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Abstract

During periods of slow wave sleep and quiet wakefulness, the hippocampal formation gen-

erates spontaneous population bursts that are organized as a high-frequency “ripple” os-

cillation. The neurons that participate in these bursts often replay previously experienced

activity patterns encoded during alert behavior, and interfering with ripple generation pro-

duces deficits in learning and memory tasks. For these reasons, ripples play a prominent

role in theories of memory consolidation and retrieval. While spiking during ripples has

been extensively studied, our understanding of the subthreshold behavior of hippocam-

pal neurons during these events remains incomplete. Here, we combine in vivo whole-cell

recordings with multisite extracellular and behavioral measurements to study the membrane

potential dynamics of hippocampal neurons during ripples in awake mice. We find that the

subthreshold depolarization of CA1 pyramidal neurons is uncorrelated with net excitatory

input, clarifying the circuit mechanism keeping most neurons silent during ripples. On a

finer time scale, the phase delay between intracellular and extracellular ripple oscillations

varies systematically with the membrane potential, which is inconsistent with models of

intracellular ripple generation involving perisomatic inhibition alone. In addition, we find

that membrane potential statistics (mean, variability, distance to threshold) of CA1 pyrami-

dal neurons and dentate granule cells are systematically modulated across brain states, that

rapid variations in pupil diameter are reflected in subthreshold fluctuations, and that many

neurons begin depolarizing about one second before ripple onset. These results provide

evidence that coordinated shifts in the subthreshold dynamics of individual neurons may

contribute to the emergence of state-dependent hippocampal activity patterns. Finally, we

present evidence that area CA3 provides the major excitatory input to dentate granule cells
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during ripples and that there are coordinated interactions between hippocampal ripples and

population events in the dentate gyrus, both of which inform network-level models of ripple

generation.



ix

Published Content and Contributions

Chapter 2 has been modified from a previously published manuscript (Hulse et al., 2016).

Manuscripts based on Chapters 3 and 4 are in submission and preparation, respectively.

In all studies, I contributed to experimental design, data collection and analysis, modeling,

interpretation of results, figure design, and writing.

Hulse, B. K., Moreaux, L. C., Lubenov, E. V. Siapas, A. G. (2016). Membrane Potential
Dynamics of CA1 Pyramidal Neurons during Hippocampal Ripples in Awake Mice. Neuron.
89, 800-13. DOI: 10.1016/j.neuron.2016.01.014

B.K.H. contributed to experimental design, data collection and analysis, modeling,
interpretation of results, figure design, and writing.



x

Contents

Acknowledgements iv

Abstract vii

Published Content and Contributions ix

List of Figures xi

1 Introduction 1

2 Membrane Potential Dynamics of CA1 Pyramidal Neurons During Hip-
pocampal Ripples in Awake Mice 7
2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Brain State Dependence of Hippocampal Subthreshold Activity in Awake
Mice 54
3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Membrane Potential Dynamics of Granule Cells During Hippocampal
Ripples and Dentate LFP Spikes in Awake Mice 89
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

References 104



xi

List of Figures

1 In vivo whole-cell recordings from identified CA1 pyramidal neurons with
simultaneous multisite extracellular measurements in awake mice . . . . . . 11

2 Membrane potential dynamics during single ripples are highly diverse . . . 13
3 Average membrane potential dynamics during ripples . . . . . . . . . . . . 15
4 The average membrane potential dynamics during ripples are robust with

respect to LFP ripple detection criteria . . . . . . . . . . . . . . . . . . . . 17
5 Membrane potential dependence of intracellular ripple oscillation amplitude 18
6 Membrane potential dynamics vary with sharp wave amplitude . . . . . . . 20
7 The intracellular depolarization scales with LFP sharp wave amplitude under

hyperpolarizing current injection . . . . . . . . . . . . . . . . . . . . . . . . 21
8 Large intracellular depolarizations bring neurons to spike threshold, while

intracellular ripple oscillations control the precise spike timing . . . . . . . . 24
9 Spikes are phase-locked near the trough of LFP ripple oscillations . . . . . . 25
10 Intracellular ripple oscillations lead LFP ripple oscillations by ∼90 degrees

and are ∼5 Hz slower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
11 Juxtacellular LFP ripples are synchronous with probe LFP ripples. Rela-

tionship between input and access resistance and the intracellular-LFP ripple
phase difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

12 Intracellular ripple phase changes systematically with membrane potential . 30
13 Intracellular blockade of voltage-gated sodium channels using QX-314 has no

effect on intracellular ripple oscillations . . . . . . . . . . . . . . . . . . . . 31
14 Conceptual model explaining a potential mechanism balancing exaction and

inhibition as a function of CA3 input strength . . . . . . . . . . . . . . . . . 37
15 A simple conductance-based model of ripple generation consistent with the

experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
16 The subthreshold activity of hippocampal principal cells varies with brain

state in awake mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
17 LIA is associated with a depolarized membrane potential and large subthresh-

old fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
18 SIA is associated with a hyperpolarized membrane potential and small sub-

threshold fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
19 Behavioral measures and subthreshold activity during transitions to Theta . 64
20 Membrane potential mean, variability, and distance to threshold are state-

dependent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
21 Transitions to LIA contribute to pre-ripple ramps in the membrane potential 68
22 Behavioral measures decrease leading up to ripples occurring at least 3 sec-

onds into a period of LIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
23 Fluctuations in pupil diameter during LIA are reflected in membrane poten-

tial fluctuations of individual neurons . . . . . . . . . . . . . . . . . . . . . 72
24 Simultaneous extracellular and intracellular recording of dentate spikes and

sharp-wave/ripples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
25 Dentate granule cells depolarize during and 100 ms before CA1 ripples . . . 94
26 Coordinated interactions between hippocampal ripples and dentate LFP spikes 97
27 Granule cells depolarize during dentate LFP spikes . . . . . . . . . . . . . . 99



1

1 Introduction

The hippocampal formation plays a critical role for the encoding, consolidation, and initial

retrieval of episodic memories (Squire, 1992). However, over time, memories are gradu-

ally transferred to distributed neocortical circuits. While the neuronal mechanisms remain

poorly understood, each of these mnemonic functions is likely subserved by hippocampal

activity patterns characteristic of different brain states (Buzsaki, 1989). During periods

of slow wave sleep and quiet wakefulness, the hippocampus generates spontaneous pop-

ulations bursts, known as sharp-wave/ripples (SWRs)(O’Keefe, 1976, O’Keefe and Nadel,

1978, Buzsaki et al., 1983). These population bursts produce coordinated output within the

windows of synaptic integration and plasticity, and powerfully entrain downstream brain

regions, including the neocortex (Chrobak and Buzsaki, 1996, Siapas and Wilson, 1998,

Wierzynski et al., 2009, Logothetis et al., 2012). Intriguingly, the neurons that participate

in these bursts often “replay” previously experienced activity patterns encoded during alert

behavior (Wilson and McNaughton, 1994b, Lee and Wilson, 2002, Foster and Wilson, 2006,

Diba and Buzsaki, 2007), and interfering with their generation produces deficits in learn-

ing and memory tasks (Girardeau et al., 2009, Ego-Stengel and Wilson, 2010, Jadhav et

al., 2012). For these reasons, SWRs are key players in memory consolidation and retrieval

(Diekelmann and Born, 2010, Carr et al., 2011, Buzsaki, 2015).

The function of the hippocampal formation, including in SWR generation, depends upon

the architecture of its microcircuits and how they are interconnected (Andersen, 2007). De-

spite over a century of investigation, the neuroanatomy of the hippocampus is still being

worked out. However, several general observations have emerged. First, the hippocampal
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formation is a predominantly unidirectional, feed-forward network composed of several sub-

regions: the entorhinal cortex, dentate gyrus, areas CA3 to CA1, and subicular complex.

The entorhinal cortex serves as the main relay between the hippocampus and neocortex.

It receives multimodal sensory information through its recurrent connections with higher-

order neocortical associational areas and sends excitatory projections from its superficial

layers to the dentate gyrus and areas CA3-CA1. The principal neurons of the dentate gyrus

are known as dentate granule cells. Granule cells receive excitatory projections from en-

torhinal cortex and make powerful, excitatory synapses onto CA3 pyramidal neurons. CA3

pyramidal neurons, in turn, send excitatory projections to CA1 pyramidal neurons. CA1

pyramidal neurons send excitatory projections to the subicular complex, medial prefrontal

cortex, deep layers of entorhinal cortex, and a few other structures, and serve as the main

output of the hippocampus. While such feed-forward projections are the rule, there are ex-

ceptions. For example it is known that CA3 pyramidal neurons can project back to dentate

granule cells, either directly or through mossy cells (Scharfman, 2007).

A second general observation is that hippocampal principal neurons differ in their overall

numbers, firing rates, and recurrent connections across subregions. For example, in the rat,

there are about 1,200,000 million dentate granule cells, 250,000 CA3 pyramidal neurons,

and 390,000 CA1 pyramidal neurons (Andersen, 2007). In addition to their large numbers,

dentate granule cells are known to fire very sparsely in vivo compared to their CA3 and

CA1 counterparts (Kowalski et al., 2016). Moreover, while granule cells and CA1 pyramidal

neurons are thought to have relatively sparse recurrent connections, CA3 pyramidal neurons

connect to one another with a higher probability, forming a recurrent network (Miles and

Wong, 1986, Le Duigou et al., 2014). Such differences have inspired influential conceptual
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models of hippocampal function (Marr, 1971, Mcnaughton and Morris, 1987). Due to their

low firing rates and large numbers, granule cells are thought to support pattern separation,

such that two similar inputs from entorhinal cortex are represented by different subsets

of granule cells. Because of its recurrent connectivity, area CA3 is thought to support

pattern completion, whereby the activation of a few pyramidal cells allows the network to

recall previously stored patterns. Pattern completion is thought to underlie SWR-associated

replay in support of memory consolidation and retrieval. Finally, area CA1 is thought to

readout CA3 activity, amplify it, and broadcast it to downstream brain regions.

Third, in addition to principal cells, there exists a plethora of inhibitory interneurons

that provide feed-forward and feed-back inhibition to specific principal cell domains (Freund

and Buzsaki, 1996). These interneurons are thought to be particularly important for the

generation of state-dependent network oscillations, including SWRs, in addition to keeping

excitation and inhibition approximately balanced (Isaacson and Scanziani, 2011, Somogyi

et al., 2014). Forth, and finally, the hippocampal formation receives neuromodulatory

input from many subcortical nuclei, such as the medial septum and median raphe, which

release acetylcholine and serotonin, respectively. This neuromodulatory input is thought to

support state-dependent activity patterns in the hippocampus (Saper et al., 2010, Lee and

Dan, 2012, Teles-Grilo Ruivo and Mellor, 2013).

Importantly, most of what is known about the activity of hippocampal neurons and

circuits in vivo comes from experiments that employ extracellular electrical recording tech-

niques. Extracellular recordings monitor neuronal activity by measuring the electrical po-

tential from an electrode positioned nearby, but still outside, neurons of interest, relative

to a reference electrode often placed far away (Nunez and Srinivasan, 2006, Buzsaki et
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al., 2012). The signal that is obtained is composed of two components. First, the high-

frequency content of the signal (above ∼600 Hz) reflects neuronal spiking and allows for

the monitoring of individual action potentials from individual neurons. Second, the low-

frequency content of the signal (below ∼250 Hz) is known as the local field potential (LFP)

and mostly reflects synaptic currents. The major benefit of this technique is that it allows

for the stable measurement of neuronal activity from awake and naturally sleeping animals

across many days and even months with high temporal resolution. Using this technique,

early experiments established that different behavioral states are characterized by distinct

LFP patterns. For example, during periods of active wakefulness and rapid eye movement

(REM) sleep, continuous 5-12 Hz oscillations appear in the LFP, known as theta oscillations

(Vanderwolf, 1969). In contrast, periods of slow wave sleep and quiet wakefulness are char-

acterized by intermittent SWRs: large amplitude sharp waves occasionally accompanied

by high-frequency (80-250 Hz) “ripple” oscillations lasting 50-100 ms (O’Keefe and Nadel,

1978). With further technical development, experimenters began using microelectrodes,

wire bundles (stereotrodes, tetrodes, etc.), and multi-site silicone probes to record the spik-

ing activity individual neurons, in addition to LFPs (O’Keefe and Dostrovsky, 1971, Buzsaki

et al., 1983, Mcnaughton et al., 1983, Buzsaki et al., 1992, Wilson and Mcnaughton, 1994a).

Using this technique, pioneering work discovered that, during theta-associated locomotor

periods, individual hippocampal principal cells fire at particular spatial locations in a given

environment and were termed “place cells” (O’Keefe and Nadel, 1978). Later, it was shown

that place-cell sequences generated during active wakefulness are replayed, in both forward

and reverse order, during periods of slow wave sleep and quiet wakefulness as part of the

SWR-associated population burst (Wilson and McNaughton, 1994b, Lee and Wilson, 2002,
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Foster and Wilson, 2006, Diba and Buzsaki, 2007). While extracellular recordings have

provided a wealth of information regarding the spiking output of hippocampal neurons in

vivo, these recordings provide very little insight into how these neurons process their inputs

to generate an output.

Intracellular recordings of the neuronal membrane potential in vivo can address this.

Intracellular “whole-cell” recordings use glass pipettes filled with a cytoplasm-mimicking

solution to first form a tight seal with the neuronal membrane and then rupture a small

whole in it, which provides electrical access to the inside of the neuron. These recordings

allow for direct measurement of neuronal subthreshold activity, reflecting synaptic input,

as well as the spiking output. Importantly, such recordings have only recently become

feasible in awake animals (Steriade et al., 2001, Margrie et al., 2002, Lee et al., 2006). Pre-

vious to this, in vivo intracellular recordings from hippocampal neurons were performed in

anesthetized animals (Kandel and Spencer, 1961, Kandel et al., 1961, Spencer and Kandel,

1961a, Spencer and Kandel, 1961b, Soltesz et al., 1993, Soltesz and Deschenes, 1993, Ylinen

et al., 1995, Penttonen et al., 1997, Kamondi et al., 1998, Kowalski et al., 2016). However,

using an anesthetized preparation prevents the study of awake behavior and its associated

neuronal activity patterns. To overcome this, recent studies have performed intracellular

recordings from hippocampal neurons in awake animals, mostly to study spatial processing

during locomotion (Harvey et al., 2009, Lee et al., 2009, Epsztein et al., 2010, Epsztein

et al., 2011, Lee et al., 2012, Domnisoru et al., 2013, Schmidt-Hieber and Hausser, 2013,

Bittner et al., 2015).

In comparison, few studies have measured the membrane potential dynamics of hip-

pocampal neurons during SWRs in awake animals, which is the subject of this dissertation
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(Maier et al., 2011, English et al., 2014). Chapter 2 characterizes the subthreshold activity

of CA1 pyramidal neurons during SWRs and discusses the implications for circuit models of

ripple generation. Chapter 3 is concerned with the state-dependent patterns of subthresh-

old activity in CA1 pyramidal neurons and dentate granule cells and provides evidence

that coordinated shifts in the membrane potential dynamics of individual neurons support

hippocampal activity patterns characteristic of different brain states. Finally, Chapter 4

describes the membrane potential dynamics of dentate granule cells during SWRs and pro-

vides evidence for coordinate interactions between SWRs and dentate LFP spikes during

quiet wakefulness.
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2 Membrane Potential Dynamics of CA1 Pyramidal Neurons
During Hippocampal Ripples in Awake Mice

2.1 Summary

Ripples are high-frequency oscillations associated with population bursts in area CA1 of

the hippocampus that play a prominent role in theories of memory consolidation. While

spiking during ripples has been extensively studied, our understanding of the subthreshold

behavior of hippocampal neurons during these events remains incomplete. Here, we com-

bine in vivo whole-cell and multisite extracellular recordings to characterize the membrane

potential dynamics of identified CA1 pyramidal neurons during ripples. We find that the

subthreshold depolarization during ripples is uncorrelated with the net excitatory input

to CA1, while the post-ripple hyperpolarization varies proportionately. This clarifies the

circuit mechanism keeping most neurons silent during ripples. On a finer time scale, the

phase delay between intracellular and extracellular ripple oscillations varies systematically

with membrane potential. Such smoothly varying delays are inconsistent with models of

intracellular ripple generation involving perisomatic inhibition alone. Instead, they suggest

that ripple-frequency excitation leading inhibition shapes intracellular ripple oscillations.

2.2 Introduction

The hippocampal formation plays a critical role for the encoding, consolidation, and re-

trieval of new episodic memories (Squire, 1992), but the underlying neuronal mechanisms

remain elusive. During quiet wakefulness and slow-wave sleep, brief (50-100 ms), high-

frequency (80-250 Hz) ripple oscillations appear in the local field potential (LFP) and are
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associated with the near-synchronous discharge of principal cells (O’Keefe, 1976, Buzsaki

et al., 1983). These population bursts produce coordinated output within the windows of

synaptic integration and plasticity, powerfully entrain downstream brain regions, and are

believed to contribute to the gradual establishment of memory representations across dis-

tributed neocortical circuits (Buzsaki, 1989, Chrobak and Buzsaki, 1996, Siapas and Wilson,

1998, Wierzynski et al., 2009, Diekelmann and Born, 2010, Carr et al., 2011, Logothetis et

al., 2012, Buzsaki, 2015).

The circuit mechanisms generating ripple events have been the subject of much inquiry.

The predominant conjecture is that hippocampal ripples are spontaneously initiated within

the recurrent CA3 network. A population burst in CA3 provides excitatory input onto the

dendrites of CA1 pyramidal cells, producing an intracellular depolarization and an associ-

ated negative sharp wave in the LFP of stratum radiatum (Buzsaki, 1986, Ylinen et al.,

1995). Consequently, the amplitude of the LFP sharp wave correlates with the magnitude

of net excitatory input to CA1. In support of this, the depth profile and pharmacological

dependence of spontaneous sharp waves are very similar to field EPSPs evoked by stimu-

lation of the Schaffer collaterals (Buzsaki, 1984, Buzsaki, 2015). The amplitude and slope

of field EPSPs have been used extensively as a proxy for synaptic strength, since their

size correlates with the magnitude of the synaptic currents and the number of activated

input fibers (Bliss and Collingridge, 1993). Similarly, previous slice work has reported a

correlation between the size of spontaneous sharp waves and the amplitude of excitatory

currents in CA1 pyramidal cells (Mizunuma et al., 2014). The CA3 burst also recruits local

CA1 interneurons, providing a source of feed-forward inhibition with a short delay (∼2ms)

to CA1 pyramidal neurons (Alger and Nicoll, 1982, Pouille and Scanziani, 2001, Somogyi
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et al., 2014). Since CA3 exerts both direct excitatory and indirect feed-forward inhibitory

influence on CA1 pyramidal cells, the consequences of scaling the magnitude of CA3 input

on the membrane potential (Vm) of CA1 neurons are hard to predict in vivo. Individual

CA1 pyramidal neurons receive ∼30,000 excitatory inputs (Megias et al., 2001), and hence

have the potential to be activated by many combinations of presynaptic partners. However,

previous experiments suggest that CA1 pyramidal neurons fire only in a small subset of

ripples, in a way that reflects previous experience (Wilson and McNaughton, 1994, Foster

and Wilson, 2006, O’Neill et al., 2006, Diba and Buzsaki, 2007). The mechanisms enforcing

such sparseness and selectivity of CA1 firing during ripples remain unknown.

Spiking of pyramidal cells and specific classes of interneurons is phase-locked to LFP

ripple oscillations recorded in the pyramidal cell layer (Buzsaki et al., 1992, Klausberger

et al., 2003). Hence, ripple oscillations coordinate spike timing within the CA1 population

bursts. Three models of ripple generation have been proposed, each making different pre-

dictions regarding the spatiotemporal distribution of inputs onto CA1 neurons and their

impact on membrane potential dynamics. First, sparse axo-axonal gap junctions between

CA1 pyramidal neurons are thought to aid in the generation and propagation of ripple-

frequency action potentials (Draguhn et al., 1998, Traub and Bibbig, 2000). This model

predicts the presence of “spikelets” reflecting the antidromic propagation of action poten-

tials from ectopic generation sites. Second, pyramidal cells receive ripple-frequency somatic

inhibition due to reciprocal interactions within interneuron networks, pyramidal-interneuron

interactions, or both (Ylinen et al., 1995, Stark et al., 2014, Buzsaki, 2015). According to

this model, as neurons are hyperpolarized towards the reversal potential for inhibition, the

phase of intracellular ripple oscillations should remain constant. Below the inhibitory rever-
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sal potential, their phase should abruptly flip 180 degrees. A third model, based on in vitro

slice experiments, suggests that, in addition to inhibition, CA1 pyramidal cells might also

receive ripple-frequency excitation (Maier et al., 2011). If this were true, the phase of intra-

cellular ripple oscillations should vary continuously with Vm, as the relative contribution

of excitation and inhibition changes due to differences in electrical driving force.

