Acid-Stable Electrocatalysts for the Solar Production of Fuels

Thesis by Fadl Hussein Saadi

In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California

> 2017 (Defended January 12, 2017)

Fadl Hussein Saadi ORCID: 0000-0003-3941-0464

ACKNOWLEDGEMENTS

The number of people I need to thank for helping me get here is immense. I have never been a solitary figure and the warmth and aid that so many people have shown me is, quite honestly, breathtaking.

I want to start off by thanking my committee: Harry Atwater, Harry Gray and Bill Goddard. You have been so helpful during my time here at Caltech. I know you are all very busy and I appreciate your willingness to be a part of my committee. I also want to thank you all for running such amazing research groups. Members of all of your groups have aided me during my time at Caltech and for that I am grateful. I also want to thank Harry Gray for leading the Solar Army. I very much enjoyed working with you, Michelle DeBoever and Siddharth Dasgupta, to help motivate high school students' interest in scientific research.

I have been blessed, even before joining Caltech with amazing mentors. Thank you Tom Jaramillo and Zhebo Chen for helping a naïve sophomore understand why three electrodes are better than two and for giving me ownership of my own project. I still remember both the frustration and exhilaration of having my first research project.

I had some great mentors at Caltech, which included Carl Koval, who was the Director of JCAP throughout much of my time at Caltech and whose open door policy I took advantage of. Thank you for all the effort you put into creating a friendly, scientific atmosphere here at JCAP. Bruce Brunschwig, director of the MMRC, was also always there when I needed him and has a way of making sure everything runs smoothly both inside the MMRC and outside of it.

I would like to thank my officemates: Jack Baricuatro, Kyle Cummins, Alnald Javier, Youn-Geun Kim, Jean Sanabria Chinchilla, Guofeng Sun, Brian Chmielowiec, Dan Torelli and Chu Tsang for always being happy to see me even though they knew that it meant the productivity in the office was going to plummet for a few minutes. I want to especially thank Jack and Kyle, who were so generous with their time. Jack, your chemistry knowledge is something that inspires me to this day– thank you for walking me through so many diverse scientific concepts. Kyle, your help with UHV systems has been amazing. I truly doubt you can find more than a handful of people in this world with more extensive knowledge about these systems.

The Lewis group is unique in many ways. I don't think my time at Caltech would have been nearly as enjoyable had I not ended up in such a smart, silly and cohesive group. When I first joined I remember looking up to the senior members of the group: Leslie O'Leary, Emily Warren, Liz Santori, Ron Grimm, Bryce Sadtler, Rob Coridan, Craig Wiggenhorn, Shane Ardo, Josh Spurgeon, James McKone, Joseph Beardslee and Nick Strandwitz; and being astounded that they could follow and contribute to the various types of research being presented and have strived to follow in their footsteps. I was also fortunate enough to work with the graduate students in the years above me: Josh Wiensch, Adam Nielander, Chris Roske, Amanda Shing, Adam Pietrick and Matt Shaner. Thank you for all your help and maintaining so many of the instruments that I have used during my time at Caltech! My year saw a large influx of graduate students joining the Lewis group with Noah Plymale, Azhar Carim, Micheal Lichterman, Nick Batara and Victoria Dix and I all joining the group and, as luck would have it, becoming good friends! The graduate students the years below us have also been fantastic and an absolute pleasure to work with. Thanks Pai Buabthong, Chance Crompton, Jingjing Jiang, Paul Kempler, Kyra Lee, Ivan Moreno, Paul Nunez, Stefan Omelchenko, Katherine Rinaldi, Jared Bruce, Billy Hale, Roc Montserrat, Ethan Simonoff, Annelise Thompson, Dan Torelli, Jonathan Thompson, Sisir Yalamanchili, Ellen Yan, Katie Hamann, Mike Mazza, Harold Fu, Weilai Yu and Xinghao Zhou! There were also a good number of post docs who joined the group and enriched it with their wisdom. Thanks James Blakemore, Mita Dasog, Betar Gallant, Sonja Francis, Shu Hu, Teddy Huang, Jimmy John, CX Xiang, Mike Walter, Qixi Mi, Miguel Caban-Acevedo, Carlos Read, Matthias Richter, Ke Sun and Matt McDowell. I also want to thank Barbara Miralles, Rena Becerra-Rasti and Kimbery Papadantonakis for keeping the Lewis group humming along. It would be a mess without you!

