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Abstract

Recent progress in nanosciences challenges the conventional understanding of Fourier’s

law for heat conduction and Planck’s law for thermal radiation, calling for theoret-

ical and experimental advancement to improve our understanding at these length

scales. Advances in both theoretical and experimental progress at these length scale

have been made in the past two decades, but there are still many challenges and

possibilities in further understanding how heat conducts or radiates at these length

scales.

The first half of this thesis focuses on topics in nanoscale thermal radiation. First,

we will discuss an effort to modify thermal emission using a hyperbolic metamaterial

(HMM). Recent efforts in utilizing different metamaterial designs to modify thermal

emission has led to greater control over the spectral and directional properties of ther-

mal radiation, and the HMM is one such metamaterial. HMM is typically made up of

sub-wavelength alternating layers of metal and dielectric that result in an anisotropic

permittivity. Here we demonstrate that an annular, transparent HMM lens enables

selective controlling of the plasmonic resonance such that a nanowire emitter, sur-

rounded by an HMM, appears dark to incoming radiation from an adjacent nanowire

emitter unless the second emitter is surrounded by an identical lens.

While many metamaterial schemes exist to modify thermal emission, these schemes

are ultimately limited by the maximum possible emission of a blackbody. In an effort

to further increase radiative thermal emission, we made another effort to explore the

possibility of removing the enhanced but trapped thermal radiation energy density at

sub-wavelength distances. Here, we propose and numerically demonstrate an active

scheme that exploits the monochromatic nature of near-field thermal radiation to
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drive a transition in a laser gain medium, which, when coupled with external optical

pumping, allows the resonant surface mode to be emitted into the far-field. We com-

pare this proposed active radiative cooling (ARC) approach to the better-understood

laser cooling of solids (LCS) technique, which achieves cooling by extracting phonons

instead of thermal radiation. We show that LCS and ARC can be described with the

same mathematical formalism and find that ARC can achieve higher efficiency and

extracted power over a wide range of conditions.

In the second half of thesis, we switch our attention to nanoscale heat conduction

where phonons are the dominant heat carriers. Phonons require a medium to travel,

unlike thermal radiation, and thus experience much stronger interaction with the

medium. Typical assumptions of many scattering events of phonons at the larger

length scales break down at the nanoscale when phonon transport can no longer

be accurately described by diffusion theory. Here, we present a numerical modeling

effort using the Boltzmann Transport Equation to accurately model nanoscale phonon

transport of a recent experiment. We show a calculated trend of pump beam size

dependence on thermal conductivity similar to results from the time-domain thermal

reflectance (TDTR) experiment. We also identify the radial suppression function that

describes the suppression in heat flux, compared to Fourier’s law, that occurs due to

quasiballistic transport and demonstrate good agreement with experimental data.

While time-domain thermal reflectance (TDTR) experiment is widely used to

characterize thermal transport, it is not ideal for in-plane thermal measurements

compared to the transient grating (TG) techniques which utilize interference of two

beams to create a in-plane grating pattern for thermal measurements. In the last

part of my thesis, we highlight details of an experimental effort to develop the ultra-

fast transient grating (TG) technique capable of measuring fast thermal decays. We

will then highlight the results of thermal and acoustic measurements of molybde-

num disulphide that can be obtained from this technique. Our results are in good

agreement with other measurements and calculations.

With nanosciences paving way for the future of technology, understanding thermal

management at the nanoscale is crucial for device performance and reducing energy
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waste. We believe that these results in thermal radiation and conduction will benefit

thermal management at the nanoscale.
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Chapter 1

Introduction

1.1 Current Issues in Thermal Transport

1.1.1 Introduction

Thermal radiation and thermal conduction are two primary forms of heat transport.

Thermal radiation involves the transfer of heat through electromagnetic waves or

photons, while thermal conduction in solids involves lattice vibrations, which are

known as phonons. Thermal radiation typically occurs in a vacuum and thus will

not experience scattering unlike phonons propagating in solids. As a result, the

description of thermal radiation as rays does not apply to phonons at macroscopic

length scales. Likewise, the low density of states for photons in vacuum compared

to the much higher density of states for phonons in solids makes heat transfer by

radiation much less effective than conduction.

Recent progress in nanosciences have, however, challenged our conventional un-

derstanding of thermal radiation and heat conduction. Thermal radiation at the

nanoscale can experience vast changes in density of states, greatly increasing the heat

transfer what the well-known Stefan-Boltzmann law predicts. Thermal conduction

can occur at length scales where scattering is no longer so frequent and the phonons

starts to behave like rays in thermal radiation. In this chapter, we will first high-

light the progress, issues and challenges in thermal radiation and conduction at the

nanoscale and move on to describe the outline of the thesis.
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1.1.2 Challenges in Nanoscale Heat Transfer with Photons

Thermal conduction and thermal radiation do share some similarities. First of all,

the energy carriers (photons or phonos) always follow the Bose-Einstein distribution.

Second, ballistic phonons behave like thermal radiation due to the lack of scattering

events in each case. However, the issues surrounding thermal photons are very dif-

ferent from that of thermal phonons. The main reason is because while we are still

trying to understand how thermal phonons propagate in a solid, the propagation of

thermal photons is much better understood due to the weaker interaction of pho-

ton with medium compare to phonons. Thus, current research in thermal radiation

focuses on manipulating and engineering radiative heat transfer.

Thermal radiation is electromagnetic waves emitted by bodies at finite tempera-

tures. Engineering thermal radiation is of importance for a number of technologies,

including infrared imaging, energy conversion, thermal insulation, thermal signature

control, and thermal management [10]. In the far-field, where the distance of separa-

tion between bodies far exceeds the thermal wavelength, the blackbody limit governs

the maximum radiative flux between two bodies. Recent works have demonstrated

that far-field spectral and angular characteristics of thermal radiation can be con-

trolled using photonic crystals [11–13] and metamaterials [14–17]. Also, hyperbolic

metamaterials (HMMs) have been under intense investigation for their potential to

control thermal radiation. HMMs possess dielectric constants of opposite sign along

different axes and hence allow the propagation of high momentum modes within the

HMM due to the hyperbolic dispersion [18]. In particular, HMMs have been studied

for their potential to enhance near-field heat transfer [19–22] as well as control the

spectral and angular distribution of far-field radiation [23–26] and offer potential for

other applications in thermal radiation control.

In the near field, radiative heat transfer can be greatly enhanced due to the pres-

ence of evanescent waves [27, 28] as shown in Fig. 1.1. Recently, a number of works

have demonstrated that near-field radiative heat transfer is enhanced by many orders

of magnitude compared to the far-field limit for closely spaced objects with either
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Figure 1.1: Radiative heat transfer coefficients versus the distance between two par-
allel plates at an average temperature of 300 K. The black solid line is the limit of
thermal radiation predicted by the Planck’s law, and the dashed line is the asymp-
totic relation at small gaps (B/d2). The enhancement in radiative heat transfer by
orders of magnitude is especially prominent for the two plates of the same material
due to a common surface evanescent wave resonance. Figure taken from Ref. [2]
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natural [2, 29] or engineered resonant surface modes [19, 20, 30–32]. There have also

been efforts to couple these near-field modes into the far-field with the use of grating

structures [33], antennas [34], and a thermal extraction lens [35, 36]. While these

techniques have enabled enhanced thermal radiation into the far-field, the strong and

monochromatic thermal energy in the near-field can certainly be utilized in many

other interesting ways, such as driving transitions in gain medium.

1.1.3 Challenges in Nanoscale Heat Transfer with Phonons

Figure 1.2: Normalized cumulative thermal conductivity at room temperature versus
mean free path calculated from first-principles. Figure take from Ref. [3].

Lately, there are still many issues surrounding how thermal phonons propagate in

a solid, especially on the length scale comparable to the wavelength and mean-free

paths (MFPs) of the phonons [3,37–40]. For phonons, heat transport has traditionally

been described by diffusion theory, namely the well-known Fourier’s law, which states



5

that the time rate of heat transfer per unit area through a material is proportional

to the negative gradient in the temperature at which the heat flows. Fourier’s law

is valid as long as the time or length scale of heat transport is much longer than

the scattering relaxation time or the scattering mean-free-path (MFP), respectively.

However, phonon transport approaching the length scale of its MFP can deviate

strongly from the predictions of Fourier’s Law [41]. This deviation is due to the lack of

scattering events at such short length scales that renders the phonon transport quasi-

ballistic instead of diffusive. Recently, some materials such as Si have been predicted

[42] and experimentally demonstrated [8,43] to have long MFPs on the order of µm .

Also, materials structured at the length scales of the MFPs have been shown to achieve

properties that are not achievable in the bulk form [44–53]. An MFP distribution of

phonons such as those in Fig. 1.2 shows the cumulative thermal conductivity as a

function of phonon MFP. Ration engineering requires knowledge of phonon MFPs and

Fig. 1.2 is very useful especially for engineering thermal conductivity in materials at

the nanoscale [54].

Figure 1.3: Illustration of change from diffusive transport on the left to quasi-ballistic
and finally to ballistic transport on the right. This change in transport regime is a
result of a change in the pump diameter from being much larger than the MFPs to
eventually being smaller than the MFPs. In the quasi-ballistic and ballistic regimes,
phonons with long MFPs do not scatter much compared to predictions from Fourier’s
law and contribute less to the overall thermal conductivity. Figure taken from Ref. [4]

There have been various experimental progress in non-contact optical experimen-

tal techniques and materials fabrication has allowed us to predict and measure thermal

conductivity of materials [8, 43, 55–60] to acquire the MFP spectrum. Many of these
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techniques [8, 55, 58, 60] utilize an ultrafast pump laser pulse to heat up the sample

followed by a spatially delayed probe pulse that measures the change in reflectance

on the sample surface. As Fourier’s law fails when the length scale of heat transport

is comparable to phonon MFPs, the basic concept of many experimental techniques

involves varying the heating length scale over the range comparable to typical phonon

MFPS [8,55,58], such as changing the pump beam size shown in Fig. 1.3. The MFP

distribution can then be obtained by analyzing the change in measure thermal con-

ductivity as a function of a thermal length scale. However, the interpretation of the

measurements to obtain MFP distribution is not always straight-forward and depends

largely on the specific geometry of the heating profile.

Another measurement technique that enables accurate interpretation of MFP

distribution from experimental measurements is the transient grating (TG) spec-

troscopy [43, 61]. In this technique, interference from two laser beams results in for-

mation of a one-dimensional grating geometry on the sample and the thermal length

scale is the grating wavelength. This technique is much more sensitive to in-plane

thermal transport than other pump probe techniques and has been used to measure

thermal diffusion of superlattices [62] and novel materials such as nuclear materi-

als [63]. More effort to further develop and utilize this technique for measurements

of fast thermal processes will be of great interest.

1.2 Outline of the Thesis

Despite the above-mentioned advances, there are still many unresolved issues in both

areas of thermal transport. For phonons, one primary challenge is to develop meth-

ods to better retrieve phonon MFP spectrum from experimental measurements. For

photons, the challenge primarily lies in how to utilize and manipulate the thermal

radiation both in the far-field and near-field. Interesting far-field manipulation is

possible with the advent of HMMs. Also, while many efforts have been made to engi-

neer near-field interaction, controlling near-field thermal radiation in novel ways can

potentially allow us to circumvent conventional limits in the far-field.
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The purpose of this thesis is to explore the physics of nanoscale thermal trans-

port with phonons and photons and to determine ways to better understand and

manipulate these energy carriers. The first half of the thesis focuses on developing

techniques to manipulate thermal radiation. Chapter 2 discuss how we use an an-

nular transparent HMM to enable selective heating of a sub-wavelength plasmonic

nanowire by controlling the angular mode number of a plasmonic resonance. We find

that a nanowire emitter, when surrounded by an HMM, appears dark to incoming

radiation from an adjacent nanowire emitter unless the second emitter is surrounded

by an identical lens such that the wavelength and angular mode of the plasmonic

resonance match.

In Chapter 3, we propose and numerically demonstrate an active scheme to extract

near-field thermal radiation to the far-field. Our approach exploits the monochromatic

nature of near-field thermal radiation to drive a transition in a laser gain medium,

which, when coupled with external optical pumping, allows the resonant surface mode

to be emitted into the far-field. We modeled a typical gain medium and found strong

near-field coupling limits our cooling efficiency. We thus proposed a way to circumvent

the issue, leading to almost ideal cooling efficiencies. Then, we compare our scheme

to laser cooling of solids and found that our scheme can potentially outperform laser

cooling of solids under certain conditions.

The next half of my thesis focuses on issues in thermal transport with phonons.

Chapter 4 studies phonon MFP spectroscopy in TDTR experiments. We use Monte-

Carlo solution to the Boltzmann Trasnport Equation to obtain a similar trend of

how thermal conductivity varies with pump beam diameter in TDTR. From this

trend, we identify the radial suppression function that describes the suppression in

heat flux, compared to Fourier’s law, that occurs due to quasi-ballistic transport and

demonstrate good agreement with experimental data.

Alongside the numerical effort to construct MFP spectrum for TDTR experiments,

we also devote a large amount of effort to developing experimental techniques for fast

thermal processes. In Chapter 5, we outline an experimental effort for an ultra-fast

transient grating technique that combines the merits of the transient grating setup
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and the time resolution achieved in TDTR for better detection of fast thermal pro-

cesses. This technique is well-suited for novel materials with high in-plane thermal

conductivity. Chapter 6 outlines results of experimental measurements of molybde-

num disulphide from the ultrafast transient grating setup.

Finally, Chapter 7 summarizes the possibilities for future work and concludes the

thesis.
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Chapter 2

Selective Radiative Heat Transfer
Using Hyperbolic Metamaterials

Contents of this chapter can also be found in Ref. [64].

2.1 Introduction

Engineering thermal radiation is of importance for a number of technologies, including

infrared imaging, energy conversion, thermal insulation, thermal signature control,

and thermal management [10]. Recent works have demonstrated that far-field spectral

and angular characteristics of thermal radiation can be controlled using photonic

crystals [11–13] and metamaterials [14–17]. These structures can also enable near-

field resonant surface modes to propagate into the far-field using gratings [33] and

antennas [34] to out-couple surface modes. In the near field, radiative heat transfer

can be greatly enhanced due to the presence of evanescent waves [27, 28]. These

enhancements have recently been demonstrated experimentally [2,29,65,66]. Thermal

radiation into the far-field can also be enhanced in a thermal extraction scheme in

which an impedance-matched extraction device allows the propagation of internally

reflected modes [35].

Recently, hyperbolic metamaterials (HMMs) have been under intense investigation

for their potential to control thermal radiation. HMMs possess dielectric constants

of opposite sign along different axes and hence allow the propagation of high mo-

mentum modes within the HMM due to the hyperbolic dispersion [18]. HMMs can
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be fabricated in practice as a multilayer stack with alternating materials of opposite

sign of dielectric constant. HMMs were originally of interest for their potential to

project images with resolution below the diffraction limit into the far-field, as pro-

posed theoretically [67, 68] and later demonstrated experimentally [69]. For thermal

radiation, HMMs have been studied for their potential to enhance near-field heat

transfer [19–22] as well as control the spectral and angular distribution of far-field

radiation [23–26].

Here, we examine how HMMs modify the far-field thermal emission spectrum of

nanostructures. We find that a lossy plasmonic nanowire surrounded by a transparent,

annular HMM lens yields thermal emission that primarily occurs only at a specific

wavelength and angular mode number and greatly exceeds that of the nanowire alone.

This angular mode resonance enables highly selective radiative heating because only

nanowires that are surrounded by identical HMM lenses can exchange radiation, as

illustrated in Fig. 2.1.

In this chapter, we begin by introducing the details of the transfer matrix method

(TMM) in cylindrical coordinates and how it is used to simulate our structure. Then,

we discuss the nature of the angular-mode-dependent resonances and how we achieve

selective heating. Lastly, we examine the effects of losses on the scheme.

2.2 Transfer Matrix Method in Cylindrical Coor-

dinates

TMM is ubiquitous for calculations of planar layered structures. However, its appli-

cation in cylindrical coordinates has not been so widely used. Refs. [70–72] use this

method for calculating cylindrically-shaped Bragg reflectors for lasers. In this section,

we will go through the details of the TMM in cylindrical coordinates as outlined in

Refs. [70–72] .
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Figure 2.1: A nanowire emitter, surrounded by an HMM, appears dark to incoming
radiation from an adjacent nanowire emitter, unless the second emitter is surrounded
by an identical lens such that the wavelength and angular mode of the plasmonic
resonance match.

2.2.1 Bessel and Hankel Functions

From Maxwell’s equations, we can obtain Laplace equation for electromagnetic waves

in cylindrical coordinates as [73]

∂2Φ

∂ρ2
+

1

ρ

∂Φ

∂ρ
+

1

ρ2

∂2Φ

∂φ2
+
∂2Φ

∂z2
= 0 (2.1)
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Using separation of variables and solving the z and φ dependent functions from Eq.

2.1,

Φ(ρ, φ, z) = e±βze±imφR(φ) (2.2)

d2R

dx2
+

1

x

dR

dx
+ (1− m2

x2
)R = 0 (2.3)

where R is the solution from Eq. 2.3 with x = βρ. The solution to this differ-

ential equation are Bessel functions of the first and second kind Jm(x) and Ym(x)

respectively. One can also take linear combinations of them that will still be a solu-

tion to Equation 2.3. These functions are H
(1)
m (x) = Jm(x) + iYm(x) and H

(2)
m (x) =

Jm(x) − iYm(x) which are known as Hankel functions of the first and second kind.

One useful fact about these functions is its behavior at large values of x [73]

Jm(x)→
√

2

πx
cos(x− mπ

2
− π

4
) (2.4)

Ym(x)→
√

2

πx
sin(x− mπ

2
− π

4
) (2.5)

H(1)
m (x)→

√
2

πx
exp(i(x− mπ

2
− π

4
)) (2.6)

H(2)
m (x)→

√
2

πx
exp(−i(x− mπ

2
− π

4
)) (2.7)

2.2.2 Mathematical Form of Transfer Matrices

We begin by considering a lossy nanowire core of radius a that is in optical contact

with a lens medium in vacuum, as shown in the inset of Fig. 2.2(a). The system is

assumed to be infinite in the z direction with the polarization such that E ⊥ z. The

magnetic field Hz(~r) from an incident plane wave can be expressed as

Hz(~r) =


∑∞

m=−∞(i)m
(
Jm(k0ρ)− amH(1)

m (k0ρ)
)

exp(imφ) : ρ > b∑∞
m=−∞(i)m

(
c

(j)
m Jm(kjρ) + d

(j)
m H

(1)
m (kjρ)

)
exp(imφ) : a < ρ < b∑∞

m=−∞(i)mbmJm(k1ρ) exp(imφ) : ρ < a

(2.8)
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where Jm and H
(1)
m are Bessel and Hankel functions of the first kind of angular mode

number m in cylindrical coordinates [70] and am and bm are the coefficients of the

Hankel function of the scattered field in outermost vacuum (ρ > b) and the Bessel

function of the transmitted field of core (ρ < a), respectively. c
(j)
m and d

(j)
m are the

coefficients for the Bessel and Hankel function of the field in the jth layer, and kj

denotes the wave vector of each jth layer up to the core, where j = 1. k0 denotes the

wave vector in vacuum.

The coefficients am, bm, c
(j)
m , and d

(j)
m can be solved by matching boundary con-

ditions of tangential fields at the boundary of each layer using the Transfer Matrix

Method (TMM) in cylindrical coordinates [70–72]. To do so, we first use Maxwell’s

Curl equations [70]

Eφ(r) =
i

k2
ωµ

∂Hz(r)

∂ρ
(2.9)

to obtain the φ component of the electric field from the magnetic field in Eq. 2.8.

Then, using the continuity of Hz, Eφ between layer j and j+1 at an interface located

at ρj, we obtain

c(j)
m Jm(kjρj) + d(j)

m H(1)
m (kjρj) = c(j+1)

m Jm(kj+1ρj) + d(j+1)
m H(1)

m (kj+1ρj) (2.10)

1

k2
j

(
ωµkj

(
c(j)
m J

′
m(kjρj) +DjH

(1)′
m (kjRj)

))
=

1

k2
j+1

(
ωµkj+1

(
c(j+1)
m J

′
m(kj+1Rj) + d(j+1)

m H(1)′
m (kj+1Rj)

))
(2.11)

Now, we write Eqs. 2.10 and 2.11 in matrix form as

M(m, kj+1, ρj)

c
d


m,j+1

= M(m, kj, ρj)

c
d


m,j

(2.12)

where

M(m, k, ρ) =

 Jm(kρ) H
(1)
m (kρ)

1
k
J

′
m(kρ) 1

k
H

(2)′
m (kρ)

 (2.13)
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in Eq. 2.12 such thatc
d


m,j+1

= M−1(m, kj+1, ρj)M(m, kj, ρj)

c
d


m,j

= T (m, kj, kj+1, ρj)

c
d


m,j

(2.14)

We can also obtain a similar set of expressions like Eqs. 2.13 and 2.14 for the case

where the electric field E ‖ z.

