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Abstract

In the context of the axiom of projective determinacy,
Q - degrees have been proposed as the appropriate generalis-
ations of the hyperdegrees to all the odd Tevels of the
projective hierarchy. In chapter one we briefly review the
basics of Q - theory.

In the second chapter we characterise the Q - jump op-
eration 1in terms of certain two - person games and derive
an explicit formula for the Q - jump. This makes clear the
similarities between the Q - degrees and the constructibility
degrees, the Q - jump operation being a natural generalisation
of the sharp operation.

In chapter three we mix our earlier results with some
forcing techniques to get a new proof of the jump inver-
sion theorem for Q - degrees. We also extend some results
about minimal covers in hyperdegrees to the Q - degrees.
Many of our methods are immediately applicable to the con-

stuctible degrees and provide new proofs of old results.
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Chapter 1

Background and definitions

[t is well known that by adopting the axiom of Projective

Determinacy (PD), much of the classical structure theory of the

first two levels of the projective hierarchy can be 1lifted,
with a periodicity of order two, to the higher Tlevels of the
hierarchy. The hyperdegrees are just the A % - degrees and so
hyperarithmetic theory should have some '"good" generalisations at
all the odd Tevels of the projective hierarchy.
In view of the periodicity mentioned above, it 1is at

first surprising to find that some of the basic results about
hyperdegrees are false when they are naively generalised to the

Aén+1 - degrees. For example, Kleene's basis theorem (i.e., every

nonempty Zi set of reals contains a vreal which 1is hyperarith-
metic in the complete Hi set of integers) is false when it

is generalised to Zén+l sets of reals and A%n+l - degrees. A
closer analysis Tleads to a new notion, that of “Q2n+1 - degree"
as the appropriate generalisation of hyperdegree to the 2n+l -
lTevel of the projective hierarchy.

"Q - theory" was originally developed by Kechris, Martin and



Solovay (Ke,Ma,So). In this chapter we shall review the basic
ingredients of "Q - theory." Generally we shall follow the con-
ventions of Moschovakis (Mo). An account of Q - theory is (Ke,
Ma,So). Our basic theory will be ZF + DC, any other hypotheses
will be explicitly stated.
§1 Notation and terminology
i, J, ks my n, s, t. denote integers, 1i.e., elements of w.
Gy By Voooe X5 Vs Zu denote reals, i.e., elements of .
X <1y means that x 1is recursive in .
X <pne1 ¥ means  { (m,n) | x(m) =n} dis a3 ,1(y),
. 1
fales R & A2n+1(y).
1
1.1 The A ont] = degrees
The relation Son+l is transitive and we can use it to
define an equivalence relation " Zon+l " on the reals:

X 52n+1 y iff

X Sont1 ¥ &Y Spnep X



The equivalence classes of the relation are called

“2n+1
1 1 o s
the 45 41 = degrees. Thus, the Bonsl = degree of x is;

Xy =LY I X Zpq v 1

The relation " Son+] " on vreals gives rise to a canonical par-
1

tial ordering on the Mont] " degrees which we shall also denote
by Sonel 1-€es

iff X

[XBne1 <one1 LY Boney Son+1 Y-

In the case n =0 we get the A% - degrees which are Jjust
the hyperdegrees. All the above may be relativised to define

the ¢%n+1(x) - degrees, for any real x.

1.2 Games and strategies

Given a set of reals A we define a game GA for two

players (I and II) by;

my mo Mg eeeneennns where m, € w.

1 My ey Let o = (mO,ml,mz, ...... )

Player I wins the game iff a € A.



i.e., the two players 1in turn construct a real 'a. Player I
wins GA if o e A, otherwise player II wins the game. The set
A is called the payoff set (for player I). Often we shall
réfer to GA as "the game A."

A strategy (for either player) in GA is a function

fio™® > w. Player I s said to follow the strateqy f in a

play of GA if: my = fl <>),
m, = f( <m;> ) s
m, = f( <my,ms> ),
m, f( <My Mgsennn Mos 1> )

In the same way we can define what it means for player II

to follow the strategy g.

A strategy f may be effectively coded as a real. We shall

reserve the Tletters o and T to denote codes for strategies in

various games. We shall often call o and 1t themselves strat-

egies.

o*B will denote player I's play when he follows a
strategy o and player II plays B.

a*t will denote player II's play when he follows a

strategy T and player [ plays a.



We shall also need to consider restrictions of strategies
to the finite plays in a game. Given a strategy f:w ¥ > w
with code o, we can effectively code fﬁwn as a real which we
shall denote by ofn. Thus, for example, if o 1is a strategy for
player I in some game then oﬂn determines his first n+l moves

given by o.

1.3 The game quantifier 9 and the pointclasses Mk = w.k - Hi

The game quantifier 9 is the key, 1in the context of det-
erminacy hypotheses, to T1ifting structure theory up the projec-

tive hierarchy.

For a pointset P<;_ww x X we define 9aPc< X as follows;

X ¢ JaP Tff Player I has a winning strategy for the game;
I my My e a = (mo,ml,mz,.... )
I1% my My eevnnns I wins iff P(a,x)

For a pointclass T, 9T denotes the pointclass that consists of

all the pointsets of the form 9aP, for some P e I'. For example
0 1 1 . i : 1 -1

921 2 H}, 9H2n+1 = Lone2 and assuming Ap, - determinacy 9L2n = Topsqs

For more details about the game quantifier see (Mo).



Definition. (Difference hierarchy) Let & be a recursive ordinal.

£ - H} denotes the pointclass that consists of all pointsets of

the following form: For some recursive sequence ( An )n<€ of Hi
sets we have, letting Ag = ¢, for each real x;
xe A iff the least n < & such that x & A,is even.
For convenience, Tlet Mk = w.k - H% « Tor k=205 15 25 Sseavns
The pointclasses Mk form a hierarchy above H% and Z} but

well within A% i.e.,

i |

Bl M 2My EWs oo e s - 8y -

In fact there is a A% set G< w x w x X which w - parametrises

the Mk sets of X wuniformly 1in k, i.e., the sets

{ x | G(mk,x) }, for m=0,1,2,.... , are precisely the M
subsets of X.

Under the hypothesis of ‘é% - determinacy we can wuse the
game quantifier to 1ift this hierarchy to the mth level of
the projective hierarchy. The pointclasses sm'le form a hier-
archy above zé, Hé but all well within Aé+l' Further there is

: - m-1 - .
a uniform parametrisation of 9 M, in A%+1 in the sense de-

scribed above.