I want to take a moment to especially thank Azhar who was always thrilled to have people over– watching college football is going to be decidedly less fun next year. Grabbing coffee and trying our hand at sous vide along with Mike, Ethan and Jonathon were some of the highlights of this past year. I also want to thank Dan, Stefan, Kyra, Adam, Kat, Sonja, Annelise and Paul for cheering me up when I was down. That goofy grin of mine whenever I spotted you guys sitting at your desks was always genuine.

I also wish to thank my Materials Science cohort. Getting through those classes in our first year was not easy but we soldiered on as a group and got through it together. Even after our first year, it has always been a comfort knowing that at noon there would be a lunch table with friendly, familiar faces that would be more than happy to chat about whatever topic popped up. In particular, I want to thank Renee McVay, Sam Johnson, Kevin Fiedler, Max Jones, Sunita Darbe, Andrew Hoff, Eric Verlage, Mark Harfouche, Ivan Papusha, Evan Miyazono and John Lloyd. Our lunch conversations were sometimes serious, often silly and always a great joy. I also want to thank Christy Jenstad for helping me navigate the bureaucracy of Caltech and always offering a couch where I plop down and grab some candy. Additionally I want to thank David Chen, Dennis Kim, Karthik Seetharaman and Anandh Swaminathan for grabbing (often really late) dinners and driving around LA looking for good Indian food.

I was thrilled to have the opportunity to spend several months at the Dow Centre for Sustainable Innovation at the University of Queensland in Australia where I was got to dabble with the techno-economic analysis of different energy systems. I was only able to accomplish this due to the generosity of Eric McFarland, Professor at UCSB, who invited me and mentored me during my time there and afterwards. I also want to thank Julia Mueller, Tom McConnaughy, Diego Lopez, Xiaoyu Wang, Sara Zadeh, Brett Parkinson, Simon Smart, Callum Hickey, Celestien Warnaar-Notschaele, Khuong Vuong, Mojgan Zavareh and Leila Safavi-Tehrani for creating a fun office atmosphere and reminding me of many of the chemical engineering topics that I had forgotten.

Since moving to LA, a lot of my free time has been spent watching and performing improv with some of the smartest and most interesting people I know. I want to thank my two improv teams Direct to Video (Scott Tammel, Sasha Feiler, Sean Kearney, Will Saunders, Steven Cohen, Doug Schultheis and Trevor Rotenburg) and The Scoop (Jen Kleinrock, Joseph Gehart, Gregory Smith, Patrick Ehlers, Ryan Mogge, Heather Sundell, Rebecca Landman and Kristel Kovner) for providing me with a safe space for my creativity even when it often bordered close to insanity.

Ramya Parameswaran, Shashank Ravi and Pedro Hernandez: thank you for all your help in those chemical engineering classes throughout our time at Stanford and for remaining my close friends. I must also give a very special thanks to the Noe Crew: Khaled Al-Turkestani, Ziyad AbdelKhaleq, Lily Guo, Mohammad Islam, Noor Alnabelseya and Andres Morales. Even though I flew up to the Bay quite often you guys always welcomed me with open arms and multiple couches to sleep on and made me feel special. Just hanging out with you guys brings me joy. Here's to a hundred more Thanksgivings!