These competing hypotheses regarding the spatiotemporal distribution of excitatory

and inhibitory inputs onto CA1 pyramidal neurons make specific predictions regarding their

impact on the membrane potential. Yet, few studies have examined the membrane potential

dynamics of CA1 pyramidal neurons during ripples in vivo (Ylinen et al., 1995, Kamondi

et al., 1998, Maier et al., 2011, English et al., 2014, Valero et al., 2015). Here, we combine

multisite LFP measurements with simultaneous whole-cell recordings in awake mice. Using

this approach, we characterize the relationship between the strength of net excitatory input

to CA1 and the membrane potential dynamics around ripples. In addition, we provide

the first quantitative description of the phase relationship between spiking, intracellular,

and LFP ripple oscillations in awake animals. Lastly, we discuss the consequences of our

experimental observations for circuit models of ripple generation.

2.3 Results

The Average Membrane Potential Response During Ripples Has Three Components

To investigate the membrane potential dynamics of pyramidal cells during ripple events,

we combined whole-cell recordings from identified CA1 pyramidal neurons with simulta-

neous LFP measurements from a nearby (200-250 µm) multisite silicon probe in awake,

head-fixed mice (Figure 1 A-C). Before performing whole-cell recordings, a recording site



11

Figure 1: In vivo whole-cell recordings from identified CA1 pyramidal neurons with si-
multaneous multisite extracellular measurements in awake mice (Continued on following
page).
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Figure 1: (A) Schematic of a mouse on the spherical treadmill. The approximate whole-cell
(red dot) and LFP (black dot) recording locations are marked on top of dorsal CA1. (B)
Illustration of the placement of the multisite silicon probe and patch pipette on a coronal
slice of the dorsal hippocampus. Black, cyan, and red dots mark the locations of LFP ripple,
LFP sharp wave, and whole-cell recordings, respectively. (C) Confocal image of 100 µm
thick coronal section showing biocytin stained CA1 pyramidal neuron (blue) with combined
immunohistochemistry against parvalbumin (red) and calbindin (green). Scale bar is 100
µm. (D) Example of simultaneous intracellular (red) and multisite LFP (black) recordings
of spontaneous activity in an awake mouse. LFPs come from 32 channels spanning the
neocortex, the hippocampal formation, and parts of the thalamus. The red dot next to
the intracellular recording marks -55 mV. The black dot marks the channel within the
CA1 pyramidal cell layer showing LFP ripple oscillations. The cyan dot marks the channel
showing LFP sharp waves. Grey vertical bands mark the ripples detected in this segment.
(E) Same as in (D), but enlarged to show subthreshold Vm (red), and sharp waves and
ripples in the LFP (black traces are 4 of the 32 LFP channels shown in D).

from the silicon probe was carefully positioned within the CA1 pyramidal cell layer, where

LFP ripple oscillations are reliably observed. Negative sharp waves, reflecting excitatory

input onto the dendrites of CA1 pyramidal neurons, were observed in stratum radiatum and

often co-occurred with ripples (Figure 1 D-E). Mice were free to walk or run on a spherical

treadmill, but spent the majority of their time in a state of quiet wakefulness, when the

hippocampal LFP showed large irregular activity with associated high-frequency ripples in

the CA1 pyramidal cell layer. Figure 1 D shows an example of simultaneous whole-cell and

LFP recordings from 32 sites spanning the neocortex, hippocampal formation, and parts

of thalamus during a period of quiet wakefulness with six ripples. While the occurrence of

ripples is apparent by inspecting the LFP, large ongoing membrane potential fluctuations

and the diversity in the intracellular response during ripples make it harder to identify these

events in the Vm (Figure 1 E; Figure 2).

Across a total of ∼8 hours of spontaneous activity from 30 neurons, we detected 4769

LFP ripples based on ripple-band power from the probe site located in the CA1 pyramidal

cell layer. We then analyzed the membrane potential triggered on LFP ripples. Despite
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Figure 2: Membrane potential dynamics during single ripples are highly diverse (A1) Ex-
ample of intracellular activity during four LFP ripples from a single neuron. LFPs from
the four channels around the CA1 pyramidal cell layer are shown in black. The black dot
marks the channel showing LFP ripples, which occur at time 0. The cyan dot marks the
channel with LFP sharp waves. The membrane potential is shown in red below. Note that
while ripples are readily detected in the LFP, they are much less obvious in the membrane
potential. (A2-3) Same as in (A1) but for an additional two neurons.
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the variability in the membrane potential dynamics during single ripples, averaging across

all ripples revealed a stereotyped waveform composed of three components: a sharp wave-

associated depolarization (depolarization), superimposed ripple-frequency Vm oscillations

(intracellular ripple), and a post-ripple hyperpolarization (hyperpolarization) lasting hun-

dreds of milliseconds (Figure 3 A)(Ylinen et al., 1995, Maier et al., 2011, English et al.,

2014). A time-frequency decomposition showed that LFP ripple oscillations (LFP ripples)

and intracellular ripples are restricted in both time and frequency and have similar structure

(Figure 3 B).

Diverse Single Neuron Membrane Potential Dynamics During Ripples

Pyramidal neurons in CA1 are a heterogeneous population of cells that differ in terms

of their morphology, connectivity, and gene expression patterns (Graves et al., 2012, Lee et

al., 2014). Therefore, individual pyramidal neurons may show cell-specific responses during

ripples (Valero et al., 2015). To investigate this possibility, we computed the average ripple-

triggered Vm for each neuron. Figure 3 C1-C8 shows example neuron-averages arranged

according to their pre-ripple Vm. The intracellular depolarization, ripple, and hyperpolar-

ization could be identified for nearly every neuron, but with a range of amplitudes that

showed no obvious clustering of response type. This analysis also revealed a subset of neu-

rons that slowly ramp their Vm beginning approximately one second before ripple onset.

Three neurons had significant depolarizing ramps (Figure 3 C1, C2, C5) and two neurons

had significant hyperpolarizing ramps (Figure 3 C6, C8), though most neurons showed no

obvious ramping on average (N=25).

What underlies the diversity in single neuron responses during ripples? One contribut-

ing factor could be the resting membrane potential via its effect on the electrical driving
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Figure 3: Average membrane potential dynamics during ripples (Continued on following
page)
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Figure 3: (A) Ripple-triggered averages of the LFP from the CA1 pyramidal cell layer (top)
and subthreshold Vm (bottom) for 4769 ripples. Shaded regions mark mean ± SEM. Note
3 components to the average intracellular response: a sharp wave associated depolarization
(depolarization), superimposed ripple-frequency Vm oscillations (intracellular ripple), and
a prolonged, post-ripple hyperpolarization (hyperpolarization). (B) Enlarged view from
(A) showing average ripple oscillations in the LFP (bottom, left) and Vm (bottom, right).
Above each average are the wavelet-derived spectrograms showing that the average LFP
and intracellular ripple are restricted in time/frequency. The magnitude of the wavelet co-
efficient was used as the instantaneous power. The white traces on the spectrograms mark
the instantaneous frequency with the largest power at each sample. (C1-C8) Examples of
ripple-triggered averages of the subthreshold Vm for individual neurons, arranged according
to their pre-ripple Vm (-2 to -1.5 s). The shaded region marks the 95% confidence intervals
for each sample. The upper and lower horizontal grey lines are the mean confidence intervals
of the pre-ripple Vm. The middle grey line marks the mean Vm from this same interval.
The inset shows a magnification (± 30 ms) of intracellular ripple oscillations. Scale bars
are 2 mV. The number of ripples, the pre-ripple Vm, and the standard deviation of the
pre-ripple Vm are listed for each neuron. Note the presence of depolarizing (C1, C2, C5)
and hyperpolarizing (C6, C8) ramps in the Vm for a subset of neurons starting approxi-
mately 1 second before the ripple event. Note also that more hyperpolarized neurons (top
panels) tend to have depolarizing ramps and larger sharp-wave associated depolarizations,
while more depolarized neurons (bottom panels) tend to have larger post-ripple hyperpo-
larizations. (D) Schematic showing quantification of intracellular response amplitude in
short windows at the end of the ramp (blue; -150 to -100 ms), and during the depolariza-
tion (turquoise; -5 to 5 ms) and hyperpolarization (pink; 75 to 125 ms). The component
amplitudes (colored bars) were computed as the difference between the median Vm in these
windows and the pre-ripple Vm (grey bar; average from -2 to -1.5 s). The inset shows a
magnified view around the component windows. (E1-E3) Scatter plots showing the rela-
tionship between pre-ripple Vm and the amplitude of the ramp (E1), the depolarization
(E2), and the hyperpolarization (E3).



17

Figure 4: The average membrane potential dynamics during ripples are robust with respect
to LFP ripple detection criteria (A1-A8) Examples of ripple-triggered averages of the
subthreshold Vm for individual neurons, as in Figure 3 C1-C8, but using more stringent
(blue) or less stringent (red) ripple detection criteria. For each neuron, we detected LFP
ripples greater than 4 times the median of the ripple-band envelope, resulting in 40% more
ripples than in the main text. Shown in red is the average of all detected ripples. Shown
in blue is the average of the largest half of ripples. Neurons are arranged according to their
pre-ripple Vm. Shaded regions mark mean ± SEM. Insets show the average intracellular
ripple oscillation for all ripples (red) and the largest half (blue), from -25 to 25 ms. Each
legend lists the number of ripples entering the averages and LFP ripple detection threshold.
Note that the shape of the average membrane potential is very similar for both low and high
detection thresholds, suggesting that the observed neuron-to-neuron diversity is not a result
of different detection thresholds. (B1) Correlation between the amplitude of the ramp using
more stringent (x-axis) and less stringent (y-axis) ripple detection criteria. Each dot is a
neuron. Note that most neurons lie along the diagonal, indicating that the amplitude of
the ramp is similar, independent of ripple detection threshold. (B2) Same as in B1, but
for the amplitude of the depolarization. (B3) Same as in B1, but for the amplitude of the
hyperpolarization. (B4) Same as in B1, but for the amplitude of the intracellular ripple
oscillation. Note: all amplitudes are computed as in Figures 3/5.
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Figure 5: Membrane potential dependence of intracellular ripple oscillation amplitude (A)
Average ripple-band Vm (intracellular ripple) from the most depolarized half (black) and
hyperpolarized half (red) of ripples from a single neuron. (B) Scatter plot showing rela-
tionship between peri-ripple Vm (± 25 ms average) and intracellular ripple RMS for all
single ripples from the same neuron as in (A). Note that ripples occurring at more depo-
larized levels tend to be larger, giving rise to a positive slope estimate (β>0; p<0.001).
(C) Comparison of slope estimates (β) computed as in (B) across all 30 neurons, sorted by
the number of ripples for each neuron. Neurons with the largest number of ripples are on
top. Green dots mark slope estimates. Rectangles are the 95% confidence intervals. Black
rectangles indicate slope estimates that are significantly different from 0 (grey otherwise).
Black dot marks location of neuron used in (A-B). Note that the majority of neurons (26
of 30) tended to have larger intracellular ripples at more depolarized levels, as indicated by
positive slope estimates (β > 0), which is statistically different (p<0.01) from the expected
proportion of 0.5 using a two-sided binomial test.
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force for excitation and inhibition. Indeed, more hyperpolarized neurons (top panels of Fig-

ure 3 C) have depolarizing ramps and bigger sharp wave associated depolarizations, while

depolarized neurons (bottom panels of Figure 3 C) tend to have larger post-ripple hyper-

polarizations (Figure 3 D-E). Similarly, the majority of neurons (16 of 30) had significantly

larger intracellular ripples when they were more depolarized (Figure 5), though this was

not observed in the neuron averages (p=0.91; not shown). Together, these results further

support the notion that CA1 pyramidal neurons are a heterogeneous population and suggest

the state of individual neurons, as reflected in their resting membrane potential, affects the

intracellular response during ripples.

Membrane Potential Dynamics Vary With LFP Sharp Wave Amplitude

Hippocampal ripples often co-occur with negative sharp waves in the LFP of stratum

radiatum (Figure 1). Sharp waves reflect excitatory input from area CA3 impinging on

the dendrites of CA1 pyramidal neurons, and their amplitude correlates with, and there-

fore serves as a proxy for, the magnitude of the excitatory synaptic currents (Figure 7).

Excitatory input from CA3 also recruits local CA1 interneurons, producing feed-forward

inhibition onto CA1 pyramidal neurons. Therefore, by characterizing how the intracellular

response varies as a function of sharp wave amplitude, we can assess the interplay between

excitation and inhibition as a function of input strength.

To characterize how the membrane potential dynamics change with input strength, we

sorted all 4769 intracellular responses by the amplitude of the LFP sharp wave and ex-

amined how the shape of the intracellular response varied (Figure 6 A-C). Surprisingly,

the amplitude of the intracellular depolarization was relatively independent of sharp wave

amplitude. In contrast, larger LFP sharp waves were associated with a larger post-ripple
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Figure 6: Membrane potential dynamics vary with sharp wave amplitude (A) Top: Ripple-
triggered LFP from stratum radiatum, sorted by sharp wave amplitude for all 4769 ripples.
Bottom: Quartile averages color coded according to dots above. The inset to the left shows
the average LFP sharp wave (bottom trace) along with its amplitude (vertical grey line).
The inset to the right shows a magnified view of the quartile averages (± 100 ms). (B) Top:
Subthreshold Vm sorted by sharp wave amplitude from (A). Each row is normalized to have
0 mean (Vm Norm). Quartile averages shown below. The inset shows a magnified view of
the depolarization (± 100 ms). Note that larger sharp waves are associated with a larger
post-ripple hyperpolarization, while the depolarization is relatively unaffected. (C) Top:
Ripple-band Vm sorted by sharp wave amplitude from (A). Quartile averages shown below.
(D) Scatter plot between LFP sharp wave amplitude and intracellular ramp amplitude.
For D-G, to get an estimate of the component’s amplitude, the sharp wave sorted response
matrices (from A-C) were divided into 190 blocked averages of 25 sharp waves each, and the
amplitude of each component was computed as in Figures 3/5. The inset shows a schematic
of how ramp amplitude was computed. (E) Same as in D, but for the amplitude of the
depolarization. (F) Same as in D, but for the amplitude of the hyperpolarization. (G)
Same as in D, but for the RMS amplitude of intracellular ripples. Notice that only the
hyperpolarization and intracellular ripple change systematically as a function of sharp wave
amplitude, while the ramp and depolarization remain invariant.
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Figure 7: The intracellular depolarization scales with LFP sharp wave amplitude under
hyperpolarizing current injection (Continued on following page)
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Figure 7: (A) Top: Ripple-triggered LFP from stratum radiatum sorted by sharp wave am-
plitude for all 709 ripples during hyperpolarizing current injection (N=10 neurons). Bottom:
Quartile averages color coded according to dots above. (B) Top: Subthreshold Vm sorted
by sharp wave amplitude from (A). Each row is normalized to have 0 mean (Vm Norm).
Quartile averages shown below. The inset shows a magnified view of the depolarization (±
100 ms). Note that, under hyperpolarizing current injection, which decreases the driving
force for inhibition, larger sharp waves are associated with a larger intracellular depolar-
ization, which further supports the notion that sharp wave amplitude correlates with net
excitatory current. It also provides further support for the conceptual model in Figure 14.
(C) Scatter plot between LFP sharp wave amplitude and intracellular ramp amplitude.
For C-F, the sharp wave sorted response matrices (from A-B) were divided into 70 blocked
averages of 10 sharp waves each, and the amplitude of each component was computed as
in Figures 3/5. The inset shows a schematic of how ramp amplitude was computed. (D)
Same as in C, but for the amplitude of the depolarization. (E) Same as in C, but for the
amplitude of the hyperpolarization. (F) Same as in C, but for the amplitude of the intra-
cellular ripple. (G) Cumulative distribution function (CDF) of each neuron’s LFP sharp
wave amplitudes (grey). The CDF for all sharp waves is shown in black. (H) Grand aver-
age of the subthreshold Vm from the smallest (red) and largest (blue) half of sharp waves,
averaged across neurons. For each neuron, the ripple-triggered subthreshold Vm was sorted
by the amplitude of the neuron’s LFP sharp waves and broken into two averages: one
from the smallest half and one from the largest half of sharp waves. The amplitudes of
the four intracellular components from these two averages are compared in (I-L) for all 30
neurons. This procedure controls for differences in sharp wave amplitude across neurons.
Note that only the post-ripple hyperpolarization shows an obvious modulation with sharp
wave amplitude, consistent with grouped data from Figure 6. (I) The intracellular ramp
amplitude is plotted for the smallest and largest half of LFP sharp waves for all 30 neurons.
Neurons whose ramp amplitude was more hyperpolarized for big sharp waves are shown in
red. Neurons whose ramp amplitude is more depolarized for big sharp waves are shown in
green. The number of neurons with more depolarized ramps with big sharp waves is re-
ported in the inset above, along with a p-value testing whether the proportion of neurons is
significantly different expected proportion of 0.5 using a two-sided binomial test. (J) Same
as in (I), but for the amplitude of the depolarization. Note that about as many neurons
show larger depolarizations with big sharp waves as show smaller depolarizations, consis-
tent with a balance of excitation and inhibition across neurons. (K) Same as in (I), but for
the amplitude of the hyperpolarization. Note that a significant majority of neurons show
larger hyperpolarizations for big sharp waves. (L) Same as in (I), but for the amplitude of
the intracellular ripple oscillation. Note that a significant majority of neurons show larger
intracellular ripple oscillations with big sharp waves.
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hyperpolarization and larger intracellular ripple oscillations (Figure 6 B-C). Only a negli-

gible post-ripple hyperpolarization occurred with the smallest sharp waves. To statistically

assess these relationships, we performed linear regressions between sharp wave amplitude

and the amplitude of the intracellular components (Figure 6 D-G). Consistent with the

quartile-averages, larger sharp waves were associated with larger post-ripple hyperpolariza-

tions (p<0.001) and intracellular ripples (p<0.001), while the ramp (p=0.99) and intracel-

lular depolarization (p= 0.10) were invariant. These results suggest that larger excitatory

currents are balanced by a proportional inhibition, such that the net current depolarizing

the soma is invariant to sharp wave amplitude, on average. Under hyperpolarizing current

injection, when the driving force for inhibition is reduced and this balance is altered, larger

LFP sharp waves are associated with a larger intracellular depolarization (Figure 7).

Phase Relationships Between Spiking, Intracellular, and LFP Ripple Oscillations

Ripple oscillations are thought to be functionally important for controlling spike timing

and bringing CA1 output within the windows of synaptic integration and plasticity, but the

factors that determine whether and when a neuron fires during a given ripple remain poorly

understood. As shown in Figure 8 A, ripples where the neuron fired had an intracellular

depolarization several times larger than the average intracellular depolarization in ripples

with no spikes. Moreover, the ripple-triggered raster plot of pyramidal cell firing (Figure 8

B) demonstrates that spikes occurred around the trough of LFP ripples (Figure 8 C; Figure

9). Importantly, this occurred when the slope of the membrane potential was near its

maximum. This suggests that the amplitude of the intracellular depolarization is primarily

responsible for bringing neurons to spike threshold while the fast, transient depolarizations

during intracellular ripple oscillations are particularly effective at controlling spike timing.
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Figure 8: Large intracellular depolarizations bring neurons to spike threshold, while intra-
cellular ripple oscillations control the precise spike timing (A) Averages of the subthreshold
Vm for ripples where the neuron fired at least one action potential (red; N=1057) or did
not fire (blue; N=3712). Shaded regions mark mean ± SEM. Note that for ripples with at
least one spike, the Vm had a depolarization several times larger than the average depo-
larization for ripples with no spikes. (B) Ripple-triggered raster plot of spike times from
whole-cell recordings. (C) Average LFP ripple (black), intracellular ripple (red), and firing
rate (green). The firing rate was computed by smoothing spike times with a gaussian (σ=1
ms) and averaging across all ripples. Vertical dashed lines mark the time of the peak firing
rate and peak LFP ripple oscillation. Note that the peak firing rate occurs near the trough
of LFP ripple oscillation, when the slope of the intracellular ripple is near its maximum.
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Figure 9: Spikes are phase-locked near the trough of LFP ripple oscillations (A) Distribution
of spike phases relative to the LFP ripple oscillation from whole-cell recordings. (B) Same
as in (A), but for N=28 putative CA1 pyramidal neurons from juxtacellular recordings in
the same mice used for whole-cell recordings. Note that for both whole-cell and juxtacellular
recordings, spikes occur ∼0.8 ms after the trough of LFP ripple oscillations.
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Figure 10: Intracellular ripple oscillations lead LFP ripple oscillations by ∼90 degrees and
are ∼5 Hz slower (A) Each neuron’s average intracellular ripple (red) and LFP ripple
(black) from -25 to 25 ms around LFP ripple center. Ripples where the intracellularly
recorded neuron fired were excluded since action potentials have a duration comparable
to a ripple cycle, making phase estimation of the intracellular ripple difficult. Note that
for all neurons the central peak in the LFP lags behind the central peak in the Vm. (B)
Instantaneous frequency of LFP ripples for each neuron. Time 0 marks the ripple center
(time of central LFP peak). For B-E, Each neuron’s average is grey scaled according to its
LFP ripple frequency at time 0. Averages are shown in red. Only neurons (22/30) with
reliable phase/frequency estimates in a ± 20 ms window were included in B-E. Instantaneous
frequency and phase are computed from a continuous wavelet transform using complex
Morlet wavelets. For each sample, the frequency with the largest power was identified and
its phase and frequency taken as the waveform’s instantaneous value (white lines shown
in Figure 3 B). (C) Instantaneous frequency of intracellular ripples for each neuron. (D)
Difference between LFP and intracellular ripple frequency for each neuron. Note that LFP
ripples are initially faster than intracellular ripples, and the frequency difference decreases
with time. (E) Instantaneous phase difference between intracellular and LFP ripples. (F)
LFP ripple frequency (at time 0) plotted as a function of its LFP ripple RMS for each
neuron. (G) Intracellular ripple frequency (at time 0) plotted as a function of LFP ripple
frequency for each neuron. Note that for all but one neuron, intracellular ripples are slower
than LFP ripples. (H) Intracellular-LFP ripple phase difference (at time 0) for all 30
neurons (black lines). Average shown in red. (I) Juxtacellular ripple - LFP ripple phase
difference (at time 0) for all 28 juxtacellular recordings (black lines) performed in same mice
and anatomical location as whole-cell recordings and with similar glass pipettes. Average
shown in red.
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To investigate the relationship between intracellular and LFP ripple oscillations in more

detail, we computed the average Vm and LFP in the ripple frequency band for each neuron.