1.4 Norms and scales

Let T be a pointclass and A a pointset. A (regular)

on A 1is an onto map 6:A >k, for some ordinal k. g is
called a T - norm if the two relations " 5% " and " <g " de -

fined below are in T.

X 5; y iff xe A& (y £Aorox)<aly)).

X <xy iff xe A& (y £Aorolx)<oaly) ).

r is said to be normed if every pointset in [ has a 7T -

norm.

A scale on A is a sequence ( o ) of norms on A such

thaty 1Ff | X ) is a sequence of reals that satisfies,
i) X; € A for each i and X; > X a5 X > o,
and
ii) for each n, for all large i, @n(xi) = constant = Ap*
then,
x e A and for each n, o (x) < A
A scale ( ¢, ) is called a T - scale if the vrelations

"R and  "S" defined below are both in T.

: * : *
R(n,x,y) i X ién Y. S(n,x,y) iff X <®n Y.

I is scaled 1if every pointset in T has a T - scale.



Often we shall need a slightly stronger notion than that

of scale, namely "very good scale." In this case instead of

the above we require ( @n ) to have the following properties;
i)  for all x, z; @n(x) §_®n(z) >v¥i<n ®1(X) §_®i(xL

ii) if for each 1, X; € A and for all 1large m, @m(xi) is
constant, then x = lim X; exists and the same conclusions as

before hold.

§2 : Preliminary results

. 1 X . 1
Assuming ~§2n - determinacy an extensive theory of H2n+1 and

Zén+2 sets has been developed. Much of this theory 1is based

on the three periodicity theorems:

First Periodicity Theorem. ( Martin - Moschovakis; (Mo) ) Assume

1 . 1
éZn - determinacy. Then H2n+1

i
and 22n+2 are normed.

Second Periodicity Theorem. ( Moschovakis; (Mo) ) Assume één -

. 1 1
determinacy. Then H2n+1 and 22n+2 are scaled.



Third Periodicity Theorem. ( Moschovakis; (Mo) ) Assume é;%n -

1

determinacy. If player I has a winning strategy in a Zon

1

game then he has a winning strategy that s Ao+l

Moschovakis (Mo) has also shown that the particular proper-
ties claimed for the various pointclasses in the periodicity
theorems, are propagated up the projective hierarchy by means of
the game quantifier. Versions of these theorems apply to other
pointclasses with suitable <closure properties. An example of such
a result is:

2.1 Theorem. ( Steel; (St) ) Assume U Om'le - determinacy. Then;
k \

for each k > 1, every set 1in Ska admits a very good scale

(¢,) such that each ¢  is a 9ka+n+l - norm (uniformly in k,n).
The proof of the third periodicity theorem then gives:

2.2 Theorem. (Moschovakis) Assume U Om'{mk - determinacy. Suppose

k
A e Om_le for some k. If player I has a winning strategy in

the game A, then, player I has a winning strategy o such

that ofn e 9"M uniformly in n.

k+n+1’
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We shall be able to wuse the last two results working

with A%n - determinacy since;

2.3 Theorem. ( Kechris - Woodin; (Ke,Wo) ) For n> 1; ZF + DC

proves; A%n - determinacy iff U 32n-1

Mk - determinacy.
k ol

We shall need the following two corollaries to the

periodicity theorems.

2.4 The wuniformisation theorem

Definition. A pointclass T is wuniformised if for every point-
set P(x,y) in T there 1is a pointset P*(x,y) also in T such

that; P* < P and for each x, &yP(x,y) iff alyP*(x,y). Il.e.,
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A scaled pointclass with suitable closure properties can
easily be wuniformised. The second periodicity theorem now
gives:

1 : 1
2.4 Theorem. (Mo) Assume A5 - determinacy. Then, H2n+l and

1 . .
22n+2 are uniformised.

2.5 The bounded quantification theorem

Definition. Let I' be a pointclass and A a pointset. A is
called T - bounded if for every pointset P(x,y) in T, the set

R(x) defined by; R(x) iff dye A P(x,y), is also in T.

A consequence of the first periodicity theorem is:

1 . 1 .
2.5 Theorem. (Mo) Assume f&Zn - determinacy. Then, A2n+1 is
1
H2n+l - bounded.
§3: The basics of Q - theory

In hyperarithmetic theory the Jjump of a real x is taken
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to bhe the Ai - degree of the complete H%(x) set of integers
wf. It 1is very tempting, in view of the periodicity phenomena
present in the projective hierarchy, to take the A%n+l - degrees
together with the jump operation x - w§n+l ( for some complete
H%n+1(x) set of integers w§n+l ) and expect many of the results
about hyperdegrees to generalise. This unfortunately does not
happen and 1instead we need to 1look at "Q - degrees."

A good example of a result which fails to generalise in a

naive way 1is Kleene's basis theorem.

Definition. A set of reals C 1is called a basis for the
pointclass T if; every nonempty I set of reals contains some

real 1in C.

Kleene's basis theorem. ( Kleene; (Mo) ) The reals Ai in the

complete Hi set of integers are a basis for Zi :

However;

Theorem. ( Martin - Solovay; (Ke,Ma,So) ) Assume \g;n - determinacy.
1 : 1

Then, the reals that are Aspep 1N the complete Ton+1 set of

. . 1

integers are not a basis for Zon+1”

By considering the new notion of Q - degree we shall see that

Kleene's theorem may be generalised.
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. 1
3.1 The Tlargest thin H2n+1 set of reals C2n+1 and the
. - : 0
first nontrivial H%n+1 - singleton Yon+1
Under the hypothesis of ~§%n - determinacy there 1is a Tlar-

gest thin (i.e., containing no perfect set) H%n+1 set of

reals. We denote this set by C2n+1'

C is closed under Fon+] and so is a collection

2n+1
of A%n+1 - degrees. Further, the partial ordering "

11}
i-2n+l o

the A%n+1 - degrees becomes a wellordering when it 1is restric-

1
ted to the P degrees of C2n+1'

Definition. A real x is called a n%n+l - singleton if the set

. 1
{x } is (as a suhset of the reals ) H2n+1 .