During my time at Caltech I had one official advisor but was blessed to have an unofficial one as well. To my unofficial advisor, Manny Soriaga, Professor Emeritus at Texas A&M and Research Professor at Caltech: thank you for taking me under your wing and treating me like I was one of your own students– your mentorship and kindness have been invaluable. When things weren't working and I needed a second opinion I knew I could knock on your door and you would be more than willing to try and figure out what is happening in my experiments. My official advisor, and why I joined Caltech in the first place, has been Nate Lewis. Nate thank you so much for everything you have done for me -I couldn't have asked for a more supportive advisor. Thank you for giving me the academic freedom to try so many different projects and for cultivating a truly unique group culture. In the Lewis group we like to joke that we have a hard time relating to other graduate students because we rarely encounter the difficulties they do. We really appreciate the work you put into making that a reality.

Finally, I need to thank my family: Mom, Dad, Sarah and Ahmad. It's been really hard living so far away from you but your love and support easily traverses the thousands of miles between us. To my dearest Sarah: thank you for being my closest friend from literally day one- I'm so fortunate to have you as my twin. I wish everyone had a twin like you. Ahmad: I am so proud of you. You might not know this, but one of my favorite pastimes is bragging to my friends about how amazing a brother you are. Mom, Dad your support and encouragement is what gives me the strength and motivation to keep going. You are, and always have been, my inspiration. While I am proud of the work that I've done, my biggest source of pride will forever and always be being your son.

ABSTRACT

Sunlight is one of the few renewable resources that can meet global energy demand. Unfortunately, while solar energy has grown in the past few years, several economic and scientific constraints have hindered mass adoption. One of the main obstacles solar energy faces is the lack of economically competitive storage technologies. Artificial photosynthesis is a potential solution in which solar energy is directly converted into energy dense chemical bonds that can be easily stored and transported.

One impediment facing the commercialization of artificial photosynthesis is the use of expensive and rare precious metals as catalysts. This dissertation focuses on the achievements of the past five years in characterizing novel, earth-abundant, acid-stable hydrogen evolution catalysts. While nickel alloys have long been known as catalysts for the hydrogen evolution reaction in basic media, it has only been in the past decade that earth abundant catalysts that are stable in acidic media have been reported. These discoveries are critically important as the many proposed artificial photosynthetic devices require the use of acidic media.

In this dissertation we examine two families of hydrogen evolution catalysts: transition metal chalcogenides (namely molybdenum and cobalt selenide) as well as transition metal phosphides (cobalt phosphide). In addition to the electrochemical characterization of these catalysts, spectroscopic characterizations were performed in order to carefully

examine the chemical compositions of these catalysts before, after and during the hydrogen evolution reaction. This analysis elucidated both chemical, and structural changes that occurred after the catalysts had been subject to the hydrogen evolution reaction conditions.

The final chapter in this thesis delves into the techno-economic realities of energy transportation via different fuels. Due to the strong interest in renewable energy, several future energy transportation scenarios, including 100% grid electrification and widespread installation of hydrogen pipelines, have been proposed. In order to get a fuller understanding of such potential infrastructure alternatives, we report their differing energy transportation costs.

PUBLISHED CONTENT AND CONTRIBUTIONS

Saadi, F. H.; Carim, A. I.; Velazquez, J. M.; Baricuatro, J. H.; McCrory, C. C.; Soriaga, M.
P.; Lewis, N. S. *ACS Catalysis* 2014, *4*, 2866. DOI: http://10.1021/cs500412u

F.H.S participated in the conception of the project, performed the sample preparation, collected the majority of the data, performed the data analysis, and participated in writing the manuscript.

Carim, A. I.; Saadi, F. H.; Soriaga, M. P.; Lewis, N. S. *Journal of Materials Chemistry A* 2014, *2*, 13835. DOI: 10.1039/C4TA02611J

F.H.S participated in the conception of the project, collected some of the data, performed data analysis, and participated in writing the manuscript.

