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Abstract

In Chapter I we review some known results about the Ramsey
theory for partitions of reals, and we present a certain two-person
game such that if either player has a winning strategy then a homo-
geneocus set for the partition can be constructed, and conversely.
This gives alternative proofs of some of the known results. We
then discuss possible uses of the game in obtaining effective
versions and prove a theorem along these lines.

In Chapter II we study the structure of initial segments of the
A;n+1-degrees, assuming Projective Determinacy. We show that every
finite distributive lattice is isomorphic to such an initial segment,
and hence that the first-order theory of the ordering of A;n+1-
degrees is undecidable.

In Chapter IITI we extend Friedberg's Jump Inversion theorem to
Q2n+1-degrees, after noticing that it fails for A;n+1-degrees. We

assume again Projective Determinacy.
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BACKGROUND AND DEFINITIONS

Our basic theory is ZF + DC; other hypotheses are explicitly
stated. We denote Projective Determinacy by PD.

For definitions of the recursive, arithmetical, analytical and
projective sets in product spaces of w, 2" and o” and for their
basic properties we refer to [15] and [17]. For set-theoretic back-
ground see [5]. Our terminology and notation is in general that of
[15].

Definition O.1 A pointclass I is reflecting if for any

AeT, Acw and any PeI‘,Pc:w‘” we have
P(A) = @X ( XcA and X e A and P(X))

whereA-I"nf.

1
2

(n> 0) are reflecting. For an account

The pointclass r[: is not reflecting; I, 4s. Under PD all

pointclasses n;nﬂ ’ 2,12”2

see [9].

Definition 0.2 (PD) C is the largest countable I]; o1 Bt

1
2n+2 2n+2

We mention some of their properties: 02 42 is the set of reals

. The get C“l is made

2n+1
is the largest countable I

of reals, and C set of reals.

that are recursive in some element of °2n+1
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up of A; - degrees ( a A; - degree is a set of reals that is an
equivalence class for the equivalence relation « L ® ae
m
€ A;(p) and 8 € A;(a) ). The A; - degrees in the set C  are
well-ordered by « Sﬂh g o Qae A;(p) . For these and other

results see [T].

Definition 0.3 Given S cw 1let B, () =1{a: vVaes

(e A;n+1(p) ) } ; we call it the hull of S. If S is a nonempty
1 1

T4y Bet then H2n+1(s) is called s 22n+1 - hull. We let now
1
Q41 = the union of all 22n+1 - hulls .

For an account of Q-theory, due to Kechris and Martin-Solovay,
see [7] and [10]. We mention some results, assuming PD : The set
Ut is n;n+1 . Every 2;n+1 - hull is n;n+1 - bounded (this
means that if R(a, x) is n;n+1 then so is Fa € Bén+1(s) R(a, x)).
The set Q, .. is the largest 2;n+1 - hull, and the largest “;n+1 -
bounded set. Relativizing to an arbitrary real g we may define the

set Q2n+1(9)' We define also a< B o Qe Q2n+1(p) , and

Ynt1

a = 8 ae () and € (d) . This is an
I = U (8 B €

equivalence relation, and the equivalence classes are called Q2n+1 -

degrees. The set C congists of such degrees. The set Q2n+1

<
o

up to and not including

2n+1

is the largest initial segment of C closed under s it

2n+1

consists of the A;n+1 - degreeg in c2n+1

the degree of the first nontrivial (i.e. non - A;n+1 ) n;n+1 singleton

2n+1

Yo - Relativizing to a we have i : 2n+1

« If a< g then ¥

y
& Ln+
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< y2n+1 , and yim‘ Plays the role of the jump for Q2 gl ”
on+

degrees. The set anﬂ is closed under the A12n+1 - Sump.

To obtain an ordinal assignment for the Q2 _ degrees we
proceed as followe.

Definition 0.k A, ., = swp { £ : € 1is the
length of a Z;nﬂ wellfounded relation on @’ } = sup { £ : € is

the length of a A'12n+1 prewellordering of w" }. Relativizing to a
we obtain x2n+1(a). Finally k2n+1(a) = sup { )\2n+1((a,p)) :
Apger (oY) < Ay (ERT) 1.

Of course Aone is the ordinal assigmment for the A’l:'m‘l -

degrees, e.g. the Spector Criterion holds: d < = [ 4

~ oy~
SAan e o Aont1 (a) < 12n+1(e) ]. Now we have LY (a) <

LS. (a) < )‘2n+1 2n+1) R . (a) 4is invariant under =

Yonit

a 592 B = k4 (@) < kgmq(ﬁ) , and the Spector Criterion is
n+1

true for anﬂ - degrees : 4 < e =

[ d' &
~ _Q2n+1 ~ 'anﬂ ~
L. (a) < Kot (e) ). Raturally 3' is the degree of yinﬂ.
1
The relation k, .. (@) < k2n+1(9) is Tpo.q ¢

We also give a generalization of Reflection: If P is 1112 e

then 5o e Q.. Pla) = Eaetcenﬂ P(a) .



Chapter I

ON THE RAMSEY PROPERTY

1. Background

The first two levels of the analytical hierarchy admit an
extensive theory, which can be developed within the framework of
classical mathematics. This is no longer true for higher levels;
there exist models of ZFC where basic theorems of the above-mentioned
theory, appropriately generalized, hold true and other models of ZFC
where the same theorems fail (assuming models of ZFC exist at all -
but that is an article of faith). For an account of these matters
see [15].

Various new axioms have been employed to remedy this. The Axiom
of Constructibility gives a complete but rather pathological picture,
while the Axiom of Measurable Cardinals can only prove results one
step up the hierarchy, and then the independence phenomena resume. By
far the most lively and fruitful new axiom has been the Axiom of De-
terminacy, in its various forms, e.g. Projective Determinacy or even
full AD (This needs a word of explanation: AD contradicts the Axiom
of Choice. However it is quite likely that AD holds in the model

L[mw], and most questions of descriptive set theory relativize to
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that model. Consult [15].). Under Determinacy the basic theory of
the first two levels generalizes to all levels.

Some of the basic theorems have been called Regularity Theorems
( [12] ); they ascribe nice properties to sets. Typical nice pro-
perties are Lebesgue measurability, the property of Baire and the
Perfect Set property.

Now there is a certain pattern in the proofs of these theorems.
We discuss first the property of Baire ( [6] or [15] ). Define the
following game (Banach-Mazur game on the integers) : Given any set
Aco” player I plays a finite sequence of integers 8y € d<w » then
player II plays 8, € d<m , then player I plays 8, € 6<w , and 80 on,
A run of the game produces a real, 30‘11“32‘... . If this real be-
longs to A, I wins. If it belongs to the complement of A, II wins.
It is not hard to establish the Banach-Mazur Theorem: Player I has
a winning strategy in the above game iff A is comeager in some non-
empty open set, and player II has s winning strategy iff A is meager.
It follows that if for every closed set C this game on A N C is de-
termined (i.e. if either player has a winning strategy) then A has
the property of Baire. Hence for every interesting pointclass the
Determinacy of all games in it implies that every set in the point-
class has the property of Baire.