The set of all - singletons is <clearly a subset of C
n+l 2n+l

1 1 2
and so the A2n+l - degrees of the H2n+1 - singletons are well -
is

ordered by " <% .,." A ﬂ%n+1 - singleton which 1is also A%n+1

called trivial, otherwise it 1is called nontrivial.

Definition. The first nontrivial D%n+1 - singleton, ygnilf e

( @ representative of the A%n+1 - degree of ) the first, with
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respect to the wellordering Son+l on the A%n+1 - degrees

1 . o 1 .
of H2n+1 - singletons, nontrivial H2n+1 - singleton.

A1l the above may be relativised to define y§n+l for any

real x.

3.2  The set Q2n+1

Contained in C is another naturally defined set Q2n+1'

2n+l
It has several (non - trivially) -equivalent definitions, e.g.,

Definition A. Q2n+l is the largest H%n+1 - bounded set.

Definition B. Q2n+1 is the largest Zén+1 - hull. (A set of

. 1 . : 1
reals P is a §2n+l - hull if there 1is a nonempty 22n+1 set

of reals B such that, for all reals x;

P(x) iff vyeB (x5 ¥ ).)
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0
Q2n+l s Yon+1? C2n+l and <on+l are related as follows;

3.1 Proposition. (ke,Ma,So) Assume ~één - determinacy. Consider the

" 1

prewellordering on C

Sonel on#1* Qopsy 1S @ Pproper initial
0

segment of 62n+1 and Yon+1 has minimal A%n+1 - degree in
C2n+1 - Q2n+1’ i.e., we have the following picture of the A%n+l'

degrees of C2n+1;

< z
........ Q2 o i sk B y X
n+1 2n+1 —fy
i., NV " ul e /
% IS I% I\ IN ANANAN l\l\7\l\l T/‘ raYaYal I\l N NN AN ANANNTTAN PaYAYANEAYAY
............................... 02 B O
n+l

Thus 1in a sense ygn+1 is the 1least real ( with respect to

Y Rounl ) which 1is 'naturally" defined and not an element of

Q2n+1, We can of course relativise everything and define the

notion of Q2n+l - degree in the natural way: i.e.,

- 132n+1 = Lz [ xeQp(2) &z ey, () ).

In view of proposition 3.1 we take x r>y§n+1 as the Q2n+1 -

jump. Now a version of Kleene's theorem holds:
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3.2 Theorem. ( Martin - Solovay; (Ke,Ma,So) ) Assume Jgén - deter-
0 1

5 1 ¢ o
minacy. The reals A2n+1 in yo.p are a basis for the 22n+1

sets of reals.

This theorem may be strengthened and it is in this form

that we shall wusually apply it:

3.3 Theorem. (Ke,Ma,So) Assume \één - determinacy. Suppose

0 .
X <2n+l Yon+1?

then every nonempty Zén+l(x) set of reals contains

0
a real z <one1 Yone1

In the case n =0 definitions A and B give Q1 = Ai. For

n>1, Q2n+1 is substantially Tlarger than A%n+1' For instance

1
A2n+l

operation x w§n+1.

< Q2n+1 and Q2n+l is closed under the ( A%n+1 - jump )

3.3 Q47 and the pointclasses gka

An explicit characterisation of Q2n+1 isy
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3.4 Theorem. (Ke,Ma,So) Let n>1 and assume é%n - determinacy.

Then, Qe =lJ92an no”.

k

This characterisation is the starting point for the work

of chapter two.
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Chapter 2

A formula for the Q - jump

The characterisation of Q2n+1 given by theorem 3.4 of
chapter one gives a natural way of defining a real "minimal"
over Q2n+1' Each ska pointclass 1is w -parametrised and there
is a canonical sequence ( U? ) of sets of integers such that,

if A is a set of integers then;

Ae 9™ my

iff anyt (te Ao <n,t>gUk

k

0

n+1° i.e.,

We can code all the sets UE as a vreal Y

0

Definition. Ym

m
= U<ket> [ teU T .

Definition

We can as usual relativise and in a similar way define

YX

1 for any real x. It 1is «clear that Y§n+1 ¢ Q2n+1(x) and in

X
ome sens Y
S € 2n+l

result of this chapter is that Y§n+1 is a first nontrivial

Hén+1(x) - singleton and we may take xp& Y;n+1 as the Q,n.q -

is the "least" real not in Q2n+l(x)‘ The main
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jump operation. This fact was conjectured in (Ke,Ma,So).

Martin (Ma) has shown, assuming sharps that;

i) L{xIn«=U 9M(x)n o
K

#

ii) Y T X

X
2

This illustrates the connection between the constructible degrees
and the Q2n+1 - degrees, i.e., the Q2n+1 degrees may be thought
of as generalisations of the constructible degrees at the odd
levels of the projective hierarchy with the Q2n+1 - jump oper-

ation corresponding to taking the sharp.

Main theorem.  Assume \één - determinacy (n > 1). Then, for each

X ; . o 1 .
real x, Y5 ., is a first nontrivial H2n+1(x) - singleton.

We shall prove the theorem for the case x = 0. The rela-
tivised version may be proven 1in the same way. The vresult will
follow as a corollary to a sequence of Tlemmas. The first two
lemmas relate Y8n+l to strategies in certain games and are
reasonably straightfoward, the main argument 1is the proof of

lemma 5.
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In all of this chapter it 1is to be understood that n>1

and we are working with the theory ZF + DC + é;n - determinacy.

2n-1

Lemma 1. Every game with g My payoff (for player I) has a

winning strategy (for either player) which 1is recursive in an+l'

Proof. At this stage it is worth vrecalling theorem 2.3 of

Zn-le game is, 1in fact deter-

~

chapter one to see that every 9

mined under the assumptions above.

If player I has a winning strategy in a Szn-le game

then by theorem 2.2 of chapter one he has a winning strategy

. . s 0
that 1is recursive in Y2n+l .

If player II has a winning strategy in a E)Zn-le game

then II has a 92n-1Mk+1 payoff set and so as in the first

case he has a winning strategy that 1is recursive in an+1.

Lemma 1

YO : 1

Corollary 2. ontl] 1S 2 Tons] - singleton.