Saadi, F. H.; Carim, A. I.; Verlage, E.; Hemminger, J. C.; Lewis, N. S.; Soriaga, M. P. *The Journal of Physical Chemistry C* 2014, *118*, 29294. DOI: 10.1021/jp5054452

F.H.S participated in the conception of the project, performed the sample preparation, collected the majority of the data, performed the data analysis, and participated in writing the manuscript.

TABLE OF CONTENTS

Acknowle	dgements iii
Abstract .	ix
Published	Content and Contributionsxi
Table of C	Contents xii
List of Fig	ures xvi
List of Tal	bles xxiv
Chapt	er 1: Introduction: Global Warming, Energy, and Artificial
Photosynt	hesis1
1.1 En	ergy and the Climate2
1.1.1	Global Energy Consumption
1.1.2	Carbon Dioxide Emission
1.1.3	Global Climate Change
1.2 Br	eaking the Energy & CO ₂ Emission Bond7
1.2.1	Carbon Capture and Storage (CCS)
1.2.2	Hydropower
1.2.3	Nuclear Fission
1.2.4	Wind Power
1.2.5	Photovoltaic Cells

1.	2.6 Concentrated Solar Thermal	2
1.3	Artificial Photosynthesis	2
1.4	References1	5
Ch	apter 2: Operando Synthesis of Macroporous Molybdenum Diselenide Films	
for the	e Hydrogen Evolution Reaction18	3
2.1	Introduction and Motivation	3
2.2	Results)
2.	2.1 Characterization of as-deposited films)
2.	2.2 Conversion of the films to catalysts of the HER)
2.3	Discussion	3
2.4	Conclusion	5
2.5	Experimental	5
2.6	References 42	2
Ch	napter 3: Electrocatalysis of the Hydrogen Evolution Reaction by	
Electr	odeposited Amourphous Cobalt Selenide Films40	5
3.1	Introduction	5
3.2	Cobalt selenide electrodeposition and characterization4	7
3.3	Comparison with other HER Catalysts54	1
3.4	Conclusion	5
3.5	Experimental	5
3.6	References 60)

Cl	hapter 4: CoP as an Acid-Stable Active Electrocatalyst for The	Hydrogen-
Evolu	tion Reaction: Electrochemical Synthesis, Interfacial Character	ization, and
Perfor	rmance Evaluation	63
4.1	Introduction	
4.2	Cobalt phosphide electrodeposition and characterization	
4.	.2.1 Characterization of films prior to electrocatalysis	
4.	.2.2 Electrochemistry	
4.	.2.3 Post-electrochemistry film characterization	
4.3	Discussion	
4.4	Conclusion	
4.5	Experimental	
4.6	References	
Cł	hapter 5: Operando Spectroscopic Analysis of CoP Films Electr	ocatalyzing the
Hydro	ogen-Evolution Reaction	
5.1	Introduction and Motivation	
5.2	Characterization of CoP films	
5.	2.1 Potentiostatic and ex-situ characterization of CoP films	
5.3	Conclusion	
5.4	Experimental	
5.5	References	
Cl	hapter 6: Costs of Transporting Electrical and Chemical Energy	y 102

6.1	Int	roduction	102
6.2	Co	sts of Energy Transport	104
6.	2.1	Oil Pipelines	104
6.	2.2	Natural Gas Pipelines	106
6.	2.3	Hydrogen Pipelines	107
6.	2.4	Pipelines for Alternative Chemicals	108
6.	2.5	Oil Tankers	109
6.	2.6	Liquefied Natural Gas Tankers	110
6.	2.7	Electrical Transmission Lines	111
6.3	Ov	erall Comparison, Comment, and Conclusion	113
6.4	Re	ferences	115
	Put	lications	119