As enother illustration, we define a game on a set A C 2 .
Player I plays s, € g , then II plays njy e 2= (0, 1 }, then
I plays 8, € 2<w, then II plays n, € 2 , etc. Player I wins

iff so‘no“sl‘n1“... € A. It is easy to show that I has a winning
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strategy iff A has a nonempty perfect subset, and II has a winning
strategy iff A is countable. Again we have that if this game is
determined for sets in a certain pointclass then the Perfect Set
property holds, i.e. every set in the pointclass either is countable
or it contains a nonempty perfect subset.

The pattern is obvious: devise a game on A such that I has a
winning strategy iff property y(A) holds, and II has a winning stra-
tegy iff ¢(A) holds. Then Determinacy ensures that y(A) or 4(A) holds.

We pose now the question: does the Ramsey property fit the sbove
pattern?

First some pertinent definitions. Let A c [w]” = the set of

infinite sets of integers. Then A has a homogeneous set H if, by

definition, H € [m]m and either every infinite subset of H belongs
to A or every infinite subset of H belongs to the complement of A.

A has the Ramsey property 4iff it has a homogeneous set.

Not every set has the Ramsey property, but it takes a blunt use
of the Axiom of Choice to furnish a counterexample: Well-order [w]”
by < and define 7c[w]® by Se7 » AT (TcS and T <5 ).
Then J has no homogeneous set.

On the other hand, there are many positive results about the
Ramsey property. We list some of them:

Theorem 1.1 (Galvin-Prikry, [3]) Borel setsz have the Ramsey
property.

Theorem 1.2 (Silver, [19]) Analytic sets have the Ramsey pro-

perty.
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Theorem 1.3 (Silver, [19]) Assuming measurable cardinals exist,
E; sets have the Ramsey property.
Theorem 1.4 (Solovay, Harrington-Kechris, [k]) Assuming Pro-
Jective Determinacy, projective sets have the Ramsey property.

Theorem 1.5 (Prikry, [16]) Assuming AD all sets have the

R’
Ramsey property.

An easy consequence of unpublighed results of Martin, Moschovakis,
Solovay and Steel is

Theorem 1.6 Assuming AD + V=L[w"], all sets have the Ramsey
property.

Also, Solovay has proved scme results about the complexity of
homogeneous sets:

Theorem 1.7 (Solovay, [20]) A 2? set either has a hyper-
aritimetical homogeneous set in the I, side or else an arbitrary
homogeneous set in the n? side (the arbitrary set is actually
recursive in Kleene's (3, by the Kleene Basis Theorem). A A? set
has a hyperarithmetical homogenecus set.

Theorem 1.8 (Solovay, [20]) A hyperarithmetical set has a
homogeneous set in La , where a is the first recursively inaccessible
ordinal.

Optimal bases for 11} gides of partitions are not known.
Similarly for I, .

We return now to our question: can we obtain the Ramsey property

by an appropriate game, like the other Regularity properties?

A clue comes from Ellentuck's proof of Theorem 1.2 ( [1] ). He
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identifies sets having the "completely Ramsey" property with sets
having the property of Baire in the Mathias topology. The definitions
are as follows: If 8 is8 a finite set of integers and A an infinite
one, with every member of s less than any member of A (denoted s < A),

we call (s,A) a Mathias condition. A set X ¢ [w]m belongs to the

Mathias neighborhood (s,A) iff s CX Cs U A. Condition (s,A)

extends (t,B) iff t cs and s-t c B and A < B; this is a partial
ordering. The Mathias topology is strictly finer than the classical

one on [w]w . Finally, PcC [w]w is completely Ramsey iff for

every Msthias condition (s,A) there is an extension (s,A’) (i.e.
A’cA) with (s,A’) ©P or (s,A’) c [w]®P . This is stronger
than the Ramsey property, which says only that there exists an A
with (4,A) P or (8,a) c [0]"-P.

One may define s Banach-Mazur game on any p.o. set (the one we
defined in page 5 was on w<m). Player I plays some condition p, ,
then II plays P, extepding Pg » then I plays P, extending Py » ete.
If the sequence Py 2Py seee determines a real in some pre-specified
way (e.g. for Mathias conditions 8o U 8 U s, U...) then we have a
game on a set of reals, and in certain cases (e.g. if the p.o. set
is countable) the Banach-Mazur theorem holds ( [8] ).

Prikry used the Banach-Mazur game with Mathias conditions to
establish, from ADR , that all sets are Ramsey (Theorem 1.5). The
Mathias topology does not have a countable basis, but by a result of

Oxtoby the Bansch-Mazur theorem holds if one assumes some form of the
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Axiom of Choice - "there exists a wellordering of the reals" suffices

for Oxtoby's proof. Using this and Ellentuck's results Prikry proves
that

YP c [w]w ( (I has a winning strategy in the Banach-Mazur game)

o T(s,Ay V(t,BY < (8,A) IC <B [ (t,C) cP ]

and
(II has a winning strategy in the Banach-Mazur game)

o V(s;,A) @B cA [ (8,B) c[w]”P ] )
Prikry's actual statement is slightly weaker; the above version
follows from his proof. Now he uses a metamathematical trick: the
above gentence is Bf , and it has been proved in ZF + "there exists
a wellordering of the reals" ; a well-known lemma says that it can
be proved in ZF + DC& . Hence ADR easily implies that every set has
the Ramsey property.

We would like to find a direct proof, starting with a winning
strategy and using it to construct the homogeneous set. This would
follow the pattern described earlier; the proofs of the Regularity
theorems are quite direct. Also, & direct method might be useful in
proving effective versions of the Ramsey theorem, i.e., calculating
the complexity of homogeneous sets.

We have not found such a direct proof using the above game., For
one thing, it seems closely related to the completely Ramsey property,
which is stronger than Ramsey. A different game, however, similar to
the one used in [13], works fine for the Ramsey property, and the
proof is constructive, We present the game and the theorem concerning

it in the next section.
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2. The main theorem

For oc [m]w we define the game GQ as follows:

I II
A
o2 By T € Ag s By ©Ap 5 By < By
A, A, © B,
n,,B, n, €4, By CAy , n <B
ete.

I wins iff {no,n1, oo L eo

Capital letters denote infinite sets of integers.

We have now the following theorem.

Theorem 2.1 a) I has a winning strategy in Gp 1ff there is
a homogeneous set in ¢ (i.e. an infinite H such that every infinite
subset of it belongs to ¢).

b) II bas a winning strategy in ch iff for every
A there is a subset of it homogeneous in [w]m-cp;

Proof of a) Let v be a winning strategy for I. Since any run
of the game where I follows T produces a set in ¢ it is enough to
find a particular run, producing H, such that for any H’ C H there
is some run of the game using T and producing H’. To ensure this we
build { 8 , 8 e- } = H by choosing eppropriate moves for II,
using the following construction.

Suppose (@) = Ay (i.e. T instructs I to play Ay as his first
move). Call any string Ay s (no,Bo) 5 T Ay > (no,Bo) | P (n1,B‘) >
ending with some T(...) a partial run of the game with I
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following T. Define also Alm= {n: neA and n>m}.
Stage 0 Let a.o = min Ao

Stage 1 Index the substages by members of o(f) with 8, adjoined:

Substage {a)} Let (A, , (ao,Aolao) ) =4, .