Proof. We can write;

2n-1
U = {t| ';')aRkn (t,a) 1,
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where Rin-lgi(u x w’ are an'le sets such that;

0 - 2n

Further we have (by the uniform parametrisations of the 5™

k
pointclasses) that the relations Rin'l are A%n+l uniformly in

k. Thus;

0 .
ye{ Yo ! iff yc w & (¥

1]
[

¢ &vk>1( (y)

ki yC_w&(y)O o & v k> 1[
vt (te(y) ~To < yvB R H(t,<0%8,85) ) &

vt (té () »8t <y VaqRin-l(t,<a,a*T>) ) 1.

The key point to notice in the above is that we can wuse Yy

2n-1

to bound the strategies in the O Mk games that are wused to

define the (y)k's.

. 2n'1| 1 . . . o
Since the Rk s are A2n+1 uniformly 1in k, inspection of

0 : 1 ;
the above fomula shows that Y2n+1 is a H2n+1 - singleton.

Corollary 2 |
|

0

0
Yon+l Son+1

Y2n+1 :

Corollary 3.

YO

; 3 1 .
Proof. on+1 1S clearly a nontrivial Mon+1 = singleton and so
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the corollary follows from the definition of ygn+1 as the first

. 1 2
nontrivial H2n+1 - singleton.

Corollary 3|
l

Definition. A real y is called a —A%n+1 - basis for the an'l

2n-1

M

k

games if; for each integer k and each 9 Mk set of vreals A,

the game with payoff A (for player I) has a winning strategy

(for either player) which s A%n+l(y). We say that y is a

2n-1

recursive basis for the 9 Mk games if for each of these

Definition

games there 1is a winning strategy recursive in y.

Thus, Temma 1 says that an+1 is a recursive basis for
the 92n—1Mk games. We complete the characterisation of an+1 in
terms of strategies 1in the gzn—le games by showing that an+1
s " " = 1 O 2n'1
is the "least" real that is a A2n+1 - basis for the 9 Mk

games, i.e.,

Lemma 4. If y is a A%n+1 - basis for the 921

0
2n+l Son+l Y-

Mk games then
Y
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Proof. By the uniformity of the canonical parametrisations of

the E)ka sets there 1is a A%n+1 set G(k,t,x) such that, for

each k;
i) G = {(tx) | 6(kst,x) 3 is a 92"y set.
i) U =1t | SXGk(t,x) } is the E)Zan set that 1is wused in

0

the definition of Y2n+1'

e 0o .
Now by definition of Y2n+1’

(k,t) e Y iff t e,

2n+l

iff Dka(t,x),

iff 40 izn.*.l 3y VB G(k,t,<0*8,8>),
and this 1last expression 1is seen to be H%n+l(y) by theorem 2.5.
Also note;

0 .
k) Wy UF R R,

iff —rSXGk(t,X),

i Player II has a winning strategy in the
game with payoff { x | Gy (t,x) } for play-
er I. (This follows since the game is

determined by theorem 2.3.)
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0

Thus; (kot) ¢ Yo o IFF BT <oy ¥ VoG(K,t <0 ,0%0>).

. . ' 1 0
This Tlast expression is also T, ,,(y), hence, Yy ., <, .y as

required.

Lemma 4

By virtue of the preceding results the main theorem will

follow from the next Tlemma.

Lemma 5. y8n+1 is a A;n+1 - basis for the SZn-le games.

Proof. The argument is by contradiction. The proof is based

on the argument used by Kechris and Woodin (Ke,Wo) to estab-

Tish theorem 2.3 of chapter one (i.e., -één - determinacy iff

U gzn'le - determinacy), their argument in turn uses techniques
k Ll
of Martin (Ma) and ideas of Kechris and Solovay (Ke,So). The

2n-1 . 1
Mk games with A2n games by

basic 1idea is to approximate 9
using the Martin measure on the Turing degrees. (A set has
measure one if it contains a cone of Turing degrees. The
hypothesis of A%n - determinacy ensures that for each E%n set

of reals, either it or its complement has measure one.)

For notational convenience we shall take n=2, k=2 and
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assume towards a contradiction that Ac ® x* is a 93M2 set

which does not have a winning strategy <g yg, i.e., assume;

(*) ¥ oyt <5 Yo & as8 [ Alasa®e) & ~A(r*8,8) 1.

Definition. A countable set of reals M 1is called x - good if;
i) x e M.

ii) YsZ2e M»> <y, e M, i.e., M is closed under pairing.

iii) (yeM&z <5y )>zeM, i.e., M 1is downward closed

under ”gq.”

Definition

We shall regard countable sets of reals as being (via
some coding) reals themselves. The relation (on "M" and "x")

"M is x - good" 1is easily seen to be arithmetical.

For each real z g yg construct a chain,

of countable sets of reals, as follows:

Let,

O = (M| Misz-good v o, < 28 .8 e M[ Aa,0%0) & =A(t*8,8) 1 1,
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then,

1) s¢ is nonempty ( hy (*) ).

ii) S0 is a Aé(z) set of reals.

Thus by the strengthened version of the Martin - Solovay basis

theorem (theorem 3.3 of chapter one) there is some MO <g yg

0 € SO; fix such an M,. Let;

with M 0

sh= (M | MisMy - good & Vo,0 < My Ga,8 e M [ Aa,a%o) & -A(t*8,8) ]},

0

As above, st ois a nonempty Aé(MO) set of reals and so by the

Martin - Solovay theorem, S1 contains some element M1 <g yg . Also

My s My - good and so in particular MO SM -
This construction can be continued, at each stage the
strengthened Martin - Solovay basis theorem ensures that we can

Find M, < yo

i Sg ¥ Let M=UM

k

K then;

Mis z - good & Vo,t e Mda,8 e M [ Ala,o*) & -A(T*8,8) ]

)

i.e., we have established the following;

(#*) Vz<g yg M [ Mis z - good &
Vo,te MTZa,B e M{ Ala,a*s) & -A(T*B,B) } ] .



27

Martin (Ma) gives a characterisation of the 9 ka sets.
From this it follows that there is a formula 6 of set theory

such that, for every pair of wuniform indiscernibles Uy < Uy s

A(a,B) iff 9y 98 L[a,B8,Y,8] F 0 (a, Byys 85Uy ,u2),

Notation. In what follows ¢, d will be used to denote Turing
degrees.
6 R{Gssnn s ) iff By Ve > ¢ 1 J ),

i.e., on a cone of Turing degrees

By BlBsissaz ) holds.
o <7 ¢© 52 1¥f dozgC VBiTC R(<g*B,B>5....).