LIST OF FIGURES

FIGURE 1.1: WORLD TOTAL PRIMARY ENERGY SUPPLY (TPES) FROM 1971 TO 2014 BY		
FUEL (MTOE). ¹ $^{\circ}$ OECD/IEA 2016 Key World Statistics, IEA Publishing.		
LICENSE: WWW.IEA.ORG/T&C		
Figure 1.2: World electricity generation from 1971 to 2014 by fuel (TWH). 1 ©		
OECD/IEA 2016 Key World Statistics, IEA Publishing. License:		
WWW.IEA.ORG/T&C		
FIGURE 1.3: ANNUAL GLOBAL CARBON DIOXIDE EMISSIONS FROM 1965 TO 2014 (MILLION		
TONNES CO2). ⁶		
FIGURE 1.4: MONTHLY MEAN ATMOSPHERIC CARBON DIOXIDE AT MAUNA LOA		
OBSERVATORY, HAWAII. PUBLICALLY AVAILABLE FROM NOAA. ⁹		
FIGURE 1.5: ANOMALIES OF THE GLOBAL TEMPERATURE INDEX OF PROVIDED BY SEVERAL		
groups is depicted for the 1980 to present time period. The base period is		
1951-1980. The Berkeley baseline is depicted. Publically available from		
THE BEST REPORT. ¹¹		
FIGURE 1.6: HYDROELECTRICITY GENERATION IN TWH FROM 1965-2011. ¹³		
FIGURE 1.7: NUCLEAR ENERGY GENERATION FROM 1965-2014 (TERRAWATT-HOURS). ⁶ 10		
FIGURE 1.8: GLOBAL SOLAR PHOTOVOLTAIC GENERATION CAPACITY (GW). ⁶ 11		

FIGURE 2.1: SCANNING ELECTRON MICROGRAPHS OF THE FILMS BEFORE (A,B) and after		
(C,D) 10 cycles. (A) The as-deposited mixed-composition films on glassy		
CARBON SUBSTRATES WERE NON-UNIFORM, CONSISTING OF MULTIPLE ISLANDS $\sim \! 100$		
(C) The island structure was not visible after electrocatalysis, and (D) (C)		
AT HIGHER MAGNIFICATION THE ENTIRE SURFACE APPEARED POROUS		
FIGURE 2.2: HIGH-RESOLUTION X-RAY PHOTOELECTRON SPECTRA OF (A) THE MO 3D		
REGION OF AN AS-DEPOSITED THIN FILM; (B) THE SE 3D REGION OF AN AS-DEPOSITED		
Thin film; (C) the Mo 3d region after 10 cycles; (D) the Se 3d region after 10 $$		
CYCLES		
FIGURE 2.3: HIGH-RESOLUTION X-RAY PHOTOELECTRON SPECTRA OF (A) THE MO 3D		
REGION OF MOO_3 ; (B) THE O 1S REGION OF MOO_3 ; (C) THE MO 3D REGION OF MOO_2 ;		
(D) THE O 1S REGION OF MoO_2 ; (E) THE O 1S REGION OF THE AS DEPOSITED FILM; (F)		
THE O 1S REGION AFTER 10 CYCLES		
FIGURE 2.4: RAMAN SPECTRA OF AN AS-DEPOSITED THIN FILM (SOLID) AND OF A FILM		
AFTER TEN CYCLES (DASHED). PRIOR TO VOLTAMMETRIC CYCLING, A BROAD,		
Asymmetric band centered at 255 Cm^{-1} and a smaller shoulder at 238 Cm^{-1}		
WERE VISIBLE, AND ARE ASSIGNED TO A SE–SE STRETCH MODE IN GLASSY, LOOSELY		
PACKED POLYMER CHAINS AND TO A SE–SE STRETCH VIBRATION OF CLOSELY PACKED		

