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Abstract

As opposed to conventional air vehicles that have fixed wings, small birds and insects are known

to flap their wings at higher angles of attack. The vortex produced at the tip of the wing, known

as the leading-edge vortex (LEV), plays an important role to enhance lift during its flight. In this

thesis, we analyze the influence of these vortices on aerodynamic forces that could be beneficial to

micro-air vehicle performance and efficiency. The flow structures associated with simple harmonic

motions of an airfoil are first investigated. The characteristics of the time-averaged and fluctuating

forces are explained by analyzing vortical flow features, such as vortex lock-in, leading-edge vortex

synchronization, and vortex formation time. Specific frequency regions where the wake instability

locks in to the unsteady motion of the airfoil are identified, and these lead to significant changes in

the mean forces. A detailed study of the flow structures associated with the LEV acting either in- or

out-of-phase with the quasi-steady component of the forces is performed to quantify the amplification

and attenuation behavior of the fluctuating forces. An inherent time scale of the LEV associated

with its formation and detachment (LEV formation time) is shown to control the time-averaged

forces. With these results, several optimal flow control problems are formulated. Adjoint-based

optimal control is applied to an airfoil moving at a constant velocity and also to a reciprocating

airfoil with no forward velocity. In both cases, we maximize lift by controlling the pitch rate of the

airfoil. For the former case, the static map of lift at various angles of attack is additionally examined

to find the static angle that provides maximum lift and also to confirm whether the optimizations

perform according to the static map. For the latter case, we obtain a solution of the optimized

motion of the flapping airfoil which resembles that of a hovering insect.
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1

Chapter 1

Introduction

As a new class of air vehicles that operate at low Reynolds number, micro-air vehicles (MAVs) face

unique challenges different from conventional aircraft. In this low Reynolds number regime, air

vehicles are exposed to high drag coefficients (CD), due to laminar flow separation. For their small

size and low flight speed, encountering a gust leads to a unsteady flow field, and in some occasions,

to stall. Furthermore, transitions from steady to unsteady flow and from laminar to turbulent flow

are a frequently encountered phenomenon that conventional aircraft do not experience.

Perhaps for these reasons, birds have adapted to fly with agility at low Reynolds number by

utilizing flapping wings (Dickinson & Gotz, 1993; Ellington et al., 1996; Wang, 2005; Pesavento &

Wang, 2009).

Regardless of whether a wing is flapping or steadily translating through a gusting flow, better

understanding of unsteady aerodynamics at low Reynolds number is required to design efficient

and effective MAVs. In this study, we identify distinct features of unsteady flows at low Reynolds

number, and implement an optimal control strategy for controlling aerodynamic forces in unsteady

flow.
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1.1 Energy extraction and unsteady aerodynamics at low

Reynolds number

Birds have evolved to efficiently transfer energy from the surrounding environment to improve their

flight performance and maneuverability. An albatross exploits energy from the velocity gradients of

the oceanic boundary layer through dynamic soaring (Denny, 2009), and numerous kinds of birds

take advantage of the spatial and temporal gradients of the atmospheric gust to remain aloft without

flapping their wings. Extracting energy from the atmospheric gusts during its migration, an Alpine

swift is known to continue its journey for 200 consecutive days without being on the ground or in

water (Liechti et al., 2013). Thermals and the upward drafts created by the topology also provide

additional sources of energy (Weimerskirch et al., 2003).

Recently, there have been several attempts to understand the coupling between the flight me-

chanics and the underlying fluid dynamics to improve unsteady flight performance of unmanned

or micro-air vehicles. Lissaman (2005) considered small vehicles whose flight speed is comparable

to atmospheric wind variations. The lift-to-drag ratio was found to be the primary parameter for

achieving neutral energy cycles for a vehicle flying through a sinusoidal vertical gust (Lissaman &

Patel, 2007), and a state feedback controller that measures current wind speed and its gradient has

shown energy gains for both sinusoidal and turbulent gusts (Langelaan, 2009). However, in each

of these studies, the models were based on quasi-steady flow approximations where the forces are

determined by the instantaneous state of the flow through a static map. Recent studies, discussed

more fully below, cast doubt upon this approximation.

While classical unsteady potential flow models effectively describe the dynamical effects on fluid

forces through the added mass and trailing-edge Kutta condition (Theodorsen, 1935; Von Karman &

Sears, 1938; Greenberg, 1947; Tchieu & Leonard, 2011), these cases are restricted to small changes

in velocity at low angle of attack and high Reynolds number, and no comprehensive theory is

available for higher angles when the flow separates. MAVs, in particular, are vulnerable to flow

separation since laminar boundary layers are less resistant than turbulent boundary layers to the
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adverse pressure gradient, and small scaled vehicles would experience separations more frequently

than conventional aircraft.

Unsteadiness in conventional air vehicles is considered a deficit since the unsteady motion can

lead to separation, instabilities, and flow-structure interactions that are difficult to control. However,

with clear understanding of the flow, unsteady effects associated with separations can be utilized

to improve maneuverability and performance of MAVs (Pesavento & Wang, 2009). The unsteady

motion associated with the flapping flight of insects and birds produces much higher lift than the

corresponding steady case (Ellington et al., 1996), and a number of studies have focused on this

topic to understand the corresponding flow structures (Dickinson & Gotz, 1993; Ellington et al.,

1996; Wang, 2005; Pesavento & Wang, 2009), that could be potentially useful for MAVs. The

presence of a leading-edge vortex (LEV) was found to be essential for providing sufficient lift in

insect flight (Dickinson & Gotz, 1993; Ellington et al., 1996), and the aerodynamic power required

in flapping motions was reduced by capturing its own wake that was generated in the previous stroke

cycle (Pesavento & Wang, 2009). Williams et al. (2011) have also shown that combining vertical

motions of an airfoil with a streamwise oscillating gust produces a net energy gain of the airfoil that

is positive when the lift and drag fluctuations are large enough.

The interaction between the wing and the previously shed vortices, sometimes termed ‘wake

capture’ when the wing exploits energy from the shed vortices, is also a mechanism to enhance

lift. The shed LEV may immediately move far from the wing without causing any notable changes

to the force history, or stay close to the airfoil so that the airfoil can take advantage of the low

pressure region that is induced by the LEV. For instance, at the end of each forward and backward

stroke, fruit flies are known to gain sufficient lift from the lingering wake that was generated from

the previous stroke (Dickinson et al., 1999).

For MAVs at high-angles of attack, large-scale vortices associated with separation, such as the

LEV or the dynamic-stall vortex, significantly alter the behavior of the aerodynamic forces. Gursul

& Ho (1992) and Gursul et al. (1994) examined a NACA 0012 airfoil immersed in a temporally

varying freestream, and the peak time-averaged lift occurred at a frequency associated with the
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shed LEV inducing high pressure gradients normal to the wing during the retreating portion of the

cycle. A similar time-averaged behavior of lift has been investigated for transverse airfoil motions

(Andro & Jacquin, 2009; Calderon et al., 2013; Cleaver et al., 2011, 2013), and the peak occurred

at a frequency where the shed LEV remained close to the airfoil during its convection.

The structure of the LEV over a pitch / surge combined motion has also been investigated

by Tsai & Colonius (2015) and Dunne & McKeon (2015) on a two-dimensional vertical-axis wind

turbine. Tsai & Colonius (2015) observed that the vortex pair that traveled along with the airfoil

substantially decreased lift in the presence of the Coriolis force. For an equivalent planar motion

(without the Coriolis effect), the growth and separation of the LEV were described by the interactions

of the primary and secondary dynamic separation modes that corresponded to the first and second

harmonic frequencies of the motion (Dunne & McKeon, 2015).

1.2 Flow models of unsteady aerodynamics

When the flow is attached, classical potential flow models can be utilized to effectively describe the

aerodynamic forces of a moving airfoil. Theodorsen (1935) was one of the pioneers to develop an

unsteady potential model in 2D to predict the aerodynamic loads on a fluttering airfoil. The main

assumptions of his approach are as follows:

• Flow is considered at high Reynolds number flow, and the viscous effects neglected.

• Fluttering amplitude and frequency of the thin airfoil are small enough such that the flow

remains attached throughout the entire motion.

• The separation point is only at the trailing edge of the airfoil, and the amount of vorticity in

the wake is determined by satisfying the Kutta condition.

• The wake convects with the same speed as the freestream velocity.
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Figure 1.1: Real, F (k), and Imaginary, G(k), part of the Thedorsen’s function, C(k).

With these assumption, the lift coefficient, CL, of a thin flat plate under harmonic plunging and

pitching can be expressed as,

CL =
π

2

[
−ÿb − x0α̈+ α̇

]
︸ ︷︷ ︸

CAM
L

+C(k) 2π

[
α− ẏb +

(
1

4
− x0

)
α̇

]

︸ ︷︷ ︸
C

QS
L

, (1.1)

where, x0 is the pitch axis location respect to the mid-chord (pitching about the leading edge

corresponds to x0 = −0.5, whereas the trailing edge is at x0 = 0.5), and yb the transverse movement

of the airfoil. The equation is nondimensionalized by normalizing length, velocity, and time by

the chord length, c, freestream velocity, U , and convective time unit, c/U , respectively. The first

term of equation 1.1 correspond to the non-circulatory part of lift due to the reaction forces of the

ambient fluid being accelerated (known as the added mass). The second term accounts for the bound

circulation that is induced by the wake vortices. The Theodorsen function, C(k) = F (k) + iG(k),

which is solely a function of the reduced frequency, k = πfc/U , can be understood as a transfer

function that attenuates and lags the phase of lift by an amount that depends on the frequency of

the oscillations. Figure 1.1 plots the real and imaginary part of C(k) as a function of the reduced

frequency. In the limit of k going to zero and infinity, CL asymptotically reaches the quasi-steady

value, C
QS
L , and the added mass lift CAM

L , respectively.
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Figure 1.2: Fluctuating amplitude (left) and phase (right) of lift relative to velocity. The results of
Greenberg’s model (Greenberg, 1947) and the discrete-vortex model (DVM) from Tchieu & Leonard
(2011) are presented.

Greenberg (1947) extended Theodorsen’s model to include the effects of an oscillating freestream

on the unsteady lift. With pure freestream oscillation of U∞ = U(1 + σx sinωxt), the lift coefficient

in Greenberg’s formula can be derived as,

CL
CL0

= 1 + σx



√(

k

2
+G

)2

+ (1 + F )
2




︸ ︷︷ ︸
ĈL(k)

sin (ωxt+ φx) +O(σ2
x), (1.2)

φx = tan−1

(
(
k

2
+G)/ (F + 1)

)
. (1.3)

In equation 1.2, the instantaneous lift coefficient is normalized by the quasi-steady lift coefficient,

CL0 = 2πα, and high order terms are neglected for σx � 1 (otherwise the flow would not stay

attached). According to this model, the time-averaged lift remains independent of k; however, the

fluctuating amplitude and phase of lift are greatly effected by the reduced frequency. Figure 1.2

plots the normalized amplitude and phase of lift relative to the freestream velocity. ĈL is the

Fourier component of the fluctuating lift coefficient at the corresponding oscillating frequency, k.

Note that the normalized amplitude, |ĈL|/(CL0 σx), and phase of lift, φx, are solely a function of

k, and interestingly, the fluctuations are minimized near a frequency of k = 0.8.
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In a similar fashion, the lift coefficient of a plunging airfoil, uy = Uσy sin (ωyt), with constant

freestream velocity, U∞ = U , can be derived as,

CL
CL0

= 1 +
σy
α



√(

kx
2

+G

)2

+ F 2


 sin (ωyt+ φy) +O(σ2

y), (1.4)

φy = tan−1

(
(
k

2
+G)/F

)
. (1.5)

Using the basic concepts of vortex theory, Von Karman & Sears (1938) derived a formula similar

to Theodorsen’s model (Theodorsen, 1935), avoiding the complicated mathematical derivations that

previous studies possessed. With the same assumptions given as in the Theodorsen’s model, they

were able to compute the aerodynamic loads on oscillating airfoils as well as on sharp-edge gusts.

