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ABSTRACT

The problem of tracing seismic rays between specified source and receiver is
discussed for Earth models consisting of layers, in which velocity varies linearly, that
are scparated by material interfaces of arbitrary shape. The calculation of travel
times, amplitudes, and phase shifts is considered. Fast and efficient numerical

algorithms are developed. Computed examples are presented.
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I. INTRODUCTION

The forward problem in seismology is to describe completely the wave prop-
agation resulting from a known disturbance in a general medium with arbitrary,
but specified, variations in elastic properties. In general, only numerical methods
are available to analyze this problem for even relatively simple heterogeneities in
elastic properties. Numerical methods for the full elastodynainic wave equations

are limited by excessive requirements both for storage and for computational time.

The ray theoretic development provides an attractive alternative. It is compu-
tationally simpler. Moreover, it provides information precisely about those aspects
of seismic wave propagation which can be observed: the arrival times of distur-
bances at a known receiver location, as well as theirvrclative amplitudes and phase
shifts.

Because ray theory is based on an asymptotic series expansion in inverse powers
of frequency, a major drawback is that it is useful only in the high frequency limit.
However, when the assumption of a high frequency seismic signal is valid, even
the leading order term of the asymptotic ray serics can be used to interpret many

features of seistnogram recordings.

Because of the usefulness of ray theory in interpreting scismic records, seis-
mologists have developed several methods for computing the ‘rays’ ( the normal
*

trajectories to the wavelronts ) joining a known source and receiver.

The equations defining these rays are nonlinear, and can, in general, only be

* Striclly speaking, the rays arc normal to the wavefronts only in isotropic media.
Because anisotropy in the Farth is thought to be small (<X5%), we will adhere to

this assumption throughout.
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integrated numerically. Essentially, there are two approaches to solving these ray
equations for trajectories between a given source and receiver pair. In the first of
these, commonly known as ‘shooting,’ a scquence of initial value problems for rays
emanating from the source with different initial tangents is solved until several rays
are found which emerge close to the receiver. By interpolating the initial conditions
for these nearby rays, a ray which emerges arbitrarily close to the receiver is found.

This approach has been explored, for example, by Shah (1973).

Alternatively, one tries to solve the two-point boundary value problem directly.
This approach has been suggested by Julian and Gubbins (1977). Pereyra, Lee,
and Keller (1980) developed eflicient algorithms capable of solving the two-point
ray problem in very general heterogencous media. Their approach involved using
finite difference approximations to the coupled, first order, nonlinear differential ray
equations, and then solving the resulting system of nonlinear algebraic equations

with an iterative scheme.

An approach similar in spirit to that of Peyrera, Lee, and Keller has been de-
veloped by Keller and his students Perozzi (1980) and Fawcett (1983). Working
from the premise that in many regions of the Barth the velocity distribution for
elastic waves may be satisfactorily modeled as piecewise homogencous with discon-
tinuities across possibly complicated interfaces, they developed fast and accurate
numerical algorithms for the calculation of rays in both two-dimensional (Perozzi)

and three-dimensional (FPawcett) cases.

Because geometrie rays in a homogencous medium are straight lines, they were
able to forego the numerical integration of the differential ray equations, solving
instead a system of nonlinear algebraic equations corresponding to Snell’s law of

refraction across each interface.

The number of equations in this method is directly proportional to the number

of velocity discontinuities which the ray encounters. Conscquently, although media
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with sizeable velocity gradients can, in principle, be modeled as a dense cascade
of homogeneous layers, it becomes impractical to compute rays in such media with
the method of Keller, Perozzi, and IFawcett without further modification.

It has been obscrved that continuously varying velocities in the Earth (even in
certain regions of the Earth’s crust) can often be approximated accurately by linear
distributions with noun-negligible constant gradients. As an example, for typical

undisturbed tertiary sand-shale clastics, the empirical relationship
V(z) = 1600(m/s) + 0.55z

(z depth in meters) has been found to hold down to depths of about 3,000 meters,
representing a velocity doubling in just several kilometers (Kley, A.M., 1983). When
such regions have been disturbed, for example, by the intrusion of diapiric salt
domes, it can be expected that the magnitude of the velocity gradients will still
be comparable. Their directions, however, may be significantly displaced from the
vertical.

The o1l potential beneath the lobes of such diapiric salt intrusions motivated
our study of fast and accurate ray calculations in complex three-dimensional regions

containing such lincarly plane-stratified regions.



II. THE FORWARD PROBLEM

I1.0 INTRODUCTION TO THE FORWARD PROBLEM

In this chapter, we discuss the forward ray problem for piecewise linearly strat-
ified media. In II.1, we provide a description of the problem and introduce some
notational conventions to which we shall adhere. In II.2, we discuss the calculation
of the actual rays and travel times. The calculation of wave amplitudes and phases,
as well as the detection of caustics, is discussed in II.3. Our numerical treatment
of the problem is detailed in I1.4. Finally, in IL.5, we provide and discuss numerical

results for several examples.

I1.1 DESCRIPTION OF THE PROBLEM AND SOME NOTATIONAL CONVEN-
TIONS

We adopt a right-handed Cartesian coordinate system x = (z,y,z), with z
increasing with depth in the Earth.

The Farth 1s assumed to be isotropic, linearly elastic, with piccewise continuous
variations in the elastic parameters p(x), A(x), and p(x). Iere x denotes position,
p(x) the density, and A(x) and p(x) the Lamé parameters.

Discontinuities in the clastic parameters or their spatial derivatives will be

assutned to occur across prescribed, non-intersecting interfaces

z= filz,y), T1=0,1,... %04 (1.1)

where f;(z,y), together with its first and second derivatives, is continuous.

The free surface of the Earth will be defined by

z = fo(z,y). (1.2)
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Because our main concern is with problems in exploration geophysics, for which
length scales are of the order of only several kilometers, we will usually adopt a flat
free surface with fy(z,y) = 0.

.. For the same values of their arguments, f;(z,y) < fi(z,y)if j < k. We will
denote by the k" layer that region of the Earth between the interfaces defined by
z = fr-1(z,y) and z = fi(z,y). The k** layer can sustain wave motions with two

distinct wave speeds, (compressional (p), and shear (s)), given, respectively, by

M(x) + 2m-(x))”2 (L3a)

pr(x)

v = (

and

Vi(x) = (“"(X)) 7 (1.30)

pr(x)
We constrain the variations in the elastic parameters within the &** layer to be

such that the compressional and shear wave velocities satisfy
VP(x) = DY + al(Aux) (La)

and
Vi(x) = Di + ai(Arx), (1.46)

respectively. Here of, of, Dj, and D} arc prescribed constants, while Ay is a

prescribed unit vector.

Strictly speaking, vertically polarized shear waves (sv) do not decouple from
compressional waves (p) in such a medium even within a layer of continuons vari-
ation in the clastic parameters. However, we conline our attention to waves which
travel within any continuous layer as well-defined (p) or (s) waves, with conversions
from one type to another occuring only at an interface z = f;(z,y).

Given the assumed velocity distribution described above, we seek to determine

all physical rays joining known source and recciver locations and passing through
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a prescribed sequence of interfaces, as well as the travel-times, relative amplitudes,
and phases of disturbances propagating along these rays.

Within each layer, the ray segments are circular arcs (or, in the limit of ho-
mogeneous 'velocity, straight line segments) which, as will be shown, are uniquely
determined by their endpoints on successive interfaces along with the velocity dis-
tribution.

‘We refer to those points at which a ray intersects an interface as nodes, with

the coordinates of the k** node given by

Xt = (s Ykr 28) = (Tk, Ui fir (Ths Y ))s (1.5)

where it is assumed that the k" node lies on the i’,’ch interface.

For convenience, we augment this sequence of a priori unknown nodes with
Xo = source location (1.6a)

and

Xy 41 = receiver location, (1.6b)

either of which may or may not lic on an interface.

At cach of the nodes x;, (k =1,...,N), the ray must satisfy Suell’s law in
its most general three-dimensional form. This requirement leads to a system, which
we shall subsequently formulate precisely, of 2N nounlinear 0(1lxati0;1s for the 2V
unknowns a2y y,, k1, o0 N This system is analogous to that for the piccewise
homogencous velocity case (studied by Fawcett, 1983), and, in fact, reduces to it in
the limiting case of af = 0 and o} = 0 for all k.

In subscquent sections, we shall adopt the following notational conventions.
Fither superscript or subscript, or both, may be omitted from the velocities defined

by the above cquations when no confusion will result.



-

By T, , we denote the unit tangent vector to the incident ray segment at the
kt* node. Similarly, we denote by TZ’ the unit tangent vector to the emergent ray
segment.

Note that the functional dependence of T, is on xp_1, Xz, Dy, o) and Ak,
whereas that of T',: is on Xy, Xg+1, Dr+1, Qk+1 and Ak+1-

When we wish to refer to the unit tangent at an arbitrary point x along the ray,
we write simply T[x], suppressing the implicit dependence on ray segment endpoints

and velocity of the appropriate layer.

II.2 CALCULATION OF RAYS AND TRAVEL-TIMES

I1.2.1 The Ray Equations and Jump Conditions (Snell’s Law)

In the first order geometric optics approximation, the ‘rays’ (i.e., the orthogonal
trajectories to the wavefronts) may be derived from Fermat’s Principle.