(CHAINS, RESPECTIVELY. THESE BANDS WERE NOT OBSERVED AFTER VOLTAMMETRIC
(CYCLING
FIGU	RE 2.5: ELECTROCHEMICALLY ACTIVE SURFACE AREA MEASUREMENTS BEFORE (PRE-
(CYCLING) AND AFTER (POST-CYCLING) THE ELECTROCATALYSIS EXPERIMENTS SHOWN
]	IN FIGURE 2.6. (A) CYCLIC NON-FARADAIC-CURRENT VS POTENTIAL CURVES AT PRE-
ŝ	SELECTED SCAN RATES; (B) NON-FARADAIC CURRENT AS A FUNCTION OF THE
]	POTENTIAL SCAN RATE
Figu	RE 2.6: (A) CYCLIC VOLTAMMETRIC DATA FOR MOLYBDENUM SELENIDE THIN FILMS
(ON GLASSY CARBON IN 0.10 M $\mathrm{H}_2\mathrm{SO}_4(\mathrm{AQ})$. In the first cycle, the initial
(CATHODIC PORTION SHOWED A LOWER CURRENT DENSITY THAN THE RETURN ANODIC
]	HALF-CYCLE. THE CURRENT DENSITY INCREASES IN SUBSEQUENT CYCLES, UNTIL THE
	TENTH CYCLE WHEN THE CURRENT DENSITY REACHED STEADY-STATE. (B) CURRENT-
]	POTENTIAL PLOT FOR THE GLASSY CARBON SUBSTRATE (DOTTED CURVE) AND
]	IMMEDIATELY AFTER THE TENTH (SOLID CURVE) CYCLE. (C) TAFEL PLOT OF THE
(CURRENT-POTENTIAL DATA IN (B) ; (D) A plot of the overpotential needed to
]	produce a current density of 10 mA cm^{-2} data as a function of time
FIGU	RE 2.7: CURRENT DENSITY-POTENTIAL PROFILE OF THE PREPARED FILM BEFORE (PRE-
(CYCLING) AND AFTER (POST-CYCLING) ELECTROLYSIS. NORMALIZATION OF THE

CURRENT DENSITY TO THE ELECTROCHEMICALLY ACTIVE SURFACE AREA GIVES RISE

TO TWO DISTINCT POLARIZATION CURVES THAT SHOW FUNDAMENTAL DIFFERENCES IN	
The catalytic activity of $MoSe_3$ and $MoSe_2$	
FIGURE 3.1: REPRESENTATIVE (A) SCANNING ELECTRON MICROGRAPH AND (B) RAMAN	
SPECTRUM OF AN ELECTROCHEMICALLY PREPARED COBALT SELENIDE FILM	
FIGURE 3.2: TOP: REPRESENTATIVE X-RAY DIFFRACTION PATTERN COLLECTED FROM A	
COBALT SELENIDE FILM. BOTTOM: STANDARD LINES FOR POLYCRYSTALLINE TI	
(JCPDS 65-9622)	
FIGURE 3.3: REPRESENTATIVE HIGH-RESOLUTION X-RAY PHOTOELECTRON SPECTRA OF AN	
ELECTROCHEMICALLY PREPARED COBALT SELENIDE FILM IN THE (A) CO 2P AND (B)	
SE 3D REGIONS	
FIGURE 3.4: (A) CATHODIC POLARIZATION CURVES OF TITANIUM FOIL AND OF A COBALT	
SELENIDE FILM IN 0.500 M H2SO4 saturated with H2(g) (inset highlights	
BEHAVIOR AT LOW OVERPOTENTIALS). (B) TAFEL PLOT DERIVED FROM DATA IN (A).51	
FIGURE 3.5: TURNOVER FREQUENCY OF COBALT SELENIDE FILMS AS FUNCTION OF	
OVERPOTENTIAL FOR THE HYDROGEN-EVOLUTION REACTION IN $0.500\ M\ H2_SO_4$	
saturated with $H_2(G)$ derived from the voltammetric data in Figure 3.4A.52	
FIGURE 3.6: (A) POTENTIAL APPLIED TO A COBALT SELENIDE FILM AS A FUNCTION OF TIME	
DURING GALVANOSTATIC ELECTROLYSIS AT -10 MA CM-2 IN 0.500 M H2SO4 (B)	
POLARIZATION CURVES OF A COBALT SELENIDE FILM ACQUIRED BEFORE AND AFTER	

