, D = {z, : n € N} is countable dense in X and
v(D) = 0, which implies that {¢ € P(X) : supp(u) is finite and contained
in D} C vt and consequently v is dense in P(X). In addition, if {c :
k € N} is any countable dense subset of X and B = {U;<n,B(cg,;274) :
(ko --r kn—1), (lo, .-, ln—1) € N™ and n € N}, then v = N n)en2Omn, Where
for any (m,n) € N?, Omp = Upesw(Be)<a-tmim {1t € P(X) : u(B) < 27"},
and consequently given any (m,n) € N2, we need only prove that O,,, is
open in P(X).

So let A € Oy, and let B € B be such that v(B¢) < 2~™+™) and \(B) <
27", Since A(X) = 1 and A(B) < 27" < 1, it follows that B¢ # @) and the
regularity of v implies that there exists an open subset O of X which contains
B¢ such that 0 < v(0) — v(B°) < w. Thus, in particular, v(O) —
v(B°) < 2=mtm) _(B°) = v(0) < 2=+ < 1 = O° # () and consequently
B¢, O° are disjoint non-empty closed subsets of X and an application of the
Urysohn Lemma shows that there exists a continuous function f : X — [0, 1]
such that f = 1 on O° and f = 0 on B° It is enough to prove that {u €
P(X) : | [x fdu—[x fdr| < Z2B)} C Opp. So let 4 € P(X) be such that
| [x fdp— [x fdA| < 2——71_21@2. By virtue of the regularity of u, v, there exist
open subsets U, V of X containing O° such that 0 < p(U)—p(0°) < @@
and 0 < v(V)—v(0°) < M; obviously, W = UNV is an open subset
of X containing O¢ such that 0 < u(W) — u(0°) < @@ and 0 < v(W) —
v(0°) < w. Since {B(cx; 27%) : (k,1) € N2} constitutes a basis for
the topology on X and W C X is non-empty open, there exists a sequence

((ks,1;))ien of pairs of natural numbers such that W = U;enB(cx,;; 27%) and
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W = UjenB(ck,;;27%) and consequently there exists j € N such that 0 <
v(W) —-v(C) < m%@, where C' = U,;; B(cy,;27%) € B. We remark
that
CCCclrnBIUB*={B\C)UB"
C(B\OY)U (O \CYUB*=(BNnO)U(0O°\C)uU B°
= (O\ B )U(O°\C)UB*C(O\ B )U(W\C)uU B°

and hence

v(C°) <v(O\ B°)+v(W\ C) + v(B°)

= (W(0) —v(B%)) + (w(W) = v(C)) +v(B°)

9—(mtn) _ (B¢ o—(mtn) _ (B¢
= - I/( ) + 5 V( ) +V(BC) — 2—(m+n) :

while
27" — \(B)

2
27" — \(B) <[ fdu+ 27" — \(B)
X 2

Sffd/\+|ffd,\—ffdu|+2__”_ﬁ
X X X

= [ far+1 [ far [ fapl + 28

B X X

2-" — \(B)
2

2= _ \(B)

u(C) < p(W) < p(0°) +

= [ fdp+
OC

S [N+ | [ fad— [ fdp| +
B & X

= ANB) +| [ fdA = [ fdu| +
X X
2" — X(B) i 27" — A(B)
2 2
We have thus proved that there exists C' € B such that v(C¢) < 27(m+") and

< A(B) +

e} €8, 18, g € Oy
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¢) P.(X) constitutes a ~-invariant dense G in P(X):

We will first prove that P.(X) constitutes a GGs. Since X is compact, both
P(X) and K (X) are also compact and since projpxy : P(X)x X 3 (u,z) =
p € P(X) is obviously continuous, while X > z +— {z} € K(X) constitutes
an embedding, it follows that the function P(X) x X 3 (u,z) — pu({z}) €
[0, 1] is upper semi-continuous and consequently its upper sections are closed
and therefore compact, which implies that P(X) \ P.(X) = {u € P(X) :
@ € X)(u({z}) > 00} = Unenbrojpoo{(2) € P(X) x X : u({z}) >
27"} is K, in P(X). The fact that P.(X) is dense in P(X) will follow once
we prove the fourth step of the argument, since P.(X) N P*(X) # 0 and
if v € P.(X)N P*(X), then {p € P(X) : p < vand & € C(X,R%)} C
PAX) T PHX).

d) We divide the fourth step of the argument in two parts:

For any v € P*(X), {p € P(X) : p < v and % € C(X,R%)} is dense

and meager in P(X).

By virtue of b), it is enough to prove that the set in question is dense.
To this end given k € P(X) such that supp(x) = {zo, ..., i}, {fo, .., fu} C
C(X,R) and € > 0, we need only prove that there exists u € P(X) such that
p<K I/andéﬁ e CLA, RS, WhileforanyO <i<n,|[x fidu—[x fids| < €or
(equivalently) | [x fidu — Z ar fi(zk)| < €, where oy, = k({zx}), 0 < k < L.
We set M = [nax Il f: ||oo and choose § > 0 such that the balls B(zy;0),
0 < k < [ are pairwise disjoint and  sup |fi(y) — fi(zx)| < 5, for any pair

yEB(zk
of indices 7, k. Given any 0 < k < [, an application of the Urysohn Lemma
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for locally compact Hausdorff spaces shows that there exists a continuous
function 1y : X — [0,1] such that 1, = 1 in B(x;d/2) and ¥ = 0 out of
B(z;6), and if By = [x ¥xdv, then, since ¢, = 1 in B(zx;6/2) and 9, = 0
out of B(z;d), it follows that By > [p(,,.5/9) 1dv = v(B(zx;6/2)) > 0 and
Br.— fB(xk;é) Prdy. We set § = min Br > 0 and let 0 < n < 1 be such that

— M(@B+mn) < §and nM < §. Setting h = Z arBi Py + 1, it is not
difficult to see that n<h<pBlt+nh:X— [77, ,8 + 7] is continuous and
[x hdv = 1 +n. Therefore, if du = dl/ then © < v and —/i € C(X,R%).

Moreover, given any 0 <1 < n,

!
J fidp = o fi(e)
X k=0

= j fihdy — Z o fi(@r)
0

1 +n
= _? [ fihdv + f fihdy — Z o fi(Tk)
== —?ff;hdl/
+Zak i(y) = fi(zn) B o (y)dv (y) +n [ fidv
k=0 B(wk X

where
i)f(fz’hdl/l S)f<|f¢|hdy <MB P+,

| [ fidv| < [ |fildv < M
X X

and given 0 < k <[,

| [ (fily) = filze)) By " ve(y)dv(y)|

B(z;90)

< sup |fily) = filze)|- Bt [ vk(y)dr(y)
B(z;0)

y€B(zx;9)
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€
= sup |fily)— filze)]| < 3
yEB(z;0)

which implies that

l
€
|ffdu E Oé}cfzxk|<—-——M(ﬁ +77 +§E Oé;g—f—?7M<€.
k=0

If X constitutes a compact smooth manifold of arbitrary dimension, v €
P*(X)andr € NU{oo}, {n € P(X): p < vand % € C"(X,R%)} is dense
and meager in P(X).

By virtue of b), it is enough to prove that the set in question is dense.
To this end given k € P(X) such that supp(k) = {zo,...,z:}, {fo, ., fu} C
C(X,R) and € > 0, we need only prove that there exists 4 € P(X) such that
u << v and g{f € C"(X,R%), while for any 0 <@ <n, | [x fidu— [x fidk| <€
or (equivalently) | [y fidu— i arfi(zk)| < €, where o, = k({zi}), 0 < k < L.
We set M = foax I fillco ankd:(z:hoose 0 > 0 and admissible charts ¢y : Uy —
B(0;9), 0 < k <l on X such that the U.’s are pairwise disjoint and for any
0<k<I, z, = ¢;(0) and sup|f1( ) — filzk)] < £, 0 <1< n. Then there

yeUx

exists a C®-function ¢ : R¥™() — [0, 1] such that ¢ = 1 in B(0;6/2) and
¢ = 0 out of B(0;29/3) and for any 0 < k < [, we set
_ ) 9(ow(z)) ifzeU
‘Z”“(“’)—{o Jifze X\ U,
and thus obtain a C'*°-function 1 : X — [0, 1] with the property that ¢, = 1
in ¢;'[B(0;6/2)] and ¢ = 0 out of Uy = ¢ [B(0;0)]. Given 0 < k < I, if
Br = [x ¥rdv, then since ¥, = 1 in ¢;[B(0;6/2)] and 9 = 0 out of U, =
¢ [B(0;0)], it follows that B, > Ty 1dv = v(¢r ' [B(0;6/2)]) > 0
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and By = [y, Yrdv. We set § = min ﬁk > 0 and let 0 < 7 < 1 be such that

— M(B~'+mn) < £ and nM < §. Setting h = Z arBi i, + m, it is not
difficult to see that n < h < B 1+n h: X — [77 ﬁ + 7| is differentiable
of class C" and [y hdv = 1 + . Therefore, if du = dl/ then 1 < v and

25 € C"(X,R%). Moreover, given any 0 <14 < n,

!
[ fidp = axfi(zk)
X k=0

= f fihdy — Z oy fi(Tr)
—0

1+
_ _1_ J fihdy + [ fihdv — Z ak fi(zk)
+ =0
= _ﬂ—n)é fihdv

!
+> a [(fily) — fi(@e)) B e(y)dv(y) +n [ fidv
k=0 Uk X
where
I)f(fihd’/| < )f( |filhdv < M(B7! + 1),
| [ fidv| < [|fildv < M
b X

and given 0 < k£ <,
!Uf(fi(y) — fi(zx) B x(y) dv ()]
< sup |fi(y) — fil=w)] 'ﬁk_lUf Yi(y)dv(y)

yEB(zk;0)

= sup |fi(y) — filzp)| < 5

yeUk 3’
which implies that

lffdﬂ Zakfzxk)l<1—M(5 g A
k=0

Zak+nM<e
k=0

3
Omep €del deéan
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4. Generic Sy-ergodicity for measures

Theorem 4.1: If X is any compact perfect Polish space and P(X) stands
for the Polish space of probability Borel measures on X, equipped with the
weak”-topology, while p ~ v < (u < v AN v <K u), whenever u, v are
in P(X), then ~ 1is generically Sy-ergodic. (The same is true if X is any
compact smooth manifold of arbitrary dimension and we replace ~ by ~cr,
where p~crv iff p ~ v and both Radon-Nikodym derivatives %{f and Z—Z are

differentiable functions of class C”, whenever r € N U {co}.)

Theorem 3.1 is easily seen to imply that every ~-equivalence class is
meager and consequently it is enough to prove that the equivalence relations
considered in Theorem 4.1 admit approximations by generically turbulent
Polish group actions. To this end we will first reveal the Polish group actions
that approximate, in the sense of Definition 2.2, the equivalence relations
considered in Theorem 4.1, and we will then prove that they are generically

turbulent.