2.2.3 Computing Emissivity Using Transfer Matrices

The absorption efficiency Qabs can then be expressed as

Qabs =
∞∑

m=−∞

Qabs,m =
2

k0a

∞∑
m=−∞

Re(am)− |am|2 (2.15)

where Qabs,m is the partial absorption efficiency or absorption efficiency per mode and

Re(am) is the real part of the coefficient for mode m defined in Eq. 2.8 according to

Mie theory [74,75]. By Kirchoff’s law, the absorptivity equals the emissivity for each

direction and wavelength [76], and hence Qabs can be interpreted as the emissivity.

Note that the emissivity can exceed unity for subwavelength objects because the

absorption cross-section can be larger than the geometric cross-section [75].

To obtain am in Eq. 2.15, we need to use TMM by solving Eq. 2.14 for each layer.

For instance, if we start from starting from the first layer with (j = 1 and ρ < a) to

the outermost layer (j = N and ρ > b) in Eq. 2.8, we can successively apply Eq. 2.14

to form the following matrix equation

bm
0

 = T1,N

 1

−am

 (2.16)

such that T1,N = T (m, kN , k0, ρN)...T (m, k2, k3, ρ2)T (m, k1, k2, a).

Then we can solve for am using
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am = −T1,N(2, 1)

T1,N(2, 2)
(2.17)

where T1,N(p, q) represent the matrix element in the pth row and qth column of

T1,N .

In the following section, we will highlight some of the results that we obtain using

TMM.

2.3 Results and Discussion

2.3.1 Absorption of nanowire and annular HMM lens

The HMM lens consists of an alternating layered structure of dielectric and metal

leading to anisotropic permittivity along the radial and tangential direction. These

anisotropic dielectric constants can be expressed using effective medium theory (EMT)

according to (ερ, εθ) = (εmεd/ ((1− f)εm + fεd) , fεm + (1− f)εd), where f is the vol-

ume fraction occupied by the metal and εm, εd are the respective metal and dielectric

permittivities [67]. We assume the lens to be lossless and define Qabs with respect to

the core radius a. Neglecting loss in the lens means that the lens cannot exchange

thermal radiation with the core, and thus its contribution to heat transfer can be

neglected.

First, we consider the emissive properties of only the nanowire core of radius a

in a vacuum without any lens. Figure 2.2(a) shows the computed emissivity Qabs for

the nanowire core with a permittivity of −1.05 + 0.01i and a = 0.1λ, where λ is the

wavelength of the incident field. We choose the core permittivity close to the ideal

plasmonic resonance condition to demonstrate our result but other negative real per-

mittivity values can be chosen with similar results. We assume a typical wavelength

λ = 10 µm, corresponding to the maximum of the blackbody spectrum around 290

K, giving a = 1 µm and yielding an emissivity of 0.5. The maximum emissivities for

the nanowire core decrease with increasing size parameter as the absorption efficiency

scales as 1/a. Note that plasmonic resonances do occur at specific sizes for a given
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permittivity for a nanowire core [77], but tuning the angular mode number of the

resonance requires changing the permittivity of the nanowire.

Now, consider the nanowire surrounded by a transparent material called the ”lens”

as shown in the inset of Fig. 2.2(a). The transparent lens is assumed to be lossless

such that it cannot exchange radiation with the core. The total thickness of the core

and lens b considered in Fig. 2.2(a) ranges from 1 − 7 µm with corresponding size

parameters k0b shown. We assume that a vacuum gap of width λ/200 (50 nm for

λ = 10 µm) exists to prevent heat conduction, although this assumption does not

affect our conclusions. The addition of this lens with a lossless metal of permittivity

ε = −1.05 or a dielectric of permittivity ε = 10 results in a lower emissivity Qabs than

the bare core (Core-Vacuum) case. This reduction in emissivity can be attributed

to the impedance mismatch between the lens and vacuum that reflects some modes

before they reach the absorptive core.

Next, consider the nanowire surrounded by a transparent HMM lens. We compute

am in this case using either EMT or considering each individual layer of the HMM

with a transfer matrix. For the EMT-HMM case, we scale m in Eq. 2.8 of the

HMM layer [78] to m′ = m
√
εθ/ερ. Thus, there are only three interfaces (N = 3

in Eq. 2.16) including the air gap in the TMM calculations. For the layer by layer

case, the thickness of each metal-dielectric bi-layer is chosen to be λ/400 (25 nm for

λ = 10 µm). We examine both the metal-dielectric (TMM-md) and dielectric-metal

(TMM-dm) structures such that the first layer adjacent to the core is a metal or

a dielectric, respectively. For the EMT-HMM case, we take the optical constants

to be (ερ, εθ) = (10,−0.025) according to EMT. For the TMM calculation, we take

(εm, εd) = (−5.1, 3.4) with f = 0.4, giving the same values of (ερ, εθ) = (10,−0.025)

as EMT.

This calculation is plotted in Fig. 2.2(a). In contrast to the decrease of emissivity

Qabs with the metal and dielectric lens, the emissivityQabs with the HMM lens exhibits

strong peaks as the size parameter increases for both the EMT and TMM calculations.

The emissivity Qabs peaks in the TMM-md and TMM-dm cases are in close proximity

to the right and left of the EMT-HMM peaks, respectively, and converge to the EMT
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result as the layer thickness decreases. Thus, by placing an HMM lens of the right

size at one of these peaks around the core, the emissivity can be increased by about

three times compared to the same bare nanowire core. Larger enhancements of 4-5

times relative to the bare core can be achieved at larger core sizes for the same loss

of the core. Enhancements greater than 50 times that of a larger bare core can be

achieved if the loss of the core is optimized but the required small loss is not realistic

for any available plasmonic materials and thus is not considered further.
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Figure 2.2: (a) Absorption efficiency, or equivalently emissivity, versus size of lens b for
core size of a = 0.1λ with different lenses surrounding a plasmonic core. Core-Vacuum
(black dotted line) indicates Qabs of only a core of size a. Qabs for the core-HMM lens
calculated using EMT, TMM-md, and TMM-dm are shown as the dark blue solid,
green dashed, and the red dotted-dashed line, respectively. There are many resonant
peaks that enhance the emissivity over that of the bare core when the HMM lens is
present. Inset: Schematic of the geometry. The core and the lens have radius a and
b, respectively. (b) Partial contribution to total absorption efficiency for each angular
mode m in (a). The dashed black line is the single-channel limit defined in the text.
The mode m = 4 achieves the single channel limit, unlike m = 3.

2.3.2 Angular-mode specific resonances

To understand the origin of these peaks, we examine the decomposition of absorptivity

from the EMT-HMM case in Fig. 2.2(a) into partial absorptivity for modes m = 1

to m = 6, as shown in Fig. 2.2(b). The m = 1 and m = 2 cases do not have
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resonant peaks for the given size range but modes m = 3 to m = 6, each have a

specific resonance at different size parameters k0b. These resonant size parameters

correspond to the same peak positions in Fig. 2.2(a) and achieve emissivity close to

the well-known single channel limit [34]. At a given size parameter, most of the total

absorption cross-section is due to a single resonant angular mode.
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Figure 2.3: (a) Partial emissivity versus wavelength assuming that all optical proper-
ties follow a Drude model. Only a few angular modes contribute to radiative transfer
at specific wavelengths. Inset: relative permittivities (ερ, εθ) of the HMM lens for the
range of wavelengths considered. The red dashed line at 10µm indicates the permit-
tivities used in Fig. 2.2. (b) Product of partial emissivity Qabs,m, as in (a), versus
wavelength for two size parameters k0b = 2.6 and k0b = 1.8 for the modes m = 3, 4, 5.
There is very little overlap of all modes as two systems do not share an angular mode
resonance. (c) Real and imaginary part of am defined in Eq. 2.8 for m = 4 in Fig. 2.2.
This angular mode satisfies the condition for single-channel limit at the chosen size
parameter of k0b = 1.8.

Further, assuming a Drude model for optical properties, this resonance yields by

far the largest emissivity over a considerable range of wavelength. We examine the

wavelength dependence of the enhancement in thermal emission that can be achieved

using the HMM lens using a Drude model given by εm = 1 − ω2
p/(ω

2 + iγω), where

ω is the frequency and ωp is the plasmon frequency. For the core, γ = 0.0035ωp

and λp = 2πc/ωp = 7 µm. The metal in the HMM is assumed to have a Drude

dispersion that is lossless (γ = 0) and λp = 4.05 µm. These parameters yield the

same permittivities as used in Fig. 2.2 at a wavelength λ = 10 µm as shown in

the inset in Fig. 2.3(a). The partial emissivity Qabs,m versus wavelength for size

parameter k0b = 1.8, at the resonance for m = 4, is plotted in Fig. 2.3(a). At a

particular wavelength, the emissivity is nearly entirely due to a single angular mode;
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for example, the resonant peak at 10 µm is nearly completely due to m = 4 mode,

with a small additional contribution from m = 3 but not from m = 5.

We now compare the overlap of these resonances for identical nanowires sur-

rounded by HMM lenses of different size parameters by multiplying the partial emis-

sivity Qabs,m from Fig. 2.3(a) for two different size parameters, k0b = 2.6 and k0b =

1.8, for modes m = 3, 4, 5. As shown in Fig. 2.3(b), there is negligible overlap between

the partial emissivity of the two cases over the full range of the blackbody spectrum

at 290 K. Although not plotted, negligible overlap also occurs for higher order modes

m > 6. Physically, this small overlap indicates that little of the emitted radiation

from a core lens system of size k0b = 1.8 will be absorbed by a core lens system of a

size parameter k0b = 2.6 and vice versa.

We thus arrive at the principal result of our study. Nanowires surrounded by

HMM lenses interact with radiation primarily at a particular wavelength and angular

mode with absorptivity that can reach the single channel limit. Therefore, radiation

emitted by a nanowire with a certain HMM lens can only minimally exchange radiative

heat with other identical nanowires surrounded by lenses of different size parameters.

Unlike other selective heating schemes based on plasmonic resonances [79–83], the

selective resonance identified here is based both on wavelength and angular mode

number, enabling high selectivity. This effect is harder to realize with the plasmonic

resonances of the bare nanowire alone because achieving similar mode selectivity close

to the single channel limit requires tuning both size parameter or material permittivity

of the nanowires, while all material properties remain fixed with our core-lens system.

2.3.3 Origin of angular selectivity

We investigate the origin of the angular selectivity by comparing the observed reso-

nance with previous applications of curvilinear HMMs as hyperlenses [67,69]. Hyper-

lenses are used to convert high angular momentum, evanescent modes to propagating

modes using conservation of angular momentum as the mode propagates radially

outward. The mode becomes propagating inside the HMM lens when size parameter
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k0b ≥ m. However, k0b is 1.8 for the m = 4 mode on resonance in Fig. 2.2(a), indicat-

ing that the excitation in vacuum is actually evanescent. This observation indicates

that the HMM lens here is modifying the plasmon resonance of the core similar to the

mechanism of enhancement in Ng et al. [84] rather than converting evanescent and

propagating waves. We confirm that the resonance is plasmonic in nature by noticing

that little absorption is observed for the polarization for which E ‖ z.

The origin of the selectivity is also not solely due to the hyperbolic dispersion.

HMMs are typically of interest because the hyperbolic dispersion occurs over a broad

spectral range, as is the case here. However, Fig. 2(a) and the inset shows that

the mode selectivity only occurs around the εθ close to zero region of the HMM

dispersion, making the selectivity narrowband. The angular selectivity thus requires

the anisotropic properties of the HMM but also the epsilon-near-zero (ENZ) region

of the dispersion along the θ direction.

Next, we examine the angular mode selectivity using the well-known single channel

limit for absorption and scattering. Physically, the single-channel limit is achieved

when radiative damping and absorptive loss both contribute equally to the absorption

efficiency of the mode [85–87]. Mathematically, from Eq. 2.15 the maximum partial

absorption cross-section occurs [34] when Re(am) = 1/2 and Im(am) = 0, yielding

Qabs,m = 1/(2k0a). For example, when a = 0.1λ, the limit for partial emissivity is

Qabs,m ≈ 0.796 as indicated in Fig. 2.2(b). Figure 2.3(c) plots the real and imaginary

part of the coefficient am in Eq. 2.8 for mode m = 4 demonstrating that this mode

meets the conditions required to reach the single-channel limit for k0b = 1.8. Likewise,

modes m = 5 and m = 6 reach the single-channel limit in Fig. 2.2(b) and satisfy the

same conditions for am at their respective resonant size parameters. However, due

to the wavelength-dependence of permittivity, the requirements of the single-channel

limit for a fixed size parameter can be met for a single angular mode but are unlikely

to be satisfied for other angular modes, as in Fig. 2.3(a). This sensitivity of the

angular resonance to the conditions of the single-channel limit contributes to the

mode selectivity.

We further investigate this modal selectivity by examining the resonant mode
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profiles using the TMM calculation. We reconstruct the field profile of |Hz| in 2D for

each mode |m| with incident plane wave direction defined in Fig. 2.2(a). Although

am is symmetric for positive and negative m, we must account for the phase factors

exp (imφ) to accurately plot the spatial profile. Figures 2.4(a)–2.4(d) show the 2D

plots of |Hz| corresponding to three different size parameters in Fig. 2.2(a) for the

TMM-md case. The field magnitude |Hz| at resonant size parameters k0b ≈ 1.1

(|m| = 3) and k0b ≈ 1.9 (|m| = 4) are plotted in Figs. 2.4(a) and 2.4(b), respectively.

In Figs. 2.4(c) and 2.4(d), we plot |Hz| for modes |m| = 3 and |m| = 4, respectively,

for an intermediate size parameter k0b ≈ 1.62 that is off resonance. We observe

from Figs. 2.4(a) and 2.4(b) that the lobe patterns at the resonant mode number

are highly-confined within the HMM lens. In contrast, in Figs. 2.4(c) and 2.4(d)

the modes are not confined. Additionally, the fields magnitudes |Hz| in Figs. 2.4(a)

and 2.4(b) are higher than in Figs. 2.4(c) and 2.4(d) by a factor between 3 to 4.

The strong, localized field intensities in Figs. 2.4(a) and 2.4(b) highlight the modal

selectivity of the resonances at specific size parameters.

We can gain further insight into the origin of the thermal emission spectrum by

examining the bulk behavior of an equivalent planar structure. We use the planar

Transfer Matrix Method (pTMM) to simulate the equivalent bulk HMM structure on

a semi-infinite metallic substrate of the same permittivity of −1.05+0.01i as the core

in Fig. 2.2. The HMM has the same bi-layer thickness of λ/400 and material arrange-

ment, including the air-gap, as the TMM-md case of the HMM lens calculation in

Fig. 2.2. We relate the wavevector component parallel to the vacuum-HMM interface

k‖ in the planar case to m in the cylindrical case by approximating the mode to lie

within the HMM [86] such that k‖ = m/reff , where reff = (a + b)/2. The penetra-

tion of the modes through the HMM to the absorbing layer can be observed by the

non-zero imaginary part of the Fresnel reflection coefficient Im(Rp) which describes

the absorption of the incident evanescent field [88].

We plot log[Im(Rp)] obtained from pTMM against the normalized parallel wave

vector k‖/k0 and number of HMM bi-layers N in Fig. 2.5(a). As N increases, the

position of maximum Im(Rp) decreases from the metal-vacuum surface plasmon con-
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Figure 2.4: Field magnitude |Hz| plotted versus x and y coordinates normalized by
wavelength, of mode |m| for the EMT-md case in Fig. 2.2(a). (a) |m| = 3, k0b ≈ 1.1,
(b) |m| = 4, k0b ≈ 1.9, (c) |m| = 3, k0b ≈ 1.62, and (d) |m| = 4, and k0b ≈ 1.62.
The dashed white circles represent the approximate inner and outer boundaries of the
lens. (a) and (b) are at size parameters of resonances in Fig. 2.2(a) and we observe
a dominant confined single mode with high field magnitude. However, (c) and (d)
correspond to an off-resonant size parameter in which both modes are not confined
and have lower field magnitudes than (a) and (b).

dition of k‖/k0 ≈ 4.6 to around k‖/k0 ≈ 3, decreasing the high parallel momentum

for plasmonic resonance when the HMM is present. As m is a measure of the angular

momentum, the above relationship k‖ = m/reff indicates that the angular momen-

tum for the mode is reduced, for a fixed effective radius reff , when k‖ is decreased.

We also plot log[Im(Rp)] versus the converted effective m and size parameter k0b

in Fig. 2.5(b) and overlay the positions of the resonances of the cylindrical case in

Fig. 2.2 onto Fig. 2.5(b). The resonant peaks in the cylindrical case closely follow the

prediction of the planar case, allowing us to conclude that both resonances are of the

same nature.
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From this planar analysis, we can understand the relationship between the size

parameter and mode number of the resonances in Fig. 2.2(b). After approximately

50 bi-layers, the parallel momentum required to excite the resonance becomes nearly

constant as in Fig. 2.5(a). From the relation k‖ = 2m/(a + b), if k‖ is constant as

b increases m must also increase, leading to the nearly linear increase of the mode

number with size parameter as in Fig. 2.2(b).

(c)(a) (b)

Figure 2.5: (a) Log plot of the imaginary part of the Fresnel reflection coefficient
Im(Rp), indicating the magnitude of absorption of the incident evanescent field, using
pTMM for different values of k‖/k0 and number of metal-dielectric bi-layers N . The
HMM lowers the parallel momentum required for the resonance with slow variation
versus number of bi-layers. (b) log[Im(Rp)] for the planar case in (a) compared
to the peak positions of the TMM-md case (symbols) in Fig. 2.2(b) for different
equivalent values of m and size parameter k0b. The agreement between the planar
and cylindrical calculations indicates that the composite plasmonic resonances are of
the same nature. (c) Partial emissivity Qabs,m for m = 4 mode at a size parameter
of k0b ≈ 1.8 for EMT-HMM case in Fig. 2.2(a) for different values of ερ and εθ. The
region of interest for selective heating is ερ > 5, εθ < 0 for which the emissivity of the
resonant mode is largest.

We now examine the optical properties of the HMM lens and core that will allow

the selectivity by studying how the partial emissivity of a mode depends on the

permittivity of the HMM lens. Figure 2.5(c) plots the partial emissivity for the

m = 4 mode (k0b ≈ 1.8 for EMT-HMM case in Fig. 2.2(a)) as ερ and εθ varies. From

Fig. 2.5(c), the largest enhancement occurs in the region of ερ > 5 and a negative

but close to zero value of εθ. The enhancement for these permittivity values can be

explained by the dispersion relation in the HMM [67], k2
ρ/|εθ| = k2

θ/ερ−k2
0, and noting

that small and negative εθ, with kθ/k0 ≈ 3 and ερ = 10 for example, causes kρ to be
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Figure 2.6: Partial emissivity Qabs,m versus wavelength for m = 3, 4, 5 with loss (solid
lines) and without loss (dashed lines) in the HMM lens (where a = 1 µm and k0b = 1.8
for the mode m = 4 in Fig. 2.2). The presence of loss in the lens decreases the resonant
absorption peak, m = 4, while the difference in emissivity between off-resonant modes
such as m = 3 and the resonant m = 4 mode decreases. The colors indicating mode
number m are the same for Qabs,m with and without loss.

very small and imaginary and allows the field to extend to the inner absorbing core.

The sensitivity of the mode selective plasmonic resonances to the HMM parameters

is unlike typical broadband enhancement effects of HMMs [19,89].

2.3.4 Effects of lossy HMMs lens

Finally, we consider the effect of loss in the HMM lens. Physically, loss causes the lens

to also play a role in radiative transfer. Since the temperature of the lens is not fixed,

HMM lens will equilibrate to a temperature close to that of the heated core, allowing

us to consider the core-lens structure as a single object for the purposes of analyzing

radiative emission. We incorporate loss by modifying the Drude dispersion of the

metal to have γ = 0.001ωp so that (εm, εd) = (−5.1+.015i, 3.4) at 10 µm, which is close

to the lowest loss with negative real permittivity in the mid-infrared range of materials

such as 4H-SiC [90]. The partial emissivity Qabs,m is now defined with respect to the

size of the whole structure b. As shown in Fig. 2.6, adding loss decreases the peak

absorptivity around 10 µm for m = 4 compared to the lossless case of Fig. 2.3(a).