1000 accelerated full potential cycles between 0.100 V and -0.175 V vs.
RHE
Figure 4.1: Scanning-electron micrographs of the films before (A, B and C) and
AFTER (D, E AND F) VOLTAMMETRY. A: AN AS-DEPOSITED THIN FILM SHOWED THE
PRESENCE OF QUASI-SPHERICAL CLUSTERS ON THE SURFACE. B AND C: THE FILM
UNDERNEATH THE PARTICLES APPEARED UNIFORMLY ROUGHENED. D: POST-
ELECTROLYSIS FILM SHOWED CLOSE-PACKED PLATEAU-TOPPED ISLANDS ON THE
SURFACE. E AND F: THE TOPS OF THE MESA-LIKE ISLANDS WERE FLAT AND
RELATIVELY SMOOTH
FIGURE 4.2: ENERGY-DISPERSIVE X-RAY SPECTROSCOPY OF THE FILMS BEFORE AND AFTER
VOLTAMMETRY. THE CO:P ATOMIC RATIO DECREASED FROM $20:1$ to $1:1$ after the
VOLTAMMETRIC EXPERIMENTS
FIGURE 4.3: HIGH-RESOLUTION X-RAY PHOTOELECTRON SPECTRA OF (A) CO 2P REGION OF
THE AS-DEPOSITED THIN FILM; (B) P 2P REGION OF THE AS-DEPOSITED THIN FILM; (C)
Co 2p region after voltammetry; (D) P 2p region after voltammetry 67
FIGURE 4.4: RAMAN SPECTRA BEFORE AND AFTER VOLTAMMETRY. THE PEAKS AT CA. 600
CM^{-1} correspond to CO-O vibrational modes, whereas those at <i>CA</i> . 1100 CM^{-1}
ARE ATTRIBUTABLE TO P-O MODES
FIGURE 4.5: (A) CYCLIC VOLTAMMETRIC DATA FOR COBALT PHOSPHIDE THIN FILMS ON
GLASSY CARBON IN AQUEOUS $0.50M{ m H_2SO_4}$. (B) Current density VS potential

DATA FOR PT (GRAY), THE THIRD SCAN OF CoP (BLACK), Co (BLUE) and Cu (RED).
(C) TAFEL PLOT OF COP FROM THE CURRENT DENSITY VS POTENTIAL DATA IN (B). (D)
TAFEL PLOTS THAT COMPARE THE ACTIVITY OF THE FILM IN $0.50M{ m H_2SO_4}$ with that
of PT, 21 CoP nanoparticles, 21 Ni ₂ P nanoparticles, 20 CoSe thin films, 41 MoSe ₂
THIN FILMS, 42 and MoS_2 thin films. ⁹
FIGURE 4.6: (A) CURRENT DENSITY VS POTENTIAL DATA IN $0.50 M \mathrm{H_2SO_4}$, for the first
CYCLE AND AFTER UNINTERRUPTED SCANS OVER 24 H. (B) CHRONOPOTENTIOMETRY
In $0.50 M \mathrm{H_2SO_4}$ at a constant current density of $10 \mathrm{mA cm^{-2}}$
FIGURE 5.1: CATHODIC POLARIZATION BEHAVIOR OF A COP FILM IN 0.500 M $H_2SO_4(AQ)$.
FIGURE 5.2: RAMAN SPECTRA OF COP FILMS ACQUIRED UNDER THE INDICATED
CONDITIONS. (A) EX-SITU SPECTRUM OF A COP FILM PRIOR TO CONTACT WITH
$H_2SO_4(AQ)$ (AIR AMBIENT, EX-SITU). (B) COP FILM IN 0.500 M $H_2SO_4(AQ)$ At open
CIRCUIT (IN-SITU). (C) SAME AS (B) BUT AT AN APPLIED POTENTIAL OF -0.300 V vs.
SCE (OPERANDO)
FIGURE 5.3: CO K-EDGE X-RAY ABSORBANCE SPECTRA OF BOTH COP FILMS UNDER THE
INDICATED CONDITIONS AND RELATED SPECTRAL STANDARDS. (A) EX-SITU SPECTRUM
OF A COP FILM PRIOR TO CONTACT WITH $H_2SO_4(AQ)$ (AIR AMBIENT, EX-SITU). (B) COP