Let x = (=z,y, z), and let U(x) == 1/V(x), where V(x) is a smoothly-varying
velocity field of a heterogeneous, but isotropic medium.

Let ‘s’ denote arclength along a ray, and let ‘7’ denote differentiation with
respect to s.

The variational principle, which a ray joining endpoints Py and P; must satisfy,

is given by

§T =0 (2.1)

where
T:/MWAﬂMs (2.2)

subject to the non-holonomic constraint

g=x"-x' - 1=0, (2.3)



as well as the boundary conditions
X(So) = Po (24(1)

and

x(s;) = Py. (2.4b)

Here 6 denotes the first variation. 7' is the time for the wavefront to travel
from Py to Py, and the solution x(s) is the path of stationary (“least”) time.

The Euler equations corresponding to the variational principle above are

d

V(U(x)) - 7

(U(x)‘jl—’:) =0. (2.5)

These are the ray equations in their most general three-dimensional form.
Equations (2.5) must hold along the ray wherever U(x) is continuous. At a
surface of discontinuity in U(x), the tangent to the ray is discontinuous, and (2.5)

must be replaced by the three-dimensional Snell’s law
V* () (N(x) x T=()) = V() (N(x) x T*(x)) (2.6)

Here IN(x) denotes any normal to the surface of discontinuity at the node x. V~(x)
and T~(x) denote, respectively, the velocity and unit tangent vector to the ray on
the incident side of the discontinuity, while V*(x) and T*(x) are similarly defined

for the emergent side.

I1.2.2  Description of Rays in a Lincarly Stratificd Medium

In this section, we develop formulae that conveniently describe the ray joining
given endpoints in a linearly stratified three-dimcensional medium. We discuss first

the case of two dimensions with the velocity field given by

V(z,y) =D + a(filw + fizy) (2.7)
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We will generalize to three-dimensional case by way of the following two obser-
vations. First, all solutions to (2.5) for a plane stratified velocity field are plane
curves. Moreover, the tangent vectors at any two points along a given ray are
coplanar with the direction of stratification (i.e., with the normal vector to planes
of constant velocity).

It is well-known that the rays in the velocity distribution given by (2.7) are arcs
of circles. We pin down the precise solution for the ray with endpoints at (zg,yp)
and (z1,y1)-

The Euler equations (2.5) may, in this case, be rewritten as
(D + oAz + Ayy))y" — oAy’ — A)(1 +4") =0, (2.8)

with prime now denoting differentiation with respect to z.

Inserting into (2.8) the ansatz
(z—2)" + (y - v.)* = B? (2.9)

for the circle of, as yet, undetermined radius R and center coordinates (z.,y.), we

obtain immediately

D + oAz, + Ayy.) = 0. (2.10)

Hence, the center of any ray lies along that line on which the velocity field vanishes.
Substituting into (2.9) each of the endpoints (zy,yy) and (z1,¥)) in turn, and
subtracting the two resulting equations, we obtain a second linear equation for the

center coordinates:

1
(21— zo)ze + (y1 — Yo)ye = -é(wf + i~ g~ y5)- (2.11)

The minor arc of the circle determined il[li(lllciy by the solution of (2.10) and (2.11)

is then the physical ray joining (zy,yy) and (z1,1).
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We can now readily extend this result to the three-dimensional case of velocity

distribution

V(z,y,z) = D + a(Aiz + Ayy + Az2) (2.12)
and ray endpoints at xo = (z9,%0,29) and x; = (@1,¥1,21). The previous result
motivates the ansatz that the ray joining xy and x; is a minor geodesic on the
sphere

(- z)* +(y—ve)’ + (2 — 2.)° = R (2.12)
Two conditions on the location of the center x. = (z.,y., 2.) are obtained immedi-

ately from (2.10) and (2.11). These are
alAx,=-D (2.13)

and

1
(x1 — x¢)x, = -2—(x1-x1 — Xg-Xg)- (2.14)
A third linear constraint on x. is obtained from the requirement that the tan-
gent vectors at any two points along the ray be coplanar with the direction of

stratification A. Onc expression for this constraint is

((xo —x.) X (%1 — xc)) A=0 . (2.15)

or, more conveniently,

(A x (x3 — x0)> X = —Det{A,xO,xl}, (2.16)
where ‘Det’ denotcs the determinant of the column-vector mut'rix.

The simple linear system for x. which we have derived may become singular or
very ill-conditioned in cither of two cases. In the first of these, the velocity is homo-
geneous or very nearly so, and a —» 0. This case may be dealt with computationally
by an appropriate rescaling, as will be shown in a later section. In the second case,
(x1 ~ xq) is parallel to A, and the physical ray is the straight line segment joining
xqy and x;, even il « is large. This case must be dealt with separately in subscquent

computalions.
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I11.2.3 Computation of Travel-Times
Assume the velocity dependence
V(x) =D + aA x, (2.17)

and consider the ray segment with endpoints x5 and x;.
Introduce projected distances £ and 7, where £ is the distance traversed by the

ray parallel to the direction of stratification, and 7 is the resolvent normal distance.

That is,

¢ = A(x; —x) (2.18)

and 1
n= (Hxl — x| - 52) By (2.19)

The travel-time T}; of the ray from x| to x; is equivalent to the travel-time of a

ray from (&),0) to (§ + £,7) in the £ — 7 plane with a velocity distribution

V() =D+ at (2.20)
and where

& = A-xy. (2.21)

Let (€.,7.) denote the center of the ray segment, and R its radius. Parametrize

the ray segment by

£ =¢. + Rsind (2.22)

n=mn.— R cosd, (2.23)

with § = 6y and 6 = 8, corresponding, respectively, to (£,,0) and (& + &, 7).
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Using (2.2), we have

6 R
= dé. 2.24
Ton /(;0 ab.+aRsinf+ D (2:24)

From (2.10), this simplifies to

1 % do
T01:'-/

a Je, siné
1 (1 + cos8y)(1 —cosby)
= 1 2.25
% 8 [(1—c0500)(1+ cosby)]’ (2.25)
where
COSG():T]C/R, 0S90S7‘l’/2
cos8; = (n. — n)/R, 0<6, <m,(2.26)
and where 7. and R are casily found to be
1
Ne = o (€2 +n? +2¢(& + D/a)) (2.27)
1 2 1/2
R={(e+ Dja) + i (€ +07) + 26(60 + D]’} (2.28)

I[.2.4 Some Limits as a -~ 0 and Rescaling for Computations

Equation (2.25), together with the definitions (2.26)-(2.28), provides a closed
solution for T}, but it is not very uscful for computations when I%] << 1. Antic-
ipating our subsequent discussions of continuation from media that are piecewise
homogencous to those that are precewise plane-stratilied, we provide the Tollowing
recursive expansion, which is convenient when |%[ << L.

We define

a
r=2§ + 5027)‘ ’ _ (2.29)

. W2 12
3 = {(f2 + 7,2) + (52 + 7]2)(5 -+ 2&))5 + [-}i(fz +- n2)2 + (52 + r]z)(ﬁfn +- fuz)fﬁ]}
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where, evidently, both 7 and s are O(1) as @ — 0. Expanding the logarithm in
(2.25) we obtain

Ty = 5 Z](:_IF(%)"—I [(r )t — (- (231)

From (2.31), we readily obtain

2 2\1/2
lim Ty, = (ﬁiDl’-)-—, (2.32)

which recovers the travel-time for the straight-line ray in the homogeneous velocity
V(x) = D.

As pointed out in the section I1.2.2, as ¢ — 0, the medium tends to a ho-
mogencous one and the system (2.13), (2.14) and (2.16) becomes singular. For
homogeneous media, the geometric rays are straight lines, and ||x || and R — oo.

It is easy to show, c.g., by solving the two-dimensional case (2.10) and (2.11),
that ||x || and R are O(1), and hence, a||x || and aR remain bounded as o — 0.
( The single exception occurs when (x; — Xy) is parallel to A. ) This implies that,

for numerical computations, the proper rescaling of (2.13),(2.14) and (2.16) is given

by
(x1 —x%0)-€ = %a(xl'xl — X¢'X0) (2.33a)
A¢.=-D (2.33b)
(Ax(xl' - x“))f,, = —aDct{A,x.,,x]}, (2.33¢)
where
c = aX. (2.34)

Solving the system (2.33) for x., and using

[l = xel] = llo = %l = [P — x| (2.35)
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for any point x along the ray, we obtain, after isolating leading order terms in «,
the straight-line limiting ray

(2—20) _ (y—wo) _ (z2-2)
(IB] *m()) (yl —yﬂ) (Zl —ZO)

(2.36)

as a — 0.
Finally, we observe that the quantity p = (ozR)—1 is, in fact, the usual seismic

ray parameter, provided that angles of incidence of the ray are taken with respect

-

to A.

11.3 CALCULATION OF AMPLITUDES AND PIIASE SHII'TS,
| AND DETECTION OF CAUSTICS

I1.3.1 Wavefront Curvatures Before Encounter With an Interface

For subsequent discussions of amplitude variations along a ray, we will need to
know how the wavefront curvatures evolve. For simplicity, we consider first the two-
dimensional problem of a symmetric point source at x, = (0, zy) in the vertically
stratified velocity field V(z) = D + az. The results will be extended to the more

general case by appropriate translations and rotations of the coordinate system.

