Electromyographic Signal Processing With Application To Spinal Cord Injury

Thesis by
Zhao Liu

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Caltech
California Institute of Technology
Pasadena, California

2016
(Defended March 21, 2016)
To Teresa, for her endless support and love.
Acknowledgments

It gives me great pleasure to acknowledge the many people whose work, advice and support have helped me during my Ph.D. over the last six years.

Foremost, I would like to thank my advisor, Prof. Joel Burdick. He gave me the opportunity of working on Electromyogram (EMG) processing, which made me realize how much I like programming and algorithm development. I still clearly remember the “brick and wall” example he used to illustrate how to approach a problem when I first started working in his group. I find that really useful in many different areas of my life, not just research. During my time working with him, Prof. Burdick has always been very supportive, kind and generous. Without him, I couldn’t have made it here.

I would also like to thank my research group for numerous discussions on my research. I would like to thank Jeffrey Edlund in particular because he showed me to the world of EMG processing when I first started. I’ve learnt a lot from him, especially about programming, and he contributed many of the codes used in EMG processing.

Thank you to my collaborators at University of Louisville at Kentucky for their support and discussions on my research and I’m especially grateful for their warm reception during my visit there.

I’m very thankful for all the suggestions from my committee members, Prof. Hyuck Choo, Prof. David Rutledge, Prof. Pietro Perona, Prof. Changhuei Yang and Prof. Reggie Edgerton.

I would also like to thank my parents. Without them, I couldn’t come to pursue graduate study at Caltech. Even though they are far away in China, their support and love have been invaluable to me during my life at Caltech.

Last but not least, I’d like to thank my fiancee, Teresa Liu, for her great and constant support for my Ph.D. life at Caltech. She helped me solve numerous problems I encountered during my road to graduation. Without her love and encouragement, I definitely wouldn’t be finishing this thesis.
Abstract

An Electromyogram or Electromyographic (EMG) signal is the recording of the electrical activity produced by muscles. It measures the electric currents generated in muscles during their contraction. The EMG signal provides insight into the neural activation and dynamics of the muscles, and is therefore important for many different applications, such as in clinical investigations that attempt to diagnose neuromuscular deficiencies. In particular, the work in this thesis is motivated by rehabilitation for patients with spinal cord injury. The EMG signal is very important for researchers and practitioners to monitor and evaluate the effect of the rehabilitation training and the condition of muscles, as the EMG signal provides information that helps infer the neural activity in the spinal cord. Before the work in this thesis, EMG analysis required significant amounts of manual labeling of interesting signal features. The motivation of this thesis is to fully automate the EMG analysis tasks and yield accurate, consistent results.

The EMG signal contains multiple muscle responses. The difficulty in processing the EMG signal arises from the fact that the transient muscle response is a transient signal with unknown arrival time, unknown duration, and unknown shape. In addition, the EMG signal recorded from patients with spinal cord injury during rehabilitation is very different from the EMG signal of normal healthy people undergoing the same motions. For example, some of the muscle responses are very weak and thus hard to detect. Because of this, general EMG processing tools and methods are either not applicable or insufficient.

The primary contribution of this thesis is the development of a wavelet-based, double-threshold algorithm for the detection of transient peaks in the EMG signal. The application of wavelet transform in the detection of transient signals has been studied extensively and employed successfully. However, most of the theories assume certain knowledge about the shapes of the transient signals, which makes it hard to be generalized to the transient signals with arbitrary shapes. The proposed detection scheme focuses on the more fundamental feature of most transient signals (in particular the EMG signal): peaks, instead of the shapes. The continuous wavelet transform with Mexican Hat wavelet is employed. This thesis theoretically derived a framework for selecting a set of scales based
on the frequency domain information. Ridges are identified in the time-scale space to combine the
wavelet coefficients from different scales. By imposing two thresholds, one on the wavelet coefficient
and one on the ridge length, the proposed detection scheme can achieve both high recall and high
precision. A systematic approach for selecting the optimal parameters via simulation is proposed and
demonstrated. Comparing with other state-of-the-art detection methods, the proposed method in
this thesis yields a better detection performance, especially in the low Signal-to-Noise-Ratio (SNR)
environment.

