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ABSTRACT 

Sunlight is one of the few renewable resources that can meet global energy demand. 

Unfortunately, while solar energy has grown in the past few years, several economic and 

scientific constraints have hindered mass adoption. One of the main obstacles solar 

energy faces is the lack of economically competitive storage technologies. Artificial 

photosynthesis is a potential solution in which solar energy is directly converted into 

energy dense chemical bonds that can be easily stored and transported.  

 

One impediment facing the commercialization of artificial photosynthesis is the use of 

expensive and rare precious metals as catalysts. This dissertation focuses on the 

achievements of the past five years in characterizing novel, earth-abundant, acid-stable 

hydrogen evolution catalysts. While nickel alloys have long been known as catalysts for 

the hydrogen evolution reaction in basic media, it has only been in the past decade that 

earth abundant catalysts that are stable in acidic media have been reported. These 

discoveries are critically important as the many proposed artificial photosynthetic devices 

require the use of acidic media. 

 

In this dissertation we examine two families of hydrogen evolution catalysts: transition 

metal chalcogenides (namely molybdenum and cobalt selenide) as well as transition 

metal phosphides (cobalt phosphide). In addition to the electrochemical characterization 

of these catalysts, spectroscopic characterizations were performed in order to carefully 
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examine the chemical compositions of these catalysts before, after and during the 

hydrogen evolution reaction. This analysis elucidated both chemical, and structural 

changes that occurred after the catalysts had been subject to the hydrogen evolution 

reaction conditions.  

 

The final chapter in this thesis delves into the techno-economic realities of energy 

transportation via different fuels. Due to the strong interest in renewable energy, several 

future energy transportation scenarios, including 100% grid electrification and 

widespread installation of hydrogen pipelines, have been proposed. In order to get a fuller 

understanding of such potential infrastructure alternatives, we report their differing 

energy transportation costs.  
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