Let a --minA1 "

1
Stage 2 Index the substages by members of & {a.o} ) with 8,

adjoined:

Substage {a.1} Let «( Ag > (a.‘,A‘]a.‘) ) = A;

Substage fa,, a,} Let T( A , {aj,Ajlay) , A, (&,’,A}a))

-Ag !Az.

Let 3.2 = min AE -
Stage 3 Index the substages by members of &( (a,, &} ) with

& adjoined:
substage {a,]  T( Ay (anshylay) ) = A;

Substage {8'1’. 32} 7( A (a1,A1|a.1), A12, (aQ,A;) ) = Ag
Substage -{‘o-; ‘2} 7( AO’ <‘0’A0|°‘0>’ A1: (32,A§> ) = Ag
Substage {&o, '81',- 52} 7( AO’ %’AO"O>’ A.‘: <‘1’A;>’

Ag: (32:A:> ) = Ai -3 A3 .

Letasr-'minAa.

:A1:A1 :A2

0 2 2
Note also that the partial run of the game

Before defining Stage k+1 note that A

2 3,k
DASDAS:AS oo o0

corresponding to, say, {x, y, z] is a continuation of the partial

1
DA33

run for {x, y}; all the partial runs follow 7. This is the state of
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affairs we want to preserve.
Now suppose Stage k has been completed, with & = min Ak é
Stage k+1 Consider &( {a.o, 8,5 oo °k~1}) and adjoin a, to each
one of its members, obtaining the finite sets s,, 85, ... 8 (m = 2k)
which will index the substages. (Note: When we describe this whole
construction on the binary tree a specific ordering will arise.)
Substage s,  Locate the partial run for s,-{a,] in some
previous stage, append (ak,Aklak> as & move for IT and apply T
to obtein A, . .
Substage s, Locate the partial run for 32-{ak] in some
previous stage, append <‘k’AL+1> and apply T to obtain A§+1 "

Substage s~ Locate the partial run for sm-{ak} in some

1 m

previous stage, append (ak,A;;1) and apply T to obtain Ak+1 E

= Agyy -
I8t Bypyq =B Ay, o

This completes the description of the construction.

Another way to present the construction is the binary tree
disgram in Figure 1, page 13. I's moves are given by t, II's moves
are chosen as shown. Of course a8 = min A . The set H = {ao, 8,5
«eo } 1is obtained from the run of the game developing on the
leftmost branch of the tree, i.e. Ay (aO,Ao|ao), Ay, (a1,A;), Ay

(aQ,Ag), o,
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Aq
Ao
%o leg zevdy
Ay
\\
\\
\\\
Aq <<40
a,A.l a A, |a a
0’~0'% 1 175 1% 1eeki
A, J*’d,,%
31,A;éd—‘
Ao _
M~ S—
A A A5‘~~\§ A
202 4p |8y 8grholag 8,,h, o i%PA2|‘2 levél
1 1
Ay A Ay ~|As
1 2 " “
R ‘2’“3\:\ 8587
~J]2
Ay /Q TAs
3&"
s Ag
Ag

Figure 1
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We prove now that H is homogeneous in ¢ . The infinite subsets
of H correspond to branches of the tree turning left infinitely often
(at every splitting of the tree the right part is blank and the left
contains a partial run of the game). For any infinite subset H’ =

= { ai‘, 512, ... } we can find in stage 1"+1 (or using the branch

in the tree) a partial run for fa.i }. Then we can find in stage
1

1,41 (or again using the tree) a partial run for {ai } which
1

"
extends the previous one, and 8o on. Hence there is a run of the
game following T and producing H'; therefore H’ € P .

The converse of (a) is immediate: if there is a homogeneous set
in @ then I plays it in his first move and ensures the win (e.g. he
copies II's moves from then on).

Proof of bz Suppose II has a winning strategy o . First we
prove a lemma.

The c, lemma For every Ao there exists an A, A C Ao , 80 that

for every m € A there is an X and a Y, YD Alm , with o(X) = (m, ).
In fact for every partial run C1, (31,D1), ...,Ci, (:}i,Di), Aq the
same conclusion holds: there exists an A, A cAo , 80 that for every
meAthere is an X and a Y, Y2 Alm , with a(Cys (31sD)s «ees C

(3,505 X) = 7 .
Proof of the lemma Let

i 14

6(01’ (J1QD1>) ¢ ee B Ci’ (317D1>’ Ao ) = (mo)B())

O(C«‘: (31)D1>’ cee Ci’ (311D1>’ BO) = (m‘,B.‘)
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°(C1: (31}1)1)’ vee g ci’ (Ji’DQ’ 31 ) = (1‘\2;32)

and so on. Then A = {mo, By By oo } bas the property stated.

It is important to note that all properties of A in the lemms
are inherited by any subset of A, i.e. the o, lemme holds for every
A’ cA. This is crucial for the construction that follows.

To obtain a homogeneous set we adapt the idea in the proof of
(a): Use as induction hypothesis that when { Doy Byy eee 5 Dy }
has been constructed every finite subset of it s arises from some
partial run following ¢. Then L must be chosen so that for every
s U { L } there is a partial run following ¢ , in fact one that
extends the partial run for s.

The construction below achieves this. For the sake of clarity
we also give a binary tree version. Note that a partial run ending
with a move of I is called a position for brevity.

Stage O Suppose I's first move is A,. Let c(Ao) = (no,Cg). We
provide for subsets of the eventual H that start with an integer other

thannoz

Substage {...] Apply the o_ lemma to the position C .

Call the result Bo.

Stage 1 c(Ao, (no,cg); Bo ) = (n1,c$) . We provide now for
subsets starting with n, , and then for subsets starting with n,

not followed by n, :
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Substage { n,...} Consider the position X, (n1,Y1} ,

c? vhere X' and (n,, Y‘) exist because of the ¢ _-lemma construc-
tion of By ; it is easy to see that c? cY . Apply the o lemme
to obtain c'

1 L]
Substage { Byys > — Consider the position Ao, (no,cg)

1

Gy

. Apply the o, lemma to obtain C? , and rename it 31 v

. . 0 0. 0
Stage 2  o(Ay (nyCods By (n;5CiY35 B,) = (n,,Cr) . We
provide successively for subsets of the type {n,a,...}, {n1, n,, A

{DO’ n2,...} and {no,n.‘, sawe] o
Substage {‘”2’ «es} Consider the position x2, (ne,Ya), Cg

where we use again the cr“-lema. construction of Bo . Apply the

1

2.

Substage {n., B,...} Consider the position X', (51,

o, lemma to obtain C

1 2

X'%, (ny,¥'2), C) ; here X' and Y' were availsble already, while X'

and Y‘a exist because of the a"-lema construction of C: . Apply

2
2 e
Substage {no, nz,...} Congider the position Ao, (no,cg),

the o, lemma to obtain C

XO? (1:2,!02 Ys -Cg. As before we have used the a“-lema construction
of B1 . Apply the o, lemma to obtain Cg .

Substage {.no, n,, yeees} Consider the position AO’ (no,cg,),

(¢} 3 L
BO’ (n1 ,01), 02 . Apply the cr‘m lemma to obtain 02 , and repame it

B2 .
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Stage 3 o(Ag (BsCo)s By (3ysCH)5 B, (3Ca)5 By) = (my,C
... and 80 on,

The above exemplifies all the essential features of the constru-
ction, so that Stage k+1 should be clear. We omit its description,
which would involve a mess of indices anyway.