Recently, Tchieu & Leonard (2011), assuming discrete vortices in the wake rather than a con-

tinuous distribution of vorticity, developed a discrete version of the Von Karman & Sears (1938)

model, which in this study is referred to as the discrete vortex model (DVM). The nascent vortex

moves at a speed that satisfies the Brown and Michael equation (Brown & Michael, 1954), and sheds

whenever it reaches its maximum strength. After the vortex is shed, it convects as the same speed

as the freestream velocity. Along with Greenberg’s formula, the fluctuating lift coefficient of DVM

for the case of streamwise varying velocity is shown in figure 1.2. Despite the convecting speed of

the nascent vortex and the discretization of the wake, most of the assumptions that are used to con-

struct the DVM are the same as for the Greenberg’s model, and the results are similar. In chapter 3,

the lift coefficient obtained from these models will be compared with equivalent computational and

experimental results of attached and separated flows.

Although classical unsteady flow models effectively compute the fluid forces on a airfoil (Theodorsen,

1935; Von Karman & Sears, 1938; Greenberg, 1947; Tchieu & Leonard, 2011), the assumptions of

the models restrict the flow to be valid only at low angles of attack, high Re, and small changes of

amplitude in motion. For MAVs that operate at high angles of attack and low Re, viscous effects

are no longer negligible, and the flow around the airfoil experiences separation more frequently. At

present, no comprehensive theory is available for a fully stalled flow; however, many studies have
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attempted to develop a model that covers a wider range of flows than the classical flow models.

Enforcing a Kutta condition also at the leading edge, low-order point vortex models have been

developed to additionally include the contribution of a LEV on the aerodynamic forces (Wang &

Eldredge, 2013; Darakananda et al., 2016). The full description of an inviscid model with multiple

Kutta conditions is beyond the scope of this study, and we recommend the reader to refer to Hemati

et al. (2014) and Darakananda et al. (2016) for further details.

The process of a dynamic stall, in general, occurs on a smaller time scale than the development

of a full stall (Wang & Eldredge, 2013), and the transient response of the fluid forces to the airfoil

motion above the stall angle have also been studied extensively. Related models that are associated

with low Re forward and flapping flights are summarized by Taha et al. (2014).

1.3 Application to flow control problems

Depending on whether the system requires the input of energy, flow control strategies can be cat-

egorized as either passive or active. Passive control devices modify the geometry of the surface to

satisfy a control objective. Among many passive devices, dimples (Bearman & Harvey, 1993; Choi

et al., 2006), splitter plates (Anderson & Szewczyk, 1997), riblets (Bechert et al., 2000), and spoilers

(Beaudoin & Aider, 2008) are the successful examples that reduce drag or enhance stability. How-

ever, there is no systematic way to design devices that meet a given objective, and their shape must

be determined through laborious experiments on numerous prototypes.

Active control, on the other hand, requires energy input of the system by the actuator. Whether

the output of the system is fed back to the input or not, active control can be classified as either

open-loop or closed-loop control (passive control devices are open-loop controllers). Active open-loop

control uses various forcing devices that control the motion of the body (Tokumaru & Dimotakis,

1991) or effectively change the flow around the body (Wu et al., 1998; Greenblatt & Wygnanski,

2000; Post & Corke, 2006). As for passive control methods, a deep understanding of the flow system

is required to obtain successful control outputs.

Recently, there has been more interest in closed-loop active control methods, whereby the ac-
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tuator (input) is continuously modified by the response of the system. Closed-loop control has an

advantage over open-loop control in terms of stability, because it is less sensitive to disturbances

and uncertainties. Feedback control using proportional-integral-derivative controllers (Zhang et al.,

2004) as well as reduced-order models (Ahuja & Rowley, 2010) has been successfully applied to

nonlinear unstable flow problems. Kerstens et al. (2011) also applied closed-loop control to suppress

lift fluctuations in an unsteady freestream. Feedback control, in general, performs better than open-

loop control systems, but, in nonlinear fluid problems, it is sometimes difficult to choose the best

feedback signal that enhances the performance.

The feedback control approach used in this study is adjoint-based optimal control, where the

control inputs that minimize a cost function are determined, under the constraint that the dynamics

satisfy the governing differential equations. Adjoint variables are introduced as Lagrange multipliers

enforcing the system to satisfy the constraint equations. With an initial guess of the control inputs,

this method finds the optimal control that locally minimizes the cost over a given time horizon,

T . One advantage of this method, numerically, is that the computational cost to compute the

gradient does not increase with the number of controls. For example, Bewley et al. (2001) used

every point in the flow domain as an actuator for blowing and suction, re-laminarizing a turbulent

channel flow. Unlike other passive and active control approaches, optimal control does not require

a priori knowledge of the physical mechanism that minimizes the cost, and the optimal solutions

themselves often illuminate aspects of the underlying flow physics that would not otherwise have

been appreciated.

Currently, due to their high computation cost, adjoint methods are considered as an offline

optimization scheme. However, in the future, the development of high performance computers and

efficient numerical tools will reduce the time required to compute the solutions, and the adjoint

method can perform as a real-time feedback controller. Also, as with the development of lidar (a

radar that uses light from a laser) that is capable of measuring upstream flows (Schmitt et al., 2007),

the adjoint method can provide estimates of best or worst control strategies during aviation. The

further the laser sensor can measure upstream, the further we are capable of predicting the future
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with long-term control strategies.

Adjoint based control also arises in shape optimization problems. Pioneered by Jameson (1988),

efforts to find the airfoil geometry that minimizes a given cost function were conducted by various

researchers (Reuther et al., 1999; Giles et al., 2003). The primary goal in most of these studies was

to maximize the lift-to-drag ratio, L/D, as a measure of the aerodynamic efficiency. Nevertheless,

these cases were limited to high Re and low angle of attack, where the aerodynamic forces were

highly effected by the airfoil geometry. For unsteady motions of an airfoil at low Re, owing to the

fact that viscous effects are more severe and flows being more vulnerable to separation than higher

Re flows, aerodynamic forces are less sensitive to the change of airfoil geometry. At Re ∼ 102− 103,

viscous effects are relatively large, causing high drag and limiting L/D to be an order of magnitude

less than higher Re (> 105) cases (Lissaman, 1983). Insects flap their wings at high angles of attack

(α > 30◦), and the flows around their wings are likely to be separated. As a consequence, airfoil

shape optimization in low Re flights may not guarantee the promising results obtained at high Re

cases. Instead, for unsteady flows at low Re, finding the optimal parameters of the airfoil’s motion

(kinematic optimization) may be a better strategy to achieve high aerodynamic performance.

1.4 Thesis outline

In chapter 2, we discuss the numerical method used to solve unsteady, incompressible flows around

airfoils at low Reynolds number, and derive equations for implementing optimal control. In addition,

numerical subtleties such as discrete operators, multi-grid techniques, checkpointing algorithms,

conjugate gradient method, and line minimization are as well discussed.

In chapter 3, the flow structure and the aerodynamic forces associated with small-amplitude

streamwise (surging) and transverse (plunging) oscillating of an airfoils at low Reynolds number

are investigated. For simplicity, two-dimensional flows are simulated and we restrict the Reynolds

number to O(102− 103) such that, depending on the specific values of angle of attack and Reynolds

number, the flow can be subcritical, steady flow, or supercritical, with respect to the usual wake

instability associated with a bluff body. The mean and fluctuating behavior of the aerodynamic forces
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associated with vortical structure of the wake (vortex lock-in, LEV) are discussed and compared with

the experimental results.

High-amplitude surging motions are considered in chapter 4. As the variation in the Reynolds

number associated with the motion is large, non-oscillatory uniform flows are first investigated over

a wide range of Reynolds number. For the high-amplitude surging motions, the mechanism that

leads to the time-averaged peak of lift is of a particular interest, and we investigate this problem

by examining vortex strength and flow fields. The time-averaged lift of a motion with square-wave

streamwise velocity is also investigated to understand the flow behaviors that are associated with

high accelerations.

In chapter 5, using the optimal control framework developed in chapter 2, a simple example that

obtains the optimal angle of a flat plate that maximizes lift is presented as a test problem. Optimal

control is also applied to flapping motions, where the optimized motion resembles that of a flying

insect.
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Chapter 2

Numerical Methods

The immersed boundary fractional-step method (IBFS), which is used as our fluid solver, is described.

Optimal control theory using adjoint equations is also introduced, and used to compute the gradients

of the design parameters that minimize a predefined cost function.

2.1 Immersed boundary fractional step method

The immersed boundary fractional-step method (IBFS) (Taira & Colonius, 2007; Colonius & Taira,

2008) has been used to solve a two dimensional incompressible flow in the (non-inertial) reference

frame of the body (appendix A). The method solves the vorticity-streamfunction formulation of the

Navier-Stokes equations and the body is represented by a discrete set of (regularized) surface forces

to enforce the no-slip condition. We review the derivations by considering the continuous version of

the incompressible Navier-Stokes equations with boundary force, f , and no-slip condition (Peskin,

1972, 2002):

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u+

∫

s

f(ξ(s, t))δ(ξ − x)ds, (2.1)

∇ · u = 0, (2.2)

u(ξ(s, t)) =

∫

x

u(x)δ(x− ξ)dx = ub(ξ(s, t)). (2.3)

The convolutions with the Dirac delta function, δ, are used to exchange information between

the Eularian fluid grid and the Lagrangian body points. Discretizing the above equations, using the
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Adams-Bashforth 2nd order scheme on advection term and the Crank-Nicolson method on viscous

term (Taira & Colonius, 2007), the terms can be collected to form a matrix such as:




Â Ĝ −Ĥ

D̂ 0 0

Ê 0 0







un+1

φ

f∆t




=




r̂n

0

un+1
B




+




ˆbc1

bc2

0




, (2.4)

where

Â ≡ I − ∆t

2
L̂ and r̂n ≡

[
I +

∆t

2
L̂

]
un − 3∆t

2
N̂(un) +

∆t

2
N̂(un−1) . (2.5)

Here, Ĝ and D̂ are the discrete gradient and divergence operator, respectively. The regularization

(Ĥ) and interpolation (Ê) operators smear the immersed forces over a few cells and interpolate

velocities back to the Lagrangian body points with the specific form of delta function designed by

Roma et al. (1999). L̂ is the standard 5-point stencil 2nd order Laplacian operator and N̂ the

operator relating to the nonlinear term.

Introduce the scaling operators R and M̂ :

R ≡




∆yj 0

0 ∆xi


 and M̂ ≡




1
2 (∆xi + ∆xi−1) 0

0 1
2 (∆yj + ∆yj−1)


 . (2.6)

equation (2.4) can be written as:




A G −H

D 0 0

ÊR−1 0 0







qn+1

φ

f∆t




=




rn

0

un+1
B




+




bc1

bc2

0




, (2.7)
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where

A ≡ M̂ÂR−1, G ≡ M̂Ĝ, H ≡ M̂Ĥ,

D ≡ D̂R−1 = −GT , rn ≡ M̂ r̂n, bc1 ≡ M̂ ˆbc1, and qn+1 ≡ Run+1 .

