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ABSTRACT 

The history of surface processes on Mars is recorded in the sedimentary rock record. 

Sedimentary rock layers exposed in Gale Crater on the modern crater floor (Aeolus Palus) 

and on Mount Sharp (Aeolus Mons), which hosts one of the more complete records of 

transitions between major mineralogical eras on Mars, have been investigated by the Mars 

Science Laboratory Curiosity rover since landing in August 2012. This dissertation focuses 

on the formation and diagenesis of the sedimentary rocks in Gale crater in order to assess the 

compositional diversity of the volcanic sources around Gale crater, the effects of transport 

processes on the sediment grains, and the volumes and geochemistry of water that transported 

and cemented the sediments. The first study uses orbital mapping of a distinctive cemented 

boxwork layer on Mount Sharp to constrain a minimum volume of groundwater available to 

form this layer, 1 km above the modern floor of Gale, with implications for the formation of 

Mount Sharp. The other three studies use Curiosity rover imagery and geochemical data to 

investigate sedimentary rocks in Aeolus Palus and at the base of Mount Sharp. The second 

study identifies and describes diagenetic synaeresis cracks in the Sheepbed mudstone, at the 

lowest elevation in Aeolus Palus, with implications for the duration of water saturation of 

these lake sediments. The third and fourth studies identify and explain geochemical trends in 

the fluvio-deltaic Bradbury group, the Murray mudstone formation, and the eolian Stimson 

sandstone, focusing on geochemical diversity in the source regions for each of these units 

and how different depositional processes are reflected in the geochemical data. The 

sedimentary system in Gale crater has changed our understanding of Mars by expanding the 

known variety of igneous rocks, increasing estimates of the longevity of surface water lakes, 

and showing that there were once habitable environments on our neighboring planet. 
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Chapter 1 

Introduction 

1.1 Sedimentary Records on Earth and Mars 
The sedimentary rock record contains the history of the changing surface of the 

planets. Sediments can be transported whenever the wind blows or water moves, and, when 

these sediments accumulate and are preserved as rock, they record the story of their 

formation: the accumulated grains reveal the type of rocks that were upstream or upwind, 

the size and shape of the grains indicates the manner in which they were deposited, fossils 

preserve remains of life, chemical weathering of grains relates to the climate, cementation 

that turns grains into rock reveals the groundwater chemistry, and cracks or fractures tell 

the story of stresses applied to the rock and the environment when they healed. Studying 

the sedimentary rocks therefore enables us to tell the story of a location, and in some cases, 

the story of the planet. Planet-scale changes can be recorded globally in the rock record 

from that time; on Earth, the geochemistry of marine shales records — to name a few 

examples — the evolution of continental crust [Taylor and McLennan, 1995], the oxidation 

of the atmosphere due to photosynthesis [Canfield, 2005; Falkowski and Isozaki, 2008], 

major extraterrestrial impacts [Alvarez et al., 1980], and the uplift of the Himalayas 

[Palmer and Edmond, 1989]. On Mars, we seek understanding of both local and global 

phenomena through our study of the sedimentary rock record. 

Until recently, it was unclear whether Mars even had a sedimentary record—the 

planet today is dry and the lack of plate tectonics implies a lack of the burial and uplift 

processes typical of sedimentary rock formation on Earth [e.g. Worden and Burley, 2003]. 

Sediment production on Mars was suggested based on observations of channels [Sharp and 

Malin, 1975], windblown sediment [McCauley, 1973], and layered deposits [Murray et al., 

1972; Soderblom et al., 1973] in early Mariner 9 imagery, but the presence of a sedimentary 

record was not established until a seminal paper by Malin and Edgett in 2000, which used 

Mars Orbital Camera images to identify and describe sedimentary deposits distributed 

across the surface of Mars [Malin and Edgett, 2000]. A few years later, the volume and 
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resolution of data available increased exponentially with a series of successful orbiter and 

rover missions, providing confirmation of the presence of significant sedimentary deposits 

from both rover [Squyres et al., 2004; Grotzinger et al., 2005; McLennan et al., 2005] and 

orbital [Jerolmack et al., 2004; Fassett and Head, 2005] perspectives, and evidence for 

their association with water-lain minerals [Bibring et al., 2005; Poulet et al., 2005; Bibring 

et al., 2006; Ehlmann et al., 2008a; Ehlmann et al., 2008b; Mustard et al., 2008].  

Now that the presence of a sedimentary record in Mars has been established [Malin 

and Edgett, 2000; McLennan and Grotzinger, 2008b; Grotzinger and Milliken, 2012], we 

seek to understand the episodes of global change through time that are recorded therein. 

While specific changes are best observed at the rover-scale, site selection must be 

accomplished based on global trends, established by orbital observations. Martian surfaces 

are dated based on the density of craters, calibrated (with considerable uncertainty) by 

comparison with cratered surfaces on the moon, from which we have samples that have 

been radiometrically dated [Hartmann and Neukum, 2001]. Mars offers a unique record 

compared to Earth because most of the Martian sedimentary rock record is more than 3 

billion years old [Tanaka et al., 2014], whereas it is difficult to find unmetamorphosed 

ancient sedimentary rocks on Earth. Bibring et al. [2006] pointed out that, to first order, 

the orbitally-mapped mineralogies of Martian rocks are related to their age, where 

phyllosilicate clays are most often associated with the oldest Noachian-era surfaces (4.5-

~3.8 Ga), sulfates and other salts are associated with Hesperian-era surfaces (~3.8-3.3 Ga), 

and dry dusty iron-oxides are associated with Amazonian surfaces (~3.3 Ga-present) 

[Bibring et al., 2006; Ehlmann and Edwards, 2014]. While this scheme is simplified, it 

highlights major mineralogical changes worth investigating in the sedimentary record; 

perhaps the transitions between these clay-rich, salty, and dry eras will reveal the global 

changes that shaped Mars. Furthermore, phyllosilicate clays are of special interest because 

of their potential for preserving organic molecules. At the time when landing sites for Mars 

Science Laboratory (MSL) were being chosen, only one site was found where rover-

accessible layered sedimentary deposits recorded the transitions between phyllosilicates, 

sulfate-rich deposits, and iron oxides [Grotzinger and Milliken, 2012], so the Gale crater 
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site was selected for further investigation of the sedimentary record of environmental 

transitions on Mars. 

 

1.2 Gale Crater 
Gale crater is a 154 km-diameter crater sitting on fluvially-dissected Noachian 

terrain along the dichotomy boundary that divides the southern highlands from the northern 

lowlands of Mars. It is an example of a class of craters identified and mapped by Malin 

and Edgett as a partially-filled crater with layered interior deposits, which in this case form 

a mound that extends higher than the northern crater rim [Malin and Edgett, 2000]. This 

mound likely surrounds the crater’s central peak and, based on other similar craters, is 

likely an erosional remnant from a more complete crater fill [Malin and Edgett, 2000; 

Grotzinger et al., 2015]. The layers exposed on the mound, called Mount Sharp (formally 

Aeolus Mons), were mapped in higher resolution by Anderson and Bell [2010] and the 

mineralogy associated with each layer was described in Milliken et al. [2010] in 

anticipation of Gale crater being a potential landing site for MSL. 

Mount Sharp is just over 5 km tall, and has a significant unconformity about 1.3 

km above the modern crater floor that separates the lower formation from the upper 

formation. The lower formation includes a thin phyllosilicate clay-bearing layer about 100 

m above the base of the mound and a thick sequence of sulfate-bearing layers above the 

phyllosilicates [Milliken et al., 2010]. In addition to these mineralogical indicators of 

water-rich sedimentation, there are channels indicating water flow from the base of the 

unconformity to the bottom of the mound, and a variety of fluvial channels leading into the 

crater [Anderson and Bell, 2010; Palucis et al., 2014]. Within the sulfate-bearing layer, 

about 1 km above the floor of the mound, there are boxwork deposits that were identified 

by Anderson and Bell [2010] and are discussed in detail in Siebach and Grotzinger [2014a] 

(Chapter 2), which require significant volumes of groundwater to have fluxed through at 

this elevation of Mount Sharp. The MSL rover Curiosity landed on the floor of the crater, 

called Aeolus Palus, and has traversed to the base of Mount Sharp and up through about 

40 meters of the stratigraphy, but has not yet (as of May, 2016) reached the phyllosilicate-

bearing unit identified from orbit. 
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1.3 Mars Science Laboratory 
The Mars Science Laboratory Curiosity rover is the most complex rover ever sent 

to the surface of Mars. It is 900 kg, 2.2 m tall, has a 1.9 m long robotic arm, and has eleven 

science instruments for in-situ data collection and analysis. Of relevance to the work 

presented here, these include stereo black and white navigation cameras (NavCam); stereo 

true-color mast cameras (MastCam); a Laser-Induced Breakdown Spectrometer (LIBS; 

ChemCam instrument) for remote compositional analyses at fine resolution; a robotic arm 

equipped with a drill for sampling, a high-resolution camera (MAHLI), and an Alpha-

Particle X-ray Spectrometer (APXS) for quantitative compositions of 1.7-cm diameter 

spots; and an X-Ray Diffractometer (XRD) for crystalline mineralogy in the Chemistry & 

Mineralogy experiment onboard (CheMin) [Grotzinger et al., 2012].  

Since Curiosity successfully landed at Bradbury Rise in Aeolus Palus on 6 August 

2012, Curiosity’s operations on Mars have been directed by the ~500 member MSL 

Science and Operations team on Earth. Work for this thesis incorporates Curiosity’s 

observations through sol 1300 (i.e., April 3, 2016). 

 

1.4 Thesis Summary 
Gale crater has been identified as one of the key sedimentary sections on Mars since 

sedimentary rocks were identified on that planet [Malin and Edgett, 2000]. With detailed 

orbital imagery and significant volumes of rover data now available for Gale crater, we are 

able to investigate the sedimentary record of Mars in unprecedented detail. The chapters in 

this thesis are designed to understand the formation and diagenesis of the sedimentary rocks 

in Gale crater encountered during each stage of the MSL mission. 

Prior to Curiosity’s landing, orbitally-based imagery was used to map an extensive 

layer of boxwork deposits in Mount Sharp, which are discussed in chapter 2 with 

implications for the formation of the mound itself and the importance of groundwater. After 

landing, Curiosity drove to and investigated the lowest elevation unit in the floor of Aeolus 

Palus, which was a mudstone called the Sheepbed formation. Chapter 3 is a detailed 

investigation of diagenetic synaeresis cracks in the mudstone, which contributed to the 
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interpretation of the Sheepbed formation as a once-habitable lake environment 

[Grotzinger et al., 2014]. After investigating the Sheepbed mudstone, Curiosity drove 

another 9 km across Bradbury group fluvio-deltaic sediments exposed in Aeolus Palus. 

Chapter 4 presents a grain-size based classification scheme for the Bradbury group rocks 

analyzed by Curiosity and shows that the geochemistry of these rocks is mostly related to 

mineral sorting based on grain size during fluvial transport. On sol 750 (i.e., September 14, 

2014), Curiosity reached the base of Mount Sharp and began investigating the Murray 

formation, another mudstone formed in an ancient lake that is interfingered with the 

Bradbury group sediments. Since then, Curiosity has also been analyzing samples from the 

Stimson formation, an eolian sandstone that unconformably drapes over the Murray 

mudstone at the base of Mount Sharp. Chapter 5 compares geochemical trends in the 

Bradbury fluvio-deltaic sediments, the Murray mudstone, and the Stimson eolian 

sandstone, focusing on our understanding of the source rocks around Gale crater based on 

clastic input to each of these formations, which sample different areas due to their distinct 

transport and depositional environments. 
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Chapter 2 

Volumetric Estimates of Ancient Water on Mount Sharp Based 

on Boxwork Deposits, Gale Crater, Mars 

Kirsten L. Siebach and John P. Grotzinger 

 
 
This chapter is published as: 
Siebach, K. L., and J. P. Grotzinger. (2014) Volumetric Estimates of Ancient Water on 

Mount Sharp Based on Boxwork Deposits, Gale Crater, Mars. J. Geophys. Res., online 
28 Jan 2014, doi: 10.1002/2013JE004508. 