By Rlyseeses ) iff 40 Yo R(<a,a*c>,..... s
i.e., player II has a winning
strategy 1in the game with R as

his payoff set.

9'y <1 ¢ R(ys...) iff Zo <y € Vo< ¢ R(<a,0%0>,....)

3
Now we shall start to approximate the O M, game A, the

ultimate aim being to produce a '"good" approximation that is

1

A4. Observe the following;
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(***)  A(a,0*c) iff 9 vy9 8 Lla,a*o,y,8] F e(oc,oc*c,y,d,u],uz),

iff Ve T8 9y <. ¢ 08 <. d

5 T

Lla,a*0,y,8] F e(oc,oc*o,y,é,u],uz).

A1so, 96 L[t*B,B,Y,4] FG(T*BsB’Ysﬁ’UpUZ) defines a DZVMZ set

(of +y's) and this set (being él) is determined, hence;

"A(T*B,B) iFF + Dy [96 L[T*BaBsYs(S] }: e(T*B’BaY,(SaU'Iauz) ],

thas DI'Y WsaL[T*BsBaYs(S] i: e(T*BsBaYaéau],uz)-

Applying this argument once more and then arguing as in (***)

we get;

(%*%%)  SA(T*B,B) iff Ve v D'y < ¢ D '8 < d

LLt*8,85v,8]1 [ 28(1*B8,8,7,8,uy5U,).

Now combine (**), (***) and (****) to get;

(+) Vz<gyg @M [ Mis z - good & ¢ Wd Vo,t e M B8 e M
{ 9y 57 ¢ 98 2¢ d Llasa*o,v,8] F 6(as0*0sy58,Up5U,) &

3] 'Y iT c 2 _<_T d L[T*B,B,Y,é] i= TG(T*BassYaé’u]suz) } ] .
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Since M is countable and Ug and u, are (uniform) 1indis -

cernibles (+) implies;

(++) vz <g yg M [ Mis z - good & V¢ ¥*d Z £go61s8p Vo,T e M

qd O(.,B e M Qg(a’B,oaTac’d) ]9
where,

Qg(a,B,c,r,c,d) is the following formula;

[9y ;e D8 d Lgo[a,a*c,y,é] F 6(a,0*0,Y,68,81:8,) &
1 | * = *
3 s iT c 9'S _<_T d L&:O[T B,BsY,(S] }' "e(T BaB3Ya6a£]a€2) ]
Note. It 1is always to be understood that Ep> &1 E&p» are
countable ordinal variables coded as reals. We shall often

write "g" for the triple (go,g],gz). It is implicit in our

notation that; 50 > EZ > 51

Let:

1

P(z,M) Mis z - good & V"¢ V*d EEVo,t e M Ta,8 e M Qg(a,B,O,T,C,d),

8.5 PEZMY I8 [iusassessiines 1 in  (+4+).
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Now P(z,M) is Zl and we have (++) vz<g yg M P(z,M)

thus, by the Martin - Solovay basis theorem the Hl set

{z| YM+P(z,M) } must be empty, i.e.,

(+++) vz dM P(z,M).

By the (Zl) uniformisation theorem (see theorem 2.2 of
chapter one) there is a total function F: «” +«* with Al graph

such that if Mx = F(x) then P(x,MX). Define;

M(x) = { My |y X & My is x - good } -

Note that M(x) is a countable set and by (+++) we have;
(++++) Vz V"¢ ¥*d T£ &M € M(z) Vo,t e M 0,8 e M Qg(a,B,c,r,c,d)

Now we uniformise out "g." For each real z define the
following function from the Turing degrees to (codes for) count-
able ordinals:
fz(c,d) = the least & such that; &M ¢ M(z) Vo,Tt e M 3a,B e M

Qg(@,B,G,T,C,d) if such an M exists, undefined

otherwise.



31

Note:  V*¢ W*d [ fz(c,d) is defined ].

The game G.

Consider the following game G;

L0l x0> <x],8> X = <XO’X'I>

I wins iff "¢ ¥™d 9y S1C9Y <y d

fo(c’d)o[as B,Yaaj i: 6(0«989Y363fx(c,d)] ,fX(C,d)Z) .

This is a Al game and so by hypothesis it 1is determined.
From this we shall get our desired contradiction. We first

however need;

Claim. Vz HWZT Z UW' >0 W ¢ ¥*d ( fw,(c,d) wa(c,d) )

Proof. We assume to the contrary and obtain a contradiction

by constructing an infinite descending sequence of ordinals. In

the proof and many times 1in the proof of the 1lemma, the as-
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L5 Ill : 1]
sumption é4 - determinacy enables us to commute "¥" with

other terms 1in a formula.

So assume the claim is false and pick z so that;

YwW>. Z W

T |Z_ W 2¥*c T*d ( fwl(cad) wa(cad) )-

T

If cy s such that, Vc 25 ¢, V*d ( fw(c,d) & fw,(c,d) are def-
ined ), then the vrelation R(c) = ¢ >1 S & V*d ( fw,(c,d) z_fw(c,d) )

is 9131’ thus by él-(Turing) determinacy we have:

»T*c *d (fw.(c,d) 3fw(c,d))+ Ve - vd ¢ fw.(c,d) _>_fw(c,d) )

This argument can be repeated and we get;

2¥*c v*d (fw.(c,d) > f,(c,d))> W wd(f . (c,d) < f (c,d))
i.e., we have,

VW2 Z EW' >0 W v*c *d ( fw.(c,d) < fw(c,d) ).

Now we can pick z ST Z0ST 2 ST Sy e so that;

¥n ¥c v*d ( fz (c,d) < f, (c,d) ) , and so;
n+l n

e ¥d ¥n ( f, (c.d) < Fy (c,d) ) which is 1impossible.

n+l n

Claim
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There are two cases to consider depending on which player

wins the game G.

Case 1: Player I has a winning strategy in the game G.

Let T be a winning strategy for player I in G. Use the

claim to pick a real w >7 T to satisfy;
(#) VW' > w T vd [ fw.(c,d) 3_fw(c,d) ]

Let T be the strategy for player I in a game of the

form;

given by; Tg ¥ B = (T * <w,B> )0

Thus 19 Spw oand T % <w,p> = (a,xy) for some x5 and o = (T*<w,B>) ,
i.e., if 1in the game G player II plays <w,B> then I answers
(by playing his strategy T) with <ty * BaXg> s for some xg.