Also, the mass matrix and the Laplacian are additionally defined as M ≡ M̂R−1 and L ≡

M̂L̂R−1 such that A = M−∆t
2 L. We note that A is symmetric and positive-definite by construction.

For the null space approach in Colonius & Taira (2008), the vorticity-streamfunction formula

of the Navier-Stokes equation is solved instead of the primitive variables on a uniform Cartesian

grid. The discrete streamfunction, s, is used that satisfies q = Cs. C represents the discrete curl

operator, which is constructed with column vectors corresponding to the basis of the null space of

D. Therefore, these operators enjoy the following relation:

DC ≡ 0 , (2.8)

which mimics the continuous identity ∇ · ∇× ≡ 0.

We also introduce another discrete curl operation, CT , that is defined as,

γ = CT q , (2.9)

which is a second-order accurate approximation of the circulation in each dual cell. For the

Laplacian,

Lq = − 1

Re∆x2
CCT q = − 1

Re∆x2
Cγ ≡ −βCγ , (2.10)

provided that Dq = 0, where β = 1
Re∆x2 . This identity mimics the continuous identity ∇2u =
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∇(∇ · u)−∇×∇× u = −∇×∇× u.

Taking the curl of the momentum equation, which we multiply CT at both sides of the equation in

the first row of the matrix in equation (2.7), the pressure variable is eliminated (CTG = −(DC)T =

0) and the incompressible constraint is automatically satisfied. The matrix form can be rewritten

in the following form:



I + β

2 ∆tCTC CT ÊT

ÊC(CTC)−1 0






γn+1

f∆t


 =




CT rn

un+1
B ∆x


+



β∆t bcγ

0


 . (2.11)

Decomposing the left-hand side matrix into a Lower and Upper triangular matrix (Perot, 1993),

LU =



I + β

2 ∆tCTC CT ÊT

ÊC(CTC)−1 0


 (2.12)

the corresponding matrices are,

L =



I + β

2 ∆tCTC 0

ÊC(CTC)−1 −ÊC(CTC)−1
(
I + β

2 ∆tCTC
)−1

CT ÊT


 , (2.13)

U =



I
(
I + β

2 ∆tCTC
)−1

CT ÊT

0 I


 . (2.14)

We first solve,

L



γ∗

f


 =




CT rn

un+1
B ∆x


+



β∆t bcγ

0


 , (2.15)
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which leads to the equation,

S

(
I +

β∆t

2
Λ

)
Sγ∗ = CT rn

=

(
I − β∆t

2
CTC

)
γn +

∆t

2∆x2

(
3CTN(q(k)n)− CTN(q(k)n−1

)
)

+ β∆t bcγ . (2.16)

The matrix CTC is now diagonalized with discrete sin transform CTC = SΛS for computational

efficiency. To implement the multi-domain technique, equation (2.16) will be modified so that γ∗ is

now computed on a progressively coarsifying grids with the corrected boundary condition (Colonius

& Taira, 2008):

S

(
I +

β∆t

2
Λ

)
Sγ(k)∗ = S

(
I − β∆t

2
Λ

)
Sγ(k)n +

∆t

2∆x2

(
3CTN(q(k)n)− CTN(q(k)n−1

)
)

+
β∆t

2
bcγ

(
[P (k+1)→(k)(γ(k+1)∗)] + [P (k+1)→(k)(γ(k+1)n)]

)
(2.17)

=⇒ γ(k)∗ = S

(
I +

β∆t

2
Λ

)−1{
S

[
3∆t

2∆x2
CTN(q(k)n)− ∆t

2∆x2
CTN(q(k)n−1

)

+
β∆t

2
bcγ

(
[P (k+1)→(k)(γ(k+1)∗)] + [P (k+1)→(k)(γ(k+1)n)]

)]

+

(
I − β∆t

2
Λ

)
Sγ(k)n

}
. (2.18)

Then we solve for the immersed boundary forces, f , by computing the second row of the equa-

tion 2.15.

ÊC

(
SΛ−1

(
I +

β

2
Λ

)−1

S

)
CT ÊT f∆t = ÊCSΛ−1Sγ∗ − un+1

B ∆x (2.19)

=⇒ f∆t =

(
ÊCSΛ−1SS

(
I +

β

2
Λ

)−1

SCT ÊT

)−1 (
ÊCSΛ−1Sγ∗ − un+1

B ∆x
)
. (2.20)

If the body is not moving with respect to the grid, Cholesky decomposition of the term

ÊC

(
SΛ−1

(
I + β

2 Λ
)−1

S

)
CT ÊT can be performed (since it is symmetric and does not change

during the computation), and solve the equation (2.20) efficiently. Finally, the vorticity for the next
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time step is computed as,

γn+1 = γ∗ − S
(
I +

β∆t

2
Λ

)−1

SCT ÊT f∆t. (2.21)

Also, we note that since CTN(q) = −CTN (q, γ), where N (q, γ) is the discrete operator of q×γ,

we interchange N(q) with N (q, γ) in our further derivations of the adjoint equations. This comes

from the identity,

∇× (u · ∇u) = ∇×
(
∇1

2

(
|u|2
)
− u× ω

)
= −∇× (q × ω). (2.22)

2.2 Adjoint-based optimal control

2.2.1 Optimal control theory

Optimal control via the adjoint method is an active area of research in computational fluid dynamics

(Luchini & Bottaro, 2014). The cost of computing the adjoint equation, and thus evaluating the

gradient of a cost function, is approximately the same as computing the original forward simulation.

Since the computational cost of deriving the gradient is nearly independent of the number of inputs,

this approach is much faster than the classical finite-difference methods that compute the Jacobian

matrix (dJ /duuu) with respect to each of the control inputs. The adjoint method is based on the

calculus of variation (Pontryagin’s minimum principle), where the optimal conditions are met by

minimizing the control Hamiltonian, H. In this section, we review the basic steps of deriving the

gradient of a cost function (or functional) using the adjoint approach.

Consider the problem,

minimize
φ

J , J =

∫ T

0

r(x, φ) dt+ v( x(T ) )

subject to ẋ = h(x, φ). (2.23)
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We denote x as the state variable, φ as the input or control variable, and J , the cost function that

represents the objective of the control in a mathematical expression. The goal of this problem is to

find the optimal control units that minimizes the cost function subjected to constraints ẋ = h(x, φ).

The method converges to one of the local minimum solutions that are close to the initial condition.

For a flow control problem, the velocity field, vorticity field, or the aerodynamic loads are candidates

for the state variable. Various goals can be achieved by controlling the optimal angles of the airfoil,

actuator propulsion, and imposing body forces near the body. The constraints that need to be

satisfied are the governing equation of the flow variables (the Navier-Stokes equation), and the

equation of motions (rigid body dynamics) if the body interacts with the fluid forces.

The function, J , that we make an effort to minimize consists of two terms, where r(x, φ) is a term

that is integrated during the whole control horizon, and v( x(T ) ) is the end condition. The first

step for obtaining the optimal solution is to derive the gradients of a cost function with respect to

the controls. For this purpose, a Lagrange function (or Lagrangian), L, is defined with the Lagrange

multiplier, λ, to handle the constraints,

L =

∫ T

0

[
r(x, φ) + λT (h(x, φ)− ẋ)

]
dt+ v( x(T ) )

=

∫ T

0

[
H(x, φ, λ) − λT ẋ

]
dt+ v( x(T ) ). (2.24)

Here we set the control Hamiltonian, H(x, φ, λ) = r(x, φ) +λTh(x, φ), where λT is the transpose

of λ. Further, expanding the term, λT ẋ, using integration by parts,

L =

∫ T

0

[
H(x, φ, λ) + λ̇T x

]
dt−

[
λT x

]T
0

+ v( x(T ) ). (2.25)

Taking the total derivative of L with respect to φ,

dL
dφ

=

∫ T

0

[(
∂H
∂x

+ λ̇T
)
∂x

∂φ
+
∂H
∂φ

]
dt+

[
∂v( x(T ) )

∂x
− λ(T )T

]
∂x(T )

∂φ
. (2.26)

In most cases, the term, ∂x∂φ , is a large dense matrix that is expensive to compute. To circumvent
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this expensive calculation, the terms regarding the Lagrange multipliers are instead set to zero,

∂H
∂x

+ λ̇T = 0 (adjoint equation, evolves backwards in time) (2.27)

∂v( x(T ) )

∂x
− λ(T )T = 0 (initial value of λ), (2.28)

which gives an ODE for computing the Lagrange multipliers (equation 2.27). Given the initial

values of λ(T ) from equation 2.28, the Lagrange multipliers, or the adjoint variables, are computed

backwards in time. In this case, the total computation cost of solving the relevant adjoint equation

is approximately the same as solving the original forward ODE, ẋ = h(x, φ).

Finally, after the adjoint variables are computed, the gradient of the cost function can be com-

puted with the remaining term,

dJ
dφ

=
dL
dφ

=

∫ T

0

∂H
∂φ

dt. (2.29)

This gradient, unless it is zero, provides information on how controls should be updated to

minimize the cost function. Marching along the direction of the gradient and iterating the process

(similar to the process of steepest decent and conjugate gradient methods), the solution eventually

converges to the local extremum. The control problem is solved by finding the sets of controls that

minimizes H, which is known as ‘the control Hamiltonian’. As with the usual Hamiltonian defined

in classical mechanics, the control Hamiltonian has a structure of the time evolving system as,

λ̇ = −dH
dx

(2.30)

ẋ =
dH
dλ

. (2.31)

When the optimal condition is achieved the following equation is also satisfied.

0 =
dH
dφ

. (2.32)
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2.2.2 Optimization procedure

In this section, the general procedure of obtaining a time-dependent nonlinear optimal solution based

on the adjoint method is described. Adjoint solvers were developed based on the earlier works of

Ahuja & Rowley (2010) and Joe et al. (2010), and fully implemented / coded for the IBFM setup

by Flinois & Colonius (2015). As introduced in the previous section (§ 2.2.1), the cost function, J ,

computes a integrated (scalar) value along the control time horizon, T ,

J (x, φ) =

∫ T

0

r(x, φ) dt+ v( x(T ) ). (2.33)

Figure 2.1 depicts the flow diagram of the optimization process used in Flinois & Colonius (2015),

and the overall procedure can be outlined as follows (we denote the index k as the iteration number):

Step 1: Guess an initial waveform of the control, φ0, simply by setting it to zero or imposing specific

values that are likely to give better solutions. (k = 0)

Step 2: Run the forward simulation with the current control, φk, to compute the cost, Jk.

Step 3: Solve the adjoint simulation, to obtain the gradient,
(
∂H
∂φ

)
k
.

Step 4: Find the distance (scalar value), d, that minimizes the cost along the direction of the

gradient using a line minimization algorithm.

Step 5: Update the control waveform by, φk+1 = φk − d
(
∂H
∂φ

)
k
.

Step 6: If |φk+1−φk| > ε, increase iteration number k = k+1 and repeat step 2-6. Else, the control

has converged to the optimal condition, φ∗.

For simplicity, the procedure described above is the steepest decent method; however, in our

computations, the conjugate gradient method, which has proven to be much more efficient, is instead

used for the optimization. Among various conjugate gradient algorithms, the Polak-Ribiere formula

(Polak, 1970) is known to converge faster than other conjugate algorithms (Shewchuk, 1994), and

appears to be the best suited for our non-convex and nonlinear optimization problem. This formula
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(using	  updated	  control)	  

Need	  to	  compute	  	  
another	  distance?	  