Proposition 4.2: If X is any compact perfect Polish space, then we have
the following:
(1) For any p € P(X),

Li (X, m) ={fel'(X,n): f >0, p—ae}
constitutes a dense G5 in L1 (X, ), and the mapping
@, 5 LLOX, )\ {0} — P(X)
defined by the relation

d@u(f)) = (] fap) fdp (f € Li(X, 1)\ {0})

X
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is continuous and salisfies the condition
O, (L (X, )] = [u]~ -
(ir) C(X,RY) acts continuously on P(X) via
C(X,R%) x P(X) 3 (f,p) = @u(f) € P(X)
and for any p € P(X),
TR = 1L, (K1)

(#3i) For any p € P(X) and for any f € L} (X, p), the mapping

Vs Ly (X, 1) 3 9= g([ fdp)/f € Ly (X, @u(f)
costitutes a homeomorphism with the property that

®,.(9) = Po.(5)(Yus(9)

whenever g € LY (X, u).
Proof: (i) We divide the argument in two steps:
a) L1 (X, p) constitutes a dense G5 in L (X, p):

If ¢, 0 are arbitrary positive rationals, then we set H® = {f € LA (X, p)
p{z € X @ f(z) > ¢}) > 1 -6} and let H = Nseqr, Ueeqy HP. Tt is not
difficult to verify that H = L% (X, 1) and consequently we need only prove
that for any 0 € Q7 , the set HO = Ueeqy, H® is open and dense in LL(X, ).

We shall first prove that H® is open in L} (X,u). So let f € H©
and let € € Q) be such that u({z € X : f(z) > ¢}) > 1—-0. We set
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n=u{reX: flz) >e}) —(1—-20) >0 and let g be any non-negative
function in L'(X, ) such that [y |f —gldp < . I E={z e X : |f(z) —
g(x)| > 5}, then obviously $u(FE) < [g|f(z) — g(z)|du(z) < F and hence
p{r € X : |f(z) —g(z)] > 5}) < n. Thus, since {z € X : g(z) <
SNz € X : flg) > ¢ C {2 € X © |[flw) —glz)| > 5} and hence
weX o) <5 CloeX: f&)<dUlzeX:|f(z) - o) > &) it
follows that p({z € X : g(z) < £}) <p({z € X : f(z) <e}) +u({z e X :
|f(z) —g(z)] > 5}) <1—p({zr € X : f(z) > e}) +n =0 and consequently
pz e Xvglp) >5h) > 1—8 ie, g€ He(f;. We have thus proved that
{g€ LL(X, 1) : [x|f —gldu < £} C H® and consequently H® is open in
LY (X, 1)

What is left to show is that H(® is dense in L (X,u). So let f be

any non-negative function in L'(X,u) and let ¢ € Q. Then evidently
fHiell (X,p)and f+£€HO.

b) @, : LL(X,p) \ {0} — P(X) is continuous and satisfies the condition
DL (X, )] = [1]:

If f, — [ in L}F(X, ©) \ {0} as n — oo, then evidently | [y fodp —
Ix fdp| < [x |fa—fldw — 0asn — oo and forany g € C(X,R), | [x gfudu—
Ix9fdul < \gllso - [x |fa — fldp — 0 as n — oco. Therefore,

[ 9d(@u(fn)) = [ gfndp- ([ fod)™ — [gfdp- ([ fdp)™ = [ gd(®u(f))
X X X X X X

as n — 00, whenever g € C(X,R), and consequently ®,(f,) — ®,(f) in
P(X) as n — oo, which implies that the mapping @, : L} (X, ) \ {0} —
P(X) is continuous. The fact that it satisfies the condition ®,[L% (X, u)] =
[¢]~ follows immediately from the Radon-Nikodym Theorem.
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(¢¢) It is straightforward to verify that C'(X,R%) x P(X) 3 (f, i) — @u(f) €
P(X) constitutes an action whose continuity follows from part (¢), while the
density of C(X,R%) in L} (X, u) will follow once we prove the following

claim:

Let {cx : k € N} be any countable dense subset of X and given
(koy ... kn1) € N™ and 7; < s; (1 < n) in QF, where n € N\ {0}, let

h(ko ~~~~~ Fon=d Pl fPrii#mdn=i) * X — [Oa 1}
be a continuous function satisfying the conditions

h(ko ..... Kn—1;T0,-sTn—1;805,Sn—1) — lin Ui<nB(Cki; Ti)

and

h(ko,--»,kn—uro,---,Tn—1;80,~'-,5n—1) = 0 out of Ui<ﬂB(C/€i; Si)

(whose existence is implied by Urysohn’s Lemma for locally compact Haus-

dorff spaces). If ‘H consists of all functions of the form:

where for any 0 < j < m, (k . ,kg_l)EN”J andr E” (0 <1< ny)

are in Q% , while n; € N'\ {0} and o, a; € Q% (m being a positive integer),
then H N C(X,R%) constitutes a countable set which is dense in L} (X, p).

Let (a0, ..., m—1) € (QL)™ and for any 0 < j < m, let (kéj), ,kff)_l) €
N" and (30 ,...,5%)_1) € (Q1)™, where n; € N\ {0}, while m € IN'\ {0}.
Weset ¢ = X a;x s

i) and let € > 0 be arbitrary but fixed. It is
j<m

;Ble,
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enough to prove that there exists h € H for which [y |¢ — h|du < e. Since
forany 0 <5 <m,

Unso(Uscn, Bleyns st = n7) = Uicn, Bleyr; s
given 0 > 0, there exists an integer n > 0 such that
[1(Urcven(Uicn Bleyor; s = 1)) = ilUicn, Blegr; )| < 6

for every 0 < j < m. We take § = ﬁe_a and if k is the least positive integer
“}

j<m

for which k71 < 5, then setting

fes Nl an En .
2 P, KO o,

=1
e I e

4 - ) L35 L

j<m J

it is not difficult to see that

[ ¢ — hldu
X
<> oy [ (1=
j<m Ui<njB(ck(j);S§J))

ho ; . ; . . du + k1
(lc((J]),m,kffj)__1;387)—n‘l,...,s(]_)_l—n—l;sg]),...,sg]?_l)) o

< 3 0l (Uicn; Blegns si)) \

j<m

(Uien, Ble,; 8P —n1)) ) + k71 < e.

(421) It is not difficult to see that

©: L'(X, 1) 3 g g([ fap)/f € L'(X, 2,(f))

constitutes an isometric isomorphism with inverse

071 LI(X, &u(f)) 2 A= (f fdw) ' fhe LMNX, )



32

mapping L} (X, u) onto L} (X, ®,(f)) and in particular L , (X, 1) onto

Ll (X, ®,(f)), which implies that ¥, ; constitutes a homeomorphism, while
++ I wf

P, (1)(Vp,1(9))(B)

= [ (o FA)/ ) (o] Fa)/ DA@N) ™ (@)
= [ (g(J faw)/f)- ([ (o(f fdw)/f) - ([ faw)™"f - dp )70 - ([ fdp)™'f - dps
B X > i X 4
= [ ([9du) g du = 2,(9)(B)
for every Borel B C X and consequently ®g,(s)(V,,r(9)) = ®.(g), whenever
ge Ll (X, pn).
Omep ede detan

Proposition 4.3: If X is any compact smooth manifold of arbitrary di-
mension and r € N U {oo}, then we have the following:
(¢) For any p € P(X), C"(X,RY) constitutes a dense G5 in C"(X,Ry) with

respect to 7,, and the mapping
@, C"(X, Ry)\ {0} — P(X)
defined by the relation
d®@u(£)) =/ fdp)™ fdu (f € CT(X,Ry) \ {0})
is continuous with respect to 7, and satisfies the condition
DLCT(X, RY)] = [Wwer -

(i) C™(X,RY) acts continuously on P(X) via

C"(X,R%) x P(X) 3 (f, 1) = @u(f) € P(X) .
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(i11) For any p € P(X) and for any f € C"(X,RY), the mapping

Ui (CT(X,RY),Tu) 2 g+ 9(}{ fdu)/f € (C"(X,RY), To,(5)

costitutes a homeomorphism with the property that

®.(9) = Pa,(5)(Yur(9)

whenever g € C"(X,R%).
Proof: (i) We divide the argument in two steps:
a) C"(X,R%) constitutes a dense G5 in C"(X, R) with respect to 7,:

Since L} , (X, ) constitutes a Gs in L (X, ), say Lt . (X, p) = NienU;,
where the U;’s are open in L! (X, u), while C"(X,R%) = U(slel_C(é), where
for any 0 € Q7 , the definition of the Whitney topology is easily seen to imply
that C® = {f € C"(X,R4) : gg{l f(z) > d} is open in C" (X, R ), it follows
that C"(X,R%) = Nien(Ui N (UgeQiC(‘s)) NCT(X,R,)) constitutes a Gs in
C"(X,R,) with respect to 7,. Therefore, the claim will follow once we prove

the density of C"(X,R%) in C"(X, R ) with respect to 7,:

Solet f € C"(X,R;) and let € > 0 be arbitrary but fixed. Then evidently
f+5€C"(X,R%) and for any s € N for which 0 < s <, d°(f +5) = d°f,
which implies that p,(f, f +5) <e.

b) @, : C"(X,R4) \ {0} — P(X) is continuous with respect to 7, and
satisfies the condition ®,[C"(X,R%)] = [t~
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The continuity of ®, with respect to 7, follows from the definition of 7,
and part (i) of Proposition 4.2, while the fact that it satisfies the condition
®,[C"(X,R%)] = [t} follows from the Radon-Nikodym Theorem.

(it) The fact that C"(X,R%) x P(X) > (f,p) — @.(f) € P(X) consti-
tutes a continuous action follows from the definition of 7, and from part (i%)

of Proposition 4.2.