Also, with loss the m = 4 mode is no longer as dominant a resonance compared to
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adjacent m = 3 and 5 modes in the wavelength range shown. We conclude that loss

reduces the angular mode and wavelength selectivity for selective heating and thus

that fully exploiting the thermal HMM lens requires low-loss plasmonic materials in

the infrared. Recently, hexagonal Boron Nitride has been demonstrated as a low-loss

material in the mid-infrared range with a hyperbolic dispersion [91, 92], potentially

allowing the layered HMM lens to be replaced with a single material.

2.4 Conclusions

In summary, we theoretically demonstrated a new approach to selective radiative

heating based on tuning angular mode resonances with HMM lenses. This approach

enables selectivity for thermal radiative exchange due to the requirement that both

wavelength and angular mode number of the emitter and absorber match. Our result

could have applications in radiative thermal management. The following chapter

proposes a new concept to manage near-field thermal radiation.
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Chapter 3

Active Extraction of Near-field
Thermal Radiation

Part of the contents of this chapter can also be found in Refs. [1, 93].

3.1 Introduction

The previous chapter highlights a metamaterial approach to engineer radiative heat

transfer. While the ability to selectively transfer heat can be interesting and po-

tentially useful, typically we are more concerned with how we can engineer thermal

radiation for thermal management as in microelectronics [94], space technology [95]

and buildings [96]. Typical techniques to control thermal radiation involve engi-

neering the emissivity of the material and changing the surface area of emission or

absorption. These techniques are passive which involves no energy input into the

system and cannot cool objects below the temperature of the ambient environment

the surface is interacting with. Another technique of thermal management is that of

refrigerators which require work input but can maintain systems at desired tempera-

ture. Such techniques are active since energy input is needed but allows for cooling

below ambient temperature without violating the laws of thermodynamics. Active

thermal management techniques have only been utilized for thermal management

through conduction and convection and not through thermal radiation.

In the far-field, the blackbody limit governs the maximum radiative flux between

two bodies. Recently, a number of works have demonstrated that near-field radiative
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heat transfer is enhanced by many orders of magnitude compared to the far-field limit

for closely spaced objects with either natural [2, 29] or engineered resonant surface

modes [19, 20, 30–32]. There have also been efforts to couple these near-field modes

into the far-field with the use of grating structures [33], antennas [34], and a thermal

extraction lens [35, 36].

While these passive schemes modify the heat flux flowing from a hot object to a

cool object, active schemes extract energy from a system through external work and

allow an object to be cooled below the ambient temperature. In optics, external work

in the form of laser light has been used to cool gaseous matter to sub-millikelvin tem-

peratures [97,98] by removing kinetic energy from the atoms. In solid-state materials,

optical irradiation can also cool materials by emission of upconverted fluorescence [99]

due to removal of energy in the form of phonons. This concept, known as laser cool-

ing of solids (LCS), has been experimentally demonstrated to cool rare-earth doped

glass [100,101] to cryogenic temperatures and recently to cool semiconductors by 40 K

from the ambient temperature [102]. However, no active schemes have been proposed

to extract energy out of a system as thermal radiation.

In Section 3.2, we took inspiration from LCS to theoretically propose and numer-

ically demonstrate an active radiative cooling (ARC) scheme that extracts near-field

thermal photons into the far-field. Our laser-based cooling approach exploits the

monochromatic nature of near-field thermal radiation to drive a transition in a laser

gain medium, which, when coupled with external optical pumping, allows the reso-

nant surface mode to be emitted into the far-field. Our active scheme has an ideal

efficiency that is orders of magnitude larger than that in traditional laser cooling of

solids due to the relatively high energy of surface phonon polaritons compared to

phonon energies. Furthermore, we show that the high energy density of monochro-

matic near-field thermal radiation is sufficient to pump transitions in gain media, a

novel concept that could be used in other applications. Then, in Section 3.3, we apply

the mathematical framework of LCS to create a generalized model of ARC [103,104].

We show that LCS and ARC can be described with the same mathematical formalism

by replacing the electron-phonon coupling parameter in LCS with the electron-photon
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coupling parameter in ARC. We then compare LCS and ARC using realistic parame-

ters and find that ARC can achieve higher efficiency and extracted power over a wide

range of conditions.

3.2 A Simple System

A schematic of the method is given in Fig. 3.1(a). A laser gain medium containing

emitters with discrete energy levels is placed in the near-field of a material that

supports a resonant surface wave. We model the emitters as a three-level system, as

shown in Fig. 3.1(b). An external pump laser is tuned to the 0-1 transition, exciting

population into level 1. If the nearly-monochromatic thermal radiation drives the

transition from 1-2 and the 2-0 transition is radiative with high quantum efficiency, the

electron transition will emit blue-shifted photons in the far-field, thereby extracting

the trapped near-field thermal radiation.

With a typical blackbody spectrum, the efficiency of such a scheme would be

vanishingly small because of the low energy density and the broadband nature of

thermal radiation [105]. However, in the near-field, it has been demonstrated that

the radiative energy density is nearly monochromatic and far exceeds that in the far-

field by several orders of magnitude [5]. Therefore, with near-field thermal radiation

the 1-2 transition can be efficiently driven by matching the near-field energy resonance

energy to the 1-2 transition energy.
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Near-field 
Absorption

Spontaneous far-field emission
of blue-shifted photons

External 
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Spontaneous 
near-field 
coupling
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Figure 3.1: (a) Schematic of the active thermal extraction scheme. An emitter with
discrete energy levels is placed in the near-field region of a semi-infinite planar sub-
strate supporting a surface resonance. The external pumping couples with the near-
field energy to be emitted as blue-shifted spontaneous emission in the far-field. (b)
Energy level diagram of the emitter for our proposed concept. The 0-1 transition ab-
sorbs external pump photons, and near-field photons drive the 1-2 transition. Spon-
taneous emission from the 2-0 transition emits near-field photon to the far-field. The
orange arrow indicates external optical pumping, the dashed arrows indicate various
spontaneous decay channels with the blue arrows indicating the upconverted emitted
photons carrying near-field energy into the far-field.



30

3.2.1 Theory

To study this system, we use rate equations to determine the steady-state populations

in each energy level with external and near-field pumping:

dN2

dt
= −W12(N2 −N1)− γ12N2 − γ20N2 (3.1)

dN1

dt
= W12(N2 −N1)−W01(N1 −N0)− γ10N1 + γ12N2 (3.2)

dN0

dt
= W01(N1 −N0) + γ20N2 + γ10N1 (3.3)

Nt = N0 +N1 +N2 (3.4)

where W12 is the absorption rate of the 1-2 transition as a result of the near-field

energy density, W01 is the absorption rate of the 0-1 transition due to external pump-

ing, Ni is population density of each level, Nt is the total population density for

system, and γij is the overall (radiative and non-radiative) spontaneous decay rate

of the i-j transition. Here, γrij stands for radiative rate of the i-j transition such

that γij = γrij + γnrij . We assume that all energy levels are non-degenerate so that

Wij = Wji. Solving Eqs. 3.1 to 3.4 in steady state yields the equilibrium population

densities for each level from which the power density can be expressed as

P01 = h̄ω10W01(N0 −N1)

=
h̄ω10NtW01 (W12(γ10 + γ20) + γ10(γ12 + γ20))

W12(γ10 + γ20) + γ10(γ20 + γ12) +W01 (3W12 + 2(γ20 + γ12))
(3.5)

P20,net = h̄(ω20 − ω10)γr20N2

=
h̄(ω20 − ω10)NtW01γ

r
20W12

W12(γ10 + γ20) + γ10(γ20 + γ12) +W01 (3W12 + 2(γ20 + γ12))
(3.6)

where P01 is the external power density absorbed by the 0-1 transition and P20,net is

the net extracted power density into the far-field from the 2-0 transition.

Using Eqs. 3.5 and 3.6, the intrinsic efficiency of extraction can be expressed as

the ratio of the amount of net extracted energy radiated into the far-field by the 2-0
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transition with respect to the external pump energy absorbed by the 0-1 transition

η10 =
P20,net

P01

=
(ω20 − ω10)γr20W12

ω10(W12(γ20 + γ10) + γ10(γ20 + γ12))
(3.7)

In the ideal limit of a dominant radiative 2-0 transition γ20 and strong near-

field absorption W12, Eq. 3.7 tends towards (ω20/ω10 − 1)(γr20/γ20) which depends

intuitively on the ratio of the emitted net energy and absorbed photon energy and

on the radiative rate of the 2-0 transition for the photons that reach the far-field.

When η10 > 0, there is net energy extracted from the system assuming no parasitic

absorption of external pump energy. This assumption is reasonable as our pump

wavelength is far from the resonance of the substrate such that the imaginary part of

the permittivity is negligible. The intrinsic efficiency in Eq. 3.7 depends only on the

internal parameters of the system and is independent of the absorption rate W01 of

the external pumping (0-1) transition.

To estimate the efficiency of the scheme, we take properties based on rare-earth

dopant embedded in gallium lanthanum sulfide (GLS) chalcogenide glass as the

emitter system in the mid-infrared (MIR) region with typical values listed in Ta-

ble 3.1 [106, 107]. We remove the magnetic dipole contribution to the 2-0 transition

by reducing the overall quantum efficiency from 93% to 79%. Here, we choose the

wavelength-independent permittivity of the GLS chalcogenide glass to be 4.8 [108].

Table 3.1: Parameters of a typical rare-earth emitter in GLS chalcogenide glass for
modeling our proposed system. γ0

ij(s
−1) stands for the decay rate of the i-j transition

for an isolated emitter and QE is the quantum efficiency of the transition.
Transition λ(µm) γ0

ij(s
−1) QE (%)

0-1 1.83 1034 100
2-0 1.22 1370 79
1-2 3.88 36 100

Then, we model the substrate permittivity with the expression ε(ω) = ε∞(ω2
L −

ω2−iγω)/(ω2
T−ω2−iγω) where ε∞ = 5.3, ωT = 388.4×1012 s−1, ωL = 559.3×1012 s−1

and γ = 0.9×1012 s−1. We tailor the substrate resonance to match the 1-2 transition
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with Re(εsubstrate(ω)) = −εmedium so as to enhance the energy density of the near-field

thermal radiation with the emitter. Plasmonic resonances of the substrate in the MIR

can be achieved with spoof plasmons in gold, for example [109].
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Figure 3.2: Energy density at different distances d from the surface of the substrate
with the permittivity as described in the text. The top medium is GLS chalcogenide
glass. The near-monochromatic nature of the near-field as distance is reduced is
consistent with [5, 6].

To calculate the intrinsic extraction efficiency of this system using Eq. 3.7, we

need to know near-field absorption rate W12. We use the formulation from Ref. [6]

to calculate the near-field energy density I(ω) of the substrate at 750 K shown in

Fig. 3.2 where the blackbody spectrum peak matches the 1-2 transition wavelength

in Table 3.1. Then, we approximate the near-field absorption rate W12 using the

isotropic stimulated rate in Eq. (29) of Ref. [110]. We incorporate the energy per

unit volume I(ω) =
∫∞

0
I(ω, k)dk in Fig. 3.3(a) for the transition for different values

of wave vector k to obtain

Wij,near−field =
γ0
ijπ

2c3

2h̄ω3
0

∫ ∞
−∞

∫ ∞
0

(1 + | k√
εmedium − k2

|2)I(|ω|, k)g(ω)dkdω (3.8)

g(ω) =
∆ω
2π

(ω − ω0)2 + (∆ω/2)2
(3.9)

where γ0
ij is the spontaneous decay rate for an isolated emitter and g(ω) is the line-

shape of the transition with a linewidth of ∆ω. The derivation of Eq. 3.8 is given in
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Appendix A. The distance dependence of γij of an isotropic emitter due to the mod-

ification of density of states by the surface in the near-field follows the formulation in

Chance et al. [111].

The induced absorption rate W01 due to far-field pumping is calculated using the

well-known expression for the stimulated rate [112]Wij,external = λ2g(ω)Ivγ
r
ij/(8πn

2h̄ω)

where γrij is the radiative spontaneous decay rate that couples to external pumping

from the far-field, Iv is the incident intensity of the external pumping field, and n is

the index of the chalcogenide medium. The linewidth for the 0-1 and 2-1 transitions

are assumed to be 2× 1011 s−1, comparable to those of typical laser gain media [112].

3.2.2 Results
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Figure 3.3: (a) Extraction efficiency η10 of external pumping from the 0-1 transition
assuming properties in Table 3.1. The low efficiency in the blue line is a result
of the large spontaneous rate for 1-2 transition in the near-field in Fig. 3.4(a). (b)
Integrated power extracted for emitters uniformly distributed from surface. The
density of emitters is assumed to be 1020 cm−3. The saturation behavior approaches
the green dashed “saturation” line due to the finite number of emitters in the system
saturating the population difference at high input powers.

The intrinsic efficiency of thermal extraction versus distance from the emitter is

shown in Fig. 3.3(a). The maximum efficiency is small, around 4% and decreases to

zero beyond a few hundred nanometers. The total extracted intensity is defined as

the integral of the power emitted by the 2-0 transition over all distances,
∫ z2
z1
P20,netdz.
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We integrate from z1 = 10 nm onward until the intrinsic efficiency decreases to almost

zero. Figure 3.3(b) shows the extracted power per unit area as a function of input

power Iv. The extracted power increases linearly with the input power for low power

inputs before saturating at higher powers, but the overall power extracted is orders

of magnitude lower than the input power. A limiting case of Eq. 3.6 can be found for

large W01 as h̄(ω20 − ω10)W12γ
r
20Nt/(3W12 + 2(γ20 + γ12)). Integrating this limit over

distance agrees with the saturation curve as plotted in Fig. 3.3(b).

Figure 3.3 shows that active thermal extraction is possible, but both the intrinsic

efficiency and the total power extracted are very small for the chosen parameters.

However, according to the limit of Eq. 3.7, the maximum efficiency should be around

35%, much higher than in the example. To understand the reason for this difference,

we examine Eq. 3.7 in more detail. The maximum efficiency occurs when γ20 and

W12 are large. We calculate the transition rates versus distance from the substrate in

Fig. 3.4(a), and observe that the transition rates for 0-1 and 2-0 transitions are not

affected by the presence of a surface, as they are off-resonant. However, the decay

rate for the 1-2 transition γ12 is strongly enhanced as the emitter approaches the

surface [111, 113, 114]. As a result, the near-field absorption rate is smaller by about

two orders of magnitude compared to the decay rate even though both are enhanced

by orders of magnitude due to the increase in the optical density of states in the

near-field. Physically, this calculation indicates that as electrons are excited from

energy level 1 to 2, they immediately decay back to level 1 at the rate γ12.

The reason for this cycling is that the thermal near-field energy density is not

sufficient to allow near-field absorption to dominate over near-field spontaneous decay.

Archambault et al. [110] also highlight the need for some minimum energy density for

stimulated emission to dominate spontaneous decay. Unlike the case for stimulated

emission of surface plasmons with external pumping such as in Ref. [115–117] where

the external laser field intensities can be tuned, here the thermal energy density is

restricted to that for a blackbody. Thus, the spontaneous decay rate will always

dominate over near-field absorption for realistic values of near-field energy density.

On the other hand, Fig. 3.3(a) also shows that while a resonantly enhanced γ12 offsets
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the enhanced absorption W12, the extraction efficiency η10 still requires a large value of

W12. Beyond a emitter-substrate distance of about 100 nm, the extraction efficiency in

Fig. 3.3(a) drops significantly as a result of the low near-field energy density, although

the ratio W12/γ12 remains of the same order of magnitude up to 1 µm.

Therefore, to break the cycling between levels 1 and 2, it is essential that the

strongly radiative decay rate from 2-0 (γ20) is comparable to the decay rate γ12 in the

near-field. Figure 3.4(b) shows that the efficiency is boosted to almost the ideal limit

at short distances if γ20 is increased substantially. In Eq. 3.7, if we increase γ20 to be

more comparable to γ12 in the near-field, then the ratio of γr20/γ20 begins to dominate

in the expression, increasing the extraction efficiency towards the ideal limit discussed

earlier.

The factors discussed above affect the intrinsic efficiency, but the total extracted

power also depends on the input power W01 and the emitter density Nt. Firstly, the

absorption of the pump power W01 depends on the linewidth of the 0-1 transition, and

decreasing the linewidth increases W01 in Eq. 3.6 due to the increased concentration of

input power in a given bandwidth for each emitter. The pump absorption could also

be increased by photon recycling as in traditional laser cooling of solids, but we do not

account for this possibility here. Secondly, the total dopant density Nt also affects the

extracted power. As discussed earlier, the saturation limit at higher incident powers

is proportional to the dopant density, and therefore the dopant density must increase

to increase the saturation limit.

Using this understanding, we now recalculate the efficiency and extracted power

for an optimized gain medium with the spontaneous rate for the 2-0 transition in-

creased to 1.37×107 s−1, ∆ω10 = 2×109 s−1 and Nt = 1021 cm−3. Figure 3.4(c) shows

that the intrinsic extraction efficiency is much higher than in Fig. 3.3(a) and almost

near the ideal limit for small emitter-substrate distances. The decrease of efficiency at

larger emitter-substrate distances is due to a decrease in near-field coupling. Figure

3.4(d) shows a much-increased integrated extracted power at each given input power

compared to Fig. 3.3(b). The saturation limit derived earlier also agrees with the full

calculation at higher input powers.
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Figure 3.4: (a) Normalized spontaneous decay rates versus distance for three different
transitions. The 2-1 transition is on resonance with the substrate dispersion and is
enhanced greatly whereas the 0-1 and 2-0 transitions are not significantly affected by
the presence of the substrate. (b) Intrinsic extraction efficiency η10 versus the scaling
of the spontaneous rate γ20 at d = 20 nm. The blue line shows real behavior according
to Eq. 3.7. Increasing γ20 greatly enhances the efficiency so that it approaches the
ideal limit of the system. (c) Intrinsic extraction efficiency versus emitter-substrate
distance for an optimized system. The extraction efficiency follows the ideal limit
for small distances before decreasing due to a decreasing W12 and is much improved
compared to Fig. 3.3(a). (d) Integrated power extracted of the optimized system
with emitters uniformly distributed from the substrate surface. An increased pump
absorption and a higher emitter density lead to a much higher saturation limit, shown
as the dashed line.
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This calculation shows that the active thermal extraction scheme has potential

to efficiently extract a significant amount of near-field thermal radiative energy. The

key to realizing this potential is to identify an appropriate emitter with a surface res-

onance and a gain medium with matching transitions in the mid-infrared wavelength

range where photons are thermally populated at typical temperatures. Additionally,

recycling the pump photons to increase absorption, as is done in traditional laser

cooling of solids, is important to decrease the required pump power. A high dopant

density is still required to increase the saturation limit. Cerium doped crystals can

potentially be a candidate as they have a 4f 05d1 → 4f 15d0 transition with a short

lifetime of around 40 ns [118], ideal for the 2-0 transition proposed here, as well as a

mid-infrared transition of 4.5 µm [118] for the near-field absorption.

3.3 A Generalized Description on Radiative Near-

field Active Thermal Extraction and Temper-

ature Sensing

In Section 3.2, we theoretically proposed an active radiative cooling (ARC) scheme

that extracts near-field thermal photons into the far-field and is capable of cooling an

object below ambient temperature. An examination of ATX reveals a close analogy

with laser cooling of solids, in which absorption of thermal phonons from the host

crystal results in emission of upconverted photons. This process has been experimen-

tally demonstrated to cool rare-earth doped glasses [100, 101, 119–121] to cryogenic

temperatures and recently to cool semiconductors [102] and lead perovskites [122]. At

the same time, LCS has been used as a means to measure temperature by observing

the wavelengths of emitted light, with applications for temperature sensing at the

nanoscale and in biological tissues [123–130].

In this work, we apply the mathematical framework of LCS [103,104] to create a

generalized model of ATX. We show that LCS and ATX can be described with the

same mathematical formalism by replacing the electron-phonon coupling parameter
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in LCS with the electron-photon coupling parameter in ATX. We then examine how

ATX may be used for applications such as radiative cooling and temperature sensing.

