Some Results on Projective Equivalence Relations

Thesis By

Xuhua Li

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1998

(Submitted June 22, 1997)

Abstract

We construct a Π_1^1 equivalence relation E on ω^{ω} for which there is no largest E-thin, E-invariant Π_1^1 subset of ω^{ω} . Then we lift our result to the general case. Namely, we show that there is a Π_{2n+1}^1 equivalence relation for which there is no largest E-thin, E-invariant Π_{2n+1}^1 set under projective determinacy. This answers an open problem raised in Kechris [Ke2].

Our second result in this thesis is a representation for thin Π_3^1 equivalence relations on u_{ω} . Precisely, we show that for each thin Π_3^1 equivalence relation E on u_{ω} , there is a Δ_3^1 in the codes map $p: \omega^{\omega} \to u_{\omega}$ and a Π_3^1 in the codes equivalence relation e on u_{ω} such that for all real numbers x and y,

$$xEy \iff (p(x), p(y)) \in e.$$

This lifts Harrington's result about thin Π_1^1 equivalence relations to thin Π_3^1 equivalence relations.

iii**Dedication**

Acknowledgement

I would like to begin by expressing my gratitude to my advisors, Professor A.S. Kechris and Professor G. Hjorth for helping me to choose the right problems and for their guidance and encouragement during my graduate years at Caltech.

Professor Kechris was the person who opened the new world of descriptive set theory to me. I learned all of the fundamental knowledge in classical and effective set theory from him. He was always there to answer my questions, provide suggestions and keep a close eye on my research. I would like to express my sincere gratitude to him.

I worked more closely with Professor Hjorth who taught me tools and skills of modern set theory. I worked more closely with him in my research. The work would not have been possible without his help. He has been an invaluable source of ideas, insights and knowledge. I can hardly thank him enough for his help.

I am grateful to Professor Dinakar Ramakrishnan and Professor W.A.J. Luxemburg for their precious time taken for my thesis defense.

I thank my wife for staying with me for five years to struggle for my degree. We helped each other and overcame many difficulties. I also thank my parents for their giving me a supportive family.

My years at Caltech were enriched by all the wonderful people I met here. I

also thank the mathematics department for its financial aid.

Table of Contents

1.	Introduction	1
2.	Largest <i>E</i> -thin, <i>E</i> -invariant Sets below Δ_3^1	8
3.	The General Case	28
4.	$\Sigma_3^1, \Pi_3^1 \text{ and } \Delta_3^1 \text{ in the Codes Subsets of } u_\omega \dots \dots$	41
5.	A Technical Lemma	63
6.	${\bf Representation \ of \ Thin \ }\Pi^1_3 \ {\bf Equivalence \ Relations } \ldots \ldots \ldots$	71
	References	86
	Vita	88

1. Introduction

As ZFC fails to resolve many important questions about general sets, and even large cardinals cannot determine the size of ω^{ω} , set theorists turn to consider the definable objects. It is descriptive set theorists' main interest to study various set theoretic properties of definable objects. ω^{ω} used to be our magic garden with various flowers like Π_1^1 sets, Σ_3^1 singletons and so on. Now, there is also strong interest in the quotient space ω^{ω}/E by definable equivalence relation E. Our interests are also restricted to this new playground in this thesis.

Let us have a basic picture of this classical garden of set theory at first; a more detailed and global description can be found from [Mo1] or [Ke6].

We will call \mathfrak{X} a product space, if \mathfrak{X} can be written as a product of ω , ω^{ω} , 2^{ω} . We call a product space \mathfrak{X} perfect if and only if it is perfect (i.e., no isolated point) under the product topology. In this thesis, we will always use $\mathfrak{X}, \mathfrak{Y}$ to represent product spaces; we also always use x, y, z and the corresponding letters with scripts to represent typical elements in product spaces.

Let $\{N_n\}_{n\in\omega}$ be the "natural" basis of a product space \mathfrak{X} ,

- (1) we will call a set $A \subseteq \mathfrak{X} \Sigma_1^0$ (in some $x \in \omega^{\omega}$) or semirecursive (in some $x \in \omega^{\omega}$) set if there is a recursive (in x) function $\epsilon \colon \omega \to \omega$ such that $A = \bigcup_{n \in \omega} N_{\epsilon(n)}$.
- (2) We will call an $A \subseteq \mathfrak{X} \Pi_1^0$ (in x) if and only if $\mathfrak{X} \setminus A$ is Σ_1^0 (in x). Σ_1^0 sets are the effective version of the open sets, which are the open sets

that we have algorithms to determine the membership in them.

- (3) We will call a set A ⊆ X Σ₁¹ if and only if there is a B ⊆ X × ω^ω such that A = proj_{ω^ω}(B), namely, for all x ∈ X, x ∈ A if and only if ∃y ∈ ω^ω such that (x, y) ∈ B. We also write proj_{ω^ω}(B) as p(B) or even pB in this thesis.
- (4) $A \subseteq \mathfrak{X}$ is called a Π_1^1 (in x) set if and only if $\mathfrak{X} \setminus A$ is a Σ_1^1 (in x) set.
- (5) In general, we can define Σ¹_{k+1} (in x) sets as the projections along ω^ω of Π¹_k (in x) sets, and Π¹_{k+1} (in x) sets as the compliments of Σ¹_{k+1} (in x) sets.
- (6) We call a set Δ_k^1 (in x) if and only if it is both Σ_k^1 (in x) and Π_k^1 (in x).
- (7) We call a set $A \subseteq \mathfrak{X} \Sigma_k^1$ (Π_k^1 , Δ_k^1 , Σ_k^0 , Π_k^0 , Δ_k^0) if and only if it is Σ_k^1 (Π_k^1 , Δ_k^1 , Σ_k^0 , Π_k^0 , Δ_k^0 respectively in some x).
- (8) We call a function f: X → Y Σ¹_k (Π¹_k, Δ¹_k, Σ⁰_k, Π⁰_k, Δ⁰_k, Σ¹_k, Π¹_k, Δ¹_k, Δ¹_k, Σ¹_k, Ω¹_k, Δ¹_k, Δ¹_k, Δ¹_k, Δ¹_k, Δ¹_k, Δ¹_k, Δ⁰_k, Π⁰_k, Δ⁰_k) if and only if G_f = {(x, n) : f(x) ∈ N(Y, n)} is Σ¹_k (Π¹_k, Δ¹_k, Σ⁰_k, Π⁰_k, Δ⁰_k, Σ¹_k, Π¹_k, Δ¹_k, Δ¹_k, Δ⁰_k respectively), where N(Y, n) is a basis of Y.
- (9) We call an ordinal α Σ¹_k (Π¹_k, Δ¹_k, Σ⁰_k, Π⁰_k, Δ⁰_k, Σ¹_k in x, Π¹_k in x, Δ¹_k in x, Σ⁰_k in x, Π⁰_k in x, Δ⁰_k in x) if and only if there is a Σ¹_k (Π¹_k, Δ¹_k, Σ⁰_k, Π⁰_k, Δ⁰_k, Σ¹_k in x, Π¹_k in x, Δ¹_k in x, Σ⁰_k in x, Π⁰_k in x, Δ⁰_k in x respectively) well-ordering on a subset of ω which has the ordertype α. Each of these ordinals can be coded by a real number.

It is well known that a set $A \subseteq \mathfrak{X}$ is Δ_1^1 if and only if it is a Borel set and a function is Δ_1^1 if and only if it is a Borel function.

We will call $A \subseteq \mathfrak{X}$ perfect if and only if A is closed and has no isolated points. We will call $A \subseteq \mathfrak{X}$ thick if it includes a perfect subset. Of course, we will call A thin if and only if A is not thick.

The continuum problem is the chief stimulus for studying perfect sets. The continuum hypothesis cannot be determined from ZFC. Even large cardinals fail to determine the size of the continuum. However, the effective version of the continuum hypothesis (i.e., the perfect set theorem) can be proved from suitable large cardinals. Speaking roughly, every "definable" uncountable set of real numbers is thick, hence, equinumerous with ω^{ω} .

Definable thin subsets of a product space \mathfrak{X} were extensively investigated by various researchers in descriptive set theory. Let us summarize some related results about thin sets below.

At first we know that for any perfect product space \mathfrak{X} , there is no largest thin Σ_1^1 subset of \mathfrak{X} . It suffices to prove this for ω^{ω} , since any perfect product space is homeomorphic to ω^{ω} through a Δ_1^1 bijection. Suppose we have a largest one among all of the thin Σ_1^1 subsets of ω^{ω} , it must be $B = \{x : x \text{ is } \Delta_1^1\}$ since a Σ_1^1 subset of ω^{ω} is thin if and only if it contains only Δ_1^1 reals by the effective perfect set theorem. However, B is not Σ_1^1 by Kleene's lower classification theorem on Δ_1^1 . However, for Π_1^1 , we have a different story.

Theorem (Guaspari, Kechris, Sacks) 1.1. For any given product space \mathfrak{X} , there is a largest thin Π_1^1 subset $C_1(\mathfrak{X}) \subseteq \mathfrak{X}$ that includes all thin Π_1^1 subsets of \mathfrak{X} .

The largest thin Π^1_1 subset of ω^ω can be defined as

$$C_1(\omega^{\omega}) = \{ x : \forall y (\omega_1^x \le \omega_1^y \to x \in \Delta_1^1(y)) \}$$
$$= \{ x : x \in L_{\omega_1^x} \},$$

where

$$\omega_1^x$$
 = the least ordinal which is not recursive in x
= the least ordinal which is not Δ_1^1 in x .

A classical construction of the largest thin Π_1^1 set using Π_1^1 norms can be found in [Mo1] also.

Assuming that all Σ_1 games on ω are determined, the projection of $C_1(\mathfrak{X} \times \omega^{\omega})$ to \mathfrak{X} gives us the largest Σ_2^1 subsets of \mathfrak{X} . So, we also have the largest Σ_2^1 subset of \mathfrak{X} . The largest thin Σ_2^1 subset of ω^{ω} is actually equal to the set of all constructible reals.

It is easy to see that there is no largest thin Π_2^1 subset of any perfect product space \mathfrak{X} . Otherwise, suppose A is the largest thin Π_2^1 subset of ω^{ω} , A cannot be \mathfrak{X} , so $B = \mathfrak{X} \setminus A \neq \emptyset$, B must contain a Δ_2^1 real x by the basis theorem for Δ_2^1 sets. Now, $A \cup \{x\}$ is larger than A but still thin and Π_2^1 . In general, we have the following

Theorem (Kechris and Moschovakis) 1.2.

- (1) Assume $Det(\Sigma_{2n}^1)$. For each perfect product space \mathfrak{X} , there is a largest thin Π_{2n+1}^1 set $C_{2n+1}(\mathfrak{X}) \subseteq \mathfrak{X}$ of \mathfrak{X} .
- (2) Assume $Det(\Sigma_{2n+1}^1)$. For each perfect product space \mathfrak{X} , there is a largest thin (or equivalently countable) Σ_{2n+2}^1 set $C_{2n+2}(\mathfrak{X}) \subseteq \mathfrak{X} \Sigma_{2n+2}^1$.
- (3) Assume Det(Σ¹_{2n}). For every perfect product space X, there is no largest thin Σ¹_{2n+1} subset of X which contains every thin Σ¹_{2n+1} subset of X.
- (4) Assume Det(Δ¹_{2n}). For all perfect product spaces, there is no largest thin Π¹_{2n+2} subset of X.

We will investigate similar properties in the context of \mathfrak{X}/E for some definable equivalence relation E in this thesis. We could easily lift all the definitions we mentioned before to the context of \mathfrak{X}/E by considering $[A]_E = \{x : \exists a \in$ $A(xEa)\}$ for any $A \subseteq \mathfrak{X}/E$. Equivalently, we can consider E-invariant sets but still work in \mathfrak{X} . We will follow the latter.

Fix E a definable equivalence relation on \mathfrak{X} and Γ a lightface pointclass. In this thesis, we only care about the cases that Γ is Σ_k^1 or Π_k^1 for some $k \in \omega$. We will call a set A

- (1) *E-invariant* if and only if for any $x, y \in \omega^{\omega}, x \in A \land xEy \implies y \in A$,
- (2) *E*-thick if and only if there is a perfect subset $B \subseteq A$ such that for any $x, y \in B, x \neq y \implies x \not \models y$,

- (3) E-thin if and only if it is not E-thick,
- (4) largest E-thin, E-invariant Γ set if and only if it is a E-thin, E-invariant
 Γ set that contains all of other E-thin, E-invariant Γ sets.

We will see when we have a largest *E*-thin, *E*-invariant Γ subset of a perfect product space for a Γ' equivalence relation *E*, where Γ , Γ' the above classes.

If Γ is Σ_{2n+1}^1 or Π_{2n}^1 , the solution is immediate. We have two recursive equivalence relations E_1 and E_2 such that there is a largest E_1 -thin E_1 -invariant Γ set but no largest E_2 -thin E_2 invariant set. We can let E_1 be the largest equivalence relation on \mathfrak{X} (i.e., $\mathfrak{X} \times \mathfrak{X}$) and E_2 be the smallest equivalence relation on \mathfrak{X} (i.e., the identity relation $id(\mathfrak{X})$).

Problem 1.3. Assuming Projective Determinacy, for what Π_{2n+1}^1 equivalence relations E on a perfect product space, is there a largest E-thin, E-invariant Σ_{2n+1}^1 set or a largest E-thin E-invariant Π_{2n+2}^1 set? It is obviously true for thin equivalence relations. But, is it true or false that for any thick Π_{2n+1}^1 equivalence relation E, there is no largest E-thin E-invariant Σ_{2n+1}^1 set or largest E-thin E-invariant Π_{2n+2}^1 sets?

If Γ is Π_{2n+1}^1 or Σ_{2n+2}^1 , the classical results about $E = id(\mathbf{X})$ tell us that there is a recursive equivalence relation E such that we have a largest E-thin E-invariant Π_{2n+1}^1 set and a largest E-thin E-invariant Σ_{2n+2}^1 set. But, how about the other Π_{2n+1}^1 equivalence relations. We will deal with this problem in the following chapters. In Chapter 1, we will prove that there is a Π_1^1 equivalence relation E on ω^{ω} , for which there is no largest E-thin, E-invariant Π_1^1 subset of ω^{ω} . Then, we prove a similar result in a more general context, we get a Π_{2n+1}^1 equivalence relation E on ω^{ω} for which there is no largest E-thin, E-invariant Π_{2n+1}^1 subset of ω^{ω} . In the last section, we lift Harrington's representation theorem for thin Π_1^1 equivalence relations to thin Π_3^1 equivalence relations assuming that $\forall x \in$ $\omega^{\omega}(x^{\sharp} \text{ exists })$.

2. Largest *E*-thin, *E*-invariant Sets below Δ_3^1

In [Ke1], Kechris proved the following

Theorem (Kechris) 2.1. Let E be a Π_1^1 equivalence relation on ω^{ω} , if $A \subseteq \omega^{\omega}$ is Π_1^1 and E-thin, then for each $x_0 \in A$, there is $A_0 \Delta_1^1$ in an ordinal smaller than $\omega_1^{x_0}$ such that

$$x_0 \in A_0 \subseteq [x_0]_E \cap A.$$

For a $\Pi_1^1 E$, if we let

 $A = \{ x : \exists S(S \text{ is } \Delta_1^1 \text{ in an ordinal smaller than } \omega_1^x \text{ and } x \in S \subseteq [x]_E) \}.$

A is clearly a Π_1^1 set which contains every E-thin Π_1^1 subset of ω^{ω} .

A is also E-thin, otherwise, we can play the ordinary forcing trick to blow up the continuum to get a contradiction. If A is E-thick, we can expand our universe V to some generic extension V[G] by some so that in V[G], we have $2^{\aleph_0} = \aleph_2$. Shoenfield absoluteness guarantees that A is still E-thick in V[G]. So, there must be \aleph_2 many S's to witness the membership in A. But that is impossible because we only have \aleph_1 many such S's in V[G].

So we get a Π_1^1 set which is *E*-thin and contains every *E*-thin Π_1^1 subset of ω^{ω} as a subset. As every Σ_2^1 set can be decomposed as \aleph_1 union of Borel sets, we can adjust the definition a little bit to get a largest *E*-thin Σ_2^1 set.

Let

$$C_2(E) = \{ x : \exists S(S \text{ is } \Delta_1^1 \text{ in a countable ordinal } \land x \in S \subseteq [x]_E) \}.$$

In [Ke1], Kechris observed that this $C_2[E]$ is the largest *E*-thin, *E*-invariant Σ_2^1 set for the Π_1^1 equivalence relation *E*. Hence we have

Theorem(Kechris) 2.2. For any Π_1^1 equivalence relation E on a product space \mathfrak{X} , there is a largest E-thin, E-invariant Σ_2^1 set.

If E is actually Δ_1^1 , Kechris also noticed the following

Theorem(Kechris) 2.3. For any Δ_1^1 equivalence relation E on a product space \mathfrak{X} , there is a largest E-thin, E-invariant Π_1^1 set.

The largest E-thin, E-invariant set mentioned above can be defined as

 $C_1(E) = \bigcup \{ C : C \text{ is an } E \text{-equivalence class} \}$

 $\wedge \, \forall x \in C(C \text{ is } \Delta_1^1 \text{ in an ordinal smaller than } \omega_1^x) \}.$

After these results, Kechris raised the following

Problem(Kechris). Is it true or false that for any Π_1^1 equivalence relation E, there will be a largest *E*-thin, *E*-invariant Π_1^1 subset of ω^{ω} ?

We will answer this negatively. Namely, we will construct a Π_1^1 equivalence relation E for which there is no largest E-thin, E-invariant Π_1^1 subset of ω^{ω} .

The idea is the following. We list all possible candidates of the largest Ethin, E-invariant Π_1^1 sets, i.e., we list all Π_1^1 subsets of ω^{ω} as $\{A_n\}_{n\in\omega}$. We will construct our equivalence relation E step by step, the possibility of each A_n as the largest E-thin, E-invariant subset of ω^{ω} is destroyed at some step of our construction. If A_n is given attention at some stage of our construction, we will pick some Π_1^1 singleton $\{x\}$ which has some nice properties. If this xis not in A_n , we will let $\{x\}$ be an equivalence class of our E which is being constructed. Hence, A_n cannot be the largest E-thin, E-invariant Π_1^1 set since $A_n \cup \{x\}$ is obviously larger than A_n and still an E-thin, E-invariant Π_1^1 set. If this x is already in A_n , we will find some real y which is not in A_n and put (x, y)into the equivalence relation E. Hence, A_n cannot be E-invariant. To make the above idea work, we have to make our construction carefully, otherwise, we cannot guarantee that our equivalence relation E is Π_1^1 . That is why we need the Kleene recursion theorem.

Let

 $\delta_2^1 = \sup\{\alpha : \alpha \text{ is a countable ordinal coded by a } \Delta_2^1 \text{ real}\}.$

We will call an ordinal α stable if and only if for all Σ_1 formulas $\varphi(x_1, \dots, x_n)$ in the Levy hierarchy of ZFC formulas, and for any $a_1, \dots, a_n \in L_{\alpha}$,

$$\mathbf{L} \models \varphi(a_1, \cdots, a_n) \iff L_{\alpha} \models \varphi(a_1, \cdots, a_n).$$

We will call an ordinal α weakly stable if and only if for all Σ_1 formulas without parameters in the Levy hierarchy of ZFC formulas,

$$\mathbf{L} \models \varphi \iff L_{\alpha} \models \varphi.$$

It is a well-known fact that

$$\delta_2^1 =$$
 the least stable ordinal

= the least weakly stable ordinal.

We do not need this result in our proof in this chapter, if we just replace all of the appearances of δ_2^1 by σ_0 , the least stable ordinal. But this fact suggests that it should be enough to use the Π_1^1 singletons as our building blocks.

We will need the following

Lemma 2.4. For any given $\alpha < \delta_2^1$, any sentence ψ which is true in **L**, there is a β such that

- (1) $\alpha \leq \beta < \delta_2^1$,
- (2) $L_{\beta} \models \operatorname{ZFC}^* \wedge \mathbf{V} = \mathbf{L} \wedge \psi,$
- (3) $L_{\beta} = \text{SkolemHull}(L_{\beta}),$
- (4) $x = \operatorname{Th}(L_{\beta}),$
- (5) x is a Π_1^1 singleton,

where ZFC^{*} means a large enough finite fragment of ZFC. We also use ZFL^{*} to denote ZFC^{*} + ($\mathbf{V} = \mathbf{L}$).

Remark. This lemma claims that we have unbounded many such β 's. We only need the existence of one β to prove our main result in this chapter. But they are actually equivalent. We state the lemma in only an apparently stronger form.

Proof. Since α is smaller than δ_2^1 which is the least weakly stable cardinal, α cannot be a weakly stable cardinal. So, there must be a Σ_1 formula φ such that

 $\mathbf{L} \models \varphi$ and $\forall \beta < \alpha(L_{\beta} \not\models \varphi)$. Let us fix such a φ in our proof. Consider the set

$$A = \{ x : \exists \beta (L_{\beta} \models (ZFL^* \land \psi \land \varphi) \text{ and } x \text{ codes } Th(L_{\beta}) \}$$

Claim. A is not empty.

Proof of the claim: As δ_2^1 is stable, for any finite many sentences $\varphi_1, \dots, \varphi_n$ of the language of set theory, we can find a $\gamma < \delta_2^1$ such that $L_{\gamma} \models \varphi_1 \land \dots \land \varphi_n$. Let β_0 be an ordinal such that $L_{\beta_0} \models \operatorname{ZFL}^* \land \varphi \land \psi$. Let $M = \operatorname{SkolemHull}(L_{\beta_0})$. As M is elementary equivalent to $L_{\beta_0}, M \models \operatorname{ZFL}^*$. If we put enough axioms of ZFL into ZFL^{*}, we can guarantee that M is isomorphic to some L_{β} for some $\beta \leq \beta_0$ since M is clearly wellfounded. Let x code the theory of L_{β} . This x is clearly in A. \Box (claim)

Claim. A is Π_1^1 .