(1) It is not difficult to see that

©:(C"(X,Ry),7u) 29 g(){ fdu)/f € (CT(X,Ry), To, (1))

constitutes a bijection with inverse
O+ (CT(X,R), Toyn) 3 b ([ fd) ™ fh € (CT(X R

which maps C"(X, R%) onto itself and in order to prove that ¥, ; constitutes
a homeomorphism what we have to show is that © constitutes a homeomor-
phism. By symmetry, it is enough to show that © is continuous. Indeed, if
ge = g in (C7(X,Ry), 7), then dor(xmy(9k: 9) — 0 and [y [ge — gldp — 0

as k — 00, hence an application of the Radon-Nikodym Theorem shows that

)f( lgk(){ fduw)/ f - g()f( fdu)/ fld(®.(f)) Z)f( gk — gldp — 0

as k — oo, while since given any natural number s and any function w €
C*(X, R), there exists a constant C' > 0 depending only on s and w, for which
|d* (uw) — d*(vw) || o < C'+||d*u — d*v]|e0, Whenever u,v € C*(X, R), it follows
that der(xr)(9x([x fdw)/ f, 9([x fdur)/f) — 0 as k — oo, which implies that
g — g in (C"(X,Ry),7,). Finally, the fact that ®,(g9) = ®s,(5)(V,.r(9))
for every g € C"(X, R?) follows from part (izi) of Proposition 4.2.
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Omep €de detéar

Lemma 4.4: Let G be any Polish group acting continuously on a Polish
space X and let v € X. Suppose G - x is dense in X and there exists a fun-
damental system of open neighborhoods U of x in X with the property that
for any g € G for which g-x € U, there exists h € G and a continuous path
[0,1] ¢+ hy € G such that g-x =h-x, hg =1%, hy =h and h, -z € U,
whenever t € [0,1]. Then the action of G on X is turbulent at the point x.

Proof: Let V be any open neighborhood of x in X and let W be any
symmetric open neighborhood of the identity in G. Then there exists an
open neighborhood U of x in X which is contained in V' and satisfies the
condition stated in the formulation of the lemma. We need only prove that
O(z,UW)=UN(G-z). Solet g € G be such that g-z € UN (G - z)
and let h € G and [0,1] 3 t — hy € G be as in the statement of the
lemma. Then there exists a positive integer N such that for any s, ¢ in [0, 1],
|s—t| < N7! = h,-h;! € W. Hence, setting ty = 0, t; = tx_1 + N~! and
9k = hy, - ht_kl_l, whenever 1 < k£ < N, it follows immediately that g, € W
and gg...g1 -« = hy, -z € U, whenever 1 < k < N, while gy...01 -2 =9 2.
We have thus proved that O(z, U, W) =UN (G - z).

Omep eder detéan

Proposition 4.5: If X is any compact perfect Polish space, then the ac-
tion of C(X,R%) on P(X) described in Proposition 4.2 is turbulent at every
p € P*(X) and therefore generically turbulent. The same is true if X is any
compact smooth manifold of arbitrary dimension and we replace C(X,RY)

by C"(X,R%) for every r € NU {oo}.
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Proof: By virtue of Theorem 3.1, it is enough to verify that the system
of open neighborhoods of 1 € P*(X), which consists of the sets of the form

Ui fo s frie = {reP(X): (Vi< n)(|){f1d’/ —){fidM <6},

where {fo,..., fu} € C(X,R) and ¢ > 0, satisfy the condition stated in the
formulation of Lemma 4.4. Indeed, if g is any function in the group consid-
ered, such that g« p € Uy, . fuie, then we need only take h = ([ gdu)™ - g
and hy = (1 —t) + th, whenever ¢ € [0, 1].

Omep eder detéau

Keeping the same notations as in Definition 2.2, in view of Propositions
4.2, 4.3 and 4.5, the following table indicates that the equivalence relations

considered in Theorem 4.1 admit approximations by generically turbulent

Polish group actions.

X a compact X a compact
perfect smooth manifold
Polish space and 7 € NU {oo}
Ly
for L (X, p) (C™(X,R%),7.)
p € P(X)
G C(X,R%) C"(X,RY)
bn | T UxJdm) Fdu | T = Ux Jan) Tdp
for whenever whenever
€ PX) feTy fely,
d’u,f
for g 9([x faw)/f | 9 9(x fdu)/f
fer, whenever whenever
and gely gely
n € P(X)

TABLE 4.1
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Finally, we should mention that Theorem 1 goes through for any perfect

Polish space X by considering a compactification of X:

Indeed, since X is homeomorphic to a (5 subset of the Hilbert cube
[0, 1]N, the closure X of X in [0, 1] obviously constitutes a compact perfect
Polish space and if (Op,)men is any descending sequence of open subsets of

X with the property that X = NyenOy, then it is enough to notice that

P<X) = r\|(m,n)EN2{M = P(Y) : /L(Om) >1- 2_—n}

constitutes a dense G5 in P(X), something that follows from the fact that
the O,,’s are dense in X and the functions P(X) > u — u(O,) € [0,1],
m € N are lower semi-continuous and consequently their lower sections are

closed.
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5. Generic turbulence for self-adjoint and
unitary operators

Theorem 5.1: Let H be any infinite-dimensional separable complex Hilbert
space and let U(H) stand for the Polish group of unitary operators on H,
while S1(H) stands for the Polish space of self-adjoint operators on H with
norm at most one, both equipped with the strong topology. Then the conju-

gation action of U(H) on both U(H) and S1(H) is generically turbulent.

Since the functions that assign to every operator in U(H) a measure in
P(T) and to every operator in S1(H) a measure in P([—1,1]) as a canonical
representative of its maximal spectral type are continuous, we will reduce the
proof of Theorem 5.1 to Theorem 4.1. To this end we will first prove that
there exist Borel inverses of the functions mentioned above that assign to
every measure in P*(T) N P.(T) an operator in U(H) and to every measure
in P*([—1,1]) N P.([—1,1]) an operator in S; (H) and we will then prove that
the Polish group actions considered in Theorem 5.1 are generically turbulent
by proving that they satisfy the antecedents and part (iv) of the succedents

of the theorem of G. Hjorth mentioned in the introduction.

Definition 5.2: Given p € P*(T)NP.(T) andv € P*([-1,1]) N P.([-1, 1)),
let f, stand for the function €™ — p({e** : 0 < s < t})modl (¢ € [0,1)),
which constitutes a homeomorphism of T onto R/Z, and let g, stand for the
function z — v([—1,z]) (z € [—1,1]), which constitutes a homeomorphism

of [=1,1] onto [0,1].

Lemma 5.3: For any p € P*(T) N P(T) and for any v € P*([-1,1]) N
PC([_171])) th’e ma‘pplng (I)# : L2([071)7m1) 9 f = f < fli 6 LQ(T7/~L); Zf we
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consider [0,1) as a fundamental region of Z in R, and ¥, : L*([0,1],m1) 3

g+— gog, € L*([—1,1],v) constitute Hilbert space isomorphisms.

Proof: It is enough to prove that for any f € L?([0,1),m;) and for any g €
L2([0,1],m1), [5 |f(2)Pdz = [z |f o ful’dp and [y |g(z)Pdz = [Z; [go g.[*dv.
Indeed, since the half-open intervals [, ), where 0 < a < f < 1, and (v, d],
where —1 < v < § < 1, form semi-algebras which generate the Borel sub-
sets of [0,1) and (—1, 1] respectively, while setting ¢ : ¢ — €*™ (¢ € [0, 1)),
(0 9)(8) — (0 9)() = (67} (o, B)), whenever 0 < a < # < 1, an ap-
plication of the Caratheodory Measure Extension Theorem shows that ¢~
is the Borel measure that corresponds to the strictly increasing function
fu 0 ¢ and the restriction of v on (—1,1] is the Borel measure that corre-
sponds to the strictly increasing function g,|(—1, 1], which implies that for

any f € L%([0,1),m) and for any g € L*([0, 1],m,),

[1f@Fds = [ F (@) P(fu0 9) (e)da

Il
O

((f o fu) 0 #Pdls™ ) = [ 1f o ful’di
and

fllg(w)IQda:: [ lg(z)|?d
0 (0,1)

= [ lolg(@)’d,(z)dz= [ |gog,|’dv
(-1,1] (-1,1]

1 2
= _fl lgog,|“dv .

Omep eder detéan

Lemma 5.4: Gwen k € P*(T)N P.(T) and A € P*([-1,1]) N P([-1,1]),
if we consider [0,1) as a fundamental region of Z in R the mapping U, f =
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f=t- f (f € L3([0,1),m1)) constitutes a unitary operator on L%([0,1),m;)
with spectral multiplicity one and with uy, = Kk with respect to the standard
basis in L2([0,1),m1) which consists of the functions e, : T — €>™"® (g €
[0,1);n € Z), while the mapping Sxg = g5 ' -g (g € L*([0,1],m1)) constitutes
a self-adjoint operator on L*([0,1],m;) with norm at most one, with spec-
tral multiplicity one and with pg, = A with respect to the standard basis in
L2([0,1],m1) which consists of the functions e, : x — > (z € [0,1];n €
7).

Proof: For any f € L%([0,1),m1) and for any g, h € L%([0, 1],m1),

(Ve 1? = ] U f Py = 1157« £y
= [1£1P P = [\ Py = (1)

(1S3gls)? = [ 193" - gPdms < (lgx"oo) - | 9P dms < (lgla)?
and
(S39,h) = [ g3’ o dms = [ 53 - din = (g, 53h)
which implies that U, € U(L%([0,1),m4)) and Sy € S1(L2([0,1],m1)). More-
over, if f € L*(T,«) and g € L?([-1,1], ), then
(2xUx@5£)(C) = (2uUw(f © £71))(O)

= (@u(f - (fo FTMQO = (o fo) - (fo £ o L)) = ¢ £(O)
whenever ¢ € T, and
(8331 g)(z) = (TrSa(go g3 ) (x)

= (UA(gy" - (goga (@) = (65 e 9n) - (g0 g5 0 92))(2) = 2 - g(a) ,
whenever z € [—1, 1], which implies that ®,U,®.! has spectral multiplicity
one and E®<Ux®"(B)f = x5 - f (B € B(T); f € L%(T, x)), while ¥,S5,¥;"
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has spectral multiplicity one and E‘I'*S*‘I’II(B)Q =xg-g(Be€B(-11]);9 €
L%*([-1,1],\)). Therefore, we deduce that U, has spectral multiplicity one
and EUs(B) = ® 1 E®U=®" (B)®, (B € B(T)), while S, has spectral mul-
tiplicity one and ES»(B) = U5 EVSY (B)U, (B € B(|—1,1])). Hence

EY*_ (B) = (E*(B)en, en) = (E¥*Us" (B)®yen, Dren)

€n,en

:4XB +(eno fe) - (eno fi) dr = g [ fra|2d’€ = k(B) ,
whenever B € B(T), and

ES, (B) = (ES*(B)en, €n) = (EVSY (B)Uyze,, Upen)

€n,€n

_ _fll X (€00 J3) - Ten o ) dA = [len o PN = A(B)

whenever B € B([—1,1]), which implies that EJ~, = x and B3 = )

€n,€en

whenever n € Z and consequently py, = x and pg, = A

Omep €der det€au

Lemma 5.5: The mappings F' : P*(T) N P:(T) 3 p+— f, € Hom(T,R/Z)
and G : P*([-1,1]) N P.([-1,1]) > v — g, € Hom([—1,1],[0,1]) constitute

Borel injections.