This paper is organized as follows. We first summarize the derivation of the model

for LCS in Section 3.4. Then, we derive an analogous generalized model for our

ATX scheme and its associated quantities in Section 3.4. In Section 3.4, we explain

the mathematical equivalence between electron-phonon coupling model in LCS and

electron-photon coupling model in ATX. We next examine the potential of ATX for

near-field extraction in terms of efficiency and net power in Section 3.5 and discuss

how parasitics can affect the performance of ATX in Section 3.7. In Section 3.6, we

consider how ATX may be used for non-contact temperature sensing. Finally, we end

with a summary of the results in Section 3.8.

3.4 Theory

Generalized theory for laser cooling of solids

We first briefly describe a generalized model of upconversion in laser cooling of solids

as given in Refs. [100,101,103,104,119,120,131] to facilitate the derivation in the next

section. The basic principle of LCS is illustrated in Fig. 3.5(a). The gain medium

consists of emitters embedded in a host lattice at finite temperature. The energy of

the lattice due to its finite temperature will manifest itself as phonons or vibrations of

the lattice atoms. These vibrations will couple to the emitters through perturbations

of the valence electrons, exchanging energy with the emitters. The net result of this

interaction is thermal equilibrium of the electron with phonons in the host. When

an incident pump is introduced into the gain medium, the valence electron is excited

to a higher energy level. It may in turn absorb a phonon and then emit upconverted

light, thereby extracting thermal energy from the system.

Figure 3.5(b) shows the four-level system of Fig. 3.5(a) for LCS for applications

of cooling in Refs. [103,104]. The ground state manifold consists of two closely spaced

levels of |0〉 and |1〉 separated by energy δEg, and the excited manifold consists of
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(a) (b)
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Figure 3.5: (a) Schematic of the concept in laser cooling of solids (LCS). The gain
medium consists of rare earth emitters embedded in a host material at a finite temper-
ature. The external pump photons excite the rare-earth emitter, and by absorption
of a phonon, carry the energy away as upconverted fluorescence. (b) Energy diagram
of the four-level system for LCS. A incident pump laser excitation with energy h̄ω is
shown by the solid orange arrow. The thick dark blue dashed arrows indicate sponta-
neous emission transitions with a rate of γr and the thin blue dashed arrows indicates
the nonradiative decay rates (γnr). εe,g is the electron-phonon coupling rate with the
subscript ”g” for the ground state manifold |0〉 and |1〉 and ”g” for the excited state
manifold |2〉 and |3〉, respectively. (c) Schematic showing the concept of active ther-
mal extraction (ATX). A rare-earth doped gain medium is placed in the near-field
of a substrate. The external pump photons excite the rare-earth emitter and result
in blue-shifted fluorescence due to coupling to the near-field thermal radiation from
the substrate, leading to extraction of thermal energy. (d) Energy diagram of the
four-level system for ATX. γe,g is the overall decay rate and We,g is the absorption
and stimulated emission rate for each of the manifold. The subscripts ”e” and ”g”
refer to the same manifolds as (b).
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|2〉 and |3〉 with an energy separation δEe. The subscript ”e” and ”g” indicates the

excited or ground state manifold, respectively. A incident pump laser excitation with

energy h̄ω is on resonance with the |1〉-|2〉 transition. The spontaneous emission

transitions are labeled as γr and likewise the non-radiative decay rates are labeled

γnr. The electron-phonon interaction rate given are by εg and εe. We assume unity

degeneracy for all levels and let the overall decay rate R = 2(γr + γnr). The rate

equations for the density populations N0, N1, N2, and N3 are:

dN1

dt
= −σ12(N1 −N2)

I

h̄ω
+
R

2
(N2 +N3)− εg(N1 −N0 exp(−δEg/kT )) (3.10)

dN2

dt
= σ12(N1 −N2)

I

h̄ω
−RN2 + εe(N3 −N2 exp(−δEe/kT )) (3.11)

dN3

dt
= −RN3 − εe(N3 −N2 exp(−δEe/kT )) (3.12)

Nt = N0 +N1 +N2 +N3 (3.13)

where σ12 is the absorption cross section of the |1〉-|2〉 transition, I is the incident

laser intensity, k is the Boltzmann constant and T is the lattice temperature. Evalu-

ating the steady-state solution to Eqs. 3.10-3.13, we define the net power density as

the difference between absorbed and radiated contributions as

Pnet = σ12(N1 −N2)I − γr(N2(E21 + E20) +N3(E31 + E30)) (3.14)

We have ignored a term that represents parasitic absorption of the pump laser

in Refs. [103, 104] for the purpose of illustrating the concept of LCS. The net power

density remaining in the system can then be expressed as

Pnet,LCS = αLCSI(1− ηq
h̄ωf,LCS
h̄ω

) (3.15)

where ηq = γr
γr+γnr

is the internal quantum efficiency of the transition and h̄ωf

denotes the mean fluorescence energy of the four-level system given by
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h̄ωf,LCS = h̄ω +
δEg

2
+

δEe
1 + (1 +R/εe) exp(δEe/kT )

(3.16)

with the ground state resonant absorption αLCS given by

αLCS = σ12Nt

(
1 + exp(

δEg
kT

)

)−1

(3.17)

In deriving Eq. 3.15, we ignore saturation as in Refs. [103,104].

The cooling efficiency is defined by ηLCS = −Pnet,LCS/Pabs,LCS and from Eq. 3.15

ηLCS = ηq
h̄ωf,LCS
h̄ω

− 1 (3.18)

Other than cooling, the upconverted fluorescence that occurs in LCS has also

been exploited for temperature sensing [123–130]. In this case, the gain medium is in

thermal equilibrium with the medium of interest. Again solving Eqs. 3.10-3.13, we

can obtain the upconverted output power as

Pupconvert,LCS = ηqαI(
hνu,LCS
hν

) (3.19)

where the up-converted mean photo-luminescence energy hνu is now defined as

hνu,LCS =
hν

2
(1+

1

1 + eδEe/kBT (1 + R
w2

)
)+
δEl
2

+
δEu

1 + (1 + 2(Wrad +Wnr)/w2) exp(δEu/kT )

(3.20)

unlike Eq. 3.16. For temperature sensing, the sensitivity of the emitted fluorescence

to variations in temperature dPupconvert,LCS/dT is the key parameter rather than the

net extracted power. Taking ratios of the upconverted intensity with a reference is the

widely used method today [123–130] but for simplicity we will focus on the absolute

upconverted power for the generalized model here.
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Generalized theory for active thermal extraction

Active thermal extraction (ATX) in Fig. 3.5(c) employs a laser gain medium contain-

ing emitters with discrete energy levels placed in the near-field of a material that

supports a resonant surface wave. We assume no physical contact between the gain

medium and the substrate so that thermal radiation is the only form of heat transfer

between them. Similar to LCS, the emitters here exchange energy and thus are in

quasi-thermal equilibrium with the thermal near-field. With external pumping, the

near-field energy absorbed by the emitter can combine with the pump to be remitted

as blue-shifted light into the far-field [93].

We model the emitters in our ATX scheme as a four-level system, as shown in

Fig. 3.5(d). An external pump laser is tuned to the |1〉-|2〉 transition. The near-

field thermal radiation drives the transition from |0〉-|1〉 and |2〉-|3〉. Two of the four

spontaneous emission channels in Fig. 3.5(d), namely |3〉-|0〉 and |2〉-|0〉, will emit

blue-shifted photons in the far-field thereby extracting thermal energy out of the

system.

The generalized system of equations for the scheme in Fig. 3.5(d) can be written

as

dN1

dt
= −σ12(N1 −N2)

I

h̄ω
+
R

2
(N2 +N3)−Wg(N1 −N0)− γgN1 (3.21)

dN2

dt
= σ12(N1 −N2)

I

h̄ω
−RN2 +We(N3 −N2) + γeN3 (3.22)

dN3

dt
= −RN3 −We(N3 −N2)− γeN3 (3.23)

Nt = N0 +N1 +N2 +N3 (3.24)

where quantities are defined in the same way as Eqs. 3.10-3.13. The ground state

manifold (|0〉 and |1〉) and the excited state manifold (|2〉 and |3〉) in Eqs. 3.21-3.24

are coupled to near-field thermal radiation. Spontaneous emission rates γg and γe

are associated with the ground and excited state manifold, respectively. Absorption

and stimulated emission associated with each manifold are defined as Wg and We, re-
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spectively. Absorption and stimulated emission for each manifold are equal assuming

unity degeneracy: W01 = W10 = Wg and W23 = W32 = We.

Solving Eqs. 3.21-3.24 in steady state and using the same definition of net power

as Eq. 3.14, one can express the net extracted power for ATX in the same form as

Eq. 3.15.

Pnet,ATX = αATXI(1− ηq
h̄ωf,ATX
h̄ω

) (3.25)

αATX = σ12Nt
Wg

2Wg + γg
(3.26)

where αATX is the ground state absorption for the ATX model. The mean fluo-

rescence energy h̄ωf,ATX for ATX is given by

h̄ωf,ATX = h̄ω +
δEg

2
+

δEe
2 + (R + γe)/We

(3.27)

Likewise, the efficiency can be defined in the same way as Eq. 3.18:

ηATX = ηq
h̄ωf,ATX
h̄ω

− 1 (3.28)

with the mean fluorescence energy defined in Eq. 3.27 above.

In addition, we can quantify the potential for ATX for temperature sensing ap-

plications through the upconverted output power like Eq. 3.19 in LCS as follows:

Pupconvert,ATX = ηqαI(
hνu,ATX
hν

) (3.29)

where the corresponding up-converted mean photo-luminescence hνu,ATX is

hνu,ATX =
hν

2
(1 +

1

2 + (R + γe)/We

) +
δEg

2
+

δEe
2 + (R + γe)/We

(3.30)

The ability for ATX to sense temperature changes is denoted by its sensitivity to

temperature change dPupconvert,ATX/dT which will be discussed in the subsequent
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sections.

Comparision of ATX and LCS

With the theory for a generalized LCS system and a generalized ATX system es-

tablished in Sections 3.4 and 3.4, we now explore the relationship between the two

schemes. Intuitively, a close correspondence should exist between LCS and ATX be-

cause the fluorescence up-conversion process in the two schemes is identical. The key

difference between the two schemes is the energy of the extracted particle and the

nature of the coupling between the electrons and the emitters. In LCS, phonons with

relatively small energies on the order of meV (∼10 meV) are extracted and the quasi-

thermal equilibrium electron-phonon coupling constants between states |0〉-|1〉 in the

ground state and |2〉-|3〉 in the excited state manifold are the relevant parameters.

In ATX, the extracted particles are surface phonon-polaritons with energies on the

order of hundreds of meV, and the coupling constants are the radiative spontaneous

and stimulated decay rates of the energy levels of the emitters due to the emission of

photons.

We now examine the comparison in more details. If we neglect the excited state

manifold and just focus on the ground state manifold |0〉 and |1〉 in Fig. 3.5(b), we

can write a rate equation for the two-level case for LCS as:

dN1

dt
= −εg(N1 −N0 exp(−δEg/kT )) (3.31)

Similarly, isolating the ground state manifold in the ATX case in Fig. 3.5(d),

we have a two-level system |0〉 and |1〉 coupled to thermal radiation with the rate

equation for state |1〉 as:

dN1

dt
= N0Wg −N1(Wg + γ10) (3.32)

Examining Eqs. 3.31 and Eq. 3.32, we find that they can be made identical with

the following substitutions:
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εg = Wg + γg (3.33)

εg
Wg

= exp(
δEg
kT

) (3.34)

Therefore, the electron-phonon coupling rate εg in LCS takes the role of the spon-

taneous and stimulated rates γg and Wg for electron-photon coupling with thermal

radiation in ATX.

Examining Eqs. 3.33 and 3.34, we can relate spontaneous and stimulated rates γg

and Wg using the Boltzmann factor as:

γg
Wg

= exp(
δEg
kT

)− 1 (3.35)

On the other hand, if for ATX we assume that the ground state is in quasi-thermal

equilibrium with the thermal radiation such that

N1

N0

= exp(
−h̄ωg
kT

) = exp(
−δEg
kT

) (3.36)

we can also obtain Eq. 3.35 from substituting Eq. 3.36 into Eq. 3.32. Thus, quasi-

thermal equilibrium is automatically guaranteed in the mathematical equivalence in

Eqs. 3.33 and 3.34. Also, Eq. 3.35 is identical to the classical result for a two-level

system interacting with thermal radiation [132]. In Einstein’s work [132], only the

far-field form of thermal radiation described by Planck’s law was considered, but the

formulation depends only on the photonic density of states and thus is applicable in

the near-field as well. Here in ATX, radiative thermal equilibrium is assumed between

thermal radiation of the substrate and the emitters of the gain medium.

Although there are many similarities between LCS and ATX, there is one impor-

tant difference. In LCS, the relevant temperature for the extracted thermal phonons

is that of the gain medium itself. In ATX, the relevant temperature is that of ther-

mal radiation emitted from substrate, which may be very different from that of gain

medium if, for instance, the medium is maintained at a given temperature by a
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separate thermal reservoir. This difference in temperature can have important impli-

cations, particularly for the strength of non-radiative processes that depend on the

temperature of the gain medium.

3.5 Results

Ideal efficiency and extracted power

We now compare the ideal efficiency and net extraction power that can be achieved

with LCS and ATX using the mathematical formalism derived in the previous section,

neglecting the influence of parasitic processes. These processes will examined in

Section 3.7. To perform this comparison, we need to choose realistic parameters

for the gain media for both LCS and ATX. Due to the considerable differences in

requirements of the gain media for LCS and ATX, it is not possible to directly compare

LCS and ATX based on the same gain medium. For instance, the host material for the

gain medium for LCS does not have to be transparent in the mid infrared (MIR) but

for the host material of the gain medium in ATX, it is desirable for the host material

to be transparent in the MIR. This ensures that the near-field thermal radiation can

interact directly with the emitters rather than be absorbed by the host material.

First, we estimate the energy δEg and δEe for the ground and excited state man-

ifolds assuming that they are approximately equal. For LCS, typical phonon energy

of rare earth materials such as doped fluorozirconate glass (ZBLAN:Yb3+) [119] is

around a few percent of the pump photon energy. Here, we assume a typical value of

δEg ≈ δEe ∼ 0.01h̄ω for LCS.

For ATX, typical thermal photon energy is higher than phonon energy and ideally

has a value that is close to the energy corresponding to the energy corresponding to the

peak of the blackbody spectrum [93] so as to maximize its near-field energy density.

If we consider the temperature of the substrate to be 300 K and choose a rare-earth

emitter with transitions that matches the peak of the blackbody spectrum peaks

around 10 µm, the corresponding manifold energy separation δEg ≈ δEe ≈ 0.1h̄ω
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assuming a pump wavelength of 1 µm. Thus, we observe that the energy gaps in

ATX are at least a few times larger than energy gap of those in LCS due to the larger

energy of surface phonon polaritons compared to those of phonons.

To estimate the decay rates for LCS and ATX, we have to examine each coupling

mechanism. Having established mathematical equivalence of LCS and ATX, Eq. 3.16

only requires us to estimate the values of the spontaneous decay rate R and the decay

rate ε for external coupling within the manifold (assuming εg = εe = ε). For LCS,

this coupling is provided by electron-phonon interaction. Here, ε follows the energy

gap law [133] given by

ε = b exp(
−aδE
h̄ωmax

) (3.37)

where a and b are constants and h̄ωmax is the maximum phonon energy of the host

material. Typical values of a and b are on the order of 3.5 and 1012 [134], ωmax ≈

ω/10 [135] and δE ≈ 0.01h̄ω. Using these parameters, we estimate the electron-

phonon coupling to be ε ≈ 7× 1011 s−1 which is within the range of values for known

host materials [134]. Considering typical γr to be on the order of 100 s−1 [135] and

assuming a unity quantum efficiency, the overall decay rate R = 2γr = 200 s−1 which

is much smaller than ε. Thus, the mean fluorescence efficiency in Eq. 3.16 can be

approximated as:

h̄ωf ≈ h̄ω +
δEg

2
+

δEe
1 + exp(δEe/kT )

(3.38)

For ATX, the coupling rate ε within each manifold is the sum of the spontaneous

and stimulated rates (γ and W ) according to Eq. 3.33. Like Ref. [93], we assume

the surface resonance of the substrate in Fig. 3.5(c) matches the energy separation

δEg ≈ δEe of each manifold. As a result, the enhanced density of states in the near-

field will both increase γ and W by orders of magnitude [93]. Using Eq. 3.33, the

coupling ε within each manifold for our scheme will also be orders of magnitude larger

compared to the overall decay rate R if we again assume R to be around 200 s−1.

Thus, we can define the mean fluorescence frequency in the same way as was done

for LCS in Eq. 3.38 as:
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ηLCS,ATX ≈
δELCS,ATX

h̄ω

(
1

2
+

1

1 + exp(
δELCS,ATX

kT
)

)
(3.39)

and likewise express net extracted power normalized with respect to incident absorbed

power as

∣∣∣∣Pnet,(LCS,ATX)

Iσ12Nt

∣∣∣∣ ≈ δELCS,ATX

h̄ω
(

1 + exp(
δELCS,ATX

kT
)
) (1

2
+

1

1 + exp(
δELCS,ATX

kT
)

)
(3.40)

assuming the quantum efficiency ηq = 1.

Figure 3.6(a) shows the comparison of the ideal efficiency, without consideration

of parasitics, versus temperature for ATX and LCS using Eq. 3.39 with pump energy

h̄ω = 1.24 eV for both schemes. The overall higher ideal efficiency for ATX is due to

higher energy of the extracted phonon polariton compared to that of typical phonons.

In the limit of large temperature, the ideal efficiency for both LCS and ATX tends to

δE/(h̄ω) according to Eq. 3.39 which is 10% for ATX and 1% for LCS as shown in

Fig. 3.6(a). In the limit of low temperatures, the ideal efficiency tends to δE/(2h̄ω)

according to Eq. 3.39. This limit is also obeyed as shown in Fig. 3.6(a) which is 5%

for ATX and 0.5% for LCS.
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Figure 3.6: (a) Ideal efficiency versus temperature for LCS (dashed line) and ATX
(solid line) from Eq. 3.39. (b) normalized extracted ideal net power versus medium
temperature of LCS (dashed line) and ATX (solid line) from the absolute value of
Eq. 3.40. ATX has a higher ideal efficiency than LCS but LCS outperforms ATX for
extracted power at lower temperatures.
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To compare the ideal net power, we use the form of normalized power with respect

to incident absorbed pump power as defined in Eq. 3.40 and plot the extracted ideal

net power |Pnet/(Iσ12Nt)| as shown in Fig. 3.6(b). Figure 3.6(b) shows that at higher

temperatures more power can be extracted using our ATX scheme compared to that

with the LCS scheme. However, at lower temperatures then LCS extracts more power

than does ATX. These results are expected since if when kT � δEg the excited state

of the manifold will be depopulated as discussed in Ref. [103] and in Section 3.4.

The higher energy gap δE in ATX means that this depopulation occurs at higher

temperatures compared to the relevant depopulation temperature for LCS.

Parasitic losses

Thus far, we have neglected non-idealities such as parasitic pump absorption and

non-unity quantum efficiency. In reality, these process will degrade the performance

of both LCS [103] and ATX for cooling and temperature sensing applications. We

now examine these effects.

The key parasitic losses in LCS are parasitic pump absorption and non-radiative

recombination of upconverted photons (manifested by a non-unity quantum effi-

ciency), and both of these processes will occur in ATX as well. We first consider

parasitic absorption of the pump. Here, the pump wavelength here is chosen to be 1

µm (1.24 eV) and most host materials such as ZBLANP or YLF [103] are transpar-

ent at this wavelength in LCS. In ATX, the requirement for the host materials to be

transparent up to MIR limits host materials to those that are 100% transparent at 1

µm such as calcium fluoride. In ATX, however, there is also the possibility of pump

absorption by the substrate in a simple geometry such as in Fig. 3.5(c). The details of

how much pump absorption occurs depends strongly on the material properties and

system design. However, it is clear that cooling applications using ATX will require

thin substrates that do not absorb light in the visible or near-infrared wavelengths

used for the pump.

Next, we consider non-radiative recombination of upconverted photons. These
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non-radiative channels are represented by γnr for the all transitions in Figs. 3.5(b)

and (d) and are caused by multi-phonon decay processes governed by Eq. 3.37.

Upconverted photons require at least 97% internal quantum efficiency (assuming unity

absorption efficiency and fluorescence escape efficiency) in order for any cooling to

occur in LCS [103]. Thus, host materials in LCS often have low maximum phonon

energy to reduce the probability of multi-phonon processes [135]. In ATX, the mean

fluorescence energy is larger than in LCS due to a larger energy gap δE, which should

result in a reduction in parasitic multi-phonon decay processes.

