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ABSTRACT

A study is made of interference problems with emphasis on
low-aspect-ratio supersonic missile configurations. The configura-
tions are composed of slender pointed bodies with circular cross
section, plane or cruciform delta wings, and tails which are not
specified. For fin-fin interference (no body) general multi-fin
delta wings are studied for the roll problems.

Three types of interferences are studied. They are (1) fin-
fin interference, (2) fin-fin and wing-body interferences combined,
and (3) wing-body-tail interference, Where possible, three aero-
dynamic problems are studied under each of theée interferences.
They are (1) lift and incidence, (2) roll due to aileron deflection,
and (3} damping in roll.

| A survey of the theoretical work on supersonic interference
problems is included,

Linearized theory is used throughout for all problems
treated by the writer. Work by other writers which fits naturally
into the scheme of the present work is summarized briefly., For
most of the problems it is not possible to obtain exact linearized
solutions without excessive labor. Where possible, approximations
to or estimates of the exact solutions are obtained. It is hoped that
these results will be useful for engineering estimates of the inter=-

ference effects,



Theoretical results for the roll problems-~-exact, approxi-
mate, and estimated--are presented for fin-fin interference for
cruciform and more general multi-fin delta wings with subsonic
and supersonic leading edges.

For fin-fin and wing-body interferences combined, theo-
r‘etical results which bracket the exact solutions are obtained for
the roll problems.

For wing-body-tail interference, the vorticity distributions,
rolled-up vortex strengths, and initial vortex positions at the trail-
ing edges are estimated for lift, incidence, aileron deflection, and
damping in roll problems. Both plane and cruciform delta wing-
body configurations are studied.

A qualitative discussion of some of the nonlinear, viscous,
and gap effects is included.

Recommendations for future research are made.
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SYMBCLS AND NOTATION

For convenience, a plane wing is considered to be
oriented so that it lies in the horizontal (x-z) plane and a cruci-
form wing is considered to be oriented so that one pair of fins is
horizontal and the other pair vertical.

Notations and coordinates for plane and cruciform
wings and wing-body combinations are shown in Figures 1 and 2.

Wide Delta--All leading edges supersonic,

Narrow-Delta-~All leading edges subsonic. -

Plane Wing--Flat plate unless otherwise stated of zero thickness.

Plane Delta Wing--Plane wing with delta planform. The two halves
of the delta wing are called fins.

Plane Aileron--Plane wing with aileron deflection, i,e, the two
halves (fins) of the plane wing deflected in opposite direc-
tions by + § .

Cruciform Wing--Two plane wings with the same planform normal
to each other and symmetrically arranged about the line of
intersection (see Figure 1(b)}. This is a special case of a
multi-fin wing with N = 4,

Cruciform Aileron--Cruciform wing with the horizontal or verti-
cal or both pairs of fins deflected as ailerons. This is a
special case of a multi-fin aileron with N = 4.

Mixed Cruciform Aileron--Cruciform aileron with wide-delta
vertical fins and narrow-~delta horizontal fins.

Multi-Fin Wing--A wing composed of two or more plane wings all
having the same planform and symmetrically disposed
about the wing axis.

Multi-Fin Aileron--A multi-fin wing with one or more of the plane
wings deflected as ailerons.

A body diameter/wing span = 2r/b
A = value of A above which the fins do not interact

AR

aspect ratio

on
1

span of wing extended through the body (see Figure 2)

on
¥*
~
[ 3¥]
1]

span of fin (see Figure 2)
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ix
chord of delta wing extended into the body (Figure 2)
chord of half—delta‘ fin
chord of elementary strip (Figures 27, 28, and 29)

lift coefficient based on the area of the delta wing extended
into the body

rolling moment coefficient based on the area and span of
the delta wing extended into the body

lift coefficient based on the area of two half-delta fins

rolling moment coefficient based on the area of two half-
delta fins and on the span b

pressure coefficient
resultant force coefficient for banked Qing

side force coefficient
CL - (aCL)
A BOC (=0

W =[]

for damping in roll

%= (33)

for aileron deflection

rolling moment coefficient

i

rolling moment coefficient

rolling moment coefficient for horizontal fins

rolling moment coefficient for vertical fins

t

tan W _ b

tan p R”mMC (for subsonic leading edges)

differential lift of elementary strip

differential rolling moment about the axis of the elementary
strip. Positive when counterclockwise facing upstream

distance downstream of wing trailing edge at which vortex
sheet is essentially rolled up
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E(w} l-dz) = complete elliptic integral of the second kind with

modulus 1/ 1-d2

£ = tanp_Zme o
| tanw b d

(for supersonic leading edges)

K = constant of proportionality depending upon concentration
of vorticity at trailing edge (see Equation (4.61))

K(-J_l_-’d?) = complete elliptic integral of the first kind with modulusY l--d2

1), Liy) = spanwise load distribution
L = lift
]
m = =
M=
M = free-stream Mach number
Mg = moment of vorticity distribution at trailing edge about wing-
body juncture
M(k} = defined on page 118
N = number of fins
P = angular rollihg velocity
P = pressure
Po = free-stream pressure
q =3P Uz = free-stream dynamic pressure
Q(k') = defined on page 118
r = body radius
¥ = r/mc¥*
R = resultant force normal to plane wing
RM* = rolling moment of fin about the wing<body juncture
S = side force
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8] = free-stream velocity
u,v,w = perturbation velocities in x,vy, and z directions respectively
x,y,% = coordinates (see Figures 1 and 2)
X,y = x/mc, y/mc
X = x/mc¥*
X v = distapce to centroid of vorticity distribution (initial position
‘ of rolled-up vortex)
X152) = coordinates for elementary strip (Figures 27 and 28)
a = angle of attack., Positive when wing noses up
o, = apparent angle of attack
o, = upwash flow angle due to body upwash (éee Figure 5)
a, = upwash flow angle at the tail due to the vortices from the
wing (see Figure 5}
an = angle ofvattacAk of the body
¥ = vorticity at trailing edge of wing
[’ = circulation at trailing edge of wing (strength of rolled-up
vortex)
3 = deflection angle for aileron deflection or incidence angle
for lift
e = angle of bank
M = Mach angle
§,7,5 = running coordinates for integrations (see Figure 1)
o=k
£’ -5

3
g
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§,,3 = running coordinates for elementary strip (Figures 27 and 28}
] = free-stream density

@ = perturbation velocity potential

w =

half vertex angle of delta planform
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I. INTRODUCTION

1,1 Meaning and Importance of Interference

The phenomenon of aerodynamic interference is very impor-
tant in the design of airplanes and missiles. The word "interference"
in this context denotes the interaction between two or more compon-
ents which may or may not be directly connected but which somehow
influence each other while passing through the air, The components
are generally chosen so that by themselves they are relatively simple
geometric configurations (e.g. a wing or a fuselage)/for which aero-
dynamic characteristics may be calculated without too great mathe-
matical difficulties . Any particular aerodynamic characteristic of
these components when each is taken alone will usually be changed
when the components interact. Hence, a simple combination of the
aerodynamic characteristics of the components alone will generally
‘not yield the correct overall charac’ferist—ics of the single configura-
tion composed of the interacting components. This difference between
the characteristics of the components alone and in combination is gen-
erally defined as being caused by interference effects. The magni-
tudes of the interference effects depend upon the particular interfer-
ence under consideration, the aerodynamic characteristic being stud-
ied, the geometry of the components, and the relative positions of the

components,
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The supersonic missiles are a particular example where
interference effects often are so large that a simple combination
of the aerodynamic characteristics of the components alone gives
quite erroneous results., In general, a good knowledge of interfer-
ence effects is necessary before practical engineering calculations
of the performance and stability characteristics of an airplane or
a missile can be carried out. The lack of such knowledge requires
extensive time- and money-consuming experimental testing. Any
contributions to the understanding of interference effects, both
qualitatively and quantitatively, can be expected to reduce the amount
of experimental testing which is necessary to design an airplane or

a missile.

1.2 The Subsonic Airplane

Before restricting the subject matter to supersonic problems,
it is convenient, for purposes of illustration; to review very briefly
the interference problems for the familiar low-subsonic-speed air-
plane .

The basic airplane is composed of a high-aspect-ratio wing
whose span is much greater than the diameter of the body. This fact
about the airplane geometry is important from the point of view of
interference since it generally leads to small wing-body interference

effects for many of the aerodynamic problems and thus makes it
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possible to combine the results for the wing and for the body accord-
ing to some simple rule, This standard wing-body geometry also
simplifies greatly the wing-body-tail interference problem. The com-
plete airplane has numerous other components such as nacelles, pro-
pellers, rudder, etc, whose interference effects must be studied.

A large numberbof interferences have been considered, e.g.
wing-body, wing-body-tail, wing-nacelle, propeller slip stream—wing,
and so on., References 1 and 2 discuss the various interferences
mostly from a qualitative point of view., Reference 3 summarizes the
more recent work done by the Germans during World War II. The
difficulty of the subject is illustrated by the relatively small number
of good theoretical papers. See, for example | the extensive bibli-
ography of recent German experimental and theoretical work in Ref-
erence 3. Theoretical results were usually obtained by making
simplifying assumptions and studying idealized configurations (see,
for example, Reference 4). The usual simplifying assumptions lead
to the well known linearized theory for steady subsonic irrotational
inviscid flow, Even with this simplification, the boundary value prob-
lems for the nonplanar three-dimensional configurations were so dif-
ficult that highly idealized configurations had to be studied. The lin-
earized solutions for these ideal configurations were used as approxi-
mations to the linearized solutions for the actual configurations. The

accuracies of these approximations were generally not known; however,
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the solutions for the ideal configurations still proved useful as guides
for design. It will be seen later that, for supersonic problems, the
situation is different: although linearized methods are also used here,
the boundary value problems are much easier. The nature of the hy-
perbolic equation which governs this flow is such that the actual con-
figuration can be decomposed into a sum of idealized configurations

by an exact superposition scheme.

By combining the available theoretical work with a large
amount of experimental research and testing, the aerodynamicist
‘has been able to develop a good understanding of interferences along
with quantitative design rules to account for interference effects.
The extent of the experimental work can be seen by the large number
of reports issued by the NACA alone. The main reason that such de-
sign rules could be developed without an inordinate amount of testing
was the fact that the basic configurations of all low-s/Eeed airplanes

were similar,

1.3 Supersonic Aircraft Configurations

With the advent of supersonic flight speeds, the basic aircraft
configurations were considerably changed. These changes are parti-
cularly noticeable in the supersonic missile but are less pronounced
in the supersonic airplane.

One important combination of changes was the use of wings
and tails of low aspect ratio in conjunction with body diameters which

were not small compared with the wing and tail spans, The ratio of
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the body diameter to the wing span is a geometric parameter which could
be ignored for the subsonic airplane since this parameter was generally
quite small. However, for the supersonic missile, the body diameter may
be of the order of the wing span and the variation of interference effects
with this parameter must be considered, It should be obvious that, with
these changes, proportionately larger portions of the wing and tail will be
affected by the body. Then it would‘be expected that the wing-body inter-
ference effects might be considerably increased. Other not-so-obvious
considerations show that the wing-body-tail interference effects may be
and generally are completely changed.

The difficulties with the theoretical problems ffpr 'subsonic flight
‘speeds which were mentioned previously are greatly magnified because of
these changes in geometry. Consequently the theoretical work on inter-
ference effects is practically nonexistent for such low-aspect-ratio wing-
body-tail configurations at subsonic speeds. The experimental work is
probably all classified and generally not available,

For supersonic speeds the theoretical outlook is quite promising.
It is frequently true that the solution of an aerodynamic problem is much
. easier for supersonic speeds than for subsonic speeds. It is still true
that the low-aspect-ratio problems are more difficult than the high~aspect-
ratio problems but even the low-aspect-ratio problems can be a;ttacked
theoretically with some success, A fair amount of theoretical work can
be found in the literature. Although there has been much experimental

work, it is practically all classified and must be considered as unavailable

for the purposes of this thesis,
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Another important change was the introduction of multi-fin wings
and tails. This change refers primarily to supersonic missiles. The
multi-fin wings and tails which are most widely used are of the cruciform
type.. However, multi-fin wings composed of more than two plane wings
are being contemplated., With this change from planar to nonplanar wings,
it is convenient to introduce another type of interference which will be
called fin-fin interference, in general, fin-fin interference refers to the
interaction between the fins of a multi-fin wing-body configuration which
are not in the same plane. It should be quite apparent that this fundamen-
tal change in the geometry of the lifting surfaces must lead to new inter-
ference effects. There is relatively little theoretical work available on
cruciform interference problems and even less on multi—fin probler;'ls o
The experimental results are again mostly classified and unavailable.

In the relatively new field of supersonic interference research, the
theoretical studies have genelrally been restricted to simplified configu-
rations. The configurations were usually composed of a slender pointed
body with circular cross section combined with a plane or cruciform wing
which had either a high or a 1o§v aspect ratio. The low-aspect-ratio wings
- generally had delta planforms and the high-aspect-ratio wings had either
delta or rectangular planforms. Some studies have included other plan-
forms.

Three basic types of interferences have been studied. The first

and most popular type is wing-body interference. In connection
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with the study of lift problems, it was necessary to decompose the
problem further into wing-body interference problems with and with-
out afterbody. The afterbody is that part of the body which is down-
stream of the wing trailing edge. Fin-fin interference is the second
type which has been studied. The theoretical work has, until re-
cently, been restricted to cruciform configurations. The third and
most difficult type studied is wing-body-tail interference. Most of
these studies considered plane wing-body-tail configurations and re-
stricted themselves to the lift problem.

All of the above types of interference will enter into the cal-
culation of any' particular aerodynamic characteristic for a missile
if the missile has a multi-fin wing or tail or both. Of course, if
both the wing and the tail are plane, fin-fin interference does not
occur. Five different aerodynamic'problems have been considered
in the literature. Some have been studied extensively and others
have hardly more than been discussed qualitatively. Furthermore,
for some of the problems results have been obtained for all of the
interferences mentioned above while, for others, even the simplesi;
type of interference is difficult to discuss.

The aerodynamic problems which have been considered are
lift, roll due to aileron deflection, damping in roll, roll due to com-

bined pitch and yaw, and wave drag. Most of the effort has been
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expended on the lift problem. Although the literature on the lift
problem contains mainly wing-body interference studies, this is
the only aerodynamic problem for which any wing-body-tail inter-
ference effects have been investigated to the point where practical
engineering calculations can be made. Little work has been done
on fin-fin interference lift problems. The problems of roll due
to aileron deflection and damping in roll can be lumped together
as far as the types of interference effects which have been studied
and the extent of these studies, Most of the work has been on wing-
body and fin-fin interference. The problem of roll due to combined
pitch and yaw is exceedingly difficult and this shows up in the lit-
erature in that practically all references to this problem are of a
qualitative nature. This situation is rather unfortunate because this
problem is very important in supersonic missile stability, The wave
drag problem is the least important, The total drag is composed of
the wave drag plus the viscous shear and separation drags. The
chanées in wave drag due to interference effects will generally be
small compared with the total drag. The drag problem is impor-
tant primarily for performance calculations such as, for example,
the computation of missile trajectories. Reasonable estimates of
the wave drag can bé made and errors can be allowed for by simply

supplying the airplane or missile with enough power. This problem
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will not be mentioned further except to remark here that practically

no theoretical results have been obtained.

1.4 Survey of the Literature

At this point it is useful to make a brief but rather complete
survey of the theoretical papers on interference effects in super-
sonic flow., It is expected that, besides being a guide to the liter-
ature on interference, such a survey will also act as a guide to
those parts of the subject which require the greatest future theoreti-
cal work. Those papers which appear to be of immediate use for
engineering calculations will be pointed out. Many of these papers
will be elaborated upon later wherever they fit the purposes of the
present study.

The survey will first cover the papers which have attempted
to obtain detailed linearized solutions for the velocity and pressure
distributions on wing-body configurations. Such studies will obvi-
ously not depend on aspect ratio as long as the aspect ratio is high
enouéh so that the wing tip does not intersect the region of interest
about the wing-body juncture. The remaining papers will be divided
into high~ and low-aspect-ratio problems. This division is not ab~
solute and many papers will fall into both categories. Under each
of these categoriesv, the survey will be further divided into lift and

roll problems.
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In all of the papers where wing-body or fin-fin interfer-
ence were studied, linearized irrotational inviscid stationary
supersonic flow theory or slender body theory was used. In the
studies of wing-body-tail interference, the nonlinear effects down-
stream of the wings cannot be neglected. These effects were ap-
proximated by various methods which will be elaborated upon in
a later section of this thesis.

Consider first the papers on linearized velocity and pres-
sure distributions on wing-body configurations. These papers
are all concerned with the lift problem. Ferrari's first paper
(Reference 5) was the first attempt to obtain the detailed pressure
distribution for a wing-body problem. Unfortunately, some of
the methods and results are incorrect. In a later paper (Refer-
ence 6), Ferrari attempts to modify and correct his results and
compares them with some experimental data, In both of these
papers the configuration consisted of a slender pointed body with
circular cross section and a rectangular wing far back on the body
in a fegion where the body diameter is practically constant. A
third paper by Ferrari (Reference 7) considers the application of
the method of characteristics to the wing-body interference prbb-
lem, but no calculations are made. Morikawa (Reference 8) stud-

ies the problem in a different and more general Wa'y and presents
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some approximate pressure distributions. In Reference 9 Mori-
kawa compares the experimental data from Reference 6 with his
theoretical results from Reference 8. Browne, Friedman, and
Hodes (Reference 10} have obtained results for a conical wing-
body configuration, They present pressure distributions for both
subsonic and supersonic leading edges. Lagerstrom and Van
Dyke (Reference 11} discuss some approximate source-sink meth-
ods for obtaining pressure distributions.

Now consider the literature on high-aspect-ratio lift prob-
lems. Browne, Friedman, and Hodes (Reference 10y also obtained
some integrated lift results for the conical wing-body configura-
tion., Since the wing is triangular, their results apply to either
the high- or low-aspect-ratio problems. Lagerstrom and Van
Dyke (Reference 11) consider the problem from the overall view-
point of understanding the integrated lift effects. They present
some useful engineering estimates for wing-body configurations
with no after.bocly° In Reference 12 Morikawa presents some use-
ful wing=-body engineering results. He presents integrated lift
results for three types of wing-body configurations. In all cases
the'body is a circular cylinder extending infinitely far upstream
but cut off at the wing trailing edges (no afterbody). He presents
results for the delta, the clipped-delta, and the rectangular wings

covering the complete range from zero to infinite aspect ratio.
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Furthermore, he separates the lift carried on the wing and on the
body. Morikawa and Coleman (Reference 13) present some results
for center of pressure for the clipped—delta wing-body configura-
tion, Kirby and Robinson (Reference 14) have made some compu-
tations for a rectangular wing on a conical body. Lagerstrom and
M. E. Graham (References 15 and 16) are generally concerned with
low-aspect-ratio problems, however their ideas on afterbody lift
also apply to the high-aspect-ratio problem. Spreiter and Sacks
(Reference 17) study the rolling up of the trailing vortex sheets for
the wing-body-tail interference problem.

All of the papers on high-aspect-ratio roll problems assume
a circular cylindrivcal body at zero angle of attack. All but one of
the papers give results for delta wings. These results will then
apply to both the high- and low-aspect-ratio cases. In Reference
18 this writer studied fin-fin interference for roll due to aileron
deflection (cruciform wide-delta aileron with no body). Some cal-
culations were made for the crossflow field behind the cruciform
aileron assuming no deflection or distortion of the 'vortex sheets.
In a second paper (Reference 19), this writer extended the fin-fin
interference studies to damping in roll for the cruciform wide-
delta wing and to the cruciform narrow-delta aileron and obtained
estimates of wing-body and fin-fin interference for plane and cru-

ciform delta wings for roll due to aileron deflection and damping
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in roll, Further computations on wing-body-tail interference
were presented., Reference 19 was essentially a summary of
methods and results which will be found included and extended in
some detail in the present study. Tucker and Piland (Reference
20) have estimated the vﬁng-body interference for plane wide-
delta wing-body combinations., Bolz and Nicolaides (Reference
21) study a cruciform wing-body combination which has high-
aspect-ratio rectangular wings. They estimate the effects of
wing-body interference for roll due to aileron deflection, damp-
ing in roll, and equilibrium rate of roll and they present some
comparisons with experiments. E W. Graham (Reference 22)
has studied a very interesting limiting case for missile rolling
moments. He considers a configuration composed of an infinite
number of plane delta wings symmetrically arranged about an
axis in the free-stream direction. Another paper by E. W. Gra-
ham {Reference 23) extends his results to more cases. In these
two iaapers he presents results for roll due to aileron deflection,
damping in roll, and equilibrium rate of roll for the wing alone
and also presents results for roll due to aileron deflection and
damping in roll for the wing combined with a body. He wgets re-
sults for both supei'sonic and subsonic leading edges.