Proof of claim: It suffices to show that for any real number $x, x \in A$ if and only if there is a β recursive in x such that x codes $\operatorname{Th}(L_{\beta})$ and $\operatorname{ZFL}^* \subseteq \operatorname{Th}(L_{\beta})$ and $\varphi, \psi \in \operatorname{Th}(L_{\beta})$. Let x in A. From the definition of A, there is a β' such that such that x codes $\operatorname{Th}(L_{\beta'})$ and $\operatorname{ZFL}^* \subseteq \operatorname{Th}(L_{\beta'})$ and $\varphi, \psi \in \operatorname{Th}(L_{\beta'})$. Let M be the Skolem hull of L'_{β} . M must be isomorphic to some L_{β} for some $\beta \leq \beta'$ and $\operatorname{Th}(L_{\beta}) = \operatorname{Th}(L_{\beta'})$. As M is the Skolem hull of itself, M can be reconstructed effectively from its theory by a classical model theory construction. β , as the order type of Ord^M , is recursively reconstructible from $\operatorname{Th}(M) = \operatorname{Th}(L_{\beta})$ as well. Hence, β is recursive in x. \Box (claim)

Now, by the basis theorem for the Π_1^1 subsets of ω^{ω} , there is a x in A which

is a Π_1^1 singleton. Let x code some $L_{\beta'}$, $\beta' < \delta_2^1$, since $L'_{\beta} \models \varphi$. We can play the same trick as before. Let M be the Skolem hull of $L_{\beta'}$. We know that Mis isomorphic to some L_{β} for some $\beta \leq \beta' < \delta_2^1$. This β is what we want in the lemma. \Box (lemma)

Let $A \subseteq \omega \times \omega^{\omega}$ and $E \subseteq \omega \times \omega^{\omega} \times \omega^{\omega}$ be "good" universal Π_1^1 sets for which the *s*-*m*-*n* theorem applies. Let $A_k = \{x : (k, x) \in A\}$ and $E_k = \{(x, y) :$ $(k, x, y) \in E\}$. Then $\{A_k\}_{k \in \omega}$ enumerate all Π_1^1 subsets of ω^{ω} in a Π_1^1 way and $\{E_k\}_{k \in \omega}$ enumerate all Π_1^1 subsets of $\omega^{\omega} \times \omega^{\omega}$ in a Π_1^1 way.

Lemma 2.5. Let $Thick(m, n) \iff A_m$ is E_n -thick. Then Thick(m, n) is Σ_2^1 .

This could be proved using Theorem 2.1. We give below a direct proof without using Theorem 2.1 because we think that the characterization of Ethickness that we obtain may be also interesting as well.

Proof. To make our notation simple, we just prove that it is Σ_2^1 to say that A is E-thick, for any given $\Pi_1^1 A \subseteq \omega^{\omega}$ and $\Pi_1^1 E \subseteq \omega^{\omega} \times \omega^{\omega}$. The proof for the general case is the same but notationally more complicated.

Fix a $T \subseteq (\omega \times \omega \times \omega)^{<\omega}$ to be a recursive pruned tree such that $\neg E = p[T]$ where p[T] is the projection of [T] to the second and third coordinates. Also fix a map π from ω^{ω} to

$$LO = \{x : x \text{ codes a linear ordering of a subset of } \omega\}$$

such that for all $x, x \in A \iff f(x) \in WO$, where

 $WO = \{x : x \text{ codes a well-ordering of a subset of } \omega\}.$

Claim. the following are equivalent:

- (1) A is E-thick.
- (2) There is a continuous function $f: 2^{\omega} \to \omega^{\omega}$ such that
 - (i) for all x in 2^{ω} , $f(x) \in A$,
 - (ii) for all x, y in 2^{ω} , if $x \neq y$, then $f(x) \not \models f(y)$.
- (3) There is a countable ordinal α , a continuous function $f: 2^{\omega} \to \omega^{\omega}$ and a continuous function $g: \omega^{\omega} \times \omega^{\omega} \to \omega^{\omega}$ such that
 - (i) for all $x, \pi(f(x)) < \alpha$,
 - (ii) for all x, y in 2^{ω} , if $x \neq y$, then $f(x) \neq f(y)$,

(iii) for all x and y, if $x \neq y$, then g(f(x), f(y)) witnesses that $(f(x), f(y)) \notin E$.

(4) There is a real number r, a function $f_0: 2^{<\omega} \to 2^{<\omega}$ and a function

 $g_0 \colon \omega^{<\omega} \times \omega^{<\omega} \to \omega^{<\omega}$ such that

(i) for all s and t in $2^{<\omega}$, if $s \subset t$, then $f_0(s) \subset f_0(t)$,

(ii) for any s and t in $2^{<\omega}$, if len(s) = len(t), then $len(f_0(s)) =$

 $len(f_0(t))$, where len(s) is the length of s,

(iii) for all s in $2^{<\omega}$, $f_0(s^0) \neq f_0(s^1)$,

(iv) for all (s_0, s_1) and (t_0, t_1) in $\omega^{<\omega} \times \omega^{<\omega}$, if $(s_0, s_1) \subseteq (t_0, t_1)$,

then $g_0(s_0, s_1) \subseteq g_0(t_0, t_1)$,

(v) for all (s_0, s_1) in $\omega^{<\omega} \times \omega^{<\omega}$, if there is a $u \in \omega^{<\omega}$ such that $(u, s_0, s_1) \in T$, then $(g_0(s_0, s_1), s_0, s_1) \in T$,

(vi) for any s and t in $2^{<\omega}$, if len(s) = len(t) and $s \neq t$, then there is a $u \in 2^{<\omega}$ such that $(u, f_0(s), f_0(t)) \in T$,

(vii) for all x in 2^{ω} , if $\forall n \in \omega \exists s \in 2^{<\omega} (x \upharpoonright n = f_0(s))$, then x is recursive in r.

Proof of the above claim:

(4) \Rightarrow (3): Assume that we have the f_0 , g_0 and r satisfying all the requirements of (4). Let $\alpha = \omega_1^r$. Let $f = f_0^*$, namely, $f(x) = \bigcup_{n \in \omega} f_0(x \upharpoonright n)$. This f is well-defined since f_0 is monotonic by (i). From (iii), f is one to one. f is also continuous from Theorem 2.6 in [K6]. From (v), we know that $\forall x \in 2^{\omega}(\pi(f(x)) < \alpha)$. We define g in a similar way, namely, $g(x, y) = g_0^*(x, y) = \bigcup_{n \in \omega} g_0(x \upharpoonright n, y \upharpoonright n)$. Then g is also continuous. Now, for any x and y in 2^{ω} , if $x \neq y$, there is a N such that for all $n \ge N$, $x \upharpoonright n \neq y \upharpoonright n$. Hence, $(g_0(f_0(x \upharpoonright n), f_0(y \upharpoonright n)), f_0(x \upharpoonright n), f_0(y \upharpoonright n)) \in T$ for all $n \ge N$ by (iv), (v) and (vi). As [T] is closed, $(g(f(x), f(y)), f(x), f(y)) \in [T]$. Hence, g(f(x), f(y)) witnesses that $(f(x), f(y)) \notin E$ since $\neg E = p[T]$.

 $(3) \Rightarrow (2)$: Obvious.

(2) \Rightarrow (1): Since 2^{ω} is compact, $f[2^{\omega}]$ is a compact subset of ω^{ω} . As ω^{ω} is a Hausdorf space, it must be a closed set. Hence, this perfect subset of A witnesses that A is E-thick.

 $(1) \Rightarrow (4)$: Assume (1). The construction of f_0 is the routine Cantor scheme construction. (See [Ke6] for the Cantor scheme construction.) We can construct a Cantor scheme $(U_s)_{s\in 2^{<\omega}}$ (i.e., a family $(A_s)_{s\in 2^{<\omega}}$ of subsets of some Polish space \mathfrak{X} such that (1) $A_{s\cap 0} \cap A_{s\cap 1} = \emptyset$, for all $s \in 2^{<\omega}$, and (2) $A_{s\cap i} \subseteq A_s$, for all $s \in 2^{<\omega}$ and $i \in \{0,1\}$.) such that

- (1) U_s is of the form $N_t = \{x : x \text{ contains } t\}$ for some $t \in 2^{<\omega}$,
- (2) if len(s) = len(t), $U_s = N_{s'}$ and $U_t = N_{t'}$, then len(s') = len(t'),
- (3) $diam(U_s) \le 2^{-len(s)}$, i.e., if $U_s = N_{s'}$, then $len(s') \ge 2^{len(s)}$,
- (4) $U_{s^{\frown}i} \subseteq U_s$, for any $s \in 2^{<\omega}$ and $i \in \{0, 1\}$,
- (5) if $U_s = N_{s'}$ and $U_t = N_{t'}$, then there is some $u \in 2^{<\omega}$ such that $(u, s', t') \in T$.

This Cantor scheme can be constructed as usual by induction on the length of s since A is E-thick.

Let $f_0(s) = t$ if and only if $U_s = N_t$. Let $f(x) = f_0^*(x) = \bigcup_{n \in \omega} f_0(x \upharpoonright n)$. fis a continuous injection from 2^{ω} into A. As $\pi[f[2^{\omega}]]$ is a Σ_1^1 subset of WO, it is bounded below some countable ordinal α . Therefore, there is a $r \in \omega^{\omega}$ such that α is recursive in r. For any x such that $\forall n \in \omega \exists s \in 2^{<\omega}(x \upharpoonright n = f_0(s))$, we know that $(\pi(f(x)) \text{ codes a well-ordering with an order-type smaller than}$ α , hence, recursive in r.

We can also construct the map g_0 by induction on the length of (s_0, s_1) . We let $g_0(\emptyset) = \emptyset$. Suppose we have already defined g_0 for all (s_0, s_1) with $len(s_0) = len(s_1) < n$, consider $t_0 = s_0 \cap i$ and $t_1 = s_1 \cap j$ for $i, j \in \omega$, if there is a $u \in 2^{<\omega}$ such that $(u, t_0, t_1) \in T$, we let $g_0(t_0, t_1)$ be some u such that $(u, t_0, t_1) \in T$. Otherwise, $g_0(t_0, t_1) = 0^n$. It is easy to check that g_0 works. \Box (claim)

As (4) is clearly Σ_2^1 , it is Σ_2^1 to say that A is E-thick. So is Thick(m, n). \Box

Let

 $\theta(m,n) \iff A_m$ is the largest R_n -thin R_n -invariant subset of ω^{ω} .

Lemma 2.6. $\theta(m, n)$ is absolute between **L** and **V**.

Proof. Let

 $\theta_0(m,n) \iff A_m$ is a R_n -thin R_n -invariant subset of ω^{ω} .

 $\theta_0(m,n)$ is Π_2^1 since Thick(m,n) as specified as in the lemma before is Σ_2^1 and it is Π_2^1 to say that A_m is R_n invariant.

As $\theta(m,n) \iff \theta_0(m,n) \land \forall k(\theta_0(k,n) \implies A_k \subseteq A_m), \theta(m,n)$ is absolute between **L** and **V** by the Shoenfield absoluteness theorem. \Box

Since $\theta(m, n)$ is absolute between **L** and **V**, we can assume that **V** = **L** without loss of generality, since if we proved that

 $\mathbf{L} \models \exists n(E_n \text{ is an equivalence relation } \land \forall m \neg \theta(m, n)),$

we must have

$$\mathbf{V} \models \exists n(E_n \text{ is an equivalence relation } \land \forall m \neg \theta(m, n))$$

as well.

Let us define a set $A \subseteq \omega \times \omega^{\omega} \times \omega^{\omega}$ as following:

- $(e, x, y) \in S \iff$
- EITHER (1) x = y;
- $OR \qquad (2) \quad \exists \alpha \exists n \in \omega \text{ such that}$
 - (2.1) $L_{\alpha} = \text{SkolemHull}(L_{\alpha}),$
 - (2.2) $L_{\alpha} \models \operatorname{ZFL}^* \land \theta(n, e),$
 - (2.3) $x \operatorname{codes} \operatorname{Th}(L_{\alpha}),$
 - (2.4) x is a Π_1^1 singleton,
 - (2.5) $\forall m < n(L_{\alpha} \not\models \theta(m, e)),$
 - $(2.6) \quad x \in A_n,$
 - (2.7) $L_{\alpha} \models$ "y is the $<_{L_{\alpha}}$ -least element

subject to the following requirements:

- (2.7.1) $y \in (L_{\alpha} \setminus A_n) \cap \omega^{\omega},$
- (2.7.2) y is not a Π_1^1 singleton,
- (2.7.3) $\forall z(z \text{ is a } \Pi^1_1 \text{ singleton } \rightarrow \neg(z, y) \in E_e);$
- (3) $\exists \alpha \exists n \in \omega \text{ such that}$

OR

- (3.1) $L_{\alpha} = \text{SkolemHull}(L_{\alpha}),$
- (3.2) $L_{\alpha} \models \operatorname{ZFL}^* \land \theta(n, e),$
- (3.3) $y \operatorname{codes} \operatorname{Th}(L_{\alpha}),$

- (3.4) y is a Π_1^1 singleton,
- $(3.5) \quad \forall m < n(L_{\alpha} \not\models \theta(m, e)),$
- $(3.6) \quad y \in A_n,$
- (3.7) $L_{\alpha} \models "x$ is the $<_{L_{\alpha}}$ -least element

subject to the following requirements:

- $(3.7.1) \quad x \in (L_{\alpha} \setminus A_n) \cap \omega^{\omega},$
- (3.7.2) x is not a Π_1^1 singleton,
- (3.7.3) $\forall z(z \text{ is a } \Pi^1_1 \text{ singleton} \to \neg(z, x) \in E_e)."$

Lemma 2.7. S is a Π_1^1 subset of $\omega \times \omega^{\omega} \times \omega^{\omega}$.

Proof. It suffices to show that (2) is a Π_1^1 formula. But

(2)
$$\iff$$

 $\exists n[(2.4) \land (2.6) \land \exists \alpha((2.1) \land (2.2) \land (2.3) \land (2.5) \land (2.7)] \iff$
 $\exists n[(2.4) \land (2.6) \land L_{\omega_1^{x,y}}(x,y) \models (\exists \alpha((2.1) \land (2.2) \land (2.3) \land (2.5) \land (2.7))].$

The second equivalence comes from the fact that α can be recursively constructed from x and (2.1), (2.2), (2.3), (2.5) and (2.7) are Δ_1^1 formulas which are absolute between $L_{\omega_1^{x,y}}(x,y)$ and **L**, and $L_{\omega_1^{x,y}}(x,y)$ correctly computes L_{α} for any $\alpha \in L_{\omega_1^{x,y}}(x,y)$.

Since $L_{\omega_1^{x,y}}(x,y) \models (\exists \alpha((2.1) \land (2.2) \land (2.3) \land (2.5) \land (2.7))$ is Π_1^1 by the Spector-Gandy theorem, it suffices to show that it is Π_1^1 to say that x is a Π_1^1

singleton. Let $B \subseteq \omega^{\omega} \times \omega$ be a universal Π_1^1 set. Let B^* be a Π_1^1 set which uniformizes B by the uniformization theorem of Π_1^1 sets. Namely, B^* is a Π_1^1 set such that

- (1) for all $m \in \omega, \exists x \in \omega^{\omega}((x,m) \in B) \iff \exists x \in \omega^{\omega}((x,m) \in B^*)$
- (2) for all $m \in \omega$, there is at most one x such that $(x, m) \in B^*$.

Then it clear that x is a Π_1^1 singleton if and only if $\exists m \in \omega((x,m) \in B^*)$. Hence, (2.4) is Π_1^1 . \Box

By the *s*-*m*-*n* theorem, there is a recursive function $f: \omega \to \omega$ such that $\forall x \in \omega^{\omega} \forall y \in \omega^{\omega}((e, x, y) \in S \iff (f(e), x, y)) \in E$. Now, by the effective recursion theorem, there is a fixed point for f, i.e., there is a $e \in \omega$ such that for all real number x and y, $(e, x, y) \in S$ if and only if $(e, x, y) \in E$. From now on, let us fix this $e \in \omega$ in this chapter.

Lemma 2.8. Suppose that $x \neq y$. If $(x, y) \in E_e$, then the one and only one element from the E_e -equivalent pair $\{x, y\}$ is a Π_1^1 singleton.

Proof. It is clear from the construction.

Lemma 2.9. E_e is an equivalence relation.

Proof. (1) reflexity. Clear.

- (2) symmetry. Clear.
- (3) transitivity. Assume $(x, y) \in E_e$ and $(y, z) \in E_e$.

Case 1. x = y or y = z, it is trivially true in this case.

Case 2. $x \neq y$ and $y \neq z$.

Subcase 2.1. y is a Π_1^1 singleton. In this case, neither x nor z can be a Π_1^1 singletons by the Lemma 2.8. Then,

 $x = z = <_L$ -the lease element subject to the same requirement.

So, $(x, z) \in E_e$.

Subcase 2.2. y is not a Π_1^1 singleton. In this case, both x and z must be Π_1^1 singletons. Assume that $x \neq z$ towards a contradiction. Let

 $\alpha(x) =$ the unique α corresponding to x in the construction,

 $\alpha(z) =$ the unique α corresponding to z in the construction.

Without loss of generality, let us assume that $\alpha(x) < \alpha(z)$. Let n be the least number such that $L_{\alpha(z)} \models \theta(n, e)$. As $(y, z) \in E_e$, from the construction,

 $L_{\alpha(z)} \models$ "y is the $<_{L_{\alpha}}$ -least element subject to the following requirements:

$$y \in (L_{\alpha} \setminus A_n) \cap \omega^{\omega},$$

y is not a Π_1^1 singleton,

 $\forall z(z \text{ is a } \Pi_1^1 \text{ singleton } \rightarrow \neg(z, y) \in E_e)."$

But $x \in L_{\alpha(z)}$, since x is definable from $\alpha(x)$ in $L_{\alpha(z)}$ and $L_{\alpha(z)}$ = SkolemHull $(L_{\alpha(z)})$. $L_{\alpha(z)}$ would also think that x is a Π_1^1 singleton since $L_{\alpha(z)} \models \text{ZFL}^*$.

So, $L_{\alpha(z)} \models (x, y) \notin E_e$. But $L_{\alpha(z)} \models ZFL^*$, so we have $(x, y) \notin E_e$. Actually, if

 $L_{\alpha} \models KP +$ "every well-ordering is isomorphic to some ordinal in an order-preserving map,"

 L_{α} is absolute for all Π_1^1 formulas. We can always put enough axioms into ZFL* to guarantee this. But, $(x, y) \in E_e$, by our assumption. So, we have a contradiction. \Box

Lemma 2.10. For any E_e -thin Π_1^1 set A,

$$L \models \exists x (x \notin A \land x \text{ is not a } \Pi_1^1 \text{ singleton} \land$$
$$\forall y (y \text{ is } \Pi_1^1 \text{-singleton} \implies (x, y) \notin E_e)).$$

Proof. At first, we will show that A is thin. If A is thick, since every E_e equivalence class has at most two elements, there are continuum many E_e inequivalent elements in A. But we know that A is E_e -thin, by Theorem 2.1, so,
for every $x \in A$, we can find a A_0 which is Δ_1^1 in some ordinal smaller than ω_1^x such that $x \in A_0 \subseteq A$. We have only \aleph_1 many such A_0 's. If we blow up the
continuum to \aleph_2 by the product of \aleph_2 copies of Cohen forcing, we will get a
contradiction.

 $L_{\delta_2^1} \cap \omega^{\omega}$ is also a thin set by the same forcing trick. Now, by the Shoenfield absoluteness theorem, **L** think that both $\omega^{\omega} \cap L_{\delta_2^1}$ and *A* are thin. So is their union. Since $(L_{\delta_2^1} \cup A)$ is thin in \mathbf{L} , $\mathbf{L} \models \omega^{\omega} \cap (\mathbf{L} \setminus (L_{\delta_2^1} \cup A)) \neq \emptyset$. Let us pick any x in $\omega^{\omega} \cap (\mathbf{L} \setminus (L_{\delta_2^1} \cup A))$. This x is not a Π_1^1 singleton since all Π_1^1 singletons are in $L_{\delta_2^1}$. Hence this x is not in any L_{α} , for all α 's which are coded by a Π_1^1 singleton in the sense of our construction. So, x is only E_e -equivalent to itself. So, this x witnesses the validity of the sentence of this lemma in \mathbf{L} . \Box (lemma)

Theorem 2.11. There is no largest E_e -thin E_e -invariant Π_1^1 subset of ω^{ω} .

Proof. Assume that there is a largest E_e -thin E_e -invariant Π_1^1 subst of ω^{ω} . Let n be the least index for this set with the universal Π_1^1 set $A \subseteq \omega \times \omega^{\omega}$.