Proof: We will first prove that the mappings in question are injective: So
let k, A € P*(T)NP.(T) and u,v € P*([-1,1]) N P.([-1, 1]) be arbitrary but
fixed and let f. = f) and g, = g,. Then

K({BQM‘L e S t < B}) — fn(e%riﬁ) . fn(€27rm)
— f>\(e27ri'3) _ f)\(BZTria) e /\({eQm't C o S t < ﬁ}) 7
whenever 0 < a < 3 <1, and

w((7,9]) = gu(6) — 9u.(7) = 9,(6) — gu(7) = v((7,9]) ,
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whenever —1 < v < § < 1, and since the sets {e*™ : a < t < (3}, where
0 < a < B <1, and the half-open intervals (v, d], where —1 <y < § < 1,
form semi-algebras which generate all the Borel subsets of T and (—1, 1]
respectively, an application of the Caratheodory Measure Extension Theo-
rem shows that x = A and the restrictions of u, v on (—1, 1] coincide and
consequently p = v.

If we prove that graph(F') and graph(G) constitute Borel subsets of
the product spaces (P*(T) N P.,(T)) x Hom(T,R/Z) and (P*([-1,1]) N
P.([-1,1])) x Hom([—1,1],[0,1]) respectively, then since the mappings F
and G are injective, an application of the Souslin Theorem will show that

they are Borel, for

F_I[U] = prOjP*(T)ﬂPc(T) (graph(F) N ((P*(T) N P(T)) x U))
and
G~V = projpe_1pnr.1,1p) (8raph (G) N ((P*([—1, 1) N P([=1,1])) x V)) ,
whenever U C Hom(T,R/Z) and V C Hom([—1,1],[0,1]) are non-empty
open. So let (u, f) € (P*(T) N P(T)) x Hom(T,R/Z) and let (v,g) €
(P*([-1,1]) N P.([-1,1])) x Hom([—1, 1], [0, 1]) be arbitrary but fixed. Then
(1, f) € graph(F) <= (V2 € QN0,1))(u({"™ : 0 <y < z2}) = f(e"™))
and

(v, 9) € graph(G) — (vt € QN [-1,1))(v([-1,¢]) = g(2)) ,

which implies that graph(F') and graph(G) are Borel in (P*(T) N P.(T)) x
Hom(T,R/Z) and (P*([-1,1]) N P.([-1,1])) x Hom([—1,1],[0,1]) respec-
tively, since for any z € [0, 1) and for any ¢ € [—1, 1], the mappings

Hom(T,R/Z) > f — f(e*™) € R/Z
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and

Hom([_la 1]7 [0: 1]) 29— g(t) = [07 1]

are obviously continuous, while the Portmanteau Theorem is easily seen to

imply that the mappimgs
P(T)NP(T) > pr— pu{e™:0<y < x}) €[0,1]

and

P*([-1,1])) nP([-1,1]) 3 v+ v([-1,]) € [0,1]

are also continuous.

Omep eder detan

Proposition 5.6: (i) Viewing H as being L*([0,1),m;) and considering
[0,1) as a fundamental region of Z in R, the mapping

P (T)NP(T)o2k— U, eUs NUs3

1s Borel and
K~ K = UKEZ{"EQIZ)&U,{/ A
whenever k, k" € P*(T) N P.(T).
(43) Viewing H as being L*([0,1],my), the mapping
P([-1,1)NP(-11])3A— Sr€XanNs
s Borel and
A~ X = SAEFHD Sy

whenever A\, X' € P*([—1,1]) N P:([-1,1]).

Proof: By virtue of Lemma 5.4, Lemma 5.5 and the Spectral Theorem,
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it is enough to prove that the mappings Hom(T,R/Z) > f — U; € U(H)
and Hom([-1,1],[0,1]) 3 g — S, € S1(H) defined by the relations

U}u = f-u (f € Hom(T,R/Z);u € L*([0,1),m1))

and

Siv=g-v (g € Hom([-1,1],[0,1]);v € L*([0, 1], my))
are continuous. Indeed, if f, — f in Hom(T,R/Z) and g, — ¢ in
Hom([—1,1],[0,1]) as n — oo, then for any v € L%*([0,1),m;) and for any
v € L([0,1],ma), (U}, = Up)ull2)® < (Ifa = flleo)® - (llull2)® — 0 and
(110Sg, = Se)vll2)* < (llgn = gll0)® - (Ilvll2)* — 0 as n — oo.
Omep ede delar

Our next task is to show that the actions considered in Theorem 5.1
satisfy the antecedents of the theorem of G. Hjorth mentioned in the intro-

duction.

Proposition 5.7: (i) For any S € ¥y, U(H) - S is dense in S, (H).
(it) For any U € U, UH) - U is dense in U(H).

Proof: We will first prove the following claim:

Let zy,...,x, be n unit vectors in H such that 1 < i < 5 < n =
|(zs,25)| < 0, where 0 < 0 < 77" Then the unit vectors ey,...,e, ob-
tained from z, ..., z, by the standard orthogonalization process satisfy the
conditions ||z; — & < 7%, 1 <1 < n.

By definition e,, = H“Zﬁ and Ym = T — Y (Tm,ex)ex for every 1 <m <

n, and we argue by induction on n. So let n > 1 and assume the claim for the
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natural number n — 1. Then ||z; —¢;|| < 7%, 1 <1 < n and what we need to
n—1

show is that ||z, —e,|| < 7"5. But setting p(n) = (X (1+7%)%)/2, 3p(n) < 7
k=1

n—1 n—=1
ond g = 2all? = "5 10, )] < T [(@0,28) + (2 = 20 < Sp(n)?
which implies that 1 — dp(n) < |lyn|| < 14 dp(n) and ||z, — e,|| = ||z, —

Tnt+Yn—Tn llynll=1+yn—2nll 20p(n) "
lfynll I'< lynll < Ty = 30p(n) < 6.

Now let S € ¥3 and let U € Uy be arbitrary but fixed. If {¢, :n € N} is
any countable dense subset of [—1,1] and 7" is the unique operator in S; (H)
defined by the relations T'e, = t,e, (n € N), then given N € N, we need
only prove that there exist V, W € U(H) such that V.SVt € {S' € S;(H) :
(Vn < N((S" = Te,|| < 27M)} and WUW € {U' € UH) : (Vn <
N)Y(J(U" — exp(inT))en|| < 27)}. Since o(S) = [—1,1] and o(U) = T, the
fact that the spectrum of a normal bounded linear operator on H coincides
with its approximate point spectrum implies that there exist unit vectors
X0, ..., Xy and Yo, ..., ¥ in H such that for any 0 < n < N, both [|Sx, —t,X,|

and ||Uy, — e™"y,|| are less than

. [min{|t; —¢j|: 1 <i<j<n} min{le™ —e™i|:1<i<j<n}
e ON+3 . 7N+1 ) ON+3 . 7N+1 :

Hence, given 0 <1 < j < N,
(Ifz — tj)(Xi, Xj) = (tzxm = SX,' + SXi, Xj) = (Xi;tjxj = SXj + SXJ')

= {$x; — 83, %) + (303, 57%y) — (% %y — 8%) — (%5, 8%y) »

SO

|(X1,Xj)| < ”tiXi - SX|17|5| = |t|thXj = SXj” & 2—(N+2) . 7—(N+1) :
A

while

(vi,¥5) = e ™ (e™y; — Uyi, y;) + e ™ (Uys, y;)
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and
U™ (Uy; —e™y;) =y; — €™ Uy,
= U ly; = e ™iy; —e U (Uy; — e™y;)
= Uy, ¥5) = 0 U™'y;) = €9 (yi, y5) — €™ (y:, U™ (Uy; — €™y;)) ,
which implies that

(Yi; yj) — e——z‘vrti(eivrtiyi _ in7 yj)

n e_-mti(eiwtj (yi7 Yj) B eiﬂ'tj (Yi, U—l(ij — eiwtjyj)))

and consequently

it

e

iyi — Uyill + le™y; — Uy;|| < 9-(N+2) | m—(N+1)

363 < P

Thus, an application of the claim proved above shows that the unit vec-
tors up, ..., uy, obtained from xg,...,xy by the standard orthogonalization
process, and the unit vectors vy, ..., v, obtained from yy, ..., ¥y by the stan-
dard orthogonalization process, satisfy the conditions ||x; — w|| < 2=(V+2),
0<i< Nand|y;—vi| < 22W*+2 0 < i < N. Therefore, by ex-
tending {uo,...,uy} and {vg,...,vy} to two complete orthonormal systems
{u, : n € N} and {v, : n € N} in H and setting V and W to be the
unique elements of U(H) defined by the relations Vu, = e, (n € N) and

Wv, =e, (n € N), it follows that for any 0 <n < N,
[(VSV™ —Te,|| = ||1SV e, — t,V e,

= [[Sup — taun || = [|S(un = Xn) + (5% — tnXn) + Lo (X0 — W)
£ W, —]) 4 (|G — || = B+ PR 4 9, 9T L) o gl

and

|(WUW ™ — exp(inT))e,|| = |[UW e, — e™ W e,||
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= |Uvyp — ™ v || = |U(Vn — V) + (Uyn — €™ry,) + ™ (v — V)|
< 2||V'n, _Yn” o ||Uyn _eiwtnynH T 2—(N+2) d 9 2—(N+3) 3 7—(N+1) . 2—N )

Omep €deL det€an

Proposition 5.8: (i) For any « € P([-1,1]), {S € S1(H) : ps L &}
constitutes a conjugacy invariant dense G in Sy(H), which implies that for
any S € S;(H), UH) - S is meager in S;(H).

(it) For any A € P(T), {U € UH) : uy L A} constitutes a conjugacy in-
variant dense G in U(H), which implies that for any U € U(H), U(H) - U
is meager in U(H).

Proof: (i) As there exists a countable dense subset {¢, : n € N} of [—1,1]
such that k({t, : n € N}) = 0, setting Te, = t,e, (n € N) we obtain a
unique operator in S;(H) for which pup = % 2“("+1)(5tn 1 k and since unitar-
ily equivalent normal bounded linear oper;tzors on H have unitarily equivalent
spectral measures, it follows that for any R, S € S;(H), REgl(g{))S = UR ~
us, hence UH) - T C {S € S;(H) : us L s} and we need only appeal to
the facts that U(H) - T is dense in S1(H), S;(H) 3 S — us € P([—1,1]) is
continuous and {u € P([-1,1]) : u L x} constitutes a G5 in P([—1, 1]).