The literature on low-aspect-ratio lift problems includes

many of the papers previously listed under high-aspect-ratio
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lift problems. The results of Reference 10 apply here since the
wing has a delta planform. Certain considerations on wing-body
interference in Reference 1l where delta wings were studied will
also apply here, Morikawa's paper (Reference 12) on wing-body
lift with no afterbody was discussed previously. Laitone (Ref-
erence 24} has discussed some wing-body interference effects
for a rectangular wing-body combination using, among other
things, apparent mass/considerations . The remaining papers
in this category on wing-body and fin-fin interferences utilize
slender body methods which, when properly understood and in-
terpreted, act as useful limiting cases. It is to be particularly
noted that Lagerstrom and M, E. Graham (References 15 and 16)
have used slender body theory to estimate afterbody lift, Spreiter
(Reference 25) published the first paper on slender body methods
applied to wing-body interference problems. Ward (Reference
26)3 in a general study of slender body methods, obté.in-ed Sprei-
ter's results independently. In another paper, Spreiter (Refer-
ence 27) extends his slender body methods to cruciform wing-
body configurations. Three papers on wing-body-tail interfer-
ence complete this section. Martha Graham (Reference 28) stud-
ied the simplified problem of wing-tail interference using two

alternate extreme assumptions about the vortex sheet behind the

wing. The configuration consisted of two narrow-delta wings
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connected by a rigid line. The two alternate assumptions about the
vortex sheet were, first, that the sheet was deflected but undistorted
or, second, - that the sheet was completely rolled up and could be rep-
resented by two deflected vortices. This study intended to consider
the low-aspect-ratic problem and was made before it was known
which of these assumptions was the more realistic, However, since
delta wings were used, the study also applies to the high-aspect-ratio
problem. It is now known that, for a low-aspect-ratio wing, the as-
sumption of rolled up vortices is generally more realistic, however,
if the aspect ratio of the wing is high enough, the undistorted vortex
sheet might be the more realistic picture. Spreiter and Sacks' paper
on the rolling up of the trailing vortex sheet (Reference 17) shows
that the vortex sheet will generally be rolled up within a short dis-
tance downstream of tiae wing if the Wing has a low aspect ratio.
They studied the motion of the vortex sheet behind the wing and the
size of the vortex core when the sheet was rolled up and they pre-
sent photographs of the rolling-up process which were taken in sim-
ple water tank experiments., Lagerstrom and M. E. Graham (Ref-
erence 15) reached the same conclusion about the rolling up of the
vortex sheet behind low-aspect-ratio wings from some rather simple
studies of the motion of two-dimensional vortices., They have car-
ried out in great detail a study of the motion of two vortices in the

presence of a circular body.
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The literature on low-aspect-ratio roll problems will in-
clude all but one of the papers listed previously in the section on
high-aspect-ratio roll problems (i.e. References 18, 19, 20, 22,
and 23). The remaining papers on wing-body and fin-fin interfer-
ence have used slender body methods. Spreiter (Reference 27)
has presented some results for roll due to combined pitch and yaw.
Heaslet and Lomax (Reference 29) have obtained the solution for
the damping in roll of a plane delta wing~body combination. In a
recent paper, Adams (Reference 30) obtained the solutions for the
cruciform delta aileron and for the damping in foll of a cruciform
delta wing. E. W. Graham (Reference 31) obtained the solution
for the damping in roll of a cruciform delta wing independently.
The few results of References 18 and 19 and some discussion by
Lagerstrom and M. E, Graham (Reference 15) of the application
of their methods to the roll problems represent virtually all the
work that has been done on wing~body-tail interference effects for

the roll problems.

1.5 Purpose of the Present Study

At the present time there is a great need for practical an=~
swers to the interference effects in a variety of aerodynamic prob-
lems. This need is particularly severe for supersonic missiles
where added roll problems are encountered which previously were

of little importance or were not even present. The complete
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solutions to these problems are beyond present-day mathematics.
The best that can be hoped for at present are linearized solutions
for fin-fin and wing-body interference problems. Where exact lin-
earized solutions are not possible, approximations to or estimates
of the exact solutions can be useful. For wing-body-tail interfer-
ence problems, linearized theory cannot be used for the motion of
the vortex sheets downstream of the wing and other assumptions
are made to approximate the nonlineér effects. The usefulness of
the quantitative results obtained by these methods can only be eval-
uvated by experiment. However, past experience has shown that
such results can be useful qualitatively for the understanding of the
phenomena and very often the results are quantitatively useful for
engineering calculations.

With this in mind, the basic purpose of this thesis is to
obtain and present methods and results which may be useful for
engineering calculations. In general, the aim is to study integrated
quan:tities such as lifts and moments. The emphasis will always be
on the possible applicability of the methods and results to engineer-
ing calculations. Methods of solution which require long and ted-
ious calculations will be avoided, for it is felt that, in view of the
assumptions already made and the basic purpose of this thesis,
such methods are unwarranted.

In more detail, the purpose of the present study is five-fold.
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First, to summarize and present in their proper perspective in a
unified study the theoretical work to date which fits into the scheme
of the present study. Second, to present new theoretical results
which have been obtained by the writer for some of the interfer-
ence problems. Third, to discuss the effects of the various param-
eters and their importance. Fourth, to discuss qualitatively, where
possible, the effects of parameters and phenomena which have been
neglected-~that is, gap, high angle of attack, nonlinear, viscous,
and nonstationary effects, Fifth and last, to make some recom-

mendations for future theoretical and experimental research.

1.6 Cutline of the Present Study

The subject matter contained in the present study will now
be outlined very briefly.

The basic configuration studied has a slender pointed body
with circular cross section with a wing far back on the body in a
regi'pn where the body is nearly cylindrical. It is assumed that
the body is a circular cylinder from the wing to the tail. Both high-
and low-aspect-ratio wings are considered, but the major emphasis
is on the more difficult low-aspect-ratio case, Most of the low-
aspect-ratio wing studies are for wings with delta planforms. The
high-aspect-r‘atio wing studies generally treat wings with either
delta or rectangular planforms. Both plane and cruciform config-

urations are studied with about equal emphasis and some results
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are presented for multi-fin wings composed of more than two plane
wings .

Three aerodynamic problems are studied. They are (1) lift
and incidence, (2) roll due to aileron deflection, and (3) damping in
roll. Fin-fin, wing-body, and wing-body-tail interference effects
are studied for each of these aerodynamic problems.

In general, for all calculations which do not involve the
trailing vortex sheets downstream of the wings, linearized or slen-
der body theory or both are used., These calculations include lifts
carried by thé body and by the wings, rolling moments about the
body axis for aileron deflection and damping in roll, and vorticity
distributions at the trailing edges of the wings. Linearized theory
cannot be used for the motion of the vortex sheets downstream of
the wings. Although no new calculations are made for the motion
of the vortex sheets, the assumptions for and the methods of car-
rying out such calculations are considered, particularly for the

roll problems.
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II. CONFIGURATIONS

2.1 Types of Configurations Considered

The types of wing-body configurations which have been in-
vestigated by the writer are described in this section.

The major emphasis throughout this thesis will be placed
on the low-aspect-ratio delta wing supersonic missile-type con-
figurétion, Figure 3 shows a typical configuration with a cruci-
form wing. All configurations are assumed to have a slender
pointed body with circular cross section. Three wing planforms
are studied. They are (1) the low-aspect-ratio delta wing, (2)
the high-aspect-ratio delta wing, and (3) the high-aspect-ratio
rectangular wing planforms. Unless otherwise specified, the
term '"high aspect ratio'' will always refer to configurations where
the body diameter is much less than the span of the high-aspect-
ratio wing, This is illustrated in Figures 4(a) and 4(b) as opposed
to the cases illustrated in Figures 4(c) and 4(d) where the body
diameter is not small compared with the wing span. In general,
both plane and cruciform wings are studied. Furthermore, for
the case of no body, multi-fin delta wings composed of more than
two plane wings are also considered. It will be assumed that the
wing is located far back on the body where the body is nearly cy-
lindrical. From the wing to the tail section, the body is assumed

to be a circular cylinder. The tail configuration will remain
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unspecified since no explicit calculations are made for it,

2.2 Linearized Superposition

Except for the motion of th;e vortex sheets downstream of the
wing, linear theories will be used. The motion of the vortex sheets
downstream of the wing is a highly nonlinear problem whose nonlin-
ear character must be retained if any useful results for wing-body-
tail interference are to be obtained. However, for fin-fin and wing-
body interference problems, linear theories can be expécted to
yield useful results.,

The use of linear theory permits solution; to be superimposed.
Hence the general problem can be simplified by decomposing it into
the sum of simpler problems. "Figure 9.1 of Reference 1l illustrates
a superposition scheme for the wing-body interference lift problem.
Figure VII-2 of Reference 15 illustrates the basic superposition scheme
for the wing-body-tail interference lift problémg These superposition
schemes may be generalized in an obvious way to include the roll
problems and multi-fin conﬁgurationsl.

Figure 5 illustrates the superposition scheme for all the aero-
dynamic problems studied in this thesis, The complete configuration
in Figure 5(a) is to be considered as representative of the more gen-
eral configurations studied. The most general configuration would be
composed of the body with a multi-fin wing and tail whose individual

fins may have different angles of attack but will always have the same
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apparent twist and will always be uncambered.

Figure 5(a) shows how the wing-body-tail interference prob-
lems may be decomposed into the sum of several simpler problems.
The complete configuration consists of the body with a plane wing
and 2 plane tail. % and Awy denote the geometrical angles of at-
tack of the two wing fins or, for damping in roll, théy denote the
geometrical angles of attack plus the apparent linear twists of the
two fins (the usual assumption for the damping in roll problem).
aTl and °’T2 have the same meanings for the tail fins, The decom-
position into problems A' and B' illustrates the superposition scheme
which is used to calculate wing-body-tail interference. a, denotes
the distribution of upwash flow angle due to body angle of attack
and a, denotes the distribution of upwash flow angle (positive and
negative) due to the vortex system from the wing. B'is a wing-body
interference problem with the wing (tail fins) twistgd in some com-
plicated manner given by the apparent angle of attack, a, - Linear
theories can be used for problem B' and hence it can be decomposed
into the three simpler problems B, C«, and D. It is important to
point out that problem A' cannot be decomposed into simpler prob-
lems for calculating a_. This is where part of the essential non-
linearity of the wing-body~tail interference problem is encountered.
However, A' can be decomposed into simpler problems for the cal-

culation of wing-body (and fin-fin) interference effects. This is il-
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lustrated in Figure 5(b). First the problem is decomposed into E'
and F and then E' is further decomposed into E and G. If the wing
or tail is of the multi-fin type, the superposition scheme is identical
except that a,; and a,, must be interpreted as angles measured in a
plane normal to the plane of the fin whose apparent angle of attack
distribution is desired.

From this discussion it is apparent that, for fin-fin and wing-
body interference problems, the study of the general wing-body con-
figuration can be reduced to the study of a wing-body configuration
consisting of a circular cylindrical body at zero angle of attack which
extends infinitely far upstream but which may or may not extend
downstream beyond the trailing edges of the wing (the afterbody prob-

lem) and a wing whose fins may be twisted in some complicated manner.,

2.3 Reasons for Choice and Expected Applicability

The choice of the geometry of the configurations which are
studiefi was dictated by the simplification of the theoretical problems
and, more practically, by the actual use of such geometry in some
supersonic missiles.

From the theoretical point of view, the body with circular
cross section is practically a necessity for all of the interference
studies if any results are to be obtained. In fact, many of the re-
sults in this thesis are valid exactly only if the body cross section

is circular,
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The choice of the delta planform for the wings is not neces-
sary but many of the theoretical problems are considerably simpler,
particularly for low-aspect-ratio wings. Furthermore, for many of
the problems, a single calculation yields results for both high- and
1ow-aspect~ratio wings. Although the delta planform can be expected
to be useful for applications to supersonic missiles, it is not a likely
planform shape for the high-aspect-ratio supersonic airplane. This
is the reason that the rectangular wing is included in the study of
high-aspect-ratio wing problems.

The cruciform wing is studied because of its wide use on
supersonic missiles. The basic purpose of a cruciform wing is to
be able to supply lift equally in any desired lateral direction by some
combination of deflections of the fins. Although any wing composed
of a finite number of nonplanar lifting surfaces has this property,

calculations are simplest for the cruciform configuration.
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III. BASIC THECRY AND ASSUMPTIONS

Some of the basic theory and assumptions which can be con-

veniently separated from the text are discussed in this section.

3.1 Linearized Theory

The basic assumptions of stationary linearized supersonic

flow lead to the wave equation for the perturbation velocity poten-

tial, ¢ ,
g@x+cﬂyy-(M’z/)g@Z:0 (3.11)

where M is the Mach number of the free stream and the free stream
velocity, U , is nominally in the positive z direction. Viscosity and
heat transfer have been neglected and the flow is isentropic and ir=-

rotational. The perturbation velocity vector is given by
(u,v, w)= grad @ (3.12)

where u, v, and w are the perturbation velocity components in the
X, vy, and z directions, respectively, The condition for irrotational

flow may be expressed by |
curl (u,v, w)=0 (3.13)

The pressure for a planar system is given by

P-B, =-pUw=-pU% (3.14)
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and the pressure coefficient is

_ PR 2w__ 2% v
Cp,éﬂ;-_ bl (3.15)

It is important to note that Equations (3.14) and (3.15) apply only to
the planar parts of a wing-body configuration, i.e. the fins. On the
body, more perturbation velocity terms would have to be included
in the expansion of the isentropic pressure relation or the exact
pressure relation itself could be used.

The boundary conditions are the usual ones which are im-
posed when viscosity is neglected. The flow is a;—;sumed to be tan-
gent to any solid surface at the surface and the flow is assumed to
be uniform and undisturbed upstream of any disturbing bodies.

This basic theory is well known and will not be elaborated
upon further., Thé application of this theory to the exact solution of
wing-body problems is not well known. Although such exact solu-
tions will not be attempted here, it is of interest to note where such
attempts have been made. Most of the work which has been done on
the exact solutions of wing-body problems will be found in References
5 through 11.

In the present study, linearized theory for planar systems
is used to make estimates of or approximations to the exact linear-
ized solutions of several fin-fin and wing-body interference problems.

Certain fin-fin interference prbblems can be reduced exactly to
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planar wing problems and, hence, these solutions will be exact.
Since the nonplanar problems are approximated by planar problems,
the pressure relations, Equations (3.14} and (3.15), may be used.
The linearized supersonic theory of planar wings is so well
known that the pertinent results will be given here without further
discussion. The general solution of Equation (3.11) for the pertur-
bation velocity potential when the downwash on the wing is prescribed
is given by (see, for example, Reference 32}

#(5,0,5)ds ds (3.1
Plr,y, 2)=-# > ‘ (3.16)
g )] Vz-5)2-m2-)[ex-g)24 y 3]

For the lifting wing, this equation gives the potential at any point
(x,y,2) above the wing (y positive). The potential below the wing is
obtained from symmetry. §' and § are running coordinates on the
wing. The region of integration is that part of the wing which is con-
tained within the upstream Mach cone from (x,y,z) if the leading edge
is supersonic. If the upstream Mach cone from (x,y,z) encounters
a subsonic leading edge, the region of integration must be modified
according to Evvard (Reference 33), The line of intersection of the
upstream Mach cone and the wing is a parabola which degenerates
into two straight lines when the potential on the top side of the wing
is desired, i.e. for y = 0+.

Linearized theory is not used to study the motion of the vor-

tex sheets downstream of the wings. As mentioned previously,
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the nonlinear character of this motion must be retained. However,
linearized theory is used to solve other parts of the wing-body-tail
interference problem such as the vorticity at the wing trailing edges
and the forces induced on the tail by the vortex system from the

wings .

3.2 Slender Body Theory

There have been many applications of slender body theory to
wing, body, and wing-body problems. Applications to fin-fin and
wing-body interference problems will be found in References 15, 16,
25, 26, 27, 29, and 30. The theory and its application are well
known and will not be reproduced here. However, it is desirable to
have a clear physical picture of what the slender body assumptions
imply in order that the extent to which slender body theory can be
used for approximating wing-body problems be understood. Excel=-
lent discussions from this point of view will be found in References
15 and 16 . Although the following discussion is somewhat different
from that of References 15 and 16, all of the essential ideas are from
these papers. The discussion will be brief and the proofs of most of
the statements will be found in the two papers mentioned above or
any others mentioned in the discussion.

The basic idea behind slender body theory is that under cer-
tain conditions the term (Mé—/)gz in Equation (3.11) will be negligible

compared with the other terms. Then Equation (3.11) reduces to the



-29-

much simpler equation

Gt Py =0 (3.21)

Now the problem has been reduced to solving a two-dimensional in-
compressible flow problem in the x-y plane. Powerful general meth-
ods are available for solving such problems.

The term (M%) @, can be made small by making either
(Mzml) or &, or both small. If the Mach number is unity, the
factor (Mz—l) is identically zero and Equation (3.21) is obtained
exactly., Then any configuration is a slender bo@y at M =1. But
this is obvious since, for M = 1, the Mach waves are normal to the
free stream direction and every point will influence every other
point in any section of the configuration taken normal té the free
stream direction. This is just what Equation (3.2l) expresses,
Since slender body theory is exact for M = 1, velocities and pres-
sures computed this way will be correct. For Mach numbers greater
than one, the Mach waves are no longer normal to the free stream
direction and any point influences only those regions which lie with~
in its downstream Mach cone.. This is the typical delayed action
in supersonic flow. Now velocities anderessures computed by
slender body theory will not be correct. The error in the velocity
and pressure distributions will obviously increase with increasing

Mach number.,
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Now consider the factor ¢,=w, . This is essentially the
pressure gradient in the streamwise direction. It is known that,
for a low-aspect-ratio wing or wing-body configuration, the pres-
sure equalization around the subsonic edges will cause the pres-
sure perturbation to approach zero in the streamwise direction (see
also Reference 34). At the same time, the streamwise gradient of
the pressure will also approach zero. The rapidity with which
this gradient approaches zero will depend on the rapidity of pres-
sure equalization which in turn depends upon the number of times
the Mach wave from a point of disturbance has been reflected from
a subsonic edge. In the final analysis, the rate of pressure equali-
zation depends upon the Mach number and the geometry of the con-

figuration., To illustrate, consider Figure 6

'
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(a) M slightly greater (b} M definitely greater
than one., than one.

Figure 6
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The delta wing is continued downstream with sides parallel to the free-

stream direction. In Figure 6(a) the Mach number is slightly
greater than one and a disturbance wave starting at the wing lead-
ing edge-body juncture reflects several times at subsonic or side
edges before reaching section AB. If the Mach number is definitely
greater than one as in Figure 6(b), fewer reflections occur before
‘section AB is reached, Note that if M = 1 the wave system contracts
to a single line normal to the free stream direction and, in a sense,
an infinite number of reflections have occurred by the time section
AB is reached.

By taking section AB far enough downstream, q?;_. can then
be made small enough so that (Mz-l), ?é* can be neglected. Then
the solution of Equation (3.21) at this section will give nearly the
correct solution. But the potential, ¢/, at section AB is directly
proportional to the spanwise lift distribution of the part of the con-
_:figuration upstream of AB. Hence, ‘if AB is the trailing edge of
the wing-body combination, slender body theory will give nearly
the correcf spanwise lift distribution and, thus, lift, rolling mo-
ment, and lateral center of pressure., It should be pointed out,
however, that this is not true for the pitching moment and chord-
wise center of pressure. The exact slender body result is obtained
if the aspect ratio of the configuration is zero, that is if section

AB is infinitely far downstream. In a sense, slender body theory
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anticipates the complete wave system.

The factors (Mzml)/‘and @

2 are seen to be interrelated

through the configuration geometry. This interrelation can be ex-
pressed as follows: If the maximum wave length of the wave sys-
tem, A , is small compared with the length of the configuration,
4, [see Figure 6(ay slender body theory will approximate well
to the lift and rolling moment of the configuration.

The aspect ratio of a wing or a wing-body configuration
which has a finite length can be made to approach zero by simply
letting the lateral dimensions approach zero. Slender body theory
will then give the correct result for the limiting case of zero as-
pect ratio. For a delta wing, plane or multi-fin, this limit is ap-
proached as the apex angle approaches zero.

Slender body théory is used in interference problems in
two ways. First, to give the exact limiting values for certain in-
tegrated aerodynamic quantities when the lateral dimensions of
the configuration approach zero and, second, to estimate the lift

of a wing-body configuration with an afterbody.

3.3 Vortex Sheets Downstream of the Wing

As mentioned previously, nonlinearity must be retained
in this problem. The assumptions and approximations used in

computing the motion of the vortex sheets are fully explained in a
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later section, Briefly, for low-aspect-ratio wings, the vortex
sheets are replaced by vortices which start at the centroids of
the vorticity distributions at the trailing edges of the wing. In-
compressible two-dimensional flow theory is then used to calcu-
late the motion of these vortices as they pass downstream to the

tail position.

3.4 Gap Effects
In all cases where fins are deflected so that gaps are pro-

duced the effects of the gap are neglected.
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IV. THECRETICAL RESULTS

Some of the results for the roll problems were previously
published by the writer in Reference 19 in a very condensed form.,
Since then, new results have been obtained and a relatively minor
error .has been discovered in one of the computed curves in Ref-
erence 19, Most of the methdds and results in Reference 19 to-
gether with the new results are presented here in detail, Results
from other papers will also be included here whenever they fit into
the scheme of this study. In general, only the important results

from these papers will be included with a minimum of details.

4,1 Interference Definitions

There is no standard definition of interference. Until re-
cent years the interference studies were confined to the lift prob-
lem for wing-body-tail configurations with high-aspect-ratio wings
and tails. It was natural, then, for interference to be defined as
the difference between the sum of the lifts of the components taken
separately and the lift of the combination. The use of low-aspect-
ratio missile configurations has made it necessary to include roll
problems in interference studies and to introduce fin-fin interfer-
ence when multi-fin Wings or tails are used. Interference, as de-
fined above, is not quite as natural for the low-aspect-ratio prob-

lems. However, this definition will be used where possible for
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the three types of interferences considered here.

It will be assumed that a multi-fin wing is always composed
of an even number of fins symmetrically located about the body axis.
In other words , a multi-fin wing will always be composed of two or
more plane wings. This is assumed so that the plane delta wing is
the basic plane configuration. If the multi-fin wing with an odd num-
ber of fins were included, it would be logically necessary to consider
the half delta wing as the basic configuration.