The binary tree version of the above construction appears in
Figure 2, page 18. Within each layer we proceed from right to left.
At each splitting the box to the right corresponds to n, £ the set,
the box to the left corresponds to n, € the set. All the right
boxes are blank except for the last one on each layer. Downward
arrows denote applications of the o, lemma. Player II's moves are
dictated by o , while I's moves are either copied in or they come
from some application of the ¢ lemma (if they are X's). In fact
one reads upwards until one meets a box with a downward arrow, i.e,
an applicatien of the o, lemma; one then uses it.

g e BO > C?
run all sets behave, because of the properties ensured by the o,

Clearly C 5B, DCg> ... and within each partisl
lemma.

The get H = { Dy By By, ...} arises from the run of the
game developing on the leftmost branch of the tree, and ¢ has
been followed in that run, so H e [m]w-q; . We prove now the homo-
geneity of H: If H’ is an infinite subset of H then by following
the corresponding branch in the tree we find coherent initial segments

giving a run that follows ¢ and produces H’. For example if
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0
5:Cq
)
0
4+ Co fo
PR B
o K
0
n
1'01 ~
A N
N
0 A ‘
“o’co o > x
0 g
nO’
B 0 N Y1
0 C: . "
n"co 1 S C?
1 B pl N
31 < —_tr \\C\‘
1
0
c
Dorln ~
A, Aq A S
0 ° ik
el | el S| | ’
B - e
0 . N Y| ¥
12 = e
nvco o x ~\| 0
1 | ByC o :
i 1| Beo¥ 8 2
1 o3 e 2 ‘
2 C2 : o T
n?CO |1 << o Czé 2
2 B, N ~~|.
5 3 ~| .2
2 K
B:Cx

Figure 2
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B = {n,n, ...} thenthe runis X, (n,Y"), X'5, (0,7 ,...
or if H’= { ny B, Ny ... ] then the run is A, (no,cg), XOQ,
(ne,Yoa), Xoes, (n3,Y°25), .o+ Since the run follows ¢ we have
that H’ ¢ [w]u’-cp .

The converse of (b) is again immediate: II plays the homogeneous
set.

This concludes the proof of Theorem 2.1.

Remark The theorem holds also for ch played in (s,A) (instead

of (f,») ). This means that I's first move is some A  CA , II's

0
first move is (no,Bo) with n, € Ao ’ Bo cAO and n, < Bo , and 80
on; I wins iff s U { n, 0, ... } € . Then the theorem says
that I has a winning strategy iff there is a homogeneous set in o
that lies in (8s,A), and II has a winning strategy iff for every A’

subset of A there is a homogeneous set in [w]"’-cp that lies in (s,A’).
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3. Conseguences and effectivization

Using Theorem 2.1 we can give alternative proofs of some of the
results mentioned in Section 1. We have immediastely a proof of the
Galvin-Prikry theorem (Theorem 1.1): If ¢ is Borel then G % is
determined by Martin's theorem ([14]); hence ¢ has a homogeneous
set.

Likewise Prikry's theorem (Theorem 1.5) is a direct corollary
of our result. It is an open problem whether ADR may be replaced
by AD in that theorem.

We turn now to effective results, motivated by Solovay's theorem
(Theorem 1.7). Can we calculate the complexity of some homogeneous
gset if we know the complexity of the partition?

Theorem 3.1 (Kechris) (PD) A n; ., Dartition has a A; "

homogeneous set in the n; - side, or some homogeneous set in the

1

1 1
22n+1 side. A A, ., partition has a By e homogeneous set. (n > 1)

Kechris' proof of the above result (unpublished) uses other
ideas., With our methods we have only obtained the following partial

result.
First, for each ¢ C [w]w define the game Gé s
BN -
Ao &y is a finite subset of Ao ’ Bo is
’O’BO a subset of Ao . 80 < Bo . A, is &
A1 subset of Bo. 2 is a finite subset
8.,B

t)t‘A1 s ]3.1 c:A1 » By <B.l etc.

I wins iff BgpUg U... €eq.
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We also assume, as part of the definitiom, that Ai’ B, € A;nﬂ and
¥ & H;nﬂ o

We have then

Theorem 3.2 (PD) I has a winning strategy in G; 1ff there is
e A;nn homogeneous set in ¢ (n> 1).

Before proving the theorem we discuss the ideas involved. We
want to use Moschovakis' Third Periodicity Theorem ([15]) to obtain
a definable winning strategy for I, and then use it in the manner of
Section 2 to construct a definable homogeneous set. Now immediate
application of Moschovakis' theorem is not useful because the payoff
set is too complicated; however we can use Kechris' Asymmetric Game
Formula ([8)) to reduce this complexity. The formula does not seem
to apply to qu s this is why we work with G;, . There is still a
problem with the A; a1 character of the moves; one needs some way
to describe them, e.g. the complete “;n+1 set of integers W. This
means that W will enter as a parameter; we take care of this by a

reflection argument.

Proof of the theorem It is clear that if a A ,. homogeneous
get exists then I plays it 4n his first move and wins the game.
For the converse, assume I has a winning strategy. We have then
EAO v 80, Bo aA.' oo VY S(Y) O’) o= Usi
for some S € 812:1 . By the Asymmetric Game Formula ([8],Appendix) we

have that the above gtatement is equivalent to

HAO Y 8q2 BO’ Y(O) m\ Y 2% B,; Y(‘) .ee 8(y, ©) .
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Now we apply the Third Periodicity Theorem: since the description
of permissible moves is recursive in W, the complete n;nH get of
integers, we have that there exists a winning strategy for I, v, that

1
is Ay g (W). It is easy to see that T may be used to win ch , too.
Applying the procedure of the proof of Theorem 2.1(a) we obtain A, a

1 1
homogeneous set for the 1, .. side, with A ¢ B i (W). But the
property of being homogeneous for a n,l, it set,
YB [BcH = o)1,
is itself D; ney - Hence by Reflection (see Chapter O) there exists
1

a homogeneous set that is A'2n+1'

This concludes the proof of Theorem 3.2. To prove Theorem 3.1
by these methods it must be shown that if II has a winning strategy

side of the

then there is some homogeneous get in the Z;n_”

partition,
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Chapter II

INITIAL SEGMENTS OF A’zm’ -DEGREES

The purpose of this chapter is to prove a result about the

structure of initial segments of the A; a+1 ~degrees, partially ordered

by <
on1

Theorem (PD) Any finite distributive lattice is isomorphic

. (For definitions see Chapter 0, page 2)

to an initial segment of the A; o] -degrees.
Corollary (PD) The first-order theory of the A12 ey ~degrees

with < is undecidable,

ont1

These results have been proved in [22] for the case n= 0. We
prove them for n > 1 below. For notational simplicity we work with

2n+1 = 3 throughout.

1. Preliminaries

The following lemms gives useful information about <

Lemma 1.1 (PD) There is a fixed sequence [Fi} of A; functions such
0
that 3f A} = A; then ALy B F, () = a, for some 1.

Proof [11].