(it) As before, there exists a countable dense subset {¢, : n € N} of [—1,1]
such that A({e"™ : n € N}) = 0. Hence, setting Te, = t,e, (n € N) and
W = exp(inT), the fact that for any B € B(T), EV(B) = ET({t € [-1,1] :
e'™ € B}) implies that puy = § 2=+ 1§ im, L A\ and since unitarily equiva-
lent normal bounded linear opne:rgtors on H have unitarily equivalent spectral
measures, it follows that for any U,V € U(H), U Eg((g)) V = uy ~ py, hence
UMH) - W C {U € UH) : uy L A} and we need only appeal to the facts

that U(H) - W is dense in U(H), UH) 3 U — py € P(T) is continuous and
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{ne P(T): uL A} constitutes a Gs in P(T).
Omep €der det€au

We are finally in position to prove Theorem 5.1.

Since Uy NU3 constitutes a conjugacy invariant dense G in U(H) and 2N

Y3 constitutes a conjugacy invariant dense G in S;(H), while the mappings
(I)ZUQHUQ,BU’—),UUEP*(T)

and
P, :E,NY33 S pus € P ([—-1,1])

are continuous and the mappings
U:P(T)NPAT)>k— U, €Uy NUs

and
Uy : P(-L1)NP(-L1) 2 A~ Sr €Ny

are Borel, Lemma 5.4 and the proof of Theorem 4.1 show that if Y is any
Polish space and f : U(H) — YN, g : S;(H) — YN are any C-measurable
functions with the property that

UEGGV = {f(U)(n) :n € N} = {f(V)(n) : n € N},
whenever U, V are in U(H), and
SEG)T = {g(S)(n) : n € N} = {g(T)(n) : n € N},

whenever S, T are in S;(H), there exist ~-invariant dense G5 subsets B of
P*(T)N P,(T) and By of P*([—1,1]) N P.([-1,1]) and countable subsets C
and C; of Y such that

k € B= {f(®(k))(n) :ne N} =C,



49
whenever k € P*(T) N P.(T), and
A€ By = {f(®:1(N))(n):ne N} =C,

whenever A € P*([—1,1]) N P.([—1,1]). Thus, setting A = ®7![B] and A, =
®7'[By], we obtain unitary conjugacy invariant G subsets of Uy N Us and
Yo N X3 respectively such that U[B] C A and ¥4[B;] C A;, while the facts
that Uy C Uy and ¥y C ¥; show that A and A; are also dense in U(H) and
S1(H) respectively. Indeed, the implications

UEyGV € A= UBSHV € A=y~ py € B=> py € B=>U € A
and
SES1 TeA1:>SE22”23T6A1:>N,5~MT6Blz>useBlz>SeA1

show that A and A; are unitary conjugacy invariant, while the facts that
® oV = id and ®; o U; = id show that U[B] C A and U,[B;] C A;.
Therefore, by virtue of part (iv) of the theorem of G. Hjorth mentioned in
the introduction, we need only prove that A and A; are contained in the
saturation of W[B| and W, [B)] respectively according to unitary conjugacy:
Indeed, if U € A C Uy NU; and S € A; C 3y N X3, then puy = ®(U) €
B C P*(T) N P(T) and ps = ®,(S) € By € P*([=1,1)) N A([—1,1)),
hence puy () = pv and py, (us) = ps and the Spectral Theorem implies that
UESHR U (uy) € Y[B] and SEE° W) (us) € Uy[By).

Omep €der det€aun

Finally, we should mention that a new proof of Theorem 1 was given
by S. Solecki [15] and a new proof of the part of Theorem 2 concerning the
equivalence relation induced by the action of the group of unitary operators

on itself by conjugation was given by G. Hjorth [8].
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New natural examples of complex Borel and
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Introduction

Descriptive Set Theory is the study of definable sets in Polish (i.e., sepa-
rable completely metrizable) spaces and one of the main trends of current re-
search in the field is the classification of natural sets arising in other branches
of mathematics, in the sense of computing their exact complexity (see, for
example, the Introduction and Sections 23, 27, 33 and 37 of [5]).

Our main purpose in this chapter is to give new natural examples of com-
plex Borel and analytic sets originating from Analysis and Geometry. In fact,

we obtain the following results:

Theorem 1: The set of Dirichlet series whose abscissa of absolute con-

vergence is equal to —oo is II3-complete.

Theorem 2: Given any non-negative real number «, the set of entire func-
tions whose order is equal to « is TI3-complete and the set of all sequences

of entire functions whose orders converge to « is Hg-complete.

Theorem 3: Given any line in the plane and any cardinal number 1 <
n < Wy, the set of continuous paths in the plane tracing curves which admit

at least n tangents parallel to the given line is 31 -complete.

Theorem 4: Given any positive integer N and any cardinal number 1 <
n < Vo, if —00 < a < B < +00, then the set of all functions in C([a, ]V, R)
whose graph in RN admits at least n tangent N-dimensional hyperplanes

parallel to RN is Xl-complete.

Theorem 5: For any cardinal number 1 < n < Wq, the set of differen-
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tiable paths of class C? in the plane admitting a canonical parameter in [0, 1]
and tracing curves which have at least n vertices is X1-complete, while the
set of differentiable paths of class C3 in the plane admitting a canonical pa-
rameter in [0,1] and tracing curves which have at least n vertices is 9 if

n < Ny and 13 if n = R,.

At the end of section 23 of [5], A.S. Kechris states: In conclusion, we
would like to mention that we do not know of any interesting "natural” ex-
amples of Borel sets in analysis or topology which are in one of the classes
X2 or ITY for & > 5, but not in a class with lower indez. Thus, Theorem 2
provides for the first time natural examples of complex Borel sets in Analysis
or Topology that live in the fifth level of the Borel hierarchy. In addition,
Theorem 5 was motivated by and should be contrasted with a generaliza-
tion of the Four Vertex Theorem (see, for example, [11] on page 48 or [7] on
pages 28-30) proved in [2]: Every simple closed differentiable curve of class
C3 has at least four vertices. Geometric properties that give rise to analytic
sets which are not Borel were also given by O. Nikodym and W. Sierpinski
(see, for example, [8], [9] and page 216 of [5]). Finally, to the best of our
knowledge natural examples of complex Borel sets originating from Number
Theory were given for the first time by H. Ki in his thesis [6]. As ill-founded
trees on N form perhaps the archetypical 3{-complete set (see, for example,
[5] on page 209), the main tool for the proof of Theorems 3, 4 and 5 is the
result proved in section 3, while on that what concerns the proof of Theorems
1 and 2 we should mention that [.,.] stands for any standard coding of pairs
of natural numbers by natural numbers and (.)g, (.); stand for the associated

decoding functions, in the sense that [(n), (n);1] = n for every n € N.
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1. Complex Borel sets associated with
Dirichlet series

(ee]

By a Dirichlet series we mean a series of the form 4n, where s is a real
n=1

number and (@, )nen fo} & sequence of complex numbers, and, by identifying

f ‘2 with (an)nen\{0}, We may view CNMO} 55 the family of all Dirichlet se-

n=1
ries, while for any a = (@, )nen\{0} € CN\M0} 5, = inf {8 eER: Y |‘:L—”| < +oo}
n=1
is called the abscissa of absolute convergence of > #= (see, for example, [1]
n=1
on page 225). It is not difficult to prove that the set of Dirichlet series whose
abscissa of absolute convergence is less than +o0 is 3X9-complete and we con-

fine ourselves in proving the following result:

Theorem 1.1: The set of Dirichlet series whose abscissa of absolute con-

vergence is equal to —oo is II3-complete.

Proof: If a € CNM0} then
0, =—00 < Vv >13N > 1Vn > 1> |ax]k” < N),
k=1
which implies that the set {a € CN\MO : ¢, = —co} is ITJ, since the mapping
CNM® 5 g+ a, € C is obviously continuous, whenever n € N \ {0}.

To prove that {a € CNM% : g, = —co} is T13-hard, it is enough to show
that a set which is known to be IT3-hard is Wadge reducible to {a € CN\0} .
o, = —00} (see, for example, [5] on pages 156 and 169). Since P; = {z €
2MONX(NWOD) + ymy>on(z(m,n) = 0)} is TI3-complete (see, for example, [5]
on page 179), what we have to show is that {a € CNM0} : g, = —o0} <y Ps.

So let
0 , if z((n)o, (n)1) =0

)

((n)2 - no)=1 if 2((n)o, (n)1) = 1

38



o6

whenever z € 2NMONXM\OD and n € N\ {0}. Given z,y € 2N\OD*MN\{0})
and n € N\ {0}, if (7, 5) = y(¢,j) for 1 <4,j < n, then for any 1 < k < n,
a¢ = af and consequently 2MNVODXM\OY 5 7 (a2),eny0p € CVMD s
continuous. What is left to show is that for any z € 2NODXMN\{D 4 ¢
Py = (a®)nem\io} € {a € CNMO: g, = —o0}.

If x ¢ P; and m € N\ {0} is such that {n € N\ {0} : z(m,n) = 1} is

infinite, then

Yol = 3 BT ¥ [m,n]™
k=1 (=1 (R)5 - ke w(mmy=1 ™2+ [, 7]
1
z(m,n)=1 L
and hence (a2)nen(0y & {a € C™MY : 0, = —00}.
If z € Py and v € N\ {0}, then
i |ai|kv = Z PRECH 1k(k)o kY = f: Z i 1 — . [m,n]”
k=l z((k)o,(k)1)=1 (k) - m=1g(mmn)=1 "7 [m,
- 1 1 1

- [m,n]” + f: Z

m=v+2 z(m,n)=1

=2, 2.

m=1 g(m,n)=1

£, 2 T EE D

m?2 - [m,n|™ m2  [m,n]m

m=1 z(m,n)=1 m? - [m ’I’L] m=v+2 z(m,n)=1 m? [m’ 7’1/}2
v+1
<> > — [mn] - [m,n]” + Z 2Z——<-1—oo

m=1 z(m,n)=1 m=p+2 T

and hence (a2),en\(o} € {a € CNMO : 5, = —o0}.
Omep eder detan
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2. Complex Borel sets associated with entire
functions

Let H(C) stand, as usual, for the Polish space of entire functions, equipped
with the topology of ”almost uniform convergence,” namely the topology of

uniform convergence on compacts, and for any f € H(C), let M(r; f) =
max |f(re)|, whenever r > 0; then p(f) = limsup 2EEMTN 5 called

0<f<2m Pt logr
the order of the entire function f (see, for example, [4] on page 182) and
i i, = &Tz!@, whenever n € N, and hence f(z) = %_ojo cnz" (z € C), then
p(f) = limsup %i—”— (see, for example, [4] on page 186).

n—00 len]

Theorem 2.1: For any 0 < a < oo, {f € H(C) : p(f) = a} is I3-
complete and {(fi)ren € H(C)N : klim p(fr) = a} is TI2-complete.