Let
x1 = (@1,21) = (€ cos ¥,z + € sing) (3.1)
be a point ou a given ray emerging from x,. By varying 1 continuously over (0, 27r5,
and choosing ¢ sufficiently small, we obtain the complete family of rays emanating
from x,.
Solving (2.10) and (2.11), inserting the result in (2.9) (with z replacing y), and,

for convenience, passing to the limit € — 0, we obtain, for x = (z, z) along a ray,

D
J‘]‘w(g/)) o= wz + 22 -} 2(2, + 2“a(2 + Z()), (32)

where
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F(y) = 2(z0 + —g) tant. (;.3)

Equations (3.2) and (3.3) define implicitly ¢ = v¥(z,z), the level curves of
which are the rays. Because the wavefronts are orthogonal to the rays, we must

have
dz _ 0¢/0=
dz  Ovy/0z

(3.4)

along a wavefront.
As a consequence of (3.2), this condition reduces to the Bernoulli equation

._‘1
D
%:%(24_2) m—%(z2—23+2—a—(z—z0)>a:—l, (3.5)

a

which can be solved exactly to yield
22 + (2 — zg — 7)° =12+ 27(29 + D/a), (3.6)

where 7 > 0is a constant of integration. We have chosen to write the solution in this
form because the integration constant 7 has the appealing physical interpretation
of arc-length along the vertical straight-line ray. The wavefronts are circles with
increasing radii, whose centers propagate along the direction of stratification.

The result (3.6) can be extended to the three-dimensional linear velocity dis-
tribution V(x) = D + aA x. For a source at Xg, we obtain the radius of curvature,

R of the spherical wavefront passing through x; from

llee(xy — xq0) + (D — (‘t‘l")AH2 =o't - VZ(XU) — a’R2. (3.7)
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I11.3.2 Wavefront Curvatures After Encounter With an Interface and

Geometric Spreading Factors

Referring to Figure 1, we tentatively postpone a detailed discussion of how the
wavefront curvatures are locally deformed by transmission through (or reflection
from) an interface. Instead, we assume knowledge of Ri and Rj, the principal
radii of curvature of the wavefront immediately below the interface, and focus our
attention on the subsequent evolution of the wavefront shape along ray segment II.

For this purpose, it is convenient to introduce the concept of ‘equivaleﬁt point
sources,” which we define in the following way. We conceptually remove the velocity
discontinuity that separates regions [ and II. Moreover, we continue the rule defining
the velocity V5(x) back into region L.

We define the equivalent point source pj, situated on the extension of ray seg-
ment II, as that point from which an emitted wave (in this new, continuous medium)
would arrive at the point o as a (spherical) wavefront of radius Rj. Similarly, we
define the equivalent point source pa, corresponding to wavefront radius Rj at o.

Because the ray segment II is torsion-free, those cross-sectional curves, on suc-
cessive wavelronts, which are of principal curvature, remain in the same two planes,
FE; and Ej, at least until the next discontinuity is encountered. It is this fact which
allows us to reduée a discussion of the evolution of the local wavefront shape along
ray segment II to two, conceptually decoupled, spherical wavefronts emanating from
the equivalent point sources p; and pj.

We now discuss briclly how the locations of py and py may be obtained. Be-
cause, in practice, we arc able to coufine our aticntion to the two planes I/ and

E; defined above, we limit this discussion to the two-dimensional case of velocity

V(z) =D + az.
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Figure 1
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Consider the circular ray segment joining x¢ = (zg,2) and x; = (z1,21). We

parametrize this ray, together with its extension, by

z(0) = 2. — R cos 9 (3.8a)
and

2(0) =z, + R sind (3.8b)

where, in view of our previous results, ¢, z., and R may be regarded as known, and
where 6; and 8, correspond, respectively, to xg and x;.

We now determine the location x, = (m(Op),z(Op)) of that point source from
which such a ray segment must have emanated, subject to the requirement that the
radius of curvature of the wavefront at xy be R.

From the results of section II.3.1, the center of this wavefront will be at

(m(9p),z(9p) + T), for some value of 7 > 0, such that
R? = 7% + 27 (2(6,) + D/<). (3.9)

An additional constraint on the two unknowns 8, and 7 is provided by

2

R? = (z(6) — :z(0p))'2 + (2(60) — 2(6,) — 7)". (3.10)
Upon substituting (3.8) into (3.9) and (3.10), and recalling
D+ az, =0, (3.11)
we obtain, after some manipulatibn,
1 R .
0, = cos™" | cos b — 3 Sin 6o (3.12)
and
R
T = (1 — cos(8y — 6,)). (3.13)

sin 8
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Replacing R in (3.12) by R} and R in turn, and using the results (8, and 8,5,
say), in (3.8), we obtain the locations of the equivalent point sources p; and ps.

Moreover, once 8,1 and 8,3 have been evaluated, we may invert (3.12) to obtain
the principzil radii of curvature at any point along ray segment II, simply by effecting
the appropriate substitution for 8g.

For example, at the endpoint x;, we have

Ri(x1) = (cos B — cos ). (3.14)

sin 8

We next address the question of obtaining tractable expressions for the geomet-
ric spreading factor along ray segment II. Because our emphasis throughout is on
ray tracing as a two-point boundary value problem, the expressions for a linearly
stratified medium, which we obtain, are equivalent to, but differ considerably in
appearance from, those formulae, in terms of initial take-off angles, that are usually
given in the literature (sce, e.g., Ben-Menahem and Singh, 1981).

Let oy be an infinitesinal area cross-section of the wavefront at o on the
emergent side of the interface (see Fig. 1). Also, let §o; be the corresponding in-
finitesimal cross-section of the wavefront at x;, in the sense that those rays, nearby
to ray segment II, which dcfine the boundary of §o, determine, as well, the bound-
ary of éo;.

In the usual way, we define the geometric spreading factor G along ray segment

G:(ﬁgui (3.15)

60’1

IT by

The geometric spreading G may be expressed in terms of the principal radii of

curvature of the wavelront along the ray by

c=en{; @ mm) ) (3.16)

where s is arclength along the ray. (See, e.g:, Cerveny and Ravindra, 1971, p.32;

also, Kline and Kay, 1965, pp. 184-186, for a more detailed derivation. )
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Using (3.14) and the observation immediately preceding it, we can carry out

exactly the integration in (3.16) to obtain, finally,

G- (cos 61 — cosfp; ) 1/2 (cosl91 — cosbp2 ) 1/2. (3.17)

cos g — cos 0 cosby — cosbpy

Each term in (3.17) represents the two-dimensional geometric spreading factor in

the planes E; and Es, respectively.
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I1.3.3 Lffect On Wavefront Curvature By An Interface

Corresponding to the incident wavefront, the interface of discontinuity, and
the emergent wavefront at a node x;, we define the orthogonal triads of vectors
(T-,P,Q7), (N,P,Q"), and (T*,P,Q"). As before, T~ and T" are unit tan-
gents to the incident and emergent ray segments, while N is a unit normal to the
interface.

Here we define

P=T " xN (3.18a)
Q" =T xP (3.18b)
Q"=NxP (3.18¢)
Q" =T+xP. (3.18d)

The angles of incidence and refraction (or reflection) are given, respectively, by

cosfy =T N (3.19a)
cos0, = TT.N. (3.190)
We dcline the scalars
vt
BE (ratio of velocitics) (3.20)
N =cosly — p cosl,. (3.21)

With the superscript s € (—,0,4-) denoting, respectively, the incident wave-

front, the interface, and the emergent wavefront, we dehine:

T¢, T;, -2 principal unit direction vectors

K¢, K‘:, = principal surface curvatures

K®

s K = surface curvatures in the P and Q" dircctions

o® 7= torsion of geodesic in Q" direction

and
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0° = cos™ ' (P-T%).(3.22)

For the time being, we regard K(—’O), K{™9 ,T(_’O), and T as known.
£ n ¢ n

We wish to-then determine K, Kj ,T;.‘", and T;’.

Following Stavroudis (1976), we have, for s € (—,0), the auxiliary quantities

K, =K; cos?0® + K; sin?g°
K = K}sin’0” + K}, cos?6°
and

o° = %(K; —K;) sin 20°.

n

We transfer to the emergent ray (s =‘+’) through

R 0
Ky = uK, +1K,
K;(coszolz) = p(cos?0,)K; + 1K)
and

a"’(coszog) = p(cos;)o™ + ~o?.
From Euler’s Theorem it follows that
+— oLt (Kt +
tan 20" = 20 (Kq -K; )
Finally, we have

T’E" - (cos0)P | (sin0')Qt

T, = (sin0")P — (cos 0")Q*

Kg = (cc)SQO"‘)K;L + (si[120+)K;~ + (sin20%)ot

' KnF = (sinzO"')K;L } (cosQO“L.)K;f ~ (sin20M)o ™,

which were to be lound.

(3.23a)

(3.23b)

(3.23¢)

(3.25)

(3.260)
(3.260)
(3.26¢)

(3.26(!)



From the results of the previous section, we know how Kz and K;,L, which
are the reciprocals of the principal radii of wavefront curvature, evolve along the
emergent ray segment. Consequently, we are able to evaluate the incident curvatures

at the next interface (i.e., the (k4 1)“).

