Appendix D

MATLAB CODE

Implementation of generalized couple wave analysis

9/26/16 12:02 PM /Users/sunitadarbe/Documents/multiwave.m 1 of 3

function [Angle,DETETotOutTE,DETMTotOutTM] = multiwave(phi,l,d,theta,n,n1,w1,modes,varargin)
 % MULTIWAVE gives the diffraction efficiency of 2p+1 output modes for
 % given input wavelength, angle and grating parameters; from R. Magnusson
 % and T. K. Gaylord, "Analysis of multiwave diffraction of thick gratings"
 % (1977)
 %
 % INPUTS
 % d = thickness of grating in microns
 % phi = angle of grating in radians
 % theta = incident angle in radians
 % w1 = incident wavelength in microns
 % L = period of grating in microns
 % n = average index of refraction of grating
 % n1 = amplitude index of refraction modulation
 %
 % OUTPUTS
 % AngOut = output angle for each of the 2p+1 outputs considered in
 % DEGREES!
 % DETE = diffraction efficiency of the output mode
 % exiting at output angle AngOut for polarization perpendicular to
 % the plane of incidence
 % DETM = diffraction efficiency of the output mode
 % exiting at the output AngOut for polarization in the plane of
 % incidence
 % TotOutTE = sum of DETM for all 2p+1 modes
 % TotOutTM = sum of DETE for all 2p+1 modes
 %
 % ASSUMPTIONS
 % Completely lossless material assumed.

 p = modes;
 K = 2*pi/l;
 b0 = 2*pi*w1/l;
 C = -1i*w2*pi*w1/wl;
 D = 1i*w2*pi*w1/wl;
 v=zeros(2p+1,1);
 c=zeros(2p+1,1);
 AngOut = zeros(2p+1,1);
 ModeNum = 1:1:2p+1;
 k = ModeNum-1;
 v = k*K*cos(theta-phi)-k*K^2/2/b0; % dephasing factor
 c = cos(theta)-k*K*cos(phi)/b0; % obliquity factor
 AngOut = atan((b0*sin(theta)-(ModeNum-p-1)*k*K*sin(phi)))
 ./((b0*cos(theta)-(ModeNum-p-1)*k*K*cos(phi)));
 Angle = AngOut*180/pi;

 % Solve Coupled ODEs for a 2p+1 modes (TE and TM)

 BCS = zeros(2p+1,1);
 BCS(1) = 1;
RSof data import into MATLAB and plotting
else
dS(k) = -1/c(k) * (1i*v(k)*S(k)+ 1i/2*(S(k-1)*C+S(k+1)*D));
end
end

%%
% TM, non-perp (E-mode) polarization
%%

function dS = MWTMSolve(z,S)
global C c D v p AngOut
dS = zeros(2*p+1,1); % a column vector, with p even
dS(1) = -1/c(1)*(1i*v(1)*S(1)+ 1i/2*(S(2)*D*cos(AngOut(1)-AngOut(2))));
dS(2*p+1) = -1/c(2*p+1); %
*(1i*v(2*p+1)*S(2*p+1)+1i/2*(S(2*p)*D*cos(AngOut(2*p)-AngOut(2*p+1))));
for k = 2:1:2*p
 if k == p+1
 dS(k) = -1/c(k)*(1i/2*(S(k-1)*C*cos(AngOut(k-1)-AngOut(k)+ S(k+1)*D*cos(AngOut(k)-AngOut(k+1))));
 else
 dS(k) = -1/c(k)*(1i*v(k)*S(k)+1i/2*(S(k-1)*C*cos(AngOut(k-1) -AngOut(k)))+S(k+1)*D*cos(AngOut(k)-AngOut(k+1))));
 end
end
function [phi, L] = Angle(deswl, ThOut, theta, n)
format compact

%==
%ANGLE finds phi and L for a grating that optimizes diffraction efficiency
%of diffraction order +1 for a given wavelength and output angle according
%to the equation in Gaylord
%==

% INPUTS
% deswl = free space wavelength of input light in MICRONS
% ThOut = output angle in DEGREES; direction in which high diffraction
% efficiency is desired
% theta = input angle in DEGREES
% n = average index of refraction of the HOE
%==

% OUTPUTS
% phi = angle of the grating in DEGREES; defined as the angle between the
% grating normal and the K vector which is in the direction of
% sinusoidal variation. phi range is from -90 to +90 degrees
% L = period of sinusoidal variation of refractive index in the grating
% in MICRONS
%
%==

% ASSUMPTIONS
% Simple holographic grating with sinusoidal variation in refractive
% index in a complete lossless material
%
%==

% Finding PHI
%--
if ThOut < 0
 phi = 90 - abs((ThOut+theta)/2); % if bending light in negative x direction
 L = double(findL(phi,deswl,ThOut,n));
elseif ThOut > 0
 phi = -90 + abs((ThOut-theta)/2); % bending light in positive x direction
 L = double(findL(phi,deswl,ThOut,n));
else
 phi = NaN;
 L = NaN;
end

% Finding L
%--
function [L] = findL(phi,wl, ThOut, n)
syms period
b0 = 2*pi*n/wl;
K = 2*pi/period;
% solving for the period
S = solve(tand(ThOut) == (-K*sind(phi))./ (b0-K*cosd(phi)), period);
% makes the solution S into a floating point number
L = vpa(S);
%% Hemispherical average with no azimuthal dependence
angle = [(phi(2)-phi(1))/((1:length(phi))) * pi /180];
dtheta = phi(2)-phi(1)*pi/180;

%% Calculate the hemispherical solid angle associated with each angle
Hemis = 2*pi * sin(angle) .* cos(angle) * dtheta;

%% Calculate the hemispherical irradiance (assumed totally diffuse
%% sunlight) weighted R and T and normalize by the total projected
%% solid angle of the hemisphere (should be pi if integrating over angle =
%% 0 to pi)
TotalRef = (Hemis * R_test)/sum(Hemis);
TotalTrans = (Hemis * T_test)/sum(Hemis);

%% Making a well-labeled color plot
figure('units','normalized','outerposition',[0 0 1 1])
for e=1:structSize
 subplot(B,D,e)
 pcolor(eval(xvar),eval(yvar),LSCHCG14(e).Rte)%
 shading flat; colorbar;
 caxis([0 1])
 title(strcat(LSCHCG14(e).name));
 fontsize',fontSize)
 set(gca,'FontSize',fontSize)
 xlabel(Xlabel,'FontSize',fontSize)
 ylabel(Ylabel,'FontSize',fontSize)
end

h=colorbar;
figtitle([ftitle,' Rte'])
title(h,'Rte','FontSize',fontSize);
colormap jet
saveas(gcf,[ftitle,'Rte.jpg']); saveas(gcf,[ftitle,'Rte.fig'])

%% Read data from text files into MATLAB (e.g., RSoft .dat files)

P = dir('*.dat');
fileinfo=dir('*.syms');
R_col=1;
T_col=2;

for ji = 1:Number_of_files
 name = fileinfo(ji).name;
 sym file name
 runIdj = fopen(name);
 C=textscan(runIdj,'% %f','%delimiter','=',''); % gets variable values
 scaninfo_uns(ji,:)=C(2);
 % stores them
 fclose(runIdj);
 % closes sym file
 M=dlmread(files(ji).name,'1,1');
 % opens .dat file of same name
 R(ji,:)=M(:,R_col);
 T(ji,:)=M(:,T_col);
end