 
Key Points 

 Boxwork structures on Aeolus Mons (Mount Sharp) are identified and mapped 
 Minimum water volume required for boxwork calculated from water-to-cement 

ratio 
 Implications for Mount Sharp formation are discussed 

 
 
Abstract 

While the presence of water on the surface of early Mars is now well-known, the volume, 

distribution, duration, and timing of the liquid water have proven difficult to determine. This 

study makes use of a distinctive boxwork-rich sedimentary layer on Mount Sharp to map 

fluid-based cementation from orbital imagery and estimate the minimum volume of water 

present when this sedimentary interval was formed. The boxwork structures on Mount Sharp 

are decameter-scale light-toned polygonal ridges that are unique compared to previous 

observations of Martian fractured terrain because they are parallel-sided ridges with dark 

central linear depressions. This texture and the sedimentary setting strongly imply that the 

ridges are early diagenetic features formed in the subsurface phreatic groundwater zone. 

High resolution orbital imagery was used to map the volume of light-toned ridges, indicating 

that a minimum of 5.25*105 m3 of cement was deposited within the fractures. Using a brine 

composition based on observations of other Martian cements and modeling the degree of 

evaporation, each volume of cement requires 800 – 6700 pore volumes of water, so the 

mapped boxwork ridge cements require a minimum of 0.43 km3 of water. This is a significant 
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amount of groundwater that must have been present at the -3620 m level, 1050 m above 

the current floor of Gale Crater, providing both a new constraint on the possible origins of 

Mount Sharp and a possible future science target for the Curiosity rover where large volumes 

of water were present and early mineralization could have preserved a once-habitable 

environment. 

 

2.1 Introduction 
The past decade of rover and orbiter missions make the influence of liquid water 

on the surface environment of ancient Mars very clear [Malin and Edgett, 2003; Squyres 

et al., 2004; Bibring et al., 2006; McEwen et al., 2007b; Murchie et al., 2009].  However, 

the volume of water that was once available on the surface of Mars, and which likely was 

subsequently lost to space [e.g. Jakosky, 1991], sequestered as ice caps and frozen grounds 

[e.g. Plaut et al., 2007], or incorporated in rocks and minerals [e.g. Mustard et al., 2012], 

etc., is much debated. An early estimate that attempted to approximate the surface water 

inventory based on the cumulative volume of sediment excavated by the numerous outflow 

channels and valley networks on Mars indicated that a minimum 500 m global equivalent 

layer (GEL) of water must have been present on early Mars [Carr, 1987]. Other estimates 

have considered the volume of water needed to fill the northern ocean (100 m GEL) [e.g. 

Head et al., 1999], the amount of water integrated into hydrated minerals (150-1800 m 

GEL) [Mustard et al., 2012], or the total amount of hydrogen lost to space (95-99% of 

initial inventory) [Jakosky, 1991]. These large-scale estimates serve as a starting point for 

more specific discussion of local phenomena that may have contributed to regional water 

budgets.   

Recent approaches to quantifying past water abundances exploit the increased 

resolution of recent orbiter missions to focus, for example, on well-defined geomorphic 

features that permit better constraints and allow modeling of the minimum water volumes 

required to form those features, including channels [e.g. Baker and Milton, 1974; Burr et 

al., 2009], basins [e.g. Goldspiel and Squyres, 1991; Jerolmack and Mohrig, 2007], and 

alluvial fans or deltas [e.g. Di Achille and Hynek, 2010]. These smaller-scale, better 

constrained, conservative calculations are particularly useful when coupled with 
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mineralogic evidence for water or when they provide context for larger sedimentary or 

geologic structures [e.g. Jerolmack et al., 2004; DiBiase et al., 2013] et al. Here, we 

evaluate a site where groundwater flowed through fractured rock and precipitated cements 

that formed large-scale boxwork structures.  These structures enable estimation of water 

volumes required to form a specific interval of the sedimentary layers that comprise Aeolus 

Mons (informally known as Mount Sharp) in Gale Crater. The calculation of water volume 

at this height, many hundreds of meters above the current crater floor, places important 

constraints on processes occurring during diagenetic modification of Aeolus Mons. 

Furthermore, this site is characterized by a once water-rich environment that underwent 

early mineralization, which is known on Earth to help facilitate preservation of once-

habitable environments [Grotzinger et al., 2012]. This is therefore recommended as a 

priority target for the Curiosity rover that successfully landed at the base of Mount Sharp 

in August 2012.  

 

2.2 Boxwork Structures: Mapping observations and formation discussion 

2.2.1 Methodology 
Mapping of the boxwork texture was accomplished using orbital imagery available 

through the NASA Planetary Data System. The gridded topographic dataset (463 m/pixel) 

from the Mars Orbiter Laser Altimeter (MOLA) instrument onboard the Mars Global 

Surveyor [Smith et al., 2003] was used as a reference for correlating orbital data over the 

fractures. Thermal Emission Imaging System (THEMIS) global IR daytime imagery (232 

m/pixel) was correlated to the MOLA reference, Context Camera (CTX) images (6 

m/pixel) were correlated to the THEMIS reference, and finally High Resolution Imaging 

Science Experiment (HiRISE) imagery (25 cm/pixel) was correlated to the CTX images. 

The fracture networks were identified in the HiRISE images and exposures of the fractures 

were mapped over approximately 1 km2. 

HiRISE Digital Terrain Models (DTMs, 1 m/pixel) provided by the U. S. 

Geological Survey (USGS) [Mattson et al., 2011] were co-registered where available to 

determine fracture elevations and stratigraphic relationships. The USGS creates DTMs 

based on the method described in [Kirk et al., 2008]. The absolute elevations of these 
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DTMs is determined by comparison to MOLA elevations, and is accurate to within a few 

tens of meters, but the expected vertical precision (EP) within the DTM can be calculated 

based on the viewing geometry and resolution of the HiRISE image [Kirk et al., 2008]. For 

the two DTMs used in this study, the EP, assuming 0.2-pixel matching error, is 7 cm for 

DTEEC_001488_1750_001752_1750_U02 and 15 cm for 

DTEEC_019698_1750_019988_1750_U01. Relative elevations within the fractured bed 

were determined using the HiRISE DTMs, and absolute elevations to compare with the 

landing site were determined by comparing averaged HiRISE DTM and MOLA gridded 

values over the mapped fracture networks to the MOLA-based landing site elevation. 

Fractures were mapped to the limit of resolution of HiRISE 25-cm-pixels, so ridges were 

detectable if they were about 50 cm across, and their heights could be measured to within 

about 10 cm based on DTM resolution.  

 

2.2.2 Observations 
Resistant fracture networks (boxwork textures) on Mount Sharp were first 

identified during Mars Science Laboratory (MSL) landing site assessment [Thomson and 

Bridges, 2008; Thomson et al., 2011]. Anderson and Bell placed the fractures in the context 

of geomorphologic units based on HiRISE mapping, noting that the best-developed 

cemented fractures are in a dark-toned layered unit [Anderson and Bell, 2010]. 

Stratigraphically, these cemented fracture exposures are found in the upper member of the 

lower formation of the mound strata (Figure 2.1), which exhibits a spectral signature 

dominated by sulfates [Milliken et al., 2010] and has a thermal inertia of 260 to 420 Jm-2K-

1s-1/2 [Fergason et al., 2012]. 

 Mapping of the boxwork texture in this study revealed that it is exposed in a 

stratigraphic interval at an average elevation of -3620 +/- 50 m with reference to the geoid. 

This interval is approximately 880 m above the Bradbury Rise landing site for MSL 

Curiosity [Parker et al., 2013], and 1050 m above the current base-level in Gale Crater 

[Anderson and Bell, 2010]. The upper limit of boxwork-containing strata is sharply 

bounded and coincides with a bedding plane.  The interval is abruptly overlain by light-

toned strata that lack the boxwork texture.  In contrast, the lower boundary of boxwork- 
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Figure 2.1 Overhead Map of Boxwork Structures 
Map of the mapped boxwork structures (red) within the Gale Crater stratigraphy on CTX 
mosaic with 2 km scale bar. Upper left map of Gale crater shows High Resolution Stereo 
Camera imagery draped on MOLA topography. Gale crater is 155 km in diameter for scale. 
Lower right inset shows detail of boxwork structures with a 50 m scale bar. HiRISE images 
used for mapping include: ESP_012551_1750, ESP_019698_1750, and (inset) 
PSP_001752_1750. Images centered at 137.302088° E, 4.875233° S. 
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containing strata is diffuse; boxwork textures gradually dissipate downward through ~40 

m of strata as measured in two visible sections in HiRISE DTMs (e.g. Figure 2.2e).  

Although exposure is intermittent, the boxwork texture can be traced through more 

resistant intervals. The boxwork-bearing unit is primarily exposed along cliff faces and in 

open-ended topographic lows between resistant outcrops of the capping unit (Figure 2.3). 

The light-toned ridges that help define well-developed boxwork textures are fairly densely 

spaced; these ridges make up an average of 35% of the surface area in these sections 

(ranging from ~20-50%, Figure 2.2a-d). 

The geometry of the fracture network that defines the boxwork texture is delineated 

by the trends of light-toned ridges, expressed in raised relief. Fractures are mostly straight, 

however the longest fractures often show slight curvature (e.g. Figure 2.2a-d). The 

fractures tend to intersect at 90-degree angles and show a preferred orientation; secondary 

fractures often end when they intersect primary fractures, although secondary fractures 

may cross-cut primary fractures. The fracture networks are less well-organized at deeper 

stratigraphic levels, showing increasing fracture curvature and greater intersection angles 

(Figure 2.2e-f). Ridge widths vary between exposures, but they average about 5 m in width. 

Some light-toned ridges show a dark line running down the center of the ridge, which varies 

in width up to 1.5 m (Figure 2.4).  

The hollows between elevated boxwork-defining fractures are filled with dark 

sediment that forms dunes in larger accumulations. These hollows tend to be quasi-circular 

in plan-view and range in diameter from tens of meters to below one meter, with an average 

of ~10 m. HiRISE DTMs were used to measure the elevation difference between ridge tops 

and the middle of the hollows. In many cases the hollows were quite shallow or filled with 

sand and there was not a measureable difference in elevation. For 25 profiles where there 

was a measureable difference in elevation, the average elevation difference was 0.4 m, and 

the elevation differences typically ranged from 0.1 m to 1.0 m (see Figure 2.4). The 

maximum elevation difference found was 3.5 m between the ridge and hollow.  
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Figure 2.2 Boxwork Structure Morphologies 
Images on right (b, d, and f) show outlines tracing the center of the light-toned raised ridges 
(original fracture network). Scale bar in all images is 50 m, north is up. All images from 
HiRISE frame PSP_001752_1750. Note clear primary and secondary fracture directions 
near top of stratigraphic layer (frames c and d) and increasing fracture curvature with depth 
in the stratigraphy (as shown in a, b, e, and f). Center latitude and longitude of each image 
pair listed here: (a, b) 137.288197E, -4.900521S, (c, d) 137.302600E, -4.876048S, and (e, 
f) 137.328993E, -4.845897S. 
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Figure 2.3 Perspective View of Boxwork from HiRISE DTM  
[DTEEC_001488_1750_001752_1750_U02] of boxwork structures in stratigraphy. Note 
that the fractures do not continue into the capping unit. 
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Figure 2.4 Detail of Boxwork Structures 
Detail of boxwork structure, showing dark lines in ridge centers. Profile shows that relief 
between ridges and hollows is on the order of a few tens of centimeters.  
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2.2.3 Boxwork Formation Discussion 

 The boxwork texture is defined by light-toned, decameter-scale, polygonal ridge 

networks. The distinctive attribute of these light-toned ridges as compared to other fracture 

networks observed from orbit on Mars is that they are parallel-sided with dark center lines 

that demarcate either linear central depressions or later cements.  This texture strongly 

implies that the ridges are post-depositional diagenetic features formed in the subsurface 

when mineral-saturated groundwater flowed through fractured, lithified rock, and cement 

precipitated within fractures and pores. The parallel walls of the filled fractures are 

comparable to “isopachous” void-filling cements described commonly in rocks on Earth, 

where minerals create linings, or coatings, along the margins of voids – be they fractures 

or intergranular pore spaces.  Such isopachous cements form when the void is within the 

phreatic (water-saturated) zone [Tucker, 2009]. This differential cementation makes the 

fractures more resistant to erosion than the less cemented host rock, and thus the fracture 

fills stand as topographically higher rims around the eroded host rock (Figure 2.1).  