As A_n is E_e -thin,

$$L \models \exists x (x \notin A_n \land x \text{ is not a } \Pi_1^1 \text{ singleton} \land$$
$$\forall y (y \text{ is } \Pi_1^1 \text{-singleton} \implies (x, y) \notin E_e)$$
$$\forall m < n (\neg \theta(m, e)).$$

By Lemma 2.4, we can always find x and α such that

- (1) $\alpha < \delta_2^1$,
- (2) $L_{\alpha} \models \operatorname{ZFL}^* \land \theta(n, e) \land \forall m < n \neg \theta(m, e) \land \exists w (w \notin A_n \land$

w is not a Π_1^1 -singleton $\land \forall y(y \text{ is a } \Pi_1^1 \text{ singleton } \Longrightarrow (w, y) \notin E_e)),$

- (3) $L_{\alpha} = \text{SkolemHull}(L_{\alpha}),$
- (4) $x \text{ codes Th}(L_{\alpha}) \text{ and } x \text{ is a } \Pi^1_1 \text{ singleton.}$

If $x \in A_n$, since

$$L_{\alpha} \models \exists w (w \notin A_n \land w \text{ is not a } \Pi_1^1 \text{-singleton})$$

 $\wedge \forall w'(w' \text{ is a } \Pi^1_1 \text{ singleton } \Longrightarrow (w, w') \notin E_e)),$

let y be the $\langle L_{\alpha}$ -least real number in L_{α} . Then, $(x, y) \in E_e$ by the construction. This contradicts the assumption that A_n is E_e -invariant.

If $x \notin A_n$, then $A_n \cup \{x\}$ is still a *E*-thin, *E*-invariant Π_1^1 set but larger than A_n . This contradicts the assumption that A_n is the largest among all the *E*-thin, *E*-invariant Π_1^1 subsets of ω^{ω} .

Hence, for E_e , there is no largest E_e -thin E_e -invariant set. \Box (theorem)

Remark. By theorem transfer theorem, we know that the same thing is true for all perfect product spaces \mathfrak{X} .

Next, let us consider Σ_1^1 equivalence relations. It is easier to construct a Σ_1^1 equivalence relation E for which there is no largest E-thin, E-invariant Π_1^1 set.

Let A be a Σ_1^1 but not Π_1^1 subset of ω . Let

$$(x,y) \in E \iff x = y \lor (x(0) = y(0) \in A).$$

E is clearly a Σ_1^1 equivalence relation. If there is a largest E-thin, E-invariant Π_1^1 set, say B, we can recover A from B in a Π_1^1 way.

Claim. $n \in A \iff \forall x(x(0) = n \implies x \in B).$

Proof of the claim. For any $n \in A$, since $D_n = \{x : x(0) = n\}$ is E-thin, E-invariant Π_1^1 set, $D_n \subseteq B$. So, $x \in B$.

If $n \notin A$, we can clearly find a $x \notin B$ such that x(0) = n, since $D_n = \{x : x(0) = n\}$ is *E*-thick. \Box

Hence, A would be Π_1^1 , which contradicts the assumption on A.

From the argument above, we know that we can actually find a Σ_1^1 equivalence relation for which there is no *E*-thin Π_1^1 set which contains all recursive *E*-thin, *E*-invariant subsets of ω^{ω} .

Similar constructions would give us a Π_2^1 equivalence relation for which there is no largest *E*-thin, *E*-invariant Σ_2^1 subsets of ω^{ω} . Let $A \subseteq \omega$ be a Π_2^1 but non- Σ_2^1 set, For any x and y in ω^{ω} , let $(x, y) \in E$ if and only if either x = y or $x(0) = y(0) \in A$. If there is a largest *E*-thin, *E*-invariant Σ_2^1 set *B*, *A* can be recovered from *B* in a Σ_1^1 way, namely, for all $n \in \omega$, $n \in A$ if and only if $\exists x(x(0) = n \land x \in B)$. Actually, there is no *E*-thin Σ_2^1 set which contains all recursive *E*-thin, *E*-invariant subsets of ω^{ω} .

The next problem is if there is a Σ_1^1 equivalence relation E on ω^{ω} for which there is no largest E-thin, E-invariant Σ_2^1 subset of ω^{ω} . Hjorth showed that the above is false under the assumption that there is 0^{\sharp} .

Theorem(Hjorth) 2.12. Assume that 0^{\sharp} exists. For any Σ_1^1 equivalence relation E, there is a largest E-thin, E-invariant Σ_2^1 subset C_E of ω^{ω} .

To summarize, we have the following table:

$\begin{array}{c} \text{Pointclass} \\ \text{of } E \end{array}$	Pointclass of the Largest Set			
	$\overline{\Sigma_1^1}$	Π_1^1	Σ_2^1	Π_2^1
Δ_1^1	×	\checkmark	\checkmark	×
Σ_1^1	×	×	$\checkmark (0^{\sharp})$	×
Π^1_1	×	×	\checkmark	×
Δ_2^1	×	×	?	×
Σ_2^1	×	×	?	×
Π^1_2	×	×	×	×

Table on the existence of a largest *E*-thin, *E*-invariant set for a definable equivalence relation E below Δ_3^1 .

The following problems are open:

Open Problems.

- Is it true or false that for any Σ₂¹ equivalence relation E, there is a largest E-thin, E-invariant subset of ω^ω?
- (2) Is it true or false that for any Δ_2^1 equivalence relation E, there is a largest E-thin, E-invariant subset of ω^{ω} ?

3. The General Case

In this chapter, we will solve the following problem negatively.

Problem. Is it true that there is always a largest *E*-thin, *E*-invariant subset of ω^{ω} for any given Π^{1}_{2n+1} equivalence relation *E*?

In Chapter 2, we solved the problem for Π_1^1 equivalence relations negatively. We constructed a Π_1^1 equivalence E for which there is no largest E-thin, Einvariant set. Using the work of Kechris and Martin in [KM1], it seems not difficult to lift our result to Π_3^1 equivalence relations. But the same argument cannot go any further without a generalization of the work in [KM1] to higher levels. It seems that Jackson has finished this generalization recently. But we can get around the difficulty by using Q-theory and the Martin-Solovay basis result for Σ_{2n+1}^1 sets. We will answer the general problem negatively in this chapter.

Before we go any further, let us fix our notation first. Let $G^{\mathfrak{X}}$ be a good universal system for the Π^1_{2n+1} sets of the Polish space \mathfrak{X} . For simplicity, let $E = G^{\omega^{\omega} \times \omega^{\omega}} \subseteq \omega \times (\omega^{\omega} \times \omega^{\omega}), A = G^{\omega^{\omega}} \subseteq \omega \times \omega^{\omega}, G = G^{\omega \times \omega \times \omega^{\omega}} \subseteq \omega \times (\omega \times \omega \times \omega^{\omega}).$ Let \overline{G} uniformize G as a subset of $(\omega \times \omega \times \omega) \times \omega^{\omega}$, i.e.,

$$\forall m, n, k [\exists x(m, n, k, x) \in G \to \exists x(m, n, k, x) \in G]$$

$$\land \forall m, n, k, x, y((m, n, k, x) \in \bar{G} \land (m, n, k, y) \in \bar{G} \to x = y).$$

We always use m,n,k,l,d,e for natural numbers and α,β,x,y,u,v for reals in this chapter. All of the other notations should be standard as in [Mo1].

We always assume Δ_{2n}^1 determinacy throughout this chapter.

Let A_l enumerate all the Π_{2n+1}^1 sets. We will use a sequence $\{x_k\}_{k\in\omega}$ of Π_{2n+1}^1 singletons to destroy the possibility of A_l being a largest *E*-thin, *E*invariant set. For each *l*, if $x_l \in A_l$, we will introduce an element *y* such that yEx_l but $y \notin A_l$. This will make A_l not invariant. If $x_l \notin A_l$, we will ensure that *x* is the only element which is *E*-equivalent to *x*. That will make A_l not the largest, since $A_l \cup \{x\}$ will be invariant if A_l is. We have to work carefully to ensure that our equivalence relation *E* is Π_{2n+1}^1 . We ensure this by using the recursion theorem and some Σ_{2n+1}^1 elementary models generated by singletons.

Since our main building blocks for our Π_{2n+1}^1 equivalence relation E are Π_{2n+1}^1 singletons, let us review a theorem of Harrington about Π_{2n+1}^1 singletons.

Theorem(Harrington) 3.1. To each real α , we can associate a real y_{2n+1}^{α} such that:

(1) For each α , y_{2n+1}^{α} is a (representative of the $\Delta_{2n+1}^{1}(\alpha)$ degree of the) first non-trivial $\Pi_{2n+1}^{1}(\alpha)$ singleton. The formula

$$H_{2n+1}(\alpha,\beta) \iff \beta = y_{2n+1}^{\alpha}$$

is Π^{1}_{2n+1} .

(2) For each α , $\alpha \leq_T y_{2n+1}^{\alpha}$, and $\alpha \leq_T \beta \to y_{2n+1}^{\alpha} \leq_T y_{2n+1}^{\beta}$. In fact, these reductions are uniform. For instance, there is total recursive $p: \omega \to \omega$

such that

$$\alpha = \{e\}^{\beta} \to y_{2n+1}^{\alpha} = \{p(e)\}^{y_{2n+1}^{\beta}}.$$

(3) For all α , β ,

$$\alpha \leq_{2n+1}^{Q} \beta \to y_{2n+1}^{\alpha} \leq_{T} y_{2n+1}^{\alpha}.$$

(4) Let

$$\mathcal{L}_{2n+1}(\alpha) = \{ y_{A,\bar{\phi}} : A \in \Delta_{2n}^1, A \neq \emptyset, \bar{\phi} \text{ is an excellent} \\ \Delta_{2n+1}^1(\alpha) \text{ scale on } A \}.$$

Then $y_{2n+1}^{\alpha} \in \mathcal{L}_{2n+1}(\alpha)$ and every real in $\mathcal{L}_{2n+1}(\alpha)$ is recursive in y_{2n+1}^{α} . In particular, y_{2n+1}^{α} is a recursive basis for $\Sigma_{2n+1}^{1}(\alpha)$, i.e., every non-empty $\Sigma_{2n+1}^{1}(\alpha)$ set contains a real recursive in y_{2n+1}^{α} .

Proof. See [KMS] \Box

Definition. Let $U \subseteq \omega \times \omega^{\omega} \times \omega \times \omega$) be a semi-recursive set universal for all semi-recursive sets of $\omega \times \omega$. Let \overline{U} uniformize U as a subset of $(\omega \times \omega^{\omega} \times \omega) \times \omega$. We will call a real x good iff

- (1) $x = (x^0, x^1),$
- (2) $x^{0}(i+1) = y_{2n+1}^{x^{0}(i)}, i.e., H_{2n+1}(x^{0}(i), x^{0}(i+1)),$ where H_{2n+1} as in the above theorem of Harrington,
- (3)

$$x^{1}(i,j,n) = \begin{cases} m & \text{if } \forall n \exists m \bar{U}(j,x^{0}(i),n,m) \text{ and } \bar{U}(j,x^{0}(i),n,m), \\ 0 & \text{if } \exists n \forall m \neg \bar{U}(j,x^{0}(i),n,m). \end{cases}$$

If x is good, then for any i, j, let $x_{i,j}$ be the real defined as following:

$$x_{i,j}(n) = m$$
 iff $x^1(i, j, n) = m$.

It is easy to see that $\{x_{i,j} : j \in \omega\} \subseteq \{y : y \leq_{\Delta_1^1} x^0(i)\}$. If x is good, let

$$M_x =_{d.f.} \{ y : y \leq_T x^0(i) \text{ for some } i \in \omega \}$$
$$(=\{x_{i,j} : \text{ for some } i, j\}.)$$

It is Π_{2n+1}^1 to say that x is good, namely, we have

Lemma 3.2. There is a Π_{2n+1}^1 formula $\phi(x)$ such that

$$\phi(x) \iff "x \text{ is good."}$$

Proof. Clear. \Box

We have a natural well-ordering among reals of M_x for any good x. For any y and z in M_x , let (i_y, j_y) be the first pair of integers such that $y = x_{i_y,j_y}$ and (i_z, j_z) be the first pair of integers such that $y = x_{i_z,j_z}$ where $x_{i,j}$ is as given in the definition of being good. Let

$$y \preceq_{M_x} z \iff (i_y, j_y) \preceq_{\omega \times \omega} (i_z, j_z).$$

It is clear that this well-ordering is recursive in x.

Lemma 3.3. If x is good, $\phi(x_0, \ldots, x_n)$ is projective, then there is an arithmetical formula $\psi(x, x_0, \ldots, x_n)$ such that

$$M_x \vDash \phi(x_0, \dots, x_n) \iff \psi(x, x_0, \dots, x_n).$$

Proof. It is easy to see that we can always replace all quantifiers over reals by quantifiers over natural numbers because any element of M_x can be recursively recovered from x. \Box

Lemma 3.4. If x is good, then $M_x \prec_{\Sigma_{2n+1}^1} \mathbf{V}$, i.e., for any Σ_{2n+1}^1 formula $\phi(x_0, \ldots, x_n)$, any $y_0, \ldots, y_n \in M_x$

$$M_x \vDash \phi(y_0, \dots, y_n) \iff \phi(y_0, \dots, y_n).$$

Proof. We use induction on the complexity of ϕ .

It is obviously true for arithmetical formulas.

Assume that it is true for all Σ_k^1 (and hence Π_k^1) formulas with k < 2n + 1. Let $\phi(x_0, \ldots, x_n) = \exists w \psi(w, x_0, \ldots, x_n)$ be Σ_{2n+1}^1 . Let $y_0, \ldots, y_n \in M_x$, if $M_x \models \phi(y_0, \ldots, y_n)$, it is clear that $\phi(y_0, \ldots, y_n)$ holds. Now, assume that $\phi(y_0, \ldots, y_n)$ holds. As y_0, \ldots, y_n is in M_x , there is an $i \in \omega$ such that $y_j \leq_T x(i)$ for $0 \leq j \leq n$. Let $D = \{w : \psi(w, y_0, \ldots, y_n)\}$, D is $\Pi_{2n}^1(x(i))$. By Martin-Solovay basis results, there is $w_0 \in D$ such that $w_0 \in \Pi_{2n+1}^1(x(i+1))$. By Harrington's theorem, $w_0 \leq_T x(i+2)$. Thus $w_0 \in M_x$. We get $M_x \models \phi(y_0, \ldots, y_n)$. \Box

Definition. Let $B \subseteq \omega \times \omega \times \omega \times \omega^{\omega}$ be the set defined as following:

- $(d, e, l, x) \in B$ iff
- (1) x is good,
- (2) $M_x \models ``\forall k < l \quad A_k$ is not the largest E_e -thin E_e -invariant set,"

(3) $\forall k < l \ G_{d,e,k} \neq \emptyset$ and st.unif. $(G_{d,e,k}) \in M_x$ where st.unif. stands for standard uniformization, i.e., $\forall k < l, \exists y \in M_x((d,e,k,y) \in \overline{G}).$

Lemma 3.5. B is Π^{1}_{2n+1} .

Proof. (2) is Π^1_{2n+1} because of Lemma 3.4. \Box

Lemma 3.6. There is a $d^* \in \omega$ such that

$$(d^*, e, l, x) \in B$$
 if and only if $(d^*, e, l, x) \in G$

Proof. This is by the recursion theorem.

From now on, let us fix this d^* . We will construct our equivalence relation by the recursion theorem again.

Definition. Let $S \subseteq \omega \times \omega^{\omega} \times \omega^{\omega}$ be defined as following:

$$(e, x, y) \in S$$
 iff

EITHER x = y,

OR for some l

(1) $x \in A_l$,

- (2) $x = \text{st.unif.}(B_{d^*,e,l}), \text{ i.e., } (d^*,e,l,x) \in \bar{G},$
- (3) $y = \text{the } \preceq_{M_x} \text{-least real in } M_x \text{ subject to the following requirements:}$

(i)
$$y \in (M_x \setminus A_l) \cap \omega^{\omega}$$

(ii)
$$\forall k < l \ y \not\!\!E_e \text{st.unif.}(G_{d^*,e,k}).$$

OR for some l

- (1) $y \in A_l$,
- (2) $y = \text{st.unif.}(B_{d^*,e,l}), \text{ i.e., } (d^*,e,l,y) \in \bar{G},$
- (3) $x = \text{the } \preceq_{M_y} \text{-least real in } M_y \text{ subject to the following requirements:}$

(i)
$$x \in (M_y \setminus A_l) \cap \omega^{\omega}$$
,

Lemma 3.7. *S* is Π^{1}_{2n+1} .

Proof. Lemma 3.4 implies that (3)'s are Π_{2n+1}^1 . All others are clearly Π_{2n+1}^1 .

By the recursion theorem again, we have the following

Lemma 3.8. There is a natural number e^* such that

$$(e^*, x, y) \in S$$
 if and only if $(e^*, x, y) \in E$.

Lemma 3.9. E_{e^*} is an equivalence relation.

Proof. Reflexity and symmetry are clear from our definition.

Let

$$r_k = \begin{cases} \text{st.unif.}(G_{d^*,e^*,k}), & \text{if } G_{d^*,e^*,k} \neq \emptyset \\ 0, & \text{otherwise.} \end{cases}$$

Actually, we will show that $G_{d^*,e^*,k} \neq \emptyset$ for all $k \in \omega$ later in this chapter.

We will next show that E_{e^*} is transitive. Assume $xE_{e^*}y$, and $yE_{e^*}z$.

Case 1: x = y or y = z, it is obviously true.

Case 2: $x \neq y$ and $y \neq z$. From the construction, our E_{e^*} has the following properties:

- (1) No E_{e^*} -equivalence class has more than two elements.
- (2) If $xE_{e^*}y$, then either x = y or exactly th of x and y must be a r_k for some $k \in \omega$.

Subcase 2.1: y is a Π_{2n+1}^1 singleton. In this case, both x and z cannot be Π_{2n+1}^1 singletons. So,

x = y = the \leq_{M_y} -least element subject to the same requirements.

Subcase 2.2: y is not a Π_{2n+1}^1 singleton. In this case, x and z are Π_{2n+1}^1 singletons. Assume that $x \neq z$, towards a contradiction. Suppose l_x and l_y are the corresponding l in our construction of E_{e^*} , $l_x \neq l_y$ since x and y are uniquely determined by (d^*, e^*, l_x) and (d^*, e^*, l_y) respectively. Without loss of generality, we assume that $l_x < l_y$. From the construction, $x = \text{st.unif.}(B_{d^*,e^*,l_x})$ and $y = \text{st.unif.}(B_{d^*,e^*,l_y})$. As $l_x < l_y$, from the construction of B, we know that st.unif. $(B_{d^*,e^*,l_x}) \in M_y$. Now, we get a Π_{2n+1}^1 singleton $x = r_{l_x} \in M_y$ such that $(z, x) \in E_{e^*}$, which contradicts with the assumption $yE_{e^*}z$ and $y \neq z$. \Box

Theorem 3.10. Assuming Δ_{2n}^1 determinacy, there is no largest E_{e^*} -thin, E_{e^*} -invariant set for the Π_{2n+1}^1 equivalence relation E_{e^*} .

Proof. Let $A \subseteq \omega \times \omega^{\omega}$ universal for Π^1_{2n+1} sets as fixed at the beginning. By

induction on l, we will show that for all l,

- (1) $G_{d^*,e^*,l} \neq \emptyset$,
- (2) for any good x, if $r_l \in M_x$, then

 $M_x \vDash$ "A_l is NOT the largest E_{e^*} -thin, E_{e^*} -invariant set,"

(3) A_l is NOT the largest E_{e^*} -thin, E_{e^*} -invariant set.

Assume (1), (2) and (3) for all k < l. Now, we will show that they are still true when k = l.

(1) It is clear because any good x such that $x_i \in M_x$ for all $0 \le i < l$ is an element of $G_{d^*,e^*,l}$, where $x_i = \text{st.unif.}(G_{d^*,e^*,i})$.

(2) Let x be a good real and $r_l \in M_x$. Let us work in M_x . If $r_l \notin A_l$ $(= A_l^{M_x}), [r_l]_{E_{e^*}} = \{r_l\}$. So, $A_l \cup \{r_l\}$ is E_{e^*} -thin, E_{e^*} -invariant but larger than A_l . Thus, we have

 $M_x \vDash$ "A_l is NOT the largest E_{e^*} -thin, E_{e^*} -invariant set."

If $r_l \in A_l$, as $\mathbf{V} \models \exists y (y \notin A_l \land y \not \models_{e^*} r_0 \land \dots \land y \not \models_{e^*} r_{l-1})$ and $M_x \prec_{\Sigma_{2n+1}^1} \mathbf{V}$, there must be such y in M_x . Thus $M_x \models ``A_l$ is not E_{e^*} -invariant." Thus,

 $M_x \vDash$ "A_l is NOT the largest E_{e^*} -thin, E_{e^*} -invariant set."

(3) It is similar with (2) but simpler. \Box

Let us give a summary of the relative results before we finish this chapter.

In [Ke1], Kechris proved the following

Theorem (Kechris) 3.11. Assume $Det(\Delta_2^1)$, let E be a Π_3^1 equivalence relation on ω^{ω} . If $A \subseteq \omega^{\omega}$ is Π_3^1 and E-thin, then for each $x_0 \in A$, there is an $A_0 \Delta_3^1$ in an ordinal smaller than $\kappa_1^{x_0}$ such that

$$x_0 \in A_0 \subseteq [x_0]_E \cap A.$$

For a $\Pi_3^1 E$, if we let

 $C_E = \{ x : \exists S(S \text{ is } \Delta_3^1 \text{ in an ordinal smaller than } \kappa_1^x \text{ and } x \in S \subseteq [x]_E) \}.$

A is an *E*-thin Π_3^1 set which contains every *E*-thin Π_3^1 subsets of ω^{ω} . So, there is a largest *E*-thin Π_3^1 subset of ω^{ω} .

Let

$$C_4(E) = \{ x : \exists S(S \text{ is } \Delta_3^1 \text{ in a ordinal} < \kappa_3^1 \land x \in S \subseteq [x]_E) \}.$$

In [Ke1], Kechris observed that this $C_4[E]$ is the largest *E*-thin, *E*-invariant Σ_4^1 set for the Π_3^1 equivalence relation *E*. Hence we have the following

Theorem (Kechris) 3.12. For any Π_3^1 equivalence relation E on a product space \mathfrak{X} , there is a largest E-thin, E-invariant Σ_4^1 set which contains every E-thin, E-invariant Σ_4^1 subset of \mathfrak{X} .