Yes	  

No	  

No	  
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Adjoint	  simula$on	  
(obtain	  gradient)	  

Ø0

Ø

Figure 2.1: Flow diagram of the gradient-based optimization procedure, and a comparison of the
convergence of conjugate gradient method (red line) with steepest decent method (green line).

has also been used in other flow control problems, giving promising results (Bewley et al., 2001;

Flinois & Colonius, 2015). The conjugate gradient, ω, is computed as follows:

ωk+1 = γk+1 + β ωk, (2.34)

where γ, and β are defined as,

γk =

(
∂H
∂φ

)

k

, (2.35)

β =
γTk+1(γk+1 − γk)

γTk γk
. (2.36)

For the detailed line search algorithm used in our computations (step 4 above), we refer the

readers to Flinois & Colonius (2015), where a generalized Brent’s search algorithm was developed

using parallel computing. Each evaluation of a cost respect to a certain control is equal to running

one forward simulation, and it is important to develop parallel algorithms that can evaluate the cost
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simultaneously.

Another technical challenge related to the adjoint method is the efficient use of memory. While

computing the adjoint equation (equation 2.30),

λ̇ = −dH
dx

= − d

dx
(r(x, φ))

︸ ︷︷ ︸
a(x, φ)

−λT d

dx
(h(x, φ))

︸ ︷︷ ︸
b(x, φ)

, (2.37)

where the forward state variable, x, is required to compute the coefficients, a(x, φ) and b(x, φ),

and to evolve the adjoint equation. If there is sufficient memory to store the forward variables at

every time step, then the adjoint equation can be solved without any recalculating or interpolations of

the forward variables. However, simulations require both large numbers of time steps and grid points

such that it is impractical to store the forward variables at every time step. Checkpointing schemes

have been developed to mitigate this issue (Griewank, 1992; Griewank & Walther, 2000; Wang et al.,

2009). In our computations, the algorithm developed by Wang et al. (2009) is implement to solve

the adjoint equations (appendix B). For problems that are too expensive even for the checkpointing

schemes, we use linear interpolation to reduce the cost of the reconstruction. Every n time step is

saved such that the error associated with the interpolation is negligible over computing the gradients.

2.2.3 Gradient derivations

Obtaining the gradient is an essential part of the overall optimization process. The mathematical

expression of the gradient depends on the specific formula of the cost function and the constraint

equations, and we introduce how adjoint equations and gradients are derived for the problems

considered in these studies.

2.2.3.1 Basic definitions

We first introduce the variables and operators that are used throughout the derivations. The im-

mersed boundary method realizes the surface of the body as discrete numbers of immersed boundary
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points, and associated variables are defined as,

body : xxxb/cm =




xb1/cm

...

xbn/cm

yb1/cm

...

ybn/cm




, uuub =




ub1

...

ubn

vb1

...

vbn




, fff b =




fxb1

...

fxbn

fyb1

...

fybn




. (2.38)

n is the number of total immersed boundary points of the body, and xxxb/cm, uuub, and fff b has a

dimension of (2n×1). A vector with a subscript, /cm, indicates that the variable is expressed in the

non-inertial reference frame, which the frame moves with the body, and the origin, attached to the

body’s center of mass. Although the frame moves with the body’s translational velocity it does not

rotate. Variables without any subscript are defined respect to the inertial frame of reference with

zero frame velocity. fff b is the force that is exerted from the fluid to the body, and uuub the velocity of

IB points.

Actuators can also be realized as IB points, and relevant variables defined as,

actuator : xxxa/cm =




xa1/cm

...

xam/cm

ya1/cm

...

yam/cm




, uuua =




ua1

...

uam

va1

...

vam




, uuua/cm =




ua1/cm

...

uam/cm

va1/cm

...

vam/cm




, fafafa =




fax1

...

faxm

fay1

...

faym




, (2.39)

where m is the number of immersed boundary points of an actuator. Similarly, fffa is the force

exerted from fluid to actuator (thrust), and uuua, actuator velocity. The only difference between the

IB point that represents a body and an actuator is that for an actuator, an arbitrary velocity other

than the body velocity, uuub, can be prescribed. uuua/cm represents the relative actuator velocity with
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respect to uuub.

Additional variables that we consider are the center of mass velocity and body force (gravity):

uuucm =



ucm

vcm


 , ggg =




0

−g


 , (2.40)

where the velocity of each IB points of the body and actuator are now expressed as,

uuub = SSSbuuucm + ΩRRRbxxxb/cm, (2.41)

uuua = SSSauuucm + uuua/cm + ΩRRRaxxxa/cm. (2.42)

Operators SSSb,SSSa of size (2n× 2), (2m× 2), and RRRb,RRRa (2n× 2n), (2m× 2m) are defined as,

SSS =




1 0

...
...

1 0

0 1

...
...

0 1




, RRR =




0 . . . 0 −1 . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . −1

1 . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . 1 0 . . . 0




. (2.43)

Using the operators defined above, equation of motions regarding the translational and rotation

velocity of the rigid body can be expressed as follows:

mu̇uucm = ∆x
(
SSSTb fff b +SSSTa fffa

)
+mggg, (2.44)

IIIcmΩ̇ = ∆x
(
xxxTb/cmRRR

T
b fff b + xxxTa/cmRRR

T
a fffa

)
. (2.45)

A free-body diagram is illustrated in figure 2.2 to describe these equations.

Now, with the basic definitions of the variables, we introduce the cost function that is used in
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Figure 2.2: Free body diagram of an airfoil with a actuator near the trailing edge. Gravity and
resultant fluid force are depicted.

these studies,

JFFF =
1

2

∫ T

0

(FFF −FFF ref)
2 dt

=
1

2

∫ T

0

(FFF 2 − 2FFFFFF ref +FFF 2
ref) dt. (2.46)

The cost function, JFFF , minimizes the difference of the integrated x and y forces to the reference

value, where F is the integrated forces,

F = ∆x
(
SSSTb fff b +SSSTa fffa

)
. (2.47)

It can be used to minimize drag or maximize lift by setting the components of Fref to a very low

or high value. Expanding the terms of the quadratic cost function (equation 2.46), the optimization

process minimizes the root mean square of F by the term that corresponds to FFF 2, and at the same

time maximizes FFF by the term −2FFFFFF ref. FFF ref acts as a weighting factor between these two terms.



26

2.2.3.2 Adjoint equations

With the cost function defined, we derive the relevant adjoint equations. Since the IBFM code com-

putes the variables in a rotating frame of reference and variables in the cost function are sometimes

defined in a non-rotating reference frame, we introduce a rotational matrix, BBB(θ), that transforms

a vector expressed in a lab frame to the body-fixed frame. What we refer here as the ‘lab frame’

is the frame of reference that we mentioned in the previous section (§ 2.2.3.1), where the frame of

reference moves with the body, but does not, however, rotate (similar to a wind-tunnel experiment).

BBB(θ)T transforms a vector in body fixed coordinate to the lab frame coordinate.

BBB(θ) =




cos θ sin θ

− sin θ cos θ


 , lab frame→ body-fixed frame (2.48)

BBB(θ)T =




cos θ − sin θ

sin θ cos θ


 , body-fixed frame→ lab frame (2.49)

According to this setup, we have the following relations:

q̃qqc(θ, t) = ∆xSSSqBBB(θ)uuucm(t) (2.50)

q̃qqΩ(t) = ∆xΩ(t)x̃xxΩ (2.51)

q̃qqa/cm(t) = ∆xΣnaj=1

(
Axj(t)˜̄uuuaxj +Ayj(t)˜̄uuuayj

)
(2.52)

= ∆xΣnaj=1BBB(θ) (AxjL(t)ūuuaxjL +AyjL(t)ūuuayjL) . (2.53)

Tilde is assigned for variables in the rotating body-fixed coordinate. The grid velocity flux,

qqq = ∆x uuu, is a vector of (Nq × 1), where Nq is the total number of cell faces of the Eulerian grid.

qqqc and qqqΩ are the velocity fluxes that originate from the translational and rotational motion of the

body, respectively. SSSq has a dimension of (Nq×2), and x̃xxΩ has elements equal to −ỹ for the x fluxes

and x̃ for the y fluxes, that is x̃xxΩ = RRRBBB(θ)(xxx− SSSxxxcm). fff is a vector including the IB points of the
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whole body and actuator points, and ˜̄uuuaxj , ˜̄uuuayj has the same dimension as fff , whose elements are

either one or zero, effectively selecting the corresponding actuator body points. Axj(t) and Ayj(t)

are the controls that need to be specified initially and evaluated along the procedure. Since it would

be easy to interpret or specify the control units in the lab frame, we additionally define AxjL(t) and

ūuuaxjL which are control magnitudes and velocity unit vectors in the lab frame, respectively. The

actuator velocity vector, q̃qqa/cm, has the same dimension as fff , and is not zero only at the components

that corresponds to the actuator IB point (note that the velocity is the relative velocity respect to

the body).

The augmented cost function of JF can be represented as:

L = JF −
∫ T

0

γγγ†
T

(CTC)−1

(
dγγγ

dt
+ Flin + Fnl

)
dt

−
∫ T

0

fff†
T

(E(Hγγγ − q̃qqc − q̃qqΩ)− q̃qqa/cm)dt

−
∫ T

0

uuu†Tcm

(
duuucm
dt
− SSSTfff

m
− ggg
)
dt

−
∫ T

0

Ω†
(
dΩ

dt
−
xxxT/cmRRR

Tfff

Icm

)
dt

−
∫ T

0

θ†
(
dθ

dt
− Ω

)
dt, (2.54)

where

Flin = −Lγγγ + CTET f̃ (2.55)

Fnl = − 1

h2
CTN (Hγγγ − q̃qqc − q̃qqΩ, γγγ). (2.56)

γγγ†, fff†,uuu†Tcm,Ω
†, and θ† are the Lagrange multipliers that represent the adjoint circulation, force,

translational body velocity, rotational angular velocity, and angle. The constraint equations are the

Navier-stokes equation, no-slip boundary condition, and equation of motions of the rigid body.
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Collecting the derivative terms,

L =

∫ T

0

H− γγγ†T (CTC)−1 dγγγ

dt
− uuu†Tcm

duuucm
dt
− Ω†

dΩ

dt
− θ† dθ

dt
dt, (2.57)

where the control Hamiltonian, H, is defined as,

H = +
1

2
(FFF −FFF ref)

2

− γγγ†T (CTC)−1 (Flin + Fnl)

− fff†T
(
E(Hγγγ − q̃qqc − q̃qqΩ)− q̃qqa/cm

)

+ uuu†Tcm

(
SSSTfBBB

T
f f̃ff

m
+ ggg

)

+ Ω†
(
x̃xxTRRRTf f̃ff

Icm

)

+ θ†Ω. (2.58)

Previously, we have defined FFF as the integrated x and y forces in equation 2.47, and with the

presence of body rotation,

FFF = ∆xSSSTBBBT f̃ff . (2.59)

It is often desired to set the control variables and cost function in a non-rotating frame, and JF

maximizes or minimizes the forces in the x and y direction that stay fixed regardless of the rotations.
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From equation 2.30, adjoint equations can be derived as,

−dγ
†

dt
= (CTC)

(
∂H
∂γ

)T

= Lγ† − CTET f† +
1

∆x2
CTC N (q†, q) +

1

∆x2
CTN (γ, q†) (2.60)

0 =

(
∂H
∂f̃

)T

= ∆xBfSf (F − Fref )− Eq† +
1

m
BfSfu

†
cm +

1

Icm
Rf x̃

TΩ† (2.61)

−du
†
cm

dt
=

(
∂H
∂uuucm

)T

=
1

∆x2

(
∂N
∂ucm

)T
q† + ∆xBTSTq E

T f† (2.62)

−dΩ†

dt
=

(
∂H
∂Ω

)T

=
1

∆x2

(
∂N
∂Ω

)T
q† + ∆xx̃TΩE

T f† + θ† (2.63)

−dθ
†

dt
=

(
∂H
∂θ

)T

= ∆xf̃TB′fSf (F − Fref ) +
1

∆x2

(
∂N
∂θ

)T
q† + ∆xf†

T
(
ESqB

′ucm +
∂ũuua
∂θ

)
+

1

m
f̃TBfSfu

†
cm

(2.64)

where q† (=C(CTC)−1γ†) is the adjoint velocity flux. If no element is assigned to the operator

N , then we assume N = N (Hγ − q̃c − q̃Ω, γ). The derivatives in the adjoint equations are,

(
∂N
∂uuucm

)T
q† = −∆x BTSTq N (γ, q†) (2.65)

(
∂N
∂Ω

)T
q† = −∆x x̃TΩ N (γ, q†) (2.66)

(
∂N
∂θ

)T
q† = −∆x uuuTcmB

′TSTq N (γ, q†) (2.67)

∂ũuua
∂θ

= Σnaj=1BBB
′(θ) (AxjL(t)ūuuaxjL +AyjL(t)ūuuayjL) . (2.68)

The above adjoint equations are solved backwards in time, and since there is no terminal condition
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in the cost function, all values of the adjoint variables at t = T are zero.