 Boxwork formation implies a series of post-depositional processes: sediment was 

lithified and fractured, then saturated fluids percolated through the fracture network and 

cemented fractures and residual pore spaces in the subsurface, finally the boxwork interval 

was exhumed and erosion of the less-indurated rock formed the now exposed polygonal 

ridges. These observations help to clarify the series of events at this stratigraphic interval 

on Mount Sharp. 

 The presence of fractures in a distinct stractigraphic successsion, with increasing 

organization towards the top of that succession, and the absence of similar fractures in 

overlying strata imply that this stratum was already lithified and then exposed at the surface 

when the fracturing occurred. Lithification on Mars is not well understood, but in general, 

compaction by burial decreases porosity of sediments and fluids cement and lithify 

sediments [Grotzinger and Milliken, 2012]. Conceivably, this boxwork-bearing interval 

could have been buried, infiltrated by cementing fluids, and converted from sediment to 

rock, prior to exhumation and fracturing. 

 The fracture geometry helps narrow down the cause of fracturing. In general, large 

non-tectonic surface fractures originate from contraction, impact processes, loading and 
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unloading of lithospheric stresses, jointing, or fluid pressure [Long et al., 1996]. Jointing 

and fluid pressure are ruled out by stratigraphic relationships—the fracturing occurred at 

the surface—and impact processes are ruled out by the systematic organization of fractures 

(Figure 2.2). Contraction processes are the most likely to have formed the fractures. The 

observed orthogonal fracture patterns indicate that the fractures did not form in extended 

freeze/thaw cycles, which create 120-degree joints over 106-year time scales [Sletten et al., 

2003]. Rather, the fracture geometry is most similar to those formed in non-cyclic isotropic 

or slightly non-isotropic contraction stress fields [Olson et al., 2009], which could be 

related to sediment desiccation or more intense short-term freezing of lithified sediment 

[Long et al., 1996]. 

 After lithification and fracturing, the voids in the host rock and fractures are 

inferred to have been filled with a second generation of cement. The dark line in the center 

of the ridges helps delineate the parallel-sided or “isopachous” nature of precipitated 

fracture-filling minerals along the walls of the fractures (e.g. Figure 2.4).  The isopachous 

morphology of the light-toned elevated ridges is consistent with cementation in the phreatic 

groundwater zone, where cement formation occurs evenly on all available surfaces.  

Approximations of the water volume required to form the ridges depend on the 

relative proportion of primary host rock, and secondary cements forming the raised ridges. 

Two scenarios are proposed for the relative proportions of primary rock and secondary 

cement in the light-toned ridges: (1) the ridges are primarily composed of extensive 

secondary cements filling pores and fractures, or (2) the ridges are mostly composed of the 

host rock, hardened by an early cement within the pore spaces. For either case, there are 

then two options for the dark central lineations in the ridges; the dark lines could represent 

residual porosity in the fracture network that was back-filled with wind-blown dark sand 

or dark-toned cement that completely fills the fracture void.  Since the dark central lines 

are a relatively minor component of the ridges, the primary distinction between these 

scenarios is whether the light-toned ridges are mostly cement or if they are host rock with 

pore-occluding cement, perhaps ~30% cement fill. Orbital data cannot discriminate 

between these two scenarios. However, in either case, the observed boxwork represents a 

significant volume of cement precipitated from groundwater. 
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 Polygonal ridges, albeit at a much smaller scale, were originally analyzed and 

described in Wind Caves, South Dakota, where the term “boxwork” structures was coined 

[Bakalowicz et al., 1987]. Large-scale intersecting filled fracture networks are also present 

in sulfate-bearing units in Candor Chasma [Okubo and McEwen, 2007] and northeast Syrtis 

Major [Ehlmann and Mustard, 2012], but the structures within Mount Sharp are 

distinguished as a dense, parallel-sided network of filled-fracture boxwork structures. 

Alternative formation hypotheses for the boxwork were considered, but they do not 

explain the observed fracture characteristics and the dark line in the center of the ridges. 

Volcanic dikes, for example, could also leave raised ridges post-erosion, but these often 

form in clusters or irregular parallel geometries [Hoek, 1991], and this formation 

mechanism does not explain the centered dark lines.  Some freeze-thaw thermal contraction 

polygons have dark central lines that demarcate accumulations of loose sediments between 

ice polygons, and the edges of the ice polygons may accumulate raised shoulders, but the 

central linear depressions (sand wedges) are generally wider than the raised polygon 

shoulders [Sletten et al., 2003]; this does not match the measured elevated ridges described 

here. Finally, boxwork patterns could be similar to large-scale honeycomb or tafoni salt-

weathering patterns [Rodriguez-Navarro, 1998], but this is unlikely because of the high 

ridge width relative to hollows and the albedo variation in the ridges. Based on the fracture 

geometry, presence of sulfates, ridge characteristics, and local geomorphic features 

consistent with water-induced bedrock erosion [Anderson and Bell, 2010], the 

cementation-based hypothesis for boxwork formation is accepted as the most likely 

interpretation. 

 

2.3 Fluid Volume Calculation 
Quantitative estimates of water flow on Mars are essential to understanding water-

rock interactions that inform an understanding of diagenesis and alteration, as well as 

habitability. At Gale Crater, these estimates would help provide context for Curiosity’s 

mission of exploration. The boxwork structures described here constitute an unusual 

opportunity where quantitative measurements of a volume of diagenetic cements can be 

acquired from orbital imagery. Cement volumes can be related to the volume of water 
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required to deposit the cement if a few simple assumptions are made about the ion 

saturation of the groundwater and the degree of evaporation of the brine.  An approach to 

fluid pore-volume calculations based on terrestrial studies of carbonate cementation is 

employed here to determine the water volume required to deposit the mapped cements 

[Bethke, 1985; Banner and Hanson, 1990]. Although the cement composition of the ridges 

was not uniquely determined from orbit, previous observations of evaporite deposits on 

Mars by the Opportunity rover [Grotzinger et al., 2005; McLennan et al., 2005] have 

constrained models of Martian brines. Here we use an evaporation model derived from 

acid-sulfate weathering of synthetic Martian basalts and constrained by the Opportunity 

rover findings in Meridiani Planum [Tosca, 2004; Tosca et al., 2008]. 

Calculation of the minimum volume of water required to form the boxwork layer 

is based on the following equation: 

 , (1) 

where the volume of cement (Vcement) is derived from mapping of orbital imagery and the 

minerals precipitated are derived based on a reasonable model for evaporation of a Martian 

brine [Tosca et al., 2008]. The volume of water (Vwater) evaporated per volume of cement 

precipitated (Vcement), or unitless “pore volume,” is calculated for a given degree of brine 

evaporation based on the volume of precipitated minerals (mmineral/ρmineral) per volume of 

water in the initial brine (Vbrine). The results of this calculation are shown in in Figure 2.5, 

where pore volumes of water (Vwater/Vcement) are plotted against percent of water evaporated 

(Vwater/Vbrine). The plot seems to approach an asymptote, indicating that more water 

evaporation does not immediately lead to more cement precipitation, at two times; first 

after the precipitation of jarosite, gypsum, copiapite, and bilinite, and later after the 

precipitation of epsomite, melanterite, anhydrite, and halite [Tosca et al., 2008]. Points 

near the two asymptotes are selected to describe the range of pore volumes of water that 

would be required to deposit the cement volume. As indicated in Figure 2.5, if 99% of the 

starting brine evaporates, then 6,700 pore volumes of water are required, or (based on the 

last point in the modeled evaporation sequence) if 99.97% of the brine evaporates, 800 
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pore volumes of water are required to form the cements. These values fit well in the 

range of pore volumes estimated for terrestrial porosity occlusion scenarios [Bethke, 1985; 

Banner and Hanson, 1990]. 

To obtain a minimum estimate for the water volume, the volume of cement is 

derived from the surface area of ridges within the mapped HiRISE unit, 0.35 km2, 

multiplied by the thickness of the resistant boxwork layers in the vertical stratigraphy, 5 m, 

giving a minimum cemented ridge volume of 1.75 x 106 m3. This is a conservative estimate 

as the boxwork can be traced vertically through up to 40 m of stratigraphy in some locations 

and may well extend laterally for some distance into the subsurface beneath Mount Sharp, 

based on continuity of stratigraphy around the entire mound [Milliken et al., 2010]. Two 

endmember hypotheses were used to calculate the cement volume based on the ridge 

volume: ridges are 100% cement (cements occur within fractures), or ridges are 30% 

cement by volume (cements occlude pores within primary rocks adjacent to fractures). The 

pore-occluding scenario is comparable to several analogous locations on Earth, where 

rocks in close proximity to a fracture or fault can become strongly cemented, forming 

diagenetic “halos” [Knipe, 1992; Nelson et al., 1999]. Assuming 99.97% of the brine 

evaporates, the fracture-filling scenario requires a minimum of 1.4 km3 of water, and the 

pore-occluding scenario requires 0.42 km3 of water to form the measured ridges (Figure 

2.5). 

 

2.4 Implications for Mount Sharp Formation 

These results are surprising because they imply a significant amount of water once 

percolated through pores in rocks 1050 m above the current base-level for Gale Crater. 

Several scenarios could deliver the required water, but this analysis must begin with several 

firm constraints: (1) the boxwork fabric is developed along a bedding plane that emerges 

from within the stack of layers that define Mt. Sharp, (2) the boxwork fabric terminates 

abruptly against the overlying stratum, but extends downward for several tens of meters, 

and (3) the isopachous element of the boxwork fabric indicates mineral precipitation in the 

phreatic zone, below the local groundwater table.  These constraints require the boxwork 

to be an ancient feature, dating back to the time of sediment accumulation; development of  
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Figure 2.5 Plot of Required Volumes of Water per Volume Cement 
Plot showing unit volumes of water evaporated per unit volume of cement precipitated 
(pore volumes of water) depending on the percent of water evaporated from a Martian brine 
model based on findings from the Mars Exploration Rover Opportunity [Tosca et al., 
2008]. The plot approaches an asymptote, indicating that more water evaporation does not 
immediately lead to more cement precipitation, twice; first after the precipitation of 
jarosite, gypsum, copiapite, and bilinite, and later after the precipitation of epsomite, 
melanterite, anhydrite, and halite [Tosca et al., 2008]. Dotted line shows that if 99% of the 
brine evaporates, 6,700 pore volumes of water are required per unit of cement deposited. 
At the last point in the model, when 99.97% of the water has evaporated, only 800 
equivalent volumes of water are required per volume of cement. 
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the fractures was terminated before the time of deposition of the overlying stratum; 

mineral precipitation occurred in the fractures in the phreatic zone, below the local 

groundwater table. This volume of groundwater-based cement indicates that the mound 

was formed not simply by eolian sediments cemented in minor wetting events [e.g. Kite et 

al., 2013] but that instead there was extensive groundwater flow and aqueous processing 

of sediments involved in mound formation (see Figure 2.6).  