If E is actually Δ_3^1 , Kechris also noticed the following

Theorem(Kechris) 3.13. For any Δ_3^1 equivalence relation E on a product space \mathfrak{X} , there is a largest E-thin, E-invariant Π_3^1 set.

The largest E-thin, E-invariant set mentioned above can be defined as

$$C_3(E) = \bigcup \{C : C \text{ is an } E \text{-equivalence class}$$

 $\land \forall x \in C(C \text{ is } \Delta_3^1 \text{ in an ordinal smaller than } \kappa_1^x) \}.$

A similar construction as in Chapter 2 would give us a Σ_3^1 equivalence relation E on ω^{ω} for which there is no largest E-thin, E-invariant Π_3^1 set. Also, we can construct a Π_4^1 equivalence relation E on ω^{ω} for which there is no largest E-thin, E-invariant Σ_4^1 set.

Hence, we have the following table:

$\begin{array}{c} \text{Pointclass} \\ \text{of } E \end{array}$	Pointclass of the Largest Set			
	$\overline{\Sigma^1_3}$	Π_3^1	Σ_4^1	Π_4^1
Δ_3^1	×	\checkmark	\checkmark	×
Σ_3^1	×	×	?	×
Π^1_3	×	×	\checkmark	×
Δ^1_4	×	×	?	×
Σ^1_4	×	×	?	×
Π^1_4	×	×	×	×

Table on the existence of a largest *E*-thin, *E*-invariant set for a definable equivalence relation *E* below Δ_5^1 .

The following problems are open:

Open Problems.

(1) Is it true or false that for any Σ_4^1 equivalence relation E, there is a largest

E-thin, E-invariant subset of ω^{ω} including all E-thin, E-invariant Σ_4^1

subset of ω^{ω} ?

- (2) Is it true or false that for any Δ¹₄ equivalence relation E, there is a largest E-thin, E-invariant subset of ω^ω including all E-thin, E-invariant Σ¹₄ subset of ω^ω?
- (3) Is it true or false that for any Σ₃¹ equivalence relation E, there is a largest E-thin, E-invariant subset of ω^ω including all E-thin, E-invariant Σ₄¹ subset of ω^ω?

In the most general case, we know less than in the case of the third and fourth levels. The following is a table which summarizes what we know right

now. Pointclass of <i>E</i>	Pointclass of the Largest Set				
	$\overline{\Sigma^1_{2n+1}}$	Π^{1}_{2n+1}	Σ^1_{2n+2}	Π^1_{2n+2}	
Δ^1_{2n+1}	×	?	?	×	
Σ^1_{2n+1}	×	×	?	×	
Π^1_{2n+1}	×	×	?	×	
Δ^1_{2n+2}	×	×	?	×	
Σ^1_{2n+2}	×	×	?	×	
Π^1_{2n+2}	×	×	×	×	

Table on the existence of a largest *E*-thin, *E*-invariant set for a definable equivalence relation *E* below Δ_{2n+3}^1 .

The following problem is open:

Open Problems.

(1) Is it true or false that for any Σ_{2n+2}^1 equivalence relation E, there is a

largest E-thin, E-invariant subset of ω^{ω} ?

- (2) Is it true or false that for any Δ¹_{2n+2} equivalence relation E, there is a largest E-thin, E-invariant subset of ω^ω?
- (3) Is it true or false that for any Σ¹_{2n+1} equivalence relation E, there is a largest E-thin, E-invariant subset of ω^ω?
- (4) Is it true or false that for any Δ¹_{2n+1} equivalence relation E, there is a largest E-thin, E-invariant subset of ω^ω?
- (5) Is it true or false that for any Π¹_{2n+1} equivalence relation E, there is a largest E-thin, E-invariant subset of ω^ω?

4. Σ_3^1 , Π_3^1 and Δ_3^1 in the Codes Subsets of u_{ω}

In this chapter, we will prove some technical lemmas on Σ_3^1 , Π_3^1 and Δ_3^1 in the codes subsets of u_{ω} . On one hand results about the Σ_3^1 in the codes, Π_3^1 in the codes and Δ_3^1 in the codes sets are close relatives of results about the third level of the analytical hierarchy on real numbers. On the other hand, they can be considered as the Π_1^1 , Σ_1^1 and Δ_1^1 subsets of $\langle u_{\omega}, <, \{u_n\}\rangle$ under the full determinacy. Even without AD, they often look like sets of the first level of the analytical hierarchy. All of the results in this chapter should be considered as folklore or direct generalizations of the classical results. However, we have to be careful when we generalize the classical results to this context. We collect here some results we will use later on to prove our theorem in Chapter 6 because it is not easy to find them in the literature. To fully investigate the analytical hierarchy on u_{ω} , the full determinacy is required to code all subsets of u_{ω} . We do not deal with it here. [Ke1] is a good reference for the related results, while [Ke2] is a good reference for the analytical hierarchy over \aleph_1 .

We assume Δ_2^1 determinacy from now on. Harrington showed that Π_1^1 determinacy implies that $\forall x \in \omega^{\omega}(x^{\sharp} \text{ exists})$, so, we have all the sharps for reals available. We adopt the standard coding system for the ordinals smaller than u_{ω} as in [KM1].

Let $w \in WO_{\omega}$ if and only if $w = \langle n, x^{\sharp} \rangle$ for some $n \in \omega, x \in \omega^{\omega}$. For any

 $w \in WO_{\omega}$, if $w = \langle n, x^{\sharp} \rangle$, let

$$|w| = \tau_n^{L[x]}(u_1, \cdots, u_{k_n}),$$

where u_{α} is the α^{th} uniform indiscernible and τ_n is the n^{th} term in a recursive enumeration of all terms in the language of $ZF + \mathbf{V} = \mathbf{L}[\dot{x}]$ always taking ordinal values. From Solovay's theorem, $u_{\omega} = \{|w| : w \in WO_{\omega}\}$.

For any w_1 , w_2 in WO_{ω}, we say $w_1 \sim_{\omega} w_2$ if and only if $|w_1| = |w_2|$. It is clear that \sim_{ω} is an equivalence relation. We call $P(w, x) \sim_{\omega}$ -invariant on w if and only if for any w_1 , w_2 in WO_{ω}, and x in ω^{ω} , if $w_1 \sim_{\omega} w_2$ and $P(w_1, x)$, then $P(w_2, x)$.

The following theorem is essential for getting results in the third level of the analytic hierarchy, and is the cornerstone of our results in this chapter too.

Theorem (Kechris and Martin) 4.1. Assuming Δ_2^1 determinacy, if P(w, x)is Π_3^1 and \sim_{ω} -invariant on w and $\exists w \in WO_{\omega}P(w, x)$, then $\exists w \in WO_{\omega} \cap \Delta_3^1(x)P(w, x)$.

Proof. See [KM1]. \Box

Corollary 4.2. Assuming Δ_2^1 determinacy, if P(w, x) is \sim_{ω} -invariant on wand Π_3^1 , and $R(w, x) \iff \exists w \in WO_{\omega}P(w, x)$, then R(w, x) is also Π_3^1 .

Let

$$\mathfrak{X}^{m,n,k} = u_{\omega}^{m} \times (\omega^{\omega})^{n} \times \omega^{k} = \underbrace{u_{\omega} \times \cdots \times u_{\omega}}^{m \text{ times}} \times \underbrace{\omega^{\omega} \times \cdots \times \omega^{\omega}}^{n \text{ times}} \times \underbrace{\omega^{k \text{ times}}}_{\omega \times \cdots \times \omega}^{k \text{ times}}$$

For $A \subseteq \mathfrak{X}^{m,n,k}$, let

$$A^* = \{ (x_1, \cdots, x_m, y_1, \cdots, y_n, i_1, \cdots, i_k) : x_1, \cdots, x_n \in WO_\omega; y_1, \cdots, y_n \in \omega^\omega;$$
$$i_1, \cdots, i_k \in \omega \text{ and } (|x_1|, \cdots, |x_m|, y_1, \cdots, y_n, i_1, \cdots, i_k) \in A \}$$

be the pullback of A under the coding map given by the uniform indiscernibles and Skolem terms at the beginning of this chapter.

For notational simplicity, we will use \vec{x} for x_1, \dots, x_n, \vec{y} for y_1, \dots, y_m, \vec{i} for i_1, \dots, i_k and $\vec{\alpha}$ for $\alpha_1, \dots, \alpha_m$. We use $\vec{x} \in WO_{\omega}$ to express $x_1 \in WO_{\omega}, \dots, x_m \in WO_{\omega}$. We also use \mathbf{x} and $\boldsymbol{\alpha}$ to represent $(\vec{x}, \vec{y}, \vec{i})$ and $(\vec{\alpha}, \vec{y}, \vec{i})$ respectively to simplify the notation further, if it is clear from the context. We write $|\vec{x}|$ to mean $(|x_1|, \dots, |x_m|)$.

Definition. For $A \subseteq \mathfrak{X}^{m,n,k}$, we call $A \Sigma_3^1 (\Pi_3^1, \Sigma_3^1(x), \Pi_3^1(x), \Delta_3^1, \Delta_3^1(x))$ in the codes if and only if $A^* \subseteq \mathfrak{X}^{0,m+n,k}$ is $\Sigma_3^1 (\Pi_3^1, \Sigma_3^1(x), \Pi_3^1(x), \Delta_3^1, \Delta_3^1(x))$ respectively).

We will use $\Sigma_3^1(\mathfrak{X}^{m,n,k})$ ($\Pi_3^1(\mathfrak{X}^{m,n,k})$, $\Sigma_3^1(x,\mathfrak{X}^{m,n,k})$, $\Pi_3^1(x,\mathfrak{X}^{m,n,k})$, $\Delta_3^1(\mathfrak{X}^{m,n,k})$, $\Delta_3^1(x,\mathfrak{X}^{m,n,k})$ respectively) to represent the corresponding pointclasses.

It is easy to see the following

Lemma 4.3.

(1) $\Sigma_3^1(\mathbf{X}^{m,n,k})$, $\Pi_3^1(\mathbf{X}^{m,n,k})$ and $\Delta_3^1(\mathbf{X}^{m,n,k})$ are closed under $\wedge, \vee, \exists^{u_{\omega}}, \forall^{u_{\omega}}$. Moreover, $\Sigma_3^1(\mathbf{X}^{m,n,k})$ is closed under $\exists^{\omega^{\omega}}, \Pi_3^1(\mathbf{X}^{m,n,k})$ is closed

under ∀^{ω^ω} and
Δ¹₃(𝔅^{m,n,k}) is closed under ¬.
(2) Σ¹₃(𝔅^{m,n,k}) and Π¹₃(𝔅^{m,n,k}) are ω-parametrized.

Proof.

- By Lemma 4.1, Σ¹₃(𝔅^{m,n,k}) is closed under ∀^{uω} and Π¹₃(𝔅^{m,n,k}) is closed under ∃^{uω}. All of the others are trivial.
- (2) Let $U_0 \subseteq \omega \times \mathfrak{X}^{0,m+n,k}$ be a universal Σ_3^1 set for all Σ_3^1 subsets of $\mathfrak{X}^{0,m+n,k}$. Let

$$U_1 = \{ (n, \vec{x}, \vec{y}, \vec{i}) : \vec{x} \in WO_\omega \},\$$

which is Δ_3^1 . Let

$$U_{2} = \{ (n, \vec{x}, \vec{y}, \vec{i}) : (n, \vec{x}, \vec{y}, \vec{i}) \in U_{1} \land \exists \vec{x}' (\vec{x}' \in WO_{\omega} \land |\vec{x}'| = |\vec{x}| \land (n, \vec{x}, \vec{y}, \vec{i}) \in U_{1}) \}.$$

Let

$$W = \{ (n, \vec{\alpha}, \vec{y}, \vec{i}) : \exists \vec{x} \in WO_{\omega} (\vec{\alpha} = |\vec{x}|) \land (n, \vec{x}, \vec{y}, \vec{i}) \in U_2 \}.$$

It is easy to check that W is $\Sigma_3^1(\mathfrak{X}^{m,n,k})$ and universal for all $\Sigma_3^1(\mathfrak{X}^{m,n,k})$ subsets of $\mathfrak{X}^{m,n,k}$.

It is similar to prove that $\Pi_3^1(\mathfrak{X}^{m,n,k})$ is ω -parametrized.

Remark. Similar facts hold for the pointclasses $\Sigma_3^1(x, \mathbf{X}^{m,n,k})$, $\Pi_3^1(x, \mathbf{X}^{m,n,k})$ and

$$\Delta_3^1(x, \mathfrak{X}^{m,n,k})$$
 also.

Definition. Let $\alpha \in u_{\omega}$, we call $A \subseteq \mathfrak{X}^{m,n,k} \Sigma_3^1$ in α in the codes $(\Pi_3^1 \text{ in } \alpha \text{ in}$ the codes respectively) if and only if $A^* \subseteq \mathfrak{X}^{0,m+n,k}$ is "uniformly" $\Sigma_3^1(x)$ ($\Pi_3^1(x)$ respectively) for all x such that $|x| = \alpha$, i.e., there is a Σ_3^1 (*pth* respectively) $B \subseteq \mathfrak{X}^{0,m+n+1,k}$ such that for all x coding α , for all $x_1, \dots, x_m, y_1, \dots, y_n$ in ω^{ω} and i_1, \dots, i_k in ω ,

$$(x_1, \cdots, x_m, y_1, \cdots, y_n, i_1, \cdots, i_k) \in A^*$$
$$\iff (x_1, \cdots, x_m, y_1, \cdots, y_n, x, i_1, \cdots, i_k) \in B.$$

We will use $\Sigma_3^1(\alpha, \mathbf{X}^{m,n,k})$ ($\Pi_3^1(\alpha, \mathbf{X}^{m,n,k})$, $\Delta_3^1(\alpha, \mathbf{X}^{m,n,k})$ respectively) to represent the corresponding pointclasses.

We will use ${}^*\Sigma_3^1(\mathfrak{X}^{m,n,k})$ (* $\Pi_3^1(\mathfrak{X}^{m,n,k})$, * $\Delta_3^1(\mathfrak{X}^{m,n,k})$ respectively)to represent

$$\bigcup_{\alpha \in WO_{\omega}} \Sigma_{3}^{1}(\alpha, \mathfrak{X}^{m,n,k}) (\bigcup_{\alpha \in WO_{\omega}} \Pi_{3}^{1}(\alpha, \mathfrak{X}^{m,n,k}), \bigcup_{\alpha \in WO_{\omega}} \Delta_{3}^{1}(\alpha, \mathfrak{X}^{m,n,k})$$
respectively).

It is easy to see that for any $A \subseteq \mathfrak{X}^{m,n,k}$, A is $\Sigma_3^1(\alpha)(\Pi_3^1(\alpha) \text{ or } \Delta_3^1(\alpha))$ in the codes iff there is a $\Sigma_3^1(\Pi_3^1 \text{ or } \Delta_3^1 \text{ respectively})$ in the codes $B \subseteq u_\omega \times \mathfrak{X}^{m,n,k}$ such that $A = B_\alpha = \{(\vec{\alpha}, \vec{y}, \vec{i}) : (\alpha, \vec{\alpha}, \vec{y}, \vec{i}) \in B)\}.$

As usual, we have

Lemma 4.4.

(1) Σ¹₃(α, X^{m,n,k}), Π¹₃(α, X^{m,n,k}) and Δ¹₃(α, X^{m,n,k}) are closed under ∧, ∨,
∃^{u_ω}, ∀^{u_ω}. Moreover, Σ¹₃(α, X^{m,n,k}) is closed under ∃^{ω^ω}, Π¹₃(α, X^{m,n,k}) is closed under ∀^{ω^ω} and Δ¹₃(α, X^{m,n,k}) is closed under ¬.

(2) $\Sigma_3^1(\alpha, \mathbf{X}^{m,n,k})$ and $\Pi_3^1(\alpha, \mathbf{X}^{m,n,k})$ are ω -parametrized.

Remark. The relativized version holds as well.

Lemma 4.5. $^*\Sigma_3^1(\mathfrak{X}^{m,n,k})$ and $^*\Pi_3^1(\mathfrak{X}^{m,n,k})$ are u_{ω} -parametrized, i.e., there are Σ_3^1 in the codes $U \subseteq u_{\omega} \times \mathfrak{X}^{m,n,k}$ and Π_3^1 in the codes $V \subseteq u_{\omega} \times \mathfrak{X}^{m,n,k}$ such that for any $\Sigma_3^1(\alpha)$ in the codes $A \subseteq \mathfrak{X}^{m,n,k}$ and $\Pi_3^1(\alpha)$ in the codes $B \subseteq \mathfrak{X}^{m,n,k}$, there are $\beta_0, \beta_1 \in u_{\omega}$ with

$$A = U_{\beta_0} = \{ (\vec{\alpha}, \vec{y}, \vec{i}) : (\beta_0, \vec{\alpha}, \vec{y}, \vec{i}) \in U \}$$
$$A = V_{\beta_1} = \{ (\vec{\alpha}, \vec{y}, \vec{i}) : (\beta_1, \vec{\alpha}, \vec{y}, \vec{i}) \in V \}.$$

Proof. Let $f: u_{\omega} \times \omega \to u_{\omega}$ be a Δ_3^1 in the codes bijection between $u_{\omega} \times \omega$ and u_{ω} . Let $W \subseteq \omega \times \mathfrak{X}^{m+1,n,k}$ be a Σ_3^1 in the codes set universal for all Σ_3^1 in the codes sets of $u_{\omega} \times \mathfrak{X}^{m,n,k}$. Let $U \subseteq u_{\omega} \times \mathfrak{X}^{m,n,k}$ be defined as the following

$$(\alpha, \vec{\alpha}, \vec{y}, \vec{i}) \in U \iff ((f^{-1}(\alpha))_0, (f^{-1}(\alpha))_1, \vec{\alpha}, \vec{y}, \vec{i}) \in W.$$

It is easy to check that U works.

We can define V in a similar way. \Box

Sometimes, we need a better parametrization for the *-pointclasses. We have the following refinement.

Lemma (The Good Parametrization Lemma) 4.6. We can associate with each space $\mathfrak{X}^{m,0,k}$ a Σ_3^1 in the codes set $G^{m,k} \subseteq u_\omega \times \mathfrak{X}^{m,0,k}$ and a Π_3^1 in the codes set $H^{m,k} \subseteq u_{\omega} \times \mathfrak{X}^{m,0,k}$ such that

- (1) $G^{m,k}$ is universal for all $\Sigma_3^1(\mathfrak{X}^{m,0,k})$ sets and $H^{m,k}$ is universal for all $\Pi_3^1(\mathfrak{X}^{m,0,k})$ sets,
- (2) for $P \subseteq \mathfrak{X}^{m,0,k}$,

$$P \in \Sigma_3^1(\mathfrak{X}^{m,0,k}) \iff \exists n \in \omega(P = G_n^{m,k})$$
$$P \in \Pi_3^1(\mathfrak{X}^{m,0,k}) \iff \exists n \in \omega(P = H_n^{m,k}),$$

(3) for each m₁,m₂ k₁, k₂ in ω, there are a Δ¹₃ in the codes (which means that the pullback of the graph is Δ¹₃) s^{m₁,m₂,k₁,k₂} : u_ω × X^{m₁,0,k₁} → u_ω and s^{m₁,m₂,k₁,k₂} : u_ω × X^{m₁,0,k₁} → u_ω so that for each (α, i) ∈ X^{m₁,0,k₁}, (β, j) ∈ X^{m₂,0,k₂} and ε ∈ u_ω,
G<sup>m₁+m₂,k₁+k₂(ε, α, β, i, j) ⇔ G^{m₂,k₂}(s<sup>m₁,m₂,k₁,k₂(ε, α, i), β, j), H<sup>m₁+m₂,k₁+k₂(ε, α, β, i, j) ⇔ H^{m₂,k₂}(s<sup>m₁,m₂,k₁,k₂(ε, α, i), β, j), and if (ε, α, i) ∈ ω^{m₁+k₁+1}, then s<sup>m₁,m₂,k₁,k₂(ε, α, i) ∈ ω.
</sup></sup></sup></sup></sup>

Proof. We will prove the Σ_3^1 part of this lemma, i.e., we will construct the $G^{m,k}$ only. The Π_3^1 part can be proved similarly.

Let $h: u_{\omega} \times u_{\omega} \to u_{\omega}$ be a Δ_3^1 in the codes bijection between $u_{\omega} \times u_{\omega}$ and u_{ω} such that

- (1) $h[\omega \times \omega] = \omega$
- (2) there are $\Delta_3^1 h_1 : u_\omega \to u_\omega$ and $h_2 : u_\omega \to \omega$ decoding h, i.e., if $h(\alpha, n) = \beta$, then $h_1(\beta) = \alpha$ and $h_2(\beta) = n$.

Let $U \subseteq \omega \times u_{\omega} \times \mathfrak{X}^{m,0,k}$ parametrize $\Sigma_3^1(u_{\omega} \times \mathfrak{X}^{m,0,k})$. Let

$$G^*(\alpha, \vec{\alpha}, \vec{i}) = U(h_2(\alpha), h_1(\alpha), \vec{\alpha}, \vec{i}).$$

It is easy to check that G^* satisfies (1) and (2). So, we can always assume that we have a parameterization system satisfying (1) and (2).