This i8 a convenient characterization. To use it we must be
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able to find #'s with the stated property, and this is what the next
lemma furnishes, The definition of b-conditions and their ordering
is in Section 3. The meaning of "for all sufficiently generic"
(abbreviated f.a.s.g.) with respect to a partial ordering can be
found in [8]; roughly, property A holds f.a.s.g. 8 iff for every
condition Py there is a condition P, extending Py E° that for
every p, extending Py <o A holds for the real determined by the
sequence Dy, Py, ...

Lemma 1.2 (PD) For ell sufficiently generic o (with respect to
b-conditions ), xg = xg "

Proof (Sketch) In [11] this lemma is shown for A‘s perfect trees,
a particular case of b-conditions. However, beyond some general facts
what ie really used is the ability to carry out a fusion (or: splitting)
argument. We show how to do this for b-conditions in Section 3, in
the proof of Lemma 3.12. Hence the proof in [11] works in our more
general setting.

To handle A; functions we need

Lemms 1.3 (PD) 1) A total Al function is contimuous on a
comeager A; set. ii) A comeager A; set (in (o) ) contains a b-
condition of the form [T,]X [T,] X... X [T,], where the T, are A,
perfect trees.

( {T] is the set of branches of the tree T )

Proof (Sketch) Again the proof of Lemma 1.7 in [11] suffices.
For (i1) we perform a simple fusion argument, as in the proof of
Lemma 3.12 ,
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Finally, we state the A-Selection Principle, the means of
showing that various objects constructed are actually A; v

The A-Selection Principle (PD) If wa %n P(a, n) , with

P e, then there is a Al function f such that P(a, f£(a) ) holds.
Proof [15].
Let us also mention that Lemms 1.1 obviously holds for functions
F of n variables, i.e. « SA3 { 87 8 -oo 8, ) iff F (8,5 8, ...
pn) = a for some F, in & fixed countable sequence. In fact we may
collect all such F's in a single countable sequence, thus providing
for any n. Future uses of Lemma 1.1 tacitly assume this trivial

extension.
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2. Illustrative special cases

We consider the problem of finding initial segments isomorphic
to diemond (i.e. #(2) ) and to the three-lattice (i.e. the linear
ordering of three elements). This will illustrate the method and
motivate some of the considerations in Section 3.

We use T's to denote A; perfect trees.

A) Proof for diamond

We use peairs (T1, Te) as conditions, a special case of the
b-conditions of Section 3. Any condition determines the set of (a,p)
such that a e [T1], g € [Tz]. We order them naturally by inclusion,

We want an (@, a) such that O, o, g, @ v 8 realize diamond.

(We abuse notation and confuse a real and its degree when convenient.)
This will be the case if we take (q, §) sufficiently generic with
respect to the notion of forcing (i.e. p.o. set) just described; we
proceed to prove this.

It is well known tﬁat a (and p, of course) is generic with respect
to A; perfect forcing, and consequently ([11]) is of minimel A; degree.
Thet is, x < o implies x = @ or x =0 (we suppress the subscript
Ay from < and= ). The proof is as follows: By Lemmas 1.2 and
1.1, x<a iff F(a) = x. Now use Lemma 1.3 to claim that F is
continuous on a comeager A; set, which contains & [T]. RFnd T/ cT
80 that F is either constant or one-to-one on [T’] (this well-known
fact is proved in [11]). Since any [T] contains a A; real we have
that x =0 or x =qQ.
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It remains to show that x<avp = x<a or x<p,
The argument will be as in the last paragraph, but instead of the
"constant or one-to-one" property (which is not true any more) we
use the following lemma.

Lemma 2.1 For every (T,, T,) there is a (T, Tj) contained
in it such that

either F is constant on (@} X [T]], for all @ € [T]]

or F is constant on [T{] X {p}, for all p € [T/]

or F is one-to-one (and continuous) on [T{] X [Té] .

Proof Using the by now familiar lemmas, F is continuous on

& comeager A; set, which contains [T] X [T’], for some (T, T’) <
< (T1, Te). This shows that without loss of generality we may
assume F to be contimuous to begin with,
Suppose the first two alternatives in the lemma fail, i.e.
v (1{, T}) < (T,, T,) the following hold:
ae e [17] a8,, 8, € [T]] F(@ 8,) # Fla, 8,) end
ap e [T)] o, oy e [T] Flo,, ) # Fay, 8) .
These are used repeatedly to build a (T, T’) on which F is one-to-one.
First, find @, y, and vy, euch that F(a, v,) # F(a, v,). By
continuity there exist initial segments of these reals s, t1, t2
such that for any a’ starting with s, y{ starting with t1 and y2'

starting with t, F(a’, y{ ) belongs to a neighborhood K, Fle’, yé)

2

belongs to a neighborhood N

, and N1nl12=¢. See Figure 3 in

page 28.
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Figure 3

Figure k4
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Now consider (T{)s , the perfect subtree extending s, ('I'é)t
1

and ('1‘2’)t . The above "separating”™ argument can be repeated.
2
Repeat it twice, according to Figure 4 in page 28. Xote that we

have not picked a yet.

The inequality F(a,, s,) ¥ F(a,, pe) is satisfied if s
extends c and p, extends d (or the reverse), because of the solid
line ‘'separation". If they both extend ¢ we still have the

inequality if «, extends a (for either choice) and a, extends b

2
(or the reverse), because of the wavy line "separation”. To cover

1

the remaining case we employ a "transfer": Consider some real «
extending b and some real g extending d. Then F(a, 8) will be
outside at least one of the two neighborhoods produced by the broken
line "separation"”. Ensure this by initial segments as before,
(extending b and d in general) and keep the appropriate a. This is
shown in Figure 5, page 30.

So we have the above inequality as long as (05, 31) and
0%2, 32) are not of the same type, where the types are ac, ad, bc,
and bd, Now we iterate: the next step will produce incompatible
extensions below each one of a,b,c,d with the same property for F.
It is convenient first to perform extensions within T1 and splittings
within T2 » using transfers to avoid more than one gplitting in Ti’
and then, after taking care of all cases, to reverse the procedure.
See Figure 6, page 30, for the first pert. The second part will

involve extensions only for Cyr S dj, d2 and splittings under
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4 ']
a’ and b’. We have then 8, a2, bl’ b2

the same as the previous ones) and we are ready for the next step.

and c,, Cy d,, d2 (not

Continuing this procedure we obtain two perfect trees T and T/,
and F is clearly one-to-one on [T] X [T’] (if (a,8) and (a1,51)
differ then this happens at some finite stage; hence F(a, 8) #
¥ F(o.", 31) ). Using Aé-Selection we easily see that both trees
are A; This concludes the proof of the lemma.

To finish the proof for diamond suppose x < a Vv g. By generi-
city and the lermas in Section 1 this is equivalent to F(a, g) = x,
for some F in the countable sequence. Apply now Lemma 2.1: if F
is one-to-one on some condition we have x = v @, if it is constant
on some coordinate we have x<«a or x< @, since [T] contains
A; reals.

Finally, @ and a cannot be of the same degree by the genericity
of (a,8) and the fact that only countably many reals occupy a single
degree, |

The proof for diamond is now complete,

Remark Using (TO, “ew B Tn—l) we obtain an initial segment
isomorphic to &(n).

B) Proof for the three-lattice

We want to find @, ¢ so that 0 < a<a vy g is an initial
segment, Of course we must use different conditions.