Based on the transient peak detection result, the EMG signal is further segmented and classified
into various groups of monosynaptic Motor Evoked Potentials (MEPs) and polysynaptic MEPs using
techniques stemming from Principal Component Analysis (PCA), hierarchical clustering, and Gauss-
ian mixture model (GMM). A theoretical framework is proposed to segment the EMG signal based
on the detected peaks. The scale information of the detected peak is used to derive a measure for
its effective support. Several different techniques have been adapted together to solve the clustering
problem. An initial hierarchical clustering is first performed to obtain most of the monosynaptic
MEPs. PCA is used to reduce the number of features and the effect of the noise. The reduced
feature set is then fed to a GMM to further divide the MEPs into different groups of similar shapes.
The method of breaking down a segment of multiple consecutive MEPs into individual MEPs is
derived.

A software with graphic user interface has been implemented in Matlab. The software imple-
ments the proposed peak detection algorithm, and enables the physiologists to visualize the detection
results and modify them if necessary. The solutions proposed in this thesis are not only helpful to the
rehabilitation after spinal cord injury, but applicable to other general processing tasks on transient
signals, especially on biological signals.
Contents

Acknowledgments iv

Abstract v

1 Introduction 1
 1.1 Spinal Cord Injury .. 2
 1.2 Recovery of Spinal Cord Injury 3
 1.3 Electromyographic (EMG) Signal Processing: Objective Statement 6
 1.3.1 Peak-based Detection ... 7
 1.3.2 Segmentation and Classification 7
 1.4 Thesis Outline and Contributions 9

2 Background 12
 2.1 Physiology of the Electromyographic (EMG) Signal 13
 2.1.1 Physiology of the Generic EMG signal 13
 2.1.1.1 Muscle Fiber Action Potential (MFAP) 13
 2.1.1.2 Motor Unit Action Potential (MUAP) 14
 2.1.1.3 Motor Unit Action Potential Train (MUAPT) 15
 2.1.1.4 Composite EMG signal 15
 2.1.2 EMG signal Resulting from Electro-stimulation: Motor Evoked Potentials ... 20
 2.1.2.1 Signaling in Neurons 21
 2.1.2.2 Motor Evoked Potential 24
 2.2 Characteristics of MEPs and Challenges of Processing Them 25
 2.2.1 Characteristics of MEPs 25
 2.2.2 Challenges of Processing MEPs 29
 2.3 Classical Detection Theory .. 30
 2.3.1 Binary Hypothesis Testing and Neyman-Pearson Theorem 31
 2.3.1.1 Matched Filter .. 33
 2.3.1.2 Energy Detector ... 33
3 Peak-based EMG Detection Via CWT

3.1 Existing Methods

3.1.1 EMG processing

3.1.2 Transient Signal Detection

3.1.3 Peak Detection

3.2 Preprocessing: Robust Estimation of Noise

3.3 Peak Detection Via Wavelets

3.3.1 Mother Wavelet For Peak Detection

3.3.2 Choice of Scales

3.3.3 The Statistics of Wavelet Coefficients of Noise

3.3.4 Detection at a Single Scale

3.3.5 Combine Peak Candidates across Scales: Identify Ridges

3.3.6 The Overall Detection Algorithm

3.3.7 Detection of Peaks and Troughs in the EMG signal

3.4 Simulation

3.4.1 Simulated Ground Truth Data

3.4.2 Performance Evaluation Methods

3.4.3 Choose Algorithm Parameters from Simulation

3.4.4 Experimental Results

3.4.4.1 Methods for Comparison

3.4.4.2 Test Results on the Generic Peak Signal

3.4.4.3 Test Results on the EMG signal

4 Segmentation and Clustering of MEPs

4.1 Segmentation of MEP Waveforms

4.2 Identify Cluster of Monosynaptic MEPs
4.2.1 Feature Extraction ... 97
4.2.2 Hierarchical Clustering .. 98
4.3 Clustering of Monosynaptic MEPs 101
 4.3.1 Feature Extraction: Principal Component Analysis 102
 4.3.2 Clustering with Gaussian Mixture Model 106
4.4 Decomposition of Overlapping MEPs 108
 4.4.1 Identify Candidate Monosynaptic MEPs 110
 4.4.2 Determine if the Candidate is a Monosynaptic MEP 111
 4.4.3 Classify the New Monosynaptic MEP 112
4.5 Clustering of Polysynaptic MEPs 113