For $\mathfrak{X}^{m,0,k}$, fix $\pi_{m,k} \colon u_{\omega} \times \mathfrak{X}^{m,0,k} \to u_{\omega}$ a recursive in the codes bijection such that $\pi_{m,k}[\mathfrak{X}^{0,0,m+k+1}] \subseteq \omega$ and let $V \subseteq u_{\omega} \times u_{\omega} \times u_{\omega}$ be Σ_3^1 in the codes and universal for the $*\Sigma_3^1(u_{\omega} \times u_{\omega})$ subsets of $u_{\omega} \times u_{\omega}$ so that (1) and (2) hold. Define $G^{m,k} \subseteq u_{\omega} \times \mathfrak{X}^{m,0,k}$ by

$$G^{m,k}(\varepsilon, \vec{\alpha}, \vec{i}) \iff V((\varepsilon)_0, (\varepsilon)_1, \pi_{m,k}((\varepsilon)_2, \vec{\alpha}, \vec{i})).$$

It is clear that $G^{m,k}$ is Σ_3^1 in the codes. \Box

Claim. $G^{m,k}$ is universal for the ${}^*\Sigma^1_3(\mathfrak{X}^{m,0,k})$ sets and satisfies (2).

Proof of the claim. Suppose $Q \subseteq \mathfrak{X}^{m,0,k}$ is $*\Sigma_3^1(\mathfrak{X}^{m,0,k})$, let

$$Q'(\alpha,\beta) \iff Q(p_{m,k}(\pi_{m,k}^{-1}(\beta))),$$

where $p_{m,k}: u_{\omega} \times \mathfrak{X}^{m,0,k} \to \mathfrak{X}^{m,0,k}$ is the projection map on $\mathfrak{X}^{m,0,k}$. Now, Q'is $*\Sigma_3^1(u_{\omega} \times u_{\omega})$. For any α , taking $\beta = \pi_{m,k}(\alpha, \vec{\alpha}, \vec{i})$, we have

$$Q(\vec{\alpha}, \vec{i}) \iff Q'(\alpha, \pi_{m,k}(\alpha, \vec{\alpha}, \vec{i}))$$
$$\iff V(\varepsilon, \alpha, \pi_{m,k}(\alpha, \vec{\alpha}, \vec{i}))$$
$$\iff G^{m,k}(\langle \varepsilon, \alpha, \alpha \rangle, \vec{\alpha}, \vec{i}).$$

If Q is Σ_3^1 in the codes, Q' is also Σ_3^1 in the codes, by our selection of V, we can choose $\varepsilon \in \omega$ above. If we choose $\alpha \in \omega$ too, we get $\varepsilon^* = \langle \varepsilon, \alpha, \alpha \rangle \in \omega$ and

$$Q(\vec{\alpha}, \vec{i}) \iff G^{m,k}(\varepsilon^*, \vec{\alpha}, \vec{i}).$$

Claim. $\{G^{m,k}\}_{m,k\in\omega}$ satisfies (3).

Proof of the claim. Fix $\mathfrak{X}^{m_1,0,k_1} = \{(\vec{\alpha},\vec{i}) : (\vec{\alpha},\vec{i}) \in \mathfrak{X}^{m_1,0,k_1}\}$ and $\mathfrak{X}^{m_2,0,k_2} = \{(\vec{\beta},\vec{j}) : (\vec{\beta},\vec{j}) \in \mathfrak{X}^{m_2,0,k_2}\}$. We will try to construct a Δ_3^1 in the codes $s_{\Sigma}^{m_1,m_2,k_1,k_2} : u_{\omega} \times \mathfrak{X}^{m,0,k} \to u_{\omega}$ so that

$$G^{m_1+m_2,k_1+k_2}(\varepsilon,\vec{\alpha},\vec{\beta},\vec{i},\vec{j}) \iff G^{m_2,k_2}(s_{\Sigma}^{m_1,m_2,k_1,k_2}(\varepsilon,\vec{\alpha},\vec{i}),\vec{\beta},\vec{j}).$$

Put

$$P(\alpha,\beta) \iff$$

(*)
$$G((\alpha)_0, f_0(p_{m_1,k_1}(\pi_{m_1,k_1}^{-1}((\alpha)_1)), f_0(p_{m_2,k_2}(\pi_{m_1,k_2}^{-1}((\alpha)_2))),$$

 $f_1(p_{m_1,k_1}(\pi_{m_1,k_1}^{-1}((\alpha)_1)), f_1(p_{m_2,k_2}(\pi_{m_1,k_2}^{-1}((\alpha)_2))),$ where $f_0: \mathfrak{X}^{m,0,k} \to \mathfrak{X}^{m,0,0}$ is defined as $f_0(\vec{\alpha}, \vec{i}) = \vec{\alpha}$, and $f_1: \mathfrak{X}^{m,0,k} \to \mathfrak{X}^{0,0,k}$ is defined as $f_1(\vec{\alpha}, \vec{i}) = \vec{i}$. Now, P is Σ_3^1 in the codes, so there must be a $\varepsilon^* \in \omega$ such that

(**)
$$P(\alpha,\beta) \iff V(\varepsilon^*,\alpha,\beta).$$

For arbitrary ε , $(\vec{\alpha}, \vec{i}) \in \mathfrak{X}^{m_1, 0, k_1}, (\vec{\beta}, \vec{j}) \in \mathfrak{X}^{m_2, 0, k_2}$, let $\alpha = \langle \varepsilon, \pi_{m_1, k_1}(\varepsilon, \vec{\alpha}, \vec{i}) \rangle$, $\beta = \pi_{m_2, k_2}(\varepsilon, \vec{\beta}, \vec{j})$, substituting in (*) and (**), we get

$$\begin{aligned} G^{m_1+m_2,k_1+k_2}(\varepsilon,\vec{\alpha},\vec{\beta},\vec{i},\vec{j}) \iff P(\langle \varepsilon,\pi_{m_1,k_1}(\varepsilon,\vec{\alpha},\vec{i})\rangle,\pi_{m_2,k_2}(\varepsilon,\vec{\beta},\vec{j})) \\ \iff V(\varepsilon^*,\langle \varepsilon,\pi_{m_1,k_1}(\varepsilon,\vec{\alpha},\vec{i})\rangle,\pi_{m_2,k_2}(\varepsilon,\vec{\beta},\vec{j})), \end{aligned}$$

then by the definition of G^{m_2,k_2} , we have that

$$\begin{split} G^{m_1+m_2,k_1+k_2}(\varepsilon,\vec{\alpha},\vec{\beta},\vec{i},\vec{j}) &\iff G^{m_2,k_2}(\langle\varepsilon^*,\langle\varepsilon,\pi_{m_1,k_1}(\varepsilon,\vec{\alpha},\vec{i})\rangle,\varepsilon\rangle,\vec{\beta},\vec{j}). \\ \text{Let } s_{\Sigma}^{m_1,m_2,k_1,k_2}(\varepsilon,\vec{\alpha},\vec{i}) &= \langle\varepsilon^*,\langle\varepsilon,\pi_{m_1,k_1}(\varepsilon,\vec{\alpha},\vec{i})\rangle,\varepsilon\rangle, \text{ from the argument above,} \\ s_{\Sigma}^{m_1,m_2,k_1,k_2} \text{ is just what we want.} \quad \Box \end{split}$$

The following effective recursion theorem is the main tool we used in the next section to construct the Π_3^1 in the codes equivalence relation e on u_{ω} .

Lemma (Effective Recursion Theorem) 4.7. Let $\{G^{m,k}\}_{m,k\in\omega}$ and

 $\{H^{m,k}\}_{m,k\in\omega}$ be the good parametrization system given by the last lemma.

(1) For any Σ_3^1 (or Π_3^1) in the codes subset A of $u_{\omega} \times \mathfrak{X}^{m,0,k}$, there is an $\varepsilon \in u_{\omega}$ such that

$$A(\varepsilon, \vec{\alpha}, \vec{i}) \iff G^{m,k}(\varepsilon, \vec{\alpha}, \vec{i}),$$

(or

$$A(\varepsilon, \vec{\alpha}, \vec{i}) \iff H^{m,k}(\varepsilon, \vec{\alpha}, \vec{i}),$$

respectively).

(2) For any Σ_3^1 (or Π_3^1) in the codes subset A of $\omega \times \mathfrak{X}^{m,0,k}$, there is an $\varepsilon \in \omega$ such that

$$A(\varepsilon, \vec{\alpha}, \vec{i}) \iff G^{m,k}(\varepsilon, \vec{\alpha}, \vec{i}),$$

(or

$$A(\varepsilon, \vec{\alpha}, \vec{i}) \iff H^{m,k}(\varepsilon, \vec{\alpha}, \vec{i}),$$

respectively).

Proof. This can be proved by the classical diagonal method. We will prove the Σ_3^1 part only because the proof of the other part is similar.

(1) Let $A \subseteq u_{\omega} \times \mathfrak{X}^{m,0,k}$ is $*\Sigma_3^1$ in the codes. We define for $(\vec{\alpha}, \vec{i}) \in \mathfrak{X}^{m,0,k}$ and $\eta \in u_{\omega}$,

$$B(\eta, \vec{\alpha}, \vec{i}) \iff A(s^{1,0,m,k}(\eta, \eta), \vec{\alpha}, \vec{i}).$$

As A is Σ_3^1 in the codes, so is B, hence, for some $\varepsilon_B \in u_{\omega}$, one has

$$B(\varepsilon, \vec{\alpha}, \vec{i}) \iff G^{m+1,k}(\varepsilon_B, \varepsilon, \vec{\alpha}, \vec{i}).$$

Let $\varepsilon = s_{\Sigma}^{1,0,m,k}(\varepsilon_B, \varepsilon_B)$, we claim ε works, as

 $\begin{array}{ll} A(\varepsilon,\vec{\alpha},\vec{i}) \iff A(s_{\Sigma}^{1,0,m,k}(\varepsilon_{B},\varepsilon_{B}),\vec{\alpha},\vec{i}) & \text{by the definition of } \varepsilon \\ \iff B(\varepsilon_{B},\vec{\alpha},\vec{i}) & \text{by the definition of } B \\ \iff G^{m+1,k}(\varepsilon_{B},\varepsilon_{B},\vec{\alpha},\vec{i}) & \text{by the definition of } s_{\Sigma}^{1,0,m,k} \\ \iff G^{m,k}(\varepsilon,\vec{\alpha},\vec{i}) & \text{by the definition of } \varepsilon. \end{array}$

(2) Let $A \subseteq \omega \times \mathfrak{X}^{m,0,k}$ is Σ_3^1 in the codes. We define for $(\vec{\alpha}, \vec{i}) \in \mathfrak{X}^{m,0,k}$ and $n \in \omega$,

$$B(n, \vec{\alpha}, \vec{i}) \iff A(s^{0,1,m,k}(n,n), \vec{\alpha}, \vec{i}).$$

As A is Σ_3^1 in the codes, so is B, hence, for some $\varepsilon_B \in u_{\omega}$, one has

$$B(n, \vec{\alpha}, \vec{i}) \iff G^{m,k+1}(\varepsilon_B, \vec{\alpha}, n, \vec{i}).$$

Let $\varepsilon = s_{\Sigma}^{0,1,m,k}(\varepsilon_B, \varepsilon_B)$, from the definition of $s_{\Sigma}^{0,1,m,k}$, $\varepsilon \in \omega$. It is similar to show that ε works.

Lemma (Spector-Gandy Theorem for Π_3^1 , Becker and Kechris) 4.8.

There is a tree T_2 satisfying the following requirements:

- (1) $T_2 \subseteq (\omega \times u_{\omega})^{<\omega}$ is Δ_3^1 in the codes,
- (2) $p[T_2]$ is the complete Π_2^1 set of ω^{ω} .
- (3) For any A ⊆ ω^ω, A is Π¹₃ if and only if there is a Σ₁ formula φ_A(x) such that

$$\forall x \in \omega^{\omega} (x \in A \iff L_{\kappa_2^x}[T_2, x] \models \varphi_A).$$

Proof. Though the proof in [BK1] works for different trees, by checking the proof in detail, we can adopt the proof there to get this lemma. \Box

From now on, let us fix such a Martin-Solovay tree T_2 .

Corollary (Spector-Gandy Type Theorem for $\Pi_3^1(\mathfrak{X}^{m,0,k})$) 4.9. For any $A \subseteq \mathfrak{X}^{m,0,k}$,

(1) A is Π_3^1 in the codes if and only if there is a Σ_1 formula φ_A such that

$$\forall (\vec{\alpha}, \vec{i}) \in \mathfrak{X}^{m,0,k}((\vec{\alpha}, \vec{i}) \in A \iff L_{\kappa_3}[T_2] \models \varphi_A(\vec{\alpha}, \vec{i})).$$

(2) A is Π_3^1 in the codes if and only if there is a Σ_1 formula φ_A such that

$$\forall (\vec{\alpha}, \vec{i}) \in \mathfrak{X}^{m, 0, k}((\vec{\alpha}, \vec{i}) \in A \iff L_{\kappa_3}[T_2] \models \varphi_A(\vec{\alpha}, \vec{i})).$$

(3) A is Δ_3^1 in the codes if and only if there is a Δ_1 formula φ_A such that

$$\forall (\vec{\alpha}, \vec{i}) \in \mathfrak{X}^{m,0,k}((\vec{\alpha}, \vec{i}) \in A \iff L_{\kappa_3}[T_2] \models \varphi_A(\vec{\alpha}, \vec{i})).$$

From this corollary, it is easy to see that every Δ_3^1 in the codes subset of some u_{ω} is in $L_{\kappa_3}[T_2]$. The similar result is not true for Σ_3^1 and Π_3^1 subsets. But Professor Hjorth has the following

Lemma (Hjorth). All Π_3^1 in the codes subsets of some $\alpha < u_{\omega}$ are in $L_{\kappa_3}[T_2]$.

Now we are aiming towards proving the norm property and some corollaries from it. The following theorem of Solovay provides the norms for the pointclasses $\Pi_3^1(\mathbf{X}^{m,n,k})$ and $\Pi_3^1(\alpha, \mathbf{X}^{m,n,k})$.

Lemma (Solovay) 4.10. Assuming Δ_2^1 determinacy, let ~ be a Σ_3^1 equivalence relation on a space $(\omega^{\omega})^l$, let $P \subseteq (\omega^{\omega})^l$ be ~-invariant (i.e., $x \in P \land x \sim$ $y \to y \in P$), then there is a ~-invariant (i.e., for any x and y in P, if $x \sim y$, then $\varphi(x) = \varphi(y)$) norm $\Pi_3^1 \colon P \to Ord$.

Corollary 4.11. $\Pi_3^1(\alpha, \mathfrak{X}^{m,n,k})$ is normed, i.e., for any $\Pi_3^1(\alpha)$ in the codes $A \subseteq \mathfrak{X}^{m,n,k}$, there is a $\delta \in Ord$ and a $\varphi \colon A \to \delta$ such that the relations $\mathbf{x} \leq_{\varphi}^* \mathbf{x}^*$ and $\mathbf{x} <_{\varphi}^* \mathbf{x}^*$ are $\Pi_3^1(\alpha)$ in the codes, where

$$\begin{split} \mathbf{x} &\leq_{\varphi}^{*} \mathbf{x}^{*} \iff \mathbf{x} \in A \land (\mathbf{x}^{*} \notin A \lor \varphi(\mathbf{x}) \leq \varphi(\mathbf{x}^{*})), \\ \mathbf{x} &<_{\varphi}^{*} \mathbf{x}^{*} \iff \mathbf{x} \in A \land (\mathbf{x}^{*} \notin A \lor \varphi(\mathbf{x}) < \varphi(\mathbf{x}^{*})). \end{split}$$

Corollary (Kreisel Uniformization Theorem) 4.12. If $A \subseteq \mathfrak{X}^{m,n,k} \times \omega$ is $\Pi_3^1(\alpha)$ in the codes, then there is a $B \subseteq \mathfrak{X}^{m,n,k} \times \omega$ which is $\Pi_3^1(\alpha)$ in the

Proof. See [Ke2]. \Box

codes such that

- (1) $\forall (\vec{\alpha}, \vec{x}, \vec{i}) \in \mathfrak{X}^{m,n,k} (\exists n \in \omega(\vec{\alpha}, \vec{x}, \vec{i}, n) \in A \to \exists ! n(\vec{\alpha}, \vec{x}, \vec{i}, n) \in B),$
- (2) $B \subseteq A$.

Corollary (Kuratowski Reduction Theorem) 4.13. Let A and B be two $\Pi_3^1(\alpha)$ in the codes subsets of $\mathfrak{X}^{m,n,k}$, then there are two $\Delta_3^1(\alpha)$ in the codes A' and B' with $A' \subseteq A$, $B' \subseteq B$, $A \cup B = A' \cup B'$ and $A' \cap B' = \emptyset$.

Corollary (Seperation Theorem) 4.14. Let A and B be two $\Sigma_3^1(\alpha)$ in the codes sets of $\mathfrak{X}^{m,n,k}$, $A \cap B = \emptyset$. Then there is a $\Delta_3^1(\alpha)$ in the codes C which separates A from B, i.e., such that $A \subseteq C$ and $C \cap B = \emptyset$.

With the help of these results, we can code the $^*\Delta_3^1$ subsets of $\mathfrak{X}^{m,0,k}$.

Lemma (Coding the $^*\Delta_3^1(\mathfrak{X}^{m,0,k})$ Sets) 4.15. There is a pair (D,W) such that

- D ⊆ u_ω is Π¹₃ in the codes and W ⊆ u_ω × X^{m,0,k} is Δ¹₃ in the codes in D × X^{m,0,k}, i.e., there are Σ¹₃ in the codes W^Σ ⊆ u_ω × X^{m,0,k} and Π¹₃ in the codes W^Π ⊆ u_ω × X^{m,0,k} such that W = (D × X^{m,0,k}) ∩ W^Σ = (D × X^{m,0,k}) ∩ W^Π,
- (2) $\{W_{\alpha} : \alpha \in D\} = {}^{*}\Delta_{3}^{1}(\mathfrak{X}^{m,0,k}),$
- (3) if A ⊆ u_ω is *Π¹₃ in the codes and B ⊆ A × X^{m,0,k} is *Δ¹₃ in the codes in A × X^{m,0,k}, then there must be a Δ¹₃ in the codes function f: u_ω → u_ω such that for all α ∈ A, f(α) ∈ D and W_{f(α)} = B_α.

Proof. Let

$$V^{0} = \{ (\varepsilon, \vec{\alpha}, \vec{i}) : ((\varepsilon)_{0}, \vec{\alpha}, \vec{i}) \in H^{m,k} \},\$$
$$V^{1} = \{ (\varepsilon, \vec{\alpha}, \vec{i}) : ((\varepsilon)_{1}, \vec{\alpha}, \vec{i}) \in H^{m,k} \}.$$

By the Kuratowski reduction theorem, let (U^0, U^1) reduce (V^0, V^1) , i.e., U^0 and U^1 are Π_3^1 in the codes, $U^0 \subseteq V^0$, $U^1 \subseteq V^1$, $U^1 \cap U^1 = \emptyset$ and $U^0 \cup U^1 = V^0 \cup V^1$. Let

$$D = \{ \varepsilon \in u_{\omega} : \forall (\vec{\alpha}, \vec{i}) \in \mathfrak{X}^{m,0,k} ((\varepsilon, \vec{\alpha}, \vec{i}) \in U^0 \lor (\varepsilon, \vec{\alpha}, \vec{i}) \in U^1) \}.$$

 $D \subseteq u_{\omega}$ is Π_3^1 in the codes. Let

$$W = \{ (\varepsilon, \vec{\alpha}, \vec{i}) : \varepsilon \in D \land (\varepsilon, \vec{\alpha}, \vec{i}) \in U^0 \}$$

Clearly, W is Δ_3^1 in the codes in $D \times \mathfrak{X}^{m,0,k}$, as

$$\varepsilon \in D \land (\varepsilon, \vec{\alpha}, \vec{i}) \notin W \iff \varepsilon \in D \land (\varepsilon, \vec{\alpha}, \vec{i}) \in U^1.$$

by the definition of D.

As (2) is a particular case of (3) when A = D and $B = H^{m,k}$, we will show (3) directly here.

Let $A \subseteq u_{\omega}$ be $*\Pi_3^1$ in the codes and $B \subseteq A \times \mathfrak{X}^{m,0,k}$ be $*\Pi_3^1$ in the codes. Let

$$B^{0} = \{\varepsilon, \vec{\alpha}, \vec{i}\} \in u_{\omega} \times \mathfrak{X}^{m,0,k} : \varepsilon \in A \land (\varepsilon, \vec{\alpha}, \vec{i}) \in B\},\$$
$$B^{1} = \{\varepsilon, \vec{\alpha}, \vec{i}\} \in u_{\omega} \times \mathfrak{X}^{m,0,k} : \varepsilon \in A \land (\varepsilon, \vec{\alpha}, \vec{i}) \notin B\},\$$

are both $^{*}\Pi_{3}^{1}$ in the codes in $u_{\omega} \times \mathfrak{X}^{m,0,k}$. Hence, there are Δ_{3}^{1} in the codes functions $f_{0}: u_{\omega} \to u_{\omega}$ and $f_{1}: u_{\omega} \to u_{\omega}$, such that for i = 0 or 1,

(*)
$$(\varepsilon, \vec{\alpha}, \vec{i}) \in B^i \iff (f_i(\varepsilon), \vec{\alpha}, \vec{i}) \in H^{m,k}.$$

Set $f(\varepsilon) = \langle f_0(\varepsilon), f_1(\varepsilon) \rangle$. We check that this f works. Fix $\varepsilon \in A$. We have $B_{\varepsilon} = B_{\varepsilon}^0$ and $B_{\varepsilon}^1 = \mathfrak{X}^{m,0,k} \backslash B_{\varepsilon}$. Now,

$$V_{f(\varepsilon)}^{0} = H_{f_{0}(\varepsilon)}^{m,k}$$
 by the definition of V^{0}
= B_{ε}^{0} by (*),

and

$$V_{f(\varepsilon)}^{1} = H_{f_{1}(\varepsilon)}^{m,k} \qquad \text{by the definition of } V^{0}$$
$$= B_{\varepsilon}^{1} \qquad \text{by (*),}$$

so that $V_{f(\varepsilon)}^{0} \cap V_{f(\varepsilon)}^{1} = \emptyset$ and $V_{f(\varepsilon)}^{0} \cup V_{f(\varepsilon)}^{1} = \mathfrak{X}^{m,0,k}$. But this implies that $U_{f(\varepsilon)}^{0} = V_{f(\varepsilon)}^{0}$ and $U_{f(\varepsilon)}^{0} = V_{f(\varepsilon)}^{0}$, so that $U_{f(\varepsilon)}^{0} \cup U_{f(\varepsilon)}^{1} = \mathfrak{X}^{m,0,k}$, i.e., $f(\varepsilon) \in D$, and moreover

$$W_{f(\varepsilon)} = U_{f(\varepsilon)}^0 = V_{f(\varepsilon)}^0 = H_{f_0(\varepsilon)}^{m,k} = B_{\varepsilon}^0$$

as desired. \Box

We have coded the ordinals smaller than u_{ω} using sharps at the beginning of this section. But that is not enough. We need an induction all the way to κ_3 to get a representation theorem for the Π_3^1 thin equivalence relations. We have to find a method to code all of the ordinals smaller than κ_3 . We will do this coding using ordinals smaller than u_{ω} in the following.