However, the elevated temperatures required for optimal performance of ATX

could lead to a dramatic increase in non-radiative recombination. This challenge may

be avoided by recognizing that the temperature of the host medium need not equal

that of the thermal radiation emitted by the substrate. In ATX, the substrate deter-

mined the thermal photon population, unlike LCS where the physical temperature of

the host material of the gain medium that determines the phonon population. Thus,

the host material in ATX can be maintained at a lower temperature compared to

that of the substrate by contact with a thermal reservoir. As a result, non-radiative

recombination may be significantly smaller than anticipated despite the elevated tem-

perature of the substrate.

Overall, parasitic losses should affect LCS and ATX to a similar extent and it is

possible that radiative cooling could be achieved with ATX. Nevertheless, specialized

experimental design plays a key role in achieving cooling in LCS [100–102, 119–122]

and similar careful design will be required for achieving cooling using ATX.

3.6 Discussion

With the mathematical formalism in place and the parasitic processes in mind, we

now examine the applications of ATX for temperature sensing. The key quantities are

the upconverted power reaching the detector and the sensitivity of the upconverted

power to variations in temperature. Using the same assumptions in Section 3.5, we

simplify Eqs. 3.19 and 3.29 to obtain the upconverted power normalized to absorbed
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input power as

Pupconvert
Iσ12Nt

≈

(
1

1 + exp(
δELCS,ATX

kT
)

)
(
δELCS,ATX

h̄ω
(
1

2
+

1

1 + exp(
δELCS,ATX

kT
)
) (3.41)

+
1

2
(1 +

1

1 + exp(
δELCS,ATX

kT
)
))

The sensitivity of upconverted power to variations in temperature defined as

dPupconvert/dT is then

dPupconvert
dT

=
exp(

δELCS,ATX

kbT
)δELCS,ATX

(
5δELCS,ATX + 3h̄ω + exp(

δELCS,ATX

kbT
)(δELCS,ATX + h̄ω)

)
2
(

1 + exp(
δELCS,ATX

kbT
)
)3
kbT 2h̄ω

(3.42)

Figure 3.7(a) shows the comparison of the normalized upconverted power and radi-

ation temperature for ATX versus LCS using Eq. ?? with pump energy h̄ω = 1.24

eV for both schemes. The higher power output for LCS is due to the smaller energy

of the manifold that allows a higher thermal population of the excited state. In Fig.

3.7(b), the sensitivity of LCS is lower than ATX at higher temperatures although it

is much higher below 500 K.
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Figure 3.7: (a) Normalized upconverted power versus temperature for LCS (dashed
line) and ATX (solid line) from Eq. 3.39. (b) Sensitivity of upconverted fluorescence
versus sensing temperature of LCS (dashed line) and ATX (solid line) from the abso-
lute value of Eq. 3.40. ATX has a higher sensitivity than LCS at higher temperatures
but LCS outperforms ATX for extracted power for the temperature range considered.

Overall, the comparison here shows that LCS is better for temperature sensing for
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the temperature range considered as δE � kbT . If contact between the fluorescence

medium and the sample is acceptable, LCS based temperature sensing has the advan-

tages of good spatial resolution to local temperature and convenient optical detection

in the visible to near infrared wavelength range [123–130].

On the other hand, ATX enables temperature measurement by sampling the near-

or far-field radiation of the substrate without requiring any physical contact. Such

non-contact temperature sensing is important for a wide range of applications from

medical to industrial domains. Current techniques often employ semiconductor based

infrared photon detectors or bolometer based detectors [136,137]. The limited detec-

tion range of various semiconductor materials and the slow response of bolometers

restricts the application of these techniques [136, 137]. Temperature sensing using

ATX allows the use of visible to near infrared photo detectors to detect the up-

converted fluorescence which are fast and widely available. Thus, ATX may enable

temperature sensing with high spatial accuracy when combined with existing near-

field scanning techniques [138,139] by upconverting thermal radiation to near infrared

or visible wavelengths for detection without requiring any physical contact with the

sample.

3.7 Discussion

Our work shares some similarities with laser cooling of solids [100–102,140] and active

schemes in plasmonics [115,116,141], photonic crystals [142], and metamaterials [143,

144] but differs in a number of important ways. First, laser cooling directly extracts

phonons, while our scheme extracts surface phonon polaritons. Therefore, our scheme

has potential to be much more efficient than laser cooling because of the significantly

higher energy of surface phonon polaritons than phonons. For instance, the ideal

efficiency of laser cooling of solids is typically a few percent [100–102], while our ideal

efficiency is 50% for the chosen wavelengths if the 2-0 transition has unity quantum

efficiency. Further reduction in the pump fluence can be made by optimizing pump

recycling. Also, laser cooling requires the medium to be cooled to possess very specific
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energy levels, whereas our scheme only requires that the medium possess a surface

resonance.

The most important difference between this work and prior works on near-field

coupling and gain media [115–117,141] is that in the present work, the atomic transi-

tion is pumped by a near-field thermal radiative source rather than a coherent pump.

Unlike typical broadband radiation in the far-field, the nearly monochromatic nature

of near-field thermal radiation allows atomic transitions to be efficiently driven, a

concept that could be used for other photonics applications. However, although the

near-field energy density is high compared to that in the far-field, it is not sufficient to

cause the imaginary part of permittivity of the gain medium to become positive; our

medium is actually absorptive under all conditions. Our approach does not lead to any

form of stimulated emission or coherent single mode emission and thus is distinctly

different from active schemes in plasmonics used to realize spasers [115–117, 141] or

to compensate loss [143,144].

3.8 Conclusion

In conclusion, we have numerically demonstrated an active thermal extraction scheme

that allows bound surface waves to be converted from evanescent to propagating

waves. Our laser-based cooling approach exploits the monochromatic nature of near-

field radiation to drive a transition in a gain medium simultaneously with an external

pump, thereby extracting near-field energy to the far-field. We have also outlined the

generalized theory of ARC and demonstrates a mathematical equivalence between

LCS and ARC by replacing the electron-phonon coupling parameter in LCS with

the electron-photon coupling parameter in ARC. With this equivalence, we compare

LCS with ARC using realistic parameters. Overall, ARC outperforms LCS in both

efficiency and extracted power. We find ATX potentially advantageous at higher

temperatures for which the energy gap δE ∼ kbT . The generalized model for ATX

presented here will thus advance the understanding and application of utilizing active

processes to manipulate near-field thermal radiation for thermal management.
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Chapter 4

Understanding Quasiballistic
Transport Using Monte-Carlo
Technique

Contents of this chapter can also be found in Ref. [145].

4.1 Introduction

Thermal transport at the nanoscale has attracted substantial interest in recent years

[3, 37–40]. In many solids, phonons are the main heat carrier and mean free paths

(MFPs) are comparable to the dimensions of micro to nano-size devices [146]. Re-

duced thermal conductivity due to phonon scattering at boundaries and interfaces has

been demonstrated in numerous material systems, and many of these nanostructured

materials are under investigation as thermoelectrics [46–48,51–53].

Engineering thermal conductivity using classical size effects requires knowledge

of phonon MFPs [54]. Recently, there have been various efforts to measure MFP

spectra experimentally using observations of quasiballistic heat conduction [8,43,55–

57]. In these methods, the MFP distribution is obtained by analyzing the change

in measured thermal conductivity as a thermal length scale is systematically varied.

This thermal length has been defined using lithographically patterned heaters [56],

the cross-plane thermal penetration length [55,57], and the pump beam size in time-

domain thermal reflectance (TDTR) [8]. The MFP distribution can be reconstructed
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from these measurements using a method introduced by Minnich provided that the

quasiballistic transport in the experiment can be accurately simulated [61].

Quasiballistic transport has been studied using simulation with a variety of tech-

niques [7, 147–151]. Ezzahri et al. used a Green’s function formulation to examine

electronic ballistic transport [148]. Cruz et al. used ab-inito calculations in an attempt

to explain a modulation frequency dependence of thermal conductivity in TDTR [150].

Heat transport in the cross-plane direction in TDTR experiments have been studied

by numerically solving the 1D Boltzmann Transport equation (BTE) [149] and by us-

ing a two-channel model of the BTE [151]. While radial quasiballistic transport due

to variation of the pump size in TDTR experiment has been studied as an example of

the Monte-Carlo method [7,152], there has been no systematic investigation of radial

quasiballistic transport in TDTR.

In this chapter, we present a numerical study of the heat conduction that occurs

in the full 3D geometry of a TDTR experiment, including an interface, using the

BTE. We identify a radial suppression function that describes the suppression of heat

flux, compared to the Fourier’s law prediction, when length scales are comparable to

MFPs. The prediction of our radial suppression function is in good agreement with

the reduction in thermal conductivity observed with TDTR at room temperature.

We also discuss discrepancies at cryogenic temperatures that are important for future

study.

4.2 Theory

4.2.1 Boltzmann Transport Equation and Monte-Carlo Method

Here we describe our numerical method to solving the transient, one-dimensional,

frequency dependent phonon BTE. We first describe our solution of the BTE. The

BTE is given by [153]:
∂eω
∂t

+ v ·5eω = −eω − e
0
ω

τω
(4.1)
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where eω is the phonon energy distribution function, ω is the angular frequency, e0
ω

is the equilibrium energy distribution function, v is the group velocity, and τω is the

phonon frequency dependent relaxation time.

Figure 4.1: 3D sample geometry used in time-domain thermal reflectance (TDTR)
experiments. The top layer is a metal transducer that absorbs the pump energy and
generates thermal phonons. The phonons then propagate through the interface into
the substrate.

This equation must be solved in the 3D geometry of a sample in a TDTR experi-

ment as shown in Fig. 4.2.1, which consists of a thin metal transducer on a substrate

with a Gaussian initial temperature distribution in the metal transducer [80, 154].

Solving the BTE in this domain is challenging due to its large spatial extent and

the 3D geometry. Rather than using deterministic methods which require substantial

amounts of memory, we use the Monte Carlo (MC) method [7]. Figure 4.2.1 illustrates

the principle of MC method. Particles or phonon bundles represent a collection of

phonons with the same parameters (frequency, velocity, etc.) and each particle tra-

verses the simulation domain with some or all of its parameters resampled after each

scattering or collision with a boundary.

The MC method for phonon transport was first used by Peterson [155] and im-

proved by Mazumdar and Majumdar [156]. While there were various improvements
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Figure 4.2: Schematic of Monte Carlo (MC) techniques in a simple geometry with two
boundaries of different temperatures. The “particles” represent collections of phonons
with the same frequency, velocity, etc. traveling in the domain of the simulated region.
The parameters (frequency, velocity, etc.) at each boundary are sampled randomly
based on material parameters and boundary conditions.

over the years [157–159], it still takes a long time to run these MC algorithms. Re-

cently, Homolle et al. developed a variance reduced method first used for MC solu-

tions of the BTE in dilute gases [160]. The basic concept of this method is illustrated

in Fig. 4.3. Instead of sampling the whole distribution, the variance reduction in

deviational MC methods calculates the deviation from a known Bose-Einstein dis-

tribution, which is a lot smaller, leading to significant computational savings [7].

Further computational efficiency can be obtained by linearizing the equilibrium dis-

tribution, eliminating the need for spatial and temporal discretization [152]. The

energy assigned to particles in this approach is the deviational energy from a known

equilibrium function.

4.2.2 Details of Simulation

We use the algorithm exactly as described in Ref. [152]. We note that an actual

TDTR experiment measures the response to a modulated pulse train rather than the

impulse response from a single pulse [149]. Because radial effects are expected to be

the same for the impulse and multi-pulse response, for simplicity we only consider a

single pulse in our study.

The MC simulation is divided into three main stages, namely initialization, advec-

tion and scattering, and data collection and post processing. During the initialization
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Figure 4.3: Schematic of principle underlying the variance-reduced technique. Instead
of sampling the whole distribution in tranditional MC technique, the variance reduc-
tion in deviational MC methods calculates the deviation from a known Bose-Einstein
distribution, which is a lot smaller, leading to significant computational savings [7].

stage, all constants and variables are defined. These include cumulative distributions

upon which parameters will be sampled from as well as parameters for all particles

at the start of the simulation. The advection step follows from the BTE (Eq. 4.1)

which amounts to moving each particle by a vector v∆t, where ∆t is the traveling

time step of the particle inside the simulation domain without scattering and v is

the group velocity. The traveling time is sampled from the scattering time τ . The

particle is then scattered at the new location and its parameters are re-sampled upon

scattering. This scattering for-loop continues until the total travel time of the particle

exceeds the maximum time allocated for the simulation. The data for the location of

each particle are recorded at specific time of interest which are then post-processed

to obtain the temperature versus time plot like that shown in Fig. 4.4(a). The details

of each stage are described below.

4.2.3 Initialization

During the initialization stage, the initial temperature distribution is used to dis-

tribute the computational domain with particles in order to account for this temper-
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ature distribution.

4.2.3.1 Initial Position and Time

We consider a simulation geometry similar to the typical TDTR samples as shown

in the inset in Fig. 4.4. Here, the top layer is an Al film and the bottom layer is a

layer of semi-infinite Si. We simulate the probing process of surface temperature in

a TDTR measurement by averaging the surface energy distribution with a Gaussian

function. The probe is assumed to be of the same size as that of the pump. The

transducer thickness is set to 10 nm to reduce its thermal resistance.

The computational domain is divided into around Nr cells radially according to

rm =
√
j/Nr2R for the mth cell up to 2R. This ensures that each volume element

is the same size. The thickness of the nth cell along the cross-plane direction has

∆zn = ∆z = 5nm. The volume of each cell is thus ∆Vm,n = π(r2
0)∆zn.

To approximate a two-dimensional temperature profile, we initialize all particles

inside a 5 nm thick Al region. The deviational energy carried by each particle is

computationally calculated based on the total deviational energy for all particles

divided by number of particles Neff according to [152]

ei ≈
1

Neff

∑
m

∑
n

∑
p

∑
q

D(ωq, p)
deeq(ωq, p, Teq)

dT
∆ωq∆Tn,m∆Vm,n (4.2)

by summing along the radial and cross-plane direction. ∆Tn,m and ∆Vm,n are the

temperature and volume of each spatial unit cell. ∆ωq is the frequency of each

discretized phonon mode for each polarization p. D(ωq, p) is the density of states and

τ(ωq, p) is the scattering time. deeq(ωq, p, Teq)/dT represents the linearized form of

the known energy distribution function using Bose-Einstein statistics

deeq(ωq, p, T )

dT
=

d

dT

 h̄ωq

exp
(
h̄ωp
kbT

)
− 1

 (4.3)

where kb is the Boltzmann factor. The equilibrium temperature Teq = 300 K in Eq.
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4.2.

Note that Neff is not the actual number of phonons in the domain. This was dis-

cussed in Ref. [7] and the value of Neff depends on the balance of computational cost

versus having a sufficiently large number of particles for significant level of sampling.

Typically, ∼ 106 particles is sufficient for this simulation.

The temperature ∆Tn,m of each cell is given according to the initial Gaussian

temperature distribution described as

∆Tn,m =

T0 exp(−2 r
2
m

R2 ) : z ∈ [0,∆zn]

0 z > ∆zn

(4.4)

where T0 = 2Q0/(πR
2∆znCAl). The energy of a pulse is assumed to be Q0 = 0.01J

and CAl is the volumetric specific heat capacity of Al in units of J/m3K. Q0 is kept

constant for different value of radius R in our calculations, representing the same

pulse energy for different beam diameters. In Ref. [7], depending on the choice of

equilibrium temperature Teq, there are many cases in which the sign of the particle is

important if initial temperature is below Teq such that ∆T < 0 in Eq. 4.2. However,

this is not a concern for us, as the temperature in the domain is always bigger than

the initial temperature, as in Eq. 4.4.

The initial time of each particle is t = 0.

4.2.3.2 Frequency Distribution

We first discretize the phonon dispersion into 1000 bins; the phonon dispersion is

taken to be that of Si along the [100] direction as described in Ref. [149] and only

acoustic phonons are considered. We take the metal transducer to have the same

dispersion as the experimental dispersion of Al in the [100] direction and neglect

heat conduction by electrons, instead considering phonons as the sole heat carrier.

In reality, electrons conduct a majority of the heat in metals. However, it has been

demonstrated that there exists thermal resistance due to electron-phonon coupling

which modifies the effective interface conductance value [161]. As we would like to
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isolate changes in thermal properties due to quasi-ballistic transport only, we do not

take electron heat conduction into consideration. Following Ref. [149], we assign a

phonon to have a constant relaxation time of 1 ps, yielding a low thermal conductivity

of around 3 W m−1K−1. This change eliminates any possible artificial quasiballistic

effects in the metal transducer, attributing all quasiballistic effects to the Si substrate.

For t = 0, all particles will be in Al.

Using the dispersion for Al and Eq. 4.3, we construct the cumulative distribution

for sampling frequency according to [7]

F (q) =
1

Np

q∑
q=0

∑
p

D(ωq, p)
deeq(ωq, p, Teq)

dT
∆ωq (4.5)

where Np is the normalization factor. ωq represent qth phonon frequency in 1000 bins.

Thus, the probability of the selecting the qth frequency for each particle is given by

F (q) in Eq. 4.5.

Choosing the polarization depends on the frequency that has been selected such

that the probability for a particular polarization p after the frequency of the particle

is determined by ratio of density of states D(ω, p)/
∑

pD(ω, p).

4.2.3.3 Velocity Distribution

The absolute value of the group velocity v of a particle can be obtained from the

phonon dispersion after choosing its frequency ω and polarization p. The direction

of group velocity v is sampled with two uniformly distributed random numbers [156]

in R ∈ [0, 1] and φ ∈ [0, 2π]. From these two numbers, the direction in x, y, z is then

given by

v =


vx

vy

vz

 = v(ω, p)


√

1−R2 cosφ
√

1−R2 sin(φ)

R

 (4.6)
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where v(ω, p) is the magnitude of the group velocity. Equation 4.6 is both used to

generate directions at time t = 0 and after each scattering event during the simulation.

However, reflections at interfaces does not follow Eq. 4.6 due to the difference in the

available range of solid angle.

4.2.4 Advection and Scattering

4.2.4.1 Advection Time Step

Once the simulation starts, each loop begins begins by moving each particle by a time

step ∆t. This time step represents the amount of time the particle can travel without

being scattered. Therefore, time step ∆t is sampled according to scattering times of

Al or Si depending on the location of the particle before advection. The procedure

to sample a time step ∆t for each particle uses the following relationship

∆t = τeff ln (1− Pi) (4.7)

where Pi is a uniformly distributed random number between zero and one. τeff is the

effective scattering time that depends on the material properties according to

1

τeff
=

1∑
p τ(ω, p, Teff)

(4.8)

where τ(ω, p, Teff) are polarization, frequency, and temperature dependent relax-

ation times also taken from Ref. [149].

4.2.4.2 Interface and Boundary Conditions

At the interface, phonons have a probability to be transmitted or reflected diffusely

according to the model of Ref. [149]. The top surface of the metal transducer is taken

to be a diffuse mirror, and all other boundaries are semi-infinite with no condition

enforced. Upon advecting a particle with sampled group velocity v and time step ∆t,

one of the following cases can occur:
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• The particle collides with the z = 0 diffuse boundary in Al before the end of its

sampled time step. In this case, the particle will be diffusely reflected, which

means that the direction of the particle is randomized with no change to other

parameters. The time step that the particle traverses will also be shortened to

the time it takes for the particle to reach the boundary. In this case, the new

velocity upon reflection is sampled in a slightly different manner compared to

Eq. 4.6 using

v =


vx

vy

vz

 = v(ω, p)


√

1−R cosφ
√

1−R sinφ
√
R

 (4.9)

The difference is due to directional averaging of v with the normal vector of the

boundary [156].

• The particle collides with the interface going from Al to Si or from Si to Al

before it can scatter according to the model of Ref. [149]. In this model, we set

PAl→Si to be a frequency-independent probability of transmission crossing the

interface from Al to Si. PAl→Si can be obtained using Eq. (16) of Ref. [149]

which depends on the material properties of each and the interface conductance

G. PSi→Al is obtained using the principle of detailed balance for each frequency

and polarization.

Due to mismatch in the cut-off frequency for each branch of the dispersion be-

tween Al and Si, some high frequency phonons in one material do not have a

corresponding state at the same frequency in the other material. Under the as-

sumption of elastic scattering and a neglect of mode conversion, these phonons

will have zero probability of transmission and will be diffusely reflected accord-

ing to Eq. 4.9. For particles with non-zero transmission probability, a random

number will be drawn and compared to the probability of transmission to de-

termine if it will transmit or be diffusely reflected. If the particle does get

transmitted to the other side of the interface, it will retain its frequency and
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polarization but will have its direction redrawn also according to Eq. 4.9.