As shown in Figure 10 A, LFP ripples lagged intracellular ripples for all 30 neurons. A time-

frequency decomposition of intracellular and LFP ripples revealed significant differences in

their frequencies, relative phases, and their temporal evolution. As shown in Figure 10 B,

LFP ripple frequency decreased from 118.3 ± 1.15 Hz near the beginning (-20 ms) of ripples

to 110.5 ± 1.07 Hz near the end (20 ms) of ripples (p<10−13; paired t-test). In contrast,

the frequency of intracellular ripples was more stable, but still showed a significant decline

from 112.5 ± 1.22 Hz to 109.4 ± 1.23 Hz (p<0.001, paired t-test; Figure 10 C). Hence, LFP

ripples were initially faster than intracellular ripples (5.7 ± 0.96 Hz; p<0.01; unpaired t-

test), but as their frequencies converged, the difference became insignificant (1.0 ± 0.59 Hz,

p=0.52 unpaired t-test). Consistent with this observation, LFP ripples lagged intracellular

ripples by 128.0 degrees (111.7 to 144.4; 95% CI) near the beginning of the ripples, compared

to 76.7 degrees (65.6 to 87.8; 95% CI) near the end (Figure 10 E). At LFP ripple center,

LFP ripples (117.5 ± 1.09 Hz) were 4.5 ± 0.50 Hz faster (p<0.01; unpaired t-test) than

intracellular ripples (112.9 ± 1.00 Hz; Figure 10 D), and lagged intracellular ripples by 86.8

degrees (79.3 to 94.3; 95% CI; Figure 10 H). Across the population, larger LFP ripples

had a faster frequency (p<10−3; Figure 10 F), and faster LFP ripples were associated with

faster Vm ripples (p<10−7; Figure 10 G). These findings highlight the dynamic nature of

ripple generation and regulation, and reveal important differences between the intracellular

and LFP ripple oscillations.

While the distance between the probe site measuring LFP ripples and the whole-cell

recording in CA1 was small (200-250 µm), the spatial separation could introduce biases in
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Figure 11: Juxtacellular LFP ripples are synchronous with probe LFP ripples. Relationship
between input and access resistance and the intracellular-LFP ripple phase difference (A)
Each juxtacellular recording’s average LFP ripple (red) and the probe’s LFP ripple (black)
from -25 to 25 ms. For all recordings, juxtacellular LFP ripples were recorded from the same
anatomical location where whole-cell recordings were performed. Note that juxtacellular
ripples and ripples recorded from probe are nearly synchronous. (B) Instantaneous LFP
ripple frequency recorded on extracellular probe. For B-D, each recording’s average is
grey scaled according to its probe LFP ripple frequency at time 0. Averages are shown
in red. (C) Same as in B, but for juxtacellular LFP ripples. (D) Same as in B, but
showing the difference between probe LFP and juxtacellular ripple frequency. Notice that
ripples recorded on the extracellular multisite probe and juxtacellularly on a pipette are very
similar, in contrast to the differences observed in the whole-cell recordings. (E) Scatter plot
of each neuron’s input resistance (Rm) and phase delay between its intracellular ripples and
LFP ripples. (F) Scatter plot of each neuron’s access resistance (Ra) and the intracellular-
LFP ripple phase delay.
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the phase and frequency comparisons. To address this, we performed juxtacellular record-

ings from putative CA1 pyramidal neurons and LFP ripples (Juxtacellular ripples) from the

same anatomical location and with similar glass pipettes as whole-cell recordings and com-

pared them to LFP ripples occurring simultaneously on the probe site in the CA1 pyramidal

cell layer (probe ripples). On average, LFP ripples on the probe led Juxtacellular ripples

by just 9.1 degrees (6.66 to 11.53; 95% CI; Figure 10 I) and had nearly identical frequencies

as ripples recorded on the probe (Figure 11 A-D), ruling out biases in the phase/frequency

comparisons due to the spatial separation between the multisite probe and pipette. Taking

this 9 degree distance-related phase difference into account suggests that LFP ripples lag

intracellular ripples by 96 degrees on average.

Though the time constant of the patch pipettes was considerably faster than ripples, the

low-pass filtering properties of patch pipettes could in principle reduce the frequency and

introduce phase delays in intracellular ripples. However, there was only a weak relationship

between the magnitude of the access resistance and the phase difference between intracel-

lular and LFP ripples (Figure 11 F). Moreover, juxtacellular ripples, which were subject

to similar low-pass filtering since they were recorded with similar pipettes, had frequencies

that were nearly identical to ripples from the probe, as noted above. There was a stronger

relationship between the neuron’s input resistance and the intracellular-LFP phase delay

(Figure 11 E), suggesting that passive properties of the neurons may contribute to the ob-

served phase delays. However, this cannot explain the evolution of intracellular and LFP

ripple frequency and relative phase across time.

The Phase Difference Between Intracellular And LFP Ripple Oscillations

Changes Systematically With Membrane Potential
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Figure 12: Intracellular ripple phase changes systematically with membrane potential (A)
Top: Average intracellular ripple (from -8 to 12 ms) plotted as a function of Vm for the
range of spontaneous Vm fluctuations. All ripples lacking intracellular action potentials were
sorted by their peri-ripple Vm (±25 ms average), and 29 averages of 125 ripples each are
displayed. Traces are separated by 0.1 mV (scale bar in upper right is 0.5 mV) and colored
according to their peri-ripple Vm. The central peak and the preceding/subsequent troughs
are marked by black dots for each trace. Vertical bars mark average time of preceding trough
(-6.1 ms), central peak (-1.7 ms), and subsequent trough (2.6 ms). Note that hyperpolarized
ripples (cyan) are phase delayed relative to depolarized ripples (pink). Bottom: Average
LFP ripple (black) and intracellular ripple (light blue). (B) Intracellular-LFP ripple phase
difference plotted as a function of Vm for traces in (A). (C) Average intracellular (red) and
LFP (black) ripple at resting Vm, along with the intracellular (cyan) and LFP (grey) ripple
with hyperpolarizing current injection (N=10 neurons). Scale bar marks 0.5 mV. Note that
the central peak of intracellular ripples occurring under hyperpolarizing current injection
(cyan) nearly aligns with LFP ripples (black/gray). (D) Each neuron’s Intracellular-LFP
ripple phase difference (at time 0) for intracellular ripples during hyperpolarizing current
injection (cyan; N=10 neurons). The average is shown in black.
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Figure 13: Intracellular blockade of voltage-gated sodium channels using QX-314 has no
effect on intracellular ripple oscillations (Continued on following page)
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Figure 13: (A1) Example of an intracellular response to a 1-second depolarizing current
step, immediately after breaking into the neuron. Note the presence of large sodium spikes of
attenuating amplitude. (A2-A3) Same as in (A1), but a couple minutes after breaking into
a neuron. While depolarizing current occasionally evoked 1-2 sodium spikes immediately
after the start of the pulse, sodium spikes were largely replaced with slower, putative calcium
spikes. (B1) Three second example of spontaneous activity immediately after breaking into
the neuron. Note the presence of a single sodium spike and a complex burst. (B2) Same
as in (B1), but after full QX-314 wash in. Note that sodium spikes have been replaced
with slower, putative calcium spikes, similar to previous reports (Grienberger et al., 2014).
Combined with the intracellular current steps, this demonstrates the effectiveness of QX-
314 in blocking voltage-gated sodium channels. (C) Ripple-triggered averages of the LFP
from the CA1 pyramidal cell layer (top) and subthreshold Vm (bottom) for 1070 ripples
recorded from 7 neurons with intracellular QX-314. Shaded regions mark mean ± SEM.
Note that while the intracellular depolarization and ripple oscillations are largely unaffected,
the post-ripple hyperpolarization is diminished, consistent with the ability of QX-314 to
block GABAb-mediated conductances. (D) Each neuron’s average intracellular ripple (red)
and LFP ripple (black) from -25 to 25 ms around LFP ripple center. Note that for all
neurons the central peak in the LFP lags behind the central peak in the Vm, as in drug-
free neurons (Figure 10). (E) Intracellular-LFP ripple phase difference (at time 0) for all
7 neurons (black lines). Average shown in red. Note that intracellular ripples lead LFP
ripples by ∼90 degrees, similar to drug-free neurons (Figure 10). If voltage-gated sodium
contributed to intracellular ripples around resting Vm, then blocking them should have
shifted the intracellular-LFP ripple phase difference. (F) Top: Average intracellular ripple
(from -8 to 12 ms) plotted as a function of Vm for the range of spontaneous Vm fluctuations.
All ripples lacking intracellular action potentials were sorted by their peri-ripple Vm (±25
ms average), and 21 averages of 50 ripples each are displayed. Traces are separated by 0.1
mV (scale bar in upper right is 0.5 mV) and colored according to their peri-ripple Vm.
The central peak and the preceding/subsequent troughs are marked by black dots for each
trace. Vertical bars mark average time of preceding trough, central peak, and subsequent
trough. Note that hyperpolarized ripples (cyan) are phase delayed relative to depolarized
ripples (pink). Bottom: Average LFP ripple (black) and intracellular ripple (light blue).
Note that the voltage dependence of intracellular ripple phase in QX-314 neurons is almost
identical to drug-free neurons (Figure 12), which further demonstrates that voltage-gated
sodium channels do not appreciably contribute to intracellular ripple oscillations.
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Competing models of ripple oscillation generation offer different predictions regarding

how the phase of intracellular ripple oscillations should vary with membrane potential (Fig-

ure 15). In order to evaluate these competing hypotheses, we investigated how intracellular

ripple phase depends on Vm in vivo. As shown in Figure 12 A, ripples occurred at spon-

taneous membrane potential levels ranging from -61 mV to -44 mV. Interestingly, the time

of the central Vm peak and the preceding/subsequent troughs varied systematically with

Vm. Indeed, at more hyperpolarized levels, the phase lag between intracellular and LFP

ripples was smaller compared to more depolarized levels (Figure 12 B). In particular, a 1

mV hyperpolarization in Vm was associated with approximately a 1.6 degree phase shift of

intracellular ripples towards LFP ripples.

To further test the voltage dependence of intracellular ripple phase, we injected hy-

perpolarizing DC currents into a subset of neurons (N=10) to bring them between 7 mV

to 32 mV below their resting Vm. Hyperpolarization resulted in intracellular ripples that

had almost zero phase difference with LFP ripples, without producing consistent changes

in intracellular ripple amplitude (Figure 12 C-D). At the time of the central LFP peak,

intracellular ripples lagged LFP ripples by 1.4 degrees (-14.5 to 11.7; 95% CI). To examine

the possibility that the voltage dependence of intracellular ripple phase is due to the acti-

vation of fast voltage-gated sodium channels, we blocked their activity intracellularly using

QX-314 in an additional 7 neurons (Figure 13). Intracellular QX-314 abolished sodium

spikes (Grienberger et al., 2014), but had no effect on the average intracellular-LFP phase

difference or its voltage dependence.

As discussed below, these results are inconsistent with models of ripple generation in-

volving rhythmic inhibition alone. Instead, they suggest that an interplay between rhythmic
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excitation leading inhibition shapes intracellular ripples in vivo (Figure 15).

2.4 Discussion

By combining in vivo whole-cell recordings from identified CA1 pyramidal neurons with

nearby multisite extracellular measurements of network activity, we investigated the mem-

brane potential dynamics underlying hippocampal ripples and found that: (1) the average

membrane potential around ripples is composed of a sharp wave associated depolarization,

superimposed intracellular ripple oscillations, and a post-ripple hyperpolarization. (2) In-

dividual neurons have diverse intracellular responses, which can be partially explained by

differences in membrane potential. (3) Bigger LFP sharp waves are associated with a larger

post-ripple hyperpolarization and larger intracellular ripples, while the amplitude of the

depolarization stays relatively constant. (4) Pyramidal neuron spikes phase-lock near the

trough of LFP ripples, when the slope of the membrane potential is near its maximum.

(5) The phase delay between intracellular and LFP ripples changes systematically with

membrane potential.

What gives rise to the three components of the intracellular response during ripples?

Ripples in CA1 are thought to be driven by excitatory input arising from a population

burst spontaneously generated through the recurrent network of area CA3. Synaptic input

from CA3 terminates on the apical dendrites of CA1 pyramidal neurons, and the associated

synaptic currents produce a negative sharp wave in the LFP of stratum radiatum (Buzsaki,

1986). The intracellular depolarization likely reflects this excitatory input (Ylinen et al.,

1995, Maier et al., 2011, English et al., 2014, Valero et al., 2015). As excitation builds up in

CA1, populations of pyramidal cells and interneurons begin firing at ripple frequency, phase-
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locked to LFP ripple oscillations (Buzsaki et al., 1992, Klausberger et al., 2003, Klausberger

et al., 2004, Somogyi et al., 2014). Consistent with this, we observe intracellular ripple-

frequency oscillations superimposed on the sharp wave associated depolarization. Inhibition

also produces a hyperpolarization lasting hundreds of milliseconds beyond the end of the

ripple, suggesting a dependence on GABAB receptor activation (Ulrich and Bettler, 2007,

English et al., 2014). The shape of the average intracellular response varied across individual

neurons. One contributing factor to this variability is differences in membrane potential

through its effects on the electrical driving forces for excitation and inhibition, while other

factors likely include differences in gene expression and connectivity (Lee et al., 2014).

Indeed, a recent study found a difference in the ripple response between superficial and

deep pyramidal cells (Valero et al., 2015), consistent with our observed neuron-to-neuron

variability (Figure 3).

One key finding is that the amplitude of the intracellular depolarization is insensitive to

the magnitude of the sharp wave observed in stratum radiatum. This is particularly striking

because the amplitudes of the intracellular ripple and post-ripple hyperpolarization scale

with sharp wave amplitude (Figure 6). This indicates the presence of a circuit mechanism

that provides an intricate balance between excitation and inhibition during the ripple. In

particular, larger excitatory currents must be balanced by proportional inhibitory currents

during the population burst, such that the net current depolarizing the soma is indepen-

dent of input strength. One way to achieve this is for inhibition to be negligible up to a

threshold input magnitude, and grow at the same rate as excitation beyond this threshold

(Figure 14). This would ensure that the difference between excitation and inhibition (net

somatic current) would stay constant as a function of input strength. What are the cir-
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cuit elements that could account for this? Area CA3 provides direct excitatory input to

CA1 neurons, and proportional feed-forward inhibition through local interneurons (Alger

and Nicoll, 1982, Maccaferri and Dingledine, 2002, Pouille et al., 2009). Since feed-forward

interneurons will fire in proportion to CA3 input only past the threshold for spiking, the

resulting inhibition is a likely candidate for the requisite inhibitory current (Mizunuma et

al., 2014). Consistent with this view, at resting Vm the post-ripple hyperpolarization scales

with input size, when excitation has already decayed. Furthermore, under hyperpolarizing

current injection, when the inhibitory driving force for the balancing inhibition is reduced,

the amplitude of the intracellular depolarization scales with sharp wave amplitude (Figure

7). For low input strengths, the post-ripple hyperpolarization is negligible, further indi-

cating the involvement of GABAB receptors, which are selectively activated under strong

stimulus intensities (Dutar and Nicoll, 1988, Ulrich and Bettler, 2007).

What controls if and when neurons fire during ripples? The intracellular depolarization

during ripples in which a neuron fires is significantly larger compared to ripples in which

the neuron remained silent (Figure 8). Furthermore, when neurons do not fire during

ripples, they exhibit a remarkably consistent subthreshold depolarization over a wide range

of input strengths, suggesting an intricate balance of excitation and inhibition as discussed

above. This ensures that neurons remain silent for most ripples, and fire only when specific

subsets of synapses are co-activated to overcome the balancing inhibition. Hence, the specific

identity, rather than the sheer number, of active CA3 neurons likely determines whether

a postsynaptic CA1 neuron fires or not. We hypothesize that the depolarization brings

neurons close to firing threshold, while the superimposed intracellular ripple oscillations

control the precise spike timing. Indeed, we observe that spikes preferentially occur on the
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Figure 14: Conceptual model explaining a potential mechanism balancing exaction and
inhibition as a function of CA3 input strength (A) The amplitude of the net excitatory
current from direct CA3 input (green), the amplitude of feed-forward inhibition through
local CA1 interneurons (red), and the total net somatic current driving CA1 pyramidal
neurons (blue) are plotted as a function of CA3 input strength, as assessed experimentally
using the amplitude of LFP sharp waves. Due to direct excitatory input, the amplitude of
excitatory current grows linearly with input strength. Due to the fact that weak CA3 inputs
won’t bring CA1 interneurons to spike threshold, their output is constant up to a threshold
(arrow), and grows at the same rate as excitation beyond this point. The combination
of such direct excitation and indirect inhibition ensures that the total somatic current is
constant above a certain threshold. Ripples are hypothesized to occur in this range, under
strong input strengths. This mechanism can potentially explain why the amplitude of the
intracellular depolarization is independent of input strength on average. In contrast, for
a neuron to fire during a given ripple, it must receive an excitation that is much greater
than the average excitation shown in green. (B) Diagram showing direct excitatory input
onto a CA1 pyramidal neuron (blue) with feed-forward inhibition through a local CA1
interneuron (red). The output firing rate of the local CA1 interneuron is constant below a
certain threshold, and grows linearly above this threshold.
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rising phase of the intracellular ripple oscillation, when the slope of the membrane potential

is near its maximum. This is consistent with previous slice work showing that spike-timing

precision is enhanced by fast, transient depolarizations (Mainen and Sejnowski, 1995).

How do the experimental observations fit with circuit models of ripple oscillations (Cut-

suridis and Taxidis, 2013, Buzsaki, 2015, Gulyas and Freund, 2015, Patel, 2015)? Three

main classes of models of ripple oscillations have been proposed, each making different

predictions regarding the types of input CA1 pyramidal neurons receive. First, previous

studies have proposed that the axons of CA1 pyramidal neurons are electrically coupled

through sparse axo-axonal gap junctions, endowing the resulting axonal plexus with the

ability to propagate action potentials and oscillate at ripple frequency (Draguhn et al.,

1998, Traub and Bibbig, 2000). These models predict the presence of‘ “spikelets” repre-

senting the antidromic propagation of action potentials from ectopic generation sites to the

soma. Spikelets have been demonstrated in vitro (Schmitz et al., 2001) and in vivo (Spencer

and Kandel, 1961, Epsztein et al., 2010, Chorev and Brecht, 2012), but at present there is

little direct evidence linking their generation to the existence of pyramidal axo-axonal gap

junctions, especially during ripples in vivo (English et al., 2014). Our data do not support

a role for spikelets and axo-axonal gap junctions in ripple generation, since none of our

30 neurons showed spikelets during ripples, and, unlike previous slice work (Bahner et al.,

2011), hyperpolarizing current injection completely abolished spiking, arguing against an

ectopic site of action potential generation.