Suppose we attempt to use the same argument. Instead of Lemma
2.1 we now need a lemms that will say, roughly, "either F is constant

on all {a}X[T] or it is one-to-one”. 1In a sense we have a weaker
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hypothesis from which to obtain one-to-one-ness; so we will allow
more general conditions. The definition is: (@, a) belongs to

the condition p iff o e [T] and g € [Ta] , where Ta depends
continmuously on &¢. Of course this whole object is assumed to be in
Al . The ordering is by inclusion.

We have now

Lerma 2.2 Y q I p<q so that

either F is constant on every f{a} X [Ta] of p

or F is one-to-one on p.

Proof If the first alternative fails we have that
VP<a 38 Ty, y, €T, Flo, vy) £ F yy).

Apply this to q and obtein g, \2) and Yor Then find a subtree which
avoids ¢ and apply the above again, obtaining g/, y{ and yé such
that F(a’, y{) £ P(p', yé). See Figure 7, page 33.

We may assume that F(s’, Y;) and F(p’, yé) are both different
from F(s, y1) and F(g, YQ)’ because otherwise we apply the hypothe-
sis once again and select one of the two values, whichever works.

Using continuity we ensure this state of affairs by initial
segments., Now the result ig iterated and we obtain a condition on
which F is one-to-one.

Clearly the argument in (A) plus Lemms 2.2 finish the proof for
the three-lattice,
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Figure T



3. Proof of the theorem

A) Some preliminaries

The two cases discussed contain the germ of the general proof.
To realize a sublattice of @(n), for each a < b that holds in
#(n) and does not hold in the sublattice we must "disperse"” the
('1‘0, Tys oee s Tn-1) condition in the appropriate coordinates, much
as we did in proceeding from diamond to the three-lattice. This
vague remark gives a clue for the general definition of conditions
(the "g:-isomorphism" requirement below). Also, we must develop
a general method for handling all the separation and transfer argu-
ments in building conditions by fusion. The appropriate generaliza-
tion of these arguments involves the notion of "a-splitting".

We begin by defining b-conditions and a-splittings and
establishing their basic properties. For all this we owe an
essential debt to [22].

B) b-conditions, a-splittings and their properties

Let Acw be finite and L be a sublattice of 2(A); this way we
obtain all finite distributive lattices. The ordering is -, O is @
and 1 is A,

If b ¢ L consider (2“’)5 and call its elements p, q, ... We
explain notation by an example: if b is { O, 3, 4 ] then p is
(ao, Oy ak) and p(3) is Oy & binary real, For purposes of coding
let p* be the real ( ao(o), °‘3(°)’ °‘u(°)’ a0(1), a3(1), a,(1), ... ).
If s is a binary string of length n then [s]b is the set of p's
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such that p*'s first n numbers are given by s. The [s]b's form a
basis for the usual topology on (2°)°.

For a < b define the projection n:: (Qw)b + (2*)® by keeping
only the reals with index in a. Let now 52 be the equivalence
relation induced on (2‘”)b, i.e. D !-: q iff p and q agree on reals
with indices in a. Note that [s“O]b n [a“l]b =g, u:[s“O]b and
x:[s‘ﬂb are either equal or disjoint, and x:[s‘O]b 'S [s“O]Il %

Definition 3.1 A b-isomorphism is a function §: B+ C ,

B, ¢ c (2°)°, such that
1) it is a homeomorphiem (with respect to the induced
topology on B and C)
2) it is an isomorphism (with respect to the relations
52 restricted on B, C for all a<b)
3) it is in A; .

Definition 3.2 A b-condition is a b-isomorphic image of (Qm)b.

We use P, Q, R with occasional embellishments to denote
b-conditions. We order them by inclusion. Clearly they generalize
the conditions used in 2A and 2B.

Lemms 3.1 The class of b-isomorphisms is closed under composi-
tions, inverses and restrictions; therefore, if P, Q are b-conditions
by virtue of the b-isomorphisms #: (2°)°4P, v: (2°)°aq then gy is
also a b-isomorphism, giving the b-condition §Q, and §Q c P.

Proof Obvious.

In what follows b is usually understood, so we omit it as a

superscript if no confusion can arise.
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Lemms, 3.2 If v is a b-isomorphism with domain P, A and B are
subsets of Pand a<b then xaA, x,B are equal (resp. disjoint)
iff x,¥A, x ¥B are equal (resp. disjoint).

Proof Obvious.

Lemma 3.3 Let P be a b-condition, Pi €P andc, <b for i =

i
1,2, «.. n. Then there exists a p € P satisfying p =, P for all
i
i iff pi Eci n cj pd for &ll i, j = 1,2’ eee QNo
Proof If Py !ci P !cj pj then 1:::l Eéi A cj p:j ’

For the converse we handle first the case P = (2)° : Define p(x)(n)

to be pi(x)(n) if x € ¢,, O if x € b- U, . Now for arbitrary P,

i,
given by &: (2‘”)b + P, find an x s0 that x = f’pi and apply §&.
i
Lemma 3.4 Given P and a < b there exist Qo, C},1 < P so that
c<a = *Qy = 7 & = =P and
c<b A cy_(la = xR N 7 Q, = g,
Proof Define R, = {p: pe (2‘”)b and vx € b-a p(x)(0) =

=1}, If g: (2")° 4P then gRy, #R work.

Lemms 3.5 li'ox'a.n:|rQ°,C),1 the set I={c: c¢<b and

Qg = th1 } 48 an ideal in L.

Proof Closure under < is immediate. For | we prove that
given ¢, de I KCU dQOC'cU dQI 3 then = follows by symmetry.

So let qo € Qo; we will find q, € Q’ such that 9 = This

cyar
is done as follows: Since ¢, d € I we can find %o’ Yy € Q,,| 80

b
- m
that q, = q,, and g5 =, 9, . Applying Lemme 3.3 to (2%)" we see
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that q1° =, na q11 . Applying Lemma 3.3 to Q1 we obtain a q1

such that 9, =, %0 and q, =3 4, - Therefore q =, U d q, -

Lemma 3.6 Given Q,, Qy, Q; define ¢g= Ufe: c<p

and Kch = anJ } . Then the intersection of any two of Cipr Gz

o3 is contained in the third.

Proof Obvious.

The next lemma helps in visualizing the structure of b-condi-
tions corresponding to complicated lattices by reducing it to simpler
cases,

Lemma 3.7 If P is a b-condition and a<b then =P is an

a-condition, and x‘(be) - P .
c\'a c
Proof (2m)b

<°
a

(GAY: b

=~
o

P
b
¢
a

Lemma 3.8 will be .uneful in "thinning down" conditions.
Lemma 3.8 If a<b, Pis a b-condition, Q is an a-condi-
tion and Q C x.P then
1) P n ()7'e 1s a b-condition
1) x(P N ()R) = xP N oxx)7e.
Proof (1) First for P= (2" : I v: (2°)® 4 Q then
define §: (2“’)b + (2°% by #(p(x)) being p(x) if x € b-a, and

Yx:(p(x)) if x € a. This shows that (x:)"Q is o b-condition.

Now for arbitrary P, given by #: (2®)° 4+ P : Construct
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b

* ma
v: (2%) 4ua

P as in the proof of Lemma 3.7, so that yx: = x:Q :
Then qu is an a-condition; by the case (2"’)b above, we have that
(uZ)-1y-1Q is a b-condition. Now apply & .