"The word "wing'" will be used in its general sense and may
refer to the lift, aileron deflection, or damping }n roll problems,
i,e. the "wing' may be lifting, may be deflected as an aileron, or
may have an apparent linear twist. Whenever the terms ''multi-
fin wing'', "plane wing', and 'plane wing-body combination' are
used in connection with a general multi-fin wing-body configuration,
they will have special meanings. Consider a general multi-fin wing-
body configuration. The basic wing formed when the body diameter
shrinks to zero is called the "multi-fin wing'', The term ''plane
wing'' refers to any of the plane wings which compose the "multi-
fin wing". A 'plane wing-body combination'' is formed by combining
a '"plane wing" with the body of the general configuration.

When the components of a multi-fin wing-body combination
are considered separately, they are assumed to have the same

angles of attack, angles of bank, aileron deflection, and twist
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which they have in the combination. It should be noted that the body
alone never develops any lift or rolling moment. This is apparent
from the superposition scheme shown in Figure 5 where the wing=-
body problems are always decomposed so that the body is at zero
angle of attack.

Using these definitions and explanations, the various inter-
ferences are defined for any particular aerodynamic characteristic
as follows:

Fin-fin interference--Consider a multi-fin wing-body com-

bination. Fin-fin interference is defined as the difference between
the sum of the forces or moments on the plane wing-body combin-
ations taken separately and the force or moment on the complete
configuration. This definition is illustrated schematically in Fig-
ure 7.

Wing-body interference--Consider a multi-fin wing-body

combination., Consider the sum of the forces or moments on the
plane “wings and body when all are taken separately. Then consider
the sum of the forces or moments on the plane wing-body combin-
ations all taken separately. The difference between these total
forces or moments is defined as wing-body interference. Note
that this definition has been specifically constructed to exclude

any fin-fin interference effects. This definition is illustrated

schematically in Figure 8,
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Wing-body-tail interference--Consider a general wing-body-

tail configuration which may have any kind of multi-fin wing and
tail. Wing-body-tail interference is defined as the difference be-
tween the sum of the forces or moments on the wing-body and tail-
body combinations taken separately and the force or moment on the
combined c':onﬁgu.ration° This difference will be caused by the vor-
tex system from the wing which induces forces or moments on the
tail. Although no quantitative calculations are carried out, this
definition is used in the discussion of methods and procedures for
carrying out such calculations,

If the differences which are referred to in these definitions
are to represent interferences, they must always be described
relative to the case of no interferenée . In futqre discussions of
results, these differences will usuallly be‘described by percentage

changes based on the case of no interference.,

4,2 Fin-Fin Interference--Low Aspect Ratio

Configurations which give rise only to fin-fin interferences
are studied in this section. These configurations will obviously
be wings. These results will be useful for the wing-body problems
of section 4.4 as endpoints (when the body diameter is zero, i.e.
A = 0) in the estimating procedures.

Only delta wings are studied here. Then the results will

apply as well to high-aspect-ratio wings. However, fin-fin inter-
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ference and roll due to aileron deflection problems are not likely
to occur in the high-aspect-ratio problems, hence it is desirable
to make this division of subject matter into low- and high-aspect-

ratio problems.

A, Lift

Plane wide-delta wing--Consider an unyawed flat plane

wide-delta wing in the horizontal k-z) plane which is at an angle
of attack a (measured in a plane normal to the plane of the wing).
The lift coefficient based on the wing area is well known and is

given by
C - C =
=4mo oFr ﬁ L= + (4°Z.l)

If the wing is banked about its axis of symmetry (z-axis)
through the bank angle 8, the resultant force, R, on the wing will
always be normal to the wing and the effective angle of attack in
the piane normal to the plane of the wing will be acos®. The re-

sultant force coefficient will be

CR = 4meo COSE (4.22)

Decomposing this into lift and side force coefficients for the banked
wing gives

CL:_ 4mo CosZO (4.23)
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and

Cy=4ma o568 sine (4.24)
These relations are very simply obtained and should be apparent
from the schematic illustration of the banked wing shown in Figure
9. When the wing is banked 90 degrees all the forces are zero,

This is, of course, apparent physically without the above equations.

Cruciform wide-delta wing--Consider an unyawed and un-

banked cruciform wide-delta wing. No forces will be developed on
the vertical fins and, from symmetry, the horizontal fins act like
a plane wide-delta wing. The lift coefficient is fhen given by Equa-
tion (4.21).

Now let the wing be banked about its axis of symmetry
(z-axis). This situation is equivalent to pitching and yawing the
wing through small angles. No side forces are developed and the
resultant lift force is the same as when the wing is unbanked. Let-
ting L. be the lift of the unbanked wing, this result can be shown
readily by the vector diagrams in Figure 10. Then the lift of the
cruciform wing is independent of bank angle and its lift coefficient
is always given by Equation (4.21). It should be noted that this is
only true for cruciform wings whose horizontal and vertical fins
have identical planforms as is always the case in this thesis.

According to the definition, the fin-fin interference for

the banked cruciform wing is given by the difference between the

/
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sum of the forces on the two plane wings taken separately and the
force on the cruciform wing. This difference is zero and, hence,
there is no fin-fin interference for the cruciform wing in lift. This
fact should be obvious from Figure 10 where it is noted that only
fhe result for the plane wing was needed in order to obtain the re-
sult for the cruciform wing. This result is peculiar to any cruci-
form wing because of its 90 degree geometry. For other multi-

fin wings the fin-fin interference will generally not be zero.

Plane narrow=delta wing--For a plane narrow-delta wing
at an angle of attack a the results are well known (see Reference

35) and the lift coefficient is

_ 2mmod

A T (4.25)

The previous remarks about the effects of bank for the plane wide-

delta wing obviously apply here as well,

Cruciform narrow-delta wing-- From the previous discus-

sion of the effects of bank on the lift of a cruciform wing, it is seen
that the lift coefficient of a cruciform narrow-delta wing is given
by Equation (4.25). The previous remarks on fin-fin interference

are true here also.

B. Roll Due to Aileron Deflection

For high-aspect-ratio wings, sufficient rolling moments
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can usually be generated by the familiar trailing-edge or possibly
leading-edge ailerons. However, fozj low-aspect-ratio wings,
different types of ailerons are generally necessary in order to gen-
erate satisfactory rolling moments because of the reduced wing
area and moment arms.

One type of aileron which has been used and the one which is
treated here is formed by deflecting the entire wing so that the two
halves of the wing have equal but opposite angles of attack. Other
types of ailerons which have been used are formed by deflecting
relatively‘large portions of the wing. The largest interference ef-
fects will be obtained for the aileron formed by deflecting the entire
wing. For other types of ailerons, the methods used in this thesis
will generally apply and will yield closer estimates of or approxi-
mations to the exact linearized results because of the smaller
interference effects.

For the general multi-fin wing, aileron deflection denotes
the eyqual and opposite deflection of the two halves (fins) of one or
more of the plane wings which compose it. If the solution is ob-
tained for just one pair of fins deflected, the solution for any num-
ber of pairs of fins deflected can be obtained by superposition.
Only the rolling moments are to be considered and, hence, the
axis of symmetry of the multi-fiﬁ wing is oriented in the free-

stream direction so that no net lateral forces arise. The wing
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or wing-body combinations will be so oriented for all roll prob-
lems. The lateral forces (lift and side forces) can be included

by superposition.

Plane wide-delta aileron--Consider an unyawed plane wide-

delta aileron in the horizontal plane. This terminology is used
interchangeably to denote a wide-delta wing with aileron deflec-
tion, i.e. with its two fins deflected equally in opposite directions.
Looking upstream, the right fin is deflected by + § and the left
fin by - § so that positive rolling moments (see Figure 1} are gen-
erated. This is illustrated in Figure 11. Also s;hown is the lead-
ing edge parameter, f, which enters the results for wings (and
wing—Body configurations) with supersonic leading edges.

The result for this aileron was obtained in Reference 18

(there the effects of yaw are included) and is
_ 2 _‘
FC}S =5 (4.26)

Note that this result is independent of the leading edge sweepback
(f) as was also the lift result (Equation (4.21)). There is a general
theorem which shows that this is true for any angle of attack dis-

tribution (see Reference 11).

Cruciform wide-delta aileron--It is convenient to consider

this aileron to be oriented so that one pair of fins is horizontal

4
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and the other pair is vertical. In general, both pairs of fins
might be deflected as ailerons with different deflection angles,
The general case can always be obtained by an obvious super-
position from the case where just one pair of fins is deflected.
In the present work, when both pairs of fins are deflected they
will have the same deflection angles and the configuration will
be denoted by ''4 fins deflected'. The rolling moment is ob-
tained by just doubling the result for "2 fins deflected'.

Consider the cruciform aileron with the horizontal fins
deflected by + & and the vertical fins undeflected. This config-
uration is obtained if undeflected vertical fins with supersonic
leading edges are added to the plane aileron discussed above.
These vertical fins prevenf the equalization of pressure which
takes place across the top and bottom sides of the plane aileron
and, hence, the horizontal fins of the cruciform aileron will
carry more rolling moment than the plane aileron. However,
the results show that this effect is more than counteracted by
the counter-roll induced on the vertical fins.

That a counter-roll is induced on the vertical fins can
be shown from simple physical considerations. Figure 12 il-
1ustrates\the signs of the pressures on the various fins of the
cruciform aileron at a cross section of the aileron. The right

horizontal fin is deflected by + § and hence will have suction
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(indicated by minus signs) on the top side and overpressure'(indi-
cated by plus signs) on the bottom side, Suction and overpressure
will be induced on the vertical fins within the Mach cone as shown
in Figure 12. It is apparent that the vertical fins carry a rolling
moment which opposes that of the horizontal fins.

The fact that all leading edges are supersonic means that
there is no communication between the quadrants shown in Figure
12. Hence the flow fields in the quadrants are independent of each
other and, in particular, the flow fields separated by the vertical
fins are independent of each other., When the flow conditions to
the right of the vertical fins are known, those to the left are immed-
iately obtained by symmetry. In particular, the pressure is anti-
symmetric about the plane of the vertical fins.

The presence of the vertical fins requires that the sidewash
be zero in the plane of these fins, Hence, by symmetry, the flow
conditions to the right of the vertical fins are exactly those ob-
tained from a wide-delta lifting wing whose angle of attack is ev-
erywhere + § . Then the solution of the cruciform wide-delta
aileron problem can be reduced exactly to the solution of planar
wing problems. The solution was obtained in Reference 18 using
known conical wing results for the pressure distributions and in-

tegrating over the horizontal and vertical fins. These results are

summarized here for completeness,
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The rolling moment coefficient for the horizontal fins is

given by

£c,) :%//“’; + f) (4.27)

There are two limiting cases which greatly simplify the results:
f = 0 (infinite aspect ratio (W= 90%) or M = @ (u=0))and f=1
(sonic leading edges). For f = 0, Equation (4.27) becomes

ﬁ(Czs)H

/: —;-" (4.27a)

This is the result for the plane aileron. For f = 1, Equation (4.27)

is indeterminate and, by usual methods, becomes

3m

)

Al), } i (4.27b)

The counter-roll induced on the vertical fins is given by

cos™F — £~ 2
ﬁ(ag) 4{7‘5 I~ (4.28)

(9%

Fy) 4 =0 (4.28a)

p(CZS)J .~_—§‘—3—r | (4.28b)
£=1

Adding these results, the rolling moment coefficient for the com-

plete cruciform\aileron is
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C — 4 (/—zfz)cos"f 7 4,29
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These results are shown in Figure 13, According to the

definition, the fin-fin interference is given by the difference be-
tween the results for the plane aileron and the cruciform aileron
for a given value of f, It is seen that fin-fin inte;ference generally
is detrimental since it decreases the aileron effectiveness. The
magnitude of the interfefence is zero for f = 0 and increases mono-
tonically to a maximum of 15 percent when the leading edges are
sonic (f = 1).

The result that there is no fin-fin interference when f = 0
is quite general and applies to the multi-fin wing-body configura-
tion as well. Simple physical considerations can be used to prove
this result. There are two physical interpretations for f = 0:
either the wing has finite geometry and M =< (/4: @) or the Mach
number is finite and the aspect ratio of the wing is infinite. In-
terference can only be generated if part of a fin lies within the
region of influence of another fin not in the same plane. When

the Mach angle,/u , is zero, the region of influence vanishes and,
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hence, all fin-fin interference effects must vanish,

Flane narrow=delta aileron-- This aileron is similar to

that shown in Figure 1l except that here the leading edges are sub-
sonic. The notation for this case is shown in Figure 14. The lead-
ing edge parameter here, d, is the reciprocal of the parameter for
supersonic leading edges, f.

The solution for this aileron was obtained in Reference 18

and is given by
C = <
ﬁ zs 3 d (40210)

It should be noted that this result is actually independent of Mach
number since there is a # hidden in the parameter d on the right
hand side which will cancel the B on the left. This solution is then

the slender body result as well.

Cruciform narrow-delta aileron-- This configuration is the

same as that for the cruciform wide-delta aileron except that here
the leading edges are subsonic, The horizontal fins are deflected
by + & and the vertical fins are undeflected, The addition of the
vertical fins to the plane aileron to form this aileron will reduce
but not eliminate the equalization of pressure which takes place
across the top and bottom si.des‘of the plane aileron. Then the

horizontal fins of the cruciform aileron will carry more rolling
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moment than the plane aileron just as in the wide-delta case. Again
the vertical fins must carry a counter-rolling moment and, it will
be seen, this moment more than counteracts the increase in rolling
moment carried by the horizontal fins and leads to larger interfer-
ence effects than for the wide-delta case.

Since the leading edges are subsonic, the flow conditions on
the two sides of the vertical fins are not independent of each other
and this problem cannot be reduced exactly to planar wing problems
as in the wide-delta case., As yet, the exact solution is not known
and this writer has not attempted to obtain it. Instead, an approxi-
mate solution is obtained by studying exact limiting cases combined
with under- and overestimates, This approximate solution is ob-
tained graphically by fairing a curve which satisfies the exact lim-
iting cases and the under- and overestimates., Such a procedure
was carried out in Reference 19 before the slender body solution was
available. The slender body solution is included here and should
imprm}e considerably the accuracy of the approximation.

What is desired here is an approximation to the plot of ECZS
versus d. The results are shown in Figure 15 and all the discussion
concerning the approximate solution will refer to this figure. First
consider what exact 1imiting values are known for the cruciform
aileron. The exact values for d = f = 1 are given by Equations (4.27b),

(4.28b), and (4.29b) (or Figure 13) for the horizontal fins, the vertical
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fins, and the complete aileron respectively. Atd =0, Czs will
be zero for the horizontal and vertical fins and for the complete
aileron., The slender body solution supplies the exact slopes of
the curves at d = 0., These results were published recently in Ref-
erence 30. The results for the horizontal fins, vertical fins, and

complete aileron respectively are given by

£ (Czs)ﬂ =128 d (4.211)
B (Cls)v =-0.620d (4.212)
ﬂcls = 0.508 h (4.213)

It is possible to obtain some further informatién about the
complete aileron by bracketing the exact solution. Take a fixed val-
ue of d for the horizontal fins. Then let the vertical fins increase
in size from the limiting case of no fins (plane aileron} to the other
limiting case of fins with sonic leading edges (mixed cruciform
aileron). It seems reasonable that the variations in rolling moment
during this process will be continuous and monotonic and that the
value of rolling moment for the cr"uciform aileron will lie some-
where between the two limits, The solution for the plane aileron
is given by Equation (4.210) and is plotted in Figure 15. The slen-
der body result for the complete aileron (Equation (4.213)) is also

shown. Since the slender body result and the correct endpoint at
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d =1 lie below the plane aileron solution, the plane aileron must
overestimate the correct solution, Then the mixed cruciform
aileron underestimates the correct solution.

The mixed cruciform aileron is the only multi-fin config-
uration treated in this thesis which does not have the same plan-
form for all of its component plane wings, It should first be noted
that, when d = 1, all leading edges are sonic and the mixed aileron
has the correct value. Since the vertical fins have sonic leading
edges, the flow conditions on its right and left sides are complete-
ly independent of each other. Then the flow conditions to the right
of the vertical fins are exactly those obtained from a narrow-delta
lifting wing whose angle of attack is everywhere + & . The same
arguments which were gsed for the cruciform wide-delta aileron
‘apply here. The details of the calculations will not be presented
since this solution is of no great importance. J

The pressure distributions can be obtained from Reference
35 wh;ere the conical solution for the complete flow field of a nar-
row-delta lifting wing is given. The pressure distribution on the

upper side of the right horizontal fin is given essentially by

m&sUd

W =
EG-aZ)yi-(t,)2

(4.214)

where t denotes the usual conical variable in the horizontal plane.

The pressure distribution on the right side of the upper vertical
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fin is given by

_Mm sUd /=52 (4.215)
EO=a®)1+s3(%1)

where s denotes the conical variable in the vertical plane. Integrat-
ing these pressure distributions over the horizontal and vertical fins
using the symmetries depicted in Figure 12, the rolling moment co-
efficients based on the area and span of the narrow-delta horizontal

fins are given by

_ 4 _d .
;3(6&5)“~ e =l (4.216)
¢ - 2 cos’’d
’8( zS)V 30-d2) £ i=qz) [Vi-d % d) (4.217)

cos'd

z _ CosT'd
ﬁCzS- 3(/_0/&)5(10??,}[;(3 2d%) fr-a= (4.218)

for the horizontal fins, vertical fins, and complete mixed aileron
respectively. These three equations are plotted in Reference 19.

Only the result for the complete aileron can be used for
estimating purposes. This is plotted in Figure 15. It is seen that
this solution starts at the correct vaiue for d = 1 but rapidly moves
away from the overestimate (plane aileron) as d decreases. Then,
as an underestimate, the mixed aileron is of little use except near
d = 1 where it attains the correct value. The slope of the mixed

aileron curve at d =1 will act as a guide for fairing in the approxi-
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mate solution by limiting the slope of the approximate curve so
that it does not pass below the mixed aileron curve, Differentiat-
ing Equation (4,218) with respect to d and evaluating the indetermi-

nate expression when d = 1, the slope is given by

Jg(‘acls) - 4/;‘:7' (4.219)

and is shown in Figure 15.

Using the known endpoints at d = 0 and d = 1, the known
slope at d = 0, and the limiting nature of the slope of the mixed
aileron curve at d = 1, the cruciform aileron approximation can be
drawn in a reasonable manner which leaves little to the imagina-
tion, The cruciform aileron approximation shown in Figure 15
is expected to approximate quite well to the correct solution.

The magnitude of the fin-fin interference is given by the
difference between the plane aileron and the cruciform aileron
approximation for a given value of d. It is seen that fin-fin inter-
ference reduces the aileron effectiveness., The magnitude of the
interference is 15 percent for d = 1 and increases with decreasing
d until it attains the limiting value of about 24 percent for d = 0.

Reviewing the cruciform aileron results briefly, it is seen
that, for nearly all leading edge conditions {subsonic and super-
sonic), fin-fin interference is detrimental in that it reduces the

rolling moment carried by the cruciform aileron below the moment
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carried by the plane aileron. The one leading edge condition
for which this statement is not true is f = 0--~-a condition which
is obviously not attainable physically. Hence, for practical pur-
poses, fin-fin interference is always detrimental. Starting from
zero for f = 0 (d =© ), the magnitude of the interference increases
with increé.sing f (decreasing d). It is 15 percent for d =f =1 and
attains its maximum value of about 24 percent when f =20 (d = 0).
It is apparent physically that the variation of f from zero to in-
finity is equivalent to the variation of the interaction between the
fins from no interaction to complete interaction. Then, quali-

tatively, the results are not surprising.

Multi-fin ailerons--In this section, roll due to aileron

deflection is studied for multi-fin wings other than the cruciform.
The method used for estimating the solutions restricts the study
to multi-fin wings whose fins are all deflected equally and in the
same~direc*c.ion, i.e. all component plane ailerons of the multi-
fin aileron are deflected by + & so as to produce rolling moments
of the same sign. Since the multi-fin wing is assumed to be
axially symmetric, the basic case where only one component
plane wing is deflected as an aileron is obtained from the super-
position principle by dividing the results by the number of plane

wings .
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E. W. Graham (References 22 and 23) has studied a very
interesting limiting case which makes it possible to estimate the
results for the multi-fin aileron. He has studied the limiting case
when the multi-fin wing is composed of an infinite number of fins all
of which are deflected equally as ailerons. This problem is easily

solved by simple angular-momentum considerations. The result is
C, = R7T 4_ RTT 4,220)
Flig=5d=32 ( )

This result is actually independent of Mach number since the g
hidden in the d or f cancels the 8 on the left. Then Equation (4.220)
‘gives the solution for all leading edge conditions (supersonic and
subsonic).

Equation (4.220) is plotted against d in Figure 16 for 04d£1
(subsonic leading edges). Also shown are the results for the plane
aileron and for the cruciform aileron apprroximation with all fins
deflected. N denotes the number of fins. The results for N = 2
and N = © will bracket the results for any aileron with an even
number of fins (all deflected). Since these bracketing results are
straight lines, they do not supply enough information about the
shape of the curves for 2<N<©, The curve for N = 4, although
approximate, supplies additional information for estimating the
shapes of the curves for 4< N<e , The ordinate at d = 0 will

obviously be zero for all multi-fin ailerons. If the endpoints are
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known at d = 1, approximate solutions can be faired in for any
multi-fin aileron., The endpoints at d = 1 can be estimated by
plotting JQCLS against 1/N using the known exact solutions for
N =2, 4, and c© , Such a plot is shown in Figure 17 with a rea-
sonable curve drawn through the three known points. A few es-
timated endpoints at d = 1 are shown in Figure 16,

In order to estimate the solutions for multi-fin ailerons
with supersonic leading edges, the known results for N = 2, 4,
and o0 are plotted against f in Figure 18. The results are also
shown for part of the range of subsonic leading edges (1£ f £4]).
Since there are no interference effects for f = 0, the ordinate
for any multi-fin aileron with N even is obtained as a multiple of
the known ordinate for N = 2. At f =1, the ordinates can be es-
timated as described above and a few are indicated in Figure 18,
Using the exact values at f = 0, the estimated values at £ = 1, and
the result for N =4 to indicate the shape, the results for wide-
delta”multi-fin ailerons can be estimated.