Proof: If f € H(C) and (fx)ren € H(C)N, while ¢, = % and cg, =

(0
=, whenever k,n € N, then

—_ . [ 7-logj P k-logk e
= 35 > Vk > >a—27" < D
p(f) =a < Vidj > ¥ _j<logﬁ_a A o <a+

Jexl
and

klirn p(fi) = a < VidjVk > jViadm > lVn > m
m-loglm > a— 27 A n-logln <at2itot]
1Og |Ck,m| ].Og [—C_—
which implies that the sets A, = {f € H(C) : p(f) = a}, Ba = {(fr)ken €
HEOW klim p(fi) = a} are II3 and II? respectively, since the mapping

H(C)N > (fe)ken +— fx € H(C) is obviously continuous, whenever k € N,
and so is the mapping H(C) > f — f®)(0) € C (see, for example, [3] on
page 192), whenever v € N.
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To prove that A, is II3-hard, it is enough to show that a set which is
known to be Il3-hard is Wadge reducible to A, (see, for example, [5] on
pages 156 and 169), and as P; = {z € 2M*N : ymV*®n(z(m,n) = 0)} is
IT%-complete (see, for example, [5] on page 179), we will show that A, <y P;.

So let

nn'¢a:(”

0 At =1

where
a+2™™ , M alm,n) =1

¢$([m)n]) = )
a+37mnl - if g(m,n) =0

whenever z € 2N*N and m,n € N. Given any z € N, it is not difficult to
prove that |cfl\% — 0 as n — o0o; therefore, by setting f,(z) = § 2" (z €
C) we obtain an entire function (see, for example, [3] on page 1?5; and what
we want to show is that the mapping 2¥*N 5 z +— f, € H(C) is continuous.
Indeed, we need only remark that for any integer NV, if z,y € 2N*N and

z((n)o, (n)1) = y((n)o, (n)1), whenever 0 < n < N, then ¢} = c¥, whenever

n)

0 < n < N, and since for any u € 2N*N and for any integer n > N,

|c¥| < —=, it follows that
n na_}—_r

R’I’L
T - <2 n
mglle — A <2 2t

where Y. £~ — 0 as n — oo, whenever R > 0. What is left to show is
n>N netl

that for any x € 2NN z € P < p(f2) = .
If z ¢ Ps, then there exists m € N such that 3*°n(z(m,n) = 0), which

implies that

- log
3%°n (n e a+2“m)

1
0 P
log

and consequently p(f;) = a+27™.
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If z € Pj, then for any m € N, there exists n,, € N such that for any

integer n > n,, z(m,n) = 0 and hence

5 = o+ 3~tmn <a+2™™;

therefore, given M € N,

o < Il loglmn]
log = 1

[

for every natural numbers m, n apart from the values 0 < n < n,,, which
proves that p(f;) = a.

To prove that B, is II3-hard, as before, it is enough to show that a
set which is known to be II3-hard is Wadge reducible to B,. Since S; =
{x € 2NN . yomy®n(z(m,n) = 0)} is X3-complete (see, for example,
[5] on page 181), it is not difficult to prove that so is S} = {z € 2N :
Veemven(z([m,n]) = 0)}. Indeed, we need only remark that the mapping

2NXN constitutes a homeomorphism whose

23z (2([m, 1)) mmenxn €
inverse is 2NN 3 2 — (z((n)o, (n)1))nen € 2N. Therefore, P¥ = {z €
2N*N- v (z; € S;)} is TI2-complete (see, for example, [5] on page 180), and
what we have to show is that Py = {z € 2NN . vIv°omv>®n(z(l, [m,n]) =

0)} is Wadge reducible to B,. So let
) e+ ifn € N\ {0}
Cltym)n =

, =10
where

a+27t+nt ifz(l,[m,n]) =1and n € N\ {0}

¢m(l7 [m>n]) = { )
a+nt ,if (I, [m,n]) =0 and n € N\ {0}

2N><N

whenever z € and [,m € N. Given any natural numbers [, m, it is not

difficult to prove that for any z € 28N*N, \cﬁ)m]’nli — 0 as n — oo; therefore,
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by setting f{ ., (2) = 720 Cimn?" (2 € C), we obtain an entire function (see,
for example, [3] on page 118) and what we want to show is that the mapping
2NN 5 g Jiim € H(C) is continuous.
Indeed, we need only remark that for any integer N > 2!, if 2,y € 2NV*N
and z(I,[m,n]) = y(l,[m,n]), whenever 0 < n < N, then since for any
al

, it follows that

u € 2NN and for any integer n > N, [¢f 1| <
) ) na+2_l+1

Rn
n )

neot2=lt1

max |f§m](z) - fﬁm](zﬂ <2 Z
n>N

|zZ|<R

where ngNna_j—ilT — 0 as N — oo, whenever R > 0. Therefore, the
definition of the product topology is easily seen to imply that the mapping
2NN 5 7 (fE)ren € H(C)N is continuous and what is left to show is
that for any z € 2NNz € Pr <= (ff)ken € Ba, ie, v € P —
lim p(ff) = a.

If © ¢ PZ, then there exists [ € N and natural numbers mg < m; < ...

such that for any index ¢, 3*°n(z(l, [m,n]) = 1), which implies that

-1
3o | i —a+27 4nt
log I
|c[l,mi],'n.|
and consequently
, n-logn _
Mﬁmﬂzhmwpagﬁ%—za+2’,

[zhmi] »n‘

|
whenever 7 € N, which implies in its turn that the sequence (p(f7))ren does
not converge to a.

So let x € P and let [ € N. Then there exists m; € N such that for any

integer m > my, V*°n(z(l, [m,n]) = 0), which implies that

n-logn o
T = Gl

e el

i o)

log
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and consequently

- ) n - logn . -1
p(fim) = llifisgp W = lim (a+n7") =,
[l,m],n

while if 0 < m < m; and n € N\ {0}, then

a+2t+n7t ifx(l[m,n]) =1

Y

1
g7 | a+n! it (1, [m,n)) = 0
which is easily seen to imply that

n-logn
o < p(ff ) = limsup ———21 < o 27
: n—oo log ZR—

Therefore, given N € N, a < p( f[gfm]) < o+ 27V, for any natural numbers
[, m, apart from the values 0 < m < m;, 0 < [ < N, which proves that
lim p(fF) = a.

Omep eder delal

Corollary 2.2: The order of an entire function is a Baire class two function

which 1s not Baire class one.

Proof: Since for any particular 0 < a < oo, p~t[{a}] = {f € H(C) :
p(f) = a} is II-complete and therefore not I19, p is not Baire class one,

while since if f € H(C) and ¢, = % for every n € N, then

m - logm
T N

lem|

p(f) = lim sup

n—0 s log

in order to prove that p is Baire class two, it is enough to prove that for any

n € N,
Joe
sn:H(C)BstupW

€ [0, o0
m>n 108 1oy
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is Baire class one.
But if U C [0, 0] is non-empty open and oo ¢ U, then given f € H(C),
sn(f) € U if and only if

m!

8 T7tm (0)]

Aamzn<w27_s)>
08 T O)]

and consequently {f € H(C) : s,(f) € U} is X9. If oo € U, then U =

V' U (a, 0], where V' C [0, ) is non-empty open and 0 < o < 00, hence

. log
3r,s€Q((r—s,r+s)§U A VmZn(Mngrs)

sn(f) €U = (sn(f)ev v 3m2n(%>a>> :

log ey

which implies that {f € H(C) : s,(f) € U} is XY and consequently s, is
Baire class one.

Omep edeL detéal
It is not difficult to prove that A, = {f € H(C) : p(f) = oo} is III-
complete and a straightforward computation shows that Be = {(fi)ken €

H(C)™ : lim p(fy) = oo} is TIj.

Open Problem: Is B, I1}-complete?
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3. Trees and functions in L!

Let 1 <n<Nyandlet — 0o < a < f < . Foranyi<nweset[7(:;) =
i+l

[ +ZL w1+ L= } 1fn<No,anle®—|a+Z 2],a+]§1%,

and if s € N<N is such that the Inz 's are already defined, then for any

i < n, we define the I,(L sAk ’s, as follows: If I(Y) = [a,b], then for any k € N,

n,s

%1,
](1)3/\,6— {a+ Z S at Z ] So let T be any tree on N and let ¢, =

H (1 _ Z 2—1ength(s)xlg)s> and /in;T(il'J) = fax ¢n;T(t)dt (IE S [Ck,ﬁ])

<n seT\{0}

Theorem 3.1: Given 1 <n < Ng and given any tree T' on N,

if (kn)_(B) exists, then (knr)_(6) > % ,
T e IF = (Yi <n)(3e; € Int(I%))) (kipp(as) = 0)

and

T e WF = (Vz € [o, 0))((knr) () > 0)

while both mappings
Tr>Tw ¢ur € L'([, 6])

and

TraT — kpr € C(lo, 5, R)

are well-defined and continuous.

Proof: We fix a tree 7" on N and for convenience we set gbsf;)T = 1—

2“le“gth(s)xl(i), whenever ¢ < n. We remark that if 1 < n, j < n
seT\{0} i
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and 7 # j, then QSS)T =1 on Ir(j)7 which implies that ¢, = (;55:;)11 on [ (%,

n

while our construction implies that for any =z € I @ and for any s € N<N
y n)@ y )

there exists at most one k£ € N for which z € [ @)

n;s/\k;)

qbgf)T(a:) >1-— ki_o:l 27% =0 and gb,(f)T(x) = 0 iff there exists a € [T] such that

which implies that

zE ﬂkeNIT(:;L] - In addition, for any positive integer 1,
X o
krr(B) — knr | + 2T
J:

g — <a+ %%)
j=1

1
== y 2f n7(t)dt
B—lo+ 5% asy e
J=1 j=1
1 > -« 1
s Z 92it2ktl @

= 2i
B - (oz + . 2 %) k=l
J=1
which implies that if (kn.r) () exists, then (k,r)_(8) >

So let T'e WF and let © < n, while x € [7(:20 Then there exists s € T of

1
6

maximum length such that z € I{)), and maximality implies that = € I{) \

U,,eN;sﬁyeTIfolﬁy. If z is either the left endpoint or lies in the interior of I(?)