Let $D \subseteq u_{\omega} \Pi_3^1$ in the codes and $W \subseteq D \times u_{\omega} \times u_{\omega} \Delta_3^1$ in the codes in $D \times u_{\omega} \times u_{\omega}$ as given by the lemma above, let W^{Σ} and W^{Π} as given in the lemma above also.

Definition of $LO_{u_{\omega}}$ and $WO_{u_{\omega}}$.

$$LO_{u_{\omega}} = \{ \alpha : \alpha \in D \text{ and } W_{\alpha} \text{ is a linear ordering on } u_{\omega} \}$$

 $WO_{u_{\alpha}} = \{ \alpha : \alpha \in D \text{ and } W_{\alpha} \text{ is a well-ordering on } u_{\omega} \}$

As for any $\alpha \in D$, $\alpha \in LO_{u_{\omega}}$ if and only if

$$\begin{aligned} \forall \beta_0 < u_\omega \forall \beta_1 < u_\omega (\beta_0 W^{\Pi}_{\alpha} \beta_1 \to \beta_0 W^{\Sigma}_{\alpha} \beta_0 \land \beta_1 W^{\Sigma}_{\alpha} \beta_1) \\ \wedge \forall \beta_0 < u_\omega \forall \beta_1 < u_\omega (\beta_0 W^{\Pi}_{\alpha} \beta_1 \land \beta_1 W^{\Pi}_{\alpha} \beta_0 \to \beta_0 = \beta_1) \\ \wedge \forall \beta_0 < u_\omega \forall \beta_1 < u_\omega \forall \beta_2 < u_\omega (\beta_0 W^{\Pi}_{\alpha} \beta_1 \land \beta_1 W^{\Pi}_{\alpha} \beta_2 \to \beta_0 W^{\Sigma}_{\alpha} \beta_2) \\ \wedge \forall \beta_0 < u_\omega \forall \beta_1 < u_\omega (\beta_0 W^{\Pi}_{\alpha} \beta_0 \land \beta_1 W^{\Pi}_{\alpha} \beta_1 \to \beta_0 W^{\Sigma}_{\alpha} \beta_1 \lor \beta_1 W^{\Sigma}_{\alpha} \beta_0), \end{aligned}$$

by the Kechris-Martin theorem, it is Σ_3^1 in the codes in $D \times \mathfrak{X}^{m,0,k}$. On the other hand, for any $\alpha \in D$, $\alpha \in LO_{u_{\omega}}$ if and only if

$$\begin{aligned} \forall \beta_0 &< u_\omega \forall \beta_1 < u_\omega (\beta_0 W^{\Sigma}_{\alpha} \beta_1 \to \beta_0 W^{\Pi}_{\alpha} \beta_0 \land \beta_1 W^{\Pi}_{\alpha} \beta_1) \\ \wedge \forall \beta_0 &< u_\omega \forall \beta_1 < u_\omega (\beta_0 W^{\Sigma}_{\alpha} \beta_1 \land \beta_1 W^{\Sigma}_{\alpha} \beta_0 \to \beta_0 = \beta_1) \\ \wedge \forall \beta_0 &< u_\omega \forall \beta_1 < u_\omega \forall \beta_2 < u_\omega (\beta_0 W^{\Sigma}_{\alpha} \beta_1 \land \beta_1 W^{\Sigma}_{\alpha} \beta_2 \to \beta_0 W^{\Pi}_{\alpha} \beta_2) \\ \wedge \forall \beta_0 &< u_\omega \forall \beta_1 < u_\omega (\beta_0 W^{\Sigma}_{\alpha} \beta_0 \land \beta_1 W^{\Sigma}_{\alpha} \beta_1 \to \beta_0 W^{\Pi}_{\alpha} \beta_1 \lor \beta_1 W^{\Pi}_{\alpha} \beta_0), \end{aligned}$$

it is Π_3^1 in the codes in $D \times \mathfrak{X}^{m,0,k}$. Hence, it is Δ_3^1 in the codes in $D \times \mathfrak{X}^{m,0,k}$.

$$\alpha \in WO_{u_{\omega}} \iff \alpha \in LO_{u_{\omega}} \land \forall x \in \omega^{\omega} (\forall n(x(n) \text{ codes some } \beta(n) < u_{\omega})$$
$$\land \beta(n+1)W_{\alpha}\beta(n)) \to \exists n(\beta(n+1) = \beta(n))),$$

 $WO_{u_{\omega}}$ is Π_3^1 in the codes.

Definition. For each $\alpha \in WO_{u_{\omega}}$, let

 $\|\alpha\|$ = the length of the wellordering coded by α .

Lemma 4.16. For any $\alpha \in WO_{u_{\omega}}$,

$$(L_{\|\alpha\|}[T_2])^{L_{\kappa_3}[T_2]} = L_{\|\alpha\|}[T_2].$$

Proof. It suffices to show that $\|\alpha\|^{L_{\kappa_3}[T_2]} = \|\alpha\|$.

If $\alpha \in WO_{u_{\omega}}$, let $R_{\alpha}(\xi, \eta)$ be the Δ_3^1 in the codes wellordering on u_{ω} coded by α . As R_{α} is Δ_1 in the model $L_{\kappa_3}[T_2]$ and $L_{\kappa_3}[T_2] \models KP$, $R_{\alpha} \in L_{\kappa_3}[T_2]$. $L_{\kappa_3}[T_2] \models KP$ also implies that there is a rank function for R_{α} in $L_{\kappa_3}[T_2]$, since R_{α} is a wellordering in **V**. This can be proved by an induction along the wellordering R_{α} . So, it makes sense to talk about $\|\alpha\|^{L_{\kappa_3}[T_2]}$.

If $\|\alpha\|^{L_{\kappa_3}[T_2]} = \beta$, then there is an order preserving one-to-one onto map $h: u_\omega \to \beta_0$ in $L_{\kappa_3}[T_2]$. This *h* is also in **V**. This *h* witnesses that $\|\alpha\| = \beta$. \Box **Definition.** For any α , β in u_{ω} , let

$$\alpha \preceq^* \beta \iff \alpha \in WO_{u_{\omega}} \land (\beta \in WO_{u_{\omega}} \to ||\alpha|| \le ||\beta||,$$
$$\alpha \prec^* \beta \iff \alpha \in WO_{u_{\omega}} \land (\beta \in WO_{u_{\omega}} \to ||\alpha|| \le ||\beta||.$$

Lemma 4.17. Both \preceq^* and \prec^* are Π_3^1 in the codes.

Proof. Let D, W, W^{Π} and W^{Σ} as in Lemma 4.15. Let $\varphi^{\Sigma}(\varepsilon, \xi, \eta)$ be a Π_1 formula such that for all ε, ξ and η in u_{ω} ,

$$(\varepsilon,\xi,\eta)\in W^{\Sigma}\iff L_{\kappa_3}[T_2]\models\varphi^{\Sigma}(\varepsilon,\xi,\eta).$$

Let $\varphi^{\Pi}(\varepsilon,\xi,\eta)$ be a Σ_1 formula such that for all ε, ξ and η in u_{ω} ,

$$(\varepsilon,\xi,\eta)\in W^{\Pi}\iff L_{\kappa_3}[T_2]\models \varphi^{\Pi}(\varepsilon,\xi,\eta).$$

It is easy to check that for all α and β in u_{ω} ,

$$\alpha \preceq^* \beta \iff \alpha \in \mathrm{WO}_{u_\omega}$$

$$\wedge L_{\kappa_3}[T_2] \models \begin{cases} \exists y \exists f(y = u_\omega \land f \text{ is a function from } y \text{ to } y \\ \land f \text{ is one-to-one on the domain of } \alpha \\ \land \forall \xi, \eta \in y(\varphi^{\Pi}(\alpha, \xi, \eta) \land \neg \varphi^{\Sigma}(\alpha, \xi, \eta) \\ \rightarrow \varphi^{\Sigma}(f(\beta), \xi, f(\eta)) \land \neg \varphi^{\Pi}(f(\beta), \xi, f(\eta)))) \end{cases}$$

 $\alpha \preceq^* \beta$ is clearly Π_3^1 in the codes, as we can replace $y = u_\omega$ by $L_y[T_2] \models \text{KP}$. It is also easy to check that for all α and β in u_ω ,

$$\alpha \prec^* \beta \iff \alpha \in WO_{u_\omega}$$

$$\wedge L_{\kappa_{3}}[T_{2}] \models \begin{cases} \exists y \exists f \exists z \in y(y = u_{\omega} \land f \text{ is a function from } y \text{ to } z \\ \land f \text{ is one-to-one on the domain of } \alpha \\ \land \forall \xi, \eta \in y(\varphi^{\Pi}(\alpha, \xi, \eta) \land \neg \varphi^{\Sigma}(\alpha, \xi, \eta) \\ \rightarrow \varphi^{\Sigma}(f(\beta), \xi, f(\eta)) \land \neg \varphi^{\Pi}(f(\beta), \xi, f(\eta)))). \end{cases}$$

Hence, \prec^* is also Π_3^1 in the codes, by the Spector-Gandy theorem. \Box

The following relation will be needed in the next section also.

Definition. We define

 $\operatorname{Lim}(\sigma) \iff \sigma \in \operatorname{WO}_{u_{\omega}} \land \sigma \text{ codes a limit ordinal}$ $\operatorname{Succ}(\eta, \sigma) \iff \eta \in \operatorname{WO}_{u_{\omega}} \land \sigma \in \operatorname{WO}_{u_{\omega}} \land \sigma \text{ codes an ordinal}$ which is the successor of the ordinal coded by η .

Lemma 4.18. Both Lim and Succ are Δ_3^1 in the codes in WO_{u_{ω}}.

Proof. Let

$$\operatorname{Lim}^{\Sigma}(\sigma) \iff \forall \alpha \in u_{\omega}(\alpha \prec^{*} \sigma \to \exists \beta \in u_{\omega}(\alpha \prec^{*} \beta \prec^{*} \sigma)),$$
$$\operatorname{Lim}^{\Pi}(\sigma) \iff \forall \alpha \in u_{\omega}(\sigma \not\preceq^{*} \alpha \to \exists \beta \in u_{\omega}(\alpha \prec^{*} \beta \prec^{*} \sigma)).$$

It clear that $\operatorname{Lim}^{\Sigma}$ and Lim^{Π} witness that Lim is Δ_3^1 in the codes in WO_{u_{\u0}}.

For $\operatorname{Succ}(\eta, \sigma)$, we can define

Succ^{$$\Sigma$$}(η, σ) $\iff \forall \alpha \in u_{\omega}(\alpha \prec^* \sigma \to \eta \not\prec^* \alpha),$
Succ ^{Π} (η, σ) $\iff \exists \alpha \in u_{\omega}(\eta \prec^* \alpha \prec^* \sigma).$

Theses $\operatorname{Succ}^{\Sigma}$ and $\operatorname{Succ}^{\Pi}$ witness that Succ is Δ_3^1 in the codes in $\operatorname{WO}_{u_{\omega}}$. \Box

By the proceeding lemma, both $\text{Lim}(\sigma)$ and $\text{Succ}(\eta, \sigma)$ are Δ_3^1 in the codes. The same remark after the proceeding lemma applies to these relations too.

Now, let us proceed towards our last lemma in this chapter. We will show how to decompose Π_3^1 in the codes sets into the union of κ_3 many $*\Delta_3^1$ sets in a uniform and effective way.

Lemma 4.19. Let $G^{m,k} \subseteq u_{\omega} \times \mathfrak{X}^{m,0,k}$ and $H^{m,k} \subseteq u_{\omega} \times \mathfrak{X}^{m,0,k}$ as given in Lemma 4.6, then there are Δ_3^1 in the codes $f, g: u_{\omega} \times u_{\omega} \to u_{\omega}$ such that

(1) for any $\alpha, \varepsilon \in WO_{u_{\omega}}$,

$$G_{f(\alpha,\varepsilon)}^{m,k} = H_{g(\alpha,\varepsilon)}^{m,k},$$

(2) for any $\varepsilon, \alpha_1, \alpha_2 \in WO_{u_{\omega}}$,

$$\|\alpha_1\| \le \|\alpha_2\| \to G^{m,k}_{f(\alpha_1,\varepsilon)} \subseteq G^{m,k}_{f(\alpha_2,\varepsilon)} \land H^{m,k}_{f(\alpha_1,\varepsilon)} \subseteq H^{m,k}_{f(\alpha_2,\varepsilon)}$$

(3) for any $\varepsilon \in u_{\omega}$,

$$H^{m,k}_{\varepsilon} = \bigcup_{\alpha \in WO_{u_{\omega}}} G^{m,k}_{f(\alpha,\varepsilon)} = \bigcup_{\alpha \in WO_{u_{\omega}}} H^{m,k}_{g(\alpha,\varepsilon)}.$$

Proof. Let φ_H be the Σ_0 formula such that for all $\varepsilon \in u_\omega$ and $(\vec{\alpha}, \vec{i}) \in \mathfrak{X}^{m,0,k}$,

$$H(\varepsilon, \vec{\alpha}, \vec{i}) \iff L_{\kappa_3}[T_2] \models \exists x \varphi_H(x, \varepsilon, \vec{\alpha}, \vec{i}).$$

For any $\alpha, \varepsilon \in u_{\omega}$ and $(\vec{\alpha}, \vec{i}) \in \mathfrak{X}^{m,0,k}$, let

$$A(\alpha,\varepsilon,\vec{\alpha},\vec{i}) \iff (\alpha \in \mathrm{WO}_{u_{\omega}} \to L_{\|\alpha\|}[T_2] \models \exists x \varphi_H(x,\varepsilon,\vec{\alpha},\vec{i})).$$

$$\begin{aligned} A(\alpha,\varepsilon,\vec{\alpha},\vec{i}) &\iff \alpha \in \mathrm{WO}_{u_{\omega}} \to (L_{\|\alpha\|}[T_2])^{L_{\kappa_3}[T_2]} \models \exists x \varphi_H(x,\varepsilon,\vec{\alpha},\vec{i})), \\ &\iff \alpha \in \mathrm{WO}_{u_{\omega}} \to L_{\kappa_3}[T_2] \models (L_{\|\alpha\|}[T_2] \models \exists x \varphi_H(x,\varepsilon,\vec{\alpha},\vec{i})), \end{aligned}$$

and $L_{\|\alpha\|}[T_2] \models \exists x \varphi_H(x, \varepsilon, \vec{\alpha}, \vec{i})$ can be expressed by a Π_1 formula. Let

$$A(\alpha,\varepsilon,\vec{\alpha},\vec{i}) \iff G^{m+2,k}(\varepsilon_A,\alpha,\varepsilon,\vec{\alpha},\vec{i}).$$

We have that

$$A(\alpha,\varepsilon,\vec{\alpha},\vec{i}) \iff G^{m,k}(s_{\Sigma}^{2,0,m,k}(\varepsilon_{A},\alpha,\varepsilon),\vec{\alpha},\vec{i})$$

Let $f(\alpha, \varepsilon) = s_{\Sigma}^{2,0,m,k}(\varepsilon_A, \alpha, \varepsilon).$

Now, for any $\alpha, \varepsilon \in u_{\omega}$ and $(\vec{\alpha}, \vec{i}) \in \mathfrak{X}^{m,0,k}$, let

$$B(\alpha,\varepsilon,\vec{\alpha},\vec{i}) \iff (\alpha \in WO_{u_{\omega}} \wedge L_{\|\alpha\|}[T_2] \models \exists x \varphi_H(x,\varepsilon,\vec{\alpha},\vec{i})).$$

Similarly, $B(\alpha, \varepsilon, \vec{\alpha}, \vec{i})$ is Π_3^1 in the codes, so, there is a $\varepsilon_B \in u_\omega$ such that

$$B(\alpha,\varepsilon,\vec{\alpha},\vec{i}) \iff H^{m+2,k}(\varepsilon_A,\alpha,\varepsilon,\vec{\alpha},\vec{i}).$$

We have that

$$B(\alpha, \varepsilon, \vec{lpha}, \vec{i}) \iff H^{m,k}(s_{\Pi}^{2,0,m,k}(\varepsilon_A, \alpha, \varepsilon), \vec{lpha}, \vec{i}).$$

Let $g(\alpha, \varepsilon) = s_{\Pi}^{2,0,m,k}(\varepsilon_A, \alpha, \varepsilon)$. It is easy to see that f and g work. \Box

5. A Technical Lemma

In this chapter, we will prove Hjorth's lemma mentioned in Chapter 4. The following proof is suggested by him.

Lemma (Hjorth). Assuming Δ_2^1 determinacy, for any $x \in \omega^{\omega}$ and $n \in \omega$, if A is a $\Pi_3^1(x)$ in the codes subset of u_n , then $A \in L_{\kappa_3^x}[T_2, x]$.

Proof. We will show this by induction on $n \in \omega$. For each $x \in \omega^{\omega}$ and $n \in \omega$, let P(n, x) stand for the proposition corresponding to the x and n, i.e., for any $x \in \omega^{\omega}$ and $n \in \omega$, if A is a $\Pi_3^1(x)$ in the codes subset of u_n , then $A \in L_{\kappa_3^x}[T_2, x]$.

Base Case. n = 1.

At first, we will show that for any $x \in \omega^{\omega}$, $\alpha < u_1 = \omega_1$ and $n \in \omega$, if A is a $\Pi_3^1(x)$ in the codes subset of α , then $A \in L_{\kappa_3^x}[T_2, x]$.

To make the notations simple, we will drop the parameter x in the proof below, i.e., we will show that for any $\alpha < u_1 = \omega_1$ and $n \in \omega$, if A is a Π_3^1 in the codes subset of α , then $A \in L_{\kappa_3}[T_2]$. The relative version can be proved in a similar way.

Subcase 1. $\alpha < \omega$.

It is obviously true in this case.

Subase 2. $\alpha = \omega$.

This case is well-known. A proof about this case can be found from [KMS]. Subcase 3. $\alpha < \omega_1 = u_1$. Let $M = L_{\kappa_3}[T_2]$, let

 $P = \{p : p \text{ is a function from some finite subset of } \omega \text{ to } \alpha\}.$

We define a partial order on P as $p \leq q \iff p \supseteq q$. We call it $Coll(\omega, \alpha)$. It is clear that $Coll(\omega, \alpha) \in M$. Let $G \subseteq Coll(\omega, \alpha)$ be a M-generic subset of P. Then $f_G = \bigcup \{p : p \in G\}$ gives an onto map from ω to α .

It is easy to see that

$$M[G] = L_{\kappa_3}[T_2][G] = L_{\kappa_3}[T_2, G] = L_{\kappa_3}[T_2, f_G].$$

Let $\overline{A} = f_G^{-1}[A]$. Let w be a real coding f_G . Then, \overline{A} is $\Sigma_3^1(w)$. Using and relativizing the argument in Subcase 2, we know that $\overline{A} \in M[G]$ and it is Δ_1 definable over M[G] using the parameter G.

Let \dot{A} be the forcing name such that $\dot{A}[G] = A$ in all M[G]. From the forcing theorem, $A = \{x : \Vdash \check{x} \in \dot{A}\}$. As the forcing relation is Δ_1 , A is a Δ_1 definable subset of $\alpha \in L_{\kappa_3}[T_2]$ using the parameter $\dot{A} \in L_{\kappa_3}[T_2]$. Hence, $A \in L_{\kappa_3}[T_2]$.

Now, it is time to prove P(1, x). We will show P(1, 0) only, the relative case being similar.

Let A is a Δ_3^1 in the codes subset of u_1 . Since A is Σ_1 over $L_{\kappa_3}[T_2]$, there is a Δ_0 formula $\psi(x, y)$ such that for all $\beta < \alpha$,

$$\beta \in A \iff L_{\kappa_3}[T_2] \models \exists y \psi(\beta, y).$$

For each $\beta \in A$, let

$$\rho(\beta) =$$
 the least γ such that $L_{\gamma}[T_2] \models \exists y \psi(\beta, y)$

It suffices to show that $\sup_{\beta \in A} \rho(\beta) < \kappa_3$, since if this is true, then

$$\beta \in A \iff L_{\sup_{\beta \in A} \rho(\beta)}[T_2] \models \exists y \psi(\beta, y).$$

This is a Δ_1 definition, so $A \in L_{\kappa_3}[T_2]$.

Now, we assume that $\sup_{\beta \in A} \rho(\beta) = \kappa_3$, towards a contradiction.