A second class of models suggests that rhythmic perisomatic inhibition alone is respon-

sible for intracellular ripple oscillations (Ylinen et al., 1995, Stark et al., 2014, Buzsaki,

2015). Pyramidal cells are hypothesized to receive strong ripple-frequency somatic inhi-



39

bition due to reciprocal interactions within interneuron networks, pyramidal-interneuron

feedback loops, or both. And while several classes of interneurons, each targeting specific

subcellular pyramidal cell domains, are known to be active during ripples, a prominent role

for fast-spiking, parvalbumin (PV)-positive positive basket cells has emerged. Indeed, these

interneurons have reciprocal connections with pyramidal cells, target their axons to the

pyramidal cell soma, fire at ripple-frequency phase locked to LFP ripple oscillations, inhibit

other PV-positive basket cells, and are endowed with a host of conductances supporting

fast rhythmogenesis (Klausberger et al., 2003, Chiovini et al., 2014, Hu et al., 2014, Lee

et al., 2014). As shown with a three-compartment conductance-based model in Figure 15,

with perisomatic inhibition alone (Figure 15 B1), as the membrane potential is hyperpo-

larized towards the inhibitory reversal potential, the phase difference between intracellular

and LFP ripple oscillations remains constant (red trace; Figure 15 D). Below this level,

it abruptly flips 180 degrees, as claimed in previous work in anesthetized rats (Ylinen et

al., 1995). In contrast, our data demonstrates that the phase difference varies smoothly

with membrane potential, and approaches zero (rather than -90) degrees below the reversal

potential for inhibition. Therefore, our data provides strong evidence against models based

on perisomatic inhibition alone.

Is there a simple addition to the perisomatic inhibition model that can account for the

data? Recent in vitro work has suggested that CA1 pyramidal neurons receive ripple-

frequency excitation in addition to inhibition (Maier et al., 2011). Moreover, because

most interneurons, including PV-positive basket cells, fire 1-2 ms after pyramidal neurons

(Csicsvari et al., 1999, Klausberger et al., 2004, Sullivan et al., 2011, Varga et al., 2012,

Stark et al., 2014, Varga et al., 2014), excitation should lead inhibition (Maier et al., 2011).
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As shown in Figure 15 B2, with weak ripple-frequency excitation leading inhibition by 90 de-

grees (∼2 ms), intracellular ripples show a systematic phase shift with membrane potential.

As the membrane potential is hyperpolarized towards the reversal potential for inhibition,

the phase difference between intracellular and LFP ripples approaches zero (green trace;

Figure 15 D), as observed experimentally (colored dots in Figure 15 D; Figure 12). This

occurs because the phase of intracellular ripple oscillations depends upon the relative con-

tribution of the excitatory and inhibitory currents, which varies with membrane potential

due to corresponding changes in electrical driving force. The direction of the experimentally

observed phase shift is non-trivial, as an identical model with inhibition leading excitation

gives rise to a phase shift of the opposite direction. Moreover, the fact that the amplitude

of intracellular ripples grows with membrane depolarization around resting Vm argues for

weaker excitatory influence at the soma relative to inhibition (Figure 15 C, Figure 5). Hence,

rhythmic excitation leading inhibition provides one possible explanation for the data.

What could be the source of ripple-frequency excitation? First, CA1 pyramidal neurons

are known to have sparse recurrent connections (Deuchars and Thomson, 1996, Yang et

al., 2014). The phase-locked firing of CA1 neurons during ripples would produce rhythmic

excitatory inputs in the recurrently connected CA1 cells. In agreement with this, slice

work has demonstrated that ripples and ripple-frequency excitatory post-synaptic currents

(EPSCs) persist in CA1 mini-slices presumed to be devoid of CA3 input (Maier et al.,

2011). Second, rhythmic excitation might also come from CA3 pyramidal neurons bursting

at ripple frequency (Sullivan et al., 2011). To the extent that this input could survive

passive dendritic filtering, CA3 could provide a source of ripple-frequency excitation to the

soma. Third, ripple-frequency shunting inhibition may modulate slow dendritic excitation
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Figure 15: A simple conductance-based model of ripple generation consistent with the
experimental data (Continued on following page)
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Figure 15: (A) Schematic of three-compartment model used in simulations (see experimen-
tal procedures). (B1) Model with ripple-frequency (120 Hz) perisomatic inhibition. Top:
intracellular ripples as a function of Vm. Each row is normalized to have 0 mean (Vm
Norm). White line marks the timing of the intracellular ripple peak for each Vm level.
Middle: Perisomatic synaptic conductances. Peak inhibitory (gi) amplitude of 1.4 nS. Peak
excitatory (ge) amplitude of 0 nS. Bottom: Intracellular and LFP ripples at resting Vm (-55
mV) normalized to have a peak of 1. The peak in the inhibitory conductance was used as
time 0. (B2) Model with ripple-frequency perisomatic excitation leading inhibition. Same
as in B1, but the excitatory conductance was 0.14 nS and led the inhibitory conductance
by 90 degrees. Note the phase shift of intracellular ripples as a function of Vm. (C) Am-
plitude of intracellular ripples as a function of Vm for the perisomatic inhibition model
from B1 (red) and the model combining excitation leading inhibition from B2 (green). The
slopes of the black lines are the estimates for all 30 neurons from Figure 5. Cyan lines are
slope estimates from 10 neurons during hyperpolarizing current injection. Magenta lines
are slope estimates from 7 neurons with intracellular QX-314 to block voltage-gated sodium
channels (Figure 13). Note that both models predict that intracellular ripples should be
larger at more depolarized levels within the range of spontaneous Vm fluctuations, consis-
tent with black lines and Figure 5. (D) Phase difference between intracellular ripples and
LFP ripples as a function of Vm for the perisomatic inhibition model from B1 (red) and
the model combining excitation leading inhibition from B2 (green). The black dots are the
intracellular-LFP phase difference from Figure 12 B at the time of the central intracellular
peak (-1.7 ms; middle panel). The cyan dots are the intracellular-LFP phase difference
for the 10 neurons under hyperpolarizing current injection at the time of the central in-
tracellular peak. Similarly, the magenta dots are the intracellular-LFP phase difference at
spontaneous Vm levels with intracellular QX-314 from Figure 13 F. Notice that the data
are consistent with the model involving rhythmic excitation leading inhibition (B2; green),
but not rhythmic inhibition alone (B1; red).



43

to cause ripple-frequency depolarizing currents to enter the soma (but see Maier et al.,

2011). Regardless of its source, our data suggests that ripple-frequency excitation plays a

key role in shaping intracellular ripple oscillations, thereby contributing to the regulation

of spike timing across the subset of active cells.

The proposed simple model does not capture the full complexity of the intact circuit.

In particular, a number of additional factors will influence the phase of the extracellular

and intracellular ripples. First, the detailed cell morphology and the precise spatiotemporal

distribution of excitatory and inhibitory synaptic currents will shape both intracellular and

LFP ripples. Second, active conductances can have important effects on how these synaptic

inputs are integrated at the soma. Third, currents associated with the synaptic inputs and

spiking of multiple nearby neurons will influence the extracellular LFP (Schomburg et al.,

2012). Future studies are needed to characterize the detailed contributions of these factors.

By combining in vivo whole-cell recordings with multisite LFP measurements, we reveal

the presence of a circuit mechanism providing an intricate balance between excitation and

inhibition during ripples. This mechanism ensures that the majority of ripples results in

only a modest subthreshold depolarization, independent of input size. In contrast, firing

within a ripple requires a much larger depolarization that must be sensitive to the precise

identity of CA3 inputs, as opposed to their sheer number. The spike timing within a

ripple is controlled by intracellular ripple oscillations, which in turn likely depend on the

combination of both ripple-frequency excitation and inhibition. This could be particularly

important for determining the firing order of active cells, which has functional implications

for the mechanisms of ripple-induced plasticity and the circuit mechanisms of replay.



44

2.5 Experimental Procedures

All animal procedures were performed in accordance with National Institute of Health

guidelines and with approval of the Caltech Institutional Animal Care and Use Committee.

Head fixation surgery

Sixteen male C57Bl/6 mice (Charles River Laboratories) were surgically implanted with

a lightweight, stainless steel ring embedded in dental cement, which allowed for mechanically

stable head-fixation in the recording apparatus, as previously described (Froudarakis et al.,

2014). A stainless steel wire was implanted over the right cerebellum. The skull was leveled

and the locations of the pipette (-1.9 mm posterior, 1.5 mm lateral from Bregma) and probe

exposures (-1.7 mm posterior, 2.0 mm lateral from Bregma) were marked on the skull over

the left hemisphere. Following surgery, mice were returned to their home cage, maintained

on a 12 hour light/dark cycle, and given access to food and water ad libitum. Ibuprofen

(0.2 mg/mL) was added to the water as a long-term analgesic. Mice were given at least 48

hours to recover before the day of the experiment.

Exposure surgery

On the day of the experiment, mice (age P28 to P37) first underwent a short surgery

to expose the brain. While anesthetized with 1% isoflurane and head-fixed in the stereo-

taxic apparatus, two small exposures were drilled (pipette: 500 µm diameter; probe: 200

µm diameter) over the left hippocampus at the previously marked locations. A recording

chamber was secured on top of the head-fixation device and filled with pre-oxygenated (95%

O2, 5% CO2), filtered (0.22 µm) artificial cerebrospinal fluid (aCSF) containing (in mM):

125 NaCl, 26.2 NaHCO3, 10 Dextrose, 2.5 KCl, 2.5 CaCl2, 1.3 MgSO4, 1.0 NaH2PO4.

Awake, in vivo recordings
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Mice were head-fixed on top of a spherical treadmill secured on an air table (TMC). The

ball could rotate along a single axis, allowing the mice to run and walk freely. On either

side of the ball, two platforms supporting micromanipulators (Sutter Instrument Company)

allowed for precise positioning of a silicon probe (mouse’s left) and glass pipettes (mouse’s

right). A single-shank, 32-site silicon probe (NeuroNexus) with 100 µm site spacing was

inserted in the coronal plane ( ∼ 15 degree angle pointing towards the midline) to a depth

of 2600-3000 µm. Sites spanned all of neocortex, area CA1, the dentate gyrus, and parts

of the thalamus. The probe was adjusted so that a recording site was positioned within

the CA1 pyramidal cell layer for reliably recording LFP ripple oscillations. Sharp waves

were evident on the sites spanning stratum radiatum. The probes were grounded to the

recording table and referenced to a wire implanted over the cerebellum.

To find the depth of the CA1 cell layer and compare the structure of LFP ripples recorded

on the probe versus those from a pipette, we used artificial cerebrospinal spinal fluid (aCSF)

filled pipettes to perform one to three juxtacellular (Pinault, 1996) recordings per mouse

from putative CA1 pyramidal neurons (N=28). Long-taper pipettes (for juxtacellular and

whole-cell recordings) were pulled from borosilicate capillaries (OD: 1.0 mm, ID: 0.58 mm;

Sutter Instrument Company) using a Model P-2000 puller (Sutter Instrument Company) to

an inner tip diameter of ∼0.8-1.5 µm and outer diameter of ∼2 µm (5-8 MΩ), and inserted

into the brain in the coronal plane with a ∼15 degree angle pointing away from the midline.

The location of the CA1 layer was signaled by the occurrence of large amplitude ripples that

appeared synchronously on the pipette and probe site in the CA1 cell layer. At the depth of

the CA1 layer, the probe and patch pipette were separated by approximately 200 µm in the

anterior-posterior direction and 100 µm in the medial-lateral. The pipette was advanced
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at 1-2 µm/s until a putative CA1 pyramidal neuron was encountered, which was evident

from the appearance of complex spikes and ripple-associated action potentials. Recordings

(juxtacellular and whole-cell) were made with a MultiClamp 700B amplifier (Molecular

Devices). For juxtacellular recordings, the capacitance neutralization circuit was off and

the output was AC coupled and amplified 100x.

Whole-cell recordings were performed after the depth of the CA1 layer had been iden-

tified. Pipettes were filled with an internal solution containing (in mM): 115 K-Gluconate,

10 KCl, 10 NaCl, 10 Hepes, 0.1 EGTA, 10 Tris-phosphocreatine, 5 KOH, 13.4 Biocytin, 5

Mg-ATP, 0.3 Tris-GTP. The internal solution had an osmolarity of 300 mOsm and a pH of

7.27 at room temperature. In a subset of experiments (Figure 13), 2 mM of QX-314 (Tocris)

was added to the internal solution to block voltage-gated sodium channels. The membrane

potential was not corrected for the liquid junction potential. Whole-cell recordings were ob-

tained “blind” according to previously described methods (Margrie et al., 2002) in current

clamp mode (Schramm et al., 2014). Capacitance neutralization was set prior to estab-

lishing the GΩ seal. After obtaining the whole-cell configuration, the neuron’s membrane

potential was recorded in current clamp mode. Access resistance was estimated online by

fitting the voltage response to hyperpolarizing current steps (see below). Recordings were

aborted when the access resistance exceeded 120 MΩ or the action potential peak dropped

below 0 mV. One to five whole-cell recordings (N=37) were performed per mouse.

Signal acquisition

All electrophysiological signal acquisition was performed with custom Labview software

(National Instruments) that we developed. Electrophysiological signals were sampled si-

multaneously at 25 kHz with 24 bit resolution using AC (PXI-4498, internal gain: 30 dB,
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range: +/- 316 mV) or DC-coupled (PXIe-4492, internal gain: 0 dB, range: +/- 10 V)

analog-to-digital data acquisition cards (National instruments) with built-in anti-aliasing

filters for extracellular and intracellular/juxtacellular recordings, respectively.

Histology and imaging

Following the experiment, mice were deeply anesthetized with 5% isoflurane, decapi-

tated, and the brain extracted to 4% PFA. Staining of biocyin-filled cells for morphologi-

cal identification was performed according to previously described methods (Horikawa and

Armstrong, 1988). Brains were fixed at 4 C in 4% paraformaldehyde overnight and trans-

ferred to 0.01 M (300 mOsm) phosphate buffered saline (PBS) the next day. Up to one

week later, brains were sectioned coronally (100 µm) on a vibrating microtome (Leica), per-

meabilized with 1% Triton X-100 (v/v) in PBS for 1-2 h, and incubated overnight at room

temperature in PBS containing avidin-fluorescein (1:200, Vector Laboratories), 5% (v/v)

normal horse serum (NHS), and 0.1% Triton X-100. Sections were rinsed in PBS between

each step. The next day, sections containing biocytin stained neurons were identified on

an inverted epifluorescent microscope (Olympius IX51) for further immunohistochemical

processing.

To aid in classifying recorded neurons as CA1 pyramidal neurons, we performed im-

munohistochemical staining against calbindin (CB) and parvalbumin (PV). Sections con-

taining biocytin-stained neurons were first incubated in blocking solution containing 5%

NHS, 0.25% Triton X-100, and 0.02% (wt/v) sodium azide in PBS. Next, slices were in-

cubated in PBS containing primary antibodies against CB (Rabbit anti-Calbindin D-28k,

1:2000, Swant) and PV (Goat anti-parvalbumin, 1:2000, Swant) overnight. After thorough

rinsing in PBS, slices were incubated in PBS containing secondary anitbodies CF543 don-
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key anti-rabbit (1:500, Biotium) and CF633 donkey anti-goat (1:500, Biotium). Processed

slices were rinsed and mounted in antifading mounting medium (EverBrite, Biotium).

Stained slices were imaged on an inverted confocal laser-scanning microscope (LSM 710,

Zeiss). Biocytin-stained neurons were unambiguously classified as CA1 pyramidal neurons if

their soma was located in the CA1 pyramidal cell layer, showed a morphology characteristic

of these neurons (bifurcating apical dendrites, dendritic spines, etc.), had PV-negative soma,

and showed electrophysiological properties consistent with CA1 pyramidal neurons.

Measuring and setting access resistance

Access resistance was estimated online using custom-written software in Labview that

communicated with the software (Commander, Molecular Devices) controlling the Multi-

Clamp 700B amplifier through an application programming interface (API). To estimate the

access resistance, the bridge balance was temporarily turned off. Then, two -100 pA current

pulses (250 ms duration, 250 ms inter-pulse interval) were delivered, the first 50 ms of the

hyperpolarizing voltage responses was fit using a simple model, and if the r2 fit exceeds

0.99, the bridge balance was set to its new value, otherwise it was returned to the previous

value. This procedure was performed once every minute during whole-cell recordings. In

addition, all recording parameters in the Commander software were acquired once every

second using the API, time stamped to electrophysiological signals, and saved for offline

review. The pipette’s voltage response to hyperpolarizing current steps was fit online using

a simple double exponential model (Anderson et al., 2000). The computational simplicity

of this model sped online fitting. For offline estimates, we used a biophysically-inspired,

single-compartment model (de Sa and MacKay, 2001). The results obtained from the two

models were nearly identical under our recording conditions.
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Ripple detection

All offline analysis was performed in Matlab (MathWorks). LFP ripple oscillations were

detected as transient increases in ripple-band power from the probe site located in the CA1

pyramidal cell layer. To compute ripple band power, LFPs were filtered between 80-180

Hz (Parks-McClellan optimal equiripple FIR filter, 80-180 Hz pass band, 50-80 and 180-

200 Hz transition bands, 60 dB minimum attenuation in the stop bands), the ripple-band

envelope was computed as the instantaneous amplitude from the Hilbert transform, and

the envelope was low-pass filtered (Parks-McClellan optimal equiripple FIR filter, 20-30

Hz transition band, 40 dB minimum attenuation in the stop bands). From this signal, an

upper threshold was set as 4.5-5.5 times the median. A lower threshold was set as half

the upper threshold. Ripples were detected as peaks in the ripple band envelope above the

upper threshold, and with time between positive-going and negative-going lower threshold

crossings longer than 30 ms. Ripples meeting these criteria, but with peaks less than 60

ms, apart were merged. The time of ripple occurrence was defined as the sample with the

largest amplitude (positive peak) in the ripple band within the detected ripple and used as

time 0 for all plots (ripple center).

Having multiple extracellular recording sites aided in ripple detection for several reasons.

First, it allowed us to precisely position a single LFP electrode in the CA1 pyramidal cell

layer based on the well-known inversion of sharp wave polarity across the cell layer. Second,

it allowed us to confirm that the detected ripples were localized to the CA1 pyramidal cell

layer, which helps exclude electrical artifacts. Third, it enabled monitoring LFPs across the

neocortex and hippocampal subfields to confirm that the whole network was in a healthy

state, as established by previous multisite recordings.
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Quantification of intracellular and LFP waveforms

To quantify the intracellular response during ripples, we computed the change in sub-

threshold Vm relative to baseline in short time windows for the pre-ripple ramp (-150 to

-100 ms), the sharp wave associated depolarization (-5 to 5 ms), and the post-ripple hy-

perpolarization (75 to 125 ms). The baseline Vm was subtracted from the median Vm in

each component’s time window to yield the component’s amplitude. For neuron averaged

(Figure 3) and block-averaged (Figure 6) Vm waveforms, the baseline Vm was defined as

the average from -2 to -1.5 s. For intracellular ripples, the baseline was defined as the

average Vm from -25 to 25 ms (Figure 5). To quantify the amplitude of intracellular ripple

and LFP ripples, the root mean square of the ripple-band signal was computed from -25 to

25 ms.

The instantaneous phase, frequency, and power of juxtacellular, LFP, and intracellular

ripples were measured using the continuous wavelet transform and complex Morlet wavelets

with central frequencies from 60 to 200 Hz in 0.025 Hz steps and a length of 5 cycles.

For each sample, the frequency with the largest power was identified and its phase and

frequency taken as the waveform’s instantaneous value. For Figure 10 B-E and Figure 11,

the instantaneous estimates were Gaussian smoothed (σ = 1 ms). 8 neurons were excluded

from Figure 10 B-E due to poor instantaneous estimates in the beginning or end of the ±

20 ms window, though this did not change the major results, as evidence from Figure 10

F-H, which includes all neurons.

Intracellular spike detection and subthreshold Vm calculation

Spikes from whole-cell recordings were detected as peaks greater than 10 mV after high-

pass filtering the Vm (Parks-McClellan optimal equiripple FIR filter, 20-50 Hz transition
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band, 40 dB minimum attenuation in the stop bands). The subthreshold membrane poten-

tial was compute by linearly interpolating periods with action potentials from 3 ms before

to 5 ms after the spike peak. For spikes occurring within 20 ms of each other, as during

complex bursts, the first spike was linearly interpolated from 3 ms before its peak until the

sample showing the minimum value before the next spike. This procedure provided a lower

bound on complex spike waveforms, effectively revealing the slow, depolarizing component

underlying them while excluding fast action potential waveforms (Epsztein et al., 2011).

Following linear interpolation, the signals were low-pass filtered (Parks-McClellan optimal

equiripple FIR filter, 250-350 Hz transition band, 40 dB minimum attenuation in the stop

bands).

Juxtacellular spike detection

Juxtacellular spikes were detected as peaks greater than 0.25 mV after high-pass fil-

tering (Parks-McClellan optimal equiripple FIR filter, 60-80 Hz transition band, 40 dB

minimum attenuation in the stop bands). Single-unit isolation and stable spike waveform

were confirmed offline.