(1i) The < part is obvious. For > suppose that r = x:p=

= nzq' (pep x:q’ qQ€eQ ). Since Q c u:P let p’ € P be so
Pt o & = gal b o1 2P o b '
that nap q=mxq’. Then p=,q' 5, p', 80 P’Znap . By

n

Lemma 3.3 there is a Py € P 80 that p s: Po a: p’/, i.e. sz:po =T

and py € PN (x:)'1Q .

We give now an important definition.

Definition 3.3 Let a<b and {Pi} s i=1,2,...,r, be

b-conditions. Then the b-conditions {Pg} , §=0,1 snd 4 = 1,2...,r,

are an p-splitting of (P} if P) cP, and

i
_ _ J
1) X Fy = “cPk = “cpi - “cPk for c<a
0 1
2) x P NxpP = g for c£a, c<b
0 1
3) n P, = P for c<a .

Lemma 3.9 Given an a-gplitting as in Definition 3.3 adjoin

0
P.,1 » & b-condition, to the {Pi}; then there exist P_ ., ,

80 that {Pi} , 4=1,2,...,041 , is still an a-splitting.

1

Pr+1
Proof If r=0O this is just Lemma 3.k. In general, define

¢ = U {e: e<b and xcPi-:xcPk} s © = C 1 S = U3y

for m<r . Using Lerma 3.4 f£ind b-conditions Qo and Q,‘ 80 that

¢) 1 0 1

Q, Q CPr+1 5 cga.Uco = ch, =ch ==1rc1’r+1 , and

cdape, = ncqonxcq’za!. Now set P =ainn x"ﬁcp"’

i<r G4 G 17
Claim x P =x_ P

ci r+1 ci i

,Vherei=1,2,...,1‘ andj=0,1 .
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Granting the claim we have =x_ Pi SR (Q‘-j AN x "1y Pj) §

1 i <i % %k
hence applying Lemma 3.8 r times we see that Pi” is a b-condition.
To establish the claim: < 1is clear. For O , first we set
i =1 to simplify notation. Let p, be an arbitrary member of Pf

Define P, € Pg g ey pr € Pﬁ by induction: Suppose Pyreses ps

(1< 8<r) have already been defined so that P, =, D, for

ik

i,k=1,2,...,8 ., Since x, Pi-ﬂ =, Pg » choose q € Pi-ﬂ
s+1,3i 8+1,1

8o that 9y =, p; - Then qi =

b, = P, = q. .
s+, 1 s+1,1 + Cix K Cgpq,x X

Using Lemma 3.6, Q =35 9 where d = c"”,i n ca-ﬂ,k . Then by

Lerms 3.3 we can find Pgy1 € Pf2+1 go that Pger =0 9 >
8

preserving the induction hypothesis. So we have now Pys ¢-es Py in

. Pf_ respectively, such that p, = D, . Noting that each
1k

J .
c; is < ¢y we have .x Q %o Pryy = %, Py » and there exist

A i 1 1

Qs ceer 4 eQ‘j so that Q =, Py - As above we may use Lemmas

i
3.3 and 3.6 to obtain g € QI satisfying q =, q . But then
i
-1 L d —
q e ﬂci xciPi for each i, 80 q € PJrH’ also xc1q = :t'%p1 . So

the claim has been proved, and (1) of Definition 3.3 holds, with r
replaced by r+i1 .

To verify (2), if cf a then either c £ a S (1n which
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0 1 0 1
case xP . NxP . cxQ NxQ = g ) or en ey £ a for
0 1

gome 1 € {1,...,r] (in which case e n ciPrH n =, n ciPrH

P14 Ponx P

y
enets cncii=¢ end since ¢ c, < c we have that

0 1
TP N T Ppqg = £ )

Finally to verify (3) start with p° e Pg+1 . We can find

o .. 0 0 0 1 1
p; € P, with p, scip (1 =1,...,r); then we find p; € P, with

1 0

1 __ .0, 1 1 _
P, =; P, ; and then p €P . withp gancip (1 =1,...,r)

0

i.e. p1 =, P . By Lemma 3.3 choose p € Pr+1 with p =, po

N ¢q

R 1 1
and pscop . Since “&UCOQ '“aucoprﬂ there ig a q € Q

1 = o -
with g = p. Then q € Pr+1 because q=c P and xaq =

0

0 0 1
= nap . 8o “aPrH C“aPrH . We can prove > likewise.

Lemme. 3.10 Given an a-splitting as in Definition 3.3 suppose
Q? c P‘? are b-conditions satisfying ’(a.Q(I) = xaQ: . Then there exist
Qi (2<1<r) so that {Qg} ,i=1,...,rand j = 0,1, is an
a-splitting of {Pi}.

Proof Define again Cix = fe: ¢<b and “cPi = n:cPk} and

e o) for 1=2,...,r. Using
g

" J .
let ¢y t':11 . Set Q‘i P‘zﬁxc

Lemma 3.8 these are all b-conditions, and part (2) of Definition 3.3

holds trivially.
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For (1) we must show n, Q:‘Z c %, Q,i for all i, k; however,

ik ik
Lemma 3.8 gives =« j=r(P'jnxx -1" Q"j for all ¢ < b, so that
¢ cQ'k ¢k eey ck\ -7
s, @en Pax_ B, and 1t suffices to show % Qic
ik ik ik ik

= Rk X % Qf , i.e. given an arbitrary q e Q) show that

k  Ck i

Q=; q’'=  q for some q’' ¢ (2®)° ana q, € Q;" . Using the

definition of Q,i we can find q, ¢ q? 6o that q = q, . Then by
1

lemma 3.6 q = q,, and Lemms 3.3 gives q'.

ix N %
For (3) it suffices, given q ¢ Qg » to find q, € Q: and q’ ¢

€ (2‘”)b 8o that q= q’ =, q ; this is done using Lemmas 3.3
i

and 3.6 .

Lemms 3,11 Let ( be a set of b-conditions that is open and
dense, i.e. YVQAR e (RcQ) and VQeoVR (RcQ = Renq).
Then given ({P,] there is an a-splitting (P} c a.

Proof By induction: Suppose Q) (i=1,...,x1, §=0,1)
have already been found (the case r = 1 is easy). Choose Qg and

q; c P_ by Lemms 3.9; then QSOE Qg with Q2° € 03

1 -1 00 . _1 10 1 .0 00
Q =Q.Nx xQ 3 P, ¢ Q with B e 0; P = Q  n
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C) The crucial lemma and the proof

The heart of the proof for diamond in 2A was Lemma 2.1; for the
three-lattice in 2B, Lemma 2.2 ., We present now a generalization of
those lemmas that works for any finite distributive lattice L. Of
course we use the apparatus of 3B.

Lemma 3.12 Given b € L and a b-condition P there exists a
b-condition Ry, R © P, 80 that

either qd < b 8o that F is constant on any A c R with

x dA = g singleton
or F is one-to-one on R (and continuous, of course).

Here F is a A; function,

Proof As in the proof of Lemma 2.1, we may assume without
loss of generality that F is continuous.

Assume the first alternative fails, i.e. vd<b vVQcP FA <-Q
with n dA a singleton and F is not constant on A. Considering two
points in A that witness this and using the continuity of F it is
easy to show that
(*) vé<b vQ cP ¥R, R, cQ 8o that =R = n.R, and

F[R1 P F[B2] are contained in disjoint neighborhoods .

