Number of items: **19**.

## G

Glaffig, Clemens H.
(1989)
*Smoothness of the integrated density of states for random Schrodinger operators on multidimensional strips.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-09012005-155238

## H

Hardarson, Askell
(1988)
*Doublewell tunneling via the Feynman-Kac formula.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-09062005-152643

Huxtable, Barton Duane
(1988)
*Absence of a Scott correction for the total binding energy of noninteracting fermions in a smooth potential well.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-09062005-101909

## J

Jaksic, Vojkan
(1992)
*Solutions to some problems in mathematical physics.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-09122005-162352

## K

Kozhan, Rostyslav
(2010)
*Asymptotics for orthogonal polynomials, exponentially small perturbations and meromorphic continuations of Herglotz functions.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechTHESIS:06072010-004607725

Killip, Rowan Brett
(2001)
*Perturbations of one-dimensional Schrodinger operators preserving the absolutely continuous spectrum.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-09062005-102553

Khodakovsky, Andrei M.
(1999)
*Inverse spectral problem with partial information on the potential.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-09072005-131144

Kiselev, Alexander A.
(1997)
*Absolutely continuous spectrum of one-dimensional Schrodinger operators and Jacobi matrices with slowly decreasing potentials.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-09072005-112344

## L

Lukic, Milivoje
(2011)
*Spectral theory for generalized bounded variation perturbations of orthogonal polynomials and Schrodinger operators.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechTHESIS:05262011-194849007

Lindner, John Florian
(1989)
*Spectral gaps from ordered to disordered systems.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-08172005-161212

## M

Maltsev, Anna
(2010)
*Universality limits of a reproducing kernel for a half-line Schrödinger operator and clock behavior of eigenvalues.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechTHESIS:05262010-023753573

## N

Nenciu, Irina
(2005)
*Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-05122005-103528

## O

Odencrantz, Kristiana
(1987)
*Effects of a magnetic field on the trace of the heat kernel for a Schrodinger operator with a potential well.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-09072005-130533

## S

Simanek, Brian Zachary
(2012)
*Asymptotic properties of orthogonal and extremal polynomials.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechTHESIS:05222012-113808604

Stoiciu, Mihai
(2005)
*Zeros of random orthogonal polynomials on the unit circle.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-05272005-110242

Siu, Byron Bong
(1984)
*Upper bounds on the magnetization of ferromagnetic Ising models.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-09232005-133517

## W

Wong, Manwah Lilian
(2009)
*Orthogonal polynomials, paraorthogonal polynomials and point perturbation.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-06092009-004344

## Z

Zlatos, Andrej
(2003)
*Sum rules and the Szego condition for Jacobi matrices.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-05222003-114151

Zhu, Yunfeng
(1996)
*The Lyapunov exponents for Schrodinger operators and Jacobi matrices with slowly oscillating potentials.*
Dissertation (Ph.D.), California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-09022005-082236

This list was generated on **Thu Nov 26 02:30:14 2015 PST**.