• If the particle does not encounter any boundary, it will be scattered upon reach-

ing its new location after a time step of ∆t. A new set of parameters will be

redrawn upon scattering. Sampling of frequency will be according to [152]

F (q) =
1

Np

q∑
q=0

∑
p

D(ωq, p)

τ(ωq, p, Teq)

deeq(ωq, p, Teq)

dT
∆ωq (4.10)

instead of Eq. 4.5 with an additional dependence on scattering time τ . Likewise,

the polarization can be redrawn fromD(ω, p)/τ(ωq, p, Teq)/
(∑

pD(ω, p)/τ(ωq, p, Teq)
)

with a dependence on scattering time τ as well. The direction of velocity v will

be redrawn, according to Eq. 4.6.

4.2.5 Data Collection and Post-Processing

Data collection is challenging in MC simulations as each particle has so many variables

to keep track of. Also, each time step is randomly chosen such that the collected data

cannot be binned in regular time intervals. Collecting all data for every particle

is theoretically possible but very costly with the large particle numbers used in this

simulation. We devised a strategy to overcome this issue by only keeping the necessary

data of interest to us. Our method is as follows:

• We prepare a time grid that consists of a logarithmic interval of time steps

markers.

• After each advection loop, we check the total time traversed by each particle to

see if it exceeds any of the time steps in the grid. Only if the particle exceeds

a time step, we record the time step and all relevant data before and after the

advection step. If any advection step jumped more than one marker on the grid,

we record the same time before and after advection only at the last marker.

• If the total time traversed by the particle reaches the maximum simulation time

allocated, then data for the last time marker will be recorded and the particle
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will be removed from the next loop.

In TDTR experiments, the probe beam measures the surface temperature aver-

aged over its Gaussian beam spot with respect to time. Here, we mimic the mea-

surement of a probe beam by gathering the average temperature at the surface with

Gaussian distributed weighting. To do so, we gather the temperature of each point

at the surface (also within 5 nm from z = 0) at each time marker. The temperature

at each point is proportional to the number of particles at each point divided by the

total volume of the region of interest and the volumetric specific heat of Al (CAl).

The discretization of the spatial domain into unit cells of equal volume in Section

4.2.3.1 allows one to assign particles to individual unit cells according to its location.

The location at a particular time can be interpolated from the recorded spatial data

for each time marker.

Upon obtaining the temperature in each cell, we assign a Gaussian weight of ρ(rm)

to the mth cell multiplied by the number of particles N(m) inside each unit cell. The

averaged temperature sampled by the probe is thus proportional to
∑

mN(m)ρ(rm).

Averaging of the probe is equivalent to convolution of the Gaussian weighting of the

probe to a Gaussian temperature of the pump in Eq. 4.4 [154]. Mathematically, our

numerical averaging should yield the same result as a convolution. Thus, we have the

following relation:

∑
m

N(m)ρ(rm) ∼
∫ ∞

0

exp(−2
r2

R2
)A0 exp(−2

r

R
)2πrdr (4.11)

where A0 is the normalization for the weight function of the probe. From this relation,

we obtain the weight function as

ρ(r) =
2

πR2
exp(−2

r

R
) (4.12)

Using this relation, we can find the average temperature computationally with

〈∆T 〉 =
ej
∑

mN(m)ρ(rm)

CAl∆z
(4.13)
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Figure 4.4: (a) The MC simulation (blue line) for a pump beam of D = 0.8 µm
is fitted to Fourier’s law (red dashed line) with an effective thermal conductivity
keff = 65 W/mK at 300 K. Fourier’s law with kbulk = 148.2 W/mK (green dot
dashed line) shows a faster decay. The MC simulation (black line) for pump beam of
D = 0.2 µm is also shown for comparison. All MC simulations and Fourier’s law fits
use the specified interfacial conductance G = 110 MW/m2K. The inset in (a) shows
the simulated sample geometry of a Al film of thickness 10 nm on a semi-infinite Si
substrate, illuminated with a Gaussian pump beam of diameter D. (b,c) Normalized
cumulative heat flux in the (b) cross-plane or (c) radial direction for different pump
diameters at 300 K (solid line). The purple dashed line is the expected normalized
cumulative heat flux based on Fourier’s law. The cross-plane heat flux in (b) does
not depend on pump diameter.

4.3 Results

4.3.1 Temperature versus Time and Heat Flux

We can gain more insight into the thermal transport by examining the pump diameter

dependence of the effective thermal conductivities, which are obtained by fitting the

BTE decay curve with a Fourier’s law model [61]. Though the heat flux is anisotropic,

we fit the decay with an isotropic model for two reasons. First, most TDTR measure-

ments are taken using concentric pump and probe, for which extracting anisotropic

thermal conductivity is not always possible. Second, the sensitivity of the decay to

radial thermal conductivity kr decreases with increasing pump beam size, leading to

large uncertainties in the fitted kr. For these reasons, we fit the decay curves using

an isotropic effective thermal conductivity, which is a measure of the net heat flux

away from the heated region, and account for the additional cross-plane suppression

separately.
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For each value of pump diameter, we use a standard Fourier model for Gaussian

heating in a layered structure [154] to fit an effective thermal conductivity to the

MC temperature data. Fitting to Fourier model requires solving the spatial Hankel-

transformed second order differential equation with a standard Crank-Nicolson Finite

Difference technique [162]. The boundary and interface conditions follows the matrix

method for multiple layers [154]. The fitted value is obtained by minimizing the norm

of the difference between the MC and Fourier decay curves. We take the interface

conductance G to be the value used to calculate the transmissivity PAl→Si for the

BTE calculation.

An example transient decay curve for D = 0.8 µm and D = 0.2 µm along with the

corresponding Fourier law prediction using the bulk thermal conductivity is shown

in Fig. 4.4(a). As in prior works [7, 149], the thermal decay predicted by the BTE

is slower than Fourier’s law predicts. To understand the origin of this slow thermal

decay, we calculate the heat flux in the radial and cross-plane directions. The cumu-

lative heat flux is proportional to
∑

j sjLj, where Lj is the algebraic distance traveled

in a specified direction by the jth particle between two consecutive scattering events

and sj is the sign of the deviational phonon [152]. In the simulation, the distance

traveled Lj in plane or cross plane by the jth particle is added to the total heat flux

for each loop regardless of any markers in the time grid. The summed distance for

each particle is then be binned according to its frequency, polarization, and direction

and added to the total sum for each bin. We only start recording after the particle

first passed the interface from Al to Si. To index heat flux as a function of MFP,

we have to perform a numerical change of variables from frequency and polarization

to MFP. This change is done by first obtaining the corresponding MFP at each fre-

quency and polarization and plotting flux as a function of MFP for each polarization.

Then we make a common grid for MFP which is used to interpolate the flux from

each polarization. These fluxes are the summed over all polarization based on the

same MFP to obtain the overall flux as a function of MFP. Lastly, we normalize the

total cumulative heat flux with respect to its maximum value.

The calculated normalized cumulative heat flux in the cross-plane and radial di-
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rections for several pump beam sizes are shown in Figs. 4.4(b) and (c), respectively.

Note that the BTE cumulative heat flux is restricted to smaller MFPs than those

for Fourier’s law in Figs. 4.4(b) and (c). Therefore, the cumulative heat flux in both

directions is less than what Fourier’s law predicts for long MFP phonons. Figs. 4.4(b)

and (c). However, we observe that the suppression of long MFP phonons in the cross-

plane direction is independent of the pump diameter D, while in the radial direction

the suppression depends on D, with the actual heat flux approaching the Fourier law

heat flux for larger values of D. The heat flux is therefore anisotropic when con-

sidering the degree of deviation from Fourier’s Law along each transport direction.

The diameter dependence of the radial heat flux demonstrates that the pump size

is a key variable that sets the thermal length scale for radial transport, confirming

previous explanations for observations of a pump-beam size dependent thermal con-

ductivity [8]. The physical reason for this radial suppression is because Fourier’s law

assumes the existence of scattering events that are not actually taking place [41].

The fitted thermal conductivities versus pump diameter are shown in Fig. 4.5(a).

The results show the experimentally observed trend of decreasing effective thermal

conductivity with decreasing pump beam size [8]. However, Figure 4.5(a) also shows

an unexpected result: the thermal conductivity does not approach the bulk value kbulk

of 148.2 W/mK at 300 K for Si for large values of pump diameter where radial sup-

pression is minimal. This observation is puzzling because TDTR routinely measures

the correct thermal conductivity for Si at room temperature with similar pump sizes.

The reduction in thermal conductivity is due to the suppressed cross-plane heat flux

in Fig.4.4(b), which apparently does not occur in the actual experiment but is consis-

tent with earlier simulations [7,149]. The origin of this discrepancy has been resolved

and is due to the an assumption of constant transmissivity at the interface [163], and

further investigation is ongoing. However, our analysis remains valid because we are

able to decouple the radial and cross-plane directions.

We also checked whether the interface or transducer properties affect radial quasi-

ballistic transport by performing additional simulations with different values of inter-

face conductance G, and hence transmissivity in the BTE simulation, and transducer
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Figure 4.5: (a) Fitted effective thermal conductivity for different values of pump
diameter at 300 K for several specified values of interface conductance G, with each G
corresponding to a different transmissivity in the BTE model. There is no appreciable
dependence of thermal conductivity on the specified interface conductance. (b) Radial
suppression function Sr and the kernel K obtained from the data at 300 K. The kernel
K is obtained based on the numerical differentiation of Sr.

thickness. The thermal conductivities are essentially unaffected by specified interface

conductance G as shown in Fig. 4.5(a), and we also find that the thermal conductiv-

ities are not affected by transducer thickness. We therefore conclude that the pump

beam size is the primary parameter that governs radial quasiballistic transport.

4.3.2 Enabling MFP Measurements

We now demonstrate how our calculations can be used to enable MFP measurements

using TDTR. Minnich recently introduced a framework in which the MFP distribution

of the substrate can be reconstructed from the effective thermal conductivities, as

shown in Fig. 4.5(a), and a suppression function that describes the difference in heat

flux between the quasiballistic and Fourier predictions [61]. This function depends

on the experimental geometry and mathematically describes how the heat flux curves

in Fig. 4.4(c) differ from the Fourier’s law curve. The equation relating the thermal

conductivity and the suppression function to the MFP distribution is given by:

ki =

∫ ∞
0

S(x)f(xDi)Didx (4.14)
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where f(Λω) = 1
3
CωvωΛω is differential MFP distribution in the Fourier limit, Di

is the variable pump diameter, and x = Λω/D. Cω is the volumetric specific heat

and vω is the group velocity at phonon frequency ω. S describes how each phonon

mode is suppressed as a function of MFP Λω and pump diameter Di. Previously, this

equation was used to find the MFP distribution [61]. However, because here f and

ki are known, this equation can also be solved for S to find the suppression function.

A challenge is that our simulations contain both radial and cross plane suppression.

To isolate only the radial suppression, we write the heat flux suppression S(x) as the

product of the cross-plane suppression function Sz(Λω) and the radial suppression

function Sr(x). For each measurement of ki, we now further expand Eq. 4.14 to

obtain

ki =

∫ ∞
0

Sr(x)Sz(xDi)f(xDi)Didx (4.15)

where x = Λω/Di and
∫∞

0
f(Λω)dΛω = kbulk is the bulk value of thermal conductivity

of crystalline silicon. Equation (4.15) is an homogeneous Fredholm integral equation

and the desired Sr is a solution to the ill-posed problem of Equation (4.14). We solve

the equation using the convex optimization method of Ref. [61]. First, we discretize

the integral in Eq. 4.15 using Gaussian quadrature and obtain a linear system of

equations form unknown radial suppression function Sr(xj)i as

N∑
j=1

Sz(Dixj)f(Dixj)Di∆xjSr(xj) = ki (4.16)

where N is the number of integration points and
∑N

j=1 f(Dixj)Di∆xj = kbulk with

Di∆xj being the discretized points for the MFP. The cross-plane suppression function

Sz(Dixj) can obtained directly by interpolating from the cross-plane heat flux data

(like one in Fig. 4.4(c)).

Equation (4.16) would be impossible to solve unless some information is given

about Sr. However, Sr is subjected to the following restrictions: (i) Sr(0) = 1, (ii)

Sr(∞) = 0, (iii) Sr is non-negative and monotonically increasing and (iv) Sr is also

expected to be a smooth function. Therefore, we reformulated the problem as a
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Figure 4.6: (a) Comparison of our experimental data and expected effective thermal
conductivity obtained from the kernel K in Fig. 4.5(b) versus pump diameters D
at 300 K. The blue errorbars indicate 10% uncertainty of our measurements. (b)
Experimental (symbols, Ref. [8]) and calculated (lines) thermal conductivity as a
function of temperature for different pump diameters. The calculation predicts the
same trend but with a larger thermal conductivity than the experimental results.

convex optimization to minimize the penalty function P defined as

P = ‖(Szf∆Λ)Sr − k‖2
2 + η‖∆2Sr‖2

2 (4.17)

where ∆2Sr = (Sr)j+1 − 2(Sr)j + (Sr)j−1 and ‖.‖ is the second-norm and η controls

the smoothness of the penalty function P . To solve the penalty function in Eq.

4.14 subjected to constraints (i)-(iii), we use the CVX package [164] compatible with

Matlab.

To obtain Sz and f numerically, we must index f and the cross-plane suppression

function Sz with respect to MFP. Sz is independent of Di and does not affect the

radial suppression function. It can be obtained directly by interpolating the cross-

plane heat flux in Fig. 4.4(c). In fact, the heat flux in Fig. 4.4 is essentially the

integral
∫ ω

0
Sz(Λ)f(Λ)dΛ. Thus, we obtain Sz(Λ)f(Λ) together by differentiating the

interpolated flux from Fig. 4.4(b).

The resulting Sr obtained from effective thermal conductivities at 300 K is shown
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in Fig. 4.5(b). We verified the robustness of the solution by adding artificial noise to

ki and by removing different constraints in the convex optimization. In all cases, we

recovered the same function to within 5%. We further verified our solution by con-

firming that our suppression function accurately predicts the heat fluxes in Fig. 4.4(c)

that are calculated directly from our simulation. The derivative of Sr, denoted the

kernel, is also shown in Fig. 4.5(b) and can directly be used to obtain cumulative

MFP distribution of an unknown material from experimental measurements of ther-

mal conductivity for different pump sizes with TDTR [61].

We compare the predictions of our radial suppression function with previously

reported TDTR data for Si [8] and new experimental data at 300 K. To calculate

the reduction in thermal conductivity due to radial suppression, we use the kernel

in Fig. 4.5(b) and the cumulative MFP distribution for Si from Density Functional

Theory (DFT) calculations [165]. Because the DFT calculations do not incorporate

isotope scattering, we approximately account for this mechanism by scaling the MFP

distribution from DFT by the ratio of natural Si’s bulk thermal conductivity [166] to

the DFT thermal conductivity. To compare to experiment, we use previously reported

measurements on Si at cryogenic temperatures as well as new TDTR measurements of

thermal conductivity versus pump size at room temperature using a standard two-tint

TDTR setup [167]. The sample consists of a high-purity Si(resistivity > 20000 Ω-cm)

substrate coated with 70 nm Al transducer using electron-beam evaporation. The

pump 1/e2 diameter is varied from 60 µm to 3.7 µm, while the probe 1/e2 diameter is

kept constant at 9.5 µm for pump diameters greater than 15 µm and 2.7 µm otherwise.

The spot sizes are measured using a home-built two-axis knife-edge beam profiler.

The calculated and experimental thermal conductivity versus pump size at room

temperature plotted in Fig. 4.6(a). The reconstructed effective thermal conductiv-

ity from our radial suppression function agrees well with our measured TDTR data

in the absence of a cross-plane suppression. We also compare the predictions of

our suppression function with previously reported TDTR measurements at cryogenic

temperatures down to 60 K [8], the lowest temperature available from DFT calcula-

tions [165], in Fig. 4.6(b). At these temperatures, our result predicts a similar trend
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in thermal conductivity versus pump size, but our calculation overpredicts the effec-

tive thermal conductivity for all pump diameters below T = 150 K. This observation

could be partially due to differences in isotope and defect concentration between the

samples used in different measurements [149, 166]; however, the incorrect model of

transmissivity may play a role. This discrepancy is an important topic for further

study.

4.4 Conclusion

In conclusion, we have studied radial quasiballistic heat conduction in TDTR using

the BTE. We confirm that a quasiballistic effect is responsible for thermal conductiv-

ity variations with pump size, and further identify the radial suppression function that

describes the discrepancy in heat flux compared to the Fourier’s law prediction. This

function allows MFPs to be reconstructed variable from pump size TDTR measure-

ments in the absence of a cross-plane suppression. The properties of the transducer

and the interface do not appear to affect radial quasiballistic transport. Our work has

provided insights into transport in the radial direction and recent progress in under-

standing the effect of the interface has solved another discrepancy in the cross-plane

suppression [163].



74

Chapter 5

Ultrafast Transient Grating
Technique

5.1 Introduction

Advancement in material development is increasingly driving the need to understand

and characterize these materials. Many conventional spectroscopic and scanning

probe methods are available; however, they can be difficult to implement and typically

only determine chemical and electric properties rather than mechanical proprieties.

This is particularly because the films can easily be damaged by any physical contact.

Scaled-down or modified versions of bulk testing techniques are currently the most

common methods of examining the mechanical behavior [168–170]. Thus, laser-based

techniques offer attractive alternatives because they are fast and contact-free and

have high spatial resolution.

From a thermal perspective, we have introduced in Chapter 1 the importance

of obtaining phonon mean-free-path (MFP) information for different materials. In

Chapter 4, we looked at a numerical study of examining quasiballistic transport by

varying heating length scales in TDTR [8]. While time-domain thermal reflectance

(TDTR) experiment is widely used to characterize thermal transport, it is not ideal for

in-plane thermal measurements and the transient grating (TG) techniques are better

suited for in-plane measurements. The TG technique is capable of creating thermal

gradients over micron length scales that are comparable to phonon MFPs [43]. The
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TG is formed by interfering short optical pulses to form a sinusoidal heating profile.

The TG technique has been used as an accurate tool for determining the thermal

conductivity of materials [43, 62,171,172] and liquids [173].

Here, we present an experimental effort to construct an ultra-fast transient grat-

ing (UTG) experiment similar to Ref. [173] to characterize thermal and mechanical

properties of molybdenum disulfide. We will first briefly outline the theory of TG

and then go on to discuss experimental details. Following that, we will highlight re-

sults from experimental characterization of the UTG using Si membrane and water.

The discussion of measurements from molybdenum disulfide will be the topic of the

following chapter.

5.2 Principle of Transient Grating

Figure 5.1 shows a simple schematic illustrating the concept of a transient grating

experiment. A phase mask diffracts the pump beam which are then combined onto

the sample to form a transient grating (TG) on the sample [174]. The TG is a result

of interference of the two beams, causing periodic variation in intensity, which in turn

causes periodic variation in the refractive index as a result of changes in electronic,

thermal, or mechanical properties of the sample [175–178]. As the name suggests,

the TG signal is a function of time, as the disturbance caused by the pump on the

samples equilibrates with the surrounding. A probe beam through the glass window

is diffracted by the presence of the TG on the sample. The signal is amplified by the

other attenuated probe beam path for detection.

The theory of TG is closely related to four-wave mixing and non-linear optics.

TG experiments have been conducted on many different samples in transmission and

reflection geometries [176], but we will focus on the transmission geometry used for

this chapter, as illustrated in Fig. 5.1.
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BD

sample

lens

window

ND

phase maskpump
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Figure 5.1: A simple schematic representing the concept of a transient grating (TG)
experiment. A pump beam first arrives on the sample followed by a probe beam.
A phase mask diffracts both the pump and probe beams, which are then combined
onto the sample to form a transient grating (TG) on the sample. The grating pattern
on the sample caused by the pump diffracts the probe beam preferentially into the
photodiode. The other probe beam passing through a Neutral Density (ND) filter
allows for amplification of the signal through a process of heterodyning. Figure made
using drawings from Component library [9].