5 Conclusion .. 116
 5.1 Summary of Thesis Contributions 116
 5.2 Opportunities for Future Work ... 117

A Muscle Names ... 119

B EMG Peak Detection Software .. 121

Bibliography .. 125
List of Figures

1.1-1 Causes of SCI since 2005 [58] ... 3
1.1-2 Some statistics of SCI patients: age distribution as in (a); years since onset as in (b) . 4
1.2-1 Human Spinal Cord [63] .. 5
1.2-2 The electrode array with example configurations 6
1.3-1 An example showing the detection of the peaks of MEPs in the EMG signal: red circles show the peaks of MEPs. (The example EMG signal is from the muscle of left medial gastrocnemius while the patient is lying in supine position under EES.) 8
1.3-2 An example showing the segmentation of the EMG signal: ER (short for Early Response) is the label for the early MEP; LR (short for Late Response) is the label for the late MEP. (The example EMG signal is from the muscle of left medial gastrocnemius while the patient is lying in supine position under EES.) 8
2.1-1 Intramuscular and surface EMG electrodes 14
2.1-2 A MUAP is composed of the summation of the MFAPs of its component muscle fibers. (from Stashuk [53]) ... 16
2.1-3 Physiological and mathematical model for the composition of a detected EMG signal (from Stashuk [53]). ... 17
2.1-4 Bar plot for the firing times obtained via the decomposition method in [38]. MU: Motor Unit; MVC: Maximum Voluntary Contraction. (from Nawab [38]) 18
2.1-5 Muscle activity onset detection result for clinical EMG signal (from Rasool [50]) ... 19
2.1-6 Schematic representation of a typical sEMG power spectrum (from Day [10]) 19
2.1-7 Schematic of electric stimuli (the actual shape of the stimulus may look different.) ... 20
2.1-8 The cell membrane potential ... 21
2.1-9 Example of electric signaling in sensory neuron 22
2.1-10 Example of monosynaptic reflex system 23
2.2-1 Example EMG signal containing MEPs with low SNR (marked by red circles). (The example EMG signal is from the muscle of left medial gastrocnemius while the patient is lying in supine position under EES.) 26
2.2-2 Examples of MEP waveforms from different muscles of one patient under one rehabilitation session. The muscle from which each MEP waveform is from is shown in its short name on the upper right corner of each subplot. For the full names of the muscles, refer to Appendix A. (The example EMG signal is from various muscles while the patient is lying in supine position under EES.) 27

2.2-3 Examples of MEP waveforms from the same muscle. (The example EMG signal is from the muscle of left medial gastrocnemius while the patient is lying in supine position under EES.) .. 28

2.2-4 Examples of MEP waveforms with low SNR. (The example EMG signal is from the muscle of left medial gastrocnemius while the patient is lying in supine position under EES.) .. 28

2.2-5 Examples of the baseline fluctuation in the EMG signal. The baseline deviates from 0 (marked by a dashed horizontal line), and changes slowly over time. (The example EMG signal is from the muscle of left medial gastrocnemius while the patient is lying in supine position under EES.) .. 29

2.4-1 Mexican Hat Wavelets at different scales. Mexican Hat mother wavelet is defined by Eq. (3.3.1.1) .. 37

2.4-2 Discrete-time Fourier Transform of Mexican Hat Wavelets at different scales 40

3.2-1 Simulation results on noise estimation with robust statistics 47

3.2-2 Simulation results on noise estimation with iterative method 48

3.2-3 Simulation results on noise estimation with iterative method: convergence speed ... 49