It should be pointed out that this procedure can also be
used for ailerons with N odd.

InFigures 16 and 18, fin-fin interference is given by the
difference between f C‘(S for the multi-fin aileron with all fins
deflected and £ CZS for the plane aileron multiplied by the num-

ber (N/2) of plane ailerons which form the multi-fin aileron.
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For f = 0 the interference is zero for all N. For any other {,
the interference increases with increasing N to a maximum value
of 100070 when N =0 . For any given N, the variation of inter-
ference with £ (0 £ f £c0 ) is qualitatively the same as for the

cruciform aileron which was discussed previously.

C. Damping in Roll

Consider a multi-fin wing which is rotating about its axis
of symmetry with constant angular velocity p. The axis of sym-=-
metry is assumed to be oriented in the free-stream direction so
that no lateral forces are generated, The usual éssumption that
the effect of rolling can be represented by an apparent linear
angle of attack distribution will be made . Then the rolling wing
is replaced by a stationary wing whose fins are linearly twisted.
The results for such a wing will be qualitatively the same as for
the aileron. The two problems differ only quantitatively because

of the different angle-of-attack distributions of the fins.

Plane wide-delta wing--The solution for this wing can be

obtained from Reference 36 and is
PG, =3 (4.221)

As expected, the result is independent of leading edge sweepback, f.
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Cruciform wide~delta wing-- Assume, for convenience, that

the wing is oriented so that one pair of fins is horizontal and the
other pair vertical. The complete problem with all fins twisted can
be decomposed into the sum of simpler problems as shown in Fig-
ure 19. The dotted lines represent the linear angle 'of attack dis-
tributions spanwise. The two simpler problems A and B are es-
sentially thé same. This is evident if either is rotated by 90 de-
grees., Then the solution will be obtained for problem B and doubled
for the final result.

In problem B, the vertical fins are untwisted and undeflec-
ted and will carry a counter-roll just as in the aileron case. The
horizontal fins are twisted linearly with the angles of attack nega-
tive for the right fin and positive for the left fin. The horizontal
fins will generate a negative rolling moment and a positive counter-
moment will be induced on the vertical fins. In the final results,
the rolling moment carried by the horizontal fins will be called
"direct damping' and the roll carried by the vertical fins will be
called '"fin-fin induced roll" since horizontal and vertical fins have
little physical significance for this problem.

Using the same arguments as for the cruciform wide-delta
aileron, the flow field to the right of the vertical fins is the same
as the flow field for a plane wide-delta wing which has linear sym-

metric twist. The upwash is known at all points on the wing and is



-58-

a function of x only (i.e. wing is uncambered). Since the problem

has been reduced to a planar wing with prescribed upwash, Equa-

tion (3.16) can be used to determine the flow field. The right half

of the plane wing corresponds to the right horizontal fin of the cru-

ciform wing and the vertical plane of symmetry of the plane wing

corresponds to the right side of the vertical fins of the cruciform wing,

Obtaining the solutions in these two planes will then provide the data .

for computing the rolling moment for the complete cruciform wing.
The potential at the trailing edge of the horizontal fins,

QDIE (x) ,k is directly proportional to the spanwise lift distribu-
tion, z (x). This is also true for the vertical fins if y replaces x
and 2(y)‘represents the spanwise side-force distribution, If the
subscripts L and U denote quantities on the lower and upper sides
of the horizontal fins, the known symmetries for this problem show

that

and, hence,

72_72‘,:—27)” =2p U (%)U
The spanwise lift distribution is given by integrating this quantity
from the leading edge (L.E.) to the trailing edge (T.E.)}.

{(x) _f(P R)dz = sz/ Cﬂ(x zjc/f (4.222)

L.E

—ZFU[(PTE(X] q?-s (X]
U
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In the same way, the spanwise side-force distribution is given by
liy) = %EZE@E.(yy (4.223)
R

where the subscript R denotes the right side of the vertical fins.
Note that & . =0.

The spanwise lift distribution will now be obtained for the
right horizontal fin, The equivalent planar wing problem with the
regions of integration is shown in Figure 20. The potential at the

trailing edge is @(0,c), Equation (3.16) reduces to the form

on’c)ﬁ_//cﬂy(g) ds d¥
Y(c-3)*- p2(x-£)%

There are two regions to be considered: 0sx</mc (o£ X%/ 1)

and mcex< % (1£X<Y).

For the region sr<x<lg , @(x,0,c) is given by

X+iMc )

&% +mc ZCS -y +X+mcC
b §d¢§
(x,0,c) =— = d
Cp ,0,C) T / 5 A‘S)"’-—ﬁz(x g)z 1/@ g)'z' z(“""'“\x 5)2
-m my +x-m _
¢ E%‘-T,—% ‘ b);::::c e
carrying out the § integration,
X+tmc ‘ X
6/z+mc ¢ b/:f’,:'z }
@10, c)——~ mx 5/17’{:( )}C/5 +m [4fm3(c-5)2-(x- ”jz dy —
-5
/[ X=tnc e
é/znmc i [bé mc)

b,
Tmcxh %—X
o 2 825 +m3c?



~60-
By sufficient integration by parts all of these integrals can be
found in integral tables such as Reference 37. The final result

can be put into the following form:

61220 3
qﬂ(X,O, C) :L‘Z)f_ﬂf_x) _Z'.F-(/-,Lf,?}—-—)ji Ffor /L4 (49224)

(1-£2)%

For the region 02X 21, @X,0,¢)is

f;)s
———+C X = +C
dx
(%0,¢) = - d £d§ +
¢ / f § /'—‘—(C-S 2‘ﬁ‘(x-§)~‘2 Yc-5)2 )92{)(—5)?
x—mc C o _2__
béi-mc b

X+I77<‘

b/z-fmc
/§ ]/(C_;)z Zﬁ( §)z‘
.zc

Carrying out the inner 1ntegrat1on
X~H1c

/2~H'nc
X,0,¢) == 37 Jo me(is5E) #Ymici(n § }z—(x-f)?/d
Pox00)= //f gL/ Zadki +

b/z+m(‘ —
/5/0 / e - 38) + Ymze - 5)2—“‘5“/ ‘j
(x-§)

This can be reduced finally to the result

C,V(x,o,c)_——— z)fl[&sch'x (/ fz),,z/r‘h Y-+ '—{/+1C>()[z +//~Z)]cos Z’;’;)

— - 45)E-0-£)3] Cos"(/;f—;; )}] | (4.225)

For f =1, sonic 1eading edges, this reduces to

@x 0,¢) =—-7£;'(2é)2(1\72586‘/)_l)? +—3’—T//-)?2} (4.226)
, Iy
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The rolling moment coefficient for direct damping for the
complete cruciform wing, (CLP)H » is obtained by integrating
I (x) (see Equation (4.222)) over the right horizontal fin and mul-

tiplying the result bby four, b,

12 .

#[xloyde 55

Cls 752 -—szU/Ygﬂ/X,o,c) dx (4.227)
(<]

Substituting Equations (4.224) and (4.225) for their respective re-
gions of validity into Equation (4.227) and carrying out the indicated

integrations will yield finally

£(Cr,) =~ 2 Z/: FY T +/z—3f"}cai"i (4.228)

- 3m(-£3) %2

When f =0

’B(Cl}’z;/ :-—-5‘&- ' (4.228a}

£=0

This is the result for two plane wings (see Equation (4.221)) as ex-

pected for this case of no interference. For sonic leading edges

p(Ce,bL =- 2 (4.228D)
¥=1

The spanwise side-force distribution will now be obtained for
the upper vertical fin, This is essentially given by the potential at
the trailing edge of the right side, @(o,y;¢) , by Equation (4.223).
This potential is given by the solution of the equivalent plane wing

along the line x = 0, z = ¢ for positive y. The region of integration



—62-

is symmetric about the z-axis and is shown in Figure 21. Equation

BB dEDS
—_I Y
@29 77//1/(-9)‘- pREE+YY (4.229)

Because the integrand is symmetric in § , the integration in § can

(3.16) becomes

be carried out over half the region and the result doubled. Then the

potential is

SN TN
- m
d5
Tm2-5)%~(¢%+y %

§

Ploy,c)=—£2L [£d

=]

oy

and carrying out the first integration

Vmict (- FY)y* ~mfc

~f2

o] - f§
gﬂ(oy,c)=-—-—— § cosh {_z?

The final result is

,_-
) == b e 350K g oS ) +

"~ ﬁ?‘ y /-fz+
zy’sz‘ ﬁ?‘y ;//’TZ’ (4.230)

This result applies of course for 04 y £ 1 since induced effects
occur only within the Mach cone,
The rolling moment coefficient for fin-fin induced roll for

the complete cruciform wing: (CZP) » is obtained by integrating
14
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the spanwise side-force distribution just as was done previously

for the lift distribution. The final result is

F(Czl’)v: ;{%%;)?Z/(VZ+ £2r-£% - 3f (oS"f] ' (4.231)

F(C‘P)V / =0 (4.231a)
f

'ﬂ(czp)v/ = £ (4.231b)
£

Combining the results for direct damping and fin-fin induced

roll, the final result for the cruciform wing is

] i (4.232)

C

ﬁClp = ———‘Z—~——/f—-{z-5{"}+ﬂe—5;z+6f"} ,_0,57.

T am(-§3)?
g Cszj - £ : (4.2322)
88 |
£ G, L- - (4.232b)

The results for the cruciform wide-delta wing are plotted in
Figure 22, For interference effects, the comparison must be made
with the result for two plane wings which is also shown. These re-
sults are qualitatively the same as for the cruciform wide-delta
aileron (see Figure 13). The primary difference is that here the
magnitude of the interference is consistently less than for the ail-
eron., For f =1, fin-fin interference decreases the roll damping by
about 7 percent compared with 15 percent for the aileron.,

From physical considerations it would be expected that fin=

fin interference has a greater effect for aileron deflection than for
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damping in roll. Fin-fin interference will obviously depend on the
angle-of-attack distributions of the fins. For distributions which
are concentrated inboard the interference effects will be greater
than for distributions concentrated outboard. The distribution of
angle of attack is concentrated further inboard for the aileron de-
flection case relative to the damping in roll case and, thus, higher
interference effects would be expected.

Whether or not this decrease in roll damping is detrimen-
tal depends entirely on the problem being considered., For the
aileron problem, this decrease in damping is bgpeficial since it
is generally desired that the rolling be as rapid as possible. For
other cases such as roll induced by combined pitch and yaw, high

damping is generally desirable for stability.

Plane narrow-delta wing--The roll dampﬁng coefficient

was obtained in Reference 36. The result is

gC, = I d - d%) (4.233)
b E /&-d‘)E{mj-d‘/(///—d‘y

Reference 38 gives the slender body result
=- 1
£, =54 (4.234)
which is the correct slope’of the roll damping curve at d = 0.

Cruciform narrow-delta wing-- The exact solution of this

problem is even more difficult than for the corresponding aileron,
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The reason is that this configuration is not conical whereas the
aileron is and, hence, the aileron can be treated by the powerful
methods of potential theory. Just as for the aileron, an approxi-
mate solution is obtained here by graphically fairing in a reason-
able curve based on exact limiting values for endpoints and slopes,

The endpoints are known at d = 0 and atd =1. Atd =0,
C‘P =0 and, at d =1, the solution is known from the supersonic-
leading-edge case. The slender body solution gives the exact

slope at d = 0. This solution was obtained recently in References

30 and 31 and is given by
2
ﬁCzp--;a’ (4.235)

This information turns out to be sufficient to establish a reason-
able faired approximation to the exact solution.

These results are shown in Figure 23. It is seen that even
the slender body solution is a good approximation to the exact so=-
lution. The curve for N = is also shoWn. This result was ob-

tained in Reference 23 and is given by
T /a8
pCzp =-gd=-57 (4.236)

‘Note that the cruciform wing approximation fits the expected change
of shape of the solutions as N varies from 2 to © .

The interference effects are qualitatively the same as for
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the corresponding aileron. Again, the interference is less than
for the aileron. The interference increases from about 7 percent

for d = 1 to about 19 percent for d = 0.

Multi-fin wings~--The same procedure as was used for

multi-fin ailerons can be used here to estimate the solutions for
multi-fin wings. Estimated endpoints are obtained from Figure
17 for d =f = 1. Some endpoints are shown in Figures 23 and 24.
These two graphs can be used to estimate the multi-fin wing
solutions knowing the endpoints and the shapes of the curves for
N =4and N =00 ,

Except for the formulas, the discussion of the effects of

interference for the multi-fin ailerons applies here as well.

D. Equilibrium Rate of Roll.

When any of the fins of a multi-fin wing are suddenly de-
flected as ailerons, the wing will begin to roll. The rate of roll
will éventually become constant. This constant rate of roll is what
is referred to as the equilibrium rate of roll and it is determined
by the fact that the roll due to aileron deflection is equal to the
roll due to damping for steady conditions. The equilibrium rate
of roll will obviousi;lr depend on the aileron deflection and it is
generally expressed in a parameter formed by the ratio of the

b ~
tip helix angle (2% to the aileron deflection angle & . Since
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the rolling moments due to aileron deflection and damping are equal,
the equilibrium rate of roll is obtained by a simple division
b
() 2l (250
£ Cg/,

Results are shown in Figures 25 and 26 for all the cases
for which C{; and 63/3 have been obtained. The estimated multi-
fin points at d = f = 1 are obtained from the estimated points previ-
ously. obtained for C}S and C;P or from the interpolation curve in
Figure 17, Note in Figure 25 that the values at d = 0 are known only
for N =2, 4 and @ . Multi-fin points can be estimated atd =0
exactly the same way they were estimated atd = 1. At f = 0 all the

P

curves start from ZU/S: 2 if all fins are deflected. Using
these endpoints and the known curves as guides, the general multi-
fin wing results can be éstimated, It should be noted that, for
0=f=1, the curve for N = 4 exhibits an inflection point which is
necessary if the curve for N = @ is to be approached as N in-
creases.

Also shown in Figures 25 and 26 is the cruciform wing ap-
proximation with only two fins deflected. This result is just half
of the result for N = 4, T?is curve is shown to indicate that all
fins of a multi-fin wing need not be deflected and that this may lead

to much lower equilibrium rates of roll than generally indicated

in these grap.hs o
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Fin-fin interfergnce is given by the difference between the
curve for a particular multi-fin wing (all fins deflected) and the
curve for N = 2. In general, it is desired to have an equilibrium
rate of roll which is as high as possible. Then fin-fin interference
is always detrimental. The reason for this is that the interference
effects are always greater for Cls than for Clp . It should be
noted that the interference effects for N = 4 do not increase with
increasing f for the whole range 0< f£eo : at f = 0 there is no in-
terference, at f=1 the interference is about 9 percent, and at f =
the interference is about 6C70. For a given value of f, fin-fin inter-
ference increases as N increases to a maximum value for N =@ ,

The maximum interference for N =@ is about 30070.

4.3 Fin-Fin Interference—-High Aspect Ratio

The designation '"high aspect ratio' is generally intended
to refer to supersonic airplane problems. The supersonic air=-
plane will generally have plane wings and, hence, no fin-fin inter-
ference effects, It is likely, however, that some missiles will
have nonplanar high-aspect-ratio wings or tails or both. With this

in mind, this brief section is included.

Delta Wings--All of the results which have been presented

- will, of course, apply here. The supersonic flight speeds which

are generally expected for supersonic airplanes and missiles are
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well above M = 1. Then the leading edges of these wings will usu=-
ally be supersonic and, further, the leading edge parameter, f,
will usually be small. For this range, the cruciform results are

exact and the results for multi-fin wings can be easily estimated.

| Rectangular Wings--The methods for the delta wings can

be used here as long as the wing tips do not intersect the Mach
cone from the axis of symmetry. As a matter of fact, the calcu-
lations are considerably simpler for this case because the lead-
ing edges are normal to the free-stream direction, The applica-
tions of the previous methods to this problem sho;ﬁld be obvious

and will not be discussed further.

4.4 Fin-Fin and Wing-Body Interference--Low Aspect Ratio

Plane and multi-fin wing-body interference problems are
studied in this section. Since multi-fin wing-body combinations
are to be included, there may be both fin-fin and wing-body inter-
ferencés occurring simultaneously or either interference might
occur by itself depending on the ratio of the body diameter to the
wing span of the combination (a parameter denoted by A).

It was seen that, for certain fin-fin interference problems,
exact linearized solutions could be obtained easily. The presence
of a body makes the interference problems much more difficult,

As yet no exact linearized solutions have been obtained for general
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lift and roll problems. However, estimates of or approximations
to the exact solutions are usually useful qualitatively and are often
useful quantitatively for engineering calculations.

The lift problem for plane wing-body configurations is the
wing-body interference problem which has been studied most widely.,
Three recent papers (References 12, 15, and 16) have presented
methods and results for plane wing-body lift problems for a wide
variety of useful configurations. The important results will be
reviewed here briefly., The difficulty with the plane wing-body
problem has precluded any work on multi-fin wing-body problems
other than cruciform.

The roll problems are easier than the lift problems because
the circular body contributes nothing to the rolling moments., In
the present work the writer studies roll due to aileron deflection
and damping in roll for plane and cruciform delta wing-body con-
figurations. No attempt is made to obtain exact solutions. Instead,
the exact solutions are bracketed by over- and underestimates from

which results can be estimated.,

A, Lift,

The term '"lift", when used for wing-body configurations,
will denote lift problems where the wings are undeflected relative
to the body unless specifically stated otherwise. If the wings are

deflected relative to the body, the effects of ''incidence'' must be
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included. The papers which will be reviewed here briefly have
considered only the '"lift' problem for plane wing-body configura-

tions.

Plane wing-body configurations--It is necessary to decompose

the problem into configurations with and without afterbody particu-
larly for the missile configurations where a sizeable lift can be car-
ried by the afterbody. The tail problem, aside f‘rom the induced ef-
fects due to the vortex sheets, is generally a wing-body problem

for a configuration with little or no afterbody.

Morikawa (Referenée 12) has presented results for three
wing-body configurations with no afterbody. He treats the delta,
clipped-delta, and rectangular wings. The results are bracketed
by the solutions for slender bodies (zero aspect ratio) and wings of
infinite aspect ratio. Using results obtained from some of his
previous work (Reference 8}, he presents estimates for some of
the copfigurations lying between these two limiting cases. For each
of the wings he shows how much of the lift is carried by the body
and how much is carried by the wing.

Lagerstrom and M. E. Graham (References 15 and 16) have
used slender body theory to estimate the lift carried by plane wing=-
body combinations with afterbodies. These are the first papers
which present methods for obtaining reasonable estimates of the

afterbody lift. Furthermore, these papers give a good physical
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picture of the mechanism of afterbody lift and they show how this
lift varies with the two important parameters A and afterbody
length,

Using the previous discussion of slender body theory, the
methods and results of References 15 and 16 will now be summar-
ized very briefly. If, in Figure 6 (see Section 3.2), the wing-
body configuration ends where the wing becomes pa;rallel to the
free-stream direction, the lift of the resulting delta wing-body
conf‘igur_ation (without afterbody) can be obtained from Morikawa's
paper. This lift is generally cénsiderably less than the slender
body result. Let the configuration be continued downstream as
shown in Figure 6 (wing continued parallel to free-stream direc-
tion). This continuation will be denoted as the afterbody whether
or not the wing is contiﬁuedr. As the afterbody increases in length,
the lift will increa;e, eventually become greater than the slender
body value, reach a maximum value, and then decrease and ap=-
proach the slender body value as the afterbody length approaches
infinity.,

Now let the body alone be continued downstream so that
the resulting configuration is a delta wing-body combination with
an afterbody. As this afterbody increases in length, the lift will
again increase but not as much as before. The lift may or may

not exceed the slender body result as the afterbody length is
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increased, As the afterbody length approaches infinity, the lift
will approach a value which is less than the slender body value.
These variations of lift with afterbody length will obviously depend
upon the ratio of the body diameter to the wing span (A).

Then, for any afterbody problem, the lift will depend on
A and on the afterbody length. For small values of A, the after-
body lift will be very small but, for values of A near unity, the
lift carried by a long afterbody must be taken into account.

From these considerations it is seen that the afterbody lift
carried by a high-aspect-ratio sﬁpersonic airplane configuration
will generally be negligible. The afterbody lift carried by a su~-
personic missile configuration is much greater than for the air-
plane primarily because of the increased value of A, The fact
that the afterbody length of a missile (distance from wing to tail}
is generally much greater than for an airplane may or may not
increase the afterbody lift.

nLagerstrom and M. E. Graham have estimated the results
by a double interpolation using known results for limiting values
of A and afterbody length. The details are described in Reference
15.

When the wing-body configuration is banked about the body
axis, the results are modified as discussed previously for the

plane wing.
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Cruciform wing-body configurations--Except for the wing-

body interference effects, the effects of bank and the fin-fin inter-
ference are the same as for the cruciform wing. Then, banking
about the body axis does not change the lift and the fin-fin inter-
ference is zero because of the 90 degree geometry of the fins.
For the general multi-fin wing-body configuration, the fin-fin
interference will not be zero unless A is large enough so that the
fins cannot interact.