To evaluate T, and T, at the next interface, we use

Tg (k1) = T (xep1) ¥ (TF () x T (%)) (3.27a)

Tn_ (Xk+1) = T—(Xk +,1) X (T:’-(Xk) X T+(Xk)). (327b)

Thesc simple relations follow from the fact that an individual ray segment is torsion-
free.

To evaluate the interface quantities Kg, Kg, Tg and Tg, we make use of some
well-known results from differential geometry. Following Stoker (1969), let the kt*

interface be given by z = f(z,y). We define

E=1+(3f/51)" (3.28a)
F = (3f/3z)(0f/3y) (3.28b)
G =1+ (af/3y)’ (3.28¢)
L = p(0°*f/0x?) (3.28d)
M = B(0°f/dzdy) (3.28¢)
N = B(2°%f/3y*) (3.28f)
where
B= |1+ (af/32)% + (97 /0y)” _1/2, (3.29)

and where cach partial derivative is understood to be evaluated at the node x; =

(:Ek,yk; f(xk‘)yk)).
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Let P = (pg,qg)T and P, = (p,,,q,,)T be eigenvectors of the system

(A-KB)P =0 (3.30)
where

A= (AI/} N]\{) , (3.31a)
and

B = (f g) . (3.31b)

The corresponding eigenvalues K‘g and K?I are the principal curvatures of the inter-

face at xx, while the corresponding principal direction vectors are given by

Pe(n) (1,0,87/82)" + qe(y (0,1,01 /0y)"

0
T = (3.32)

172
2 2 2 2 2
Piny + Teny + (PEny0F /9% + 4,0 /0Y) ]

Given our restriction to interfaces that are twice continuously differentiable
functions, the only pathological case occurs if KS = K?,. In that case, every vector
tangent to the interface at xj is a principal direction vector, and we must choose
two orthonormal ones. Otherwise, Tcé and T?,, as given by (3.32), are orthonormal

(Stoker, p. 92,f.).
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11.3.4 Reflection, Transmission and Conversion Coefficients

At an interface of discontinuity in elastic parameters, the incident wavefront
splits into transmitted and reflected components. The dynamic boundary condition_vs
(i.e., continnity in both particle displacement and traction across an interface) are
sufficient to determine uniquely the amplitudes, relative to the amplitude of the
incident wave, of each transmitted and reflected wave.

For completeness, we include explicit formulae, which are by now standard, for
the calculation of these amplitude coefficicnts. (See, e.g., Keller, 1964, for a detailed
derivation.)

Let z = f;, (z,y) denote t.hat interface on which the node x@. is located. We
define the following unit vectors, each of which is tangent at x; to the ray segment

with which it is associated:

!
Ecaliony
!

= incident ray (either P or S)
Tg“l) = reflected P

= rellected S

,Aa

=73
>
I

Ti?) = transmitted P

~
=
Z
'
1

= transmitted S.

In each case, sz) has the sense defined by the direction of propagation of the
wavelront with which it 1s associated. That 1s, Tg') , Tf), and Tgl) poiut from the
' into the (k1 1) layer, whereas Tiﬁ” and TLZ) have the opposite sense.

Let N denote a unit vector normal to the interface al xg, 7' a unit tangent to
the interface at x; and in the plane determined by N and Tg)), and B a binormal
unit vector orthogonal to both N and . These are determined uniquely by the

further requirements
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N-T >0 (3.33q)
7.1 >0 (3.33b)
B = NxT. (3.33¢)

Let RU) denote displacement vectors at x;, for each incident, transmitted, and
reflected wave component. The identification of superscripts is identical here to

that for Tij). The RY) may be written as

R A A v FCELD
RM =a) cos, N +a;sing T (3.34b)
R® =q; sin0y N —ap cos0; T + by B (3.34¢)
R® = a3 cosO3 N + a3 sinf3 T (3.34d)
R® =g, siny N —ay cosy T + by B. (3.34e)

Let V(9 denote the appropriate P or S wave speed, corresponding to each
ray segment, evaluated at x;. These depend, through (1.3) of section II.1, on the
densities and Lamé parameters pye1): (k1) and ppae1y of the k' or (k + 1)“
layer. The angles 8; are oblained fror;l Snell’s Law in the plane of incidence (defined

by N and T ) as follows:

VO gin 8; = V& gin 6, (3.35)
5_{:\/1 si1129j , —1<sing; <1

cosf; = _— . (3.36)
'ri\/sm 8; sinf; > 1

lere the fiest sign is chosen for § - 1 or 3 - 2, and the second for 5 - 3 ov j — 4.

Following Keller (1964), the boundary conditions at the interface imply that

by b”( cos Oy + cos 0”)A_1 (3.37a)

V(l)

cos Oy -

V(“)

by = bu( Vi ) ‘}u((}) cos ()”)A“l (3.37b)

where
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_ HEg1 Mk
A= V) oS 04 — V) €S 6. (3.38)
Also,
cos 8 sin 8y — cos 85 —sinfy
sin 04 — cos B, — sin O3 cos 6y
iV cos 20, —pr V) sin 26, pk+1V(3) cos20y  pry1 V) sin 20,
— T/&(kﬂ— sin 205 pr V2 cos 26, '{f(t)’ sin 265 —prs1 VW cos 26,
ay ky
S I I R (3.39)
asg o 0 k3 -
a4 ky
Here
ki { (cos 01, —sin 01, pr V1 cos 20;, ~ 4y sin 291)T
k2 | _ for incident P, (3.40)
k - . 2} . 2) T :
3 { (— sin 8y, — cos by, pi. V) sin 205, — pr VP cos 291) :
kq for incident S.

It is worth noting that the formulae in this section represent the only occurreace
in our description of the forward problem in which the density and Lamé parameters
enter in combinations other than those defining the wave velocitics. Consequently,
any attempt to use our formulation of the forward problem to invert for these
parameters must incorporate amplitude obscrvations, and cannot rely entirely on

travel-lime observations.
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11.3.5 Detection of Caustics

A caustic is an envelope at which neighboring rays touch each other. T'or a
single ray, we may determine whether or not a caustic has been encountered simply
by monitoring the sense of the principal wavefront curvatures at the endpoints
of eacch ray segment. For a given ray segment in a linearly stratified medium,
there are three possibilities. If the sense of wavefront curvature is the same at
both endpoints, then no caustic has been encountered by that ray segment. If one
principal curvature changes sense, but the other does not, then exactly one caustic
has been encountered. Finally, if both principal curvatures change sense, then two

caustics have been encountered.

Because the passage of a wavefront through a caustic corresponds to a vamshing
radius of wavefront curvature, the location of a caustic along a ray segment can be
calculated by using the same geometric construction of an equivalent point source
discussed in section 11.3.2. Our program systematically computes these equivalent
point sources for each ray scgment as part of our algorithni for evaluating the
geomctric spreading factor. Conscquently, to detect whether a caustic has occurred
on a particular segment, we need only test whether the corresponding equivalent
point sources lie on that segment, rather than on its artificial extension. No further

computation is nccessary to pin down the location of the caustic if one is detected.

Geometric ray theory is not valid in the immediate neighborhood of a caustic,
where that theory predicts an infinite wave amplitude. Conscquently, ray ampli-
tudes at the receiver, which we calculate by the method outlined in the previous
sections, will be incorrect if a caustic occurs within several wavelengths of either
the receiver or an interface. Because, for a high- frequency signal, cither occurrence
1s unlikely, our program detects those rays for which amplitude calculations are

suspect, but does not attempt to improve upon them. Consecquently, in subscquent



-20—

inversion algorithms, ouly the travel-tinies and phases of such rays should be used.

11.3.6 Phase Shifts

Following Perozzi (1980), the total phase shift q?) of the signal at the receiver,

relative to the phase at the source, may be expressed as

™

. N
d) = }'Z'Nca-u.stic + 7rﬂfreflcct -+ ijlfm(G,) (341)

Here, N qustic is the number of caustics that the ray has encountered, N,.ficct 18
the number of nodes at which the ray has been reflected, and Im(6;) denotes the
imaginary part of the splitting angle for the ray at the j* node, which are given in

section 11.3.4. These angles may be complex in the case of ray segments that are

supercritically refracted.
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[I.4. NUMERICAL METHODS I'OR THE FORWARD PROBLEM

For the type of elastic media with which we are concerned, the forward ray
problem is essentially solved when for each ray joining the source and receiver
the nodal points xi, at which the ray hits interfaces of discontinuity in elastic
paramcters, are determined. Given all the x; for one ray, we may determine the
exact trajectory of the ray, the travel-time along it, the wave amplitude along the
ray relative to the strength of the source, and the phase shift relative to th»e source
signal. These quantities are comnputed in a straightforward way using the results of
sections II.2 and II.3, and present no noteworthy numerical difficulties.

In this chapter, we present, in some detail, our numerical methods for deter-

mining the a priori unknown nodal points x;, for each ray.