Perhaps the simplest explanation is that the boxwork texture reflects groundwater 

supplied by atmospheric precipitation either as rain or snow; basin-filling strata 

accumulating within the lower elevations of Gale crater could have absorbed water in this 

fashion.  The waxing and waning of water derived from seasonal or longer-term climatic 

cycles could have provided a mechanism for fracture formation [Lachenbruch, 1963].  

However, this mechanism cannot account for the mineral abundance required to create the 

fracture-filling cements.  Meteoric waters derived from rainfall or melting snow on the -

3620 meter bedding plane surface would have been strongly undersaturated and almost 

certainly would have resulted in dissolution and karst formation given the high solubility 

of sulfate salts. In contrast, the evidence presented in this paper strongly supports mineral 

precipitation at this stratigraphic level. There is no evidence for dissolution fabrics which 

have been detected elsewhere based on remotely-sensed image data [Belderson et al., 1978; 

Manda and Gross, 2006]. 

A derivative scenario assumes that Mt. Sharp had topographic expression at the 

time the boxwork-containing strata were accumulating and that precipitation occurred in 

those highlands. The recharge area underwent leaching to provide the ions required to 

cause mineral precipitation at some down-gradient distant site – for example, where the 

boxwork fabric is observed (Figure 2.6a-b).  Mt. Sharp has considerable surface area and, 

depending on the mechanism for its formation, it is conceivable that its summit varied in 

position; the current summit is about 45 km southeast from the exposed boxwork bedding 

plane.  The stratigraphic interval represented by the fracture network would have been 

within an aquifer, transporting these fluids down-gradient from the undersaturated recharge 

area.  As fluids moved through this aquifer they would have become increasingly saturated 

due to dissolution of minerals along the way, and eventually re-precipitated these dissolved  
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Figure 2.6 Schematic of Mount Sharp Formation Models 
Schematic showing possible ancient configurations of Mount Sharp that would allow 
sufficient groundwater flow to form boxwork structures. Part a shows a scenario where 
Mount Sharp formed as a central mound with an aquiclude, where groundwater must have 
originated from precipitation on topographically high parts of the mound, and evaporated in 
locations with low overburden pressure, forming the boxwork structures. Part b shows a 
scenario where most of the crater is filled with sediments and the boxwork form in a 
topographic low because an aquiclude prevents groundwater from sinking in the crater. Part 
c shows a less conservative scenario where the crater is full of sediments and focuses 
groundwater from the surrounding region that evaporates to form the boxwork. 
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ions where physical conditions caused local oversaturation. (A variety of soluble 

minerals might have been involved in dissolution updip, to precipitation downdip, but such 

considerations go beyond the scope of the current paper.) This mechanism would have 

required Mt. Sharp to have a higher elevation than the -3620 m bedding plane to drive the 

flow.  It also likely would have required a perched water table (unless the whole mountain 

was saturated), underlain by an aquiclude, to prevent infiltration and loss of the fluid at 

sites far removed from the recharge area.  It is conceivable that in the Mt. Sharp stratigraphy 

there exist lithologies heterogeneous enough to provide contrasts in hydraulic conductivity. 

This scenario allows for the possibility, but does not require, that Gale Crater was mostly 

filled with sediment (Figure 2.6b); as long as the aquifer including the boxwork has 

sufficient topography and area to serve as a recharge area for the groundwater flow, the 

sediment need not have filled the entire crater (Figure 2.6a). 

A less conservative but viable scenario would invoke filling of Gale Crater with 

sediments up to the level of the -3620 m bedding plane (Figure 2.6c) [Malin and Edgett, 

2000]. These sediments could have lithified and fractured based on sediment water flux or 

thermal expansion-contraction. Subsequent burial due to continued sediment accumulation 

could have resulted in circulation of mineral-saturated groundwaters in the fracture 

network, with later precipitation of minerals in the fractures.  Eventually, these strata were 

exhumed, creating Mt. Sharp and exposing the bedding plane on which the boxwork fabric 

is developed.  

 

2.5 Conclusions 
 Detailed mapping of the filled fracture network on Mount Sharp indicates that this 

sedimentary layer most likely represents large-scale boxwork fabrics.  The original 

sedimentary rock was lithified, likely by early cementing fluids during shallow burial.  

Subsequently this layered unit was exposed at the surface and fractured, and then it was 

again buried.  Circulation of mineral-saturated fluids in the phreatic zone further lithified 

sediments adjacent to the fractures and also at least partially filled the fractures. This 

sequence of events requires circulation of mineral-saturated groundwater, supporting 

mound-formation scenarios in which groundwater could migrate from an undersaturated 
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recharge area to precipitate within the boxwork level at least a kilometer above the 

current crater floor. 

Volumes of diagenetic cements can be measured from orbital imagery and, based 

on these measurements and an assumed chemistry, the minimum volume of water required 

to form the cements measured was calculated to be about 0.4 km3. These deposits provide 

evidence for extensive and relatively rapid cement formation, which could be beneficial to 

the preservation of organic compounds, 1050 m above the current floor of Gale Crater.  

The Mars Science Laboratory Curiosity rover is capable of driving to the boxwork 

layer [Grotzinger et al., 2012] from its landing site on the floor of Gale Crater and 

investigating the chemical composition and textures of these deposits from the surface. 

This site is a possible target for investigation by Curiosity as a location where a series of 

post-depositional water-based processes are interpreted that left extensive exposed 

diagenetic cements, which are indicative of possibly favorable conditions for preservation 

of organic compounds. 
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Key Points 

 Raised ridges are early diagenetic cement-filled cracks in Sheepbed mudstone 
 Cracks are subaqueous shrinkage cracks likely formed by subsurface gas 
 Isopachous cement fills indicate series of pore fluid chemistries 

 
 
Abstract  

The Sheepbed mudstone, Yellowknife Bay formation, Gale crater, represents an ancient 

lakebed now exhumed and exposed on the Martian surface. The mudstone has four 

diagenetic textures, including a suite of early diagenetic nodules, hollow nodules, and raised 

ridges, and later diagenetic light-toned veins that cross-cut those features. In this study, we 

describe the distribution and characteristics of the raised ridges, a network of short spindle-

shaped cracks that cross-cut bedding, do not form polygonal networks, and contain two to 

four layers of isopachous, erosion-resistant cement. The cracks have a clustered distribution 

within the Sheepbed member and transition laterally into concentrations of nodules and 

hollow nodules, suggesting that these features formed penecontemporaneously. Because of 

the erosion-resistant nature of the crack fills, their three-dimensional structure can be 

observed. Cracks that transition from sub-vertical to sub-horizontal orientations suggest that 

the cracks formed within the sediment rather than at the surface. This observation and 

comparison to terrestrial analogs indicate that these are synaeresis cracks - cracks that formed 
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subaqueously. Synaeresis cracks form by salinity changes that cause sediment contraction, 

mechanical shaking of sediment, or gas production within the sediment. Examination of 

diagenetic features within the Sheepbed mudstone favors a gas production mechanism, 

which has been shown to create a variety of diagenetic morphologies comparable to the 

raised ridges and hollow nodules. The crack morphology and the isopachous, layered cement 

fill show that the cracks were filled in the phreatic zone and that the Sheepbed mudstone 

remained fluid-saturated after deposition and through early burial and lithification. 

 

3.1 Introduction 
Whereas Mars was once considered to be a mostly volcanic planet, the last ten years 

of exploration have shown that there are a significant number of sedimentary deposits on 

Mars, and that these rocks record a complex history of water-rock interaction [McLennan 

and Grotzinger, 2008a; Grotzinger and Milliken, 2012]. Orbitally-based observations have 

shown that these rocks form in a range of depositional environments and show a wide 

variety of spectral signatures [e.g. Ehlmann et al., 2008a; McLennan, 2012]. More detailed 

investigations into sedimentary clast origins, depositional textures, rock lithification, and 

later rock modifications must be completed at the rover-scale. Diagenesis, in particular, 

includes all processes that occur after initial sediment deposition and prior to weathering 

and erosion of an exhumed rock, including the lithification of sediments into rock. 

Investigation into the diagenetic stages that sediments have undergone helps constrain the 

duration, continuity, and chemistry of different stages of water-rock interaction. Diagenesis 

of sediments usually encompasses loss of porosity due to grain reorganization, compaction, 

and cementation of the rock, and may also include authigenic mineral precipitation, void 

formation, and sediment deformation [Worden and Burley, 2003]. Later diagenetic affects 

may also include events related to creation of new pore networks, often associated with 

fracturing and subsequent fluid migration events [Long et al., 1996]. Detailed studies of 

mineralogy, chemical variability, and textural features can aid in reconstruction of these 

diagenetic events. Ultimately, understanding diagenetic histories can provide critical 

constraints on the reconstruction of ancient depositional environments, and the chemical 

evolution of sedimentary pore fluids.  
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Effects of sediment diagenesis have been observed on Mars at both rover [Clark 

et al., 2005; McLennan et al., 2005] and orbiter scales [Okubo and McEwen, 2007; 

Ehlmann et al., 2011; Siebach and Grotzinger, 2014a] and have been attributed to the 

circulation of liquid water through pore networks. In some cases, these observations 

provide plausible constraints on the volume of water required to form diagenetic signals 

(e.g. [McLennan et al., 2005; Siebach and Grotzinger, 2014a]). At present, most of the 

diagenetic processes observed by landed missions on Mars, like the sulfate cementation at 

Meridiani Planum, have pointed to acidic, highly saline groundwaters with low water 

activity [Grotzinger et al., 2005; McLennan et al., 2005; Knoll and Grotzinger, 2006; 

Tosca et al., 2008], however these compositions may be inherently biased due to the small 

number of landed missions. More recent findings from the Mars Exploration Rover and 

Mars Science Laboratory (MSL) missions have shown that more neutral-pH environments, 

with lower salinity and elevated water activity, were also present on early Mars [Arvidson 

et al., 2014; McLennan et al., 2014; Vaniman et al., 2014], and that these were potentially 

habitable environments that could have been suitable for chemolithoautotrophic microbes 

[Grotzinger et al., 2014]. 

 Since landing in August 2012, the Curiosity rover has identified multiple types of 

sedimentary rock, ranging from conglomerate [Williams et al., 2013] to sandstone and fine-

grained mudstone, each of which provide evidence for diagenesis [Grotzinger et al., 2014]. 

The Sheepbed mudstone, interpreted to have been deposited in an ancient freshwater lake, 

has undergone extensive study with the full range of analytical instruments on the Curiosity 

rover [Grotzinger et al., 2014]. The Sheepbed mudstone is uniformly fine-grained (<63 μm 

grain sizes), composed of >15% authigenic clay minerals [McLennan et al., 2014; Vaniman 

et al., 2014], and contains at least four distinct diagenetic textures: nodules (spheroidal 

protrusions with no discernable internal structure), hollow nodules (spheroidal protrusions 

showing a central void), raised ridges, and a later generation of gypsiferous, mineralized 

veins [Grotzinger et al., 2014; Nachon et al., 2014; Stack et al., 2014]. Collectively, these 

features record long-term exposure to water, and reveal a once-habitable environment in 

Yellowknife Bay, Mars [Grotzinger et al., 2014]. Here, we investigate the importance of 

the raised ridge features and use their characteristics to show that the Sheepbed mudstone 
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was most likely deposited subaqueously and had fluid-saturated pore spaces throughout 

early lithification and cementation of the mudstone. 