Conductance-based Vm/LFP model

The conductance-based “ball-and-stick” model (Figure 15 A) was composed of a spher-

ical perisomatic compartment with a radius of 10 µm and cylindrical apical and basal

dendritic compartments with 2 µm radii and lengths of 50 µm. 50 µm separated the center

of the perisomatic compartment and the center of the dendritic compartments, giving rise

to an axial resistance of 2.8 MΩ (intracellular resistivity = 0.7 Ω-m). Each compartment

contained a resting conductance with a reversal potential of -55 mV and a magnitude given

by the ratio of its surface area and the specific membrane resistance (15 kΩ-cm2). Similarly,
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each compartment had a capacitance given by the product of its surface area and the specific

membrane capacitance (1 µF/cm2). Additionally, the perisomatic compartment had an ex-

citatory synaptic conductance with a reversal potential of 10 mV and an inhibitory synaptic

conductance with a reversal potential of -60 mV. These synaptic conductances served as

the source of ripple-frequency (120 Hz) input to the model. To assess the dependence of

intracellular ripple phase on Vm, the model was run at perisomatic Vm ranges from -150 to

50 mV in steps of 0.5 mV accomplished through DC current injection into the perisomatic

compartment (Figure 15 B1-B2), as done experimentally (Figure 12 C). Using the model

with zero DC current injection, the LFP at an electrode 50 µm from the perisomatic com-

partment and equidistance from the dendritic compartments (ie in the middle of the “cell

layer”) was calculated using the transmembrane currents from each compartment at each

point in time. The extracellular space was assumed to be isotropic, uniform, and purely

resistive (ohmic) with a resistivity of 0.333 Ω-m. The perisomatic compartment was approx-

imated as a point source of current, while the dendritic compartments were approximated

as line sources (Holt and Koch, 1999, Einevoll et al., 2013).

Statistical analysis

To assess the significance of pre-ripple ramping in the neuron-averaged, ripple-triggered

Vm traces (Figure 3 C), 95% confidence intervals on the Vm were constructed at each sam-

ple from -2 s to 2 s. Pre-ripple confidence intervals were computed as the average of the

upper/lower 95% confidence intervals from -2 to -1.5 seconds. The mean Vm was consid-

ered significantly different (p<0.05) from baseline if it went above/below the upper/lower

baseline confidence intervals. Neurons were considered to have significant ramps if their

average Vm spent at least 150 ms continuously above or below the 95% baseline confidence
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intervals between -1 s and -100 ms. Linear regression was used to estimate the relationship

between baseline Vm and component amplitudes (Figure 3), LFP ripple power and fre-

quency (Figure 10 F), LFP and intracellular ripple frequency (Figure 10 G), and Vm and

intracellular ripple phase (Figure 12 B). Least squares estimates of the slope (β) were used

to assess significance at the p<0.05 level, except for Figures 5 and 6, which employed robust

regression implemented using iteratively reweighted least squares and a bisquare weighting

function on the residuals to mitigate the effect single ripple outliers. Averages are reported

as mean ± standard error of the mean (SEM) unless otherwise stated. All circular statistics

were performed using the CircStat toolbox (Berens, 2009).
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3 Brain State Dependence of Hippocampal Subthreshold Ac-
tivity in Awake Mice

3.1 Summary

Intracellular recordings of subthreshold activity in vivo have greatly contributed to our

understanding of the cellular mechanisms underlying state-dependent processing in neocor-

tex. In contrast, the modulation of the membrane potential of hippocampal neurons by

brain state has not been systematically characterized. To address this, we combined in vivo

whole-cell recordings from identified dentate granule cells and CA1 pyramidal neurons with

multisite extracellular recordings and behavioral measurements in head-restrained mice.

We show that membrane potential statistics (mean, variability, distance to threshold) are

systematically modulated across brain states. Furthermore, within individual states, rapid

variations in pupil diameter are reflected in membrane potential fluctuations. Finally, many

neurons exhibit ramps in the membrane potential starting approximately one second before

ripples, mirroring transitions to a network regime conducive for ripple generation. These

results provide evidence that coordinated shifts in the subthreshold dynamics of individual

neurons may contribute to the emergence of hippocampal activity patterns characteristic

of different brain states.

3.2 Introduction

Brain circuits exhibit distinct modes of activity (brain states) that reflect complementary

computational processes (Loomis et al., 1937, Saper et al., 2010, Harris and Thiele, 2011).

The circuit mechanisms regulating brain state have been the subject of intense investigation
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(Moruzzi and Magoun, 1949, Lee and Dan, 2012), and recent studies in neocortex have

found rapid state changes in awake, behaving animals with behaviorally-relevant effects on

the spiking patterns and encoding abilities of sensory and motor regions (Vyazovskiy et al.,

2011, Reimer et al., 2014, McGinley et al., 2015b). Importantly, intracellular recordings

of subthreshold activity during behavior have been instrumental in elucidating the cellular

mechanisms contributing to the emergence of network activity patterns (Steriade et al.,

2001, Poulet and Petersen, 2008, Polack et al., 2013, McGinley et al., 2015a, Schiemann

et al., 2015). In contrast, the brain state-dependence of hippocampal subthreshold activity

has not been systematically characterized in behaving animals.

The hippocampal formation plays a critical role in spatial navigation and the encoding,

consolidation, and retrieval of new episodic memories (Squire, 1992), with different brain

states thought to contribute differentially to each process. Because of this, state-dependent

patterns of spiking and local field potential (LFP) oscillations have been studied exten-

sively in the hippocampal formation (Vanderwolf, 1969, Vanderwolf, 1971, O’Keefe and

Nadel, 1978, Buzsaki et al., 1983, Buzsaki et al., 1992, Wilson and McNaughton, 1994,

Lubenov and Siapas, 2009, Kay et al., 2016). During wakefulness, periods of locomotion

are associated with robust theta (5-12 Hz) and gamma (30-80 Hz) oscillations in the LFP.

In this state, individual principal neurons, known as place cells, fire at particular spa-

tial locations and are largely silent otherwise (O’Keefe, 1976). It has been hypothesized

that memory encoding preferentially occurs during this state (Buzsaki, 1989). During quiet

wakefulness, the hippocampal LFP is characterized by large irregular activity (LIA), during

which trains of sharp waves often co-occur with high-frequency (80-250 Hz) ripple oscilla-

tions (Vanderwolf, 1969, O’Keefe, 1976, Buzsaki, 1986). Sharp-wave/ripples (SWRs) are
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associated with population bursts that “replay” previously experienced spatial trajectories

(Lee and Wilson, 2002, Foster and Wilson, 2006, Diba and Buzsaki, 2007). These replay

events are hypothesized to contribute to the consolidation and retrieval of newly formed

episodic memories (Carr et al., 2011). In addition to the theta and LIA states, a third

state exists, during which LFPs show a decline in broadband power. This state is termed

small irregular activity (SIA; Vanderwolf, 1971, O’Keefe and Nadel, 1978, Jarosiewicz and

Skaggs, 2004, Kay et al., 2016), though other terms have also been used (Lapray et al.,

2012, Katona et al., 2014). During periods of SIA, most principal cells stop firing, while a

small subset fire robustly and may code for spatial position in the absence of locomotion

(Jarosiewicz et al., 2002, Jarosiewicz and Skaggs, 2004, Kay et al., 2016). In addition to

principal cells, recent work also finds strong state-dependent firing patterns in identified

hippocampal interneurons during LIA, SIA, and Theta (Somogyi et al., 2014).

These findings come largely from experiments employing extracellular recording tech-

niques. While such recordings provide valuable information regarding state-dependent neu-

ronal firing patterns, intracellular measurements can reveal how individual neurons integrate

inputs to contribute to network activity. For this reason, subthreshold activity has been

investigated during ripples (Maier et al., 2011, English et al., 2014, Hulse et al., 2016) and

theta/gamma oscillations (Harvey et al., 2009, Epsztein et al., 2011, Pernia-Andrade and

Jonas, 2014, Bittner et al., 2015, Fuhrmann et al., 2015). Yet, the variation in membrane

potential dynamics of single hippocampal neurons across states has not been systemati-

cally characterized. This characterization is of fundamental importance because the resting

membrane potential and the amplitude of ongoing subthreshold fluctuations affect the re-

cruitment of neurons by controlling the amount of depolarization required to bring them
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to spike threshold. This, in turn, can contribute to the emergence of network patterns

characteristic of different brain states. Finally, recent experiments in neocortex have found

that rapid fluctuations in pupil diameter, reflecting the level of arousal, impact neocortical

subthreshold activity during quiet wakefulness (Reimer et al., 2014, McGinley et al., 2015b).

The influence of such changes on hippocampal subthreshold dynamics is unknown.

Here, we performed in vivo whole-cell recordings of the membrane potential (Vm) from

identified dentate granule cells and CA1 pyramidal neurons during LIA, SIA, and theta

states in awake mice. Using this approach, we demonstrate that hippocampal subthresh-

old activity is systematically modulated by brain state. In addition, we observe rapid

fluctuations in pupil diameter, even within sustained periods of LIA, that are reflected in

subthreshold activity changes. Finally, many neurons exhibit ramps in the membrane po-

tential starting approximately one second before ripples, reflecting transitions to a network

regime conducive for ripple generation.

3.3 Results

Differences in Membrane Potential Statistics Across Brain States

To investigate how hippocampal subthreshold activity changes with brain state, we

combined whole-cell recordings from identified dentate granule cells and CA1 pyramidal

neurons with simultaneous LFP measurements from a nearby multisite silicon probe in

awake, head-fixed mice that were free to walk on a spherical treadmill (Figure 16 A-C, Hulse

et al., 2016). Concurrently, behavioral activity was tracked by measuring locomotor velocity,

whisking activity, and pupil diameter. LFP sites spanned neocortex, hippocampal area CA1

and the dentate gyrus (DG), and parts of thalamus. We identified periods of wakefulness
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Figure 16: The subthreshold activity of hippocampal principal cells varies with brain state
in awake mice (Continued on following page)
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Figure 16: (A) Schematic of a mouse on the spherical treadmill. The approximate whole-
cell (red dot) and LFP (black dot) recording locations are marked over dorsal hippocampus
(blue). (B) Fluorescent image of 100 µm thick coronal section of dorsal hippocampus with
two stained dentate granule cells (green) and immunohistochemistry against calbindin (gray)
illustrating the placement of the multisite silicon probe and patch pipette. The scale bar is
500 µm. (C) Confocal image from section in (B) showing the two biocytin stained dentate
granule cells (green) with combined immunohistochemistry against parvalbumin (red) and
calbindin (gray). The scale bar is 100 µm. (D) Example of simultaneous intracellular
(blue), multisite LFP (black), locomotor velocity (magenta), whisking (green), and pupil
diameter (cyan) measurements during a period with LIA , SIA, and Theta. The legend
lists each state’s coloring in the LFP plot below. The red dot marks the channel within the
CA1 pyramidal cell layer showing LFP ripple oscillations. Blue vertical lines below LFPs
mark ripples. The blue dot marks an LFP channel in the DG. Example pupil fits are shown
below.

as LIA (37%), SIA (6%), or Theta (6%) based on the spectral content of hippocampal

LFPs, leaving the remaining 51% unlabeled (Figure 19 B; see methods). The objective

was to identify prototypical segments of sufficient duration, as opposed to providing an

exhaustive brain state assignment over the whole recording period. We then studied changes

in subthreshold activity and behavior during transitions to and within periods of LIA, SIA,

and Theta.

Figure 16 D shows an example whole-cell recording from a dentate granule cell with

simultaneous LFP and behavioral measurements during a period with LIA, SIA, and Theta.

Notice that, during periods of LIA, the pupil is constricted (or constricting), whisking and

locomotor activity are low, and the hippocampal LFP shows trains of large amplitude sharp

waves often co-occurring with high-frequency ripple oscillations in the CA1 pyramidal cell

layer. The membrane potential appears depolarized and has large amplitude fluctuations,

occasionally exceeding spike threshold. In this example, LIA was interrupted by two brief

(∼1 s) periods of SIA that were associated with whisking bouts and a microdilation of

the pupil. During these SIA epochs, the Vm appears hyperpolarized. The segment ends

with a period of theta oscillations associated with locomotion, high whisking activity, and
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a dilated pupil. During this period, the membrane potential was at an intermediate level

of depolarization and variability, compared to LIA and SIA. In order to investigate how

general these trends were across neurons, we recorded dentate granule cells (n=20) and CA1

pyramidal neurons (n=31) across a total of 13.4 hours of spontaneous activity and studied

the behavioral variables and Vm during transitions to LIA, SIA, and Theta (Figures 17,

18, and 19).

During transitions to LIA, most hippocampal neurons depolarized and the amplitude

of their subthreshold fluctuations increased (Figure 17). To assess the significance of these

changes, we compared the average Vm before and after transitions to LIA for each neuron

individually. Most neurons significantly depolarized during transitions to LIA (n=19/20

DG; n=22/31 CA1) and a small subset significantly hyperpolarized (n=1/20 DG; n=2/31

CA1; p<0.05, Wilcoxon signed-rank tests). In order to assess the magnitude of subthresh-

old fluctuations, we first computed the standard deviation of the membrane potential ir-

respective of brain state. By this measure, granule cells had a larger total Vm variability

(6.3 ± 0.9 mV) than CA1 pyramidal neurons (4.7 ± 0.6 mV), but these values include

contributions from state-dependent shifts in the average Vm, in addition to subthreshold

fluctuations. To isolate the subthreshold fluctuations from slower changes in the average

Vm, we high-pass filtered the membrane potential and compared the standard deviation

of the filtered trace before and after transitions to LIA. Similar to the average Vm, most

neurons showed a significant increase in Vm variability after transitions to LIA (n=17/20

DG; n=25/31 CA1), while one showed a significant decrease (n=0/20 DG; n=1/31 CA1;

p<0.05, Wilcoxon signed-rank tests). We also found notable differences between CA1 pyra-

midal neurons and DG granule cells. Specifically, during LIA, dentate granule cells were
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Figure 17: LIA is associated with a depolarized membrane potential and large subthreshold
fluctuations (A) Top panel shows a spectrogram of the average LFP power (z-score by
frequency) triggered on transitions to LIA, which occur at time 0. Bottom panels show
the average velocity, whisking, and pupil diameter (shaded regions mark mean ± SEM).
Note that transitions to LIA were associated with an increase in delta (0.5-3.5 Hz) and beta
(10-20 Hz) LFP power. (B) Scatter plots of median velocity, whisking, and pupil diameter
before (Pre-LIA) and after the transition (LIA). Each point comes from a single transi-
tion. The axes labels list the time windows used for computing median values. Locomotor
velocity (n=2729 transitions), whisking (n=2695 transitions), and pupil diameter (n=973
transitions) all showed a significant decrease across transitions to LIA (p<0.001, Wilcoxon
signed-rank tests). (C) Left panel shows the membrane potential of granule cells triggered
on transitions to LIA. Each row corresponds to a single transition, with Vm normalized
by subtracting the mean from -2 to 0 s. White lines on the right separate different single
neurons. The rows were sorted by each neuron’s average Vm change during transitions to
LIA. The right panel shows the same for CA1 pyramidal neurons. (D) The top left panel
shows the average Vm in red (black shaded region marks mean ± SEM) triggered on tran-
sitions to LIA for a single neuron marked by the red square in (C). Grey Vm traces come
from two example transitions. The top right panel shows the average Vm from the same
neuron, but zoomed in to better illustrate the change occurring during LIA transitions.
Two other example neurons are shown below. (E) The left panel shows a scatter plot of
mean Vm before (Pre-LIA) versus after (LIA) transitions to LIA. Each point is the average
from a single neuron. Dentate granule cells are colored blue, with filled circles marking
neurons with significant changes in Vm. CA1 pyramidal neuron averages are marked in
red. Similarly, the right panel shows the mean standard deviation of the Vm (high-pass
filtered above 5 Hz) before and after transitions to LIA. Axis labels list the time windows
used for computing means.
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Figure 18: SIA is associated with a hyperpolarized membrane potential and small sub-
threshold fluctuations (A) The top panel shows a spectrogram of the average LFP power
(z-score by frequency) triggered on transitions to SIA, which occur at time 0. The bot-
tom panels show the average velocity, whisking, and pupil diameter (shaded regions mark
mean ± SEM). Note that transitions to SIA are associated with a broadband decrease in
LFP power. (B) Scatter plots of median velocity, whisking, and pupil diameter before
(Pre-SIA) compared to after the transition (SIA). Each point comes from a single transi-
tion and axes labels list the time windows used for computing median values. Locomotor
velocity (n=1856 transitions; mostly reflecting postural adjustments), whisking (n=1825
transitions), and pupil diameter (n=558 transitions) all showed a significant increase across
transition to SIA (p<0.001, Wilcoxon signed-rank tests). (C) The left panel shows the
membrane potential of granule cells triggered on transitions to SIA. Each row corresponds
to a single transition and Vm was normalized by subtracting the mean from -2 to 0 s. White
lines on the right separate different single neurons. The rows were sorted by each neuron’s
average Vm change during transitions to SIA. The right panel shows the same for CA1
pyramidal neurons. (D) The top left panel shows the average Vm in blue (black shaded re-
gion marks mean ± SEM) triggered on transitions to SIA for a single neuron marked by the
blue circle in (C). Grey Vm traces come from two example transitions. The top right panel
shows the average Vm from the same neuron, but zoomed in to better illustrate the change
occurring during SIA transitions. Two other example neurons are shown below. (E) The
left panel shows a scatter plot of the mean Vm before (Pre-SIA) compared to after (SIA)
transitions to SIA. Each point is the average from a single neuron. Dentate granule cells
are colored blue, with filled circles marking neurons with significant changes in Vm. CA1
pyramidal neuron averages are marked in red. Similarly, the right panel shows the mean
standard deviation of the Vm (high-pass filtered above 5 Hz) before and after transitions
to SIA. Axis labels list the time windows used for computing means.
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more hyperpolarized and had larger Vm fluctuations (Vm = -58.1 ± 0.9 mV, σ = 3.0 ±

0.1 mV) compared to CA1 pyramidal cells (Vm = -53.6 ± 0.5 mV, σ = 1.9 ± 0.1 mV,

p<0.001). Across transitions to LIA, granule cells depolarized more than CA1 pyramidal

neurons (DG ∆Vm = 2.5 ± 0.5 mV; CA1 ∆Vm = 1.2 ± 0.3 mV, p<0.05), with a similar

increase in Vm variability (DG ∆σ = 0.4 ± 0.05 mV; CA1 ∆σ = 0.4 ± 0.07 mV; p=0.60;

Mann-Whitney U tests).

Changes in Vm across transitions to SIA were largely opposite to those associated

with transitions to LIA (Figure 18). Overall, most neurons significantly hyperpolarized

across transitions to SIA (n=17/20 DG; n=20/31 CA1), but a few significantly depolarized

(n=1/20 DG; n=2/31 CA1; p<0.05, Wilcoxon signed-rank tests). Similarly, most neu-

rons showed a significant decrease in Vm variability (n=14/20 DG; n=22/31 CA1; p<0.05).

During SIA, dentate granule cells were more hyperpolarized and had larger Vm fluctuations

(Vm = -62.5 ± 1.0 mV; σ = 2.4 ± 0.1 mV) compared to CA1 pyramidal neurons (Vm =

-55.9 ± 0.6 mV; σ = 1.2 ± 0.1 mV; p<0.001). Across transitions to SIA, dentate granule

cells hyperpolarized more than CA1 pyramidal neurons (DG ∆Vm = -3.3 ± 0.6 mV; CA1

∆Vm = -1.2 ± 0.3 mV; p<0.002) with a similar decrease in Vm variability (DG ∆σ = -0.5

± 0.07 mV; CA1 ∆σ = -0.6 ± 0.07 mV; p=0.13, Mann-Whitney U tests). In addition, the

more a neuron hyperpolarized across transitions to SIA, the more it tended to depolarize

across transitions to LIA (R2=0.78, p<0.001; Figure 19 C).