I1.4.1 Nonlinear Algebraic System for the Nodal Points

At each nodal point x;, on surfaces of discontinuous velocity, a ray must satisfy

Snell’s vector law of refraction

Vir(Ng = T0) = Vo (N x T, (4.1)

Here V7 denotes the velocity of the incident ray segment at xi, and VkJ" that of
the cincrgent ray segment. Nj denotes any normal to the interface z = f;, (z,y)

evaluated at x;, and, for definiteness, we choose
T
Of; of;
Ny = (L‘ : -fft,1_> : (1.2)

- rpr- rgr- orpr - v .
T, = (1 Ty, 1;) deuotes the unit tangent to the k'™ vay segment at xg, and

can bec obtained from
(akxk - fu:k)'T; =0 (4.30,)
Ak X (CYL:XL, - é(k\)T; =0 (43())

and
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T, T; = 1. (4.3b)

Here £, is the normalized center of the k" ray segment, which can be obtained
by the method of I1.2.4. Ak and ay are the stratification direction and velocity
gradient magnitude for the layer (either the it* or (i + 1)*%) traversed by the k*
ray segment. Equation (4.3a) is a statement that the tangent must be orthogonal
to the radial vector, while (4.3b) ensures that the tangent vector is coplanar with
the kt* ray segment. One virtue of using our normalized centers £, is that the
system (4.3) remains correct for computing T, even when aj — 0. (It is worth
recalling here that ¢, depends implicitly on x¢—1, Xk, Ak, ak and Dg.)

T}, the unit tangent at X to the (k + 1)3t ray segment, is the solution of (4.3)
if €., » Ak, and oy are replaced by £, Ak+1, and ag41, with evident definitions.

The ambiguity in sign intrinsic to the solution of (4.3) is resolved by requiring
that both T, and T} point from the k‘* layer into the (k + 1)“. An exception to
this convention occurs when the ray is reflected at the kt* node, in which instance
T, and T,:” are chosen with opposing sense.

Equating components in the vector equation (4.1) leads to a system of three
scalar equations, of which any two represent independent constraints, but together

imply the third, which may be discarded. Explicitly, for the first two components,

we have
— _dfi, _ af:
Vi (T + Tis ayk) =V (Th + T ayk) (4.4a)
and
_ _9df; _ dfi
V(T + Tkz‘&f) =V, (T + T, 8:; ). (4.4b)

Equations (4.4) must hold at each nodal point x¢, k = 1,..., N, forming, col-
lectively, a system of 2NV nonlinear equations for the 2N unknown nodal coordinates

Tz, and yg, £ = 1,..., N. We denote this collective system as

F(X: M, X0, Xy+1) = 0. (4.5)
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Here X = (z1,y1,... ,:z:N,yN)T is the vector of unknown nodal point coordinates.
M is the collection of all parameters and functions which, together, describe the
model geometry. Specifically, M contains the stratification vector Ay for the ve-
locity associated with the k** ray segment, the background velocity D,gp’s), the

gradient magnitude a}f’s)

, as well as the functions z = f;, (z,y) for the interfaces.
For reasons that will be made clear later, we associate Ag, D,(cp’s), and a,(cp’s) with
each ray segment, rather than with each layer.

The scalar entries of the vector equation (4.5) are given by

_ _0fu _ af;
For1 =V, (T, + Tka‘é‘j) — Vi (T + T, a;) (4.6a)
and
~ _0f _ af;
Fo =V, (T + ks‘éj‘) - Vi (T + les"gj) (4.60)

for k =1,...,N. These are analogous to equations 1.18b and 1.18a of Fawcett and,
in fact, reduce to them in the case of a piecewise homogeneous medium (i.e., a,(cp’s)

all identically zero).
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11.4.2 Meihod of Solution — Newton’s Method

The noulinear character of the system (4.5) precludes a direct solution al-
gorithm. Instead, we solve this system by Newton’s iterative method. Given a

sufficiently close approximation X(® to the solution X of (4.5), the iteration
Xt = X g sx () (4.7)

where

-1
§X0 = — 3™ P(XY M, x0, X3 41), (4.8)
converges quadratically to X. Here

g = 9F

== 4.9
- BXJX(:L) (4.9)

denotes the Jacobian of F with respect to X, evaluated at X(™),

If X is not sufliciently close to X, Newton’s method may converge less rapidly,
or even fail to converge at all. In subsequent sections, we describe how to obtain,
in a systematic way, a sufficiently good estimate for X(") to ensure convergence to
a solution in many geometries. In this section, however, we assume that such an
estimate is alrcady available. -

It is easy to show that the Jacobian matrix J, of the system (4.5) is banded,
with bandwidth 7. This is so because the (2k — ].)“t and 2™ entries of (4.5) depend
only on the six unknowus zg_1, Y& -1, Ty Y&, 1 and yppg.

Because we do not display the explicit form of this dependence, afew comments
about the algorithm used to compute J are in order.

The spatial derivatives of V., V}:L, and Ny are readily obtained from (1.4) and
(4.2), and present no dilliculty.

The variations 9T 7 /0xy, 4, OT;'"/('V)XA:, OT /0xp, and 0T [Oxy, | can be eval-

uated in the following way. I'rom equation (1.3), it is clear that these depend on
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~

the variations of ¢, and ¢ Identifying xy, x1, A, and « of cquations (2.3)

Crp1t
with xp_1, Xg, Ay, and a4, respectively, we obtain a linear system for €., . Differ-
entiating these equations in turn with respect to each of the compomnents of xj_1
and X, we obtain six linear systems for each of the columns of 9¢., /0x,_;1 and
9¢., /0%y . Moreover, the matrix of coefficients for each of these systems is identical

to that used to compute £,., in the first place, so that the variations with respect

Ck
to x;_; and x; can be conveniently computed at the same time as ., with only
one inversion of a 3 X 3 matrix for all seven vectors. We observe here that the third
columns of 9¢,, /0%y and I, /Oxy , i.e., those corresponding to derivatives with
respect to z,._; and z, are needed in constructing J because the variations, with
respect to ¢5_1, Yr—_1, x, and yi, are not ‘free,” but are subject to the subsidiary
constraints that x;_; and x, remain on their respective interfaces. The variations
O&e,,,/0x; and 0&., /0%t 1 can be similarly evaluated.

Formally differentiating the system (4.3) with respect to each of x;.; and xy,
we obtain linear systems for cach of the columns of 0T, /9x;_; and 0T /0xy, , and,
as in the case of the calculation of the variations of &, , the matrix of coeflicients
for each of these systems is identical to that used to calculate T . The variations
(T)TZ'/(')XA, and (?T'Af/axm,l can be evaluated in the same way, requiring only ‘onc
additional inversion or factorization of a 3 x 3 matrix (which is available from the
computation of Tf) and one post-multiplication of that matrix by aunother that is
3 x 6.

This essentially completes our discussion of the evaluation of all the subsidiary
ingredients needed to construct the Jacobian. There is still a singular case (when
(xg — xL:H1)~AL, = 0) which must be dealt with. We postpone a discussion of this
casce until section [1.4.8 on normal incidence rays because it is in the calculation of

such rays that this situation is most likely to occur.
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I1.4.3  Selection of Initial Guess X" — Some General Considerations

Following Perozzi (1980), we say that two rays are of the same class if the
sequence of interfaces (iy,%2,...,%t,...,1x), which each of the rays encounters, is
identical. Because the wave along each ray segment, in a given class, may be either
P or S, there are, in general, 2! rays in each class for fixed source and receiver.

It is convenient, for our purposes, to formally subdivide all possible classes of

rays into two Types. We say that a particular class of rays is of Type I, if
ik # tgy1, forall k=0,...,V.
On the other hand, we say that a class of rays is of Type II, if
ir = ig+1, for somek =0,...,N.

We wmake this formal subdivision of ray classes into two Types because our al-
gorithm for obtaining sufficiently good approximations to the nodal points X =
(z1,y1,.--,2N,yn) so that Newton’s method will converge to a solution is funda-
mentally different for each.

TFigure 2a illustrates a possible ray, of Type I, which has five internal nodes
and is in the class (1,2,1,2,1). Figure 2b shows, for the same model geometry, a ray
of Type 1I, with six internal nodes, in the class (1,2,2,1,1,1). Qualitatively, rays of
Type I are those for which each ray segment completely traverses the layer with
which 1t 1s associated. By contrast, rays of Type II are those for which at least one
ray segment is completely refracted within a layer. Such ray segments are said to
have a turning point.

For both types of ray classes, our solution procedure can be qualitatively de-
scribed in the following way. We choose a model geometry M, which has the
following properties. Tirst, M, can be deformed, in a coutinuous way, to the model

M,, for which we ultimately wish to solve the ray problem. Second, the model M,
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Figure 2a

Figure 2b
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admits at least one ray in the class of rays we want to compute. Finally, such a ray
in M, can easily be found.

We define the one-parameter family of model geometries
MM =(1-2MM,+\M,, 0<A<1, (4.10)

where, clearly, M(0) = M, and M(1) = M,. Instead of the problem (4.5), we

consider the family of problems
F(X(A\);M()\),x0,xny41) =0, 0< A<, (4.11)

where, by assumption, (4.11) is easy to solve for A = 0, but it is, in fact, the case
A = 1 in which we are interested.

It is hoped that, as the model is continnously deformed, the solution vector
X()) will also trace out a continuous curve in R2V. If this is, in fact, the case, then
we may continue in the parameter A from X(0) to X(1).