B. Elementary Strip

It is convenient for many of the future calculations to use
the -elementary strip (see References 11, 18, 19, and 28). It is use-
ful for the applications to interpret the strip as a lifting wing of
width d§ whose long dimension is in the free-stream direction,
Since no cambered wings are considered, the angle of attack of
the strip will be constant, Adjacent to the wing on both sides are
flat plates at zero angle of attack. On one side, the plate always
extends upstream of any disturbances from the strip whereas, on
the other side, the leading edge of the plate is straight and may be
subsonic or supersonic depending on the wing to which the calcu-
lations are to be applied. The results for this strip, interpreted
as an elementary lifting strip, can be obtained by symmetry con-
siderations (see Reference 11},

The potential due to this strip may be obtained also by
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interpreting the strip as a line of sources of constant strength
qﬂ%r == i%i)—q in the z-direction determined by the downwash
prescribed along the line § = constant,

These strips will always be used here for calculations
with delta wings which are uncambered. Their usefulness is de-
rived from the fact that the strips represent results for which
the § integration of Equation (3.16) has already been carried

out. As shown by this equation, the strips can then be integrated

over & to obtain results for twisted wings.

Supersonic leading edge--Consider the elementary strip

adjacent to a supersonic leading edge as shown in Figure 27,
The coordinate system for the strip is shown. The potential,
spanwise lift distributic;n, and sidewash velocity at the trailing
edge, (x,0,c’) , are the quantities which are desired for the
present work.

* The potential is given by Equation (3.16). If, in Equation
(3.16), the §' integration is carried out from 0 to drf, , and the

mean value theorem is used, the equation can be reduced to

c-gx
N XE)UIS d5,
gﬂ(xl) O)C)— iz J(CI_E}Z_ﬁZX’z‘

o

_«(¥)U ) x
= 5 Sech /mc"(g)/dgz ‘ (¢.41)
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Then the spanwise lift distribution is given by

(8 - s
Voi)= 2L px,0,c)= f-éra-(——ijjecb ‘ ;Cf,'@;/o@ (4.42)

Differentiating Equation (4.41) with respect to x; gives the side-

wash velocity on the top side at the trailing edge

2¢ () Umc'E) d¥

'BX, = Z((’Q,ch:— Ter m (4 943)

All of these equations are applicable for [Xll 4 mc'., The total
lift due to the pressures induced on the flat plates can be obtained
by integrating the spanwise liftb distribution with respect to x; over
the limits -mc’&£x, £mc’ . However it is known that the lift co-
efficient is two~dimensional based on the deflected area c'd§

(see Reference 11) and, hence, the differential lift is

dL = 4m ¢ «(5) c'(§)d5 (4.44)

It is also known that the center of pressure is at the centroid of
the strip so that the differential rolling moment about the axis of
the strip is

dM

0 (4.45)

Subsonic leading edge--The corresponding sketch of the

elementary strip adjacent to a subsonic leading edge is shown in
Figure 28. The region of integration for using Evvard's method

is shown.,
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The potential at the trailing edge is given by

c-px
ds
N X(5)Uds 4
POxy0,¢) =T 1(c"-5,)%- p2x®

-d

(C'+ﬂ¥:){7’;")

X
= "_(_{.Q_U_ 5@(‘/)"/____’"c'x(l+ql_ (4 ° 46)
m Ld - =5 (-d)

The spanwise lift distribution is

; e (1+d
)(xl)z 7 7:[5:)566/1 ! .__”‘iﬁi,i (4.47)
Zd-,{;—,(/—d)

The sidewash velocity is

_ A)Umc§)Vd’ df (4.48)
X f MACE)*d ~G-d)mc'@)X,- x2

U(X,,o,c’) =

These results hold for -mc'£x,« mc'd , The differential 1lift due
to the pressure distribution and the differential rolling moment

about the axis of the strip were obtained in Reference 28 and are

-

a’L=4m%°((§)C'(§)‘ch d§ (4049)

dM =-mg «(§)c'(§) a-d)¥d" d§ (4 .410)

where the sign convention for the moment about the strip is the

same as shown in Figure 1.
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C. Elementary Strip Over- and Underestimates

Consider the elementary strip as a deflected element in
one fin of a delta wing-body combination as shown in Figure 29.
When the strip is close enough to the body, disturbances will
strike the body at the wing—body juncture. Part of the disturbances
will be diffracted and pass onto the body downstream of a helical
path and the rest will be reflected back onto the fin, That part
which passes onto the body can contribute nothing to the rolling
moment about the body axis since the body cross section is cir=-
cular. It is this fact which makes a simple estimation of the wing-
body interference possible. The disturbances which are reflected
back onto the fin increase the lift on the fin and, hence, increase
the rolling moment carried by the fin.

It is now apparent how the contribution of a fin to the roll-
ing moment may be bracketed by over- and underestimates. The
estimates are illustrated in Figure 29 for the case of supersonic
leading edges. The same estimates are used for subsonic leading
edges. An underestimate is obtained by assuming that no reflec-
tion takes place at the wing-body juncture. With the elementary
strip this amounts to using only that portion of the pressure dis-
tribution which is crosshatched in Figure 29(a). An overestimate

is obtained by assuming that complete reflection takes place.

This is realized if the body is replaced at the wing-body juncture
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by a reflecting wall which has supersonic leading edges. This is
illustrated in Figure 29‘(b) ‘where thle region with double cross-
hatching indicates the added pressures due to reflection.

These same limiting cases of no reflection and complete
refle;tion will also bracket the velocity (and pressure} distribu-
tions on the fins., This will be utilized in a later section for es-
timating the vorticity distributions at the trailing edges of the

fins of plane and cruciform delta wing-body configurations.,

Supersonic leading edge-~-The differential lifts and roll-

ing moments for the over- and underestimates can now be derived
by utilizing the spanwise lift distribution for the strip as given by
Equation (4.42).

If the strip is far enough from the body so that no distur-
bances strike the body (mc' < § £ —%‘) , the over- and underesti-
mates are the same and, obviously, are exact and the lift and roll-
ing moment about the axis of the strip are given by Equations (4.44)
‘and (4.45) respectively.

When the strip lies in the range 04§ £mc¢’ , disturbances
will strike the body and the estimates must be derived. For the
underestimate, the lift is changed and the asymmetry in the pres-
sure distr’ibution shows that the center of pressure moves to the
outboard side of the strip and, hence, a positive rolling moment

about the strip axis results. The method of computing the lift and
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rolling moment should be obvious and only the result will be

given here. The lift is given by

cl(s)( -
dr, = - ¢ §-)(m‘ &'sech&!~ cos”E') dg (4.411)
where §'= g/mc’ and the rolling moment about the axis of the
strip is given by
R ’( 20(( - ]

CIM= Am C77_§) §-) ‘]//~§’ZI—§'25‘8C6,§)0/§ (45412)
For the overestimate, the lift is the same as when no disturbances
strike the body since the disturbances which strike are completely
reflected back onto the fin. Then the lift is given by Equation (4.44).

Since the pressure distribution is not symmetric, a rolling moment

is developed which, by obvious integrations, is given by
2g c€)*« (%) ot -
dM:; im———%r—ci{—i—i— /_f'l +§'Zjecﬁ'1§ -—Z§ cos §7d§ (4;.4:13)

Subsonic leading edge~--For a subsonic leading edge, only

the u;lderestimate is easy to derive. The reflecting wall in the
overestimate will cause the disturbances to be reflected back onto
the fin and, if the strip is near enough to the body, the disturbances
will encounter the leading edg;z before passing off the trailing edge.
Some reflection phenomenon takes place at the leading edge and the

reflected waves might strike the body again. As the strip approaches

the wing-body juncture, this reflection between the wall and the
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leading edge occurs progressively more and more times before
all of the disturbances from the strip pass off the trailing edge.,
This problem requires repeated use of Evvard's method and would
lead to very complicated expressions for the lift and the moment.
This solution has not been carried out.

When the disturbances do not strike the body (mc'z§< %*)
the over- and underestimates are'the same and are given by
Equations (4.49) and (4.410).

When the strip lies in the range 0% § «mc’ , the under-
estimate is obtained by obvious integrations using Equation (4.47).
The lift is given by

2d+§'(/ d) 1+d

oL, = IEEEVE) Jrspept] T [ o o[ 01225 ]}C’S’ (4.414)

and the moment is

1} 24¢(.
dM = ———L————-—mz <) dg)%—' d+0-ajg-§'%" -£'% 5o ch[ 5+d)
2d +£'(1-d)

_V?g—d) S {//‘Z,/ Zﬁa? (4.415)

It should be noted that an overestimate can be obtained if
the fin has the same angle of attack throughout since the problem
is reduced to a narrow-delta fin adjacent to a supersonic vertical

fin. This is just the mixed cruciform aileron discussed previously.
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All of these estimates will apply for any multi-fin delta
'wingubody configuration if the fins do not interact (see next sec-
tion}. By integrating with respect to & the proper expressions
across the fin, the rolling moment about the body axis is ob-
tained., The rolling moment coefficients will be based on the
area (%g) and span (b) of one of the plane wings which compose
the configuration, i.e., a pair of fins in the same plane extended
into the body to form the basic plane wing (see Figure 2}, The

rolling moment coefficient for a single fin is given by

rnc

b%
+f
Clzg——;c /[(r+§)dz;+o’/\ﬂ7/ﬁr+§)d£+a’/\4]} (4.416)

za
where the first integration is over the region of § where the

disturbances from the elementary strip strike the body and the
second integration covers the region where the disturbances do
not strike the body. The proper expressions for dL, and dM are

to be substituted depending upon the estimate desired and the lead-
ing édge condition,

These estimafes are of course equivalent to certain com-
plete planar wing problems. The overestimate i's just the half
delta fin normal to a wall with supersonic leading edges or, by
reflection, half of a delta wing which has symmetric twist (see
previous discussion for cruciform wing roll problems in Section

4,2). The underestimate is the half delta fin adjacent to a flat
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plate (in the same plane) which is at zero angle of attack and
which extends ahead of any disturbances from the fin. If the lift
and the rolling moment are known for the fin for either of these
problems, the corresponding estimate is immediately obtained.
These known results are usually in terms of the dimensions of
the delta wing formed from two half delta fins (c* and b¥). If C;:
and C*l are the lift and moment (about the wing-body juncture)
coefficients based on the area and span of the two half delta fins,
the rolling moment coefficient about the body axis for a single
fin based on the area and span of 1';he delta wing extended into
the body is given by

C= 2 AO-AC, + (-A)°C) (4.417)

D. Limits of Fin-Fin Interaction

The estimates discussed above can be used only if the
disturbances which are propagated around the body do not en-
: counter uother fins. For, if this occurs, rolling moments will
be induced which the estimates do not account for. For a given
Mach number and a given fin, the body diameter can be made
large enough so that the fins do not interact. OCbviously this
body diameter will be different for plane and cruciform wings.

This is illustrated in Figure 30 where the limiting cases of a
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disturbance from a fin leading edge-body juncture just striking
the trailing edge of the next fin are shown for the plane and cru-
ciform cases.
The disturbance which passes onto the body propagates
along the Mach angle at all poiﬁts on the body. From this fact,
the path of the disturbance from the wing leading edge-body junc-

ture is easily determined.

Supersonic leading edges--For the plane wing, it is read-

ily seen that the fins do not interact if 7/ 2/mc* or, in another

form, if

_'C
A= —— (4.418)

The estimates can be applied to a cruciform wing if 7/Zz =mc*

or if:

_2Ff
7T+z_,: (49419}

A=

Note that if f = 0 the estimates apply for all values of A
as would be expected since this is the case for no fin-fin interfer-
ence. As f increases from 0 to 1, the interval of A values de-

creases.

Subsonic leading edges--These results are easily obtained

by substituting 1/d for f in Equations (4.416) and (4.417). Then,
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the estimates apply for a plane wing if

A= (4.420)
and for a cruciform wing if
A = EIZTr?i (4.421)

Note that the estimates apply for a progressively smaller
interval of A values as d approaches zero. When d = 0, the es-
timates cannot be applied since this is the slender body case and
the fins may be considered as always interacting.

Using the estimates together with these limits on their
validity, the strips can be supérimposed by integration to give
the over- and underestimates for any twisted wing. If the span-
wise distribution of angle of attack is complicated, the integrations
will probably have to be carried out graphically or numerically.

For general multi-fin wings, the interval of A values for
which the estimates apply will decrease as the number of fins is
increased. For N =0 , the estimates cannot be used since the
fins always interact (except for f = 0). However, this case has

been solved exactly by E. W, Graham (References 22 and 23) and

can be useful for estimating multi-fin problems.

E. Roll Due to Aileron Deflection
Results for plane and cruciform problems will be pre-
sented for both supersonic and subsonic leading edges. It will be

assumed that only the horizontal fins are deflected by + o for the
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cruciform problems.

Supersonic leading edges--For the overestimate, the lift

and rolling moment for a fin are known from the results for the
horizontal fins of the cruciform wide-delta aileron with no bedy.
Hence, Equation (4.417) may be used. The lift coefficient is two-

dimensional based on the deflected area (fin area), hence
* 28
CE/ - ﬁ

since ij is based on twice the area of the fin. CZ* is obtained
by taking half of the result for fhe horizontal fins of the cruciform
wide-delta aileron (Equation (4.27)). Substituting these results
into Equation (4.417) and doubling this result gives the overesti-

-

mate for two deflected fins

_ 2(/ A) ‘cos™f 4.422
£Cy= [ﬂ‘A+z(/ A f)] ( )
ﬁcls = éz_(/qﬂ)z(/_ﬁzﬁ) (4.4223)

_ 2l 4.422b)
B Czs/ —4&-[; + (37~ 4){1/ ( )

£=)

For the underestimate, elementary strips will be integrated
over the right horizontal fin using Equation (4.416). For the first
integral dL, and dM are given by Equations (4.41l) and (4.412) re-

spectively, For the second integral dM = 0 and dL is given by



-87-
Substituting into Equation (4.416) and multiply-

Equation (4.44)

ing by two will give
& i
C=75" /(/’+§)«(§)C'(§)d§ # /(r+§)o((§) c'(g)(g’Sec/,"i;L cos §') dg +
o
tnck
HF
(7
Using the notations and relations
¥ § - r 5 s
§%= Jrcn Fi=lmex 5 = s = ToE

Cl(§) =C*(-F¢*)

and noting that for this case %(§)=§ , this equation can be put
in the nondimensional form
% "
¥
BC, =4+ A)f{/(r +§*)f/-f§')d§*+z;r/(—f§*/7’ -Fg YR get IS

A ;
§‘ df*

I+f I+
§* -
/(i’-l-f")(/’ff‘)cos T-TF?‘ +TT/§:*(P"+'——)5€C/1 ’I _Fg,,
i
o
These integrations are tedious but straightforward and yield fi-
nally the underestimate
- z(A) 'f
ﬁQs (/+2A}/77' cos )+f// A!] (4.424)
g CZS/ = 34_(/—/)) 2(/+ZA) (4-5424?:1)
+
(4.424b)

7/

Z(/—'/‘))Z +
= +m)A +2
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Results for plane and cruciform wing-body combinations
are shown in Figures 31 and 32 respectively for three values of
the parameter f, For a given value of f, the curves for the under-
and overestimates are indicated by the same type of line, Each
pair of curves is broken at a value of A indicated by a short solid
line, These are the values of A above which the estimates are
valid and, for the sake of brevity, will be denoted by Aj . AL is
given by Equations (4.418) and (4.419) when the equal signs are
taken. For A = Ay the curves are given by Equations (4.422)
and (4.424). The endpoints for A = 0 are knownrexactly from
Figure 13. The curves are then completed by drawing in curves
between the known values at A = 0 and the known estimates at
A = A; . These curves are not drawn tangent to the estimate
curves since it is expected that the exact solution to this prob-
lem will consist of two different expressions exhibiting the same
type of slope discontinuity. Furthermore, the curves are drawn
convex upward since this appears to be the most reasonable shape..
In most cases it is rather easy to complete the curves in a rea-
sonable fashion.

As f decreases from unity, the over- and underestimate
curves approach each other and Ay, decreases. This trend is
evident when it is remembered that f = 0 means no fin-fin inter-

ference and, hence, Ay, = 0, Furthermore, f = 0 means that the

over- and underestimates coincide to a single exact curve.
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According to the definition, wing-body interference is given
in Figure 31 by the difference between the one value of ﬁcls for
A = 0 (plane aileron) and ﬁ’C;S for any desired values of A and f,
Cbviously, for A =1, the body’covers the plane aileron completely
and the interference is 100 percent.

Fin-fin interference for the cruciform aileron is given by
the difference between the ordinates of Figures 31 and 32 for given
values of A and f. It is apparent that this difference arises because
the vertical fins have been added to the plane wing-body configura-
tion., As expected, fin—fiﬁ intei'ference decreases with decreasing £,

For A =0 only fin-fin interference occurs. For 0< A< Ay
both . interferences contribute to the reduction in rolling moment.
For A= AL only wing-body interference occurs.

For multi-fin Qing—body combinations other than cruciform,
the same methods can be applied. The values of A; will increase
with N and this will make the curves which are drawn in for 0= A< Ay,
less convincing. Furthermore the ordinates for A = 0 are estimates

from previous results.

Subsonic leading edges-~-As mentioned previously, the over-

estimate can be obtained since the problem for the horizontal fins
of a mixed cruciform aileron reduces to a plane narrow-delta wing
problem for which the solution is known, The pressure distribution

on the wing is given by Equation (4.214). Using this pressure
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distribution and Equation (4.417), the overestimate is easily

obtained. It is

_ _-A)*d -
pCzs 3:?2//—33‘) [4+ (37 4){7] (4.425)
ﬁc}s/: 5—3(/—;;)—2[41‘ (37~ 4},?7 (4.425a)
d=i

The underestimate can be obtained by integration of ele-
mentary strips using Equation (4.416), Substitution of Equations
(4.414) and (4.415) into the first integral and Equations (4.49) and
(4.410) into the second integral, integration, and a great deal of

algebra will reduce finally to

g0, = ””‘” fadere) - G-a)] oL 2902al 10-4) (4.426)
2
ﬁC}S/ = %—;ﬂﬁlﬂr)/} +2 + :7{] (4.4262)
=1

Results are shown in Figures 33 and 34 for the plane and
cruciform configurations respectively. The complete curves have
been constructed using the same procedure as described above for
supersonic leading edges. For the cruciform case, iiz willl be re-~
membered that the endpoints for A = 0 are approximate. As d de-

creases, Aj increases and the curves which are drawn between

= 0 and A = Ay, become increasingly difficult to define. However,
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it is expected that such curves still supply reasonable estimates.

F . Damping in Roll

The over- and underestimates for damping in roll can be
obtained using the methods described for the aileron problem.
For this case the angle of attack distribution is no longer con-

stant over the fin but is expressed by

«(§) =~ £—(%§—) (4.427)

for the right horizontal fin, Since the plane and cruciform cases
are to be considered, results will be presented for four fins,
i.e, two plane wings or a cruciform wing.

The estimates have been obtained only for supersonic lead-
ing edges. The underestimate for subsonic leading edges can be
obtained using the elementary strip. However, the overestimate
for subsonic leading edges requires the solution for a twisted
narrow-delta wing. This problem is very difficult and the writer

has not attempted to obtain the solution.

Supersonic leading edges-- Both estimates were obtained

by integrating the elementary strip estimates across the fin. The
details of the calculations will not be given,

The overestimate is given by
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~t
C = ROEAZ ) e 3£2) + A3 Cos ¥ +ZTA(-F(1+24) +
P ) 1i-F2

+ fn—ﬁ)[fz— £R)+Alz-3 ,cZ_)/ /2 (4.428)
B C(P =- %{,.A)Z(/,az,q +34%) v (4.428a
f=0
—— 4 /5 AR -
g CZ/"L,— o0 ,q)/;‘-ﬁ(z +3TT)A +(6 7 7}Af/ (4.428b)

The underestimate is given by

g CZP =— a-A)% /[(}~ 3£ (tr2h) +3A%(2- F ]m + T(~F ) (1+2A+34 2)+

3T (1-£%)
+ F(2-F3)(1-A)(1+3A )/l (4.429)
8C,,| =~ Foatrarsnd (4.429a)
f=o
2
FC{A‘/ = ~%‘7”’;)—Z(70+37r)(/+2/4) +5/z+377‘)/)"’~7 (4.429b)
=1 .

These results are shown in Figures 35 and 36 for two plane
wings and for the cruciform wing respectively. The results for
two plane wings are shown in Figure 35 so that a direct comparison
with Figure 36 will give the fin-fin interference for the cruciform
wing. The underestimate for f = 1 was incorrectly calculated in

Reference 19 and has been corrected here,
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These results are qualitatively identical with those for

the aileron problem and will not be discussed further.

Improved Underestimate--It would be very desirable if, in

some relatively simple way, it could be determined which of the
estimates is closer to the exact solution. This would act as a
guide for taking data from the graphs, particﬁlarly for the cases
where the over- and underestimate curves are not very close to-
gether,

For the particular case of damping in roll for a plane wide-
delta wing-body combination, Tucker and Piland (Reference 20)
have used an underestimate which is different from that used here.
Their underestimate appears to be valid for the rolling moment,
although it is not as convincing as the one used here. It does not
seem possible to determine whether or not their underestimate
will bracket the actual velocity distributions. Even for this one
case their underestimate is particularly interesting because it lies
much closer to the overestimate used here (and used also in Ref-
erence 20). This would mean that the actual solution is closer to
the overestimate than to the underestimate used here. Since their
method does not generalize in any useful way to other roll prob-
lems or to multi-fin wing-body problems, it cannot be used to
replace the underestimate used here, However, from their im-

proved underestimate for this one case, it seems reasonable that
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the exact solution will favor the overestimate for other roll prob-
lems and for multi-fin wing-body configurations. It will be seen
later that other evidence helps to substantiate such a statement.