 

3.2 Geologic Context 
 After landing at Bradbury Rise (4.589°N, 137.441°E), Gale crater, Mars, the 

Curiosity rover traversed 445 meters west to the Glenelg region [Parker et al., 2013; 

Grotzinger et al., 2014]. This region represents the conjunction of three units, defined in 

orbital images based on geomorphic and thermal inertia attributes, which are located at the 

distal end of an alluvial fan system [Grotzinger et al., 2014]. One of the units that Curiosity 

investigated in detail was the bright, fractured (BF) unit, characterized by relatively high 

thermal inertia, exposed light-toned bedrock, and ubiquitous decimeter-scale fractures. An 

approximately five meter-thick exposure of stratigraphic section of the BF unit occurs at 

Glenelg and has been described as the Yellowknife Bay formation [Grotzinger et al., 

2014]. In ascending order, the latter is subdivided into the Sheepbed, Gillespie Lake, and 

Glenelg members (Figure 3.1). The uppermost Glenelg member consists of fine- to coarse-

grained, locally cross-stratified, basaltic sandstone that is interpreted to reflect fluvial or 

eolian deposition [Grotzinger et al., 2014]. The Gillespie Lake member, also interpreted as 

a fluvial deposit, consists of a medium-grained sandstone of basaltic composition. 

Underlying these two relatively coarse-grained deposits rests the Sheepbed member, a 

mudstone, also of basaltic composition, that is interpreted to have been deposited in a 

lacustrine setting [Grotzinger et al., 2014]. The contact of the Sheepbed member with the 

overlying Gillespie Lake member is sharp, and traceable in orbital imagery.  

 The stratigraphically lowest unit in the Glenelg region, the Sheepbed member, is 

exposed in the floor of Yellowknife Bay.  Based on Curiosity’s observations, it extends 

across at least the ~60 m traversed within Yellowknife Bay. Given that it can be traced 

from orbit, and likely closely coincides with the BF unit, the Sheepbed member is inferred 

to extend laterally at least several hundred more meters to the east and north, and is possibly 

laterally continuous for hundreds of meters or kilometers beneath the overlying units of the 

Yellowknife Bay formation [Grotzinger et al., 2014].  The Sheepbed member is the best-

characterized member of the Yellowknife Bay formation because two drilled samples, John  
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Figure 3.1 Geologic Map of Yellowknife Bay 
After Grotzinger et al. [2014]. Upper left inset shows Gale crater, 155 km across, with star 
at Yellowknife Bay location. Lower portion shows members of the Yellowknife Bay 
formation projected into a HiRISE-extracted elevation profile. 
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Klein and Cumberland, were acquired from this member and analyzed by Curiosity’s 

full analytical instrument suite, including a mass spectrometer and X-Ray Diffraction 

(XRD) instrument [Ming et al., 2014; Vaniman et al., 2014]. In addition, a suite of Alpha 

Particle X-Ray Spectrometer (APXS) measurements were collected within the unit 

[Grotzinger et al., 2014; McLennan et al., 2014] and numerous ChemCam laser-induced 

breakdown spectroscopy analyses were obtained to help characterize the site [Léveillé et 

al., 2014; Nachon et al., 2014]. Curiosity’s investigation demonstrated that the Sheepbed 

member is uniformly fine-grained, with a near-typical basalt composition, and contains 

nearly 20% saponitic smectite clay minerals [Grotzinger et al., 2014; McLennan et al., 

2014; Vaniman et al., 2014]. The smectite clay, identified by the XRD analysis, was 

inferred to be authigenic based on the distributed APXS measurements, which showed that 

the rock chemically matches slightly-alkaline average Martian crustal basalt in all of the 

samples, suggesting isochemical weathering [McLennan et al., 2014]. Mudstones are 

generally deposited in low-energy, standing water environments, and the Sheepbed unit, in 

particular, has been interpreted to have been deposited in a lake that formed at the distal 

limit of an alluvial fan [Grotzinger et al., 2014].  

 Diagenetic textures representing at least two distinct post-depositional fluid 

environments are present in the Sheepbed mudstone. These include nodules, hollow 

nodules, raised ridges, and light-toned, cross-cutting, calcium sulfate-rich light-toned veins 

(Figure 3.2) [Grotzinger et al., 2014]. The nodules and hollow nodules are mm-scale 

resistant spherical protrusions (sometimes with a less-resistant or hollow center) that are 

densely clustered in some locations [Stack et al., 2014] and pass laterally into 

concentrations of raised ridges. The light-toned veins weather flush with the surrounding 

rock and cross-cut the raised ridges, nodules, and hollow nodules (Figure 3.2).  

 

3.3 Methods 
 Raised ridges—mineralized cracks, only a few mm in width, which are distributed 

within the Sheepbed member—were mapped over 27 m2 of the exposed surface of the 

Sheepbed unit using ArcGIS software and images available through the NASA Planetary 

Data System. Context for this mapping was derived from High Resolution Imaging Science  
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Figure 3.2 Mastcam Image and Interpretation of Raised Ridges 
Portions of Mastcam M-100 mosaic (mcam00885, sol 164), with accompanying sketches, 
showing relationships between diagenetic textures in the Sheepbed unit. Inset box is 
approximately 13 cm x 6 cm; 2 cm scale bar in inset. Red lines are erosion-resistant 
cements that compose the raised ridges, dark grey circles are nodules and hollow nodules, 
white fill shows light-toned veins visible at the surface (many are dust-covered), and dark 
grey depicts dust covered regions of the mudstone. Yellow arrows in inset highlight cross-
cutting relationship showing that the light-toned veins are a later texture that cut through 
the raised ridges and hollow nodules, sometimes even filling previously-hollow nodules. 
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Experiment (HiRISE) images (25 cm/pixel) [McEwen et al., 2007a] and orthorectified 

MSL Navigation Camera (Navcam) imagery [Maki et al., 2012], which have been localized 

along the rover’s traverse by the MSL science team localization scientists based on a 

controlled photomosaic of sequentially higher resolution data sets tied to the Mars Orbital 

Laser Altimetry global base map [Parker et al., 2013]. HiRISE imagery was used as a 

basemap for stratigraphic analysis, and rover-based Navcam imagery was used to create 

contours and localize ChemCam and drill targets. Neither of these image sets, however, 

provide adequate resolution to map the raised ridge features. 

 The Curiosity Mast Camera (Mastcam) imagery proved to be the best available 

imagery to map the sub-mm-scale raised ridge features over a large spatial area (~27 m2). 

The Mastcam consists of two mast-mounted cameras that sit approximately 2.1 m above 

the surface. The right Mastcam (M-100) has a 100-mm focal length, f/10 lens, with a 6.3° 

x 5.1° field of view (FOV), and the left Mastcam (M-34) has a 34-mm focal length, f/8 

lens, with an 18.4° x 15° FOV. The two cameras are separated by a 24.5 cm stereo baseline 

[Malin et al., 2010; Bell et al., 2013]. Image mosaics taken with the M-100 camera are 

preferable for mapping the raised ridge features because of their inherent higher image 

resolution; even for surfaces 5 m away from the rover, the M-100 camera provides a 

resolution of 0.37 mm/pixel, whereas the M-34 has a resolution of 1.1 mm/pixel. However, 

because the images are not taken vertically, but at a variable angle, raw M-100 imagery is 

necessarily distorted relative to the actual topography of the raised ridges. Thus, where 

available, stereo imagery was used to create orthorectified Mastcam mosaics using the 

Ames stereo pipeline [Moratto et al., 2010], which was adapted by Malin Space Science 

Systems to work with the different resolution of the two Mastcams (see Appendix A). 

Orthorectified Mastcam mosaics were able to be more accurately correlated to the Navcam-

based map, and permitted raised ridges to be traced over the key areas of the Sheepbed 

member, with reference to the vertically projected M-100 mosaics when needed for higher 

resolution (or to correct distortions introduced in the image orthorectification process). 

 In addition to the large-scale mapping, a Mastcam mosaic, mcam00885, taken on 

sol 164, was selected for fine-detail mapping of the individual cement layers in the raised 

ridges and the relationship of the raised ridges to the other diagenetic features in the 
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Sheepbed member. This mapping was also accomplished in ArcGIS, but in this case, 

because it was critical that the features not be distorted, the rover-perspective white-

balanced mosaic was used and the average scene pixel scale (0.206 μm/pixel) was used for 

measurements of the length and width of 300 individual ridges and cements. 

 

3.4 Observations 
 Raised ridges within the Sheepbed mudstone occur as cracks in the mudstone 

filled with multiple layers of cement. The outermost layer of cement fill is resistant to 

erosion, resulting in curvilinear ridges that outline the original crack shape, stand above the 

host rock, and give these features the name “raised ridges.” Interior cement layers are 

usually less resistant, although in some cracks multiple layers of resistant cements are 

visible (e.g. Figure 3.2). The redundancy in the term “raised ridges” is meant to emphasize 

the height of the ridges relative to their width.  

Raised ridges were mapped comprehensively in the vicinity of the John Klein and 

Cumberland drill sites where near-rover orthorectified overhead imagery was available 

(Figure 3.3). Bedding is rarely visible in this local area, but it is assumed to be near-

horizontal and to follow contour lines based on an observed near-horizontal conformable 

contact with the Gillespie Lake member [Grotzinger et al., 2014]. The most obvious feature 

of the raised ridges at the meter scale is their clustered distribution (Figure 3.3). Laterally, 

a few concentrated clusters of raised ridges are visible, each region measuring tens of cm 

in diameter. Individual ridge networks do not continue laterally within the same contour 

interval (i.e. within the same stratigraphic horizon), but transition into either relatively 

featureless mudstone or areas of concentrated nodules and hollow nodules (e.g. Figure 3.2; 

[Stack et al., 2014]). Additionally, both individual ridges and ridge networks cross-cut 

topographic contours (Figure 3.3). Some raised ridges are not localized within the larger 

clusters, but scattered both laterally and vertically through the mudstone. There is no  

consistent preferred crack orientation (Figure 3.3). At least two ridge clusters (one in Figure 

3.3 and another called the “Rowatt” cluster, Figure 3.9) occur immediately beneath the 

Sheepbed-Gillespie Lake contact; and in one location a single raised ridge appears to cross-

cut the Sheepbed-Gillespie Lake contact.  
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Figure 3.3 Overhead Map Showing Raised Ridge Distribution 
Vertically-projected map, showing the distribution of raised ridges (red lines) throughout 
the mapped area. On the left side, the ridges are shown on a mosaic of rover navigation 
camera images. On the right side, the same mosaic is mapped to show Sheepbed member 
exposures in light gray, Gillespie Lake member in blue, and dust-covered regions in dark 
grey. Five cm contours based on the Navcam mosaic from sol 159 are shown in green. The 
John Klein and Cumberland drill sites are identified with yellow stars. Ridges show a 
clustered distribution both horizontally (within contours) and vertically (across contours) 
and therefore are not confined by bedding planes.  
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 Detailed mapping of lengths, widths, and shapes of raised ridges within the dense 

cluster of ridges near the John Klein drill site (Figure 3.4) shows the characteristics of the 

crack morphologies and details of fill patterns (e.g. Figure 3.5). Erosionally resistant infill 

permits clear identification of the original crack morphology as represented by current 

ridge morphology. The raised ridges average 6.8 cm in length, but can reach up to 50 cm, 

and widths range between 1.1 mm to 5.6 mm, averaging 2.6 mm. Terminations of the 

ridges, where visible, are tapered to a spindle-shaped point. Raised ridges do not form 

discrete polygons; where they do intersect, it is at an arbitrary variety of angles (Figure 

3.5d-f). The two-dimensional morphology of ridge exposures range from straight to 

sinuous (e.g. Figure 3.5). In some cases, adjacent ridges turn toward each other near the 

termini (e.g. Figure 3.5e).  