Fermally differentiating (4.11) with respect to \, we have

dF 9F dX OF dM _

DX T = (4.12)
and therefore, provided only that 9F/0X is not singular,
dX oF\ ™' OF dM
sl el —_ (4.13)
d 0X oM dX
Consequently,
OF\ ™' OF dM 2
AN =X\ = == ) ====Z6) 4+ 0(6)\2). .
X(A +6X2) = X(X) ((?X) M dn 8+ O (82%) (4.14)

For 6A sufficiently small, the first two terms of the right hand side provide a
reasonable approximation to X(A 4 dA). In particular, for §)\ small enough, this
approximation to X(A 4 §)\) is sufficiently close to provide a first guess for Newton’s

method to converge to the exact solution of

F(X(A 4 6A); M(A -+ 6A), X9, Xy 41) = O. (4.15)
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The Newton iterations are performed for the fized model M(A+6A). The computed
value of the Jacobian J for the final iteration can be identified as
J = —(Z—]—?—J , (4.16)
OX | xi6a
for which the L-U decomposition is available to compute the next continuation step

(4.14).

11.4.4  Initial Guess for Rays of Type L.

For rays of Type I, we choose our starting model M,, in the following way.
The interface functions z = f;(z,y) are replaced by parallel plane interfaces z = ¢,
where ¢; is an approximation, which may be quite coarse, to the mean value of
fi(z,y) over the region of interest. For the velocity within each layer, we choose the
homogencous background velocity D;. Given the ray endpoints xy and xpy.1, as
well as the sequence (iy,...,1y) of inierfaces that the ray encounters, the problem
of finding the ray joining x, and x4 in this simple model M, can be reduced to

one scalar equation in one unknown:

N1y, 4 Dy
0 e i | 5 sinfy

r(60) = :z: /v[—~n««~————— = \/CFN+4 ~ )+ (v — ), (4.17)

D2 . .
k=1 - 51;;"511120(,
t

where ¢;, = 29, ¢y, = z;\H. 1, and 6 1s the initial take-off angle of the ray measured
with respect to the vertical. Since r(8y) is monotonic, there is no difficulty in nu-
merically solving (‘L.17). Fawcett (1983) provides an eflicicut and robust algorithm.

For this relatively simple case, the family of model geometries M(A), which we

use in our continuation algorithm, is given by

fis(m, gy A) = (U= XNeiy + M i (=,9) (1.18)

and
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Vk(x; /\) =Dy + /\Q'L.Ak-)(, (119)

where 0 < A<landk=1,2,...,N + 1.

1I.4.5 Initial Guess for Rays of Type IL

With the exception of critically refracted rays, the simple model M, consisting
of homogeneous layers separated by plane interfaces, which we introduced in the
previous section, does not admit rays of Type Il. Critically refracted rays do not
provide a satisfactory first guess for our continuation algorithms because, in the
sense of preserving the class of a ray, they are unstable for even infinitesimally
small perturbations in the model. We must choose a different starting model M, to
compute rays of Type II. As before, we replace the interface functions z = f; (e, y) by
their mean values, c¢;, over the domain of interest. We now construct sitnmltaneously
a model geometry M, as well as a ray, which satisfics the ray equations in M,, of
any given class of Type IL. To illustrate the procedure, we discuss a concrete example
that exhibits all the salient features. Suppose that we are solving for rays of the
class (1,2,2,2,1,1,), as shown in Figure 3a. First, we coalesce successive nodes that
lic on the same interface and, simultancously, move the receiver closer to the source
by some horizontal distance d (Figure 3b). The choice of d is essentially arbitrary,
provided only that 0 < d < |jxyy1 — Xo||- In practice, we often make the ad hoc
selection of d = %HXN.H - Xy||. By coalescing nodes in this fashion, we temporarily
deflate the class of the ray to (1,2,1), which is of Type 1. We solve this deflated
problem using (4.17), with the right hand side (l(‘(tf(\;iSCd by d, using as before,
homogeneous background velocities Dy for each ray segment. Next, we split up
the m nodes (m = 3 in our example), which were coalesced, by equal horizontal
distances d/m, translating , where necessary, the ray segments that have just been

calculated, but otherwise leaving them intact (Figure 3c).
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We must next associate velocities with cach of the ‘missing’ segments ( i.e.,
those that are to have turning points). This can be done in the following way. If
the k'™ ray segment is one of those with a turning point, we choose this segment
to be a circ'ular arc of radius Ry, where ¢;, < Ry < ¢; 1. We recall that, for a
horizontally stratified linear medium for which A = (0,0,1)T , the ceuters of all
the rays lie in the plane z = —D/a. In order that the ray segment, which we have
consiructed, satisfics the ray equations for a continuous medium, we must choose
for this ratio the value

D/a = Ry, —c;, . (4.20)

From elementary geometry, we know that the tangent at the node x;.; (and x;)

forms the angle O,T with the vertical, where

Im |
9}: = tan "} (-—?1&). (4.21)

Consequently, Snell’s law will be satisfied across the node x4 _; provided that we

associate with the k*" ray segment the velocity
Vk(z) = bk(z + Ry, — Cik) (4.22)

where

2D,
= s
sin g, \/( '—l>)2 -+ 4Ri

b (1.23)
';l-'.

We observe that in the above construction, the velocity must be chosen to vary
only in z, so that Snell’s law may be satisfied simultancously across both x;, .1 and
X Furthermore, il two or more suceessive segments have turning points (e.g., the
third and fourth scgments iu our example ), then although for the first of these
Ry, may be chosen arbitrarily the same value must be retained for the subsequent
segmenls in the succession.

A glance at Tigure 3d shows why we insist on associating a velocity function

with cach ray segment rather than with cach layer. Although the second, fifth and
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sixth ray segments all lie within the same layer, our construction clearly associates
a different velocity function with the sixth segment than with the second and fifth
in the starting model M. In fact, in our continuation algorithm, the velocity
functions for these three segments would not coincide until the final model M, has
been attained.

Instead of the simple linear variation (4.19) in the continuation parameter A,

the family of velocitics which we use for rays of type II has the more general form

Vi(x; A) = Di(A) + ar(M)AR(N)-x (4.24)
where
Di(3) = (1= NDu(0) +ADy(1). (4.25)
Ay =45 A)a"(“)"";gx DAL, (4.26)
and

3 [t

o

ar(A) = A2 (1) + (1 = A)2a2(0) + 2201 — Nk (0)ar(1)AL(0)-Ag(1)]*(4.27)

To complete our discussion of the continuation algorithm used to find a ray of
a particular class, we present formulae for the variation of endpoint tangent vectors
for a single ray segment with fixed endpoints as we continue in velocity. [For the

unit tangent vector T evaluated at x on the k** ray segment, we have

aT 110G, (V)
= —gyt=RT .
ox = v T T (4.28)

where
C(x- £, ()
CiY) (Al < (w(M)x £, (V)
T"(A)

T (4.29)
The derivatives, with respect to A of ag(A), AA,(/\) and Dy (\), are evident from
(4.25), (4.26), and (4.27), while those of {., (A) can be found from

06 (A) _ =100y 2F _ 9C2(2) 1.
R RO e I MPY) (1.30)

where
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(%~ Xk—}r)T
C,(W) = (Ac(V) . (4.31)
(Ar(X) x (xx ~ xx-1))

and
%(Xk'xk — Xp-1'Xp-1)
f(A) = ~ —Di(X) : (4.32)
ak(A)Ak(x\)(xk X xk—l)

I1.4.6 Some Combinatorics

The two mutually exclusive types of ray classes which we have introduced
together exhaust all possible ray classes in the geometries with which we are con-
cerned. A question that naturally arises is how many ray classes there are for rays
with up to some maximum nuwmnmber of nodes and, of this total, how many are of
each of the two types.

As the combinatorics are relatively straight forward, we do not belabor the
details of the derivation and present only the results.

h

For a source on the m*” interface with the receiver on the free surface (m = 0),

the number of possible ray classes with N or fewer internal nodes is

N N- "m - 1 ‘
= ndr+1l mt2
Z L n+ 2 C’ C (n+m +3)° (433)

n=1r=0

Here C? is the binomial coclficient, provided p and g are non-negative integers with
p > q. We adopt the convention (not the usual) that CF = 0 if ¢ is not an integer
or if ¢ > p.

For a source between the m!? and (| l)’” interfaces, the corresponding for-

mula is

N N—n
ntr _ni__Jr_—__l' 141 m -+ 2 k1 1
Z Z Cr ( ol 02(1,+7,H 2) + "——““" 1 C%(“+7”+3) (134)

In both cascs, the terms with » = 0 correspond to rays of type [, and all the

rest correspond to rays of type 1L If all possible rays in a given class are to be
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included (accounting for all P-S conversions), then an additional factor of 2"*! is
needed for each term in the sum.

The munber of ray classes grows very rapidly with N. For a surface source and
N =1, thelze are already 530 possible ray classes. Of these, only 22 are of type I,
and the rest of type II. Typically, for a specific geometry, only a very small fraction
of these possible classes are represented by actual physical rays. Unfortunately,
there appears to be no a priori way to ascertain which classes will be represented
by actual solutions, and an exhaustive search is necessary. Tortunately, our ray
tracing algorithm is quite fast requiring, when it does in fact converge, only one or
two continuation steps for Newton’s method to converge quadratically. In virtually
all cur test examples, if two continuation steps were not sufficient for convergence,
increasing the number of continuation steps still further did not remedy the situa-
tion. In such cases, we concluded that a solution of the class and type sought did

not exist.