λ(T ) = φ(T ) = ε(T ) = δ(T ) = ψ(T ) = 0. (2.69)

Equation 2.60 is the governing equation of the adjoint flow variables, and equation 2.61 the

adjoint no-slip boundary condition. Considering these equations as a set of equations similar to the

forward system (equation 2.11):



I + β

2 ∆tCTC CT ÊT

ÊC(CTC)−1 0






γ†
n−1

f†


 =



CT rn

µn−1


+



bcλ

0


 , (2.70)

where µ is the adjoint slip velocity defined as,

µn−1 = ∆xBfSf (F − Fref ) +
1

m
BfSfu

†
cm

n−1
+

1

Icm
Rf x̃

TΩ†
n−1

. (2.71)

The adjoint slip velocity depends on specific formula of the cost function and the constraint

equations.

As with the forward simulation case, we perform a LU decomposition on this matrix, resulting

the following set of equations:

γ†
∗

=

[
S

(
I +

β∆t

2
Λ

)]−1

SCT rn + bcλ, (2.72)

f†∆t =

(
ÊCSΛ−1SS

(
I +

β

2
Λ

)−1

SCT ÊT

)−1 (
ÊCSΛ−1Sγ†

∗ − µn−1
)
, (2.73)

γ†
n−1

= γ†
∗ − S

(
I +

β∆t

2
Λ

)−1

SCT ÊT f†∆t. (2.74)

During the evaluation of equation 2.73, equation 2.62 to 2.64 are solved to compute the adjoint

slip velocity. Briefly describing this method,
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Step 1: predict u†cm, Ω†, and θ† using explicit Euler:

u†cm
n−1/2

= u†cm
n

+ ∆tfu†cm(f†
n
) (2.75)

Ω†
n−1/2

= Ω†
n

+ ∆tfΩ†(f
†n, θ†

n
) (2.76)

θ†
n−1/2

= θ†
n

+ ∆tfθ†(f
†n, u†cm

n
) (2.77)

fu†cm(φn) is the right-hand side of (equation 2.62), and the same for fΩ† and fθ† .

Step 2: Solve for f†
n−1/2

from

f†
n− 1

2 ∆t =

(
ÊCSΛ−1SS

(
I +

β

2
Λ

)−1

SCT ÊT

)−1 (
ÊCSΛ−1Sγ†

∗ − µn− 1
2

)
(2.78)

Step 3: Correct u†cm, Ω†, and θ†

u†cm
∗

=
1

2

(
u†cm

n−1/2
+ u†cm

n
)

(2.79)

Ω†
∗

=
1

2

(
Ω†

n−1/2
+ Ω†

n
)

(2.80)

f†
∗

=
1

2

(
f†
n−1/2

+ f†
n
)

(2.81)

θ†
∗

=
1

2

(
θ†
n−1/2

+ θ†
n
)

(2.82)

and update

u†cm
n−1

= u†cm
n

+ ∆tfu†cm(f†
∗
, κ∗) (2.83)

Ω†
n−1

= Ω†
n

+ ∆tfΩ†(f
†∗, ψ∗) (2.84)

θ†
n−1

= θ†
n

+ ∆tfθ†(f
†∗, u†cm

∗
) (2.85)

Step 4: Get the next time step adjoint force f†
n−1

:

f†
n−1

∆t =

(
ÊCSΛ−1SS

(
I +

β

2
Λ

)−1

SCT ÊT

)−1 (
ÊCSΛ−1Sγ†

∗ − µn−1
)

(2.86)
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After the corrected adjoint force is computed, the adjoint vorticity at time step n−1 can be solved

by equation 2.74. Knowing both the forward and adjoint variables, the gradient can be computed

along with the adjoint solver. We note that the checkpointing algorithm developed by Wang et al.

(2009) is implemented to minimize the recalculations of the forward variables (appendix B).

2.2.3.3 Gradients

Finally, the gradients of the cost function respect to the controls (actuator velocity, angular velocity)

can be derived as (equation 2.29),

(
∂H

∂AxjL

)
= −∆x

(
Qpowf̃

T − f†T
)
BBBf ūuuaxjL (2.87)

(
∂H
∂AyjL

)
= −∆x

(
Qpowf̃

T − f†T
)
BBBf ūuuayjL (2.88)

(
∂H
∂Ω

)
= −∆x

(
Qpowf̃

T − f†T
)
Ex̃Ω −

1

∆x2

(
∂N
∂Ω

)T
+ θ†. (2.89)

Note that the gradient has a term arising from the original cost function, and a term related to

the adjoint solution.
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Chapter 3

Low-Amplitude Surging and
Plunging Airfoils

In this chapter, we investigate the forces and unsteady flow structures associated with low-amplitude

harmonic oscillations of an airfoil in the streamwise (surging) and transverse (plunging) directions.

Specific frequency regimes where the wake instability synchronizes to the unsteady motion are in-

vestigated as well as the regimes where the fluctuating forces are amplified and attenuated. A

detailed study of the flow structure associated with LEV growth and detachment is used to relate

this behavior.

3.1 Problem description

We model the airfoil as a thin flat plate; the immersed boundary method regularizes (smears)

the thickness of the plate to a few grid cells. The computational domain extends to 32 and 48

chord lengths in the transverse and streamwise directions, respectively, and truncates the vorticity

field with zero Dirichlet boundary conditions. Multiple grid resolutions are used for computational

efficiency, and convergence tests were performed on a 480× 320 and 960× 640 grid resolution over

the finest grid level. The 240 × 160 grid resolution was sufficient for most of the cases reported,

however, for the highest Re we used the finer grid. The time steps were chosen based on the CFL

condition, which we set it to be less than 0.5. We have also investigated the response of a NACA

0006 airfoil; the results were substantially the same for both airfoils and in what follows, we only
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present results for the thin flat plate. The angle of attack of the airfoil (α) is varied between α = 5◦

and 20◦. For the thin airfoil at low Reynolds number, the flow separates at the leading-edge at

α = 15◦ and 20◦, but remains attached for the 5◦ case.

The x and y components of the motion of the body are specified as

u = U (1 + σx sin (ωt)) = U (1 + σx sin (2ktU/c)) (3.1)

v = Uσy sin (ωt+ θ) = Uσy sin (2ktU/c+ θ) , (3.2)

where k is the reduced frequency (= πfc/U) and U the mean velocity of the vehicle in the

streamwise direction. Uσx and Uσy are the fluctuating velocities in the x (streamwise, surging) and

y (transverse, plunging) directions, respectively, and θ is the phase between plunge and surge. In

this chapter, we consider surging and plunging separately, so θ is not used. The normalized velocity

amplitude, σ, is set to a constant as we increase the frequency, and, as a result, the amplitude of the

motion decreases with increasing reduced frequency. We also note that when (typically plunging)

motions are characterized by a peak-to-peak displacement, A (= 2σc/ω), then the quantity StA is

related to σ by StA = σ
π . Plunging involves oscillations in both the speed and the effective angle of

attack, αe, given by

αe = α+ tan−1

(
σyU sinωt

U

)
= α+ tan−1(σy sinωt), (3.3)

and the variation of αe is bounded by σy.

These unsteady airfoil motions can, in the present case, be reinterpreted as a temporally varying

freestream velocity, representing a uniform stream with an oscillatory gust in the streamwise and

transverse directions. This is because the apparent buoyancy force, ρu̇Vb, where Vb is the volume of

the body, is negligible for a thin airfoil in air for the range of reduced frequencies considered here.

To measure the resulting time-periodic forces on the plate, it was sufficient to compute about 10

periods of oscillation to eliminate the transient part of the time history, and the data reported below

were collected after this time. When the oscillation frequency was close to the wake instability, we
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needed more than 80 cycles to capture the low (beating) spectrum of the flow, however, in most

cases, 20 periods were long enough to capture the response spectrum.

The reduced frequency is varied from zero to almost twice the value of the natural vortex shedding

frequency (which was computed for steady motion of the plate independently) and amplitude, σx

and σy, up to 80% (high-amplitude motions are described in more detailed in chapter 4) of the mean

velocity, U , respectively.

Before examining the surging and plunging cases, it is informative to document the natural flow

over the range of Re and α considered. The Reynolds number, Re = Uc/ν, is defined based on the

mean streamwise velocity, U , the chord length, c, and the kinematic viscosity, ν. At each α, there

is a critical Reynolds number, Recrit, below which a steady, separated flow is obtained. At Recrit,

there is a supercritical Hopf bifurcation (Sreenivasan et al., 1987) resulting in an oscillatory wake

and at sufficiently high Re, vortex shedding. Hopf bifurcation at Recrit is shown in figure 3.1 for

α = 15◦.

Both Recrit and the initial instability frequency kvs are plotted versus α in figure 3.2. Most

of the variation in Recrit and kvs can be understood as resulting from the varying projected area

of the plate in the direction of flow, i.e. bluff body scaling (Fage & Johansen, 1927). Rep,crit

and, particularly, kp,crit, both defined using the projected chord length, c sinα, are more nearly

constant with α. The nearly constant value of kp,crit corresponds to a Strouhal number of 0.13, and

according to Huang & Lin (1995), this value increases up to 0.2 at higher Re. The supercritical flows

considered in this chapter fall into the category of laminar vortex shedding in Huang & Lin (1995),

where boundary layers are separated from the upper surface without any shear-layer instability or

turbulence. For reference below, the oscillatory flows we consider in the following sections have α =

5◦, 15◦ and 20◦, where the critical Reynolds numbers are Recrit = 1519, 254 and 164, respectively.

We understand that even for an infinite aspect-ratio wing, the two-dimensional flow assumption

is not adequate to describe the transition of the wake that would occur at some of the super-critical

values of Re we consider. However, a complete description of the bifurcations to three-dimensional

flow in this geometry, especially in unsteady flow, is lacking and, despite the simplifications, the
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qualitative agreement between our results and experiments at much higher Re (section §3.2.2) leads

us to believe that the mechanisms are the same.

3.2 Surging

Since most of the past work related to unsteady airfoil motions was focused on plunging (Jones

et al., 1996; Lewin & Haj-Hariri, 2003; Young & Lai, 2007; Andro & Jacquin, 2009; Cleaver et al.,

2011, 2012, 2013; Calderon et al., 2013), surging is first considered in greater detail.