Projection of raised ridges above the mudstone surface resulting from resistant 

crack-filling cement enables viewing of original crack orientation in three dimensions. 

Ridges range from vertical to subhorizontal in dip, and are curviplanar; several ridges are 

observed transitioning from sub-vertical dip angles to sub-horizontal dip angles that reflect 

crack intersections at oblique angles (Figures 3.5f-h). Additionally, a variety of erosionally 

resistant, gently sloped features, marked by parallel bands morphologically similar to ridge 

cement, are visible in the mudstone up to a couple of cm above the surface and are 

interpreted as exhumed sub-horizontal crack-fills (e.g. Figure 3.5h, i). 

As noted, these raised ridges reflect initial cracks that are currently filled with two 

to four layers of erosionally-resistant infill. The crystal size of this cement infill is not 

visible, even at Mars Hand Lens Imager scales of 15-20 micrometers per pixel. The 

outermost cement, which represents the boundary between the sediment and the initial 

crack wall, is approximately 1 mm thick (measured normal to the crack surface) and has 

consistent thickness on all walls within individual raised ridges regardless of local 

curvature (i.e. it is an isopachous cement coating [Pettijohn and Potter, 1964]). The 

thickness of the cement varies in different ridge sets, from 0.6 mm to 1.2 mm (averaging 

1.0 mm), but does not vary within individual ridges; within a given crack, the precipitation 

was isopachous. When two ridges intersect, this resistant cement continuously lines the  
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Figure 3.4 Detailed Map of Individual Raised Ridges 
Detailed map of individual raised ridges (red) traced on Mastcam mosaic mcam00885 from 
sol 164. White dashed line highlights lateral shift in texture from raised ridges (left side) 
to nodules plus hollow nodules (right side).  
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(Figure on following page) 
 
Figure 3.5 Panel Showing Raised Ridge Morphologies 
Insets showing details of raised ridge morphology with frames from white-balanced rover-
perspective mosaic mcam00885, sol 164. Scale bars for images A, D, and G are 5 cm, scale 
bars for insets are 1 cm. Exposed grey rock surfaces were broken by the rover wheel. 
Yellow arrows highlight spindle-shaped cracks with tapered termini, white arrows 
highlight curvilinear features for comparison to Figure 3.6. Images A-C highlight the 
isopachous cement lining that creates parallel-sided ridges outlining the cracks, and 
sometimes, as in image c, the multiple cement layers within the cracks. Image D shows 
that the cracks are short and taper rapidly into a spindle shape. Inset E focuses on two 
cracks that appear to bend towards each other, indicating that the cracks all formed in one 
stage and traced planes of weakness in the rock. Image F highlights the non-polygonal 
nature of the cracks and resulting variety of crack intersection angles. Image G shows 
multiple cracks that transition from near-vertical to sub-horizontal spatial orientations. 
Inset H highlights an intersection between a near-vertical crack and a sub-horizontal crack. 
Image I shows a ramped feature that appears to be a sub-horizontal raised ridge preserved 
because of the resistant cement. 
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edges of the intersecting features, regardless of the orientation of the initial cracks (e.g. 

Figure 3.5b). No evidence is seen for detrital sediment infilling of the cracks. 

The APXS, ChemCam, and CheMin instruments onboard Curiosity were used to 

explore the composition of the resistant cement fill relative to the Sheepbed mudstone 

[Grotzinger et al., 2014; Léveillé et al., 2014; McLennan et al., 2014; Vaniman et al., 

2014]. The ChemCam instrument (laser-induced-breakdown spectroscopy) has a spot size 

of about 0.5 mm, and therefore was able to target laser shots along the outermost cement 

layer of the McGrath raised ridge target. Those analyses indicated that the outermost 

cement layer of the McGrath raised ridge is enriched in Mg, somewhat enriched in Li, and 

depleted in Al relative to the rest of the mudstone [Léveillé et al., 2014]. The APXS has a 

2.25 cm2 spot area and also analyzed the sub-horizontal McGrath target, finding that the 

ridge was enriched in Mg and Fe, and that these were both correlated to enriched Cl relative 

to the Sheepbed mudstone [McLennan et al., 2014]. Additionally, the CheMin x-ray 

diffraction instrument analyzed two samples within the Sheepbed unit, neither of which 

contained a visible component representing the raised ridges.  The Cumberland target, 

however, contained a notable contribution from nodules and hollow nodules, which 

appears to be reflected in a several percent increase in akaganeite (an iron oxide-

hydroxide/chloride mineral) and magnetite relative to the John Klein drill hole, only about 

2 m away [McLennan et al., 2014; Stack et al., 2014; Vaniman et al., 2014]. Based on these 

observations, it has been suggested that the resistant cement may be composed of 

akaganeite, magnetite, and/or some authigenic smectitic clay component, such as griffithite 

[Grotzinger et al., 2014; Léveillé et al., 2014; McLennan et al., 2014; Vaniman et al., 

2014]. 

 

3.5 Discussion 
Any proposed formation model must account for these observations: (1) Crack 

networks—as defined by their erosion-resistant infill—penetrate the mudstone, are 

spatially restricted, and transition laterally into high concentrations of nodules and hollow 

nodules or featureless mudstone; (2) individual cracks are curviplanar in three dimensions 
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and cross-cut stratigraphic contours; and (3) after opening, the cracks are filled with 

multiple generations of isopachous cement. 

 

3.5.1 Origin of Raised Ridges 
3.5.1.1 Formation Environment 

Raised ridges within the Sheepbed mudstone appear to have originated as early 

diagenetic cracks within the mudstone. Their present morphology, as elevated ridges, is 

based on preferential erosion of the surrounding sediment relative to the crack fill (e.g. 

Figure 3.5b). The observation that cement continuously traces crack edges even when two 

cracks intersect demonstrates that the cracks were open before the cement layer began to 

precipitate within open void space (Figure 3.5b). Apparent spatial clustering of both 

nodular features [Stack et al., 2014] and raised ridge networks suggests that either the 

distribution of one feature controlled the distribution of the other (for instance, via a change 

in mudstone rheology caused by the formation of one of the features), or that these are 

penecontemporaneous structures [e.g. Calver and Baillie, 1990; Duck, 1995]. In either 

case, cross-cutting relationships indicate that both nodular features and raised ridges had 

formed and mineralized prior to formation of late-stage, sulfate-mineralized fractures (the 

sulfate-mineralized fractures clearly cut through raised ridges and through nodules, shown 

in Figure 3.2) [Grotzinger et al., 2014; Nachon et al., 2014]. If raised ridges and nodules 

are penecontemporaneous structures, we must examine the possibility that nodules and 

raised ridges share a common diagenetic environment.  

In addition to their distribution, a critical observation that may constrain the origin 

of the raised ridge features is that the cracks that comprise raised ridge networks are short, 

curviplanar, and have narrow to spindle-shaped terminations in three dimensions. This 

style of short, spindle-ended cracking occurs prior to complete lithification of the sediment 

[Burst, 1965; Calver and Baillie, 1990]. Additionally, cracks cross stratigraphic contours 

and intersect at arbitrary angles that do not form polygons (Figure 3.5).  Polygonal cracking 

typically develops in response to internal, contractional stresses within the sediment (e.g. 

dewatering [Shorlin et al., 2000] or cooling [Peck and Minakami, 1968]) wherein the 

polygonal morphology acts to minimize stresses within the material. Because non-
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orthogonal, irregular crack intersections do not minimize stress, irregular crack 

orientations are typically interpreted to have formed quickly, exploiting inhomogeneities 

within the sediment [Lachenbruch, 1962; Sletten et al., 2003]. Furthermore, the extension 

of irregular intersections in three dimensions, the curviplanar morphology of cracks which 

result in transitions from sub-vertical to sub-horizontal orientations, and the presence of 

cracks that cross-cut stratigraphic contours (i.e. cracks do not appear to either terminate or 

originate at common bedding planes) all indicate crack formation in the subsurface 

[O'Connor, 1972; Horodyski, 1976; Plummer and Gostin, 1981], where overburden 

pressures are sufficient to equalize vertical and horizontal stresses. 

 

3.5.1.2 Comparison with Terrestrial Early Diagenetic Cracks 

Combined, these lines of evidence suggest that raised ridges originated as sub-

planar cracks, or voids, contained fully within the sediment. This model is very different 

from the most familiar mode of early diagenetic fracturing on Earth—the formation of 

desiccation cracks. Desiccation cracks form at the sediment-air interface because water 

loss leads to contraction of the sediment [Lachenbruch, 1962; Plummer and Gostin, 1981].  

Such desiccation features originate at a discrete sedimentary surface (a future bedding 

plane), and extend vertically into the subsurface, forming a wedge shape that narrows and 

ultimately terminates at some depth (often at variable depths) within the sediment 

[Weinberger, 1999]. Although early stages of crack formation may be recognized by the 

presence of short, isolated cracks (e.g. “incomplete mudcracks”, [Plummer and Gostin, 

1981]), these initial cracks typically expand and intersect in a polygonal pattern to 

minimize contractional stresses within the surface layers [Sletten et al., 2003]. Regardless 

of the extent to which this ultimate, polygonal morphology is reached, desiccation cracks 

that enter the rock record are invariably filled by detrital sediment from the sediments that 

directly overlie the desiccated strata [Pettijohn and Potter, 1964]. Indeed, desiccation 

cracks in the rock record are recognized by the sediments that fill them. This is in sharp 

contrast to the Sheepbed cracks, which were neither filled with fine-grained Sheepbed 

sediment nor relatively coarse-grained sands from the Gillespie Lake sediment, but instead 
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show multiple isopachous cement layers. Furthermore, the Sheepbed cracks are 

curviplanar in three dimensions and do not form polygons or terminate along bedding 

planes. 

Although less common, subaqueous cracking of sediments is not unknown in 

terrestrial environments (e.g. Figure 3.6). Subaqueous crack formation was first recognized 

by White [1961], who suggested that subaqueous cracks could result from in situ salinity 

changes in clay colloids leading to fabric collapse and then contraction and tighter packing 

of the clays. This process generates crack-shaped voids that are filled with the displaced 

fluids (Figure 3.7a). The term “synaeresis” was applied to these cracks to refer to the 

contractional stresses within the sediment that resulted during fabric collapse within the 

clay [White, 1961]. The potential for saline fluids to result in such volumetric shrinkage 

was experimentally confirmed by Burst [Burst, 1965], and the resulting features share 

many commonalities with raised ridges in the Sheepbed mudstone. For instance, synaeresis 

cracks tend to be short, straight to sinuous, are generally spindle-shaped, with tapering 

termini [O'Connor, 1972; Plummer and Gostin, 1981], form in the very shallow subsurface 

(all predate sediment compaction), and cross-cut bedding planes [Horodyski, 1976; 

Plummer and Gostin, 1981]. Additionally, the presence of a significant amount of smectite 

clays within the Sheepbed mudstone [McLennan et al., 2014; Vaniman et al., 2014] suggest 

that environmental conditions may have been favorable for saline-fluid-based synaeresis 

(Figure 3.7a). 