. Tucker and Piland's reasoning and results will now be pre-
sented in an abbreviated discussion. First, they look at the limit-
ing cases for the plane wing-body problem when A approaches
zero and when A approaches unity. As A approaches zero the
spanwise twist approaches that for the plane wing for damping in
roll (antisymmetric linear twist). As A approaches unity, the body
acts like a vertical wall., They use the vertical wall case as an
overestimate just as used here, However, for the underestimate,
they use the other limiting case of antisymmetric linear twist in
such a way that, when A = 0, the correct twisted wing is ébtainedu

Their underestimate reduces to a planar wing problem for
a twisted delta wing the right half of which has the angle of at-
tack.distribution of the fin and the left half of which has an ang].é
of attack distribution determined by simply continuing this same
twist to the left, This is shown in Figure 37 together with the
underestimate use_d here, Figure 37(a) shows the angle of attack
distribution for a fin of a wing-body configuration. Figure 37(b)
shows the underestimate used by Tucker and Piland as an equiva-
lent planar wing problem. The twist of the left half of the wing

is obtained by just continuing the slope of the a(§ ) curve to the
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left. This problem can be decomposed as shown into a flat roll-
ing wing plus a flat wing at a negative angle of attack. The cor-
responding underestimate used in this thesis is shown in Figure
37(c) where the left half of the wing is a flat plate at zero angle
of attack.

rIt should be noted that Tucker and Piland's underestimate
approaches the correct endpoints at A = 0 and A =1. This single
curve will then be the underestimaté for the entire range 0£ A<1
without any regions limited by fin-fin interaction if the plane
wing-body configuration is considered.

The solution may be obtained by calculating the lift and

rolling moment coefficients for the right half of the wing shown

in Figure 37(b) and then substituting into Equation (4.417). This
solution was not given explicitly in Reference 20, It is easily

obtained and is given by

_ }/'—2’ £R r
ﬁ - 20 ’9){4/)/~ £z ,cz)(//—ff:);z 3f%) cos ]+77_Zg/}z+/,_/,)f// (4.430)

E Czp/ = 2 (1-p) (1424 +34%) (4.430a)
f=0 ’
B C{b/ M[‘Tv‘Zﬂ?D 3m)A 4+ (=)~ 40)/9] (4 .430b)

+=1
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These results are for four fins (i.e. two plane wing-body con-
figurations) so that direct comparison with previous results can
be made. The result for f{ =1 is shown in Figure 38. Also shown
are the over- and underestimates previously derived (see Figure
35). Note that, over most of the range of A, the exact solution
must be closer to the overestimate than to the underestimate
used here,

Although derived from arguments for the plane wing, this
underestimate can be used for the cruciform wing if the curve
is cut off when the fins interact. This is obvious since until the
fins interact the number of fins is immaterial, The result for
the cruciform wing for f = 1 is shown in Figure 39.' Here it is
seen that the exact solution definitely must favor the overestimate

over the entire range of A,

G. Equilibrium Rate of Roll

Using Equation (4.237), the over- and underestimates
for the equilibrium rate of roll for plane and cruciform wing-
body combinations can be obtained. Since both ﬁ’CZP and. ﬂCzs
were obtained only for the wide-delta case, these are the results

which can be presented.

Supersonic leading edges--The results are shown in

Figures 40 and 41 for the plane and cruciform cases respectively.
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The overestimate is obtained from Equations (4.422) and (4.428)
and the underestimate is obtained from Equations (4.424) and
(4.429). The remaining portions of the curves are constructed

as before.

4,5 Fin-Fin and Wing-Body Interference--High Aspect Ratio.,

The lift and roll pi'oblems are generally much easier for
high-aspect=-ratio problems. The afterbody problem can be ne-
glected because of the very small lift carried by the afterbody
relative to the lift of the wings. The wing-body lift results can
be obtained from Reference 12 and some general remarks on lift

will be found in Reference ll.

Delta Wings--The roll results presented here will apply.
As explained in Section 4.3, f will generally be small and, hence,
the over- and underestimate curves will be close together and

approximate well to the exact solution.

Rectangular Wings--The remarks in Section 4.3 apply

here also.

4.6 Wing-Body-Tail Interference

This is the most difficult type of interference to study in de-
tail both theoretically and experimentally. It is in this interference

that the really essential difference between high- and low-aspect-
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ratio configurations arises, Whereas for the high-aspect-ratio
subsonic airplane configuration it was possible to obtain engineer-
ing answers by linearized theory and some simple corrections for
the deflection of the vortex sheets, it is not possible to use linear
theories for the low-aspect-ratio configurations and further as-
sumptions are necessary in order to account for the nonlinear be-
havior of the vortex sheets. Furthermore, the fact that the body
diameter may be of the order of the Wing span adds to the diffi-
culties of the low-aspect-ratio configurations,

Two recent papers (References 15 and 17) on the lift prob-
lem represent the first good theoretical papers which have made
it possible to obtain reasonable estimates of wing-body-tail inter-
ference for low-aspect-ratio configurations., In the following dis-
cussions this writer will use results from these papers without much
explanation. For very complete and clear discussions of these re-
sults and the methods which lead to them the reader is referred to

these papers.

A, Mechanism of Interference

As previously remarked, this interference problem is as-
sociated with the effects of the vortex sheets from the wing of a
wing-body-tail configuration on the tail. The following description

‘of the mechanism of this interference applies to general multi-fin
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wing-body-tail configurations and to general aerodynamic prob-
lems.

Whenever any of the wing fins carries a spanwise lift dis-
tribution, a vortex sheet passes downstream from the trailing
edge of that fin. For a general multi-fin wing, vortex sheets will
generally pass downstream from one or more of the fins. These
vortex sheets will trail downstream about the body and will deflect
and distort under the influence of the body and the spatial distribu-
tion of vorticity. This is an extremely nonlinear problem whose
exact solution is beyond present-day mathematics. Associated with
these vortex sheets is a cross-flow velocity field. At the tail, this
cross-flow field will introduce apparent angle of attack distributions
on the tail fins which result in induced forces. This is what is re~
ferred to as wing-body-tail interference. This general mechanism
is illustrated schematically in Figure 5(a} where a, denotes the
flow angle distributions induced by the cross-flow velocities.

For the usual type of wing-body-tail configurations where
the span of the wing fins is greater than the span of the tail fins,
the lifts and rolling moments induced on the tail generally oppose
those of the wing. However, it is possible that, for other types
of configurations such as the canard, the lifts and rolling moments
induced on the tail (wing for the canard) may be in the same direc-

tion as those of the wing,



-100-

B. Background

The problem of wing-body-tail interference arose originally,
of course, with the high-aspect-ratio subsonic airplane, It was
found primarily through experiments that the vortex sheet from the
wing was practically undistorted at the tail position although there
was some deflection of the sheet away from the plane of the wing.
By using linearized wing theory together with some small correc-
tions for the deflection of the vortex sheet, it was possible to com-
pute the cross-flow field at the tail with sufficient accuracy to
supply good engineering results for wing-body-tail interference.
Since the wing-body configurations were similar for most subsonic
airplanes, it was further possible to develop general design rules
for the effects of wing-body-tail interference,

As has so often happened at the start of investigations for
supersonic flow, many of the methods and results of subsonic flow
were carried over. This iaarticular subject was no exception.
Until récently most theoretical work on the cross-flow fields be-
hind plane wings in supersonic flow assumed that linearized theory
could be used throughout. According to linearized theory, the vor-
tex sheet from the wing passes downstream undistorted and unde-
flected, i.e. it follows the linearized stream lines. Linearized
calculations for the cross-flow field behind lifting wings can be

found, for example, in References 39, 40, and 4l and further
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references will be found listed in Referen‘ce 40. In Reference 39
it was found that the Trefftz-plane (infinitely far downstream) val-
ues of cross-flow velocities were obtained for all practical pur-
poses a few chord lengths downstream of the wing. This led +to
the development of some elegant Trefftz-plane methods in Refer-
ences 39 and 42.

Experimental evidence soon showed that the undeflected
undistorted vortex sheet did not give the correct answers for low-
aspect-ratio configurations., This led to a study by Martha.Graham
(Reference 28) of the simplified case of wing-tail interference us-
ing two alternate extreme assumptions about the vortex sheet from
the wing. The two alternate assumptions were, first, that the sheet
was deflected but undistorted or, second, that the sheet was com-
pletely rolled up and coﬁ.ld be represented by two deflected vortices.
At the time it was not known which assumption, if either, was the
more realistic picture and what governed the characteristics of
the vortex sheet.

Recently two papers (References 15 and 17) showed that,
for a low-aspect-ratio wing, the assumption of rolled up vortices
is generally more realistic, Reference 17 studies the parameters
which affect the rolling-up of the vortex sheet., Reference 15 uses

the rolled-up vortices and studies in detail the incompressible
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motion of two vortices in the presence of a circular cylinder as an
approximation to the motion of the rolled-up vortex sheets for a
low-aspect-ratio wing-body configuration.

All of these studies were concerned with the lift problem
for plane wings or plane wing-body combinations. The first cal-
culations for cruciform wings were made in Reference 18 assum-
ing undistorted and undeflected vortex sheets for the roll due to
aileron deflection problem. Some further remarks were made in
Reference 19, In general, multi-fin problems other than cruci-

form are untouched.

C. Problems to be Solved

The first problem which must be solved for the wing-body-
tail interference problem is the vorticity at the trailing edges of
the wing fins of a wing-body combil;lation, For plane wings and
for cruciform wings with supersonic leading edges, exact linear-
ized solutions have been obtained if there is no body for many
planforms and many aerodynamic problems. However, if a body
is present, there are practically no solutions even for the simplest
cases., In general it is expected that linearized solutions will supply
useful results.,

The next important problem which must be solved is the
motion of the vortex sheets as they move downstream to the tail.

Contained in this problem is the calculation of the cross-flow
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velocity field at the tail section. As mentioned before, References
15 and 17 are two excellent papers which have studied this problem
for lift,
The final problem is the ’calculation of induced tail effects.,
Generally, this problem reduces to a wing-body problem with

rather complicated distributions of angles of attack on the fins.

D. Rolling Up of the Vortex Sheets

It is the purpose here to discuss briefly the results) of Ref-
erences 15 and 17 with reference particularly to the low-aspect-
ratio missile configurations, These papers consi&ered the lift
problem for plane configurations and generally considered lift dis-
tributions which were nearly elliptic, It is important to point out
how this work applies to the cruciform configuration and to the roll
problems.

From similarity considerations, Spreiter and Sacks show
tl;at the distance downstream of the trailing edge of a fin at which
the vortex sheet may be considel;ed essentially rolled up, e, is

given in terms of chord lengths by

#
e R b)
— =N == 4.61
o K Cr, (c" (4-61)
where AR is the aspect ratio and K is a constant of proportionality

depending upon the spanwise lift distribution (or vorticity distribu-

tion at the trailing edge). It is evident that decreasing the aspect
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ratio or increasing the lift coefficient will make the vortex sheet
roll up faster, For a given type of planform and angle of attack
distribution the vorticity distribution at the trailing edge is deter-
mined. This distribution of vorticity determines K which decreases
as the concentration of vorticity increases. For elliptic lift distri-
bution on the fins K is approximately 0.28.

It is useful to discuss the meaning of Equation (4.61) in more
physical terms. The distortion and rolling up of a vortex sheet is
caused by the velocities induced at all points of the sheet by the
distributed infinitesimal vortices at all other points., It is conven-
ient to consider the vortex sheet to be composed of a large number
of discrete vortices equally spaced and having strengths determined
by the areas under the vorticity distribution curve for the particu-
lar intervals which the discrete vortices replace., If these vortices
are all weak, the sheet will move a relatively large distance down-
stream before it is appreciably distorted. Any effect which in-
creal.se‘s"the strength of some or all of the vortices will increase
the ra.1;e of rolling up. If the aspect ratio is decreased and the lift
coefficient is held constant, the effect is to increase the strengths of
all the vortices and, hence, to decrease e, Increasing the lift co-
efficient for a given aspect ratio has the same effect. If both the
aspect ratio and the lift coefficie’nt are kept constant, there is one

other way by which the strengths of at least part of the vortices can
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be increased, This can be done by varying the shape of the span-
wise load curve which in turn changes the shape of the vorticity
distribution curve. The greater the curvature of the spanwise
load curve the greater will be the concentration of vorticity. This
will mean that some of the vortices will be very strong and the
rest relatively weak and the sheet will roll up rapidly in the vicinity
of the concentration of vorticity., The rest of the vortices will roll
up slowly, but the major part of the vorticity will be in the region
where it is concentrated., As mentioned before, K is a measure of
the concentration of vorticity and is large when the vorticity is
uniformly distributed and small when the vorticity is concentrated
in smaller regions,

Over the range of the usual operating lift coefficients for
high—aépect-ratio subsonic airplanes the vortex sheet is relatively
undistorted at the tail position, The supersonic missile generally
differs from the subsonic airplane in three important ways with re-
gard to the speed of the rolling up of the vortex sheets: first, the
aspect ratio is much lower, second, the lift coefficient is higher
in order to obtain reasonable lifts and rolling moments and, third,
the wing to tail distance is much greater. The first two differences
cause actual increases in the speed of the rolling-up process and
the last difference may be considered as an apparent increase in

the speed of the rolling-up process. In general, the vortex sheet
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will be rolled up long before the tail section of the missile is
reached. In fact, the vortex sheet will usually be rolled up with-
in one or two chord lengths downstream of the wing trailing edge
and very often within less than a chord length.

The lift problem for plaﬁe wing-body configurations as
studied in References 15 and 17 leads to vorticity distributions at
the trailing edges of the fins which are all of one sign. However,
when the roll problems are considered and when cruciform wings
are included, it will be seen that the vorticity distribution at the
trailing edge of a fin often changes sign. This leg‘ds to the possi-
bility of the vortex sheet rolling up into two distinct vortices of
opposite sign and different strengths. In fact, for low aspect ra%:ios
it is expected that this will occur. For suéh cases the variables
in Equation (4.61) must be properly interpreted for the regions of
different sign. For each region of vorticity of different sign the
aspect ratio and lift coefficient must refer to the portion of the fin
upstream of that region and K is a measure of the concentration

of the vorticity in that region.,

E ., Theoretical Work Contained in this Section

The theoretical work by the writer is restricted to the prob-
lem of determining the sidewash distributions at the trailing edges
of plane and cruciform delta wing-body combinations. Emphasis

will be placed on the low-aspect-ratio configurations where it can
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be assumed that the trailing vortex sheets are completely rolled up
a short distance downstream of the wing trailing edges., References
15 and 17 use incompressible two-dimensional nonstationary vortex
theory to compute approximately the motion of these rolled-up vor-
tices as they proceed downstream. They assume the vortices to
start at the trailing edges at the centroids of their corresponding
vorticity distributions and to have strengths given by the integrated
strengths of the corresponding vortiéity distributions. With this in
mind, total strengths and centroids of vorticity distributions will
be presented as starting points for the calculation of the motion of
the vortices,

Lift, incidence, aileron deflection, and damping in roll prob-
lems are studied for plane and cruciform delta wing-body combina-
tions. Where possible bofh subsonic and supersonic leading-edges

are treated,

F. Vorticity at Trailing Edges--Low Aspect Ratio

The over- and underestimate ideas used previously will be
ufilized here to estimate the vorticity distributions at the trailing
edges of plane and cruciform delta wing-body combinations. The
stréngths and centroids of the distributions will also be estimated,

The eétimates will be computed as before by reducing the
problems to equivalent planar wing problems which can be solved

by well known linearized methods. These estimates can be used
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as long as the fins do not interact. The estimates for the strengths
and centroids of the vorticity distributions can be completed by cal-
culating the exact endpoint at A = 0 and connecting this endpoint to
the estimates at A = A;

All calculations will be made for flow quantities at the trail-
ing edges of the fins and, when such notation is omitted, this is to
be understood.

The vorticity distributions are obtained by computing the
velocity distributions at and tangent to the trailing edges. The sym-
metries in all of these problems are such that the vorticity distri-
butions are given by twice these velocity distributions with the
signs determined by the signs of the velocities which are usually

obvious physically.

Basic Relations-=-Here some of the basic relations between

the vorticity at,the trailing edge and the forces or moments on the
fin are presented, These relations are easily derived and are well
known.,

Consider the right horizontal fin of a plane or cruciform
delta wing-body combination. The basic relations will be derived
for this fin and their application to the vertical fins should be ob-
vious, The spanwise distance from the wing-body juncture is de-

- noted by x(or § ), the vorticity at the trailing edge is ¥(x), and

the potential and sidewash on the top side of the fin at the trailing
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edge are denoted by ¢(x) and u(x) = ¢X(x) respectively. The nota-

#
tion (x- —ﬁ‘) following any quantity denotes that the quantity is given

[ 3
for the region from some variable distance x to the wing tipx = =~ .
If x =0, i.e, the complete fin is considered, this notation may be
omitted.,

Since negative sidewash on the top side of the fin means

positive vorticity, it is obvious that

Ylx)=-2 Ulx) = -2 & (x) (4.62)

As previously shown (see Equation (4.222)), the spanwise

lift distribution is given by

| 4
Yox) = 22 x) (4.63)
U
b¥* b*
The total circulation between x and 3 , /'(x—> Z) s
given by :
b% b

[ L)= { 115) 45 =-2 [ 4.(5)95
X

=2 (ﬂ(x) = -z-?% /(X) (4°64)

In order to determine the distance of the centroid of vorticity
_ from the wing-body juncture, it is necessary to compute the moment
of the vorticity distribution about the wing-body juncture, Mp. This
is given by

%

My brs£) = [§7G) s = 2x W+ 32 Lo ) (4.65)
X
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where L(x+%) is the lift on the fin betweenx and £ |

If Equation (4.65) is divided by Equation (4.64), the cen-
troid of vorticity, x , (x— !;:) , is obtained.

" and M, represent essentially the zero-th and first mo-
ments of the vorticity distribution. The second moment will not
generally be calculated but it is of interest because it is related
to the rotling moment. The second moment about the wing-body

juncture is given by

8%
/gzr(g)dsf = 2x2 ) + % RM (x> &°) (4.66)

X

where RM* is the rolling moment about the wing-body juncture.
Some useful conclusions about the applicability of the over-

and underestimates can be drawn from these relations. The over-~
and underestimates differ only within the Mach cone from the ver-
tex of the fin, i.e. 0 £ x £mc¥*, Since the estimates are obtained
from conical wing problems, the vorticity distribution will always
be expréssible in terms of the conical variable X¥= _xc_; . Then,
within the Mach cone, the various moments can be expressed as in=-
tegrals of the type

/;f""a‘(f‘)dg*

o
where n has integer vélues., 3"(§7‘) will be the same for both es-
timates at §*= 1. At §*= 0 the overestimate will give the correct

endpoint V‘(O) = 0, However, since the underestimate will generally
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have an angle of attack discontinuity at §*= 0, X‘(fv will have a
logarithmic infinity at fdk: 0. Then the estimates for o' will differ
markedly in the vicinity of the origin, The moments of the estimates
of ¥ will approach each other as n increases and obviously coin-
cide for n =a . Thus it is seen that the estimates will bracket the
correct solution closest for the rolling moment and will be increas-
ingly poor brackets for the lift, the spanwise lift distribution (or [’ )s
and the vorticity distribution respectively. It will be found that the
underestimate is of little use as a bracket for the vorticity calcula-

tions .

Body incidence in lift--The lift problem with no incidence can

be decomposed by superposition into two simpler problems. This
is shown in Figure 5(b) where E' and F are called '""body incidence
in 1ift‘; and "wing incidence in lift" respectively. The solution of
these two simpler problems will supply the information for calcu-
lating general lift and incidence problems,

The problem of body incidence is further decomposed into
problems E and G. The over- and underestimate solutions of prob-
lem G with the apparent twist due to the upwash about the body will
now be obtained,

The apparent angle of attack due to the upwash about the body
is assumed to be given by the slender body solution for the body,

i.e. by the two-dimensional incompressible flow about a circular
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cylinder (see, for example, Reference 11). Then the apparent

twist is given by

(&)=« (4.67)

P
B "(g:,:)'z
The planar wing problems corresponding to the over- and under-
estimates are shown in Figure 42,

The vorticity distribution at a point x of the trailing edge
can be obtained by integrating the éontributions of ali elementary
strips which affect this point. The vorticity due to an elementary
strip is given essentially by Equatioﬁ (4.43). As is apparent from
Figure 20, only those strips which intersect the forward Mach cone
from the point x will affect that point. The integrations can be set
up from the data in Figure 20 if the chord and span of the wing are
c* and b* respectively.

For 04 x< mc¥*, both estimates can be written down as one

expression
s e
U a(g) cs)dg a(g)cl(s)d§
Y(x) =% /X .o (4.68)
T ) Jdm @R |y mEcts) =7
E é

where the overestimate is given by the complete expression and
the underestimate is obtained by using only the second integral.