While transitions to Theta were associated with an increase in locomotor velocity, whisk-

ing, and pupil diameter, there were no significant changes in Vm or its variability across

the transitions (Figure 19 A). Since Theta periods tended to occur away from identified

LIA and SIA epochs, the resting Vm and the amplitude of subthreshold fluctuations during
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Figure 19: Behavioral measures and subthreshold activity during transitions to Theta (Con-
tinued on following page)
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Figure 19: (A1) Top panel shows a spectrogram of the average LFP power (z-score by
frequency) triggered on transitions to Theta, which occur at time 0. Bottom panels show
the average velocity, whisking, and pupil diameter (shaded regions mark mean ± SEM).
Note that transitions to Theta were associated with an increase in theta and gamma power.
(A2) Scatter plots of median velocity, whisking, and pupil diameter before (Pre-Theta)
compared to after (Theta). Each point comes from a single transition. Locomotor velocity
(n=168 transitions), whisking (n=163 transitions), and pupil diameter (n=63 transitions)
all showed a significant increase across transitions to Theta (p<0.001, Wilcoxon signed-
rank tests). (A3) Left panel shows the membrane potential of granule cells triggered on
transitions to Theta. Each row corresponds to a single transition. Vm was normalized by
subtracting the mean from -5 to 0 s. White lines on the right indicated divisions between
single neurons. The rows were sorted by each neuron’s average Vm change during transitions
to Theta. Right panel shows the same for CA1 pyramidal neurons. (A4) Top left panel
shows the average Vm in blue (black shaded region marks mean ± SEM) triggered on
transitions to Theta for a single neuron, as marked by the blue square in A3. Grey Vm
traces come from two example transitions. Top right panel shows the average Vm from the
same neuron, but zoomed in to better illustrate the lack of change occurring during Theta
transitions. Two other example neurons are shown below. (A5) Left panel shows scatter
plot of mean Vm before (Pre-Theta) compared to after (Post-Theta) transitions to Theta.
Each point is the average from a single neuron. Dentate granule cells are colored blue, with
filled circles marking neurons with significant changes in Vm (none). CA1 pyramidal neuron
averages are marked in red. Similarly, the right panel shows the mean standard deviation of
the Vm (high-pass filtered above 5 Hz) before and after transitions to Theta. (B) Pie charts
showing the percent of time spent in each state across all recordings (left panel), preceding
LIA (middle left panel), preceding SIA (middle right panel), and preceding Theta (right
panel). (C) Scatter plot showing correlation between change in Vm during transitions to
LIA (x-axis) compared to changes in Vm during transitions to SIA (y-axis). Each dot is the
average change in Vm from a single neuron, colored according to neuron type as in (A5).
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Figure 20: Membrane potential mean, variability, and distance to threshold are state-
dependent (A1) Scatter plot showing the average Vm during LIA compared to SIA. Each
point is the average from a single neuron. Dentate granule cells are colored in blue, with filled
circles marking neurons with significant changes in Vm. CA1 pyramidal neuron averages are
marked in red. (A2) Same as in A1, but comparing LIA and Theta. (A3) Same as in A1,
but comparing SIA and Theta. (A4) Circles mark each state’s Vm (median across neurons)
after subtracting the mean Vm across states (the dotted line marking zero; absolute value
reported on right) for dentate granule cells (blue) and CA1 pyramidal neurons (red). The
whiskers mark the 25th and 75th percentiles. Bars above indicate significant differences
(p<0.05) using a Mann-Whitney U test. (B) Same as in (A), but for Vm variability. (C)
Same as in (A), but for distance to spike threshold. The distance to spike threshold was
computed as the average spike threshold across LIA, SIA, and Theta epochs minus the
membrane potential from each state.
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Theta may still be quite different from those of LIA and SIA. To assess this, we compared

these quantities for the subset of dentate granule cells (n=14/20) and CA1 pyramidal cells

(n=25/31) that we recorded during all three states (LIA, SIA, and Theta). As shown in

Figure 20 A, most neurons were more depolarized during LIA and Theta compared to SIA,

and tended to be more depolarized during LIA than Theta. Similarly, Vm variability was

significantly larger during LIA compared to Theta and SIA, and tended to be higher during

Theta than SIA (Figure 20 B).

These results demonstrate that Vm and its variability are highly brain-state-dependent.

Such modulations in resting membrane potential and the amplitude of subthreshold fluctu-

ations may affect the amount of depolarization needed to bring neurons to spike threshold.

To measure this, we subtracted each neuron’s average spike threshold from its state-specific

average membrane potential. As shown in Figure 20 C, most hippocampal principal cells

were significantly closer to spike threshold during LIA compared to SIA and tended to be

closer during Theta than SIA. In addition, the spike threshold of dentate granule cells (-42.3

± 0.6 mV) was significantly more positive than CA1 pyramidal neurons (-46.3 ± 0.6 mV;

p<0.002, Mann-Whitney U test). Due to their higher spike threshold and hyperpolarized

resting membrane potential, dentate granule cells were two times farther from spike thresh-

old compared to CA1 pyramidal neurons during LIA, SIA, and Theta, which likely explains

the sparse activity of granule cells in vivo. Together, these results provide evidence that co-

ordinated modulations of membrane potential statistics may contribute to state-dependent

network activity by controlling the amount of depolarization needed to bring neurons to

spike threshold.

Origins of Pre-Ripple Ramps in the Membrane Potential of Hippocampal Neurons
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Figure 21: Transitions to LIA contribute to pre-ripple ramps in the membrane potential
(Continued on following page)
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Figure 21: (A) The top panel displays the average ripple-triggered LFP from -100 to 100
ms showing the average ripple in the CA1 cell layer. The middle panel shows the average
LFP power (z-score by frequency) from -3 to 3 s triggered on ripples, which occur at time
0. The bottom panels show the average velocity, whisking, and pupil diameter around
ripple onset (shaded regions mark mean ± SEM). (B) Scatter plots of median velocity
before (Baseline) compared after ripples (Post-Ripple), and whisking and pupil diameter
well before (Baseline) compared to just before (Pre-Ripple) ripples. Each point comes
from a single ripple and the axes labels list the time windows used for computing median
values. Ripples were preceded by a significant decline in whisking activity (n=3705 ripples)
and pupil diameter (n=1835 ripples; p<0.001, Wilcoxon signed-rank tests). (C) Ripple-
triggered averages of the subthreshold Vm for individual dentate granule cells that show
significant pre-ripple ramps (blue). The average Vm using only ripples occurring 3 seconds
into an LIA epoch are shown in purple. Blue and purple shaded regions mark the 95%
confidence intervals for each sample. The grey band marks the mean confidence intervals
of the pre-ripple Vm (from -3 to -2 s) using all ripples (from the blue trace). The average
Vm from this same interval is marked by the black line. The number of ripples entering
each average is reported in the legends. The inset illustrates how ramp amplitude (red bar)
was computed. (D) Same as in (C), but for three neurons showing smaller ramps that were
not statistically significant. (E) Scatter plot of the amount each granule cell depolarizes
during transitions to LIA versus the amplitude of its ramp. (F) Scatter plot showing the
amplitude of the ramps using all ripples (x-axis) compared to using only ripples occurring
greater than 3 seconds into an LIA epoch (y-axis).

In a previous study, we found that a subset of CA1 pyramidal neurons (n=5/30) show

depolarizing and hyperpolarizing ramps in their Vm starting approximately one second

before ripple onset (Hulse et al., 2016). Can changes in membrane potential associated

with transitions to LIA contribute to these ramps? To assess this, we first triggered the

LFP and behavioral variables on ripples detected in the CA1 pyramidal cell layer (Figure

21 A). Consistent with SWRs preferentially occurring during the LIA state (Figure 22 A),

delta and beta power in the hippocampal LFP were high around ripples, while whisking

activity and pupil diameter showed a significant decline preceding SWRs (Figure 21 A-B).

Furthermore, 48% of SWRs occurred within 3 sec following transitions to LIA (Figure 22

B). These findings demonstrate that transitions to LIA are indeed a factor contributing to

pre-ripple ramps in the Vm. They also make two specific predictions. First, similar ramps

should be present in DG granule cells, since these cells also depolarize across transitions
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Figure 22: Behavioral measures decrease leading up to ripples occurring at least 3 seconds
into a period of LIA (A) Pie chart showing the distribution of ripples occurring in each
state. (B) For ripples occurring within an epoch of LIA (82% overall), the distribution of
times between the start of LIA and ripple occurrence is plotted. (C) Top panels shows the
average ripple-triggered LFP from -100 to 100 ms. Middle panel shows the average LFP
power (z-score by frequency) from -3 to 3 s triggered on ripples, which occur at time 0.
Bottom panels show that average velocity, whisking, and pupil diameter (shaded regions
mark mean ± SEM). Only ripples occurring at least 3 seconds into a period of LIA were
considered. (D) Scatter plots of median velocity before (Baseline) compared after ripples
(Post-Ripple), and whisking and pupil diameter well before (Baseline) compared to just
before (Pre-Ripple). Each point comes from a single ripple. Only ripples occurring at
least 3 seconds into a period of LIA were considered. Whisking (n=1499 ripples) and pupil
diameter (n=659) showed a significant declines preceding ripples within sustained periods
of LIA (p<0.001, Wilcoxon signed-rank tests). (E) Scatter plot showing the correlation
between the amount each CA1 pyramidal neuron depolarizes during transitions to LIA
(x-axis) compared to the amplitude of its ramp (y-axis).
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to LIA. Indeed, half of dentate granule cells showed significant depolarizing ramps in their

pre-ripple Vm, and while not statistically significant, many others showed smaller ramps

(Figure 21 C-D). Second, the magnitude of the ramps should correlate with the change

in membrane potential associated with LIA transitions. Indeed, neurons that depolarized

more across transitions to LIA had larger depolarizing ramps, both in the dentate gyrus

(Figure 21 E; R2=0.7, p<0.001) and area CA1 (Figure 22 E; R2= 0.66, p<0.001).

Are transitions to LIA the sole driver of pre-ripple ramps? To answer this question, we

restricted our analysis to ripples occurring at least 3 seconds into a period of LIA (Figure 22).

Interestingly, both whisking and pupil diameter still showed significant declines preceding

ripples (Figure 22 D), suggesting that behavioral activity decreases leading up to ripples

even within the LIA state. In addition, though smaller, Vm ramps were still observed for

ripples occurring at least 3 seconds into a period of LIA (Figure 21 F). These findings

suggest that a reduction in behavioral activity preceding ripples within LIA epochs also

contributes to pre-ripple Vm ramps. Importantly, they also suggest that behavioral state

changes within LIA may affect network activity.

While previous studies have largely considered LIA to be a homogenous state, the above

results suggest that fluctuations in behavior within LIA may affect network activity. To

investigate this directly, we divided LIA epochs into periods where the pupil was constricting

(72.2% of time) or dilating (27.8% of time) and compared ripple rate, the amplitude of LFP

fluctuations, mean Vm, and the amplitude of Vm fluctuations (Figure 23). Figure 23 A

shows a clear example where a brief microdilation during an LIA epoch is associated with

a desynchronization of the LFP and a hyperpolarization and reduction in Vm variability.

Consistent with this example, periods of pupil dilation during LIA had significantly lower
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Figure 23: Fluctuations in pupil diameter during LIA are reflected in membrane potential
fluctuations of individual neurons (A) Example of correlated changes in pupil diameter,
LFPs, and subthreshold activity during a period of LIA. The top panel shows pupil diameter,
with grey box marking the period of dilation. The middle panel shows four LFPs around
the CA1 cell layer (marked by red dot). Blue ticks mark time of ripple occurrence. The
bottom panel shows subthreshold activity from a dentate granule cell. Notice that pupil
dilation is associated with a flattening of the LFP and a hyperpolarized Vm with low
variability. (B) Same as in (A), but for a period of LIA with two dilation periods and
subthreshold activity from a CA1 pyramidal cell. (C) Histogram showing the difference
in ripples rates for constriction compared to dilation across LIA epochs. Positive values
indicate a higher ripple rate during constriction relative to dilation. Epochs of LIA with
no ripples were excluded. Periods of pupil dilation had significantly lower ripple rates
(n=855 LIA epochs; p<0.001). (D) Scatter plot showing the standard deviation of the
LFP from stratum radiatum of CA1 (bottom LFP channel in A/B), where sharp waves
occur, during periods of constriction compared to periods of dilation. Each dot represents
one LIA epoch. Periods of pupil dilation had significantly smaller LFP fluctuations (n=855
LIA epochs; p<0.007). (E) Scatter plot showing the average Vm in LIA during periods
of constriction compared to periods of dilation. Each dot represents one LIA epoch and
dots are color coded by cell type (blue for DG, red for CA1). Periods of pupil dilation were
associated with significantly more hyperpolarized Vm (DG: n=10 granule cells from n=539
LIA epochs, p<0.007; CA1: n=9 CA1 pyramidal neuron from n=319 LIA epochs, p<0.001).
(F) Same as in (E), but for the standard deviation of the Vm. Periods of pupil dilation
had significantly smaller Vm fluctuations (DG: n=10 granule cells from n=539 LIA epochs,
p<0.001; CA1: n=9 CA1 pyramidal cells from n=319 LIA epochs, p<0.001; p-values from
Wilcoxon signed-rank tests).
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ripple rates, lower amplitude LFP fluctuations, a more hyperpolarized Vm, and smaller

amplitude Vm fluctuations (Figure 23 C-F). These results demonstrate that LIA is not a

homogenous state. Instead, constant fluctuations in the level of arousal drive changes in

subthreshold dynamics and network activity.

3.4 Discussion

By combining in vivo whole-cell recordings from identified dentate granule cells and CA1

pyramidal neurons with multisite LFP and behavioral measurements in awake mice, we

characterized how hippocampal subthreshold activity is modulated by brain and behavioral

state. We show that the membrane potential of most hippocampal neurons is depolarized

and has large amplitude fluctuations during LIA. In contrast, SIA is associated with a

hyperpolarized membrane potential and smaller subthreshold fluctuations. During Theta

oscillations, the Vm has intermediate levels of depolarization and subthreshold fluctuations.

In agreement with these changes, the distance to spike threshold is brain-state-dependent.

In addition, many hippocampal cells begin to depolarize approximately one second before

ripple onset. These Vm ramps correlate with brain state transitions to LIA as well as

smaller fluctuations in behavioral state within sustained periods of LIA. Finally, our results

provide evidence that rapid fluctuations in pupil diameter during periods of LIA mirror

modulations in ripple rate and subthreshold activity.

The statistics of the membrane potential reflect a combination of synaptic input patterns

and single-cell properties. There is a wealth of evidence from extracellular recordings that

spiking patterns, both within the hippocampus and its input areas, strongly depend on

brain state (O’Keefe, 1976, O’Keefe and Nadel, 1978, Buzsaki et al., 1983, Wilson and
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McNaughton, 1994, Chrobak and Buzsaki, 1996, Jarosiewicz et al., 2002, Lee and Wilson,

2002, Hafting et al., 2005, Foster and Wilson, 2006, Kay et al., 2016, Olafsdottir et al.,

2016). Furthermore, previous studies have suggested that single-cell properties, such as

membrane conductances or synaptic efficacy, may also be modulated by brain state (Winson

and Abzug, 1977, Winson and Abzug, 1978). However, these properties have been much

harder to study in vivo. Our results provide evidence that, in addition to input patterns,

single-cell properties are indeed modulated by brain state, altering the characteristics of

hippocampal neurons.

In particular, the gradual membrane potential depolarization starting approximately

one second before ripple onset in both dentate granule cells and CA1 pyramidal neurons

is difficult to account for based on the known firing properties of hippocampal neurons

around ripples (O’Keefe and Nadel, 1978, Buzsaki, 1986, Buzsaki et al., 1992, Wilson and

McNaughton, 1994). The predominant view is that the major source of excitatory drive

during ripples is the firing of CA3 pyramidal cells (Buzsaki, 2015). While the spiking

properties of these neurons have been extensively studied (Csicsvari et al., 2000), there is

no evidence that activity in CA3 ramps up as early as one second before ripples. In fact,

there is no evidence indicating that the spiking output of any principal neuron within the

hippocampus or entorhinal cortex can be the source of synaptic input accounting for the

pre-ripple ramps in the membrane potential.

Instead, the observed Vm ramps most likely reflect shifts in the properties of single

hippocampal neurons, presumably mediated by state dependent changes in the neuromod-

ulatory environment (Kalen et al., 1989, Kametani and Kawamura, 1990, Park et al., 1999,

Lee and Dan, 2012). There are two observations in our data that support this interpreta-
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tion. First, the amplitude of each neuron’s Vm ramp is highly correlated with its change in

average membrane potential across transitions to LIA. Hence, these transitions, which are

known to be associated with a shift in the neuromodulatory environment (Marrosu et al.,

1995), are a significant factor contributing to Vm ramps. Second, pupil diameter, which

reflects fluctuations in brain state and arousal (Reimer et al., 2014, McGinley et al., 2015b),

decreases starting approximately one second before ripple onset, mirroring the Vm ramps.

This suggests that fluctuations in the neuromodulatory environment within LIA may be a

second significant factor contributing to Vm ramps. Consistent with this interpretation, a

recent study identified a subset of Median Raphe neurons that ramp down their firing a

second or so before ripple onset, representing one potential source of this neuromodulatory

influence (Wang et al., 2015).

Since neuromodulators are expected to act globally on the circuit, the resulting coor-

dinated depolarization of most hippocampal neurons may reflect the network entering a

regime conducive to ripple generation and transmission. Specifically, the population burst

nucleated within CA3 should be able to effectively drive the CA1 network, largely in the

absence of entorhinal input. One mechanism that has been suggested to enable this is an

increase in the efficacy of the Schaffer collaterals during LIA (Winson and Abzug, 1977,

Winson and Abzug, 1978, Hasselmo, 1999, Hasselmo and McGaughy, 2004). The large sub-

threshold fluctuations we observe during LIA may reflect this increase in synaptic efficacy.

Our results also show that the membrane depolarization associated with LIA brings neurons

closer to spike threshold, which represents an additional mechanism that may enable the

effective transmission of ripples. We speculate that a depolarized and highly variable mem-

brane potential may support the nucleation of ripples in CA3 by affecting the probability
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that a subset of neurons is coactive. Shifts towards this regime occur not only during tran-

sitions to LIA, but, importantly, during smaller fluctuations in brain state (“microstates”)

within sustained periods of LIA. Seen in this light, pre-ripple ramps in the membrane poten-

tial reflect the network entering a state capable of generating ripples, while the intracellular

depolarization and ripple oscillations observed during SWRs reflect mechanisms specific to

the generation process (Ylinen et al., 1995, Hulse et al., 2016).

By combining in vivo whole-cell recordings with multisite LFP and behavioral mea-

surements, we show that the subthreshold dynamics of hippocampal neurons are strongly

modulated by brain state. These fundamental measurements reveal several novel features

of hippocampal processing. First, the distance to spike threshold is state-dependent. This

will affect the recruitment of neurons to network patterns by determining the amount of

depolarization needed to reach spike threshold. Second, many hippocampal neurons show

depolarizing ramps in their membrane potential starting approximately one second before

ripple onset. These ramps reflect coordinated shifts in subthreshold activity towards a state

conducive for ripple generation. Finally, even within well-characterized brain states, such as

LIA, rapid fluctuations in pupil diameter mirror modulations in the membrane potential of

hippocampal neurons. This suggests that fast modulations of arousal are reflected in coor-

dinated shifts in hippocampal subthreshold activity. These results support a dynamic view

of waking brain states, whereby coordinated fluctuations of single-cell properties contribute

to the emergence of network patterns in the hippocampus. Furthermore, they provide a

basis for future work dissecting the cellular and modulatory mechanisms supporting brain

state-dependent processing in the hippocampus.
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3.5 Experimental Procedures

Head fixation surgery

Male mice (n=23; C57BL/6-E; Strain Code 475; Charles River Laboratories) were sur-

gically implanted with a light-weight, stainless steel ring embedded in dental cement, which

allowed for mechanically stable head-fixation in the recording apparatus. A stainless steel

reference wire was implanted over the cerebellum for LFP silicon probe recordings. The

skull was leveled and the locations of the pipette and probe exposures were marked on the

skull over the left hemisphere. For whole-cell recordings in CA1, the probe exposure was

located -1.7 mm posterior and 2.0 mm lateral from Bregma and the patch exposure was -1.9

mm posterior and 1.5 mm lateral. For whole-cell recordings in the dentate gyrus, the probe

exposure was located -1.7 mm posterior and 1.75 mm lateral from Begma, and the patch

exposure was located -1.7 mm posterior and 0.65 mm lateral. Following surgery, mice were

returned to their home cage, maintained on a 12 hour light/dark cycle, and given access to

food and water ad libitum. Ibuprofen (0.2 mg/mL) was added to the water as a long-term

analgesic. Mice were given at least 48 hours to recover before the day of the experiment.

Exposure surgery

On the day of the experiment, mice (age P28 to P37) first underwent a short surgery

to expose the brain. While anesthetized with 1% isoflurane and head-fixed in the stereo-

taxic apparatus, two small exposures were drilled (pipette: 500 µm diameter; probe: 200

µm diameter) over the left hippocampus at the previously marked locations. A recording

chamber was secured on top of the head-fixation device and filled with pre-oxygenated (95%

O2, 5% CO2), filtered (0.22 µm) artificial cerebrospinal fluid (aCSF) containing (in mM):

125 NaCl, 26.2 NaHCO3, 10 Dextrose, 2.5 KCl, 2.5 CaCl2, 1.3 MgSO4, 1.0 NaH2PO4.
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Awake, in vivo recordings

Mice were head-fixed on top of a spherical treadmill secured on an air table (TMC).