3.3-1 Mexican Hat Wavelet \(\psi(t) \) given by Eq. 3.3.1.1 53

3.3-2 Illustration of bandwidth .. 56

3.3-3 Example of the effect of density on the scales 59

3.3-4 Example of wavelets with linear scales .. 60

3.3-5 ACVS of the wavelet coefficients of WGN 61

3.3-6 Empirical CDF of the CWT of WGN .. 62

3.3-7 Example of identified peak candidates for one peak signal 66

3.3-8 Overall peak detection process based on the wavelet method 70

3.3-9 Peaks and Troughs of an EMG template waveform (The amplitude of the waveform is scaled so that the maximum absolute value is \(1 \mu V \).) 72

3.3-10 Example process of detecting peaks and troughs of the EMG signal 73

3.4-1 Template waveform of the peak signal model. (The amplitude of the waveform is scaled so that the maximum absolute value is \(1 \mu V \).) 75

3.4-2 MEP template waveforms used in the synthesized EMG signal 76
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4-3</td>
<td>Example of simulated data with 10 peak signals (60Hz peak with SNR = 1)</td>
<td>84</td>
</tr>
<tr>
<td>3.4-4</td>
<td>Experimental results on the generic peak signal: recall vs. precision</td>
<td>85</td>
</tr>
<tr>
<td>3.4-5</td>
<td>Experimental results on the generic peak signal: F-score</td>
<td>86</td>
</tr>
<tr>
<td>3.4-6</td>
<td>Experimental results on the synthesized EMG signal: recall vs. precision (EMG waveform from Fig. 3.4-2a)</td>
<td>88</td>
</tr>
<tr>
<td>3.4-7</td>
<td>Experimental results on the synthesized EMG signal: recall vs. precision (EMG waveform from Fig. 3.4-2b)</td>
<td>89</td>
</tr>
<tr>
<td>3.4-8</td>
<td>Experimental results on the synthesized EMG signal: recall vs. precision (EMG waveform from Fig. 3.4-2c)</td>
<td>90</td>
</tr>
<tr>
<td>4.1-1</td>
<td>Mexican Hat mother wavelet $\psi(t)$ (given by Eq. 3.3.1.1) and its effective support (denoted by red line and ω)</td>
<td>94</td>
</tr>
<tr>
<td>4.1-2</td>
<td>Examples of segmenting MEPs from effective supports of peaks</td>
<td>95</td>
</tr>
<tr>
<td>4.2-1</td>
<td>Example of latency of an MEP</td>
<td>96</td>
</tr>
<tr>
<td>4.2-2</td>
<td>Example of a cluster with 285 monosynaptic MEPs from the initial hierarchical clustering of MEPs</td>
<td>100</td>
</tr>
<tr>
<td>4.2-3</td>
<td>Example of the second largest cluster with 46 MEPs from the initial hierarchical clustering of MEPs</td>
<td>101</td>
</tr>
<tr>
<td>4.3-1</td>
<td>PCA result on monosynaptic MEPs</td>
<td>105</td>
</tr>
<tr>
<td>4.3-2</td>
<td>BIC for various K and Σ choices</td>
<td>107</td>
</tr>
<tr>
<td>4.3-3</td>
<td>Clustering result on monosynaptic MEPs with GMM</td>
<td>109</td>
</tr>
<tr>
<td>4.4-1</td>
<td>Breaking segment into candidate monosynaptic and polysynaptic MEP</td>
<td>111</td>
</tr>
<tr>
<td>4.5-1</td>
<td>Clustering result on polysynaptic MEPs with GMM</td>
<td>114</td>
</tr>
<tr>
<td>B.0-1</td>
<td>EmgPackage’s main GUI when it’s first opened</td>
<td>122</td>
</tr>
<tr>
<td>B.0-2</td>
<td>Sub-GUI for selection of different muscles and stimulation events</td>
<td>123</td>
</tr>
<tr>
<td>B.0-3</td>
<td>An example of peak detection results from using EmgPackage</td>
<td>124</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Confusion matrix of a binary classifier .. 35

A.1 Commonly Acquired EMG channels ... 120