Noting that
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X, = X~ c'cg)= ii ({-g) for £>o0
C’(§)=—2gf—,—*(2£+ §) for  §<o
‘,Z
o((§)=°(3(js_-;—‘;)—z_ for §=0
0((?) = Q’B _(E:/;‘i);.— for § £o

and substituting into Equation (4.68), there results

x+mc* x-nc ¥
T F o
L3 ¢
wtwur?) | (%75)ds (%15)ds

¥ix) =

- - 2B o) )R
™ E2 5 FHE-5)2 00502 ) (5-1)"0e-5)1#3(E54$) 3 (x-5) 2
° o ‘

where, here, the first integral gives the underestimate and the
complete expression gives the overestimate. When these integra-
tions were carried out it was found that each estimate was given

by different expressions over different regions of x determined by
the relationship between mc and r. These different expressions
arose _quite formally when integrating quadratic square root expres-
- sions and will not be discussed further. The resulting expressions

are complicated and, to simplify the form, the following notations

are used
T=A+ Fx*(1-4) F=Ff*-J"
T =A-Fx*(-A) P
J.: —~ £x*(/-
_1/,:(/_X~z)‘ +F-x*J (4.69)

G= 12X I T AG-fxy)

A (- Fx¥) T
T _ VEGa T f 5
C_i____ + X H =

ACI+Fx*) A(1+Fx*)
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The underestimate for 04 x* <] is given by the following

equations:

For mc>r

2 - . 1/— rrl 2, g% J? _
56_(—:}1::3/1 Z:—SPCh Ixt’f' -F(/,‘}/)}/;X J— f(f;j)s/z Ccos ’?’7 (4.610)
if x > mc-r and
¥(x) _ 2fA* A T 2
%—7=7777/-; 6 X G AlF_ + —'—";Cz‘_a—/z"""" /aj/lc// (4.,611)

if x< mc-r. For mc< r, Equation (4.610) gives the vorticity dis-

tribution for all x.

The overestimate for 0<£ x*¥< 1 is given by the following
equations:

For mc>r

x‘(X) zf/) 1 sechx +;(/-A)I’/— x* %) fr2gH T’ 051G —
JZ (F)’/z
—2
~ly g FO-A)V=XTY 'F(/—/‘})}l/- *zU £2 i;]/:d/Oj "j} (4.612)

- :7.-2 4 sech

¥(x) _ 2FA%) !
dgU T ) J*

if x >mec~r and
/ iy £ (/—,4) V/~x' J £R ;J+J /"j /H]
~ 21T 2. J—/-J
—{}[;‘5 ch™ly F(/ﬂ lakd FE=RITY /0‘7//41/ (4.613)

if x< mc=r.
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For mc<r, ¥ (x)is given by Equation (4.612) if x < mc-r and

PK) _ zfA{ 2/ ok x4 #(/-H)V’-" VL P 2% 3605—/?/__

GU CF)*%

—_z =3
— Lt sech ‘F("A“’”X“J £2d +J cos™4G, (4.614)
JY (~F)*=

if x> mc-r.,
The over- and underestimates are the same for x lying out-

side the Mach cone from the vertex ( j<x*2

7 ). This result is

much simpler and can be obtained using the same procedure as

above. The final result is

¥ix) zFA% 2 z, 73 v
= 2 2d%J°) 4.615
oy J%H%( ( )

where J and F are given by (4.69).

Figures 43, 44, and 45 show vorticity distributions for
three different pairs of values of f and A, It is obvious that the
over- and underestimates do not bracket the exact solution very
closely. The underestimate does not attain the correct value
@A (0) = 0 but has the logarithmic singularity mentioned before.
The overestimate does have the correct value at the origin and it
is expected that the exact solution will favor this estimate. Note
that the underestimate shows regions of negative vorticity. This
is known to be incorrect and is one more reason why the under-
estimate should not be expected to be very useful as an estimate

for the vorticity problems.
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Since the exact vorticity distribution is not expected to

have a change in sign, a single vortex will start at the centroid

of the distribution and have the strength [ given by the area under
the complete vorticity distribution curve. From Equation (4.64)
it is seen that / (0— %‘) may be computed by calculating 2 P0).
Because of the symmetry of the region of integration when x = 0,
it is seen that the result for the overestimate is just twice that

for the underestimate. Using elementary strip integration,

mc¥
THF
F:ZW(°)=___ZQ’BU’/Z/ sech™ f(b/-f)/
4 (§+r)%

will give the result for the underestimate which becomes finally

F = ZA')C =lrs
dg V(b) 77'1/,42 7z cos /,4—) for f<A (4.616)
zZAf ~1/A
:7T Py sech /7?) for  £>4 (4.6162)
_ 2 iy
= .;r_.f for F= (4.616b)

The overestimate is obtained by just doubling the above results.,
The results are plotted in Figure 46 for two values of f. As ex-
pected, the over- and underestimates are useless as bracketing
curves since the ordinate of the overestimate is just twice that

of the underestimate. The short solid lines indicate the values of
A1, The estimates would normally be connected from Aj, to the

correct value at A = 0, however, since all estimates have the
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correct value at A = 0, there is little point in drawing in lines
different from those supplied by the estimates. It should be
pointed out that these results are not useless since the overestimate
has the correct endpoints at A = 0 and A = 1. It is expected that the
exact solution will start from the overestimate at A = 1, move away
from this curve towards the underestimate and then move back to
the overestimate as A approaches zero. The only use of the under-
estimate is to indicate on which side of the overestimate curve
the exact solution lies.,
bt

The moment of the complete vorticity distribution Mp fo—+%)
is related to the lift on the fin through Equation (4;.65) with x = 0,
The overestimate is easily computed using elementary strips and

Equation (4.44). The result is given by

Mp _ 2fAFAEA log A) (4.617)
% ULL)* (-A)*

The underestimate is somewhat more complicated, It can
be set up as an integration of elementary strips\using Equation (4.411).
~

This would give

o L
b5 Hf s HE -
M, -Z/ﬂU/C’(;)aﬂf)df + Mz §‘5E’Ch-'{/-{§c) df"_ (~-£§ 9(05"/7_%:}d§#
i i (4 +ry* (e5+r Y=

o

(-]
(-}

Substituting the proper quantities into the first integral leads to
Equation (4.617). In the process of solving the second integral,

integrals of the type
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/
/OZ (1+kx)dx Kk =1
xfi—xz' or k=
[+]

were encountered. By differentiating with respect to k, solving,

and then integrating again, the solution of this integral may be

given as
72 feos"k)”
= [co for k £
& 2
T4 (Cash_'k)z
+ == 4 for k =2/

2 Z

The last integration led to integrals of the type
k =/

or k =i

!
/05, (1+kx) dx
Vr-x2°

o
It was found necessary to integrate this numerically. Using the

procedure described above, this definite integral can be written

as the following indefinite integrals

; 5
M[k);‘o/é (77{7: Ci;.z) d% for k =/
7 Ch’g _ 1 -
M()+/§(2 55/‘-’§1 Srech>)ds for k'=- £I

~

For numerical integration, the second expression can be expressed

as

M) —ZZ;: /05 k' K sech™ '+ Cos"k‘l/‘/' Q(k’)

/
where GQ(k*) :/(Secb"f Sech_ §') d¢
k/
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M(k) and Q(k') were integrated graphically by counting squares

and are plotted in Figure 47. The final results for M are

Mp_ _ 24 [£04) Al g2, AF)
% (7(_21)7-* ﬁ'i{ z— tTFAlogA +2—,-,/(¢050“-(cos ;{71‘7_— M/;—/ ~/M(¥) (4.618)

for f <A

My A ) faa A [ 21 fcoch Af T oo (2
KEU(_%‘)z:(/Z—A)Z : ), A log A+ £7| @os )% (sech £{77+—ﬂ7 MO)-ME) -7 /oj(r/+

+-?Sech—l[+£) —cas"/;_‘}) +Q[£“)// for £ >A (4.6182)

Mo 2A_JrB, an a . Gos ) A ).
P S R -2a)-mO]f tor g - a (4.618b)

Dividing equations for M by the corresponding equations
for [ gives the centroid of vorticity X,y . This is plotted in
Figure 48 for two values of f. Qualitatively, the same remarks

that were made with reference to Figure 46 apply here,

- Wing incidence in lift--Here, the body is at zero angle of

attack and the two fins are deflected by & in the positive direction.,
From the calculations above, the methods to be used here are taken
for granted and only the results will be given. These same esti-
mazes will of course apply to the aileron deflection problem for
supersonic leading edges.

Outside the Mach cone (/.‘;X*ﬁ-;’-/ the estimates are the
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same and the vorticity at the trailing edge is the constant sweep-

back value

X((X)__ z2f (40619)

ST ~{r-#%

For 0&£x*<«1, the overestimate is obtained directly from the side-
wash results for the cruciform wide-delta aileron given in Refer-

ence 18 and is

Yix)  zf o Fext -,_ﬁix_") |

1) 2h (eos™ s — cos™ (4.620)

Yex)| . 4x* N

——“’SU = TW (4q620&)
+=1

The underestimate is easily found to be

X(x) - < -1, 4 _ F -~ F-x*
SU =~ sech™ X ﬁ_——T—Z,COS = * (40621)

Some vorticity distributions are shown in Figure 49.

The integrated vorticity for the entire fin can be obtained
from Equations (4.616) by letting A —1. As A—»l, the body acts
like a vertical wall and the angle of attack becomes a constant given

by og . Then the underestimate is

I’ 2F

5U(T~’;f) T —£7

cos™'t (4.622)

and the overestimate is just double this result. These results are

independent of A and a plot against A would show constant values
/
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for each f with the overestimate having the correct values at A =0
and A =1,
Mp is easily obtained by calculating the lift on the fin.

The overestimate is

Mp
— = f 4,623
SU(L)* : ( )
The underestimate is
My frq . cos'f .
MSU(_;:‘)‘ = F(‘Z + e (4.624)

The centroid of vorticity is independent of A and the same
remarks made above about [’ follow. The over- and underestimates
are plotted against f in Figure 50, The underestimate is plotted
just to indicate on which side of the overestimate the exact solution
will lie,

The estimates for subsonic leading edges can also be com-=
puted. The overestimate sidewash distribution is given in Refer-

ence 39 and is

¥x) z %-Zéf)]
U E(Fd?) 1//——[;;-2)2

The underestimate can be computed by integrating elementary strips

(4.625)

and is given by

¥6) o[ IrdE) g Jrd )+ G5)

sU  m[rd (__‘_‘]/—— :(yz) V/+d(z{a?~l//-({%),

(4.626)
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Results are plotted in Figure 51.
The remainder of the desired quantities have been computed

only for the overestimate. The vortex strength is

/7 2
U e ol (4.627)

The moment of the vorticity is

Mn T
——a g = (4.62
SUER ™ 22(ca) K
and the centroid is
Xey. T :
= — (4.628a
(¥%2) 7 )

Lift--By adding the results for the wing and body incidence

cases so that the resultant configuration is a lifting wing-body with
no incidence, the results for the lift case are obtained. Only the
case of supersonic leading edges has been treated.

. The estimates for vortex strength and position are shown
in Figures 52 and 53 respectively., Here again it is seen that the
overestimate has the correct endpoints at A = 0 and A =1,

Morikawa's paper (Reference 12) has treated the lift prob-
lem and presents results for the lift of the fin alone, A brief com-
parison of results will indicate how well the overestimate can be
expected to approximate to the exact solution. Morikawa plots the

ratio of the lift on the wing (both fins} when in combination with
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the body to the lift on the two fins when they are removed from
the combination and placed together so as to form a wing alone.
He denotes this parameter by K™ and this will be used here just
for this discussion. He brackets the exact solution by the limit-
ing cases of infinite aspect ratio (overestimate) and zero aspect
ratio (underestimate)., His overestimate coincides with that used
here.,' He also shows an approximate curve for f = 1.,

These results together with the underestimates used here
are shown in Figure 54, It is seen that the overestimate used here
is practically exact for supersonic leading edges (and probably
for the usual subsonic leading edges) for A greater than about 0.5.
Then it can be expected that the exact solution will be given essen-
tially by the overestimate for A near unity for all the results al-
ready presented and for those results which will be presented.

As A aecreases the exact solution will deviate further from the
overestimate, By taking this behavior of the overestimate into
account, it should be possible to make reasonable estimates of the
strengths and positions of the starting vortices and even to estimate
the vorticity distribution.

It is possible to estimate the strength and position of the
vortex for subsonic leading edges using a combination of known
endpoints and known slopes at these points. The sonic leading

edge case can be used as a guide to the shape of the curves for
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both subsonic and supersonic leading‘ edges. The endpoints for
f=d=1are known and, from the above discussion, the slope of
the curve at A =1 is known to be essentially that of the overesti-
mate. These data can be taken from Figures 52 and 53.

Lagerstrom and M. E, Graham (Reference 15) have pro-
vided additional estimates which appear to give information about
the slope near A = 0. They noticed that the pressures on the
fins of a delta wing-body combination differ but little from the
pressures on the corresponding regions of a delta wing alone
having the same total span as the combination if slender body
theory is used., They assumed that this would also be the case
for the nonslender body subsonic leading edge case. I is ob-
vious that this assumption must become poor with increasing A
for it would predict infirﬁte " for A=l. However, this assump-
tion is probably good for A near zero and, hence, supplies in-
formation about the shape of the curves there. Using this assump-

tion, they get for the strength of the vortex

[ _ =z ]//+A’
«U(§)  Efar) | 1-4 (4.629N
and for the position

Xcv. _ (/+A) cos"A-AVi-A* ‘
(bi/,l)— 2 (/_AZJB/Z (40630)
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Theseequations are correct for A = 0 and increasingly poor as A
approaches one. Note that the position of the vortex is indepen-
dent of d.

Equation (4.629). is plotted in Figure 55 for three values
of d. The endpoints at A = 1 are known to be just twice the values
at A = 0. Also shown is the overestimate for f = 1 taken from
Figure 52, The overestimate gives the shape of the curve near
A =1 and Equation (4.629) gives the shape of the curve near A = 0,
For d =f =1, a curve can be faired between the known endpoints
and shapes as shown in Figure 55, For other values of d, the
curves will probably have the same shape., The curves for super-
sonic leading edges can also be modified according to the f =1
curve.,

Equation (4.630) is plotted in Figure 56. Also shown is
the curve for f = ] taken from Figure 53, Using the same argu-
ments as above, a curve can be faired which will represent the
centroid position for all d. The modification of the curve f =1 can

then be used to modify the supersonic results shown in Figure 53.

Roll due to aileron deflection--For this case and the damp-

ing in roll case it will be found that most of the types of ailerons
and wings treated lead to vorticity distributions at the trailing
edges of the fins which have sign changes. I is assumed that the

aspect ratio is low enough so that the two regions of different sign
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roll up into two distinct vortices of different strengths and of
opposite signs., These will be referred to as the inboard and
outboard vortices.

Four different cases of delta wing-body combinations
with aileron deflection will be studied, They are the plane wide-
delta aileron, the plane narrow-delta aileron, and the cruciform
wide-delta aileron for the two cases of 2 and 4 fins deflected,

In all cases it will be assumed that there are no net lateral forces
so that only the rolling moment problem is considered, i.e. the
body axis is in the free-stream direction. It must be pointed out
here that the results for the strengths and initial positions of the

vortices when lateral forces are included cannot be obtained,

generally, by any superposition of these results for the pure roll
and pure lateral force cases. Instead, it is necessary to super-
impose the vorticity distributions (which is valid because of the
use of linear theory) for the rolling and lateral force cases and
then, from the resultant vorticity distributions, the vortex
strengths and positions are computed, That the strengths and
positions of the vortices cannot generally be obtained directly

by superposition is due to the fact that these quantities are com-
puted in connection with nonlinear assumptions about the distor-
tion of the vortex sheets. Then the results presented here will

apply only for the particular cases described above., However,
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from the methods used here it will be obvious how the results for -
other aerodynamic problems can be estimated.

For the pure lift and incidence problems it is possible to
superimpose two problems by a simple addition of F's and M, 's
because the vorticity distributions are one-signed. However,
when sign changes occur in the vorticity distributions (as for the
roll problems) this procedure does not work.

Because of these vorticity regions of different signs, it is
desirable to compute for all possible cases which might be super-
imposed the [ 's and Mp 's as functions of x so;that these quan-
tities can be determined for any portions of the vorticity distribu-
tions. Such equations are given here for many of the cases treated
but not for all. Those cases for which these equations are not
presented here can usually be derived easily and, if not, a simple
graphical integration may be employed.

For the four problems studied in this section and for all
the remaining problems in this thesis, only the overestimate will
be used. It was explained in great detail previously why the under-
estimate supplies little information for estimating results, It
was also explgined how the exact solution and the overestimate
are related. It will be taken for granted that all of these ideas
will be used with the results presented from here on. The over-

estimates for all of the aileron deflection problems are indepen-
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dent of A and have the correct endpoint at A = 1. However, in
contradistinction to the lift and incidence problems, the over-
estimate does not have the correct endpoint at A = 0. It will be
necessary to compute the A = 0 endpoints for each problem and
then connect these endpoints .to the overestimates at the approp-
riate values of AL using some reasonable curves which, admit=-
tedly, are fairly arbitrary in shape,

Consider first the plane wide-delta aileron problem.
The results will be computed for the right fin which is at the
angle of attack + § and the results for the other fin are obtained
from obvious symmetries. The overestimates are the same as
for the wide-delta wing-incidence problem studied previously.
The overestimates for the vorticity distribution, the strength
of the vortex, and the rﬁoment of the vorticity distribution are
given by Equations (4.619) and (4.620), double Equation (4.622),
and Equation (4.623) respectively,

The results for the endpoint (A = 0} plane wide-delta
aileron are easily obtained and the details will be omitted. It
is first necessary to plot the vorticity distributions for the dif-
ferent values of f to determine the regions of vorticity of differ-
ent sign. All calculations will be carried out for the two values

f=1and f =0.5. The vorticity distribution can be obtained from
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Reference 18 and is

¥x) - _Zf - £-X 1 £4X ) # o’
ST S (cos v + Cos —-——--—/HY) Fsecb X (4.631)
for 0£ X £1 and
LG Zf (4.632)
SU /_702.
for 1« iéf . For f =1 the result is
Y(x) a4l _ e
SU/~ W(V/—»?Z‘ sech™'%) (4.633)

£=1
This is, of course, valid for 0 £ X 41, Vorticity ;distributions are
plotted in Figure 57. It is seen that, for a certain outboard region,
the vorticity is positive and, for the remaining inboard region, the
vorticity is negative.

The vortex strehgths can be computed from the following
formulas with the notations in parenthesis having been defined in

the Section '""Basic relations':

[1(x>1) = 2f () +-#5) coS” ———/f;; - (1+£%) ros”/’_;:c;_/-# %Z-CFSGC/)"’)?
SU(E) T
(4.634)

("—’/ v -l 7
KE:; )/ = ;'X sech™ X (4.634a)
£
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Llorn) ¢ [i-F

su(g) - Vi (4.635)
Aas 198 636)
sU(E) ° (4.636)

The result expressed by Equation (4.636) is obvious physically if
the circulation about the proper contour is considered and irrota=-
tionality is imposed.

M/ is given by

M (5-»1) ~ f=X -1 FEX X
SPU[Xb)I 7r7/C 5 [~ () + (- £%%7) (cos’/’i:? *cos //f:cf?/+ Zfrzxzjec;)—l)?
(4.637)
M, (%—+1) =
SFU(b)Z Z V—x2 + X%sech” X) (4.6372)
M/.,ﬁp——rl) _ 2 Cos 7T 17[ z}
Svep e (#0387
2
M (o-»/) _ 2 (4.638a)
szr(b) ”
=)
M, (%) z
T 4.63
o)y T .

The results for /  and Xc.v. are shown in Figures 58 and 59
respectively for the inboard and outboard vortices. These plots

were constructed as explained previously. The horizontal solid lines
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denote the overestimates., These are the same for all of the wide-

delta ailerons. The short vertical solid lines denote the values of

A

Le The labeled dashed curves are the curves which connect the

estimates at AL to the known endpoints at A = 0, Note that as A
decreases from unity there is no inboard vortex until the fin inter-
action begins.,

The plane narrow-delta wing-body combination with aileron
deflection will now be studied. The overestimates are the same
as for the narrow-delta wing-incidence problem. The overestimates
for the vorticity distribution and the strength and position of the vor-
tex are given by Equations (4.625), (4.627), and (4.628a) respec-
tively.

For the plane narrow-delta aileron endpoint (A = 0), the

vorticity distribution is obtained from Reference 42 and is given by

¥(x / -1y X .,
—5:(—U—)-: %/1;”?—{‘—:—)‘2"“566/) ’(—L;z—) (4.640)
for 0<x ¢ % . Note that this equation is independent of d and is,

in particular, ;crue for d = f =1, Then the results for this case

are given by the previous results for the plane wide-delta aileron

for f =1 if X is replaced by 7,2‘ in those equations (see Equations
(4.633), (4.634a), (4:637a), and (4.638a)). The vorticity distri-
bution is given by the f = 1 curve in Figure 57 and the strengths

and positions of the (inboard and outboard) vortices are given in

Figures 60 and 61 respectively for three values of d.
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Consider the problem of the cruciform wide-delta aileron
with 2 fins deflected, i.e, the horizontal fins deflected by + & .
Result:; will be obtained for the right horizontal fin and for the
upper vertical fin and the results for the other two fins are obtained
from symmetry. As A decreases from unity, the vertical fin will ‘
be inactive until the fins interact (A = A,L) at which point a vortex
will start at the wing-body juncture. As A decreases further, a
negative vortex will move upward along the vertical fin. The over-

N
estimates for the horizontal fin are the same as those for the plane
wide-delta aileron (and for wide-delta wing-incidence).