I1.4.7  Continuation Along a Gather of Receivers

In seismic prospecting experiments, the response to a man-made source is typ-
ically recorded simultancously in an array (commonly refered to as a ‘gather’) of
different receivers. We describe in this section an algorithm to quickly obtain rays
of the same class at other receivers in a gather alter one has been computed by
the methods described previously. The method is particularly simple when all the
receivers in the gather are located along a line segment ou the free surface (a situa-
tion that often occurs in exploration practice), but it is applicable to more general
gathers as well.

Suppose that a solution X has been computed for

F(i, M_, Xs,iR) = (435)
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for one recciver location X5 in the gather. We observe that only the entries Fopn_
and Fyy depend explicitly on % (sce equations (4.6)). In particular, only T, the
unit tangent vector to the (IV + 1)** ray segment evaluated at the N unknown

node, depends on Xp. We wish to find solutions to
F(x;M,xs5,%p+8)=0 (4.36)

for some displacement 3 of the receiver position.

We consider the one-parameter family of problems
F(x(A\);M,xs5,xp =Xp+A3) =0 (4.37)

for 0 < A < 1. By differentiating with respect to A we obtain the continuation step

L OF

dx = ~-dAJ~
* - 3XR

(4.38)

Here, g;F_ is a matrix of dimension (2N x 3). However, only its bottom two rows
are non-zero. Of these non-zero clements, even the calculation of the last column
can often be dispensed with because the receivers in the gather will typically be
confined to the free surface z = 0.

TFor )\ small of, alternatively, for ||3|| sufficiently small, x" = % /\:g provi(lcs‘
a satisfactory guness for Newton’s method to converge.

In the special case of a linear gather, appropriate choices of A allow us to

compute rays at cach receiver location, quite often without updating the value of

o
4lxn_ '
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11.4.8 Normal Incidence Rays

Besides the two-p‘oint problem of finding rays joining a known source and re-
ceiver pair, the problem of finding normal incidence rays is also of interest to geo-
physicists (see, e.g., Kleyn, 1983). These are rays which impinge normally to an
interface of discontinuity. Consequently, the reflected ray Wl;lvich is of the same typ;e
(P or 8) as the incident one tracks back to the source along the same ray path.

The way in which we have organized our calculation for the two-point ray
tracing problemn, enables us to compute normal incidence rays with relatively little
extra work. To adhere most closcly to the conventions established in previous
sections, we shall refer to the final node at which such a ray hits a normal interface
as the ‘receiver’ Xy, retaining our convention of N internal nodes between source
and receiver.

Instcad of 2N unknowns, as in the fixed endpoint problem, there are now 2N+-2.
The conditions (4.1) still hold for the internal nodes xy,...,xy. However, rather

than specilying Xy 1, we must solve for it subject to
TIT/‘FI X NN+1 = 0. (43‘))

This vector equation nominally represents three scalar ones, but, as in the case
4.1), only two of these provide independent constraints. Specifically, we augment
’ I » g

the system (4.6) with

aJf;
rp gt Nt 1/
Jan i »»I(N4.u1 ) I(Nq-na'aénQFi' -0 (1.40a)
and
of;
. - MNt) /
foni2 = T(N+l)2 + T(N+1)3 31;;"1" =0. (‘ 106)

I a sufliciently good guess for the unknowns were available;, we would be able

to solve this expanded system using Newton’s method. Indeed, not only does the
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(2N -+ 2} X (2N + 2) Jacobian for this problem possess the same banded structure
as that for the fixed endpoint problem, but the upper left 2.V x 2V block is ezactly

the same.

" An ob\-/ious model M, to use to start off the calculation is one that is hori-
zontally stratified with parallel plane interfaces because the solution to the normal
incidence problem in such a geometry is trivial, consisting evidently of vertical
straight-line ray segments. In principle, the continuation in interface shapes and
velocities proceeds exactly as in the twe-point problem. However, it is in the very

first continuation step that we encounter the difficulty mentioned at the end of

I1.4.2.

Our representation of the variations with respect to the endpoints of the unit
tangent vectors to the ray segments breaks down in the case of the straight-line

ray segment when (x; — x¢) is parallel to A. In this case, even the normalized ray

segment center ||¢.|| —» oo, and the numerical computation cannot be salvaged by

a simple rescaling (as was the case when a — 0, but |A-(x; — x)| > ¢ > 0).
Actually evaluating the endpoint tangents in this special case is trivial; clearly
T[xo] = T[x1] = :i:A, and for computational purposes this value is almost always
sufficiently close for the nearly singular case in which 0 < {(x; — XO)'AI << 1.
Heuce, the only instance in which the system (4.3) becomes singular is also the ounly

case in which we know the solution apriors.

Unfortunately, this is not the case for the 3 x 3 matrices a—g}c’:'j, 0—5)[::—"], etc. Our
experience shows that for the two-point ray tracing problem with given source and
receiver this is almost never a serious problem as the breakdown of the numerical
algorithm occurs ouly very close to the singular case. Iowcver, in the case of
computing normal incidence rays, the singular case is the starting point for our

continuation algorithm. Evaluating the variations of the tangent vectors in the

singular case can be dealt with in a straightforward, although rather cumbersome
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. . . AT . .
way. We focus our discussion on calculating —3}2’% in the case that (x; — %) is

parallel to A. The other three differ only in detail, but not in the approach.

The columns of Q%{—’:ﬂ, correspond to the directional derivatives of T[x¢] along

each of the principal unit vectors. Clearly then, what must be calculated is
T{Xo -+ ,6}’3} - T{Xo}
B

for B = é;,7 = 1,2,3. We adopt the notation g%‘— for the above vector limit. So

limg_,o 4.41
8

that no confusion will result, we emphasize that %% is a 3-vector, whereas a'gx;:(,

is a 3 x 3 matrix. The direct calculation of these limits using the results of previous
sections is rather involved. However, the following observations serve to simplify

the calculation considerably. First of all, it is clear that g% 1s in the plane of A

and B (or 0 if A = B). Moreover,
- A aT
T[x, + AB] = A + ﬂaﬁ + O(8%), (4.42)

together with the normalization condition ||T|| = 1, implies that —g%'A = 0. Con-

sequently, %% = ~C where C = A x (A X }3), and only the scalar 4 has to be found.
Finally, if any two columns of 37'1; have been found, the third can be evaluated from
A-VTJ- = 0,7 = 1,2,3, which follows from the observation that T is stationary to
perturbations of x, in the A direction. This last point has a more fundamental
importance than merely that of somewhat reducing the algebra. In the case that
A almost coincides with one of the ¢; (as in a medium which is nearly horizontally
stratified), then the systems which must be solved for two of the columns of —a‘?-;—cr;
are extremely well conditioned, whereas the third is nearly singular.

This is most clearly seen if we rewrite the system (2.33) for &, (for the ray

segment with endpoints at xq + ﬂﬁ and x;) as

A, =-D (4.43a)
ﬁ-&c:—i g(xl-x1~xo-xo)+-(£ +axo-f3+gg— (4.43b)

g2 g 2
(AxDB)-€, = —%(m&-(xl X xp)) + @A - (x; x B). (4.43c)
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Here ¢ = ||x3 — x|, while everything else has already been defined.

It follows immediately that &, has the form

¢, = %aﬁ“” 1O 4 gty (4.44)

It has already been established that T[xy + ,BB] has the form
T = A+ 6vC + 0(8?), (4.45)
where v is to be found. From the first of ( ) there follows
(%gg*” + (&7 — axg) + B(aB ~ gﬁ_“))) : (A +B7C + O(ﬂ2)> =0. (4.46)
Equating coeflicients of the different powers of 8, we obtain
¢

v == : , (4.47)
A (axy — ")

which is needed.
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IL.5. NUMERICAL EXAMPLES

In this section we present some computed examples which illustrate both the
capabilities as well as some of the limitations of our numerical algorithms.

In the numerical examples presented here, we have assumed that each layer is
a Poisson-type solid for which V,/V, = V3 (see, e.g., Bullen, 1963). This is not
a restriction on our code, which admits arbitrary input models. However, besides
being a fairly realistic approximation, our choice was motivated by the fact that in
such a model, pure shear wave rays and pure compressional wave rays coincide, a
circumstance which in itself provides a consistency check for our code.

The two-dimensional cxamples were generated using our three-dimensional soft-
ware package, and were chosen as such only because they arc easier to illustrate

graphically.

I1.5.1 Phantom Interfaces and Regious of Convergence

In our first and simplest example we consider a half-space in which the velocity
varies linearly with depth. llowever, the input model to our ray-tracing program
includes several ‘phantom’ interfaces, which the program treats as actual disconti-
ﬁuities, but across which the velocity is, in fact, (;ontinuous.

The purpose of this numerical expcriment‘is two-fold. TFirst, even this simple
example (for which we can solve exactly the two-point ray-tracing problem) serves
Lo test substantial parts of our code. Second, we oblain empirical estimates for the
racdius (in 22V) of the ball of convergence (centered at the solution) for Newton’s
method. We do so in the following way. After a solution has been obtained, we
perturb it by vectors whose magnitudes are fixed, but whose directions are gencrated

by a random number simulator. FFor cach fixed magnitude, we use 100 such vector

perturbations. If all 100 perturbed ‘gucsses’ yielded convergent Newton iterations,
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we assumed that we were still within the ball of convergence, and repeated the
experiment with an augmented perturbation magnitude until at least one of the
attempts failed to converge.