More recently, several additional formation processes for synaeresis cracks have 

been proposed. In one alternative, synaeresis-like features result from tensional stresses 

imposed upon sediment from an external source [Cowan and James, 1992; Pratt, 1998b; 

a; Bishop et al., 2006]. One subcategory of cracks that clearly form by this mechanism, 

termed “diastasis” cracks [Cowan and James, 1992], are sub-planar, sub-vertical, often 

well-aligned spindle-shaped cracks that form in clay-rich, cohesive layers as these layers 

are placed under tension from wave-driven motion of overlying and underlying sandy, or 

less cohesive, layers. Rupture of the cohesive layer permits rapid infilling of diastasis 

cracks via injection of less cohesive sediment from either above or below the cohesive 

layer. A critical observation leading to the interpretation of diastasis cracks, however, is  
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Figure 3.6 Proterozoic Molar Tooth Structure Analogs 
Proterozoic molar tooth structures from the Helena formation in the Belt Supergroup, MT, 
USA. Coin is 19 mm across for scale. Images a and b show preserved bedding planes with 
short, curvilinear, spindle-shaped cracks. Yellow arrows highlight spindle-shaped cracks 
with tapered termini, white arrows highlight curvilinear features for comparison to Figure 
3.5. These crack morphologies are very comparable to the raised ridge crack morphologies, 
although the cement is not resistant to erosion in this case. Note curvilinear cracks and 
irregular clustered distribution in image b. Image c shows a cross-section of molar tooth 
ribbons and blobs. Note interfingering transition between ribbon and blob facies and 
horizontal-to-vertical transitions of ribbons.    
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Figure 3.7 Schematic of Synaeresis Crack Formation Mechanisms 
Schematic showing possible formation mechanisms for synaeresis crack formation. (A) 
depicts a change in pore fluid chemistry that causes collapse of smectite clay interlayers, 
causing volumetric compaction of the sediment, which opens synaeresis cracks. (B) depicts 
a gas production process such that if the gas becomes trapped, it can create void spaces 
within the mudstone, which could form both hollow nodules and synaeresis or raised ridge 
shapes. 
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the presence of systematic crack orientations resulting from a directed tensional stress 

field. Raised ridges within the Sheepbed mudstone show no such preferred orientation (see 

Figure 3.3), suggesting that diastasis is an unlikely mechanism of formation. A similar 

formation mechanism that does not require layered sediments suggests that these cracks 

could open due to shaking of the sediment from nearby seismic activity (possibly due to 

landslides or impacts in this case) even in homogeneous cohesive material [Pratt, 1998b; 

a]. This mechanism would not produce aligned cracks and so cannot be ruled out for the 

raised ridge features. 

In a third scenario, synaeresis-like cracks are inferred to result from the production 

of gasses within sedimentary pore-fluids, creating localized dilational stresses within the 

sediment. On Earth, Proterozoic “molar-tooth” structures are typically interpreted to have 

formed this way [Smith, 1968; Plummer and Gostin, 1981; Furniss et al., 1998]. 

Predictable behavior resulting from the production (or exsolution) of gas within pore fluids 

of the surrounding sediment [Terzaghi, 1944; Mitchener and Torfs, 1996; Pollock et al., 

2006; Stack et al., 2014] creates structures that provide an interesting comparison to the 

morphology of primary void spaces within the Sheepbed mudstone. The primary parameter 

in determining the behavior of gasses within unconsolidated substrate is the cohesive 

strength of the sediment [Terzaghi, 1944], which commonly reflects a combination of grain 

size and composition. Composition is critical because the presence of >15% clay minerals 

within the sediment has been shown to substantially increase its cohesive strength 

[Mitchener and Torfs, 1996]. Once gasses form bubbles that are larger than inter-particle 

void space, these bubbles will provide dilational stresses that deform and compact the 

surrounding sediment. Because gasses will tend to rise and escape, grain-scale 

inhomogeneities will be exploited and favor the upward movement of gas. In the case of 

poorly consolidated sediments, upward migration of gas bubbles will often result in 

dewatering and an increase in the consolidation of sediments. In the case of higher strength 

sediments (such as cohesive, and clay-rich sediments), gas bubbles will tend to be trapped 

as consolidation of grains along the bubble margin increases local sediment strength. Under 

these conditions, crack formation can occur when gas pressures exceed the local sediment 

yield strength, and cracks will commonly propagate in a range of orientations, from vertical 
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(denoting the favored orientation for gas escape) to horizontal (denoting a common 

direction of weakness within layered sediment) [Pollock et al., 2006].   

Exsolution of gasses within substrate pore space has recently been proposed as a 

mechanism for the formation of nodules and hollow nodules within the Sheepbed mudstone 

[Stack et al., 2014]. A mechanism of void formation resulting from release of sediment 

gasses can plausibly explain both the formation of early diagenetic hollow nodules [Stack 

et al., 2014] and cracks associated with the raised ridges. Differences in the morphology 

of gas-induced structures may reflect either differences in the rate of production of gasses 

within the sediment or spatial differences in the cohesive strength of the sediment [Pollock 

et al., 2006]. Stack et al. [2014] further suggest a combination of these last two mechanisms 

of crack formation, in which release of pore-fluid gasses may plausibly be related to the 

propagation of impact-induced seismic waves during deposition of the Yellowknife Bay 

formation. In this scenario, complex interference patterns could produce zones of greater 

or lesser seismic pressure, which might affect the extent to which pressure-induced 

degassing occurs, and thereby control the spatial distribution of nodular features and crack 

networks.  Similarly, slight changes in the cohesive strength of the substrate, resulting from 

either differential compaction or spatial differences in clay content, may be reflected in the 

spatial distribution of gas-induced features.  

Formation of raised ridges as curviplanar voids in the subsurface formed via gas 

expansion supports the observations of crack clustering and the cross-cutting of 

stratigraphic contour intervals. Similarly, such a mechanism supports the varied orientation 

of observed features, which presumably reflect lithologic zones of weakness and 

inhomogeneities in the sediment (Figure 3.3). Finally, the observation of multiple clusters 

of raised ridges directly beneath and, in one case, intersecting the Gillespie Lake member 

suggest that crack formation must have occurred penecontemporaneously with or soon 

after deposition of the basal Gillespie Lake sandstone. These observations suggest that 

crack formation occurred prior to burial-induced dewatering, and provide the possibility 

that the relatively coarse-grained Gillespie Lake member may have provided critical 

overburden pressure necessary to increase gas pressures during exsolution of gasses within 

Sheepbed pore-fluids.  
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3.5.2 Lithification of Raised Ridges 
 Regardless of the formation mechanism of sub-planar cracks and voids within the 

Sheepbed mudstone, it is necessary to discuss their mechanism of preservation. Fine-

grained sediment can preserve cracks formed during or shortly after sediment deposition 

under several distinct conditions. First, there is a possibility that sediment is sufficiently 

lithified via early cementation so that it can retain otherwise unsupported void space. 

However, more commonly, the void space fills with sediment or detritus or is propped open 

by cement that occludes porosity [Halley and Schmoker, 1983]. In general, if cracking 

occurs at the sediment-water (or sediment-air) interface, cracks will typically be filled with 

sediment from above [Pettijohn and Potter, 1964]. Similarly, subaqueous shrinkage cracks 

formed via diastasis will typically be filled with sediment injected from less cohesive 

sedimentary units either directly above or below the cracked horizon [Cowen and James, 

1992]. By contrast, subaqueous cracks on Earth that originate from gas expansion are 

commonly filled with in situ mineral precipitates [Furniss et al., 1998; Bishop and Sumner, 

2006; Pollock et al., 2006]. In the case of the Sheepbed features, after crack formation, 

voids were filled by a succession of isopachous cement layers. The initial erosion-resistant 

cement layer is approximately 1 mm thick, measured normal to the crack surface, 

regardless of local curvature, and thus provides an equal-thickness coating on all available 

surfaces. Isopachous coatings indicate that the cement was precipitated in a phreatic, or 

water-saturated, environment (e.g. [Longman, 1980; Amieux et al., 1989]). Erosionally-

resistant isopachous cement is the defining attribute of the raised ridges throughout the 

observed Sheepbed member and likely reflects pore-fluid chemistry, or the chemical 

interaction between pore-fluids and released gasses, at the time of crack formation. 

After this initial cement was deposited, an erosionally less-resistant cement 

precipitated within the remaining void space, further infilling and occluding the porosity. 

In wider cracks, this was followed by another erosionally resistant cement layer, and, if 

residual porosity remained it was occluded by a final, erosionally less-resistant cement. 

This type of layered and laterally repeated cementation of voids is common on Earth where 

it is utilized in  “cement stratigraphy” [Evamy, 1969; Meyers, 1991], a methodology where 
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sequences of different cement layers are traced on a regional scale and used to map 

ancient groundwater or pore water systems [Grover and Read, 1983; Kaufman et al., 1988]. 

Different cement layers are usually attributed to evolving fluid chemistries, and sometimes 

related to distinct fluid flow events [Meyers, 1974; Meyers and Lohmann, 1985; Dorobek, 

1987]. In the raised ridges, variation in erosional resistance of successive cement layers 

most likely indicates a change in cement composition that reflects changes in the pore fluid 

chemistry. Such interpretation is supported by the ChemCam observation that the 

outermost resistant cement is enriched in Mg and depleted in Al relative to the interior 

layers [Léveillé et al., 2014]. At present, it is impossible to constrain the detailed timing of 

these different cement layers. Once the initial erosionally resistant cement was precipitated, 

it would have acted to reinforce void walls, permitting voids to potentially remain open for 

extended periods of time. The absence, however, of significant calcium sulfate 

mineralization within the cracks suggests that cementation of the raised ridges was 

complete prior to late-stage hydrofracture of the Yellowknife Bay formation [Grotzinger 

et al., 2014; Nachon et al., 2014].  

 

3.5.3 Formation Summary and Comparison with Earth Analogs 
Key first-order interpretations that we can derive from observations of the raised 

ridges are (1) the cracks formed during early diagenesis of the Sheepbed mudstone, (2) the 

cracks formed in a near-isotropic stress environment created by overburden pressure from 

overlying sediments, (3) mineral precipitation within the crack initiated soon after crack 

formation in a water-saturated environment, and proceeded with a series of precipitated 

cements of differing mineralogy and/or resistance to erosion, and (4) the morphology and 

distribution of the Sheepbed cracks matches the characteristics identified for synaeresis 

cracks, which form via sediment contraction with pore-fluid salinity changes, mechanical 

shaking, exsolution of pore-fluid gasses, or some combination thereof.  

Having established this set of constraints concerning the early diagenetic, 

subsurface, pore-fluid saturated environment in which the raised ridges formed and filled, 

the remaining challenge is to evaluate the set of synaeresis crack formation hypotheses for 

applicability to the Sheepbed member structures based on Earth analogs.  Although 
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isolating specific crack formation mechanisms for subaqueous/shallow burial conditions 

is difficult for ancient sedimentary rocks, even on Earth, because of the absence of good 

modern analogs [e.g. Smith, 1968; Frank and Lyons, 1998; Furniss et al., 1998; James et 

al., 1998; Pratt, 1998a; Marshall and Anglin, 2004], the observations of the Sheepbed 

member and the restricted set of plausible environments on Mars help constrain the likely 

possibilities. 

The most accepted hypotheses for synaeresis crack formation, as discussed, include 

(1) pore-fluid salinity changes causing clay layer collapse and volumetric shrinkage of the 

sediment, (2) mechanical shaking of the sediments causing tensional stresses, and (3) gas 

production in the sediment creating dilational stresses. Key observations in the Sheepbed 

unit that must be explained by the specific formation hypothesis include the clustered, 

irregular distribution of raised ridges, the lack of a preferred ridge orientation, and the 

cement (rather than sediment) crack infill. 