The endpoint ( A =0} results are now needed for the hori-
zontal and vertical fins. It is evident that for this problem there
will be no sign changes in the vorticity distributions on either fin.
It is further evident thét the results for the horizontal fin are given
by the overestimates with x* replaced by X. Although Fﬁ*;'?) and
M,, (6+%) are the only quantities needed for either fin for this
case, the results for variable regions are given here since they
will be needed when 4 fins are deflected and sign changes in the
vorticity distributions do occur.

For the horizontal fin, the vorticity distribution is given
by Equations (4.619) and (4.620). Plots of the vorticity distribu-

tions are given by the overestimates in Figure 49. /_%—':L) and

M, (o 7) are given by two times Equation (4.622) and by
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Equation (4.623) respectively. Other formulas which may be de-

rived are summarized as follows:

T(z=) __2f N P
SUCE) " T ~T(1-§) +(1-¥¥)cos™ ;= X 4 (14£7) cos™ ; *ﬁ’; (4.641)
/7;(;(,)}/ Z9i-x2 (4.641a)
zZ ,
(o —1)
/;U(ﬁl) = 7]‘-7:_‘ ',&z‘(%rf - s F) (4.642)
2
M (7+1) oy
___-———-S’;(A) - ’F’P‘ZZ T(-2) + (-5 cos™ £ m— cos //f:;‘)]* _27_;‘3 Cos™' % N
(4.643)
My (X21) _
SﬁT/(“)"/ :#—(71//—71 +cos"X) (4,6433)
z
=/
Mpe=) (1-Vi7?) (4.644)
sU(%)*

The vorticity distribution along the vertical fin is obtained

from Reference 18 and is given by

X((y) 4 —~/ V/~_}72

U T tan S (4.645)
Y<y) Y .
?ﬁ/ =37 cos™y (4.6432)
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Plots for f =1 and 0.5 are shown in Figure 62. Results for the

vertical fin are as follows:

R = A
/’;_(OD_—;_;_))~"% f}/cfi_j:;'ﬁ (4.647)
%’{j_ _;;F (4.647a)

(Note that [ for the vertical fin is equal and opposite to tha.tr for the
horizontal fin., This is evident if the circulation around a closed
contour taken along the vertical fin, then along the horizontal fin,
and then completed through the undisturbed fluid, is set equal to

ZGI‘O

M/" (y*/) Zv‘z v -* -y 1 L =1 W*yz
gv(b) 2(/ 207 - zfcos_y+5/n 7’77')7 ~Sn ’+7’777'_v 7 tan
(49648)

M (5-1) g ‘
—S‘U%)—/ Z;/ ZJZ) cos _y + yVi- ] . (4,.6488.)

/‘4/‘1&’“”) 1:2

—— = " 4,649
SU(f—)Z 1+ F ( )
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Yewv. CCr) o Ff-47

() 7 () cos iy (2.650)
l_v(:_‘;*_'). - T (4.650a)
z

Results for 2 fins deflected are shown in Figures 58 and 59,
Consider the cruciform wide-delta aileron with 4 fins de-
flected., Now all fins are alike and only the right horizontal bfin
will be considered. This configuration is obtained by superposi-
tion of two of the above ailerons (with 2 fins deflected) where one
of the 'ailerons has been banked 90 degrees., Such a superposition
will lead to a sign change in the vorticity distribution when the
fins interact, The endpoint result ( A = 0) is easily obtained from
the above results o\iThe vorticity distribution is shown in Figure
63. Using the above equations, the results for the inboard and

outboard vortices can be obtained, These results are shown in

Figures 58 and 59,

Damping in roll--The calculations for this case follow the

method used in the case of aileron deflection. One important
difference arises and that is that here the vorticity distributions
for the overestimate (for supersonic leading edges) vary with A
and sh;)w sign changes for values of A for which the fins do not
interact, Then the overestimate results for the inboard and out-

board vortices must first be computed. The results for the
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inboard and outboard vortices for the endpoints at A = 0 are then
connected to the results for the corresponding overestimate at the
proper value of AL°

Plane and cruciform wide-delta wing-body combinations
which have no lateral forces acting will be studied here. Only the
overestimate will be used and it is the same for the plane and cru-
ciform problems. The methods to be used should be apparent so
that the details of the calculations will be omitted.

The vorticity distribution for the overestimate can be ob-
tained from previous results for the cruciform wide-delta wing in
roll. This result is obtained essehtially by differentiating Equations
(4.224) and (4.225) with respect to x and combining this result with

the result for a plane lifting wing so as to satisfy the angle of at-

tack distribution shown in Figure 37(a). The final result is given by

— "
;((;-)) = ?ff zr/~A)x*sec/r'x*+'(i;/ijs‘/1 I Fas(a-Ffeos ™ H —
2
~ Frx* -~ F-x* - £4+X%
--[4-1‘)(*(2”;?7“5 /++X"} 1’7—??‘( I~ fx* Cos,fﬁff) (4.651)
and
X
s _
+=1

for 0« x* £1 and

¥(x) F (1- A) _ 2)
/3'(‘;‘(_‘/,)2‘{72-#‘ - ;z)[’ Frtie- ’Cf (4.652)
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for 1 £x%* i—f o
The overestimate circulation for the complete fin will be

given by

[fo—+ %*) _ _2F 2 2 -1 2
— = S [(f pf R 24)cos™f - (1-A) £ V- F ) (4.653)

L)L)  TG-F)%

[o+%) [
,b(_;é—_ﬂ)(—"l‘) =- 2 +54) (4.653a)
3
£=t

The moment of the overestimate vorticity distribution is

given by

My (o—+47)

_F.
L2 Et2n) 4,654
plE)(E) 3 (4.634)

The overestimate vorticity distribution is plotted in Figure
64 for f = 1 for various values of A. /—' 's for the inboard and out-
board vortices were obtained for each value of A by graphical inte-
gration together with the use of Equation {4.653a). Mjgj's for the two
vorticgs were obtained by plotting the moment of the vorticity dis-
tribution (see Figure 65}, integrating the inboard vortex graphically,
and then using Equation (4.654). The same procedure was carried
out for f = 0.5 and the overestimate results for these two values of £
are shown by the solid lines in Figures 66, 67, and 68. Figure 66
gives the strength of the inboard vortex. It is seen that above A = .65

there is no inboard vortex. This value of A was obtained by extrapo-

lating the overestimate results to /7= 0 and it appeared to be the
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same for both values of f, Figure 67 gives the position of the in-
board vortex and Figure 68 gives the strength and position of the
outboard vortex, The curves in these three graphs are completed
by obtaining the correct values at A = 0 for the plane and cruci-
form problems.

The results for the plane rolling wing {A = 0) can be ob-
tained by standard methods. The results will be summarized

here. The vorticity distribution is

%=*ﬁ$ﬁ{z¢ (-F)a-7) - fro# 52 iJcos™ 25 [ s+ cos™ £ } (4.655)
z
y6) [ s (1-2%)
A(L) T 3T Yi-xz (4.655a
=
if 0£x%«1and is
Yix) _ zf _ , 656
/b(.zé-)— (/—*.‘Cz)a/z Z/-hf-x(zﬁ'lcﬂ (49 )
if l:’:SZé% . If léié—_-@'— , [7(¥»#) is given by
[z 7) 2(1- %
~ fR0-£X) Z:;c_y(zwﬁl—)] (4.657)

P(R* ()%
and, if 04X =/, /_1/)?"';,‘) is given by

f+x
rrx

[laot) 5 ) i I5 = v )30 cos™
p(e)? 70-F2%) 72

+(/—7‘)?)£C~)?(z~fzycos“’% (4.658)
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/—’(X—’—-)/ -)-('2
p2)*

(O—v-—-) =0

The following expressions have been derived for Mg :

Iflexs

Mp (5= £) L
_P_(%:)_r“‘ 3(,_{2)3/2{/2,[ fx 3— 2% £ (2- fi]

|-

Mﬁ(l-h:;—) £ ;
—Tz'é');—:—q m[/’/' fz_, 4_74‘3_/__2'7;.5')

and, if 0£X £1,

ﬁﬂ_{fz—%d/: — %_(HZYZ)W//"’TZ‘
P(%) -

P —
Mﬂfo*f):_ Zf ZH//—{Z +(1—z742)605”7j

p(L)? 37 (1-3) %
S
M/’; /0"-_;,—) _ _d;
ey o
f=i

(4.658a)

(4.659)

(4.660)

(4.660a)

(4.661)

(4.662)

(4.662a)

For f =1, the value of X where the vorticity changes sign can be ob-

tained without plotting the vorticity distribution. It is obtained by

putting ¥'= 0 in Equation (4.655a). Using this value of X, the results

for the inboard and outboard vortices can be obtained.,

059
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the vorticity distribution is shown in Figure 69, From this plot,
it is seen that the vorticity changes sign in the region 1£Xx 5:;’- o
A complete set of formulas is available for this region and the re-
sults for the two vortices can be obtained., The plane vaileron re-
sults are shown in Figures 66, 67, and 68,

The results for the cruciform wide-delta rolling wing (A=0)
can be obtained using the same procedure as was used for the cru-
ciform aileron. The original problem can be decomposed into
simpler problems as shown in Figure 19. Problem B is similar to
the cruciform aileron with 2 fins deflected, The results for the
right horizontal fin of problem B are given by the overestimate with
A = 0 (see Equations (4.651) through (4.654)). The vorticity dis-
tribution for f = 1 is shown in Figure 64 (curve labeled A = 0). The

vorticity distribution along the upper vertical fin of problem B is

given essentially by the y derivative of Equation (4,230). The re-

sult is
S
Y(y) _ zfy ==y V~F2+3
g T Y o [ ey 5 /m-,c?]} (4.663)

pek)
F=1

Figure 70 shows the vorticity distribution for two values of f. Some

¥(y) v _ ‘
= /: 47;/(5@:/)'5’~W".)71) (4.663a)

useful formulas which have been derived for the vertical fin are :
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i -7 + '/ £
— R — “_ySeC/)IJ/—'N ——“-—-——-_/..
p(L)* T) =2 (-f3)%% cos 1= ~$2) 2

+J _ VI~F? y U V~-F2+5
7,_21/, fzﬁn /- P‘y /4 /_Fz

(y>1)] 2z [(+273)V1-3* _2 515
1 3C e
SR =

[+ _ zf [/ 7‘2~7‘c05"’7
2N (-F2) %

[o+1) _é_
P(b)z

dbiad VRS Ecs"’y + I (14657~ 8 *sech '3 |

513 5
plE) L.,

M /0“”)__ 3
p(L)? T 30+f)%

If the results which have been obtained are superimposed as in

(4.664)

(4.664a)

(4.665)

(4.665a)

(4.666)

(4.667)

Figure 19 to form the complete rolling wing, all of the fins are iden-

tical, Figure 71 shows the vorticity distribution on a typical fin for

f = 1. The strength and position of the inboard and outboard vortices

were obtained by combining the use of the formulas for this problem

with graphical integrations. Results for f =1 and £ = .5 are shown

in Figure 66, 67, and 68,
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G. Vorticity at Trailing Edges--High Aspect Ratio

In practical cases, a high-aspect-ratio wing usually oper-
ates at a much lower angle of attack than a low-aspect-ratio wing
and its lift coefficient is generally much smaller, Both the in-
crease in aspect ratio and the decrease in lift coefficient increase
the distance e and, if the aspect ratio is high enough, the vortex
sheet from the wing can be considered essentially undistorted at

the tail just as in the case of the subsonic airplane,

P

Delta wings=-=-Since { is generally small for a high-aspect-
ratio delta wing, the overestimate will a.pproximate“the exact solu-
tion closely (because only a relatively small portion of the wing is
affected by interference)}, The results for vorticity distributions
derived previously can be used here but the other calculations do
not apply. Furthermore, few of the problems treated before are
likely to occur for the high-aspect-ratio airplane. In particular,
the ailerﬁon deflection and the cruciform problems are not to be in-

cluded in high-aspect-ratio airplane problems.

Rectangular wings--The remarks above generally apply

here. It is to be noted that the overestimate predicts no vorticity
except at the tips. Actually there is some vorticity near the wing-
body juncture but it is expected to be small and to have little ef-

fect on the tail.
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H. Motion of the Vortex Sheets--Low Aspect Ratio

If the aspect ratio is low enough, as assumed here, this
problem is concerned with the motion downstream of several distinct
vortices whose strengths and initial positions may be estimated by
the procedures described in previous sections. Lagerstrom and
M. E. Graham (Reference 15) have presented in great detail assump-
tions and methods for computing the motion of vortices for plane
wing-body combinations in lift, These same assumptions and meth-
ods can be used for the problems studied in this thesis., However
most of the problems here lead to very difficult problems in two-
dimensional nonstationary incompressible vortex motion primarily
because of the large number of vortices involved. For example,
it was seen that two vortices might trail from each fin of a cruci-
form wing-body configuration for certain roll problems. Together
with the reflected vortices which are placed within the body to sat-
isfy boundary conditions, it is seen that some problems can involve
as maﬁy as sixteen vortices. In general it is to be expected that
step-by-step graphical or numerical procedures will have to be em-
ployed to study the motion of the vortex systems as they move down-
stream for most of the cruciform roll problems considered in the

present work.,

I. Calculating Tail Effects

The cross-flow field at the tail due to the vortices will
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generally be very complicated. If the tail is a plane or cruciform
wide-delta wing-body configuration, the estimating procedures in-
troduced in Section 4.4 may be used. Generally this will involve
numerical or graphical integration of elementary strip estimates
across the fins which will have complicated apparent twists due to

the vortex system,
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V. QUALITATIVE DISCUSSION

All of the theoretical results which have been presented in
this thesis were based on linearized nonviscous theory. Although
the nonlinear rolling up of the vortex sheets is retained in the prob-
lem of computing wing-body-tail interference, the strengths and the
initial positions at the wing trailing edges of the vortices which are
to approximate the effect of rolling up are calculated by linearized
theory. In practical cases, a missile is often subjected to angles
of attack far greater than those for which linearized theory can be
expected to give reasonable results. At these high angles of attack
the nonlinear and viscous effects and the effect of the gap between
a deflected fin and the body will be considerable. Just as the non-
linear effects are far more severe downstream of the wing than on
the wing so too it must be expected that the increased effects on the
wing due to high angles of attack will be highly magnified down=-
stream. It is the purpose of this section to discuss qualitatively
the eic.pected applicability of the theoretical results in view of the
fact that many important phenomena have been neglected. Where
possible, the qualitative effects of these phenomena on the various
interferences and aerodynamic problems will be pointed out.

In general, real fluid effects will decrease the effective-
ness of lifting surfaces so that integrated values of lift and rolling

moment which are derived from linearized theory will probably be
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too large. This is particularly severe for the low-aspect-ratio
missiles studied because of the high lifts which the fins generally

carry and because of the large interference effects.

5.1 Lift and Incidence

Consider first the lift case without incidence. If the wing
(plane or cruciform) is banked, the lift can be calculated by the
usual decomposition into angles of attack normal to the wings,
For the cruciform wing the lift should still be practically indepen-
dent of bank if the nonlinear effects are not too great. Generally,
the lift predicted by linear theory will be optimistic. At high
angles of attack the presence of the body may seriously affect the
predicted lift of fins which lie roughly in the downstream shadow
of the body. It is known that viscous separation of the flow from
the upper side of the body occurs (see References 43 and 44) but
little is known about its effects on any fins which might lie in the
separated region.

It is expected that, for many of the low-aspect-ratio mis-
siles, there will be a considerable afterbody lift, Part of this lift
can be estimated from linear theory (see References 15 and 16).
There is also a lift due to viscous separation from the body and it
appears that this can be estimated satisfactorily (see References
43 and 44),

If a fin is at an angle of attack relative to the body axis
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(incidence case) a gap will be produced at the wing-body juncture.
The lift effectiveness of the fin will be reduced because some pres-
sure equalization takes place through the gap., As the angle of at-
tack of the missile is increased the lift effectiveness of the fins can
be expected to decrease.,

The fins of a missile are often deflected suddenly in flight.
Then there will be a certain time interval before stationary flow
is established. Little work has been done on such nonstationary
problems. If A is small and if a wide-delta wing is being considered,
Reference 45 will provide information on the transient lift during

this period of nonstationary flow.

5.2 Aileron Deflection

If the body is at zero angle of attack, the theoretical re-
sults presented here will probably predict rolling moments which
are too large because real fluid and gap effects reduce the lift ef-
fectiveness of the fins. Let the deflected fins be in the horizontal
plane and consider the effect of angle of attack. If the body is at
an angle of attack, one of the fins will have a higher angle of attack
than the other. The fin at the higher angle of attack carries pro-
portionately more of the lift ;vhich generates the rolling moment.

At the sarﬁe time the gap and separation losses will be more severe,
The result is probably a decrease of aileron effectiveness with angle

of attack,
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This problem has generally been treated as a stationary
flow problem. Actually, of course, when the fins are deflected
in flight there is a time interval before equilibrium conditions are
established. Knowledge of these transient rolling moments is
important in stability and central considerations., As yet there
are no theoretical results available. However, it appears that
for cruciform wide-delta ailerons the methods of Reference 45
can be used to compute the transient rolling moments for sudden-

ly deflected fins.

5.3 Damping in Roll

The theoretical results for damping in roll were obtained
by replacing a nonstationary problem by what was assumed to be
an equivalent stationary problem. Thus the rolling wing was re-
placed by a nonrolling wing with linear spanwise twist. The mag-
nitudes of the nonstationary effects is not known for cruciform
wings but there are indications from planar wings that they may

be large (sze Reference 46).

5.4 Roll Due to Combined Pitch and Yaw

This problem is particularly serious because these roll-
ing moments are generally not desired. At high angles of pitch
and yaw (or high angles of attack for a banked wiﬁg) large rolling
moments are usually developed and serious stability problems

arise,
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There are linearized solutions available for plane wings.
However, for cruciform wings linearized theory predicts that these
rolling moments must be at least of second order due to the neces-
sary restriction to small angles of pitch and yaw. It appears that
this problem will have to be studied primarily by experiments.

In geﬁeral, pitching and yawing of a missile will cause the
flow over the various symmetrical pairs of fins to be asymmetri-
cal with respect to the body axis. This must produce additional
rolling moments about the body axis if the fins concerned carry
lift. No theoretical solutions are known when a body is present
and it is expected that the planar wing results will generally not

be applicable to plane wing-body conﬁgura‘tionso

5.5 Fin-Fin and Wing-Body Interference

Little is known about the nonlinear, viscous, and gap ef-
fects with regard to these interferences. It is expected, though,
that the linearized results will provide good estimates of these

interferences.

5.6 Wing-Body-Tail Interference

Certain assumptions have been used in the calculation of
wing-body=-tail interference. Because of the extreme difficulty
of this problem both theoretically and experimentally, it is not

known yet how good these assumptions are, However, it is expected
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that, if the angle of attack of the missile is not too great, these
assumptions will lead to reasonable estimates of wing-body-tail
interference.

At high angles of attack it is known that the assumption of
a completely rolled up vortex sheet is a good approximation to
the nonlinear effects. It appears that, if incompressible vortices
are assumed to start at the trailing edges of the wing, useful en~
gineering results can be obtained. The strengths and positions
of these vortices would be obtained from the vorticity distributions
at the trailing edges of the wing. The strengths and positions of
vortices for several aerodynamic problems have been computed
in the present work by linearized theory estimates. At high angles
of attack it is expected that nonlinear, viscous, and gap effects
will alter the vorticity distributi/ons at the trailing edges so much
that linearized theory will be of little value. For example, if any
fins are deflected the gap produced can be expected to produce
trailiné vortices of considerable strength at high angles of attack.

Whenever a missile is pitched or yawed the tail moves
laterally away from the vortices which trail from the wing. This
wili usually reduce the induced effects on the tail. Thus it can be
expected that wing—bbdy—‘tail interference will decrease as the

angle between the body axis and the free-stream direction increases,



=151~

Vi, RECOMMENDATIONS FCR FUTURE RESEARCH
A number of aircraft companies and laboratories are now
carrying on theoretical and ¢xpe:-imenta1 research in this field,
Since a.riafge part of this work is unpublished and, for the most
part, the details not known to the writer, some of the research

A
recommended here may well be on the way.,

6.1 Theoretical Research

Exact solutions for plane and cruciform wing-body prob-
lems have been obtained only for the slender body case. It was
seen that, when properly used, such solutions can be very useful
for/estimating linearized solutions. Generally, the slender body
method will not provide infarmation for the pro‘plem of roll due
to combined pitch and yarlw‘o Aside from this problem, there are
numerous other aerodynamic problems for which slender body
theory can provide useful re\sults,

"Research should be continued on exact linearized solutions
to a few of the interference problems. Such solutions will gener=-
ally be obtained by iteration or series expansion methods, particu-
larly if a body is included. The solutions will usually be difficult
and tedious to carry out but a few such solutions would provide
very useful guides for the applicability of linearized methods (when
compared with experiment) and for the development of approximate

methods °
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Some study should be made of the nonstationary problems.
Results from nonstationary plane wing problems will be useful.

Work should be continued on obtaining vorticity distributions
at the trailing edges of plane and cruciform wing-body configurations.
Just as mentioned above, a few judicious exact solutions would be
very useful as guides, It app‘earws that, for low-aspect-ratio con=-
figurations, useful theoretical results will probably be obtained by
studying the motion of incompressible two~dimensional vortices
as approximations to the rolled }1p vortex sheets. Some» work

along this line is known to be in progress.

6.2 Experimental Research

Some experimental research is now in progress on many
of the problems considered in this thesis. Unfortunately, little of
this work is on fundamental research and thus provides little basic
knowledge. A great deal more careful fundamental research is
necessary particularly for those problems where linearized theory
can yield no useful answers.,

The really basic job of experimental research should be

the systematic hunting down of nonlinear and viscous effects.
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