(a) (b)

Figure 5.2: (a) CCD image of an interference pattern formed due to interference of
two beams. (b) Burnt grating patterns on a gold film in our experimental setup.
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5.2.1 Beam Interference

Constructive and destructive interference occurs when two plane waves are crossed at

an angle. For beams of the same polarization and wavelength, this interference leads

to a periodic intensity profile. Figure 5.2(a) shows the image of crossing two optical

beams directly overlapping on a CCD. The periodic pattern disappears when one of

the beams is blocked. Figure 5.2(b) shows burned 13 µm grating on a gold film. The

period of this TG is given by

L =
2π

q
=

λair

2 sin θair
2

(5.1)

where λair is the wavelength in air, θair is the beam crossing half-angle and q is the

grating wavevector magnitude. In this work, we do not consider crossed polarized

gratings and our gratings will be vertically (VV) polarized.

5.2.2 Excitation process

5.2.2.1 Impulsive stimulated thermal scattering

Upon absorbing the pump energy, periodic heating and fast thermal expansion re-

sult in a transient thermal grating. The absorption leads to temperature changes

proportional to the light intensity I such that

∆T (x) ∝ I0 cos2
(qx

2

)
= I0 (1 + cos(qx)) (5.2)

The periodic temperature profile induces thermal stress according to [179,180]

σij(x) = cijklαkl∆T (x) ∝ cijklαkl cos(qx) (5.3)

where αkl is the thermal expansion tensor, cijkl is the elastic stiffness tensor, and q is

the grating wavevector defined in Eq. 5.1.

The induced transient thermal stress can sometimes lead to launching of counter-

propagating surface acoustic waves (SAW) and a periodic thermal grating profile that
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will remain for the time heat diffuses from the grating peaks to the troughs. Strain

and thermally induced changes in the refractive index will lead to diffraction of a

probe beam with respect to time. This process is called impulsive stimulated thermal

scattering (ISTS) [178, 181]. Oscillations in the signal are generally attributed to

thermally induced strain while a slower exponentially decay is generally a result of

thermal diffusion in ISTS [182]. However, not all ISTS signals have oscillations due to

thermally generated strain waves, laser-induced stress due to electrostriction can also

generate SAW but is not relevance to this work. One characteristic of SAW signal

from ISTS is that the signal fits a sine function with integer π initial phase due to a

step function nature of thermal stresses in ISTS [183].

5.2.3 Probing process and heterodyne detection

In the previous section, we described the excitation process and the subsequent ma-

terial response lead to spatial and time dependence in the optical properties of the

material which can be observed by a probe beam [184]. ISTS and ISBS will both

excite acoustic waves due to strain and ISTS heating will lead to changes in tem-

perature, both of which will couple to the index of refraction. In the linear regime,

perturbations to the index of fraction n+ ik is given by [176]

∆n =
∂

∂X
n∆X (5.4)

∆k =
∂

∂X
k∆X (5.5)

where X can be strain or temperature. Time-dependent changes in n and k will lead

respective to phase and amplitude TG signal.

The heterodyne technique shown in Fig. 5.1 allows for controlling of relative phase

between two probe beams using the relative difference in tilt between the window

and the ND filter on each of the probe path [185]. The word “heterodyning” refers to

a radio signal processing technique invented in 1901 by Canadian inventor-engineer

Reginald Fessenden, in which new frequencies are created by combining or mixing two
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frequencies [186]. This process has been used to modulate and demodulate signals

forming the basis of frequency division multiplexing in telecommunications. In this

experiment, we use the same concept by interfering an attenuated reference beam to

the diffracted signal beam and amplify the signal.

Let us consider the example in Fig. 5.1 for a transmission setup. A probe beam

of wavelength λp is incident at the sample on the TG, and a reference beam from the

same source will have the following equations for their electric fields

Ep = E0p exp
(
i(k2

p − q2/4)1/2z − i(q/2)x− iωpt+ iφp
)

(5.6)

ER = trE0p exp
(
i(k2

p − q2/4)1/2z + i(q/2)x− iωpt+ iφR
)
) (5.7)

where E0p is the incident probe beam amplitude, kp is the optical wavevector, q

is the TG wavevector defined in Eq. 5.1, ωp is the optical frequency, and φp and

φR are the phases of the probe and the reference beams, respectively, and tr is the

attenuation factor of the reference beam caused by the ND filter in Fig. 5.1.

For a thin, time-dependent TG, and assuming that the grating is a small pertur-

bation to the refractive index, we can define a complex transfer function as [187]

τ(t) = τ0 (1 + cos(qx)(∆k(t) + i∆n(t))) (5.8)

where τ0 is the transfer factor of the sample in the absence of any excitation.

Assuming that the sample is located in the plane z = 0 and that the TG is the

small perturbation to τ0, we obtains the following expression for the (+1) diffraction

order of the probe beam by grating excitation in the material described by transfer

function in Eq. 5.8

Ep,+1 = apτ0E0p(∆k(t) + i∆n(t)) exp
(
i(k2

p − q2/4)1/2z + i(q/2)x− iωpt+ iφp
)

(5.9)

and the transmitted reference beam (zero order) is given by

ER,0 = aptrτ0E0p exp
(
i(k2

p − q2/4)1/2z + i(q/2)x− iωpt+ iφR
)
) (5.10)
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Since the two beams are co-linear, their interference signal interference intensity is

given by the square of the sum of their electric fields in Eqs. 5.10 and 5.9

Is = I0pApT0

(
t2r + (∆k(t)2 + ∆n(t)2) + 2tr(∆k(t) cosφ−∆n(t) sinφ)

)
(5.11)

where I0p is the intensity of the probe beam at the input of the setup, Ap = |ap|2 is

the diffraction efficiency of the mask and T0 = |τ0|2 is the optical transmission of the

sample at the probe wavelength and φ = φp − φR.

This interference leads to heterodyning, with the term 2tr(∆k(t) cosφ−∆n(t) sinφ)

dominating the signal if ∆k(t),∆n(t)� tr such that Is becomes

Ihet
I0p

= 2ApT0tr(∆k(t) cosφ−∆n(t) sinφ) (5.12)

Thus, the signal will purely be amplitude grating or the imaginary part if φ = 0, π

and pure phase grating or real part if φ = ±π/2. Experimentally, the phase φ can be

adjusted by tilting the glass window relative to the ND filter in Fig. 5.1.

5.3 Experimental System

5.3.1 Laser

Figure 5.3 shows the schematic setup of the UTG setup. The laser source is a Co-

herent Libra Ti:sapphire amplifier system capable of generating 0.4 mJ of energy at

a repetition rate of 10 kHz as in Fig. 5.4. The pulse width is approximately 100 fs

at 800 nm of wavelength. This laser uses an integrated Coherent Vitesse Ti:Sapphire

seed laser mode-locked at 80 MHz and a Coherent Evolution mode-locked pump laser

at 532 nm to feed a regenerative amplifier and a compact stretcher/compressor sys-

tem all in one unit [188]. The output of the Libra has a 1/e2 beam diameter of about

8 mm.

The high energy of this beam is able to burn many objects put in the beam

path, and care must be taken to attenuate the beam very early on in the setup. We
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Figure 5.3: Schematic of the transient grating setup. A Ti:Sapphire amplifier gen-
erates ultra short pulses which are attenuated by neutral density (ND) filters, wave-
plates (WP), and polarizing beam splitters (PBS). The unwanted power is sent into
a beam dump (BD) and the rest is then split into pump and probe pulses using WP
and PBS. The probe pulse is delayed and then combined with the pump onto the
phase mask. The phase mask diffracts both the pump and probe beams which are
then combined onto the sample to form a transient grating (TG) on the sample. The
grating pattern on the sample diffracts the probe beam preferentially into the pho-
todiode if a TG is present. The signal into the photodiode (PD) is then picked up
by the lock-in and acquired by the computer as a function of the probe delay. Figure
made using drawings from Component library [9].
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Figure 5.4: Picture of the Coherent Libra Ti:sapphire amplifier system capable of
generating 0.4 mJ of energy at a repetition rate of 10 kHz at a wavelength of 800 nm.
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3X

power control

Figure 5.5: Picture of optical setup for power control. The 3X shrink telescope shown
in Fig. 5.3 is also shown in this picture. The power control optics consist of a half-
wave plate and a plate polarizer. The plate polarizer is used like a polarizing beam
splitter with the ability to withstand high laser power.
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employed attenuation at two stages of the beam path for safety and tunability of the

overall power going into our setup, as shown in Fig. 5.3. First, we use a beam splitter

to attenuate the laser power. The use of ND filters have led to thermal lensing effects

which distorts our beam quality. However, extreme care must still be taken to dump

any reflection from the reflective ND safely. In addition, we added a plate-polarizer

and a half waveplate to further fine-tune the power of the incoming beam after the ND

filter. The 3:1 shrink telescope ensures that the beam can passes through half-inch

beam splitters and wave plates used along the beam path.

5.3.1.1 Beam path

After the polarizer in Fig. 5.3, there is a polarizing beam splitter (PBS1) and half

waveplate (WP) along the path to control the relative power entering the pump and

the probe paths, as shown in Fig. 5.6.

The probe enters a separate beam path which is to be mechanically delayed relative

to the pump. To reduce divergence of the probe beam, there is an expanding telescope

before the beam enters the delay stage as shown in Fig. 5.3 [189]. To understand why

expanding a beam helps to reduce divergence, we need to understand how a perfectly

collimated Gaussian beam with radius w0 diverges. The width of a perfectly Gaussian

beam diverges as

w = w0

√
1 +

(
λz

πw2
0

)2

(5.13)

where w is the 1/e2 beam diameter, λ is the wavelength and z is the propagation

distance [190]. Given the wavelength λ to be 800 nm and that the distance z traversed

by the beam is 4 m at the maximum delay, by expanding the beam diameter from 2

mm to 8 mm we lower the divergence from 3% to 0.01%.

To create a time delay between the arrival of the probe relative to the pump

pulse, we have to introduce a mechanical delay that increases the optical path of the

probe relative to the pump. The mechanical delay stage in this setup is an Aerotech

ACT115DL linear-servomotor-driven actuator with a resolution of 5 nm and travel

range of 1000 mm. We place an aluminum retro-reflector on the delay stage and
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pump delayed probe

probe

Figure 5.6: Picture of optical beam path for splitting pump and probe path. The
incident beam that is reflected off from a polarizing beam splitter (PBS) after a half
wave plate, is shown in red. The transmitted beam is the probe beam shown in green,
which gets delayed by the mechanical delay stage. The delayed probe beam will be
reflected by the PBS after passing through a quarter wave plate twice, and go to the
path in lime green.
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probe

delayed probe

iris

flip mount

retroreflector

Figure 5.7: Picture of delay stage and retroreflector beam path and setup. The
retroreflector mounted on the delay stage is used to reflect the probe path backwards
as a delayed probe beam on the exact same path. To align the retroreflector, we
use an iris mounted on a flip mount and move the delay stage back and forth while
aligning onto the same iris. The whole delay stage is enclosed to minimize dust and
air currents for the probe path.
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double pass the beam as shown in Fig. 5.3 such that we can obtain approximately

4 m of travel delay corresponding to around 13 ns in time delay. A quarter-wave

plate allows the beam to pass pick up a π/2 phase when passed through twice and

be reflected at the PBS rather than being transmitted. Alignment of this long beam

path is tricky and requires the use of a flip iris as in Fig. 5.7 that can indicate the

beam position throughout the length of the delay.

After exiting the PBS, the probe beam is recombined with the pump beam onto

the phase mask. The diameters of the pump and probe beams are measured to

be approximately 600 µm and 300 µm respectively. The phase mask consists of

lithographically patterned diffraction grating which is optimized to diffract most of

the power to the first order. Phase masks of different spacing are patterned on a same

wafer and allows easy change of beam configuration by simply translating the mask

to another point. We bought phase masks from DigitalOptics. A half-mirror used

for the pump beam allows the probe beam to combine without being clipped. Upon

diffracting off the phase mask, the first orders are being collected by two achromatic

doublets. The achromatic doublets are Thorlabs AC508-150-B and AC508-075-B at

150 mm and 75 mm, respectively, to make a 2:1 demagnification for the TG.

From Section 5.2.3, heterodyning requires us to place the ND and the compensat-

ing glass window on the probe paths. Fig. 5.1 shows that the pump and the probe

paths are not actually at the same height. This is done for two reasons. One is to

ensure that we can place the ND and the window just for the probe and not for the

pump. Second, we can spatially separate the pump from the probe during detection

which is important for preventing pump scattering into the detector.

Figure 5.8 shows the top view of the beam path of the demagnification setup.

After the second achromat, the grating is formed on the sample and the probe is

diffracted and heterodyned according to Eq. 5.12. The probe is then sent to the

detector, which is connected to the lock-in amplifer.
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from mask

to sample

window

150mm achromat

75mm achromat

ND

Figure 5.8: Picture of the demagnification setup to focus the pump and probe beam
paths onto the sample. The relative phase of the window relative to the ND filter can
be changed to allow for heterodyne detection.
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5.4 Electronic System

5.4.1 Modulation and Detection

Modulating the pump using a mechanical chopper wheel in Fig. 5.3 adds a reference

frequency upon which we can retrieve our signal by demodulating at the reference.

This is done using the lock-in amplifier. In this setup, we use a standard Thorlabs

chopper wheel (MC2000) externally synced to the 10 kHz of the laser repetition rate.

The chopper then outputs a reference which is fed into the Stanford Research 830

lock-in amplifier as the reference frequency.

In Fig. 5.9, the detector is a bare Hamamatsu diode S1087. This diode is chosen

due to its low dark current. Contrary to conventional wisdom that we should run the

diode at reverse bias to maximize its bandwidth for ultrafast detection, here we are

using a lock-in technique that is only sensitive to the reference frequency. Thus, we

actually would like to restrict the bandwidth of detection to the range of the reference

frequency at which the chopper is being modulated. Due to the low frequency of this

detection around 1-5 kHz, we are very sensitive to 1/f electronic noise. Therefore, we

do not have any amplifier or additional electronics before the lock-in but just place a

load to terminate the photodiode at the lock-in. The cut-off frequency of detection is

given by fc = 1/(2πRLC) where RL is the termination load and the C is the combined

parasitic capacitance of the diode and the connections to the lock-in. Experimentally,

we found RL = 50 kΩ to be the best. The lock-in is connected to the computer using

RS232-USB connection and data is acquired using Labview VISA interface.

5.4.2 Pump scatter

Initially, we encountered huge noise in our signal. Fig. 5.10(a) shows a plot of signal

of TG from silicon membrane at a particular delay time. We can see that there is a

large fluctuation about the average value. When we overlay the observed deviation

change in our pump beam, they correlate well with the changes in the signal from

the probe. This correlation is evident from the cross-correlation plot between the two
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detector

sample

iris

polarizer

Figure 5.9: The reference beam passes through the sample onto the detector. Irises
and polarizers are used to reduce pump scatter and improve the signal to noise ratio.
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Figure 5.10: (a) Lock-in voltage fluctuations of the UTG signal due to the presence of
the pump scatter. A separate detector monitoring the transmitted pump beam sees
the fluctuations in the same manner as the probe TG signal. Both seem to correlate
with each other. (b) Cross-correlation between the pump and probe signals. The
largest correlation happens at a time difference (in units of lock-in time-constant) of
0 between the two signals, indicating that the two signals change in the same way
with respect to each other.

signals shown in Fig. 5.10(b).

To reduce the noise, we initially added a polarizer before the detector and set the

probe to be perpendicular to the pump as shown in Fig. 5.9. This helped to reduce

the noise level quite significantly.

5.5 Signal from Silicon Membrane

Silicon has been examined extensively for its electronic [176] and thermal properties

using TG technique [43, 171]. Samples of etched Si membranes are made using a

similar technique to Ref. [183] by Dr. Hang Zhang, a fellow post-doctoral scholar of

the group. We first attmept to characterize our setup using Si membranes.

Fig. 5.11 shows a typical signal from Si membrane after 10 averages. The signal

decays away within 2 ns. The small after pulse is due to the presence of another after

pulse of the laser which has not been fixed yet. We have used a Hamamatsu Streak

Camera C10910-21 as a high-speed photodiode and found the after pulse to occur at

2.8 ns along with other smaller pulses, as shown in Fig. 5.12.
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Figure 5.11: An example of a measured UTG signal of 10 averages from a 2.5 µm
thick Si membrane. The grating period L on the sample is 3.5 µm. The smaller bump
around 2.8 ns is caused by an after-pulse of the Libra laser system that has not been
resolved yet.
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Figure 5.12: Validation of an after-pulse at 2.8 ns of delay using a Hamamatsu Uni-
versal Streak Camera Unit.
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Figure 5.13: Correcting for the after-pulse by scaling the signal from t = 0 to t→ 2.8
ns and subtracting it from the data of t > 2.8 ns.
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We adjust for the effect of the pulse by scaling the signal from t = 0 to t → 2.8

ns and subtracting it from the data of t > 2.8 ns. Figure 5.13 shows the corrected

signal which removes the bump caused by the after-pulse.
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Figure 5.14: Subtracting the signal in Fig. 5.11 with its phase flipped signal by
changing the tilt of the glass window relative to the ND filter in Fig. 5.1 yields the
TG amplitude signal of Si membrane.

In Section 5.2.3, we discussed about how the phase of the signal can be changed

from amplitude to phase grating by adjusting the phase φ using the tilt of the glass

window relative to the ND Filter. From Eq. 5.12, we note that the signal can be

flipped if the phase φ increase by π. The process of obtaining the amplitude (or

phase) decay signal is to flip the entire signal by φ and subtracting them to obtain

the full amplitude (or phase) signal [183]. This method also helps to get rid of any

other pump-probe effects that are not sensitive to the change in phase of the probe

beam. The effect of the phase adjust is shown in Fig. 5.14.
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By fitting the subtracted signal in Fig. 5.14 to an exponential, we can obtain a

decay time. Assuming that the grating is approximately one-dimensional the rela-

tionship of decay time τ to diffusivity α,

1

τ
= αq2 (5.14)

where q = 2π
Λ

and Λ is the grating period.
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Figure 5.15: An example of a measured UTG signal from a 2.5 mum thick Si mem-
brane. The grating period L on the sample is 3.5 µm. The smaller bump around 2.8
ns is caused by an after-pulse of the laser system that has not been fixed yet.

From the fit in Fig. 5.15, we obtain a diffusivity of 8.82 cm2/s. This is much larger

than typical thermal diffusivity of Si [43], promoting us to believe that the signal is

due to changes in electronic properties of Si. There have been various early studies

of photo-generated electron-hole plasma diffusion coefficient, and our measured value

of diffusivity is close to the literature value of ambipolar diffusion coefficient in Si



97

[191–196].

To further verify that the signal indeed corresponds to ambipolar diffusion, we

estimate the amount of electron-hole pairs generated from the incident photons den-

sity. In this experiment, a ∼ 1µJ pulse incident on the sample results in ∼ 8 × 1017

cm−3 electron-holes per unit volume. This is similar to the range of electron-hole

pairs generated in other works [191–196].

We were unable to obtain any thermal TG signal from the membranes unlike

Ref. [43] in the current setup. We believe that this may be due to the much weaker

absorption coefficient of Si at 800nm wavelength (∼785 cm−1) compared to 500 nm

wavelength (∼ 104 cm−1) in Ref. [43].

5.6 Calibration of Using Water

One way to calibrate the accuracy of the grating period on the sample is to use a test

sample with a known speed of sound. Using TG technique, we can generate SAWs,

which cause periodic oscillations in the TG signal. Such a technique has been used for

calibration of grating periods with ethylene glycol [197]. In our case, water with dye

(Epolin 2735) that absorbs around 800 nm gave us the best signal to noise, allowing

for accurate calibration.

Fig. 5.16 shows the heterodyned signal after 10 averages at various grating periods.

We can see that the period of the signal changes as a function of grating period.

Fourier transforming the signal in Fig. 5.16 allows us to get the oscillation frequency.