The treadmill could rotate along a single axis, allowing the mice to run and walk freely.

A potentiometer connected to the axis of the treadmill allowed for behavioral readout of

locomotor velocity. To measure pupil diameter and whisker movements, the mouse was

illuminated with an infrared (850 nm) LED (M85OL3, Thorlabs) and imaged with a CCD

camera (scA640-70fm, Basler; with a Nikon AF Micro-Nikkor 105mm f/2.8 lens) positioned

60 degrees from the midline (mouse’s left) and 30 degrees down from the horizontal plane

(Sakatani and Isa, 2004). On either side of the treadmill, two platforms supporting mi-

cromanipulators (Sutter Instrument Company) allowed for precise positioning of a silicon

probe (mouse’s left) and glass pipettes (mouse’s right). A single-shank, 32-site silicon probe

(NeuroNexus) with 100 µm site spacing was inserted in the coronal plane (∼15 degree angle

pointing towards the midline) to a depth of 2600-3000 µm. Sites spanned all of neocortex,

area CA1, the dentate gyrus, and parts of the thalamus. The probe was adjusted so that

a recording site was positioned within the CA1 pyramidal cell layer for reliably recording

LFP ripple oscillations. The probes were grounded to the recording table and referenced to

a wire implanted over the cerebellum

To find the depth of the CA1 and dentate cell layers, we used artificial cerebrospinal

spinal fluid (aCSF) filled pipettes to perform juxtacellular (Pinault, 1996) recordings from

putative CA1 pyramidal and dentate granule cells. The location of the CA1 layer was

signaled by the occurrence of large amplitude ripples that appeared synchronously on the

pipette and probe site in the CA1 cell layer. The location of the dentate cell layer could

be estimated by the appearance of dentate spikes and large amplitude gamma oscillations.
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Long-taper pipettes (for juxtacellular and whole-cell recordings) were pulled from borosil-

icate capillaries (OD: 1.0 mm, ID: 0.58 mm; Sutter Instrument Company) using a Model

P-2000 puller (Sutter Instrument Company) to an inner tip diameter of ∼0.8-1.5 µm and

outer diameter of ∼2 µm (5-8 MΩ), and inserted into the brain in the coronal plane with

a ∼15 degree angle pointing away from the midline. For whole-cell recordings from CA1

pyramidal neurons, the probe and patch pipette were separated by approximately 200 µm in

the anterior-posterior direction and 100 µm in the medial-lateral. For whole-cell recordings

from dentate granule cells, the probe and patch pipette were separated by approximately

200 µm in the medial-lateral direction. Recordings (juxtacellular and whole-cell) were made

with a MultiClamp 700B amplifier (Molecular Devices). For juxtacellular recordings, the

capacitance neutralization circuit was off and the output was AC coupled and amplified

100x.

Whole-cell recordings were performed after the depth of the cell layer had been identified.

Pipettes were filled with an internal solution containing (in mM): 115 K-Gluconate, 10 KCl,

10 NaCl, 10 Hepes, 0.1 EGTA, 10 Tris-phosphocreatine, 5 KOH, 13.4 Biocytin, 5 Mg-ATP,

0.3 Tris-GTP. The internal solution had an osmolarity of 300 mOsm and a pH of 7.27

at room temperature. The membrane potential was not corrected for the liquid junction

potential. Whole-cell recordings were obtained “blind” according to previously described

methods (Margrie et al., 2002) in current clamp mode (Schramm et al., 2014). Capacitance

neutralization was set prior to establishing the GΩ seal. After obtaining the whole-cell

configuration, the neuron’s membrane potential was recorded in current clamp mode. Access

resistance was estimated online by fitting the voltage response to hyperpolarizing current

steps. Recordings were aborted when the access resistance exceeded 120 MΩ or the action
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potential peak dropped below 0 mV. One to five whole-cell recordings (n=31 CA1 pyramidal

cells; n=20 dentate granule cells) were performed per mouse. All animal procedures were

performed in accordance with National Institute of Health guidelines and with approval of

the Caltech Institutional Animal Care and Use Committee.

Signal acquisition

All electrophysiological signals and video acquisition was performed with custom Lab-

view software (National Instruments) that we developed. Electrophysiological signals were

sampled simultaneously at 25 kHz with 24 bit resolution using AC (PXI-4498, internal

gain: 30 dB, range: +/- 316 mV) or DC-coupled (PXIe-4492, internal gain: 0 dB, range:

+/- 10 V) analog-to-digital data acquisition cards (National instruments) with built-in

anti-aliasing filters for extracellular and intracellular/juxtacellular/velocity recordings, re-

spectively. Video (640x480 pixels; 45.7 pixels/mm) was acquired at 30 Hz and timestamped

to electrophysiological signals.

Histology and imaging

Following the experiment, mice were deeply anesthetized with 5% isoflurane, decapi-

tated, and the brain extracted to 4% PFA. Staining of biocyin-filled cells for morphologi-

cal identification was performed according to previously described methods (Horikawa and

Armstrong, 1988). Brains were fixed at 4 C in 4% paraformaldehyde overnight and trans-

ferred to 0.01 M (300 mOsm) phosphate buffered saline (PBS) the next day. Up to one

week later, brains were sectioned coronally (100 µm) on a vibrating microtome (Leica), per-

meabilized with 1% Triton X-100 (v/v) in PBS for 1-2 h, and incubated overnight at room

temperature in PBS containing avidin-fluorescein (1:200, Vector Laboratories), 5% (v/v)

normal horse serum (NHS), and 0.1% Triton X-100. Sections were rinsed in PBS between
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each step. The next day, sections containing biocytin stained neurons were identified on

an inverted epifluorescent microscope (Olympius IX51) for further immunohistochemical

processing.

To aid in classifying recorded neurons as CA1 pyramidal or dentate granule cells, we

performed immunohistochemical staining against calbindin (CB) and parvalbumin (PV).

Sections containing biocytin-stained neurons were first incubated in blocking solution con-

taining 5% NHS, 0.25% Triton X-100, and 0.02% (wt/v) sodium azide in PBS. Next, slices

were incubated in PBS containing primary antibodies against CB (Rabbit anti-Calbindin

D-28k, 1:2000, Swant) and PV (Goat anti-parvalbumin, 1:2000, Swant) overnight. After

thorough rinsing in PBS, slices were incubated in PBS containing secondary anitbodies

CF543 donkey anti-rabbit (1:500, Biotium) and CF633 donkey anti-goat (1:500, Biotium).

Processed slices were rinsed and mounted in antifading mounting medium (EverBrite, Bi-

otium).

Stained slices were imaged on an inverted confocal laser-scanning microscope (LSM

710, Zeiss). Biocytin-stained neurons were unambiguously classified as CA1 pyramidal

neurons if their soma was located in the CA1 pyramidal cell layer, showed a morphology

characteristic of these neurons (bifurcating apical dendrites, dendritic spines, etc.), had PV-

negative soma, and showed electrophysiological properties consistent with CA1 pyramidal

neurons. Similarly, granule cells had PV-negative soma located in the dentate granule cell

layer and a cone-shaped dendritic tree extending into the molecular layer.

Measuring and setting access resistance

Access resistance was estimated online using custom-written software in Labview that

communicated with the software (Commander, Molecular Devices) controlling the Multi-
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Clamp 700B amplifier through an application programming interface (API). To estimate the

access resistance, the bridge balance was temporarily turned off. Then, two -100 pA current

pulses (250 ms duration, 250 ms inter-pulse interval) were delivered, the first 50 ms of the

hyperpolarizing voltage responses was fit using a simple model, and if the R2 fit exceeds

0.99, the bridge balance was set to its new value, otherwise it was returned to the previous

value. This procedure was performed once every minute during whole-cell recordings. In

addition, all recording parameters in the Commander software were acquired once every

second using the API, time stamped to electrophysiological signals, and saved for offline

review. The pipette’s voltage response to hyperpolarizing current steps was fit online using

a simple double exponential model (Anderson et al., 2000). The computational simplicity

of this model sped online fitting. For offline estimates, we used a biophysically-inspired,

single-compartment model (de Sa and MacKay, 2001). The results obtained from the two

models were nearly identical under our recording conditions.

Behavioral Variable Analysis

To measure locomotor velocity, a potentiometer was connected to the axis of the tread-

mill and configured so its output voltage went from 0 to 5 V over the course of a single

revolution. Samples where the voltage rolled over from 5 to 0 V (and 5 to 0 V) were

excluded. The voltage trace was then converted from volts to distance (cm) using the cir-

cumference of the ball (63.8 cm per 5 V). The position data was downsampled from 25 kHz

to 1 kHz and differentiated to obtain the velocity (in cm/s). Finally, the velocity signal was

smoothed with a Gaussian (σ=0.5 s).

To measure whisking, a region of interest encompassing the mouse’s whiskers was se-

lected and the mean absolute difference in pixel intensity across frames was computed and
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normalized by diving by its median. The resulting trace was smoothed with a Gaussian

(σ=0.05 s). Whisking is reported in arbitrary units (AU) and reflects both movements of

the whiskers and the snout.

Pupil diameter data came from a subset of recordings (n=10/20 granule cells; n=9/31

CA1 pyramidal neurons) with high-quality pupil imaging. To measure pupil diameter, a

region of interest encompassing the mouse’s left eye was taken. The specular reflection

of the IR light source on the eye was masked and the image contrast was adjusted to

emphasize the difference in pixel intensity between the pupil and the rest of the eye. Next,

the image was inverted and smoothed with a 2-D Gaussian (σ = 5 pixels, 0.109 mm).

Candidate circles fitting the pupil were detected using the Circular Hough Transform with

two diameter ranges (20-40 pixels, 0.437-0.875 mm; and 21-60 pixels, 0.919-2.626 mm), and

the circle with the largest peak in the accumulator matrix was taken as the pupil fit. The

resulting pupil diameter trace was smoothed with a Gaussian (σ=0.25 s).

Intracellular spike detection, spike threshold measurement, and subthreshold Vm calculation

Spikes from whole-cell recordings were detected as peaks greater than 10 mV after high-

pass filtering the Vm (Parks-McClellan optimal equiripple FIR filter, 20-50 Hz transition

band, 40 dB minimum attenuation in the stop bands). Spike threshold was calculated

for each spike similar to previously describes methods (Epsztein et al., 2011). In short,

spike threshold was defined as the voltage where dV/dt exceeded 5 V/s or 0.33 of the

spike’s maximum dV/dt, whichever was smaller. Only spikes occurring greater than 100 ms

after the previous spike were considered, since spike threshold increases within bursts. To

compute each neuron’s average spike threshold, we used all spikes occurring in LIA, SIA,

or Theta. Each neuron’s average spike threshold was used to compute its distance to spike
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threshold by subtracting its state-dependent average Vm (Figure 20).

The subthreshold membrane potential was computed by linearly interpolating periods

with action potentials from 3 ms before to 5 ms after the spike peak. For spikes occurring

within 20 ms of each other, as during complex bursts, the first spike was linearly interpolated

from 3 ms before its peak until the sample showing the minimum value before the next spike.

This procedure provided a lower bound on complex spike waveforms, effectively revealing

the slow, depolarizing component underlying them while excluding fast action potential

waveforms (Epsztein et al., 2011). Following linear interpolation, the signals were low-pass

filtered (Parks-McClellan optimal equiripple FIR filter, 250-350 Hz transition band, 40 dB

minimum attenuation in the stop bands).

Ripple detection

LFP ripple oscillations were detected as transient increases in ripple-band power from

the probe site located in the CA1 pyramidal cell layer. To compute ripple band power, LFPs

were filtered between 80-180 Hz (Parks-McClellan optimal equiripple FIR filter, 80-180 Hz

pass band, 50-80 and 180-200 Hz transition bands, 60 dB minimum attenuation in the

stop bands), the ripple-band envelope was computed as the instantaneous amplitude from

the Hilbert transform, and the envelope was low-pass filtered (Parks-McClellan optimal

equiripple FIR filter, 20-30 Hz transition band, 40 dB minimum attenuation in the stop

bands). From this signal, an upper threshold was set as 4.5-5.5 times the median. A

lower threshold was set as half the upper threshold. Ripples were detected as peaks in the

ripple band envelope above the upper threshold, and with time between positive-going and

negative-going lower threshold crossings longer than 30 ms. Ripples meeting these criteria,

but with peaks less than 60 ms apart, were merged. The time of ripple occurrence was
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defined as the sample with the largest amplitude (positive peak) in the ripple band within

the detected ripple and used as time 0.

Brain State Identification

All offline analysis was performed with Matlab (MathWorks). Brain state identification

was carried out in four stages. First, the hippocampal LFPs were subdivided in contiguous

500 ms segments and represented as points in a six-dimensional feature space based on

their spectral content. Second, a subset of the points were labeled as Theta or LIA using

a semi-automated approach described below. Third, these labeled examples were used to

initialize a K-means classifier that categorized all segments as LIA, Theta, or Unlabeled.

Fourth, Unlabeled segments with low broadband power were categorized as SIA. A more

detailed description of these steps is given below.

LFPs were extracted from 5 sites in the hippocampal formation, positioned between 200

µm above (in stratum oriens) to 600 µm below the CA1 pyramidal cell layer (in 200 µm

increments). LFPs were low-pass filtered and downsampled from 25 kHz by a factor of 96 (to

∼260 Hz). A time-frequency decomposition was performed using complex Morlet wavelets

with central frequencies from 0.3 to 80 Hz in 0.1 Hz steps and a bandwidth parameter of 10.

Power at each sample and frequency was computed as the modulus of the complex wavelet

coefficient. To obtain a single time-frequency representation for state identification, power

values across the 5 sites were averaged. Next, a six dimensional feature space was created

by calculating the average z-scored LFP power in contiguous 500 ms segments. The features

used were: theta (6-9 Hz), delta (0.5-3.5 Hz), theta/delta, beta (10-20 Hz), gamma (30-50

Hz), and Total Power (average power between 0.3-80 Hz; before averaging, each frequency

bin was z-scored across time).
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A subset of the points in the feature space were labeled using the following procedure.

Periods of Theta were detected as epochs with theta/delta >2.25 times the median. Theta

periods less than 3 seconds apart were first joined, and then periods less than 5 seconds

were excluded. Transitions out of LIA were detected by finding instances where the average

Total Power in a 3 second window declined by 0.7 in the subsequent 2 seconds. Segments

overlapping detected Theta periods were labeled as Theta. Segments occurring from 0 to 4

seconds before transitions out of LIA were labeled as LIA. Segments occurring 0 to 1 second

following transitions out of LIA were marked Unlabeled.

The average feature vector for these 3 states was used to initialize a K-means classifier

on all feature vectors. After clustering, Unlabeled segments with Total Power less than

-1.25 were defined as SIA. Theta segments were merged/excluded as described above. LIA

segments <500 ms apart were first merged, and then segments shorter than 2 seconds were

excluded. SIA segments less than 1 second were excluded. For Figure 17-18, the LFP,

behavioral variables, and Vm were triggered on transitions to LIA and SIA. Because these

transitions could be fast, but our staging was done in 500 ms increments, we adjusted the

start times for transitions to LIA and SIA by finding the sample where Total Power in

the LFP showed the largest increase (for LIA) or decrease (for SIA) within 500 ms of the

original start times.

Quantification and statistical analysis of behavioral variables and subthreshold activity

To quantify the change in behavioral variables and subthreshold activity upon transitions

into LIA, SIA, and Theta (Figures 17, 18, and 19), we compared the average values in pre-

and post-transition time windows. Preliminary analysis showed that different variables

had different dynamics around state transitions, so slightly different windows were selected
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and fixed for further analysis. For transitions to LIA and SIA, we compared the median

velocity, whisking activity (Pre: -2 to -1.5 s; Post: 0 to 0.5 s), pupil diameter (Pre: -

1 to -0.5 s; Post: 1.5 to 2 s), Vm mean and variability (Pre: -2 to -1 s; Post: 0 to 1

s). For transitions to Theta, we compared the median velocity, whisking, pupil diameter

(Pre: -2 to -1.5 s; Post: 3 to 4 s), Vm mean and variability (Pre: -2 to -1 s; Post: 4

to 5 s). Vm variability was computed as the standard deviation of the high-pass filtered

subthreshold Vm (Parks-McClellan optimal equiripple FIR filter, 4.8-5 Hz transition band,

40 dB minimum attenuation in the stop bands) to exclude the contribution of average shifts

in membrane potential that occur around the transitions. Similarly, to quantify changes in

behavioral variables around ripples (Figure 21 and Figure 22), we compared their median

activity in time windows that reflect each signal’s dynamics around ripples. We compare

the velocity well before ripples (-3 to -2.75 s) to afterward (0.75 to 1 s) to assess whether

there was an increase in locomotor activity after ripples. Similarly, we compared whisking

and pupil activity well before (-3 to -2.75 s) to just before (-0.25 s to 0 s) ripple onset to

assess whether there was a decrease in activity leading up to ripples. Wilcoxon signed-rank

tests were used to assess significant differences in the above values.

To quantify the difference in neuronal activity between states (Figure 20), we computed

the average subthreshold Vm and Vm variability (standard deviation of the high-pass fil-

tered subthreshold Vm) for every epoch of LIA (0 to 1 s after transitions LIA), SIA (0 to 1

s after transitions to SIA), and Theta (4 to 5 s after transitions to theta) for each recording.

Only neurons with data from all three states were included in the analysis. Mann-Whitney

U tests were used to assess differences between states for each individual neuron (indicated

by fill of circles in Figure 20 A1-A3, B1-B3, C1-C3), and Wilcoxon signed-rank tests were
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used to test for significant difference across all neuron averages (Figure 20 A4, B4, C4).

To assess the significance of pre-ripple ramping in the neuron-averaged, ripple-triggered

Vm traces (Figure 21 C-D), 95% confidence intervals on the subthreshold Vm were con-

structed at each sample from -3 s to 3 s. Pre-ripple confidence intervals were computed as

the average of the upper/lower 95% confidence intervals from -3 to -2 seconds. The mean

Vm was considered significantly different (p<0.05) from baseline if it went above/below

the upper/lower baseline confidence intervals. Neurons were considered to have significant

ramps if their average Vm spent at least 150 ms continuously above or below the 95%

baseline confidence intervals at least -100 ms before the ripple.

In order to evaluate the effect of pupil diameter on neuronal activity during LIA (Figure

23), we divided every LIA epoch from all neurons into periods where the pupil was con-

stricting and periods where the pupil was dilating. LIA epochs that did not contain both

periods of constriction and dilation were excluded (31% of LIA epochs). Next, we compared

the average ripple rate, LFP amplitude (standard deviation of the LFP from the channel

200 µm below the CA1 pyramidal cell layer, where sharp waves occur), mean subthreshold

Vm, and Vm variability for periods of pupil constriction and dilation. Wilcoxon signed-rank

tests were used to assess the significance of differences in neuronal activity between pupil

states.
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4 Membrane Potential Dynamics of Granule Cells During
Hippocampal Ripples and Dentate LFP Spikes in Awake
Mice

4.1 Summary

The hippocampal formation generates two distinct population events during quiet wakeful-

ness and slow wave sleep, known as sharp-wave/ripples and dentate LFP spikes. Previous

studies have suggested that dentate spikes have a suppressive effect on the CA1-CA3 network

and may function to delay the occurrence of sharp-wave/ripples, but whether and how these

two population events interact remains poorly understood. Furthermore, dentate granule

cells are known to receive excitatory input during sharp-wave/ripples, but the source of this

excitation is not entirely known. To address these issues, we combined whole-cell recordings

from identified dentate granule cells with simultaneous LFP measurements from a nearby

multisite silicon probe in awake, head-fixed mice. Our results provide evidence for coordi-

nated interactions between sharp-wave/ripples and dentate spikes and suggest that granule

cells receive their main excitatory input from CA3 during SWRs. These findings inform

models of sharp-wave/ripple generation and their interaction with dentate spikes.

4.2 Introduction

During periods of quiet wakefulness and slow wave sleep, the hippocampal formation gen-

erates spontaneous activity that is thought to support memory consolidation and retrieval,

but the underlying mechanisms remain poorly understood (Buzsaki, 1989, Carr et al., 2011).

Two main population events have been identified: sharp-wave/ripples (SWRs) and dentate

LFP spikes (DSs) (O’Keefe and Nadel, 1978, Buzsaki, 1986, Bragin et al., 1995). SWRs are
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associated with population bursts throughout the hippocampal formation and associated ar-

eas, but are likely nucleated in the recurrent CA3 network (Buzsaki, 2015). The CA3 burst

provides excitatory input to CA1 pyramidal neurons, producing an intracellular depolariza-

tion and associated negative sharp wave in stratum radiatum (Ylinen et al., 1995, Hulse et

al., 2016). This excitatory input also generates a population burst in area CA1. During the

burst, dynamic interactions between pyramidal cells and interneurons organize the firing

of the network into a high-frequency oscillation (80-250 Hz), or ripple, which is thought to

increase its impact on downstream brain networks (Siapas and Wilson, 1998, Wierzynski

et al., 2009, Stark et al., 2014). Interestingly, the neurons that participate in these bursts

often “replay” previously experienced spatial trajectories (Wilson and McNaughton, 1994).