3.2.1 Vortex lock-in and time-averaged lift

Here we consider α = 15◦ and Re = 300 > Recrit, and investigate lock-in regions with σx as the

bifurcation parameter. Previous researchers characterized the flow as locked-in when the natural

wake instability synchronized its frequency to the forcing frequency (Karniadakis & Triantafyllou,

1989; Young & Lai, 2007). We thus define vortex lock-in when the dominant peaks in the lift

spectrum only occur at harmonic frequencies of the motion. Representative phase-space plots (CL(t)

versus U(t)), and frequency spectra of CL are shown in figure 3.3. Trajectories in the lift-velocity

phase space collapse to a single curve for the lock-in cases (left and right) with dominant peaks

occurring at the harmonic frequencies of the motion. However, for the quasi-periodic case (center),

there is a phase shift with multiple peaks appearing in the lift spectrum that correspond to the sum

and difference of the natural wake instability, kvs, and the oscillating motion.

Lock-in regions are shown over a continuous range of reduced frequencies in figure 3.4 for relatively

low velocity amplitudes, 0 < σx < 0.1. We observe two independent branches at k/kvs = 1/2 and

k/kvs = 1. The lock-in regions grow with increasing surging amplitude, representing a V-shaped

region that is known as the Arnold tongue or the resonance horn for parametric oscillators (Boyland,

1986). A clear correlation between the lift increment region of L̄/L0 > 1 (L̄ is the averaged lift for

the surging airfoil, and L0 the mean lift for the base flow) and lock-in state of the flow reveals that

the time-averaged lift increases when the flow is locked-in. This type of resonance has also been

previously investigated by Munday & Taira (2013) for a 2D circular cylinder with actuators on the
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Figure 3.3: Representative cases with (left and right) and without (center) lock-in. Surging ampli-
tude is σx = 0.05 and the phase plot of lift coefficient and x-velocity are shown with the frequency
spectra for 50 periods of surging frequency, k. Flat plate, Re = 300, α = 15◦ and kvs = 1.62.

rear part of the body, and only one tongue near k/kvs = 1 appeared compared to two for a flat

plate. Drag forces are also excited at these lock-in regions; it is primarily the force normal to the

flat plate that is enhanced during lock-in.

With increasing σx, the time-averaged peak occurs at a frequency near k = 1, which is far from

the natural shedding frequency, kvs = 1.62 (figure 3.5). For high-amplitude motions (σx > 0.2),

specific flow structures and behavior of mean lift will be described in chapter 4.

3.2.2 The leading-edge vortex and fluctuating lift

The fluctuating lift is now examined via a Fourier transform of the lift, from which the amplitude and

phase are evaluated at each surging frequency. Following the unsteady potential model (Greenberg,

1947) we consider the quantity |L̂k|/(L0σx), where L̂k is the Fourier component of the fluctuating

lift at the corresponding surging frequency, k, and where we normalize, in our case, by the base flow

mean lift, L0. Figure 3.6 shows that at Re = 300 and α = 15◦, the normalized lift fluctuation is
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nearly independent of velocity fluctuation amplitude for σx ≤ 0.2; the same is true for other values

of Re and α considered here. Figure 3.7 shows the lift fluctuations and their phase as a function of

k for a range of angles of attack, and includes data from companion experiments at a higher Re of

57,000 conducted in an unsteady wind tunnel at the Illinois Institute of Technology (Granlund et al.,

2014). Also plotted are the theoretical (potential flow) results; note that when scaled this way, the

theoretical fluctuating lift normalized by L0 and σx is independent of angle-of-attack (equation 1.2).

Numerical and experimental results follow the general trend of the potential flow result when

the flow is attached (at α = 5◦). At higher α, where the flow is separated, unsteady flow structures

drastically alter this behavior (at α = 15◦ and 20◦). As α is increased, two frequency bands

emerge where the fluctuations are amplified and attenuated, respectively. For example, at α = 15◦,

Re = 500, the fluctuating magnitude of lift at k = 0.6 is more than twice the amplitude at k = 0

(the quasi-steady limit value) and at k = 1.2, it is less than half. In the simulations, these trends are

more pronounced with increasing Re. Near kvs, a second maximum in fluctuations occurs which is

related to the aforementioned lock-in phenomena. However, it is important to note that, by contrast,

the k values where the first amplification and attenuation of fluctuations occur do not shift with the

shifting vortex shedding frequency associated with the differing Reynolds numbers (see the vertical
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lines on the plot). This suggests that these regimes are not associated with the wake instability, a

conclusion that is further supported by the fact that for α = 15◦ and 20◦, the amplification and

attenuation behavior occurs at both sub- and super-critical values of Re.

The amplification and attenuation regimes are related to the formation and convection of an LEV,

and now we examine the corresponding flow structures. Flow visualizations at the amplification (k =

0.7) and attenuation (k = 1.2) frequencies examined at Re = 500 (simulations) and Re = 57, 000

(experiments) are shown in figure 3.8 for α = 20◦. Streaklines from the simulations are compared

to the smoke-wire images from the experiments at two phases of oscillation velocity, namely the

maximum, umax = U(1 + σx) and the minimum, umin = U(1 − σx). For the frequencies where

the fluctuations are amplified (k = 0.7), the lift enhancement attributed to the LEV occurs at the

advancing portion of the cycle. A strong LEV is formed above the airfoil at umax, and the low

pressure regions induced by the LEV enhances the lift higher than the quasi-steady case. At umin,

on the other hand, the shear layer is deflected from the airfoil and the lift is reduced with the

larger separation region. The LEV forms a dipole with the TEV, and because of the positioning

and orientation of these two vortices their induced velocity is directed upstream, broadening the

separated region (Calderon et al., 2013). In this case, the incremental lift from the LEV is occurring

in phase with the maximum quasi-static lift, and lift reduction due to flow separation is occurring

at the minimum velocity. The lift fluctuations are thus amplified.

At k = 1.2, the situation is different. The LEV is still inducing low pressure regions above the

airfoil; however, over the advancing portion of the cycle, the phase of its growth is delayed and at

umax, the LEV has grown only to half the length of the chord. The LEV achieves its full extent at a

later phase of the motion and is shed during the retreating portion of the oscillation cycle. However,

as this shed vortex advects, it remains close to the airfoil, compared to the amplification case, and

also produces a positive lift during the retreating portion of the cycle. Since the incremental lift

by LEV occurs at a later phase of the motion, and the shed LEV offsets the negative quasi-steady

component of lift, the fluctuations are suppressed. Despite the vast difference in Re, the behavior is

qualitatively similar in experiment and simulation.
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Figure 3.7: Amplitude (left) and phase (right) of the fluctuating lift at various Re and α. Simulation
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Figure 3.8: Snapshots of flow field at Re = 500 (left, simulation) and Re = 57, 000 (right, experimen-
tal) for α = 20◦ and σx = 0.1. Top and bottom rows correspond to the flow field at the maximum
u = U(1 + σx) and minimum u = U(1 − σx) velocity, respectively. Reduced frequencies are chosen
to reveal flow fields when the fluctuations are amplified (k = 0.7) and attenuated (k = 1.2). For the
simulations, streaklines are depicted on top of the color contours of vorticity, ωc/U ∈ [−10, 10].

The increasing amplification and attenuation of the fluctuating forces with increasing Re appears

to be related to an increased circulation of the LEV. At least for the low Re considered in the

simulations, the LEV structure becomes more distinct from the broad separated region, and the

incremental lift by the LEV increases with increasing Re. Figure 3.9 and figure 3.10 demonstrates the

changing vortical structure as a function of Re for both the amplification and attenuation frequency

at α = 15◦. The fluctuating feature described above becomes more prominent as increasing Re,

reinforcing the amplification / attenuation behaviors. We interpret the trend with Re as suggesting

that at higher Re, Re > 500, viscous effects are becoming increasingly independent of Re. However,

as we have mentioned before, two-dimensional simulations at higher Re are unrealistic due to three-

dimensional instabilities, and a firm conclusion must await future three-dimensional simulations and

experiments in the intermediate range of Re.

The added mass of the oscillating airfoil also contributes to the fluctuation lift. However, for the

range of reduced frequencies considered, the contribution is not large enough to change the overall

behavior of the fluctuating amplitude. In potential flow, the added mass lift of a surging flat plate

normalized by L0 and σx, is close to k
2 (Greenberg, 1947), and the amplitude linearly increases with

the reduced frequency (equation 1.2 as k →∞). Thus, at higher frequency regimes, the fluctuations

are dominated by the added mass, and the curves in figure 3.7 asymptotically reach the slope of

k = 1
2 with the phase of lift leading velocity by 90◦. For the reduced frequencies considered in this
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Figure 3.9: Vorticity contours and velocity vectors at various Reynolds number. Left and right
columns shows the flow field at the maximum u = U(1 + σx), and minimum u = U(1− σx) velocity,
respectively. α = 15◦, σx = 0.2 and k = 0.5.
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Figure 3.10: Same as figure 3.9 but at k = 1.26.
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study, the fluctuations caused by the circulatory forces are much larger than the added mass, and

the amplification / attenuation of the fluctuating forces can be solely described by the generation of

LEV acting in- or out-of-phase with the oscillations.

For extremely low k values, the normalized amplitudes asymptotically reach a value of 2 (equa-

tion 1.2 as k → 0) for all cases, and the phase difference between lift and velocity disappears. In this

low frequency regime, all dynamical effects are negligible, and lift is determined by the quasi-steady

circulatory lift. This behavior was also discussed in Andro & Jacquin (2009).

3.2.3 LEV growth and detachment

In this section, we quantify growth and detachment of LEV by applying vortex identification methods

and tracking the reattachment point along the upper surface of the airfoil. Figure 3.11 plots the

circulation and phase of the LEV at the moment it is shed. Circulation, Γ/(Uc), was measured

based on the the vortex identification method proposed by Graftieaux et al. (2001), which captures

the coherent swirling pattern in the velocity field. A vortex is defined as a region where |Γ2| is larger

than 2/π (where rotation dominates shear) and we state the occurrence of LEV detachment as the

time when the level set of |Γ2| = 2/π separates into two closed contours near the leading-edge. Γ2

at a point P is defined as,

Γ2(P ) =
1

S

∫

M∈S

[
PM× (UM − ŪP )

]
· z

||PM|| · ||UM − ŪP )||
dS, (3.4)

where S is the area around P and ŪP = (1/S)
∫
S
UdS. M lies in S and PM , UM are the radius

vector from P to M, and the velocity vector at M , respectively. Measured circulations in figure 3.11

also represent the maximal circulation of the LEV; its strength continuously decreases as it convects

downstream after shedding. The vortex strength measurement and its phase of detachment are

consistent with what Baik et al. (2012) have observed experimentally over the range of Re = 5, 000 ∼

20, 000 with their plunging and pitching airfoil. The size and strength of the forming LEV decreases

with increased reduced frequency, and it also separates later during the phase of velocity. The
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Figure 3.11: Strength of maximum shed LEV and its occurring phase. Snapshots reveal the strength
and size decreasing with increasing k. Flat plate, α = 15◦, Re = 300 and σx = 0.2. ωc/U ∈ [−10, 10].

flow topology is mostly determined by the reduced frequency, k, but to a lesser degree on Strouhal

number, StA = σx/π. This implies that the reduced frequency, which is the ratio of convective time

scale to the surging period, determines the characteristic time for the LEV to develop and separate.

The growth of the LEV before separation can also be investigated by the location of the reattach-

ment point reaching the trailing edge. Rival et al. (2013) defined the occurrence of LEV detachment

as the instant where the rear stagnation point arrives at the trailing edge, since after its arrival,

trailing-edge vortices are rapidly fed to cut off the LEV and limit its growth. Figure 3.12 plots the

stagnation points at the upper surface of the airfoil for k = 0.25, 0.5, 0.78, and 1.26 at α = 15◦.