. length(s) h
then there exists € > 0 such that for r <y < z+e¢, ng)T(y) =1- > 27k
’ k=1

, length(s)
which implies that (kn7),(z) =1— Y 27%. Solet z be the right endpoint
k=1

of l,(f)s If s # (), then there exists ¢ > 0 such that for z < y < z + ¢,
@) length(s)—1 , length(s)—1
¢nr(y) =1— Y 27% which implies that (kn7), (z) =1— 5 27
’ k=1 k=1
while if s = ) and i+1 < n, then there exists € > 0 such that for z < y < z+e€,
qbff}l) (y) = 1, which implies that (knr) () = 1. We have thus proved that
T € WF = (Yo € [0, 8)((kn) (2) > 0).
Solet T € IF and let a € [T]. If i < n, and o; is the unique point

contained in ﬂkeNIngk, then we claim that &;,.,(e;) = 0. Indeed, if k €
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N and z, y are in ‘[T(L)alk7 then |@n.r(z) — dnr(y)| = |¢(z) (z) — ¢(z) )| <

27O 0 (2) — X, ¥)] < 2 X 27 = 27" and hence if @ # o
seT\{0} e * i>k

lies in the interior of I 7(11)04 > While I stands for the interval defined by z and «,
then, as qﬁnT(az) =0 = ¢nr(a;) =0, we obtain that |knr(2) — kpr(ay)| =
J1 iz (Bt = J1(bnz(t) — Prr(@))dt < 275 - [o — ] = | sl Erled] <

2751 and the claim follows. We have thus proved that T' € IF = (Vi <
n)(3a; € Int(1$))) (Khp(as) = 0).

What is left to show is that the mapping Tr 3 T — ¢,.r € L' ([, 0]) is

continuous, as the continuity of the mapping Tr 3 T +— knr € C([ey, 5], R)
will then follow. (Indeed, it is enough to notice that for any f, g in L*([a, 8])
and for any € (o, 8], | /2 f()dt — [2 g(0)d] < [217(¢) — g(®)dt.) Given
i <mn,s € NNand k € N, it is not difficult to see that m(IS)m) = 'ngof
and m(IT(Zl,\k) = "ﬁf,fif), while given T, T" in Tr, [? |$pr (7)) — pr(z)|dz =

2 110 1907 () = $nr(@)ldz = T [16) |$1n (%) = S (2)|d, where for any

i < n and for any z € 1(1)7 QS,:)T,( ) — ¢(z) (z) = 3 27lmstblay o (x) —
seT\{0} i

D longth(e) 1@ (), which implies that |¢S) . —qu:)T| < 1and gb(z qﬁ(l)
®

n;s—~k
and for any s € N, [y [69n (@) — ¢r(@)ldz = ¥ [y [60p(a) -
brr()|dz, where for any k € N, [ |¢EJ>T,< )— ¢5;3T< )ldx < muf:;m =

(IS:’S)
2L

So let T' € T'r be arbitrary but fixed and given N € N\ {0}, let Vp.y =
{T'eTr:(Vse{0,1,.,N -1} (s e T < seT)}. Itis not diffi-
cult to see that the V. n’s form a fundamental system of open neighborhoods

of T'in Tr. Solet N € N\ {0} be arbitrary but fixed and let 7" € Vr.y.
B () = S (@)lds <

seT'\{0}

vanishes on I (i) )\ Ugen/, for every s € N<N: therefore, for any i < n

Then, for any 7 < n and for any s € N<N, [ 19
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) anz-T/(x)_ ( )|dz+ Z 4k+1 Z fl()

m(I{)) 54w and hence we obtam that

O (@) — p () da+

[ |80 (2) = (@)l

n;0
N-1 | N=1 N-1 (.)
S Z f |¢nT/( ) n;T(x)]dx +
ko=0 \ k1=0 kyn_1=01

n;(kg,k1,.00y kny—1)

g, | 11 s, 1 1 . 1
D) ot i) ) T U s )+ s
So let (ko ki, ..., kn_1) € {0,1,...,N —1}" be arbitrary but fixed. Then,
given s € NN sl (ko ky,....,ky_1) = (Vz € ]v(z)(ko,kh...,kz\r_l))(XI,(J;L(CC) = 0)
and s C (ko,k1,....,kn-1) = (s € T < s € T"). Therefore, for any =

‘[7(;)(k0;1€1>.‘.7kN—1)7 _QLN - _k§N2 "B ¢n T'( >_—¢S;) (z) < z 27F = 2N’ which
implies that [, O |¢nT,( ) = ¢S;)T($)|da: % Wm(IT(L )Q))4k01+1--.—4k1\7£1+1

N—-1
and as 1;0 W = % (1 — ﬁ) we obtain that

[ 1000 (x) — ()| dx

O]
[n;(b

N-1 (N-1 N-1 1 @) 1 1
< Z Z Z Q_Nm(l ;@)4k0+1"'4kN_1+1

ko=0 \k1=0 kn—1=0

@, 1 1 1 by 101 @, 1
m(In;(?)) 4ko+1 " gkn—2+1 3. 4N) h ) m(]n ®>4ko+1 3. 4N + m([n;@)g 4N

+
1 @ N-1 [ N-1 N-1 1 1
% 2_Nm(jn;®)' {Z > > Akot1 " ghn_1t1

ko=0 kn-1=0

1 1
41(:0-1-1 4kN 2+1
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I ome &l L3y " 3 ;
i) % (5 (- w)) = g

k=0

<

for every i < n, which implies that [ |¢n.1v (%) — ppr(z)|dz < 3(8— )2~ N+
for every T" € Vp.n.
Omep edeL detéan
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4. Analytic sets and tangents of continuous
curves in the plane

A continuous path in the plane is a continuous mapping sending the in-
terval [0, 1] into the Euclidean plane E?. Therefore, we may view the Polish

space C([0,1], E?) as the family of all continuous paths in the plane.

Theorem 4.1: Given any line in the plane and any cardinal number 1 <
n < Vo, the set of continuous paths in the plane tracing curves which admit

at least n tangents parallel to the given line is 31-complete.

Proof: Once 1 < n < Ny is given, by choosing appropriately a coordi-
nate system in the plane, it is enough to prove that the set of continuous
paths in R? tracing curves which admit at least n tangents parallel to the
real line is ¥1-complete.

The fact that the set in question is Xi-hard follows immediately from
Theorem 3.1. Indeed, we need only consider for « = 0 and # = 1 the mapping
that assigns to every tree 7' on N the continuous path t — (¢, k,7(t)) (t €
[0,1]) in R%. Thus, what is left to show is that the set in question is actually
31, in case n < Ny.

But this follows from the fact that given any (z,v) € C([0, 1], R?), (z,v)
traces a curve which has at least n tangents parallel to the real line iff there

exists (ay, ..., an, b1, ..., b,) € [0,1]™ x R™ with the properties
a; <...< @y,

(Vi € {1,...,m})(b; # 0) and

(Vi € {1,..,n})(¥e € Q1) € Q)(vr € [0,1]N Q)
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<0<|r—ai|<5:>< s g

Omep eder det€au

Theorem 4.2: Given any positive integer N and any cardinal number 1 <
n < Vg, if —00 < @ < B < 00, then the set of all functions in C(|a, BN, R)
whose graph in RNT! admits at least n tangent N -dimensional hyperplanes

parallel to RY is 3i-complete.

Proof: We will first prove that the set in question is ¥i-hard. To this
end we consider the mapping that assigns to every tree 7" on N the continu-
ous function fr : [, BN 3 (z1,..., ZN) — Knr(21) + oo + Knr(zNn) € R. We
remark that given (ay,...,ay) € [a,8]Y, the graph of fr in R¥*! admits a
tangent N-dimensional hyperplane at the point (ai, ..., an, fr(ai, ..., an)) iff
fr is differentiable at the point (as, ..., an) or (equivalently) x,.r is differen-
tiable at the points ai, ..., ay, while the tangent N-dimensional hyperplane
in question, if it exists, is perpendicular to the vector (—V fr(as,...,ay),1) =
(=kn.r(a1), ..., —#hr(an), 1) and consequently it is parallel to RY iff «/,.;.(a1) =
... = Kpr(ay) = 0. Therefore, an application of Theorem 3.1 shows that the
set in question is X}-hard and what is left to show is that it is actually 31,
in case n < Ny.

But again this follows from the fact that given f € C([e, 8], R), the
graph of f in RVt admits at least n tangent N-dimensional hyperplanes

parallel to RY iff there exists (al,...,a") € (o, B]Y)™ with the properties
1<i<j<n=a'+#al and

(V(i,v) € {1,...n} x {1,.., N})(Ve € Q})(30 € Q})(Vr € [, f]N Q)



f@'+ (r—ay)e,) — f(a))

<O<|r—af,|<5:>

r—a
where e, ..., e)y denote the standard basis vectors in RY.

Omep edeL detéar
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5. Analytic sets and vertices of differentiable
curves in the plane

By analogy to continuous paths in the plane we can define differentiable
ones of any class. At this juncture we will restrict ourselves to the case
when the differentiability class is C? or C® and identifying E? by R?, say by

choosing a coordinate system, we view the Polish space

P2 = {(:c,y) € C*([0,1),R?) : (%)2 i <%>2 B 1}

as the family of all differentiable paths of class C? in the plane which admit

a canonical parameter in [0, 1] and the Polish space

P = {(x,y) € C¥([0,1],R?) : (j—‘ﬁ)z + (%)2 = 1}

as the family of all differentiable paths of class C? in the plane which admit
a canonical parameter in [0, 1], since we are interested in the notion of cur-
vature of a curve. Thus, if (z,y) is any path in P2 or P3, then the curvature
K of the curve traced by (z,y) is given by the formula x = ‘2—“3” . % — % . ‘573’
and depends at least continuously on the canonical parameter s € [0, 1],
while a point A on the curve traced by (z,y) is called a vertex if <%)A ={J,
ie., (%) =0, where a is the value of the canonical parameter for which

(z(a),y(a)) constitutes the pair of Cartesian coordinates of the point A in

the Euclidean plane E? (see, for example, [11] on page 26).

Theorem 5.1: For any cardinal number 1 < n < g, the set of differ-
entiable paths of class C? in the plane admitting a canonical parameter in
[0,1] and tracing curves which have at least n vertices is 3i-complete, while

the set of differentiable paths of class C® in the plane admitting a canonical
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parameter in [0,1] and tracing curves which have at least n vertices is X3 if

n < Ry and I3 if n = V.

Proof: We will first prove that the set of differentiable paths of class C?
in the plane admitting a canonical parameter in [0,1] and tracing curves
which have at least n vertices is X1-hard. To this end we consider for oo = 0
and 8 = 1 the mapping that assigns to every tree 7' on N the path in P? de-
fined, as follows: z,1(s) = [5 cos(Ynr(€))dé and ynr(s) = [§ sin(nr(€))dE
for every s € [0, 1], where 9,.1r(s) = [§ knr(§)d€ for every s € [0,1]. It is
not difficult to verify that the mapping Tr 3 T — (Zn.1, Y1) € P? is well-
defined and given any T' € Tr, T € IF iff (.1, yn,;r) traces a curve having
at least n vertices; this follows from Theorem 3.1 and the fact that for any
T € Tr, the curvature of the curve traced by (z,r,ynr) is given by the
function k., as it follows from the proof of the theorem on the existence
of a plane curve with given curvature (see, for example, [11] on page 27).
What we need to show is that the mapping Tr 3 T — (Zpr1,Ynr) € P?
is continuous. By virtue of Theorem 3.1, if ¢ is either the identity, the
sine or the cosine function, it is enough to show that the mappings ®; :
C([0,1],R) — C*([0,1],R) and ®, : C([0,1],R) — C?%([0,1],R), defined
by the relations ®;(f)(z) = [§o(f(¢))dt (z € [0,1]; f € C([0,1],R)) and
Do (f)(z) = [§d(f()dt (z € [0,1]; f € C([0,1],R)), are continuous.