The estimate for the radius of convergence that we obtain in this way is not
rigorous, but serves, nevertheless, as a strict upper bound. For several different
velocity profiles and intcerface shapes, we found that, if a typical scale length of the
geornetry is on the order of 100, then the radii of convergence are only on the order
of 1 to 2 (based on 4 unknown nodes). This result underscores the importance of

our continuation algorithms for obtaining sufficiently good initial ‘guesses.’

11.5.2 Continuation in Receciver Location and Class Transitions

Our second cxample tests our code on a more complex Earth modecl, imnple-
ments our algorithm for continuation in receiver location, and illustrates a simple
bifurcation phenomenon that may occur under a variety of circumustances. The

velocity model used is described by interfaces (including the free surface) given by

fo(z) =0, (5.1a)

fi(z) = 15+ 3sin (?l.gg), (5.15)

o) = 30 — 3sin (%), | (5.1¢)

f3(z) = 45 + 4sin (f’a ~1), (5.1d)
and

fa(z) = 60, (5.1¢)
as well as velocity fuuctions

VP(x) = -0.22 + z 4 100, (5.24¢)

VP(x) = 0.2z + 3z + 100, (5.20)
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Vil'(x) = 0.2z + 10z - 100, (5.2¢)
and

VP(x) = 0.5z -+ 200, (5.2d)

Since a Poisson-type solid is assumed, V*(x) = VP(x)/v3, k=1,...,4.

We have tested our code on a large number of different velocity models, and a
detailed presentation of all the results would be superfluous. We have chosen this
particular, perhaps somewhat strange-looking, model as an illustration because it
has proved to be one of the most lucrative that we have found in termns of admitting
at least one representative ray for each of many different classes of rays, as will be
shown 1 I1.5.3.

For the purposes of this section, we limit our attention to the class (1,2,3,2,1),
as shown in igures 4a-c. In each case, the source is located at x:==10, while the
receiver 1s at x=60, x=80, and x:==100, respectively, for the three cases. All 16
posstible rays of the class arrive at the nearest receiver (Figure da). As we continue
in receiver location ( see section 11.4.7 ) to x-=80, only four rays of the class persist,
while for the recciver at x==100 (Figure 4c), only one such ray remains. It is clear
that, for this simple example, the ‘disappearance’ of rays represents a transition
to the deflated class (1,2,2,1). For our continuation algorithms, this type of class
deflation to one that is simpler by one level is a canonical bifurcation which can
occur not only as we continue in receiver location, but also as we either increase
the magnitude of the velocity gradient or deform the intecface. In all three cases,
the onsel of the transition can be detected by monitoring the scalar product of the

incident ray tangent and the normal to the interface.
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I11.5.2 A Search For All Rays

In this example, we consider agaia the velocity model used in the previous
example. This time, our purpose is to compute all the rays, with up to four unknown
nodes, between a surface source ( at x=10) and a fixed receiver (at x= 80). The
results are depicted in Figures 5a-5k, with each figure presenting all the rays for
an individual class that were actually found. Our search was exhaustive in that
all possible P-S combinations for all possible classes with four or fewer nodcs were
sought. All the rays depicted were found using at most two continuation steps
(A =1 or 6\ = :12) A follow up search using 32 continuation steps successfully

reproduced each ray, but failed to reveal any others.
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III. SOME COMMENTS ON TIIE INVERSE PROBLEM

Thus far we have discussed in some detail the forward ray tracing problem for a
class of fairly general three-dimensional velocity models. However, our ultimate ob-
jective is to apply our results toward the solution of inverse problems in exploration
seismology. In particular, given data (in the form of seismograms at an array of
receivers ) about the arrival times and amplitudes of waves emanating from known
sources, we wish to determine properties of the underlying Earth structure. In this
section we begin a study of some inverse problems based on the results of previous

sections.

III.1  Solution of an Inverse Problem and Some Heuristic Considerations

For the time being, we limit our discussion to the retrieval of compressional
wave velocity parameters based on first arrival times of waves fromn a point source
to a gather of receivers located at the free surface of a linearly stratified half-space.

We assume that in the half-space z > 0, the velocity of P-waves satisfies
V(x) =D+ ahAx (1.1)

where A = (A;, A2, A3) and HAH = 1.

The functional form is assumed for V(x), but the values of the four parameters

P = (plap%p.'})p'l) = ((2,1),/11,142) (l2)

are a priori unknown apart from the constraints D > 0 and 43 + A2 < L.
The source is located at the free surface z = 0, at the origin of a cylindrical
polar coordinate system (r, ¢, z).

A gather of N receivers are located at

Xj pron ('I'j COS (/)]',7“]' Sill (/)1,0), ] = ]-, . ')N' (13)
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We denote by '.l']‘-”"“ the observed first arrival travel time from the source to the
jth receiver. If the parameters p were known, we could compute the arrival times

T(rj,¢j;p). In particular, using the results of section I1.2.3, we would have

(1 4 cos y;)(1 — cos 017)
(1 — cos By )(1 + cosBy7)

1
T(rj,¢5;p) = 5~ In (1.4)

where
. Nej
cosbyj = — (1.5a)
R,
cosbj = ggﬂ‘_——-———m) (1'56)
R;
1
Nej = 57:’—(1‘]2 -+ 2£]D/a) (156)
j
2 9 1/2
R; = [(¢ + D/a)® + %] (1.5d)
£ =rj(Aycosdj + Agsin ;) (1.5¢)
and
1/2 ;
n; = (r? — 512) / . (L.5f)

The inverse problem which we consider is that of finding those values of the
paramecters p for which computed travel times (based on (1.4)) most closely ap-
proximate the fl';’b"'.

We assume that each of the available observations T;’b“ is equally reliable.
By the principle of least squares we must, therefore, find those values of p which
miniinize the function

N 2
o rprobs ’
I'(p) == Z (Fj - 7(rj,q§j;p))

S~
l‘
[y

]z
S

il
~

2, (1.6)

<.
Il
-

with cvident definition of f;.
We discuss several heuristic tdeas which will be helpful in solving this optimiza-

tion problem. Clearly, we expect that irrespective of what algorithin we use, the
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parameters p will be better resolved as N increases. However, unlike the problem
of velocity inversion for a vertically stratified medium, in which case the receivers
may be confined to a radial gather (i.c., one with ¢; constant for j = 1,...,N), it
is crucial for a reliable solution that observations be taken over a broad range of
azimuth as well. Indeed, it is easy to see that even if @ and D were known exactly,
there are, in general, two choices of A; and Ay that will minimize (1.6) if all the
observatious are taken along a radial gather.

With this caveat in mind, we now describe our algorithm for solving the inverse
problem for p. The method we use is essentially the Gauss-Newton method, but
with a slight modification. We define the vector f(p) = (f1,..., fj,..., fnv)T and

observe that (1.6) can be recast in the form

f(p) =~ 0. (L.7)

h

Denoting by p,, the n'* estimate for the solution, we obtain p, ;i by linearizing

about p,, and solving

f( ) -+ afél:)n) (pu-f—l - pn) =~ 0, (18)

f)f(pu

where op denotes the V x 4 Jacobian of f with respect to p. The least squares

solution to the over-determined bybtem (1.8) can be written as

af<pu)Taf<pu>_>'“ls"_f_<_ez2T

Pu+1 = Pa -+ ( (dp ap ap

f(p,,), (19)

Of(pn) .

where the matrix product premultiplying f(p,,) is the pseudo-inverse of op

Wihial we have deseribed thus far is just the Gauss-Newton method. However,
because our problem is a constrained minimization, we modify this method slightly
by performing a line scarch in the direction p,,+; — p, in the event that a full step
kicks p outside the acceptable bounds. The sample output of our code reproduced
below indicates that this method works quite well. The output is based on 21

receivers (seven cach at three different r;). The initial guess for p was (4.,100.,0.,0.).
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ITERATIAN 1  STEPS IN LINE S3TARCH
NEw GUESS FOR PARAMETERS N
1463200542
301.270836056
0.046%1738
0.02034492
ITEQATION 2 STEPS IN LINE SEARCH
NEW GUESS FOR PARAMETERS
D.78545221
225.25051521 .
Cel13609438
0.089395625
ITERATION 2 STEPS IN LINE STASCH
NEW GUESS FOF PARAMETERS 7
0.96922272
196.932235755
0.17784576
0.11243051
ITERATION 4 STEPS IN LINE STARCH
TTNE A GUESETEDR PARAMETERS T T
0eS6ETSZTHS
200.G50H6613R82
0. 15661578
0.106441052

ITERATION 5 STEPS IN LINE STARCH

NEW GUESS FOR PARAMETERS
1.00011785
2004001530373
oL tTaSgTsa 38 T T
J0.033R85629S
ITERAT
NEw HBUESS FORTPARAMETERS 77
0439353320
203.00200437
15000030
0.1000002C

TON 6 STERPS IN LINE STARCH

N

O
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