Vorticity values are measured at the upper surface, and the reattachment point is assumed to occur

at the position where the vorticity changes from positive to negative (Rival et al., 2013). Although

this is not a rigorous definition of a reattachment point for the unsteady flow, the reattachment point

is evolving slowly enough such that the stagnation points evaluated by the instantaneous vorticity

field can provide useful information about the regions where the flow converges or diverges. An

examination of the flow fields reveals that at about k = 0.5, the flow reattaches to the surface (there

is no reattachment point for k = 0.25), and forms a laminar separation bubble that remains for a

certain portion of the cycle. This bubble grows until the reattachment point reaches the trailing

edge, and the growth of LEV and its detachment coincide with its arrival to the trailing-edge. In

figure 3.12, the rear stagnation point can be traced by the white line in the contour plot during the

advance portion of the cycle, 0 < t/T < 0.5. The reattachment point has reached the trailing-edge
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at t/T = 0.25 for k = 0.5. However, for k = 1.26 LEV extends its length to only half of the chord

length. After the arrival of reattachment point, the LEV detaches, and this event is just encountered

at k = 0.5, while, on the other hand, for k = 0.78 and 1.26, this is delayed until t/T = 0.3 and 0.5.

3.3 Plunging

We now compare the aerodynamic forces for plunging and surging oscillations, and show that they are

qualitatively similar. Quantitatively, for the same unsteady velocity amplitude, σx = σy, plunging

generally produces a higher fluctuating amplitude of lift than surging, which seems natural as it has a

larger added mass lift and the effective angle of attack now also changes with the oscillating velocity.

For plunging, lock-in still occurs near the vortex shedding frequency and its sub harmonic, and

there is an increment of the time-averaged forces within these regions. Fluctuating forces moreover

show the same amplification and attenuation regimes depending on the LEV acting constructively

or destructively with the phase of velocity.

3.3.1 Time-averaged lift

For plunging motions, unsteady flows with wake instability can also lock-in to the harmonic compo-

nents of the oscillating motion when the reduced frequency of plunging is close to the vortex shedding

frequency, kvs, or to its half, kvs/2. These phenomena have been described above for the surging

case, and previous studies (Young & Lai, 2007; Calderon et al., 2013; Cleaver et al., 2011, 2013)

have investigated the time-averaged lift and lock-in regions for plunging at a higher Re. Lock-in

leads to local maximum lift coefficients near the wake instability and its sub- or super-harmonics.

Figure 3.13 compares the time-averaged lift and lock-in regions for plunging at Re = 300. We look

at phase plots and frequency spectra of lift, and define lock-in as it was discussed for the surging

case above.

In figure 3.13, there is an increment of the time-averaged lift when the wake instability locks on to

the frequencies regarding the motion. Lock-in regions that originate from kvs/2 and kvs, respectively,

widen with increasing σy and merge at a value near σy = 0.035 for plunging. Comparing lock-in
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Figure 3.12: Streamlines (dashed lines), streaklines (solid lines), and stagnation points (diamond
symbols) on the upper surface are plotted on top of vorticity contours at the maximum velocity,
u = U(1 + σx), for k = 0.25, 0.5, 0.78, and 1.26. For each case, vorticity values on the upper surface
during the advancing portion of the motion are plotted on the right. Flat plate, Re = 300, α = 15◦,
and σx = 0.2. ωc/U ∈ [−10, 10]. Flat plate is rotated 15◦ to align its chord with the x-axis.
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Figure 3.13: Lock-in regions (left) and mean lift force (right) for Re = 300 and α = 15◦. L0 is the
mean lift for σy = 0.

regions with surging (figure 3.4), the width grows much faster for the plunging case. The resonance

regions near the natural vortex shedding frequency and its sub-harmonic seem to persist over large

range of Re. For example, they have been observed at Re = 10, 000 by Cleaver et al. (2011, 2013).

The time-averaged lift for plunging at higher amplitudes is investigated and shown in figure 3.14.

A peak occurs at a frequency near k = 1.38, and as with surging, this peak is not related to the

natural wake instability, but rather to the optimal phase of the LEV convecting along the upper

surface during the upward motion (known as the ‘wake capture’ phenomenon). This phenomenon

has been observed and widely addressed in previous literatures (Andro & Jacquin, 2009; Calderon

et al., 2013; Cleaver et al., 2011, 2013).

3.3.2 Fluctuating lift

For surging, the amplification or attenuation were results of LEV acting on different phase of ve-

locity, which became more pronounced with increasing Re. These phenomena also apply to the

plunging case, and it is presented in figure 3.15. L̂k is the Fourier component of the fluctuating

lift at the corresponding frequency of the motion, k, and the vertical lines indicate vortex shedding

frequencies, kvs, for the supercritical flows at σy = 0. For both surging and plunging, amplitudes

are amplified and attenuated near the same frequency regime; however, for plunging, it has a much

larger fluctuating amplitude than the surging case. The LEV is formed when the airfoil is moving
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Figure 3.14: Time-averaged lift for 0.1 < σy < 0.8. Vertical line indicates the vortex shedding
frequency of steady flow (σy = 0). Flat plate, α = 15◦, Re = 300.

downwards, and separation occurs at a later phase of the cycle with increasing k.

At k = 0.6, the low pressure region produced by LEV enhances lift during the advancing (down-

ward) portion of the cycle, and lift at the maximum velocity is much higher than the quasi-steady

case. During the retreating (upward) motion, on the other hand, the flow is encountered with a large

separation region that reduces lift, and the fluctuations are amplified. For k = 1.2, where the fluctu-

ations are attenuated, LEV induces low pressure regions above the airfoil for a longer portion of the

cycle and stays close to the airfoil after it sheds. Since the shed LEV produces positive lift during

the retreating (upward) portion of the oscillation, it offsets the negative quasi-steady component

of lift and suppresses the fluctuations. At k values near kvs, a local maximum in fluctuations can

also be observed for Re = 400 and Re = 500, where we expect resonance with the wake instability

(lock-in).

Finally, in figure 3.16, fluctuating amplitudes of lift are presented with the variation of σy.

Amplification and attenuation behaviors of the fluctuating lift, that were presented at low amplitude

motions, are no longer obtained at high amplitude motions, however, are preserved for a certain

degree of amplitudes. L̂k, increases almost linearly until σy = 0.2 (for surging refer to figure 3.6),

preserving the low-amplitude flow structures that are associated with the phase of LEV development

at various reduced frequency. For σy above these values, strong interactions between the vortices and
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Figure 3.15: Fluctuating amplitude of lift at various reduced frequencies, k. Flat plate, α = 15◦ and
σy = 0.05.

the body alters the topological structure of the flow that should be associated with high-amplitude

motions.

3.4 Summary

In this chapter, we have investigated the unsteady aerodynamic forces and flow structures associated

with harmonic oscillations superposed in the streamwise and transverse direction on a steady flow.

Flows were limit to low Reynolds number near Recrit, where the baseline flow first displayed wake

instability, and the angle of the airfoil was sufficiently high so that the flows were fully separated.

As the reduced frequency was varied, a number of interesting features that involved vortex lock-in

and synchronization of the LEV with the oscillatory motion occurred.

For surging motions with relatively low amplitude, the wake instability with vortex shedding

locked-in to the harmonic motion of the airfoil when the reduced frequencies were close to the vortex

shedding frequency or its subharmonic. These lock-in regions, occurred within a continuous range

of reduced frequencies and widened with increasing amplitude, σx, consistent with the resonance

regions of a generic nonlinear oscillating known as the Arnold’s tongue or resonance horn. Also,

there existed a correlation with the time-averaged forces and lock-in regions, due to enhanced force



53

k0 0.5 1 1.5 2 2.5

|L̂
k
|/
(L

0
σ
y
)

0

5

10

15

σy = 0.05
σy = 0.1
σy = 0.2
σy = 0.4
σy = 0.8

Figure 3.16: Fluctuating amplitude of lift (plunging). Aerodynamic response is nearly linear for
σy = 0.2. Vertical lines indicate the vortex shedding frequency of steady flow (σy = 0). Flat plate,
α = 15◦, Re = 300.

in the direction normal to the flat plate. For higher velocity amplitudes, 0.1 < σx < 0.8, the time-

averaged peak occurred at a frequency that is not related to the natural wake instability, but rather

to the optimal phase of the LEV convecting along the upper surface.

While the time-averaged forces were related to lock-in of vortex shedding, the formation of

the leading-edge vortex (LEV) was found to be accountable for the amplification and attenuation

of the fluctuating forces. There existed frequency regimes near k = 0.6 and k = 1.2 where the

fluctuations were amplified and attenuated, and this behavior did not seem to be fundamentally

related to wake instability, since the associated frequencies showed no significant dependence on

the Reynolds number. Analysis of the flow structure revealed that fluctuating forces amplified

when the incremental force by LEV added in-phase with the quasi-steady component of velocity,

and attenuated when out-of-phase. At the k value associated with amplification, the LEV formed

during the advancing portion of the cycle, extended to its full strength at the maximum velocity,

and separated before the retreating portion of the cycle, whereas at the higher k value associated

with attenuation, LEV developed for a much longer period of the cycle that separated during the

retreating portion of the cycle. After this separation, it remained close to the airfoil and produced

additional lift that cancels out the negative component of quasi-static lift and, therefore, suppressed
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the fluctuations.

The reduced frequency, k, was identified as a parameter that controls the arrival of the reattach-

ment point to the trailing edge, which in turn governs the growth of LEV and also its detachment.

Applying a vortex identification method and tracking the reattachment points on the upper surface,

we have shown that the strength of the LEV diminished and the phase of the detachment delayed

with increasing reduced frequency. For the range of parameters concerned, the structure of the flow

was mostly governed by the reduced frequency, and this parameter, which represents the ratio of

convective time scale to the surging period, was believed to determine the characteristic time for the

LEV to develop. A detailed study of the flow including snapshots of streamlines and vorticity fields

revealed that the arrival of the rear stagnation point is delayed with increasing reduced frequency.

The aerodynamic forces that are associated with plunging motions were shown to produce similar

behavior to the surging case, where lock-in occurred near the vortex shedding frequency and its

sub harmonic, and fluctuations amplified or attenuated depending on the phase of LEV acting

constructively or destructively with the quasi-steady component of the forces. These amplification

/ attenuation frequency regimes coincided with the ones in surging.
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Chapter 4

High-Amplitude Surging Airfoils

In this chapter, we numerically investigate the unsteady aerodynamic forces and the vortical struc-

tures occurring during high-amplitude oscillations of a surging airfoil (σx > 0.2). The emphasis in

this chapter is on the behavior of the mean aerodynamic forces, particularly the lift. The same case

was studied experimentally by Gursul & Ho (1992), who found a significant mean lift enhancement,

compared to a steadily moving airfoil, over a range of reduced frequencies, 0.8 < k < 1.0. They

attributed this peak to a wake capturing phenomenon, where the LEV shed during the advancing

phase of oscillation advects with (stays near) the airfoil during the retreating phase of the cycle.

Here we investigate the mechanisms of lift enhancement by using techniques to identify, track, and

measure the strength of any LEV that is formed during the oscillating motion, and describe the

mechanism that leads to the peak frequency in a different aspect.

4.1 Problem description

As with in chapter 3, we implement the immersed boundary fractional-step method with the geom-

etry of the airfoil as a flat plate. Aerodynamic forces of fully separated flows are less sensitive to the

shape of the airfoil, and we compare the results of a flat plate to NACA 0012 used in Gursul & Ho

(1992). The angle of attack of the airfoil is α = 20◦, and the Reynolds number is set to Re = 1000.