The proof of the continuity of ®; is left to the reader and since, for
complete metric spaces, uniform convergence on compacts is equivalent to
continuous convergence (see, for example, [10] on page 162), if f, — f
in C'([0,1],R) and z; — =z in [0,1] as K — oo, it is enough to show
that @5(fi) (o) — Bo(f)(®), Da(fi)'(mx) — Da(f)(x) and Ba(fe)"(zi) —
Dy (f)"(x) as k — oo. Indeed, the continuity of both ¢ and ¢’, the Lebesgue
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Dominated Convergence Theorem (see, for example, Part One of [10]) and the
fact that both fx(zx) — f(z) and fi(zx) — f'(x) as k — oo are easily seen
to imply that @o(f)(z) = J2 B(felt))Xi0m (Ot — I3 (1) x0m (Dt =
Do (f)(2), Po(fr)' (zk) = &(fe(@k)) = ¢(f(2)) = P2(f)'(z) and ‘1’2(fk)"($k) e
& (fulwn)) - Filon) = (F(z)) - () = ©a(f)" (=) as k —» oo.

Our next step is to show that the set of differentiable paths of class C? in
the plane admitting a canonical parameter in [0, 1] and tracing curves which
have at least n vertices is X1, in case n < N.

Indeed, we need only remark that given any (z,y) € P?, the curve traced
by (z,y) has at least n vertices iff there exists (ay,...,a,) € [0,1]" with the
properties

a; < ... < a, and

(Vi € {1,...,n})(Ye € Q})(36 € Q})(¥r € [0,1] N Q)

2 ()" (r) =y (1)2"(r) — &/ (a)y" (@) + ' (a:)2”(as)

<0<|r—ai|<5:>

<d).

Finally, we will prove that the set of differentiable paths of class C® in the
plane admitting a canonical parameter in [0,1] and tracing curves which
have at least n vertices is 39 if n < Ry and II3 if n = Ny. To this end,
given any positive integer IV, it is enough to prove that the set Cy =
{(z,y) € P?: (Aa1,..an) € [0,1]")(1 < i < j < n = |a—aj] >
Nt A (Vi € {1,..,n})(@(a:)y"(a:) — ¥'(a;)z" (a;) = 0))} is closed, if
n < Ng. So let (xk,yk) — (z,y) in P? as k — oo and let (zx,yx) € Cu,
whenever k£ € N. Then, for any k € N, there exists (af, ..., a*) € [0, 1]* such
that 1 <4 < j <n=l|af —a¥| > N~! and 2'(af)y" (af) — v/ (aF)2" (af) = 0,
whenever 1 < ¢ < n. The compactness of [0,1]" implies that there exists
a subsequence ((alfj L ))jen of ((a¥, ...,ak))ren which converges to some

point (ai,...,a,) in [0,1]*, and it is not dlfﬁcult to prove that 1 <7 < j <
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n = |a; — a;| > N~!, while, as, for complete metric spaces, uniform conver-
gence on compacts is equivalent to continuous convergence (see, for example,
[10] on page 162), we deduce that z’(a;)y"” (a;) — v'(a;)z"(a;) = 0 for every
1 <4 < n and consequently (z,y) € Cy.

Omep edel delar

Open Problem: Is the set of differentiable paths of class C? in the plane,
which admit a canonical parameter in [0, 1] and trace curves having infinitely

many vertices, I13-complete?
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Summary

Two of the main trends of current research in Descriptive Set Theory
are the study of natural equivalence relations arising in other branches of
mathematics, in the sense of determining their relative complexity under the
notion of Borel reducibility, and the classification of natural sets arising in
other branches of mathematics, in the sense of computing their exact com-

plexity.

Definition: Let X, X' be any Polish spaces and let E, E' be any equivalence
relations on X, X' respectively. Then E is said to be Borel reducible to
E' when there exists a Borel function f : X — X with the property that
rBy < f(2)E f(y), whenever z, y are in X.

An important notion in the study of equivalence relations is the notion

of generic S-ergodicity, where S, stands for the group of permutations of N.

Definition: Let X be any Polish space and let E be any equivalence re-
lation on X. Then E is said to be generically S.,-ergodic if every E-

equivalence class is meager and for any Polish space Y and for any Baire
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measurable function f : X — YN with the property that By = {f(z)(n) :
n € N} = {f(y)(n) : n € N}, whenever z, y are in X, there exist an
E-invariant co-meager subset A of X and a countable subset C of Y such
that z € A = {f(z)(n) : n € N} = C, whenever x € X. In particular,
since by setting u=yv <= {u(n) : n € N} = {v(n) : n € N}, when-
ever u, v are in YN, we may canonically identify YN /=2y with the set of all
countable subsets of Y, generic Sy.-ergodicity implies that any E-invariants
of elements of X, which are computed in a Baire measurable way and can be

represented as countable subsets of a Polish space, must generically trivialize.

The notion of generic S..-ergodicity for equivalence relations is related
to the concept of generic turbulence for Polish group actions. The following

definition is due to G. Hjorth.

Definition: Let G be any Polish group acting continuously on a Polish space
X and let x € X. For any open neighborhood U of x in X and for any sym-
metric open neighborhood V' of 1 in G, the (U,V)-local orbit O(z,U,V)
of z in X is defined, as follows: y € O(x,U,V) if and only if there exist
905915 -+, Gk 0V such that if xg =  and x4, = g; - x; for every index i < k,
then all the z;’s are in U and 11 =y. The action of G on X is called tur-
bulent at the point z, symbolically x € TZX, if for any such U and V, there
exists an open neighborhood U’ of z in X such that U' C U and O(z,U, V)

1s dense in U'.

The concept of turbulence is a property of the orbits of the action in the
sense that if G is any Polish group acting continuously on a Polish space X

and EX stands for the corresponding orbit equivalence relation, then T is
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EX-invariant, while the main result concerning the concept of turbulence is

the following theorem of G. Hjorth.

Theorem: Let G be any Polish group acting continuously on a Polish space
X in such a way that the orbits of the action are meager and at least one
orbit is dense. Then the following are equivalent:

(1) The action of G on X is generically turbulent, in the sense that T
s co-meager in X.

(#43) Tz € TX)(G -z = X).

(1i1) EX is generically So-ergodic, in the sense that for any Polish space Y
and for any Baire measurable function f : X — YN with the property that
zEXy = {f(z)(n) : n € N} = {f(y)(n) : n € N}, whenever z, y are in X,
there exist an EZ -invariant co-meager subset A of X and a countable subset
C of Y such that x € A= {f(z)(n) : n € N} =C, whenever z € X.

(tv) The same as in (14¢) but with ”Baire measurable” replaced by
"C-measurable” and ”co-meager” replaced by “dense Gs.”

(v) For any Polish space Y on which Ss acts in such a way that the action
is Borel and for any Baire measurable function f: X — Y with the property
that zE&y = f(z)EY_f(y), whenever z, y are in X, there exists an EJ -
invariant co-meager subset A of X for which f[A] is contained in a single
Egoo—equz'valence class.

(vi) The same as in (v) but with ”Baire measurable” replaced by
”C'-measurable” and ”co-meager” replaced by "dense Gs.”

(vii) For any relational language L, consisting of countably many symbols,
and for any Baire measurable function f : X — X with the property that
zEXy = f(z) & f(y), whenever z, y are in X, there exists an EX -invariant

co-meager subset A of X for which all countable models in f[A] are equivalent
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fl4] are equivalent up to =2, where Xy, is the Polish space of all countable
models for L whose universe is IN.
(viis) The same as in (vii) but with ”Baire measurable” replaced by

”C-measurable” and ”co-meager” replaced by "dense Gs.”

Remark: Part (v) of the above mentioned theorem of G. Hjorth explains

the terminology S..-ergodic.

Our first purpose in this doctoral dissertation is to show that any invari-
ants for the measure equivalence relation and for certain of its most char-
acteristic subequivalence relations and any unitary conjugacy invariants of
self-adjoint and unitary operators, as well, which are computed in a Baire
measurable way and can be represented as countable subsets of a Polish space
or more generally as orbits of an S..-action or equivalent countable models
up to isomorphism, must generically trivialize. In fact, we obtain the follow-

ing results:

Theorem 1: If X is any compact perfect Polish space and P(X) stands
for the Polish space of probability Borel measures on X, equipped with the
weak™-topology, while p ~v < (L < v A v < u), whenever p, v are
in P(X), then ~ is generically Se-ergodic. (The same is true if X is any
compact smooth manifold of arbitrary dimension and we replace ~ by ~¢r,
where p~crv iff u ~ v and both Radon-Nikodym derivatives % and j—z are
differentiable functions of class C", whenever r € N U {c0}.)

Theorem 2: Let H be any infinite-dimensional separable complex Hilbert

space and let U(H) stand for the Polish group of unitary operators on H and
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S1(H) stand for the Polish space of self-adjoint operators on H with norm
at most one, both equipped with the strong topology. Then the conjugation
action of U(H) on both U(H) and S (H) is generically turbulent.

Our second purpose in this doctoral dissertation is to give new natural
examples of complex Borel and analytic sets originating from Analysis and

Geometry. In fact, we obtain the following results:

Theorem 1: The set of Dirichlet series whose abscissa of absolute con-

vergence is equal to —oo is TI3-complete.

Theorem 2: Given any non-negative real number «, the set of entire func-
tions whose order is equal to a is II3-complete and the set of all sequences

of entire functions whose orders converge to « is I13-complete.

Theorem 3: Given any line in the plane and any cardinal number 1 <
n < W, the set of continuous paths in the plane tracing curves which admit

at least n tangents parallel to the given line is Xi-complete.

Theorem 4: Given any positive integer N and any cardinal number 1 <
n < Vo, if —00 < a < B < 400, then the set of all functions in C([a, ]V, R)
whose graph in RN admits at least n tangent N-dimensional hyperplanes

parallel to RN is 3i-complete.

Theorem 5: For any cardinal number 1 < n < Nq, the set of differen-
tiable paths of class C? in the plane admitting a canonical parameter in [0, 1]

and tracing curves which have at least n vertices is Xi-complete, while the
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set of differentiable paths of class C* in the plane admitting a canonical pa-
rameter in [0,1] and tracing curves which have at least n vertices is 39 if
n < Ry and I3 if n = V.