In addition, previous work in anesthetized rats suggested that the CA3 bursts can feedback

to the dentate gyrus (DG) and depolarize granule cells (Penttonen et al., 1997). Similarly,

the CA1 burst is inherited by the entorhinal cortex (EC) and associated areas (Chrobak

and Buzsaki, 1996), which could potentially provide excitatory input to granule cells as

well. However, which of these two pathways provides the major source of excitation to the

dentate gyrus during SWRs remains an open question.

In addition to SWRs, brief (∼20 ms), large-amplitude (> 1mV) positive waves can be

observed in the LFP of the dentate hilus during quiet wakefulness and slow wave sleep,

and have been termed dentate spikes (Bragin et al., 1995). Because these events are asso-

ciated with current sinks in the dentate molecular layer and their incidence decreases after

entorhinal lesions, they are likely generated by a population burst in the entorhinal cortex

(Bragin et al., 1995, Penttonen et al., 1997). Consistent with this, previous work in anes-

thetized rats has demonstrated that granule cells often depolarize during DSs (Penttonen
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et al., 1997). Interestingly, despite providing strong excitatory drive to the dentate gyrus,

DSs are often associated with decreased activity in the CA1-CA3 network. Specifically,

it was reported that SWRs rarely followed DSs within 200 ms, but that SWR-associated

activity in CA1 often preceded DSs by ∼100 ms (Bragin et al., 1995). Because of this, the

authors hypothesized that one function of DSs may be to delay the occurrence of SWRs

by providing a suppressive effect on the excitability on the CA3-CA1 network (Bragin et

al., 1995, Penttonen et al., 1997). However, these analyses were based on relatively few

DSs and may have missed subtle interactions between these two events. Therefore, whether

there are coordinated interactions between SWRs and DSs remains unresolved.

In order to address these questions, we combined whole-cell recordings from identified

dentate granule cells with simultaneous LFP measurements from a nearby multisite silicon

probe in awake, head-fixed mice that were free to walk on a spherical treadmill (Figure 24

A-C). Using this approach, we found that granule cells often depolarize during and ∼100 ms

before SWRs, primarily driven by feedback excitation from CA3. Similarly, DSs occur at

significantly higher rates during and ∼100 ms before SWRs, but these do not contribute to

the SWR-associated depolarization of granule cells on average. Finally, we provide evidence

that a subset of DSs may prime the hippocampal formation for SWR generation.

4.3 Results

During periods of quiet wakefulness, ripple oscillations were commonly observed in the

CA1 pyramidal cell layer and DSs were observed in the hilus. Figure 24 D shows four

1-second periods of data during which SWRs and DSs co-occurred. Granule cells often

showed large depolarizations concomitant with dentate LFP spikes. In comparison, the
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Figure 24: Simultaneous extracellular and intracellular recording of dentate spikes and
sharp-wave/ripples (A) Schematic of a mouse on the spherical treadmill. The approxi-
mate whole-cell (red dot) and LFP (black dot) recording locations are marked over dorsal
hippocampus (blue). (B) Fluorescent image of 100 µm thick coronal section of dorsal hip-
pocampus with two stained dentate granule cells (green) and immunohistochemistry against
calbindin (gray) illustrating the placement of the multisite silicon probe and patch pipette.
The scale bar is 500 µm. (C) Confocal images showing four biocytin stained dentate granule
cells (green/magenta) with combined immunohistochemistry against parvalbumin (red; left
image only) and calbindin (gray). The scale bar is 100 µm. (D) Four 1-second examples of
multisite LFP (black) and simultaneous intracellular (blue) recordings during periods when
ripples and DS co-occur. Membrane potential traces are from a dentate granule cell. The
location of the CA1 pyramidal cell layer is marked by the red circle and dentate granule
cell layer by the blue circle. Blue and red ticks below the LFP traces mark the occurrence
of dentate spikes and CA1 ripples, respectively. LFPs come from 18 channels spanning the
hippocampal formation.
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membrane potential dynamics of granule cells during SWRs were more diverse and harder

to identify by looking at single SWRs. To address this, we triggered the Vm of granule cells

on ripples detected in the CA1 pyramidal cell layer. The largest peak in the ripple-band

LFP was used as time 0, and all times are reported relative to this point. As shown in

Figure 25 A, the average granule cell response was composed of two depolarizations: one

that occurred during the ripple (peak at -2.5 ms) and one that preceded the ripple by 102.5

ms. These two depolarizations could be observed in many single-neuron averages (∼7 of 20

GCs) and appeared during a large fraction of single-ripples (Figure 25 A, top panel). What

is driving these depolarizations? A previous intracellular study performed in anaesthetized

rats reported that granule cells depolarized during SWRs and suggested this may be due to

excitatory feedback from CA3 to granule cells (Penttonen et al., 1997). Similarly, this may

also explain the depolarization we observe during the SWR.

The preceding depolarization, occurring approximately 100 ms before the SWR, was

not reported in anesthetized animals and may therefore be specific to non-anesthetized

animals. What is driving this depolarization? SWRs rarely occur in isolation. Instead,

trains of sharp waves occur rhythmically at ∼8-10 Hz and are occasionally accompanied

by a ripple oscillation in CA1. Such sharp wave trains are likely driven by rhythmic pop-

ulation bursts nucleated in the recurrent CA3 network, which may also provide feedback

excitation to granule cells. If rhythmic population bursts in CA3 do contribute to the de-

polarization 100 ms before the SWR, then we should observe LFP sharp waves in CA1

that occur approximately 100 ms before the ripple as well. Indeed, as shown in Figure 25

B, sharp waves consistently preceded ripples by ∼100 ms. If rhythmic population bursts

contribute to the peak at -100 ms, why isn’t there a prominent third peak 100 ms after
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Figure 25: Dentate granule cells depolarize during and 100 ms before CA1 ripples (A)
Top: Ripple-triggered subthreshold Vm of granule cells. Each row is normalized to have
zero mean (Vm Norm). Data are from 20 granule cells recorded in 8 mice. The largest
peak in the LFP ripple was used as time 0. White lines on the right separate the different
neurons. Bottom: Grand-average, ripple-triggered subthreshold Vm. Shaded region marks
the mean±SEM. Note the two peaks in the Vm: one at -102.5 ms and one at -2.5 ms. Note
also that the two peaks occur for many single-neurons and during a large fraction of ripples,
as evidenced by the two yellow bands in the top panel. (B) Top: Ripple-triggered LFP from
CA1 stratum radiatum showing the occurrence of sharp waves around the ripple. Data are
from 19 mice, including the 8 used for granule cell intracellular experiments in A. White
lines on the right separate the different mice. Bottom: Grand-average, ripple-triggered LFP.
Note the two troughs in the LFP: one at -122.6 ms and one at 5.6 ms. A third, smaller
trough can be seen at 144.3 ms. Note also that rhythmic sharp waves appear for nearly
every mouse and for a majority of ripples, similar to the double peak in the granule cell Vm
from A.
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the ripple? One potential answer is that SWRs produce a long-lasting hyperpolarization

that is likely responsible for terminating the population burst and may create a refractory

period for SWR generation (English et al., 2014, Hulse et al., 2016), which may explain the

absence of another prominent depolarization ∼100 ms after the ripple. However, it should

be noted that there appears to be a much smaller depolarization and concomitant sharp

wave ∼140 ms after the ripple, though their amplitudes are small. Together, these results

provide circumstantial evidence that rhythmic population bursts nucleated in CA3 provide

excitatory input to granule cells during quiet wakefulness.

Previous studies have suggested that SWRs and DSs rarely co-occur and that one func-

tion of DSs may be to delay the occurrence of SWRs by providing a suppressive effect

on the excitability on the CA3-CA1 network (Bragin et al., 1995, Penttonen et al., 1997).

Specifically, it was reported that SWR-associated activity in CA1 often preceded DSs by

∼100 ms, but that SWRs rarely followed DS within 200 ms (Bragin et al., 1995). In our

raw data, we observed instances where SWRs and DSs co-occurred (Figure 24 D), raising

the possibility that there may be coordinated temporal interactions between the two events.

To address this, we plotted the timing of DSs around ripples and computed the average DS

rate triggered on ripples (Figure 26 A). Surprisingly, the DS rate showed two large peaks:

one at -101.4 ms and one at 3.3 ms, suggesting that DSs can co-occur with or precede SWRs

by ∼100 ms. The double peak in the ripple-triggered DS rate could be observed for 16 of

19 mice. And for all 19 mice, the average DS rate was larger around the first and second

peaks than away from ripples (Figure 26 B1-B2). To assess the precise timing between

SWRs and DSs, we plotted histograms of when the peaks in the DS rate occurred for each

mouse (Figure 26 C). Across mice, the first peak occurred at -101.1±3.8 ms and the second
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at 5.3±1.6 ms. The timing of these peaks in the ripple-triggered DS rate nearly coincided

with the timing of the two intracellular depolarizations (Figure 25 A), suggesting that, in

addition to feedback excitation from CA3, DSs may also contribute to the intracellular

depolarizations. If this were the case, then triggering the Vm on ripples that occur in the

absence of dentate spikes should reduce the size of the two depolarizations. In contrast, we

observed that the amplitude of the two depolarizations was not affected by the absence of

overlapping DSs (data not shown), suggesting that DSs do not appreciably contribute to

the average granule cell Vm around SWRs. This suggests that area CA3 provides the main

excitatory input to granule cells during SWRs.

What is responsible for the large increase in the DS rate around ripples, and how often

do DSs and SWRs co-occur? Over all 46,314 ripples, 3,970 (8.6%) were either preceded

by, or occurred during, a dentate spike (Figure 26 D). A previous study provided evidence

that SWRs occasionally precede DSs, and suggested that the SWR-associated population

bursts in entorhinal cortex may excite the dentate gyrus and generate a DS (Bragin et

al., 1995). While the delay they report (∼100 ms) is larger than what we observe (5.3

ms), it is still conceivable that the increase in the DS rate during ripples is driven by a

SWR-associated population burst in entorhinal cortex. What then is responsible for the

tendency of DSs to precede SWRs by 100 ms? It is well known that ripples occasionally

occur as doublets, with one ripple preceding the other by ∼100 ms, which could potentially

explain the first peak in the DS rate. This predicts that all DSs contributing to the peak at

-100 ms should be accompanied by a SWR. To test this, we divided ripples into 6 mutually

exclusive categories depending on whether a dentate spike occurred preceding or during the

ripple, and whether the ripples or DSs occurred alone or as a doublet, as diagramed in the
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Figure 26: Coordinated interactions between hippocampal ripples and dentate LFP spikes
(Continued on following page)
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Figure 26: (A) Top: Ripple-triggered raster plot of dentate spike times. Red lines to the
right separate the different mice. Data come from same 19 mice as in Figure 25 B. Bottom:
Grand-average, ripple-triggered dentate spike rate. DS rate was computed by smoothing
the DS times with a Gaussian (σ=10 ms). Note the two peaks in the DS rate: one at
-101.4 ms and one at 3.3 ms. (B1) Scatter plot between baseline DS rate and average DS
rate during the first peak (-105 to -95 ms). Each point comes from a single mouse. The
baseline DS rate was computed as the average rate from -1000 to -250 ms and 250 ms to
1000 ms, which excludes periods containing the two peaks. (B2) Same as in B1, but for
the second peak (-5 to 5 ms). (C) Distribution of peak times across mice. Data come from
16 out of 19 mice with clear double peaks in their ripple-triggered DS rate. Red bars are
a histogram of the first peak (5.3±1.6 ms; mean±SEM). Blue bars are a histogram of the
second peak (-101.1±3.8 ms). (D1) Ripple-triggered raster plot of dentate spike times. For
D1-D3, only ripples (n=3,970 of 46,314) with a preceding DS (from -150 to -50 ms, Window
1) or simultaneous DS (from -50 to 50 ms, Window 2) were considered, as these are the DSs
that produce the double peak in the DS rate, shown in A. Next, these 3,970 ripples were
divided into 6 categories depending on whether a dentate spike occurred preceding (in W1)
or simultaneously (in W2) with the ripple, and whether the ripples or DS occurred alone or
as a doublet, as diagramed in the inset of panel D3. For example, ripples that occurred with
a simultaneous DS (in W2), but without a preceding DS or ripple (in W1), are colored blue.
Similarly, ripples that occurred with a preceding DS (in W1), but without a simultaneous
DS (in W2) or preceding ripple (in W1) are colored dark blue. (D2) Ripple-triggered raster
plot of ripple times, colored according to inset of panel D3. (D3) Ripple-triggered, ripple-
band LFP power from the channel in the CA1 pyramidal cell layer, colored according to
the inset showing the six DS/ripple categories. Note that most ripples with DSs are either
preceded by a DS (n=1,818 of 3,970; red) or occur nearly simultaneous with a DS (n=1,433
of 3,970; blue), without ripple doublets or DS doublets. Note also that single ripples are
not accompanied by an increase in the ripple-band LFP power around -100 ms, suggesting
that the ripple detection did not miss ripples in this window.
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Figure 27: Granule cells depolarize during dentate LFP spikes (A) Top: DS-triggered
subthreshold Vm of granule cells. Each row is normalized to have zero mean (Vm Norm).
Data are from 20 granule cells recorded in 8 mice. The largest peak in the DS was used
as time 0. White lines on the right separate the different neurons. Middle: Grand-average,
DS-triggered subthreshold Vm. Bottom: Grand-average, DS-triggered LFP from a channel
in the dentate hilus, used for DS detection. Shaded region marks the mean±SEM. (B)
Examples of DS-triggered subthreshold Vm for five individual granule cells. Note that
every neuron shows a depolarizing peak at time 0, while most show a hyperpolarization
preceding the DS. (C) Scatter plot showing the correlation between baseline Vm and the
amplitude of the intracellular depolarization. For each neuron’s DS-triggered average (as
in B), the baseline Vm was computed as the mean from -300 to -200 ms. The amplitude of
the peak was computed as the difference between the Vm at the peak (around time 0) and
the baseline Vm. Each dot is a granule cell. Note that more hyperpolarized granule cells
had a larger intracellular depolarization, consistent with excitatory input.
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inset of Figure 26 D3. Interestingly, DSs that preceded SWRs by ∼100 ms occurred in the

absence of ripple doublets greater than 86% of the time. This strongly argues against the

prediction that the peak in the DS rate 100 ms before the SWR is driven by ripple doublets.

Instead, it suggests that these DS, which may result from neocortical input to the entorhinal

cortex, may somehow prime the CA3-CA1 network to generate a SWR with a 100 ms delay.

Alternatively, the population burst in CA3 that often precedes ripples by 100 ms (Figure

25) may somehow influence the occurrence of DSs without producing a population burst in

CA1 through some unknown mechanism.

While dentate spikes did not appreciably contribute to the two depolarizations in the

granule cell Vm around SWRs, dentate spike may still powerfully drive granule cells. To

investigate this possibility, we triggered the granule cell Vm on DSs. As shown in Figure

27 A-B, DSs were associated with a large and consistent depolarization in all granule cells.

In addition, most granule cells showed a hyperpolarization beginning 100 ms before the

dentate spike. In agreement with previous studies (Penttonen et al., 1997), the amplitude

of the intracellular depolarization was larger at more hyperpolarized levels (Figure 27 C),

providing evidence that the depolarization is driven by excitatory synaptic input. Together,

these results provide evidence that granule cells receive strong excitatory input during DSs,

likely producing a population burst in the dentate gyrus.

4.4 Discussion

By performing simultaneous in vivo whole-cell recordings from identified dentate granule

cells and multisite LFP measurements, we investigated the interaction between SWRs and

DSs and their effect on the membrane potential of granule cells and found: 1) granule
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cells often depolarize during and ∼100 ms before ripple oscillations, concomitant with CA1

sharp waves, 2) DSs preferentially occur during and ∼100 ms before SWRs, but these do not

appreciably contribute to the SWR-associated depolarizations in granule cells, 3) a subset

of DSs precede CA1 ripples by 100 ms, in the absence of a ripple doublet, and 4) granule

cells show large, consistent intracellular depolarizations during DSs.

What is driving the two depolarizations in granule cells around SWRs (Figure 25)? Pre-

vious experiments reported that granule cells depolarized during SWRs and suggested this

was due to excitatory feedback from CA3 to the dentate gyrus (Penttonen et al., 1997).

This may also explain the depolarization we observe during the SWR. Alternatively, the

SWR-associated burst in entorhinal could also provide depolarizing input to granule cells.

Indeed, DSs, which are thought to reflect excitatory input from entorhinal cortex, prefer-

entially occur during SWRs (Figure 26). However, excluding SWRs with concomitant DSs

had no affect on the amplitude of the intracellular depolarization. This strongly suggests

that the depolarization is driven by feedback excitation from CA3 to the DG. What is

driving the depolarization at -100 ms? Our observation that sharp waves often occur in

trains, as demonstrated by the presence of a sharp wave ∼100 ms before the ripple argues

that this depolarization is also driven by feedback excitation from CA3 to DG. Together,

these results provide evidence that area CA3 provides the major excitatory drive to granule

cells during SWRs. The functional role of such input remains an open question, but it has

been suggested that CA3 and dentate may constitute a recurrent network that contributes

to memory storage and recall (Lisman, 1999).

Why do DSs occasionally co-occur with SWRs (Figure 26)? A previous study provided

evidence that SWR-associated activity in CA1 often preceded DSs by ∼100 ms (Bragin et
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al., 1995). While this delay is larger than what we observe (5.3 ms), both studies found that

DS occasionally following SWRs. Two possible mechanisms were suggested to underlie this

(Bragin et al., 1995). First, a SWR-associated population burst in EC could provide the

excitatory drive to trigger a DS. However, a previous study found that neurons in layer II

of medial EC, which carry the excitatory projections to granule cells, do not undergo SWR-

associated population bursts (Chrobak and Buzsaki, 1994, Chrobak and Buzsaki, 1996). If

this is the case, then the population bursts in EC would have to reach the dentate gyrus

through other pathways, such as the lateral EC. Second, it was also suggested that the long-

lasting, post-ripple hyperpolarization in CA3 may reduce the excitatory drive to dentate

hilus interneurons and create favorable conditions for the generation of a DS. However,

given the small delay we observe between SWRs and DSs (5.3 ms), this mechanism seems

unlikely. In addition, an extra-hippocampal region, such as the medial septum, could be

responsible for coordinating the two events. Future work is needed to investigate these

competing hypotheses.

Why do DSs occasionally occur 100 ms before SWRs (Figure 26)? One possibility is that

these DSs occur as part of a ripple doublet. However, we found that when DSs preceded

SWRs by ∼100 ms, they occurred without ripple doublets 86% of the time, which provides

strong evidence that the peak in the DS rate at -100 ms is not driven by preceding ripples.

In further support of this, these DSs also occurred without an increased in ripple-band LFP

power (Figure 26 D), indicating the absence of CA1 ripples all together. Instead, it suggests

that these DS may somehow prime the CA3-CA1 network to generate a SWR with a delay

of 100 ms. Alternatively, the population bursts in CA3 that often precede ripples by 100 ms

(Figure 25) may somehow influence the occurrence of DSs without producing a population
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burst in CA1 through some unknown mechanism. Future work is needed to distinguish these

possibilities. Such coordinated interactions between DSs and SWRs question the previously

proposed functional role of DSs in hippocampal circuit function.

4.5 Experimental Procedures

All surgical procedures, in vivo recordings, signal acquisition, immunohistochemistry, imag-

ing, and ripple detection were performed as detailed in Chapters 2 and 3. Dentate spikes

were detected from 3 channels spanning the dentate hilus as peaks greater than 1 mV af-

ter downsampling (from 25 kHz to 1kHz) and high-pass filtering (Parks-McClellan optimal

equiripple FIR filter, 6-12 Hz transition band, 40 dB minimum attenuation in the stop

band) the LFPs. Previous work defined two types of dentate spikes by the presence or ab-

sence of associated gamma-band oscillations (Bragin et al., 1995). In agreement, we found

that dentate spikes could occur with varying amounts of gamma-band activity. However,

they did not cluster into two well-isolated classes, so we did not break them into types.

Whole-cell recording data comes from 20 identified granule cells in 8 mice, from which we

detected 3,902 ripples and 1,027 DSs (Figures 24 D, 25 A, and 27). For detecting interac-

tions between the timing of DSs and SWRs (Figures 25 B and 26), we analyzed continuously

recorded LFP data from 19 mice (including the 8 mice used for DG whole-cell recordings),

from which we detected 46,314 SWRs.
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