From the definition of fw(c,d) we have;
T*¢ ¥v*d ZMe M(w) Vo,Tt e M3 a,B e M Qf e d)(CL,B,G,T,C,d).
w )

Now "M(w)" 1is a countable set and the relation
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"y T 1] . ]
Vo,TeMTa,BeM wa(c’d)(G,B,O,T,C,d) defines a Ap set of

(c,d)'s, so by él - Turing determinacy we get;
(##) IMe M(w) V¢ ¥™d Vvo,T1 e M T a,8 e M wa(c’d)(a,s,o,r,c,d)
Now fix Mo e M(w) such that;

Ve vd Vo,Te My Ea,Be M wa(c,d)(a,B,O,T,C,d)

By definition of Qg we have in particular;

"¢ ¥*d Vte M0 dBe MO 9'y < ¢ Sléi-rd
wa(c,d)o[T*B’B’Y’é] F -6(T*8,8,7,6,f, (c,d)q,f, (c,d),)

Since Tg ST W and MO is "w - good" we may take "t" to be g

in the above and then argue as 1in (##) to deduce;

e My V¢ Wd Iy <, c 96 < d
Lt (c,d) [0 87281 F ~0l1g88,7, 8,7, (e,0)y Ty (e50),)

Now choose BOeMO to satisfy;

(###) e vd D'y <p ¢ D'6 < d

wa(C,d)OETO*BO’BO’Y’a] Fve(TO*BO:BOsY,S,fw(C,d)],fw(c,d)z) .
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Put ag = Tg % Bg > then for some Xq
I II
<u0,XO> <Ni30> X = <X0,w>
is a play of the game G in which I follows his winning

strategy T. Hence we must have;

V¢ ¥ Dy <p ¢ 96 < d

fo(cad)o[dO’BO’Y’é] F e(aO’BO’Y’é’fX(Csd)] ’fx(c’d)Z) .

From this and (###) we shall finally get our desired contra-

diction by showing; W vd [ f (c,d) = f (c,d) ] .

To show: ¢ v*d [ fw(c,d) j.fx(c,d) 1.

Since w 51 X automatically by the claim and the definition

of w we have W+ vd [ f (c,d) < f,(c.d) ]

To show: vre W [ fx(c,d) < flc.d) T

M0 is w - good and Tg BO > M0 and so by the closure prop-
erties of '"good" sets also Gys Xgs X = <x0,w> € MO’ Thus M0 is

also x - good. Since M0 € M(w) we must have M0 = My for some
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Y Sp W p X and so M0 e M(x). Now by definition of MO;

Ve v*d @Me M(x) Vo,t e M Ta,8e M Qe (o 4y(asB,0,150,d),
w b

and so by the definition of fx(c,d), Ve vd [ fx(c,d) 5_fw(c,d) ].

This completes the proof for case I.

Case II: Player II has a winning strategy in the game G.

In this case we can argue to a contradiction in a similar

way to case 1I.

Lemma 5 as well as having the main theorem as a corollary

may be viewed as a basis result. The proof shows that for each

fixed 9 2n']Mk game there is a winning strategy for one of the

; . 0 .
players which is Sontl Y2n+1 - In fact this statement can be

strengthened;

Theorem. Assume égn - determinacy (n >1). Then, for each fixed

; : 0 ; ’ .
integer k there is a real x Sontl Yon+] which is a recursive
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basis for the E>2n"]Mk games.

Proof. Let A(t,x,y) € 92n-1Mk be w - universal for the 5)2n—1M

k
subsets of w’ x w’ and consider the following game G:

I II
t . a = (ao,a1,a2,....)
0
a, .
a b] B = (b],bz,b3,...-)
1 b
2

0]

8* (bo-].,b-l,bz,..)

II wins iff [ bO =0 & -A(t,a,8"') Jor [ by #0 & A(t,B*,a) ] .

Claim: Player II has a winning strategy in G.

Proof of claim. After player I has played t either,
(1) player I has a winning strategy in the game A(t,o,B)
or

(i1) player II has a winning strategy in the game A(t,a,8).

In case (i) II can use I's winning strategy o against a,
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at the end of the play "[ bO #0 &A(t,8*,a) 1" holds.

In case (ii) Il can use player II's winning strategy o
for the game A(t,x,y), i.e.,
by = 0y boq =
at the end of the play "[ bO =0 & A(t,0,8') " holds.

Claim

G is a 92n']M 4y 9dame and so II has a winning strategy

k

0
T <onel Yopeq TOr G

If o(<t>) =0 Tlet Oy be the strategy for player II in the

game A(t,a,B) given by;
<@rdys-.ee >) = o(<t,a0,a], ...... -3

then oy is a winning strategy for player II in this game.

If o(<t>) # 0 then let o, be the winning strategy for player I

T
in the game A(t,a,B) given by;

o (< >) = of<t>) -1

Clearly o <70 and so taking x = o we have our theorem.

t
M
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Chapter 3

Some results about Q - degrees

In this chapter we shall wuse the explicit characterisation
of the Q - degrees (see theorem 3.4 of chapter one) and the
results of chapter two to prove some results about 0 - degrees.
Some of the methods will also be appropriate for the construct-

ible degrees and will provide new proofs of known results.

§l: The Jjump inversion theorem for the Q - degrees; Cohen

forcing in the Q - degrees

In this section techniques of "forcing in analysis" devel-
oped by Kechris (Ke) will be used together with the main
result of chapter two to establish the jump inversion theorem
for the Q - degrees. This result was originally proven by
Kastanas (Ka). The new proof avoids the use of an ordinal
assignment to the Q - degrees and 1is much closer to the proof
of the Jjump inversion theorem for Turing degrees (Fr).

We shall first review the basic methods of forcing in the
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projective hierarchy.

Notation. In general we shall follow the conventions of the

previous chapter.

P> Pgs Pys Pps - denote finite sequences of integers, i.e.,

elements of w<w.

p<oa iff Vi< length(p) [ p(i) =a(i) J.

Up ={oqeu” | p<a }s i.8., the Up's are the basic open sets

of the Baire space w”,

P=py" Py Py -oo. = (pgl0)s...,pp(Tength(p )-1),p;(0),...).