Pore-fluid salinity changes causing clay layer collapse create synaeresis cracks 

preferentially in clay-rich areas [White, 1961; Burst, 1965]. This method of crack formation 

could create a clustered distribution of raised ridges if clay-rich zones were 

heterogeneously distributed in the mudstone. Although this is not specifically constrained 

by Curiosity’s observations, since only two holes were drilled and sampled for XRD 

mineral compositions, it is plausible given the presence of smectite within the unit and the 

compositional differences between the John Klein and Cumberland drill sites [McLennan 

et al., 2014; Vaniman et al., 2014]. Preferred ridge orientations would not be expected for 

this formation mechanism as cracks would follow inhomogeneities in the sediment. 

Although cracks formed in this manner on Earth are usually preserved by sediment infill 

rather than precipitated cements, this mechanism for forming void spaces cannot be ruled 

out for the Sheepbed raised ridges. 

Earthquake-induced shaking [Cowan and James, 1992; Fairchild et al., 1997; 

Pratt, 1998b; a] or repeated wave action [James et al., 1998; Bishop et al., 2006] 

mechanically breaking up cohesive but unlithified sediments have also been used to explain 

synaeresis crack formation. There is no evidence for wave-induced sedimentary structures 

in the Sheepbed mudstone [Grotzinger et al., 2014] and seismicity is rare on Mars 
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[Anderson et al., 1977; Golombek et al., 1992], however, impact-induced shaking could 

be a possible Martian alternative for mechanical shaking of sediments to form synaeresis 

cracks. The clustered distribution of cracks in the Sheepbed could be based on slight 

lithological differences in the sediment. However, cracks formed by this mechanism are 

inevitably preserved in ancient rocks by sediment infill rather than mineral precipitation, 

so this is not a favored hypothesis for the Sheepbed raised ridges. 

Whereas both salinity changes and mechanical shaking could viably have occurred 

during deposition of the Sheepbed mudstone, the most distinctive characteristic of the 

raised ridges relative to the majority of terrestrial synaeresis cracks is that they are filled 

with cement, rather than sediment (e.g. [White, 1961; Pettijohn and Potter, 1964; Burst, 

1965; Cowan and James, 1992]). The one notable terrestrial example of a class of 

synaeresis cracks where cement rather than sediment fills the voids is called “molar tooth” 

and the production of these structures is most often attributed to gas production in the 

subsurface [Bauerman, 1885; Furniss et al., 1998; Pollock et al., 2006]. This gas formation 

hypothesis predicts an irregular distribution of synaeresis cracks and other diagenetic 

morphologies based on minor differences in sediment lithology, and does not predict a 

preferred ridge orientation. Furthermore, molar tooth cracks are always filled with cement; 

the cements that fill molar tooth cracks precipitate so early that sometimes they are 

reworked during current scouring, leaving void-fill present as sedimentary clasts in 

immediately overlying beds [Smith, 1968; O'Connor, 1972; James et al., 1998; Bishop et 

al., 2006]. In terrestrial environments, these void-filling cements are primarily calcite, 

although in at least one location, early diagenetic saponite (presently talc) likely 

precipitates as cement [Tosca et al., 2011]. Raised ridges within the Sheepbed member 

similarly contain early diagenetic cement infill, potentially smectite, and/or a chlorite phase 

such as akaganeite [Léveillé et al., 2014; McLennan et al., 2014]. 

The multiple morphologies of terrestrial “molar tooth” textures, all interpreted as 

due to gas production in the subsurface, invite further comparison with the diagenetic 

textures in the Sheepbed unit. The most common molar tooth morphologies are “ribbons” 

and “blobs” [O'Connor, 1972]. In scale and morphology, “ribbons”, the synaeresis-like 

components of molar tooth structure, are very similar to the raised ridges in the Sheepbed 
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unit; they are narrow, at times sinuous, spindle-terminated cement-filled fractures and 

they are observed to transition between horizontal and vertical dimensions (Figure 3.6) 

[O'Connor, 1972; Horodyski, 1976; Plummer and Gostin, 1981]. Molar tooth “blobs” are 

typically mm- to cm-scale spheroidal pockets, suggested to have formed as gas bubbles, 

either interfingered with the ribbons or in separate clusters, filled with the same calcite 

cement [O'Connor, 1972; Pollock et al., 2006]. These blobs may be comparable to the early 

diagenetic hollow nodules described in the Sheepbed unit as rimmed, erosion-resistant, 

spheroidal structures about 1.2 mm in diameter, that are clustered in some locations and 

laterally transition into raised ridge clusters [Grotzinger et al., 2014; Stack et al., 2014]. 

Both the ribbon and blob morphologies are explained by gas production in mudstone, 

where slight variations in lithology and cementation or in localized gas production have 

been used to explain transitions between unaltered mudstone, blobs, and ribbons [Pollock 

et al., 2006]. These features are illustrated in Figure 3.6 with arrows pointing out the 

features that are also visible in the Sheepbed raised ridges (Figure 3.5). It is important to 

note that the cements that fill molar tooth structures are not isopachous and are not resistant 

relative to the surrounding rock, so the three-dimensional structure (including the sub-

vertical to sub-horizontal transitions) is only visible when looking at the rock in cross-

section (e.g. Figure 3.6c). However, comparison of the two-dimensional crack shapes 

reveals the similarity in spindle terminations, curvilinear crack geometry, clustered 

distribution, and transitions between morphologies. In summary, although the composition 

and style of the infilling cement in the Sheepbed unit is distinct from that usually found in 

molar tooth structures, the analog is unique because it is filled by cement rather than 

sediment, and because it suggests that gas formation or a similar single formation 

mechanism could potentially create more than one of the early diagenetic morphologies in 

the Sheepbed unit. This would fit with the observations of lateral transitions between 

diagenetic textures.  

 

3.6 Summary 
 Resistant cement-filled cracks (“raised ridges”) in the Sheepbed mudstone were 

observed and mapped using imagery from the Curiosity rover. 
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 The raised ridges are shown to be early diagenetic features based on lateral 

transitions with other diagenetic textures.  Later sulfate-filled veins crosscut these 

early diagenetic features. 

 Comparison with analogous early diagenetic mud crack morphologies indicates 

that the raised ridges are synaeresis cracks (subaqueous shrinkage cracks). 

 Isopachous cement fills with differing erosion-resistance likely represent a series 

of different cements indicating changing pore-fluid chemistries within the phreatic 

zone. 

 Synaeresis crack formation mechanisms viable in the Sheepbed unit include pore 

fluid salinity changes causing volumetric shrinkage of smectitic clay fabrics, 

impact-induced mechanical shaking, or gas production. 

 Proterozoic molar tooth structures, formed by gas production, provide an intriguing 

analog for the raised ridges because they (1) are cement-filled and (2) have multiple 

morphologies comparable to the diagenetic morphologies in the Sheepbed 

mudstone.   

 

3.7 Appendix 

3.7.1 Description of Processing of Mastcam Images 
Mastcam images are acquired at 12 bits, with the noise level captured by the least 

significant bit.  The data are then converted to 8-bit using an 11-bit lookup table.  Although 

several tables exist, a modified square-root table (Figure 3.8) was used to encode the vast 

majority of the images.  This table will encode multiple input values to a single output 

value, approximating the statistical variation of the signal. After encoding, the images are 

stowed within the camera’s large buffer memory.  When downlinked, the images can be 

compressed with a predictive lossless compressor, or more normally, with a JPEG 

compressor with selectable quality factor. Typically quality factors of 85 or higher are used 

for geology targets. 
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Figure 3.8 Plot of Mastcam Image Companding Table 
Modified square-root companding table used to encode the images in Curiosity’s Mastcam 
buffer. Encodes multiple input values into a single output value to approximate the signal’s 
statistical variability.  
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3.7.1.1 Radiometric ground image processing 

Radiometric ground image processing proceeds as follows: images are first 

decompressed and then expanded back to their original dynamic range using an inverse of 

the encoding table; no interpolation is applied in an attempt to recover the full variance 

around each mean value.  For computational convenience, these data are stored in 16-bit 

words. A temperature dependent correction is then applied to adjust for thermally-

generated electrons (noise). For short exposures, an electronic shutter smear correction is 

applied (generally, the images used in this study did not need this correction). A flat field 

correction is then applied to cancel lens brightness non-uniformity. The final photometric 

process is to adjust for detector sensitivity to create radiance images.  Images that have 

gone through this processing are available through the Planetary Data System (PDS) as 

Reduced Data Records (RDR), designated by the letters in the Picture ID *_DRXX.IMG. 

 

3.7.1.2 Geometric image processing 

Geometric processing proceeds as follows: each image is geometrically linearized 

to remove camera lens distortion and prepare the image for further geometric processing.  

Images at this stage of processing are also available from the PDS as *_DRLX.IMG 

products.  This processing is further described in the Mastcam/MAHLI/MARDI Software 

Interface Specification [NASA-JPL, 2013]. 

Images acquired as stereoscopic sets (pairs or larger mosaics) are aggregated into a 

separate directory and processed by a modification of the Ames Stereo Pipeline created by 

Mastcam Co-Investigator Laurence Edwards. This processing includes five steps. First 

relevant acquisition parameters are extracted from each image's metadata, its analogous 

pair is identified, and the images are converted from the PDS format to an internal format. 

Second, an image alignment is performed along with a reprojection transformation using 

the camera models (required because the two Mastcameras have disparate focal lengths). 

By default, the alignment and reprojection produces an epipolar aligned image pair, 

although other schemes can be chosen for unusual imaging geometries. Third, 

stereoprocessing of each image pair is completed: a filter is applied to each image that 

enhances edges and reduces sensitivity to differing lighting conditions. A pyramidal 
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correlation scheme utilizing 3 or more reduced scale versions of each image and a fixed-

sized correlation window quickly generate disparity search constraints. The initial search 

constraints are used as input to an integer correlator stage operating on the full resolution 

images. The results from the integer correlator are in turn utilized by a sub-pixel correlator 

stage generating dense high-resolution disparity maps with sub-pixel accuracy, and then 

automated pruning of bad correlations, based on a bi-directional consistency check and 

numerical confidence levels computed by the correlation software, occurs at each stage. 

Fourth, the final sub-pixel disparity map is interpolated and smoothed, and the camera 

models are used to generate 3D coordinates for each pixel where a valid match was 

determined. Fifth, output from each run includes intermediate processing images used in 

correlation, a pointcloud, XYZ maps, and mesh models in SGI OpenInventor format, with 

textures derived from the higher resolution camera image data (right eye). For multiple 

image stereo mosaics, an index mesh collection file is also created.  All 3D data is in rover 

navigation coordinates. 

The output of the stereo processing can be viewed in Triangulated Integrated 

Network (TIN) format in software capable of reading SGI *.iv files.  For further processing 

into Digital Terrain Models (DTMs) and associated orthographic map projected images, 

the TIN to DTM conversion capability of the Ames Research Center Antares visualization 

software is employed. This software resamples the mesh into height and texture raster 

images, allowing the user to specify the sampling interval, interpolating where necessary.  

The final output consists of two GeoTiff image files: a signed 32-bit DEM, and a 24-bit (8 

bits per channel) color texture image, both in orthographic projection, with labels in 

GeoTiff format and local site coordinates. 

 

3.7.2 Location of Raised Ridges targeted by ChemCam 
 Raised ridge clusters outside of the range of Figure 3.3 that were targeted by 

ChemCam include Rowatt and Discovery Creek. The locations of these images in the 

Sheepbed unit are shown in Figure 3.9 along with the rover traverse through Yellowknife 

Bay. 
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Figure 3.9 Map Showing Raised Ridge ChemCam Targets 
Map showing locations of all raised ridge targets (red circles) that were shot by the 
ChemCam LIBS instrument. Yellow stars show drill sites, Cumberland on the left and John 
Klein on the right. Dark blue path represents rover traverse. 
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