If we plot the frequency at each grating period and using the linear relation be-

tween frequency and inverse of the grating period f = v/L, we should expect to

obtain the speed of sound in water. From Fig. 5.17, we obtain the speed of sound

in deionised water to be 1557 m/s, which is comparable to know values in literature

(1482 m/s in Ref. [198] and 1498 m/s in Ref. [199]).
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Figure 5.16: TG signal from water with dye for various grating periods. There is a
fast electronic component that quickly decays away and sets off SAWs. The phase of
oscillations at t = 0 is π, indicating that the signal is ISTS.
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Figure 5.17: Plot of FFT peak frequency for each grating period. Speed of sound
from fit is 1557 m/s.
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5.7 Conclusion

We outlined the theory of TG and heterodyne detection. Then, we outlined details

of how we realized an experimental setup of the UTG, including the optical and elec-

tronics. Lastly, we demonstrated the ability of the UTG using two materials, Si and

water. In the following chapter, we will highlight a recent experimental characteriza-

tion of the mechanical and thermal properties from suspended molybdenum disulfide

(MoS2) membranes.
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Chapter 6

Measuring Mechanical and
Thermal Properties of
Molybdenum Disulphide

6.1 Introduction

Many two-dimensional (2D) materials, when in bulk, exist as a stack of strongly

bonded layers with weak boding in between the layers. Beside the most famous

graphene coming from its bulk form of graphite, there exist many other 2D mate-

rials. One important class of 2D materials is the transition metal dichalcogenides

(TMDC) [200,201], which provides a direct band gap when in their single-layer form

unlike pristine graphene [202, 203]. Molybdenum disulphide (MoS2) belongs to the

class of TMDC with a high band gap and has been utilized to make electronic de-

vices [204] and potentially as photovoltaics [205]. Knowledge of its mechanical and

thermal properties are therefore important for future device applications. Mechanical

properties of MoS2 [206–212] have been studied extensively. In terms of thermal ap-

plications, MoS2 has been shown to provide a large power factor comparable to some

of the state-of-the-art commercial thermometric (TE) materials [213,214]. The study

of thermal properties of MoS2 is important for thermal management and potential

TE applications.

As mentioned in Chapter 5, a good way to characterize the elastic properties is

using surface acoustic waves (SAW) generated in the transient grating technique [182].
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There have been theoretical calculations of the speed of sound in MoS2 [215–217] and

experimental measurement of its longitudinal speed of phonons [218]. However, there

has been no experimental measurement of the intrinsic in-plane transverse phase

velocity of sound in MoS2. The thermal conductivity of mono-layer, few layer, and

bulk MoS2 has also been measured experimentally [219–223]. However, the values

vary widely from 35 W/mK to 110 W/mK. Theoretical predictions also give a very

large range of values [214,224–228].

Here, we will highlight a recent experimental characterization of the mechanical

and thermal properties from suspended (MoS2) membranes using the Ultrafast Tran-

sient Grating (UTG) described in Chapter 5. We will first show a sample signal

from our measurement and describe the characteristic of the signal. Then, we go

on to describe the fitting procedure and data analysis. Finally, we will describe the

initially observed trend in speed of sound and thermal conductivity from our initial

measurements.

6.2 Example Signal

The MoS2 samples were obtained from our collaborator, Professor Jho of Gwangju

Institute of Science and Technology (South Korea). The MoS2 films are exfoliated

and then placed onto a Si substrate. Rectangular holes of about 1-2 mm in size were

already etched on the Si substrate before depositing the MoS2. Then, the samples are

secured onto the substrate using UV cured epoxy. Alpha step profile meter scanning

shows the flakes to be between 4 µm to 20 µm thick. The measurement is carried out

in transmission geometry as in Fig. 5.1.

Figure 6.1 shows an example of a signal from MoS2 after 20 averages. The signal

has already been processed by subtracting two phases from heterodyne detection as

in Chapter 5. The signal has three distinct features. First, the signal has a large

sharp rise at t = 0 before decaying away within 2 ns. We attribute this feature due

to electronic excitation by the pump beam similar to Si membrane in Chapter 5.

Second, we see an oscillating signal that also starts at t = 0 and persists beyond the
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Figure 6.1: Schematic of a TG measurement on MoS2. The grating period on the
sample is 4 µm. The sharp initial rise of the signal is due to an electronic contribution
with a slowly varying thermal contribution after 1 ns. The oscillations are a result of
surface acoustic waves generated by thermal strain.
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measurement time range of our setup. This is similar in nature to surface acoustic

wave signal we observed in water in Chapter 5, albeit in a solid medium here. Third,

we observe a much slower decay beyond 2 ns, which is in the opposite direction to that

of the electronic excitation below 2 ns. This behavior is similar to thermal TG signal

in Si membrane as of Ref. [43]. In this work, we focus our attention on the second

and third feature of our signal, namely the acoustic wave and thermal component of

the signal.
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Figure 6.2: Fitting the TG signal to Eq. 6.1. The frequency of the oscillation is first
obtained using Fourier Transform and then substituting into Eq. 6.1 for fitting other
parameters.

We fit the signal in Fig. 6.1 using sum of an exponential decay and a sinusoidal

oscillation with exponentially decaying envelope [229]. The form of the fit is

V (t) = A exp(− t

τT
) +B exp(− t

τs
) cos(2πνt+ ϕ) (6.1)

where A and B are amplitudes of the thermal and acoustic components, τT and τs are

the decay time constant for the thermal and acoustic components, ν is the frequency

of oscillation and ϕ is the initial phase of the oscillation.
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Figure 6.2 shows a fit of the example signal in Fig. 6.1 using Eq. 6.1. We

ignore the electronic component by only starting our fit after 2 ns. The frequency of

oscillation can first be obtained from Fourier Transform and be substituted into the

equation to reduce the number of fitting parameters. We use MATLAB least square

fitting with Levenberg-Marquardt algorithm to fit Eq. 6.1. The fitted curve shows

good agreement with the experiment data, as in Fig. 6.2

Table 6.1: Fitted values using Eq. 6.1 for the example in Fig. 6.2.
1/τT (GHz) 1/τs (GHz) ν (GHz) ϕ

0.120 0.103 1.72 0

The fitted parameters are shown in Table 6.1. First, we note the thermal decay

rate 1/τT to be 0.120 GHz. Using the relation in Eq. 5.14, we obtain the diffusivity

to be 0.48 cm2/s. Taking the volumetric specific heat of MoS2 to be 1.89 J cm−3

K−1 [230], this corresponds to 91 W/mK for the thermal conductivity of MoS2. From

the value of the decay rate for SAW τs, the damping rate is ∼ 0.1 GHz, which

corresponds to around 10 ns of decay time. We observed similar order of magnitude

for SAW decay rates at other grating periods. The last term in the fit is the phase ϕ

which is approximately 0. In Chapter 5, we discussed about the starting phase of the

SAW as an indication of the nature of the TG signal as ISTS (amplitude grating) or

ISBS (phase grating) [183]. When the starting phase is a multiple of π, the signal is

an amplitude grating, as evident from the initial phase ϕ for a cosine function.

6.3 Speed of Sound

Figure 6.3 shows compiled data of MoS2 for different grating periods, each taken

with 20 averages. The frequency change with respect to the grating period is very

apparent. The change in the slope of thermal decay is also noticeable. We perform

numerical fitting outlined in the previous section using Eq. 6.1 for each measurement.

From a similar analysis as speed of sound calibration for water in Chapter 5,

we plot the frequency of the SAW as a function of grating period for a particular
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Figure 6.3: Various signals at different grating periods for a particular sample. Note
the change in SAW frequency and thermal decay rate as the period is varied.
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Figure 6.4: Plot of frequency of SAW for each TG period for MoS2. The dashed line
is a linear least square fit for the speed of sound, which is 7067 m/s.
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sample. Figure 6.4 shows the relation between the SAW frequency as a function of

grating period. We fitted the points to obtain the speed of sound as 7067 m/s. From

Ref. [182], we attribute the measured speed of sound to be the intrinsic longitudinal

phase velocity of sound in the film. In the low-frequency limit, the phase velocity

matches the group velocity of phonons and our measured value matches well with

some of the theoretical calculations for LA phonon group velocities (6700 m/s in

Ref. [216] and 7930 m/s in Ref. [215]).

6.4 Thermal Conductivity of MoS2

Figure 6.5: Plot of frequency of thermal decay rate 1/τT for each TG period for MoS2.
The dashed line is a linear least square fit for the diffusivity, which is 0.43 cm2/s.

Figure 6.5 shows the fitted thermal diffusivity fitted from experimental measure-

ments for different grating periods. We fitted the dispersion with a linear fit and

obtained a value of the thermal diffusivity from the relation in Eq. 5.14. The thermal

conductivity is 82 W/mK. This value is slightly lower but much closer to the bulk

value measured by Liu et al. [222] than other measurements of MoS2 in monolayer
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and thin flakes forms [219–221, 223]. Our value is also corroborated by some of the

recent theory calculations [227,228].

Also, we do not see an obvious trend of quasi-ballistic suppression in thermal

conductivity from Fig. 6.5 unlike that of Si membrane in Ref. [43]. We do not believe

that there will be quasiballistic effects as the MFP of MoS2 is predicted to be <20

nm for in-plane direction [225].

6.5 Conclusion

We have described an recent experimental characterization of the mechanical and

thermal properties from suspended MoS2 membranes using UTG described in Chap-

ter 5. We first showed a sample signal from our measurement and describe the

characteristic of the signal. Then, we went on to discuss the fitting procedure and

relevant fitting parameters. Finally, we discussed the initially observed speed of sound

and thermal conductivity from our initial measurements. More work is needed to bet-

ter understand the measured the speed of sound and confirm the measured value of

thermal conductivity.

Chapters 4, 5, and 6 sum research efforts in understanding phonon transport at

the nanoscale.
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Chapter 7

Summary and Outlook

7.1 Overview

With advances made in this thesis and many other work, we have come to better

understand and appreciate nanoscale thermal transport. For thermal conduction,

phonon MFPs spectrum have now been experimentally measured in more materi-

als [60, 172, 231]. At the same time, thermal conductivity of novel materials such

as black phosphorus [232] have also been measured . Our works on understanding

phonon mean free path (MFP) spectrum and measuring thermal properties of mate-

rials certainly fits well into the overall progress of the field. For thermal radiation,

interest in using metamaterials [32] and resonances [233] to influence radiative ther-

mal transport in the near-field have emergeg alongside the advances have been made

to calculate [234] and measure thermal radiation [235] at even smaller separations.

Once again, our interest in utilizing metamaterials to manipulate thermal radiation

and in manipulating the thermal near-field is in tandem with the overall progress.

In this chapter, we summarize further issues facing our work and highlight future

opportunities in the fields of heat transfer by thermal photons and phonons.

7.2 Thermal Transport by Photons

Chapters 2 and 3 involves our research efforts with the photon nature of nanoscale

thermal transport. Chapter 2 proposes a concept of manipulating radiative heat
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transfer using hyperbolic metamaterial to create selective heat transfer. After pub-

lishing our work, we note a similar concept being proposed by Liu et al. [236] using

graphene to allow selective radiative heat transfer. As discussed in Chapter 2, the

need for low loss materials in the mid-infrared (MIR) can be challenging. Further-

more, cylindrically shaped layered materials with sub-wavelength thickness are in

general difficult to achieve. As mentioned Chapter 2, we believe that using hexagonal

boron nitride that has a natural optical anisotropy in the MIR [92] may be the a good

way forward.

Chapter 3 introduces an idea of active radiative cooling using a near-field active

extraction scheme. The scheme resembles laser-cooling of solids but aims to remove

near-field thermal photons into the far-field rather than phonons. The project has

great possibility to enable active cooling for satellite and microelectronic applications

unlike conventional passive cooling techniques which is limited to the maximum pos-

sible emission from a black body. Active extraction of near-field thermal radiation has

also been proposed in Ref. [237]. However, it is easy for heating of the gain medium

to occur through optical pumping. We are currently working on candidate materials

and system design to realize this scheme.

In the meantime, we are also working on a more generalized understanding of how

active schemes couple to thermal baths. We are trying to bridge the understanding

of thermodynamics of active systems [238] to how active systems respond to thermal

radiation in a rate-equation-based approach. We hope to bring about a more complete

understanding of how thermal radiation interacts with multi-level active medium.

Overall, utilizing interesting and novel concepts from photonics to engineer ther-

mal radiation, such as using parity-time symmetry violation for active control of

thermal radiation, can be of great potential to further develop the field of thermal

radiation control.
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7.3 Thermal Transport by Phonons

We have seen in Chapter 4 that we are able to use Monte-Carlo Boltzmann Transport

Equation (BTE) to obtain a suppression function that predicts quasiballistic suppres-

sion in time-domain thermoreflectance (TDTR). With the advent of methods to solve

BTE analytically in multi-dimensional geometries by the Minnich Group [239, 240],

it is foreseeable that such a suppression function can be obtained analytically. Also,

advances have been made to obtain frequency-dependent transmissivity of phonons

across a aluminum silicon interface by our group [163], solving the long-standing issue

of a difference in the bulk thermal conductivity between BTE and TDTR measure-

ments as discussed in Chapter 4 and in Ref. [149]. These advances can potentially

allow us to validate and further improve the suppression function by varying the

spot-size in TDTR.

Chapters 5 and 6 discusses and experimental effort of setting up the ultrafast

transient grating (UTG) experiment and its ability to measure surface acoustic waves

(SAW) and thermal decay in molybdenum disulfide (MoS2). In regards to the ex-

perimental setup, various technical aspects can be improved, such as suppression of

pump scattering using the two-tint technique [167]. For MoS2 measurements, more

is needed to be done to corroborate the measured value of thermal conductivity and

understanding elastic properties derived from the SAW signal. However, to fully uti-

lize the potential of UTG, we should try to observe thermal signal at faster time

scales. Si membrane was a candidate material for its high thermal conductivity at

low temperature but we were unable to see thermal decay at room temperature as

discussed in Chapter 5. Another material of interest for the group is high ordered

pyrolytic graphite (HOPG), which has a very high in-plane thermal conductivity of

2000 W/mK and a strong anisotropy between the in-plane and cross-plane thermal

conductivity [80,241–244].

Overall, the progress of the field has enabled development of a good set of tools for

measuring thermal conductivity and MFP spectrum and it is time for characterizing

novel or nanostructured materials for their thermal properties with these techniques.
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Appendix A

Derivation of Expression for
Near-field Absorption

In this section, we derive the expression for the near-field absorption coefficient, given

by Eq. (8) in the paper.

The absorption rate is the same as the stimulated emission rate in the absence of

any degeneracy of the energy levels. The interaction with the near-field is discussed in

Archambault et al. [110], where he outlines how to get the spontaneous and stimulated

rates of a near-field excitation of a dipole close to the surface. We will first outline

how to obtain the isotropic stimulated emission rate in Eq. (29) of [110] and then

move on to show how we adopted this formulation to obtain Eq. (8) in the text.

From Eq. (C1) to (C3) of [110], the stimulated emission rate for each mode with

wave vector K is given by

γKstimulated =
2π

h̄
δ(Ej − Ei − h̄ω)

h̄ωnK

2εmε0S
|Dij · u(K, z, ω)|2 (A.1)

where nKh̄ω is the total energy of a single mode, Ej and Ei are the excited and ground

state energy levels, S is the normalization area, Dij is the matrix element of the dipole

moment operator D̂ij and the vector u(K, z, ω) is the Fourier decomposed component

of the vector potential (Eq. (3) of [110]). u(K, z, ω) = exp(iγmz)(K̂−K/γmẑ)/
√
L(ω)

according to Eq. (5) of [110]. The subscript p denotes the region for γ where p = m

for the region z > 0 and p = s for the region inside the substrate where z < 0 so that

γ2
p = εpk

2
0 − K2, where k0 = ω/c and K = |K|. L(ω) is the normalization of each
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mode defined by Eq. (B5) of [110] and has the dimension of length. K̂ and ẑ are unit

vectors along K and z axis, respectively.

Substituting Eq. (26) and Eq. (C5) of [110] into Eq. A.1

γKstimulated =
2π

h̄2

∫
dω(h̄δ(E2 − E1 − h̄ω))

1

2εmε0
|Dij · u(K, z, ω)|2 〈W (ω)〉

=
2π

h̄2

∫
dωδ(ω0 − ω)

1

2εmε0
|Dij · u(K, z, ω)|2 〈W (ω)〉

=
π|Dij|2 exp(2iγmz)

εmε0h̄
2L(ω0)

(
|dij,‖ · K̂|2 + |dij,z

K

γm
|2 + 2Re(dij,‖ · K̂d∗ij,z

K

γ∗m
)

)
〈W (ω0)〉

(A.2)

where dij = Dij/|Dij| and 〈W (ω0)〉 is the energy density per unit surface [110].

We need to average Eq. A.2 over different orientations of K for different dipole

orientations. Also, we need to take into account of contributions from different fre-

quencies and wave vectors K. First, let us consider averaging over different orienta-

tions of K for the case of a parallel orientation of the dipole (i.e. dij,‖ = 1, dij,z = 0)

averaged in the x-y plane.

1

4π2

∫ 2π

0

∫ 2π

0

|dij,‖ · K̂|2 + |dij,z
K

γm
|2 + 2Re(dij,‖ · K̂d∗ij,z

K

γ∗m
)dθdφ

=
1

4π2

∫ 2π

0

∫ 2π

0

|cos(θ) cos(φ) + sin(θ) sin(φ)|2dθdφ =
1

2
(A.3)

Likewise, one can derive an expression averaged over different orientations of K

for the case of perpendicular orientation of the dipole (i.e. dij,‖ = 0, dij,z = 1).

1

2π

∫ 2π

0

|dij,‖ · K̂|2 + |dij,z
K

γm
|2 + 2Re(dij,‖ · K̂d∗ij,z

K

γ∗m
)dθ

=
1

2π

∫ 2π

0

| K√
εm(ω)k2

0 −K2
|2dθ

=| K√
εm(ω)k2

0 −K2
|2 (A.4)
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If we consider the case for the surface plasmon dispersion in Eq. (4) of [110] such

that εm(ω) = 1, we obtain

| K√
εm(ω)k2

0 −K2
|2

=|
k2

0

√
εs(ω)

εs(ω)+εm(ω)

k2
0

√
εm(ω)− εs(ω)

εs(ω)+εm(ω)

|2

=|
k2

0

√
εs(ω)

εs(ω)+εm(ω)

k2
0

√
εm(ω)− εs(ω)

εs(ω)+εm(ω)

|2 = |εs(ω)| (A.5)

In [111], two-third of the contribution to the decay rate is attributed to the parallel

case and one-third to the perpendicular case for isotropic averaging. These weights

can be understood intuitively as two of the axes lie in the x-y plane and one in the

perpendicular direction. If we use these weights to average Eq. A.2 with results from

Eq. A.3 and A.5, we get Eq. (29) of [110]

γKstimulated =
π|Dij|2 exp(2iγ1z)

3εmε0h̄
2L(ω0)

(1− εs(ω0)) 〈W (ω0)〉 (A.6)

Note that Archambault et al. [110] obtained Eq. (29) by integrating over possible

angles of K̂ and dij yields the same result as above.

For the present work, this formula has to be modified in a few aspects. Firstly, our

near-field energy density from the formulation in [28,34] has a different normalization

in per unit volume instead of per unit area for 〈W (ω0)〉 in Eq. A.2. The spectral

near-field energy density defined as I(ω) is plotted in Fig. 3.2 of Chapter 3. To

reconcile this difference, we combine the term exp(2iγ1z)
L(ω0)

together with 〈W (ω0)〉 from

Eq. A.2 to form I(ω, k) = k 〈W (ω0)〉 exp(2iγ1z)/L(ω0). Here, we define K = k0k and

decompose I(ω) =
∫∞

0
I(ω, k)dk. Secondly, we sum the decay rate over all frequencies

with respect to a normalized lineshape function g(ω, ω0) =
∆ω
2π

(ω−ω0)2+(∆ω/2)2 instead of

a delta function as of Eq. A.1. Here ∆ω is the linewidth of the transition. In our
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case, Eq. A.2 becomes

Wij,near−field =
2π

h̄2

∫
dωg(ω, ω0)

1

4πεmε0

∫
kdkdθ|Dij · u(K, z, ω)|2 〈W (ω)〉 (A.7)

Using the above results, Eqs. A.3 and A.4, for isotropic orientation of emitters, we

can simplify Eq. A.7 as

Wij,near−field =

∫
dωg(ω, ω0)

∫
dk
π|Dij|2 exp(2iγ1z)

2εmε03h̄2L(ω0)
〈W (ω)〉 k

(
1 + | k√

εm(ω)− k2
|2
)

=
π|Dij|2

6εmε0h̄
2

∫ ∞
0

dk

∫ ∞
−∞

dω

(
1 + | k√

εm(|ω|)− k2
|2
)
I(|ω|, k)g(ω, ω0)

(A.8)

such that we sum over contributions from all k. Note that the factor of half is

to account for integration from −∞ to ∞ for frequency ω. If we substitute γ0
ij =

ω3
0|Dij|2/(3πεmε0h̄c3) from [110] into Eq. A.8, we obtain Eq. 3.8 in the text.

Wij,near−field =
γ0
ijπ

2c3

2h̄ω3
0

∫ ∞
−∞

∫ ∞
0

(1 + | k√
εmedium − k2

|2)I(|ω|, k)g(ω)dkdω (A.9)
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