Notation’

Definition. Suppose A is a set of reals. We say that p
forces A, and write p|}F A (or p| |- A(.) ), iff A 1is comeager

on U Definition

i

o’

Truth lemma. ( see (Ke) ) For all A g;ww with the property of
Baire; for a comeager set of reals x the following equivalence
holds;

A(x) iff a@p<x[p |FAI.

o
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We can of course give a game theoretic characterisation

of the forcing relation by considering the Banach - Mazur games,

1.6

p|F A iff player II has a winning strategy in the following

game:

. - a) o) n
I : Po Pp e X=Pp Py Py ----
1L: Pq Py e IT wins 1iff A(x).

The following result enabtes us to get a "good" estimate

of the complexity of the forcing relation.

The game formula. (Ke) Let P g;wwx w”  then;

Vpo EPy VP, EPg ... L Vagda, Va,..... P(p,a) ] iff
Vpy Vag Epy Eay ..., P(p,a),
provided the second game 1is determined. Here o = (aO,a],... ).

Theorem

The game formula says that in certain circumstances we can

replace two applications of the game quantifier by just one

application.
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We shall work with the 02n+1 - degrees, so for the rest of

this section assume é;n - determinacy.

Fix a A;n+1 set G(k,t,x,y) which uniformly parametrises the

SZn-le subsets of w” x w”, i.e.,
i) Gy = { (tyx,y) | Glk,t,x,y) }e E32"']Mk, for k=1,2, .....
ii) The E@n']Mk subsets of w' x w” are precisely the sets

Gk,t = { (x,y) | G(k,t,x,y) } .

ii1)  <k,t> e Y3, 1ff 9yG(k,t,x.y).

For each pair of integers k, t let;

A = { X I D_\/G(k,t,X,Y) }

k,t

so that each A . is Dank and so ( by the game formula ) has

the property of Baire. Let;

n

S {xewwlAk,t(x) iff  @p<xp |FA .}

k,t kst ™"

w %
Tt {xeuw | A (X)) Aff @p<x p | - At 3,

1

so that by the truth lemma each of the S, ,'s and T

K.t are

[}
k,t °
comeager, thus;

S=(nS
k,t

k,t 1S COmeager.
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Definition. x forces its Q2n+] - Jjump if x e S.

Definition

Proposition 1. Suppose that x forces its Q2n+1 - jump, then;

X
Yont1 “on+t1 Yon+1® *> -

Proof.

; 0 X
i) Clearly Yons1® ¥ <onel Yon+

X

i) ke

iff  9yG(k,t,x,y),

iff  @p< x p lL-Dka t(.,y) [ since x
forces its Jjump and 1is 1in particular

a member of S 1,

iff dp< X vp03p1....[3y0 LAZIRES
G(k,t,p psy) 1,

[ by the game formula ],

; 0
iff  8@p< x Fo<q Yy 4 VO G(k,t,p“<oc*0>0,<oc*0>])

[ by lemma 1 of chapter two ].

1

0
2n+1 )

This last formula 1is easily seen to be I (Y2n+1’x .

Also;
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X

<k, t> ¢ Y2n+1 iff -9 yG(k,t,x,y)

iff @p<xp [F7OG (L),

. — 0 .
iff Adp< X do iTYZnH VB

-G(k,t,p”< 0*6>O’<O*B>1 ),

X . 1 0 X
which 1is also H2n+](Y2n+],x) hence, Y2n+1 Son+l <Y2n+],x> as reqg-
uired.
Proposition |
|
It immediately follows that:
Corollary 1. { x | <ygn+],x> = on+] y;n+]} is comeager.

M

By using the explicit formula for the Q - jump the above cor-
ollary has been established without using the ordinal assign-

ment to the Q - degrees.

1
2n+1

0

Corollary 2. S={x | x forces its Q, .4 - jump }e T one1) -

(Y

Proof. By proposition 1 and the results of chapter two when

X €S we can use <an+1,x> to bound strategies in E?”']Mk(x)
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games, thus;

S(x) iff  vk,t { [9oyG(k,t,x,y) & Ep<xp |} 9y6(k,t,.,y) ]or

[ -9 yG(k,t,x,y) & @p<xp || -9y6(k,t,.,y) ]}

: 0
iff Vkyt{[do Son+] <X’Y2n+]> VB G(k,t,x,o*g) &

Zp<xp || oyG(k,t,.,y) Jor
_ 0
[ 20 Sona <XYonn
Ep<Xxp ll" "QYG(k,t,'a.y) ] .

> Va »G(k,t,x,a*) &

Now the relations " @ p < xp || 9yG(k,t,-,y) " and " dp < x
p |F -9yG(k,t, ,y) " are A;n+](x,an+1) as before, thus S s a

1 0
H2n+1(Y2n+1) set.

Corollary

Jump inversion theorem for the Q2n+1 - degrees. ( Kastanas; (Ka) )

Suppose ygn+] Sons1 23 then for some real x, z =, ., y;n+]

Proof. The set of reals S that force their Q2n+1 - Jjump is
H;n+1(an+]) and comeager, thus in the Banach - Mazur game with
payoff S (for player II) there is a winning strategy for play-
er II. By the third periodicity theorem and the game formula

player II has a winning strategy o e:A;n+](an+1)-



46

Now Tlet Z2op+1 y8n+] and consider the following play in a

Banach - Mazur game:

where II plays according to the strategy o and I plays

zZ= (ao,a],az,.... )

By definition of o the real x = <a0>”po"<a1>"p1“ ........

forces its Q2n+1 - jump and so y§n+] 52n+1 <x,y8n+]>. Also,

X - 0 0 _ 0 _
Yone1 T2n+1 <X Y2nt1” Zon41 <29 Yon41” Tonsl S Y2na1” Tondl 2

and

- %
Z Son4l <X90> <onet <XYon41> Ton+l Yon+

e X
I.e.s 2 S0 Yonn

Theorem

§2: Cones of minimal covers in the Q - degrees

In this section we shall extend some results of Simpson

(Si), concerning cones of minimal covers in the hyper - and



47

constructible degrees, to the Q - degrees,.

Definition. A QZn+1 - degree x is said to be a minimal cover

if there is some Q2n+1 - degree y < X such that;

Qo+t
x ) -

vz [ (y x ) ]

£ r Z = yor z =
Q2n+1 Q2n+1 Q2n+1 Q2n+1

i.e., there 1is no Q2n+1 - degree strictly between y and x.