For any $\delta < \omega_1$, let $w(\delta)$ be a real in $L_{\kappa_3}[T_2]$ which codes δ . As $A \cap \delta \subseteq \delta < \omega_1$ and $A \cap \delta$ is $\Pi^1_3(w(\delta))$ in the codes, $A \cap \delta \in L_{\kappa_3^x}[T_2, w(\delta)] = L_{\kappa_3}[T_2]$ by Subcase 3. As

$$L_{\kappa_3}[T_2] \models \forall \beta \in A \cap \delta \exists \gamma (L_\gamma \models \exists y \psi(\beta, y)).$$

and

$$L_{\kappa_3}[T_2] \models \Delta_1$$
 collection axiom,

 $\rho[A \cap \delta]$ is bounded below κ_3 . Let $\rho_{\delta} = \sup \rho[A \cap \delta]$. Since $\sup_{\beta \in A} \rho(\beta) = \kappa_3$, then $(\rho_{\delta})_{\delta \in \omega_1}$ is a non-decreasing sequence of ordinals cofinal in κ_3 . So, $cf(\kappa_3) = cf(\omega_1) = \aleph_1$, this contradicts the fact that $cf(\kappa_3) = \omega$.

Inductive Step. Assume P(n, x), we will show P(n + 1, x). At first, we will show the following

Claim. For all $x \in \omega^{\omega}$ and $\alpha < u_{n+1}$, every $\Pi_3^1(x)$ in the codes subset of α is in $L_{\kappa_3}[T_2]$.

Proof of the claim. We will show this by contradiction. Assume that there is a $x \in \omega^{\omega}$, an $\alpha < u_{n+1}$ and a $\Pi_3^1(x)$ in the codes $A \subseteq \alpha$ such that $A \notin L_{\kappa_3}[T_2]$, towards a contradiction.

Let α be coded by some $y \in WO_{u_{\omega}}$, i.e., $y = \langle k, z^{\sharp} \rangle$ such that

$$\alpha = \tau_k^{\mathbf{L}[z]}(u_1, \cdots, u_{l(k)}),$$

where $(\tau_n)_{n \in \omega}$ lists all the Skolem terms taking ordinal values in $\mathbf{L}[z]$ and l(k) is the number of variable of τ_n .

Let $(\delta_i)_{i \in \omega}$ enumerate the first ω many $\mathbf{L}[z]$ indiscernibles after u_n in an increasing order. This sequence is definable from u_n over $\mathbf{L}(z^{\sharp})$, hence in $\mathbf{L}[y]$.

Let

$$A = \{ (\xi_1, \cdots, \xi_j, i, p) : i, j, p \in \omega, l(i) = j + p$$

$$\xi_1 \cdots, \xi_j \in u_n \text{ and } \tau_i^{\mathbf{L}[z]}(\xi_1, \cdots, \xi_j, \delta_1, \cdots, \delta_p) \in A \}$$

Let $f: u_n^{<\omega} \to u_n$ be a Δ_1 **L**-definable from u_n bijection, let π^{Σ} and π^{Π} be the Σ_1 and Π_1 formulas which define f over **L**, i.e., for all $g \in \mathbf{L}$,

$$g = f \iff \mathbf{L} \models \pi^{\Sigma}(g, u_n) \iff \mathbf{L} \models \pi^{\Pi}(g, u_n).$$

Let $(\tau_{i_j})_{j \in \omega}$ be the Skolem terms which define f in the following sense: for any $\xi_1, \dots, \xi_j \in u_n$,

$$\eta = f(\xi_1, \cdots, \xi_j) \iff \eta = \tau_{i_j}^{\mathbf{L}[z]}(\xi_1, \cdots, \xi_j, u_1, \cdots, u_n).$$

The sequence $(\tau_{i_j})_{j \in \omega}$ is simple enough, say, $\Delta_3^1(z)$ in the codes.

Let $(\tau_{m_j})_{j \in \omega}$ be the Skolem terms which define f^{-1} in the following sense: for any $\xi \in u_n$ and $j < len(f^{-1}(\xi))$,

$$\eta = (f^{-1}(\xi))_j \iff \eta = \tau_{m_j}^{\mathbf{L}[z]}(\xi, u_1, \cdots, u_n).$$

The sequence $(\tau_{m_j})_{j \in \omega}$ is also simple enough, say, $\Delta_3^1(z)$ in the codes.

Let $\hat{A} = f[\bar{A}] \subseteq u_n$. Since

$$\begin{split} \beta \in \hat{A} &\iff f^{-1}(\beta) \in \bar{A} \\ &\iff \exists i, j, p \in \omega, \xi_1, \cdots, \xi_j \in u_n(l(i) = j + p \\ &\land \tau_i^{\mathbf{L}[z]}(\xi_1, \cdots, \xi_j, \delta_1, \cdots, \delta_p) \in A \land \bigwedge_{1 \leq l \leq j} \xi_l = \tau_{m_l}^{\mathbf{L}[z]}(\beta, u_1, \cdots, u_n)) \\ &\iff \exists i, j, p \in \omega, \xi_1, \cdots, \xi_j, \gamma \in u_\omega(l(i) = j + p \land \gamma \in A \\ &\qquad \tau_i^{\mathbf{L}[z]}(\tau_{m_1}^{\mathbf{L}[z]}(\beta, u_1, \cdots, u_n), \cdots, \tau_{m_j}^{\mathbf{L}[z]}(\beta, u_1, \cdots, u_n), \delta_1, \cdots, \delta_p) = \gamma), \end{split}$$

 \hat{A} is $\Pi_3^1(x,z)$.

Let $\theta(x,y) = \exists y \theta_0(x,y)$ be a Σ_1 formula which define A over $L_{\kappa_3^x}[T_2,x]$. Let

$$\hat{\theta}(\xi) \iff \exists w \exists g \exists \gamma \exists i, j, p \in u_{\omega}(\gamma \in A \land \theta_0(\gamma, w) \land \mathbf{L} \models \pi^{\Sigma}(g, u_n)$$
$$\gamma = \tau_i^{\mathbf{L}[z]}((f^{-1}(\xi))_1, \cdots, (f^{-1}(\xi))_j, \delta_1, \cdots, \delta_p)),$$

 $\hat{\theta}(\xi)$ is $\Sigma_1(u_n, x, y)$.

For $\beta \in A$, let

$$\varphi(\beta) = \text{ the least } \beta > u_{\omega} \text{ such that } L_{\beta}[T_2, x] \models \theta(\beta).$$

For $\hat{\beta} \in A$, let

$$\hat{\varphi}(\hat{\beta}) = \text{ the least } \hat{\beta} > u_{\omega} \text{ such that } L_{\hat{\beta}}[T_2, x, y] \models \hat{\theta}(\hat{\beta}).$$

It is easy to see that for every $\beta \in A$, there is a $\hat{\beta} \in \hat{A}$ such that $\hat{\varphi}(\hat{\beta}) \ge \varphi(\beta)$.

Since $A \notin L_{\kappa_3^x}[T_2, x]$, φ is unbounded below κ_3^x , i.e.,

$$\sup_{\beta \in A} \varphi(\beta) = \kappa_3^x.$$

As $\hat{A} \subseteq u_n$, \hat{A} is $\Pi^1_3(x, y)$, by the induction hypothesis,

$$\sup_{\hat{\beta}\in\hat{A}}\hat{\varphi}(\hat{\beta})<\kappa_3^{x,y}.$$

But,

$$\sup_{\hat{\beta}\in\hat{A}}\hat{\varphi}(\hat{\beta})\geq \sup_{\beta\in A}\varphi(\beta),$$

we have that

$$\kappa_3^x < \kappa_3^{x,y}.$$

By Lemma 14.4 in [KMS],

$$y_3^x \leq^Q_3 \langle x, y \rangle,$$

where y_3^x is an element in the first nontrivial $\Delta_3^1(x)$ degree of all $\Pi_3^1(x)$ singletons under the $\Delta_3^1(x)$ reduction, and \leq_3^Q is the *Q*-reduction defined in [KMS]. We do not have to care about the exact definition of *Q*-reductions here, because we have

$$y_3^x \leq_3 \langle x, y \rangle,$$

actually, since Q(x,y) consists of only trivial $\Pi_3^1(x,y)$ singletons and y_3^x is a $\Pi_3^1(x,y)$ singleton.

So far, we have showed the following:

for any y coding
$$\alpha$$
, $y_3^x \leq_3 \langle x, y \rangle$.

Let

$$B = \{ y : y \in WO_{u_{\omega}} \land \forall w \in WO_{u_{\omega}} (w \sim_{\omega} y \to y_3^x \in \Delta_3^1(x, w)) \},\$$

where $x \sim_{\omega} y$ iff x and y code the same ordinal smaller than u_{ω} . B is $\Pi_3^1(x)$. We have showed that B is not empty. By the Kechris-Martin theorem, there is a $\Delta_3^1(x)$ real $y^* \in B$. As $y_3^x \in \Delta_3^1(x, y^*)$, $y_3^x \in \Delta_3^1(x)$, which is a contradiction. \Box (Claim)

Now, let us prove P(n+1, x). We will actually prove P(n+1, 0) below, the relative case can be proved in a similar way.

Let A is a Δ_3^1 in the codes subset of u_{n+1} . Since A is Σ_1 over $L_{\kappa_3}[T_2]$, there is a Δ_0 formula $\psi(x, y)$ such that for all $\beta < \alpha$,

$$\beta \in A \iff L_{\kappa_3}[T_2] \models \exists y \psi(\beta, y)$$

For each $\beta \in A$, let

$$\rho(\beta) =$$
 the least γ such that $L_{\gamma}[T_2] \models \exists y \psi(\beta, y)$.

It suffices to show that $\sup_{\beta \in A} \rho(\beta) < \kappa_3$, since if this is true, then

$$\beta \in A \iff L_{\sup_{\beta \in A} \rho(\beta)}[T_2] \models \exists y \psi(\beta, y),$$

and this is a Δ_1 definition, so $A \in L_{\kappa_3}[T_2]$.

Now, we assume that $\sup_{\beta \in A} \rho(\beta) = \kappa_3$ towards a contradiction.

For any $\delta < u_{n+1}$, Let $w(\delta)$ be a real in $L_{\kappa_3}[T_2]$ which codes δ . As $A \cap \delta \subseteq \delta < u_{n+1}$ and $A \cap \delta$ is $\Pi^1_3(w(\delta))$ in the codes, $A \cap \delta \in \mathbf{L}_{\kappa_3^x}[T_2, w(\delta)] = L_{\kappa_3}[T_2]$ by Subcase 2. As

$$L_{\kappa_3}[T_2] \models \forall \beta \in A \cap \delta \exists \gamma (L_\gamma \models \exists y \psi(\beta, y)).$$

and

$$L_{\kappa_3}[T_2] \models \Delta_1$$
 collection axiom,

 $\rho[A \cap \delta]$ is bounded below κ_3 . Let $\rho_{\delta} = \sup \rho[A \cap \delta]$. Since $\sup_{\beta \in A} \rho(\beta) = \kappa_3$, then $(\rho_{\delta})_{\delta \in u_{n+1}}$ is a non-decreasing sequence of ordinals cofinal in κ_3 . So, $cf(\kappa_3) = cf(u_{n+1}) \neq \omega$, this contradicts the fact that $cf(\kappa_3) = \omega$. \Box (The Inductive Step)

 \Box (Lemma)

6. Representation of Thin Π_3^1 Equivalence Relations

We have standard thin Π_1^1 equivalence relations on reals, namely, any equivalence relations Δ_1^1 reducible to Π_1^1 equivalence relations on ω . Harrington showed that these are all the thin Π_1^1 equivalence relations on reals actually.

Theorem (Harrington) 6.1. For any thin Π_1^1 equivalence relation on ω^{ω} , there is a Δ_1^1 function p from ω^{ω} to ω and an equivalence relation e on ω such that for any x, y in ω^{ω} ,

$$xEy \iff (p(x), p(y)) \in e.$$

Proof (Harrington). See to [Ha1]. \Box

Harrington's idea is as follows:

Let E be a thin equivalence relation on ω^{ω} , let $\{X_i\}_{i \in \omega}$ be a Δ_1^1 enumeration of Δ_1^1 subsets of ω^{ω} such that

- (1) $\forall x \in \omega^{\omega} \exists i \in \omega (x \in X_i),$
- (2) $\forall i \in \omega \forall x \in \omega^{\omega} \forall y \in \omega^{\omega} (x \in X_i \land y \in X_i \to (x, y) \in E).$

He defined $p: \omega^{\omega} \to \omega$ as

 $p(x) = i \iff i$ is the least natural number such that $x \in X_i$.

It is natural to think to define an equivalence relation e on ω by letting $(i, j) \in e$ if and only if all real numbers in $p^{-1}(i) \cup p^{-1}(j)$ are E equivalent. But, this does not work, since if there is some i such that $p^{-1}(i) = \emptyset$, e defined as before will become $\omega \times \omega$. Harrington built this *e* step-by-step using induction all the way to ω_1^{CK} . At each step, he put only at most one carefully selected pair and all pairs induced by this pair into *e*. More precisely, he built a sequence of Δ_1^1 equivalence relations $\{e^{\sigma}\}_{\sigma < \omega^{CK}}$. Let *e* be the union of these e^{σ} . He started from $e^0 = id(\omega \times \omega)$. For σ a limit ordinal, he simply took a union to define e^{σ} . For σ a successor of a non-limit ordinal, he put nothing new into e^{σ} . For σ a successor of a limit ordinal λ , he put the first pair $(i, j) \notin e$ such that for unbounded many $\eta < \lambda$, the Π_1^1 assertion "all reals in $Y_i^{\eta} \cup Y_j^{\eta}$ are *E*-equivalent" can be seen to be true in less than λ steps, where $Y_i = \{x : (p(x), i) \in e\}$.

Many similarities between Π_1^1 and Π_3^1 were found by Kechris, Martin, Moschovakis, Solovay and others (see [Ke5] for a summary). For example, we have the prewell-ordering property, scale property, the Martin-Solovay representation theorem, the Spector-Gandy theorem for the third level, which are counterparts of the corresponding results for the first level. It seems that the following is a good analog:

$$\frac{\Pi_1^1}{\langle \omega, T_0 \rangle} \approx \frac{\Pi_3^1}{\langle u_\omega, T_2 \rangle}$$

where T_2 is the Martin-Solovay tree and T_0 the recursive tree on ω whose branches produce the complete Π_1^0 set of ω^{ω} . However, there are many differences between them, for example, the natural generalization of the basis theorem fails in the context of Σ_3^1 , $L[T_2] \prec_{\Sigma_4^1} \mathbf{V}$ fails while $(L[T_0] =)L \prec_{\Sigma_2^1} \mathbf{V}$ holds. These similarities and differences make it pretty interesting to consider what will be the counterpart of the Harrington representation theorem in the third level. To work in the third level of the analytical hierarchy, we need some determinacy. From now on, we will always assume Δ_2^1 determinacy. We can show the following theorem later in this thesis.

Theorem. For any thin Π_3^1 equivalence relation on ω^{ω} , there is a Δ_3^1 in the codes function p from ω^{ω} to u_{ω} and a Π_3^1 in the codes equivalence relation e on u_{ω} such that for any x, y in ω^{ω} ,

$$xEy \iff (p(x))e(p(y))$$

Hjorth lifted Harrington's proof of the Silver perfect set theorem to the third level in [Hj1]. He had

Lemma (Folklore) 6.2. Let E be a thin Π_3^1 equivalence relation on ω^{ω} . Then for any $x \in \omega^{\omega}$, there are $n \in \omega$, $\alpha \in u_{\omega}$, $D \subseteq \omega^{\omega}$, a Σ_3^1 $M \subseteq \omega^{\omega} \times \omega^{\omega}$ and a Π_3^1 $N \subseteq \omega^{\omega} \times \omega^{\omega}$ with

- (1) $\exists y \in \omega^{\omega}(\tau_n^{L[y]}(u_1,\ldots,u_{k(n)})=\alpha),$
- (2) $\forall y \in \omega^{\omega}(\tau_n^{L[y]}(u_1,\ldots,u_{k(n)}) = \alpha \to D = M_y = N_y),$
- (3) $x \in D$,
- (4) $D \subseteq [x]_E$.

From this lemma, it is easy to show

Lemma 6.3. If E is a thin Π_3^1 in the codes equivalence relation, then there

is a sequence $\{X_{\alpha}\}_{\alpha < u_{\omega}}$ such that

- (1) $X_{\alpha} \subseteq$ some *E*-equivalence class,
- (2) the relation " $x \in X_{\alpha}$ " is Δ_3^1 in the codes,
- (3) for all reals x, there is a α in u_{ω} such that $x \in X_{\alpha}$.

Proof. Let E be a thin Π_3^1 equivalence relation. From the above lemma, for any $x \in \omega^{\omega}$, there is $\alpha \in u_{\omega}$ and $C \subseteq \omega^{\omega}$ such that

- (1) $x \in C \subseteq [x]_E$,
- (2) *C* is uniformly $\Delta_3^1(\alpha)$, i.e., there are $\Sigma_3^1 \ C^{\Sigma} \subseteq \omega^{\omega} \times \omega$ and $\Pi_3^1 \ C^{\Pi} \subseteq \omega^{\omega} \times \omega^{\omega}$ such that

 $\forall n \in \omega \forall y \in \omega^{\omega} (\alpha = \text{ the ordinal coded by } (n, y^{\sharp}) \to C = C_{(n, y^{\sharp})}^{\Sigma} = C_{(n, y^{\sharp})}^{\Pi}).$

Let fix $D \subseteq u_{\omega}$, W, W^{Π} , $W^{\Sigma} \subseteq u_{\omega} \times u_{\omega}$ as in Lemma 4.15. Then, for any $x \in \omega^{\omega}$, there is an $\alpha \in D$ such that $x \in W_{\alpha} \subseteq [x]_E$. Now, let

$$A = \{ (x, \alpha) : \alpha \in D \text{ and } x \in W_{\alpha} \subseteq [x]_E \}.$$

A is Π_3^1 in the codes. Let the Π_3^1 in the codes set A_0 uniformize A. As A_0 is the graph of some function, A_0 is actually Δ_3^1 in the codes. Let

$$B = \{ \alpha \in u_{\omega} : \exists x \in \omega^{\omega}((x, \alpha) \in A_0) \}.$$

B is Σ_3^1 in the codes and $B \subseteq D$. Let B_0 be a Δ_3^1 in the codes set separating B from $u_{\omega} \setminus D$, i.e., $B \subseteq B_0 \subseteq D$. By effective induction, there is a Δ_3^1 in the codes function $f : u_{\omega} \to u_{\omega}$ enumerating B_0 . Let $X_{\alpha} = W_{f(\alpha)}$. It is easy to check that $\{X_{\alpha}\}_{\alpha < u_{\omega}}$ works. \Box

There are two major difficulties in lifting Harrington's result. In Harrington's proof, he can code the whole process of induction by a real number since only recursive ordinals are needed in his proof. He can guarantee that e^{σ} is Δ_1^1 by showing that it is both Σ_1^1 and Π_1^1 using a real coding the induction process. It is a method for showing Δ_1^1 from the top. We have to prove that our construction is Δ_3^1 from the bottom up since we are doing induction all the way to κ_3 which is a much larger ordinal compared with ω_1^{CK} , and we cannot code our process by a real number. That is why we have to develop the effective theory of Σ_3^1 , Π_3^1 and Δ_3^1 in Chapter 4. We can show that our process is Δ_3^1 by two effective inductions. The other difficulty comes from a very good property of ω . It is a small cardinal but has many combinatorial properties of large cardinals. Harrington used the obvious fact that all finite sets of recursive ordinals have upper bounds. He needed the upper bound to freeze the construction at some step for all smaller natural numbers, to guarantee that every pair of natural numbers can get attention at some step of his construction. To lift Harrington's result, we have to consider an infinite set of ordinals. The existence of the upper bound is not trivial this time. However, Hjorth's lemma helps us out.

For any $x \in \omega^{\omega}$, let p(x) be the least $\alpha < u_{\omega}$ such that $x \in X_{\alpha}$. The graph of this p is Δ_3^1 in the codes.

We will build our equivalence relation e on u_{ω} by induction along ordinals up to κ_3 , where

$$\kappa_3 = \text{the least ordinal } \kappa > u_{\omega} \text{ such that } L_{\kappa}[T_2] \models \text{KP}$$

$$= \sup\{\lambda : \lambda \text{ is the length of a } \Delta_3^1(\alpha) \text{ well-ordering}$$
of subsets of u_{ω} for some $\alpha \in u_{\omega}\}.$

Let us give an informal description of our construction before we go into the tedious details.

We will build a sequence $\{e_{\sigma}\}_{\sigma < \kappa_3}$ of $^*\Delta_3^1$ in the codes equivalence relations on u_{ω} . For each $\alpha \in u_{\omega}$, we let

$$Y_{\alpha}^{\sigma} = \{ x : p(x)e_{\sigma}\alpha \}.$$

We will guarantee that all reals in Y^{σ}_{α} are *E*-equivalent and

$$\sigma < \sigma' \implies e_{\sigma} \subseteq e_{\sigma'}$$

from our construction.

- (1) Let e_0 be the equality relation on u_{ω} .
- (2) For σ a limit ordinal, let $e_{\sigma} = \bigcup_{\sigma' < \sigma} e_{\sigma'}$.
- (3) For σ a non-limit ordinal, let $e_{\sigma+1} = e_{\sigma}$.
- (4) For σ a limit ordinal, let us define e_{σ+1} as follows: See if there are ordinals α and β smaller than u_ω such that (α, β) ∉ e_σ and for unboundedly many η < σ the Π¹₃ assertion:

(*) all reals in
$$Y^{\eta}_{\alpha} \cup Y^{\eta}_{\beta}$$
 are *E*-equivalent

can be seen to be true in $\langle \sigma$ steps. In our formal construction, we will work carefully to guarantee that Y^{σ}_{α} is $\Delta^1_3(\alpha, \sigma)$ in the codes so that the assertion (*) above is really Π^1_3 in the codes. If there are no such pair of ordinals, let $e_{\sigma+1} = e_{\sigma}$. Otherwise, let (α, β) be the first such pair of ordinals under the natural well-ordering of $u_{\omega} \times u_{\omega}$, and let $e_{\sigma+1}$ be the smallest equivalence relation on u_{ω} such that $e_{\sigma+1} \supseteq e_{\sigma}$ and $(\alpha, \beta) \in e_{\sigma+1}$.