	APPLIED POTENTIAL OF -0.300 V VS. SCE (OPERANDO). (D) CO STANDARD. (E) COO	
	STANDARD	\$8
Fig	URE 5.4:CO K-EDGE XAS OF COP FILMS UNDER THE FOLLOWING CONDITIONS: (A)	
	SPECTRUM OF A COP FILM IN $0.500~M~H_2SO_4(\mbox{AQ})$ at an applied potential of -	
	0.300 V vs. SCE (<i>Operando</i>). (b) spectrum of a CoP film exposed to air after	
	<i>OPERANDO</i> CONDITIONS. (C) REFERENCE SPECTRUM OF AQUEOUS COCL ₂	;9
Fig	URE 5.5: FOURIER-TRANSFORMED CO K-EDGE EXAFS OF COP FILMS UNDER THE	
	INDICATED CONDITIONS COMPARED TO COO AND CO FOIL STANDARDS, PLOTTED AS	
	APPARENT DISTANCE (TYPICALLY ~ 0.5 Å shorter than the real distance). (A)	
	EX-SITU SPECTRUM OF A COP FILM PRIOR TO CONTACT WITH $\mathrm{H}_2\mathrm{SO}_4$ electrolyte	
	(AIR AMBIENT, EX-SITU). (B) COP FILM IN 0.500 M $\rm H_2SO_4(AQ)$ at open circuit (in-	
	SITU). (C) SAME AS (B) BUT AT AN APPLIED POTENTIAL OF -0.300 V vs. SCE	
	(operando). (d) CoP film after operation and exposure to Air. (e) CoO	
	STANDARD. (F) CO FOIL STANDARD)1
Fig	URE 5.6: P K-EDGE X-RAY ABSORBANCE SPECTRA OF BOTH COP FILMS UNDER THE	
	INDICATED CONDITIONS AND RELATED SPECTRAL STANDARDS. (A) EX-SITU SPECTRUM	Л
	OF A COP FILM PRIOR TO CONTACT WITH $\mathrm{H}_2\mathrm{SO}_4$ electrolyte (air ambient, ex-	

SITU). (B) COP FILM IN 0.500 M $H_2SO_4(AQ)$ at open circuit (in-situ). (c) Same as

FIGURE 6.1: CAPITAL COST BREAKDOWN FOR OIL PIPELINES	105
FIGURE 6.2: CAPITAL COST BREAKDOWN FOR ELECTRICAL TRANSMISSION LINES	112
FIGURE 6.3: SUMMARY OF THE COST OF TRANSPORTATION ENERGY RESOURCES IN	
DIFFERENT FORMS	114

LIST OF TABLES

TABLE 6.1: COST OF TRANSPORTING OIL IN PIPELINES	105
TABLE 6.2: COST OF TRANSPORTING NATURAL GAS BY PIPELINE	106
TABLE 6.3: COST OF TRANSPORTING HYDROGEN IN PIPELINES	107
TABLE 6.4: COST OF TRANSPORTING ENERGY AS REDOX FLOW BATTERY ELECTROL	YTE BY
PIPELINE	109
TABLE 6.5: Cost of transporting oil by tanker	110
TABLE 6.6: TRANSPORTATION COSTS FOR LIQUEFIED NATURAL GAS (LNG) BY TAN	KER 111
TABLE 6.7: ESTIMATED COST OF TRANSPORTING ELECTRICITY	113