A cone of minimal covers in the Q°n+1 - degrees is a set

of minimal covers of the form { x | X0 20 % 1. Xg is called
2n+l
a base for the cone.

In the same way we can define minimal covers etc. for

Definition

other notions of degree.

Simpson (Si) has shown:

1) Assume V = L. Then there 1is no cone of minimal covers 1in

the hyperdegrees.
2)  Assume of exists (i.e., assume Z} - determinacy). Then there

is a cone of minimal covers 1in the hyperdegrees.

Using a result of Jensen (Je) 2) 1is easily generalised to the

constructible degrees granting Z; - determinacy. The methods of
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chapter two give an alternative proof of this result:

Theorem.  Assume éé - determinacy. Then, there 1is a cone of min-

imal covers 1in the constructible degrees., Further, Yg is a

base for this cone.
Proof. As wusual by Sacks' forcing (Sa);

vx ay ( Ly]L is minimal over [x]L ),

w

also let M cw” x«w® be defined by;

M(x,y) iff Ly]L is minimal over [x]L,
iff  Llx,ylF ( Ly]L is minimal over [x]L Jre

so that M is a ng set.

Let A={z | dx,y <

T [z =1 <Xy> & M(x,y) 1}, then;

1) A 1is closed under ”ET."

2) A is a OMl set,

3) A is unbounded in the Turing degrees (since Vx dyM(x,y)).

Hence, by A% - determinacy (=U amk - determinacy), A contains a

cone of Turing degrees and since Yg is a recursive basis for

the le games it is a base for this cone.
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0 . _ 0 0
Now suppose that z ) Y3, then; z 2 <z,Y3> o Y3 and also
<z,Y§> e A. Hence, <z,Yg> is a minimal cover 1in the construct-

ible degrees and thus so 1is z.

Theorem

lle now deal with minimal covers in the Q - degrees. Under

the assumption of E%n+l - determinacy, as well as there being a

largest thin H;n+1 set of reals there is also a largest count-

1

able ZZn set of reals which is denoted by CZn' The reals in

C2n are in many ways '"good" generalisations of the constructible
reals to all the even Tlevels of the projective hierarchy (see

(Be) for more details). In particular;

1) G ={x | 8&ye Gy (x-iTy y i
2) L[CZn] E ZF + DC + één-] - Determinacy.

w _
o) L[CZn] Ne" = C2n'

It can now be seen that ‘é;n+1 - determinacy 1is not enough to

ensure that there is a cone of minimal covers in the Q2n+1 -

degrees:

Proposition. Assume that V = L[C2n+2]. Then there 1is no cone of

minimal covers in the Q2n+1 - degrees.
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Proof. The following argument is a generalisation of Simpson's
(Si) proof that there is no cone of minimal covers in the
hyperdegrees if V = L.

We will show that none of the reals in 62n+1 are mini-
mal covers, the result will follow since C2n+l is  "unbounded"
in LLC2n+1].

Suppose x < y € C2n+1' Then, y € C2n+1(x) and

U1 ‘
y £ QZn+l(x)' Now since y, . s the first real above Q2n+1(x)

in the canonical ( "< "

Sons1 ) prewellordering of C2n+1(x) we

must have:

X = X
Yon+1 Zon+1 SXoY7 ¥y B0 <Q2n+1 Yont1 iQ2n+1 a

:Q2n+1
Thus, if y 1is minimal over x then, y;n+1 §Q2n+1 y and so
y§n+l would be minimal over x. This is <clearly absurd. (If
y§n+l were minimal over x :then by the Martin - Solovay basis
theorem every nonempty Z%n+l(x) set of reals would contain
some real in Q2n+l(x)' This is clearly not the case for the
a1 (x) set Q. (0C)

Proposition |

|

We also have the following result to complete the gener-

alisation of Simpson's results:
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Theorem. Assume SZTM] - determinacy. Then there is a cone of

minimal covers in the Q2n+1 - degrees.
Note: It has been conjectured (Ke,Ma,So) that Dan] - determinacy
is equivalent to 5! - determinacy. Martin (Ma) and Harrington

“2n+]
(Ha) have shown this to be the case for n = 0.

Proof. We shall do the case n =1. The other cases are sim-
ilar but they involve the use of more complicated ultrapowers
than the one wused below.

We define an inner model of ZFC which 1is a generalisation
of L to the third 1level of the projective hierarchy as follows

( see (Ke,Ma,So) );

For each constructibility degree d = [x]L let L[d] = L[x]
and consider the ultrapower

My = T noottdd/
d

where p denotes the Martin measure on the constructibility
degrees and HODL[d] is the 1inner model of all hereditarily

ordinal definable within L[d] sets.

The model M3 has the following properties ( see (Ke,Ma,So) );

1) The set of reals of Mj s Qs.

2) For each real x, if M3[x] denotes the smallest inner
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model of ZFC containing M3 and x, then the reals of M3[x]
are Q3(x). The definition of M3 can of course be relativ-
ised; for any real x Jlet

My(x) = T HoptLx-d1,
d x
Thus, My(x) and My[x] have the same reals (but it 1is not
known if they are equal).
M3 satisfies a "dual Schoenfield absoluteness theorem."
1

I.e., for each Zg formula O(x) there 1is a H3 formula

O*(x) which 1is effectively computable from © such that;
o(x) iff M3[x] E 0*(x),

and similarly interchanging the roles of Z; and H;.

Fix a Z; formula © such that for all reals x, y, z with

X,y € Q3(z) we have;

Now;

iff

iff

x e Q3(y) 1ff My(z)Dx,y] = M3(2) [ O(x,y,2).

y is minimal in the Q3 - degrees over x

xeQ(y) &y £0Q3(x) & vzeQy(y) [ (xeQg(z) )~ (2zeQ3x)
orye Qz) ) 1.

M3(<x,y>) E O(X,Ys<X,¥>) & =0(y,X,<x,¥>) & ¥V z [ 0(x,z,<x,y>) -

L B{zx5x9) O Bly.Z.5%:9%) + Ja
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i ff M3(<x,y>) F ¥(x,y), for some formula Y of set theory.
iff v¥d { Llx,y,d]F "HOD,  [F ¥(x,y)" I.
9

This Tlast expression 1is by vresults of Martin (Ma), 9 2M1‘ As

in the case of the constructible degrees we have a cone of

minimal covers in the Q3 - degrees. Further, Yg is a base

Theorem

for this cone.
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