This property (*), which we express as "F separates R, Re" i
will now be iterated to produce & condition on which F will be
one-to-one. This is a fusion argument, indexed by 2<‘” .

Start by setting Q¢ = P . Suppose Q’ has been defined for
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length(s) < k so that
“ags = “agt o xa[s]b = xa[t]b and
1 N xQ =0 o xls] n «lt] =¢
for all s,t with length(s) = length(t) < k and all a<b . This
is our induction hypothesis. Consider { [s‘J]b ¢ length(s) = k ,
J=0,11; it is an e-splitting of [s]b : length(e) = k },
for some unique e € L. Using this e find an e-splitting of the

length(s) = k } , namely { QB.J : length(s) =
=k, Jj=0,11, s0 that F separates Q'.o » Qs‘? . This is done

collection { Q,

by Lemme 3.11 (actually by a trivial extension); our property (*)
gusrantees density. It is easy to see that the induction hypothesis

holds for these Qs. 's , 80 the process may continue.

J
Define now §: (2‘”)b - (2‘”)b by #(p) = N Qplk , where
k

p!k codes the restriction of p to the first k arguments. We may
arrange for the intersection to be a singleton by using at the nﬁh
step conditions of diameter less than 74 2n . By the A; Selection
Principle it is easy to see that § is A; . So § 1is a b-isomorphism
and clearly F is one-to-one on R = range(3).

At long last we can complete the proof of our theorem.

Proof of the theorem Let L be a finite distributive lattice.

Represent it as a sublattice of &(n), for minimal n. Form the
corresponding b-conditions (for b = u = {0,1,...,n-1} and a ¢ L,
a<b ), consider them as a notion of forcing, and take an n-tuple

that is sufficiently generic. Let us call it g. Suppose now
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that @ < g (here < denotes A; reducibility and = denotes
A; equivalence ). By genericity and Lemmes 1.1 and 1.2 we have
that Fi(g) = a, for some F, . Kow by genericity and Lemma 3.12
either a=g or a < LT So we perform a finite induction
along the nodes of L and we see that x:g s for b € L, realizes
distinet A;-degrees forming an initial segment isomorphic to L.
Remark The same method works for sublattices of the lattice

of all finite sets of integers.
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Chapter IIT

THE JUMP INVERSION THEOREM FOR Q2n+1 -DEGREES

1. Background and definitions

One of the early results in the theory of Turing degrees (for
basic information see [17]) was the following:

Friedberg Jump Inversion Theorem ([2]) If b > 0’ then

there exista an & suchthat a’ = a v 07 = b .

~ ~ ~

Of course O denotes the degree of the recursive sets, and *
denotes the Turing jump operation.
Next, the question was considered in the context of hyperdegrees.

Let O denote the hyperdegree of the hyperarithmetical sets and °

the hyperjump. Does the above theorem hold? The answer is yes ([21]):

Jump Inversion Theorem for A}-degrees If b > O’ then

there exists an a such that a’ = & \¢ 0’ = b .

~ ~

A natural question now is: does the inversion theorem hold for

A;n_'_1-degrees? (We are assuming PD, needless to say). By a well-

known argument Determinacy implies that there exists some cone on

which inversion holds (a cone , by definition, is {a : a > b},
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and b 1is called the base of the cone). But what is the base of

the cone? Is it again ©0° ? (i.e. the A;nﬂ ~jump of the degree of

A‘lam1 sets). Surprisingly the answer is no:

Theorem (Kechris, unpublished) (PD) If n> 1, then no real

1

in (:2n+2 can be a base for a cone of inversgion of the A2n+1 - Jump.

("Cone of inversion" of course means that every member of the cone
1 1
is the A,  ,-jump of some Azn_n-degree).
Proof For notational simplicity we let 2n+1 = 3. If a member

of Ch were a base then it would be recursive in a member of C3 s

80 without loss of generality assume a base b ies in C Consider

30

the set C={a: 3p e Q;(a) (pec, and a<, 8) 3. Itis

—As

& subset of Ch , @and it is n; » because the quantification is

Since

bounded. So it is countable, and hence a subset of CS.

beC, everything >b in C

1
3 is the A5 -Junp of a member of C,

3

thus a member of Cs. However the A;’-degreea in 03 are wellordered

with successor steps taken by the A;-;junrp, 80 that a limit stage of

this wellordering gives immediately & contradiction.
So the inversion theorem is a property of hyperdegrees that
fails to generalize to A; 5+ ~degrees, n> 1. Usually in such cases

the validity of the property is restored if instead of A; o -degrees
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we work with Qa _ -degrees. Indeed, it is the case that the jump in-
version theorem holds for Q_an+1 -degrees, i.e. the base is again 9,"
Moreover we can establish that the Q2 . -jump is never one-to-one.

Jump Inversion Theorem for Q, .. -degrees (PFD) If ¢ 1is a

Q?m1-degree > 2‘ then there exist Q.Znﬂ-degrees 8, E such
that & v b = a° = b’ = c.

The rest of the chapter is devoted to the proof of this theorem.

2, The proof
For notational simplicity we work with 2n+1 = 3. First we

establish & lemma.

Lema 2.1 If O° ¢ b (i.e. Ky =k ) then b’-=
£

Proof By the Spector Criterion 0°

by 0O’
kg < kg‘ ~ , 80 again by the Spector Criterion ‘:‘ < 2 Y, 2' s

The opposite inequality is obvious.

(01 0

Proof of the theorem The set (0o : k =k, and @£ Q)

is Z; and comeager. In fact there is a sequence Do, D1, ees oOf

1
dense open setg, {Di} € As(yo) , such that ND < {a:

kg = kg end o £ Qg } . We use these dense sets in the construction

below.

We describe an inductive construction of reals a and b, Set

&-1 = b-1 =¢
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Inductive step: Suppose & , b~ have been constructed (they are
finite sequences of integers). Consider the dense, open set D -
and extend &, by a finite ségment 8, least in some fixed enumera-
tion, so that the basic neighborhood defined by a.n‘s is contained
in D iy Extend bn‘s by a finite gegment t, least again, so
that the basic neighborhood defined by bn“s“t is contained in D A *
Set now L
This completes the inductive step.

= an‘s‘t“{c(n)}, LI bn“s"t‘{c(n)ﬂ} 2

Let now asuan, b=Ubn. Sincea,ber\.Di we have

by Lemmsg 2.1 that a“=a v 0°, b =Db yv 0. |KNow

~ ~ ~

a v 0°> ¢ , because using Yo Ve may trace the construction
of a and find all ¢(n)'s. Likewise b v 0° > c . However

a v 0 < ¢ , too, because O’ < ¢ and the construction of

a only needs Yo and ¢c. The same holds for b, and therefore we

have a’ = b’ = ¢ v 0 = b v 0° = ¢ . Finally note that

~ ~ ~ ~

a v b > c, because if both a and b are available then consider-

ing the points where they differ ¢ may be obtained. §So we have

a’ = b = a v b = ¢ , and a,. b cannot have the same degree.

~

Remark The reals a, b may also be chosen to be of minimal degree

by using perfect trees in Q’S instead of finite sequences.
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