Then let $e = \bigcup_{\sigma < \kappa_3} e_{\sigma}$.

Now, let us go to the formal details to guarantee e is Π_3^1 in the codes. Basically, we need two effective inductions to guarantee that Y^{σ}_{α} is $\Delta_3^1(\alpha, \sigma)$ in the codes, one for $\Pi_3^1(\alpha, \sigma)$ and another for $\Pi_3^1(\alpha, \sigma)$.

Let $H \subseteq u_{\omega} \times u_{\omega} \times u_{\omega} \times u_{\omega}$ be a good universal Π_3^1 in the codes set for the * Π_3^1 subsets of $u_{\omega} \times u_{\omega} \times u_{\omega}$, $G \subseteq u_{\omega} \times u_{\omega} \times u_{\omega} \times u_{\omega} \times u_{\omega}$ a universal Σ_3^1 in the codes set for the * Σ_3^1 in the codes subsets of $u_{\omega} \times u_{\omega} \times u_{\omega} \times u_{\omega}$, i.e., $H = H^{3,0}$ and $G = G^{4,0}$. These G and H are trying to witness that Y_{α}^{σ} is $\Delta_3^1(\alpha, \sigma)$ in the codes.

Let

$$P(d, m, \alpha, \sigma, \beta) \iff \begin{cases} \forall x, y((G(d, m, p(x), \sigma, \alpha) \lor G(d, m, p(x), \sigma, \beta))) \\ \land (G(d, m, p(y), \sigma, \alpha) \lor G(d, m, p(y), \sigma, \beta)) \\ \rightarrow xEy). \end{cases}$$

After we "diagonalize" d and m, i.e., let $d = d^*$ and $m = m^*$, where d^* and m^* are the fixed points to be determined by the recursion theorem later in this

chapter, $P(d, m, \alpha, \sigma, \beta)$ will mean that for all x, y in $Y^{\sigma}_{\alpha} \cup Y^{\sigma}_{\beta}$, $(x, y) \in E$, where $Y^{\sigma}_{\alpha} = \{x : (p(x), \alpha) \in e^{\sigma}\}$ and e^{σ} is the equivalence relation constructed up to the σ -step. This $P(d, m, \alpha, \sigma, \beta)$ is clearly Π_3^1 in the codes. So, there is a $l \in \omega$ such that

$$P(d, m, \alpha, \sigma, \beta) \iff H^{3,2}(l, \sigma, \alpha, \beta, d, m).$$

Hence, there is some Δ_3^1 in the codes function $s_{\Pi}^{2,1,2,0} : \omega \times \omega^{\omega} \times \omega^{\omega} \times \omega \times \omega \to u_{\omega}$ such that for all σ , α , β , d and m,

$$H^{3,2}(l,\sigma,\alpha,\beta,d,m) \iff H^{1,0}(s_{\Pi}^{2,1,2,0}(l,\alpha,\beta,d,m),\sigma)$$

The superscripts are pretty annoying, so we introduce some new notation to simplify them. Let

$$U(\epsilon, \alpha) \iff G^{1,0}(\epsilon, \alpha),$$
$$V(\epsilon, \alpha) \iff H^{1,0}(\epsilon, \alpha),$$
$$h(l, d, m, \alpha, \beta) = s_{\pi}^{2,1,2,0}(l, \alpha, \beta, d, m).$$

So,

$$P(d, m, \alpha, \sigma, \beta) \iff V(h(l, d, m, \alpha, \beta), \sigma).$$

Let g_U and f_V be given by the last lemma in Chapter 3.

Let

$$R^{\Sigma}(d, m, \alpha, \sigma, \beta) \iff \begin{cases} \operatorname{Lim}(\sigma) \land \neg H(m, \alpha, \sigma, \beta) \land \forall \sigma_{0} \in u_{\omega}(\sigma_{0} \prec^{*} \sigma) \\ \rightarrow \exists \sigma_{1}, \sigma_{2} \in u_{\omega}(\sigma_{1} \not\preceq^{*} \sigma_{0} \land \sigma \not\preceq^{*} \sigma_{1} \land \sigma \not\preceq^{*} \sigma_{2} \\ \land U(g_{U}(\sigma_{2}, h(l, d, m, \alpha, \beta)), \sigma_{1})). \end{cases}$$

After the diagonalization, R^{Σ} is a Σ_3^1 formula claiming that α is not equivalent to β up to the σ -th stage of our construction, before which there are unboundedly many stages at which the P can be witnessed to be true.

Let

$$R^{\Pi}(d, m, \alpha, \sigma, \beta) \iff \begin{cases} Lim(\sigma) \land \neg G(d, m, \alpha, \sigma, \beta) \land \forall \sigma_0 \in u_{\omega}(\sigma \not\preceq^* \sigma_0) \\ \\ \rightarrow \exists \sigma_1, \sigma_2 \in u_{\omega}(\sigma_0 \prec^* \sigma_1 \prec^* \sigma \land \sigma_2 \prec^* \sigma) \\ \\ \land V(f_V(\sigma_2, h(l, d, m, \alpha, \beta)), \sigma_1)). \end{cases}$$

 R^{Π} expresses the same fact as R^{Σ} after the diagonalization, i.e., for any α , $\beta \in u_{\omega}$ and $\sigma \in WO_{u_{\omega}}$,

$$R^{\Sigma}(d^*, m^*, \alpha, \sigma, \beta) \iff R^{\Pi}(d^*, m^*, \alpha, \sigma, \beta),$$

where d^* and m^* are the fixed points to be determined by the recursion theorem later in this chapter. However, R^{Π} is a Π_3^1 formula now.

Let $B \subseteq \omega \times \omega \times u_{\omega} \times u_{\omega} \times u_{\omega}$ be defined as the follows:

for any $d, m, \alpha, \sigma, \beta$ in $u_{\omega}, (d, m, \alpha, \sigma, \beta) \in B$ if and only if

EITHER $\alpha = \beta$,

OR
$$\sigma \in LO_{u_{\omega}} \wedge Lim(\sigma) \wedge \exists \eta (\sigma \not\preceq \eta \wedge G(d, m, \alpha, \sigma, \beta)),$$

 $\mathrm{OR} \quad \sigma \in \mathrm{LO}_{u_\omega} \wedge \exists \eta (\neg \mathrm{Lim}(\eta) \wedge \eta \in \mathrm{LO}_{u_\omega} \wedge \mathrm{Succ}(\eta, \sigma) \wedge G(d, m, \alpha, \eta, \beta)),$

 $OR \quad \sigma \in LO_{u_{\omega}} \land \exists \eta (Lim(\eta) \land Succ(\eta, \sigma))$

$$\wedge \exists n \in \omega \exists s \in u_{\omega}^{< n} (\wedge \alpha = s(0) \wedge \beta = s(n-1))$$

$$\forall k < n - 1(G(d, m, s(k), \eta, s(k+1)))$$
$$\lor R(d, m, s(k), \eta, s(k+1)))).$$

where

$$R(d, m, \alpha, \sigma, \beta) \iff \begin{cases} R^{\Sigma}(d, m, \alpha, \sigma, \beta) \land \\ \forall \alpha' \beta'((\alpha', \beta') \prec_{u_{\omega} \times u_{\omega}} (\alpha, \beta)) \to \neg R^{\Pi}(d, m, \alpha, \sigma, \beta)). \end{cases}$$

From our construction above, B is Σ_3^1 . Let d^* be the fixed point from the recursion theorem, i.e., for all m, α, σ, β in u_{ω} ,

$$(d^*,m,\alpha,\sigma,\beta)\in B\iff G(d^*,m,l,\alpha,\sigma,\beta).$$

Let us fix this d^* from here on.

Let

$$Q(m,\alpha,\sigma,\beta) \iff \begin{cases} \forall x, y((G(d^*,m,p(x),\sigma,\alpha) \lor G(d^*,m,p(x),\sigma,\beta)) \\ \land (G(d^*,m,l,p(y),\sigma,\alpha) \lor G(d^*,m,l,p(y),\sigma,\beta)) \\ \rightarrow xEy). \end{cases}$$

Let $N \subseteq u_{\omega} \times u_{\omega}$ a good universal Π_3^1 set for all $^*\Pi_3^1$ subsets of u_{ω} and $M \subseteq u_{\omega} \times u_{\omega}$ a good universal Σ_3^1 set for all $^*\Sigma_3^1$ subsets of u_{ω} . Let f_N, g_M be the function given in the last lemma of Chapter 4.

By the *s-m-n* theorem, there must be a Δ_3^1 in the codes $\bar{h}: \omega^2 \times u_{\omega}^2$ such that for all m, α, σ, β ,

$$Q(m, \alpha, \sigma, \beta) \iff N(\bar{h}(l', m, \alpha, \beta), \sigma),$$

where l' is a natural number which is the index of Q.

Let

$$S^{\Sigma}(m,\alpha,\sigma,\beta) \iff \begin{cases} \operatorname{Lim}(\sigma) \wedge \neg H(m,\alpha,\sigma,\beta) \wedge \forall \sigma_{0} \in u_{\omega}(\sigma_{0} \prec^{*} \sigma) \\ \rightarrow \exists \sigma_{1}, \sigma_{2} \in u_{\omega}(\sigma_{1} \not\preceq^{*} \sigma_{0} \wedge \sigma \not\preceq^{*} \sigma_{1} \wedge \sigma \not\preceq^{*} \sigma_{2} \\ \wedge M(g_{M}(\sigma_{2},\bar{h}(l',m,\alpha,\beta)),\sigma_{1})). \end{cases}$$

 S^{Σ} has similar meaning as R^{Σ} , the only difference is that at this stage, we have a fixed d^* .

Let

$$S^{\Pi}(m,\alpha,\sigma,\beta) \iff \begin{cases} \operatorname{Lim}(\sigma) \land \neg G(d^*,m,\alpha,\sigma,\beta) \land \forall \sigma_0 \in u_{\omega}(\sigma \not\preceq^* \sigma_0) \\ \\ \rightarrow \exists \sigma_1, \sigma_2 \in u_{\omega}(\sigma_0 \prec^* \sigma_1 \prec^* \sigma \land \sigma_2 \prec^* \sigma) \\ \\ \land N(f_N(\sigma_2,\bar{h}(l',m,\alpha,\beta)),\sigma_1)). \end{cases}$$

 S^{Π} expresses the same fact as S^{Σ} but in a Π^1_3 form.

Let $A \subseteq u_{\omega} \times u_{\omega} \times u_{\omega} \times u_{\omega}$ be defined as the following: for any m, α, σ, β in u_{ω} , $(m, \alpha, \sigma, \beta) \in A$ if and only if

EITHER $\alpha = \beta$,

OR
$$\sigma \in LO_{u_{\omega}} \wedge Lim(\sigma) \wedge \exists \eta (\eta \prec^* \sigma \wedge H(m, \alpha, \sigma, \beta)),$$

OR
$$\sigma \in LO_{u_{\omega}} \land \exists \eta (\neg Lim(\eta) \land \eta \in LO_{u_{\omega}} \land Succ(\eta, \sigma) \land H(m, \alpha, \sigma, \beta)),$$

 $\mathrm{OR} \quad \boldsymbol{\sigma} \in \mathrm{LO}_{u_\omega} \wedge \exists \eta (\mathrm{Lim}(\eta) \wedge \mathrm{Succ}(\eta, \sigma)$

$$\wedge \exists n \in \omega \exists s \in u_{\omega}^{
$$\forall k < n - 1(H(m, s(k), \eta, s(k+1)))$$
$$\vee S(m, s(k), \eta, s(k+1)))),$$$$

where

$$S(m,\alpha,\sigma,\beta) \iff \begin{cases} S^{\Pi}(m,\alpha,\sigma,\beta) \land \\ \forall \alpha' \beta'((\alpha',\beta') \prec_{u_{\omega} \times u_{\omega}} (\alpha,\beta)) \to \neg S^{\Sigma}(m,\alpha,\sigma,\beta)). \end{cases}$$

It is easy to see that B is Π_3^1 . Let m^* be the fixed point from the recursion theorem, i.e., for all α, σ, β in u_{ω} ,

$$(m^*, \alpha, \sigma, \beta) \in B \iff H(m^*, \alpha, \sigma, \beta).$$

Let us fix this m^* from here. For any α,β in u_{ω} , let

$$\alpha e\beta \iff \exists \sigma \in WO_{u_{\omega}}B(m^*, \alpha, \sigma, \beta),$$

this e is clearly a Π_3^1 in the codes equivalence relation on u_{ω} .

By the induction on $\|\sigma\|$, we have the following

Lemma 6.4. For any α , β and σ in WO_{u_{ω}},

$$G(d^*, m^*, \alpha, \sigma, \beta) \iff H(m^*, \alpha, \sigma, \beta).$$

This lemma guarantees that the e defined before this lemma is just the equivalence relation that we described informally at the beginning of this chapter.

Now, it is time to prove that for all x and y in ω^{ω} ,

$$(x,y) \in E \iff (p(x),p(y)) \in e.$$

For any $\alpha \in u_{\omega}$, let

$$Y_{\alpha} = \{ x : (p(x), \alpha) \in e \}.$$

It suffices to prove the following

Lemma 6.5. For each α and β in ω^{ω} , if all reals in Y_{α} are *E*-equivalent to the reals in Y_{β} , then $(\alpha, \beta) \in e$.

Proof. For this α and β , let

$$S = \{ (\alpha', \beta') : (\alpha', \beta') \prec_{u_{\omega} \times u_{\omega}} (\alpha, \beta) \}.$$

This is a Π_3^1 subset of α , so, $A \in L_{\kappa_3}[T_2]$ by Hjorth's lemma in Chapter 3.

As

$$L_{\kappa_3}[T_2] \models \forall (\alpha', \beta') \in A \exists \sigma((\alpha', \beta') \in e^{\sigma}), \quad \forall$$

and

$$L_{\kappa_3}[T_2] \models \mathrm{KP},$$

there is a $B \in L_{\kappa_3}[T_2]$ such that

$$L_{\kappa_3}[T_2] \models \forall (\alpha', \beta') \in A \exists \sigma \in B((\alpha', \beta') \in e^{\sigma}).$$

Let $\sigma_0 = \sup\{\sigma : \sigma \in B\}, \sigma_0 < \kappa_3 \text{ since } B \in L_{\kappa_3}[T_2].$ For this σ_0 ,

$$\forall \alpha' \beta'((\alpha', \beta') \prec_{u_{\omega} \times u_{\omega}} (\alpha, \beta) \land (\alpha', \beta') \in e \to (\alpha', \beta') \in e_0^{\sigma}).$$

Let us define an increasing sequence of ordinals smaller than κ_3 by letting

$$\sigma_{n+1} = \max(g_V(\sigma_n, h(l, d^*, \alpha, \beta)), f_U(\sigma_n, h(l, d^*, \alpha, \beta)),$$
$$g_N(\sigma_n, \bar{h}(l', m^*, \alpha, \beta)), f_M(\sigma_n, \bar{h}(l', m^*, \alpha, \beta))),$$

Since this sequence is $\Delta_3^1(\alpha, \beta)$ in the codes, its upper bound is also an ordinal $\Delta_3^1(\alpha, \beta)$ in the codes and hence smaller than κ_3 . Let

$$\xi = \sup_{n \in \omega} \sigma_n.$$

If $(\alpha, \beta) \in e^{\xi}$, then $(\alpha, \beta) \in e$, we are done. So, we suppose that $(\alpha, \beta) \notin e^{\xi}$. In this case, from our construction, and because all reals in Y_{α} are *E*-equivalent to the reals in Y_{β} , $(\alpha, \beta) \in e^{\xi+1}$. Hence, $(\alpha, \beta) \in e$. \Box

Finally, we have our main theorem.

Theorem 6.6. For any thin Π_3^1 equivalence relation on ω^{ω} , there is a Δ_3^1 in the codes function p from ω^{ω} to u_{ω} and a Π_3^1 in the codes equivalence relation e on u_{ω} such that for any x, y in ω^{ω} ,

$$xEy \iff (p(x), p(y)) \in e$$

Proof. Let E be a Π_3^1 thin equivalence relation on u_{ω} , p and e as defined in this chapter.

From our construction, we know that Y_{α} must be a subset of some E equivalence class. We also know that Y_{α} is E-invariant from Lemma 6.5. So, Y_{α} is either an equivalence class or the empty set. But, it cannot be the empty set, otherwise, $(\alpha, \beta) \in e$ for all $\beta \in u_{\omega}$ from Lemma 6.5. So, for all $\beta \in u_{\omega}$, $Y_{\alpha} = Y_{\beta}$. Hence, $Y_{\beta} = \emptyset$ for all $\beta \in u_{\omega}$. This is impossible.

So, we have

$$(x,y) \in E \iff (p(x),p(y)) \in e.$$

It seems that Jackson lifted the Kechris-Martin theorem to higher levels. We hope his result could be used to lift Harrington's representation theorem further.

References

- [BK1] H.S. Becker & A.S. Kechris, Sets of ordinals constructible from trees and the third victoria delfino problem, Contemporary Mathematics 31 (1984), 13–29.
- [BK2] H. Becker & A.S. Kechris, *The descriptive set theory of Polish group* actions, Cambridge University Press, New York, 1996.
- [Ha1] L.Harrington, A Powerless proof of a theorem by Silver, Circulated notes (1976).
- [Hj1] G. Hjorth, Variations of the Martin-Solovay tree, Journal of Symbolic Logic **61(1)** (1996), 40–51.
- [Hj2] G. Hjorth, δ_3^1 and the reals of $L[T_2]$, Handwritten note (1994).
- [Je1] T.Jech, Set theory, Academic Press, New York San Francisco London, 1978.
- [Li1] X.Li, On the non-existence of the largest E-thin, E-invariant Π_1^1 set for some Π_1^1 Equivalence Relation E, handwritten note (1995).
- [Li2] X.Li, On the non-existence of the largest E-thin, E-invariant Π_{2n+1}^1 set for some Π_{2n+1}^1 equivalence relation E, Submitted to the Journal of Symbolic Logic (1996).
- [Li3] X.Li, On the representation of the thin Π_3^1 equivalence relations on ω^{ω} , preprint (1996).
- [Ka1] A. Kanamori, *The higher infinity*, Springer-Verlag Publishing Company, Berlin Heidelberg New York, 1994.
- [Ke1] A.S. Kechris, Thin sets for Π_1^1 equivalence relations and the perfect set theorem for \hat{u}_{ω} , Circulated note (1979).
- [Ke2] A.S. Kechris, *Countable ordinals and the analytical hierarchy*, *II*, Annals of Mathematical Logic **15** (1978), 193–223.
- [Ke3] A.S. Kechris, *Countable ordinals and the analytical hierarchy*, *I*, Pacific Journal of Mathematics **60(1)** (1975), 223–227.
- [Ke4] A.S. Kechris, *The theory of countable analytical sets*, Transactions of Amer. Math. Soc. **202** (1975), 259–297.
- [Ke5] A.S. Kechris, Recent advances in the theory of higher level projective sets, The Kleene Symposium (1980), North-Holland Publishing Company, Amsterdam New York Oxford, 149–166.
- [Ke6] A.S. Kechris, *Classical descriptive set theory*, Springer-Verlag, Amsterdam New York Oxford, 1994.
- [KM1] A.S. Kechris & D. A. Martin, On the theory of Π_3^1 sets of reals, Circulated notes (1977).
- [KMS] A.S.Kechris, D. A. Martin, R. M. Solovay, Introduction to Q-theory, Cabal Seminar 79-81, Lecture Notes in Mathematics 1019 (1983), Springer-Verlag, Amsterdam New York Oxford, 199–282.
- [Mo1] Y.N.Moschovakis, *Descriptive set theory*, North-Holland Publishing Company, Amsterdam New York Oxford, 1980.

[Sa1] G. Sacks, *Higher recursion theory*, Springer-Verlag Publishing Company, Berlin Heidelberg New York, 1990.

Vita

Xuhua Li

- M.Sc. in Applied Mathematics, Tsinghua University, 1988
- B.Sc. in Mathematics, Beijing University, 1986

SOME RESULTS ON PROJECTIVE EQUIVALENCE RELATIONS

Xuhua Li, Ph.D. Department of Mathematics California Institute of Technology, 1997 Dr. A. Kechris and Dr. G. Hjorth, Advisors

We construct a Π_1^1 equivalence relation E on ω^{ω} for which there is no largest E-thin, E-invariant Π_1^1 subset of ω^{ω} . Then we lift our result to the general case. Namely, we show that there is a Π_{2n+1}^1 equivalence relation for which there is no largest E-thin, E-invariant Π_{2n+1}^1 set under projective determinacy. This answers an open problem raised in Kechris [Ke2].

Our second result in this thesis is a representation for thin Π_3^1 equivalence relations on u_{ω} . Precisely, we show that for each thin Π_3^1 equivalence relation E on u_{ω} , there is a Δ_3^1 in the codes map $p: \omega^{\omega} \to u_{\omega}$ and a Π_3^1 in the codes equivalence relation e on u_{ω} such that for all real numbers x and y,

$$xEy \iff (p(x), p(y)) \in e.$$

This lifts Harrington's result about thin Π_1^1 equivalence relations to thin Π_3^1 equivalence relations.