There is an order of magnitude difference in the Reynolds number between our simulations and the

experiments at Re = 50, 000 (Gursul & Ho, 1992); however, flow fields and aerodynamic forces in

the range of Re = 103 − 104 were found to be less affected by the change of the Reynolds number
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(Ol et al., 2009; Eldredge et al., 2009; Lian & Ol, 2010).

The streamwise velocity of the body is specified as in equation 3.1, and most of the simulation

setup, except for the grid resolution, is identical to cases in chapter 3. For this particular problem,

convergence tests were performed on a grid resolution up to 720×480, and it was found that 600×400

(201 points per chord length) was sufficient.

To identify and measure the vortices that occur during the motion, we apply the Γ2 criterion

(Graftieaux et al., 2001), which was also used in chapter 3. LEV circulation is measured by inte-

grating the vorticity contained within a contour level of |Γ2| = 2/π.

As the source of vorticity contained in the LEV originates from the leading-edge separation,

the total (clockwise negative sign) vorticity generated at the leading-edge during a period is also

measured. Considering a small control volume that surrounds the leading edge, the net vorticity

generated during a period of the motion can be evaluated by integrating the flux that passes through

the control surface. The total circulation per cycle can be computed as:

Γ =
∫ T

0

∮
ω (uuu− uuub) ·nnnds dt, (4.1)

where ω is the measured vorticity on the control surface. The inner integration represents the

flux of vorticity, where the relative velocity respect to the body, uuu− uuub, is projected to the normal

direction of the control surface. The total circulation, Γ, can be considered as a sum of Γ+ and Γ−,

where Γ+ only selects the positive value of vorticity on the control surface, and Γ−, the negative

vorticity. Figure 4.1 presents the geometry of the control volume and vorticity flux on the control

surface. The magnitude of Γ− is expected to be inversely proportional to the reduced frequency

as the period of the motion decreases with increasing frequency. In the following sections, as the

amount of vorticity transported through the leading-edge shear layer is of particular interest, we use

the term ‘total circulation’ interchangeably with Γ−.
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Figure 4.1: The square box near the leading edge is enlarged to show control volume geometry
(region inside the dotted line) and vorticity flux of ω < 0 through the control surface. Flat plate,
α = 20◦, k = 0.5, σ = 0.4 at Re = 1000.

4.2 Features of non-oscillatory flows at different Re (σx = 0)

As the variation in the Reynolds number associated with high-amplitude motion is large, we in-

vestigate the non-oscillatory flows over a wide range of Re. Based on results from chapter 3, the

critical Reynolds number, Recrit, where a supercritical Hopf bifurcation occurs (Sreenivasan et al.,

1987), is Recrit = 164 for α = 20◦ (figure 3.2). Considering non-oscillatory flows of Re > Recrit,

figure 4.2 plots the magnitude of the discrete Fourier transform of the fluctuating lift coefficient

for 0 < Re < 2000. The frequency of the wake instability that corresponds to a Strouhal number

(scaled with the projected chord length c sinα) of 0.13 at Recrit increases up to 0.2 at higher Re.

The frequency of the wake instability remains nearly constant for 400 < Re < 1400, being consistent

with the results of Fage & Johansen (1927).

Above Re = 800, a subharmonic frequency of the wake instability is also excited near k = 1. In

this regime, the flow is very sensitive to changes in Re, and further increasing Re leads to a chaotic

flow through the route known as periodic-doubling cascade. Pulliam & Vastano (1990) observed the

same behavior, computationally, on a 2D NACA 0012 airfoil at α = 20◦, having the same cascade

region of 800 < Re < 1600. They reported that the subharmonic frequency above Re = 800 is

primarily caused by the irregular intensity of the shed vortices. Time series of lift at representative

Re of 100, 500, and 1000 are shown in figure 4.3. For Re = 1000, the wavelength associated with
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Transform of the fluctuating lift coefficient. The red dashed line corresponds to a frequency of
Stvs = fc sinα/U = 0.2.

the subharmonic frequency of the wake instability is clearly visible in the difference of the peak

magnitudes.

In figure 4.4, the mean lift and drag coefficients of uniform flows are also examined over the

range of 0 < Re < 1700. At very low Re, the drag coefficient is asymptotically proportional to the

inverse of the Reynolds number, and above Recrit, the drag coefficient stays nearly constant for a

wide range of Re. C̄L has a minimum value at Recrit, and increases nearly monotonically with Re.

The small oscillations evident at the highest Re are associated with a lack of convergence of the

mean over the time series of the simulation, which is in turn related to sensitivity of the chaotic flow

regime to the exact averaging period.
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(E) from Gursul & Ho (1992), Re = 5× 104. Dashed line corresponds to the frequency of maximum
lift of experiment results (at k = 0.8). The time-averaged lift coefficient of uniform flow at Re = 1000
is C̄L0 = 1.15.

4.3 Forces and flow fields

Figure 4.5 plots the time averaged lift coefficient, C̄L = 0.5L̄/ρU2c, as a function of the reduced

frequency, k, for a range of amplitudes, and includes data from experiments at Re = 5×104 (Gursul

& Ho, 1992). Despite the significant difference in Reynolds number, the trends are similar and the

peak of mean lift occurs at a frequency near k = 0.8. The maximum C̄L of σ = 0.7 (at k = 0.9)

is almost three times larger than the baseline lift coefficient (C̄L0 = 1.15) corresponding to non-

oscillatory flow. Mean drag has the same behavior as the mean lift, i.e., it is the normal force that

is enhanced at the peak.

Flow visualizations near the peak frequency, at k = 0.75 (simulations) and k = 0.7 (experiments),

are shown at Re = 1000 and Re = 50, 000, respectively, in figure 4.6 for σx = 0.7. Instantaneous

streamlines and vorticity fields from the simulations are compared to instantaneous streamlines as

approximated by the time-lapse motion of air bubbles from the experiments at four different phases

of oscillation velocity. The maximum velocity, umax = U(1 + σx), occurs at t/T = 0.25, and the
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Figure 4.6: Snapshots of flow fields at Re = 1000 (top, simulation) and Re = 50, 000 (bottom,
experimental) for σx = 0.7. The reduced frequencies for the simulation and experiment are k = 0.75
and k = 0.7, respectively. The maximum velocity, umax = U(1 + σx), occurs at t/T = 0.25 and
the minimum velocity, umin = U(1 − σx), at t/T = 0.75. Vorticity contours and streamlines are
compared to experimental flow visualizations (Gursul & Ho, 1992). ωc/U ∈ [−20, 20].

minimum, umin = U(1− σx), at t/T = 0.75.

At the beginning of the advancing phase (t/T = 0), the vortices generated during the previous

period are located far from the airfoil. The leading edge shear layer rolls up during the early phase

of the advancing portion, and the vortical structure is similar to the flow of an impulsive starting

airfoil (see, for example, Chen et al. (2010)). Without any interaction or disturbance from previous

shed vortices or shear layers, the airfoil grows a strong LEV for a significant portion of the period

(0 < t/T < 0.5).

During the retreating period (0.5 < t/T < 1), this shed LEV stays near the airfoil and induces

a low pressure region that is favorable for lift. Gursul & Ho (1992) hypothesized that the peak in

the time-averaged lift is primarily associated with the wake capturing during the retreating portion

of the period, and for the remaining sections, we make an effort to understand the mechanisms that

lead to this result.

4.4 Mechanism of mean lift enhancement

The time-averaged peak, which occurs within the frequency range of 0.8 < k < 1.0, has no obvious

relation to the frequency of the natural wake instability. Figure 4.2 shows that over the range of
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Reynolds numbers experienced during surging, the natural flow has kvs ≈ 1.8. No corresponding

peak is evident in the mean lift of figure 4.5. Resonance of the natural wake instability increased

the time-averaged lift for small-amplitude (σx < 0.2) cases (chapter 3); however, for high-amplitude

motions, the flow experiences a large variation in the effective Reynolds number during an oscillation

period, and considering the complexity of the spectrum of the non-oscillating flow in this range of

Reynolds numbers, it appears that the flow cannot lock-in to a single frequency as it did in the lower

Re cases considered in chapter 3. Although the subharmonic frequency of the wake is excited at

k ≈ 0.9 (figure 4.2), fluctuations associated with this frequency are small compared to the harmonic

frequency.

Figure 4.7 shows the time history of CL over two oscillation periods of the motion for σx = 0.4

at Re = 1000. The plot focusses on the range of 0.25 < k < 0.75 where the mean lift increases

monotonically with k. Corresponding flow fields of figure 4.7 are shown in figure 4.8 at four different

phases of the motion of t/T = 0, 0.25, 0.5, and 1. For k = 0.38, snapshots at t/T = 1, 1.25, 1.5,

and 2 are additionally shown, as the flow at this oscillation frequency shows a sub-harmonic response

(i.e. it is periodic over every two cycles of streamwise oscillation).

For the lowest frequency of k = 0.25, the changes in velocity are gradual compared to the vortex

dynamics, and the acceleration associated with the motion is apparently not high enough to cause

the shear layer to roll-up during the advancing phase of the period. The shear layer rather convects

downstream until it reaches the trailing edge and interacts with the TEV exhibiting features that

are similar to the non-oscillatory flow at σx = 0. Increasing the frequency to k = 0.38, there exists

a large increment of lift associated with the LEV, but only occurring at every two periods of the

motion. Flow fields at 1 < t/T < 2 show similar wake structures to the case of k = 0.25, but, at

0 < t/T < 1, the shear layer rolls up and develops a strong LEV at the early phase of the advancing

motion, during every other period. Increasing the frequency further to k = 0.63, a strong LEV is

formed at every period of the oscillations. Note that the maximum lift of CL = 4 is nearly the same

for 0.38 < k < 0.75, but the peak covers a much wider portion of the period with increasing k.

Finally at k = 0.75, the lift during the retreating portion of the cycle is significantly increased,
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leading to an increase in the time-averaged lift. It is similar to what was observed in the low

amplitude surging of chapter 3, and corresponds to the ‘attenuation’ regime of fluctuating lift, since

the lift enhancement occurs out-of-phase with the surging. The airfoil continuously interacts with

the LEV at this frequency, first growing a large vortex at the advancing phase of the motion, and

keeping it close after it is shed during the retreating phase. As the incremental lift of LEV covers a

wide portion of the period and wake capturing occurs during the retreating phase, there is a peak

in the time-averaged lift.

Figure 4.9 shows series of snapshots of the growing LEV at k = 0.38, 0.63 and 0.75. The LEV

grows for a much longer portion of the period as the reduced frequency becomes close to the peak

of mean lift.

As the portion of the lift attributable to the LEV increases with k, there seems to be an inherent

time scale related to the formation and detachment of the LEV that is not affected by the reduced

frequency. Gharib et al. (1998) measured the strength of a vortex ring and concluded that the

maximum circulation is reached when the formation time is close to 4. In his study, the formation

time was defined as T ∗ = L/D, where L is the distance traveled by the piston, and D the diameter

of the nozzle. Various studies were able to generalize this phenomenon to unsteady motion of bluff

bodies (Milano & Gharib, 2005; Dabiri & Gharib, 2005; Dabiri, 2009; Chen et al., 2010), and we apply

this concept to our surging airfoil. Following Milano & Gharib (2005), a dynamic, non-dimensional

formation time is defined as,

Tdf (t) =

∫ t

to

U

c
(1 + σx sin (2kτU/c)) dτ, (4.2)

where we have replaced the projected chord length, c sinα with the chord itself, as we find that

the chord length better describes vortex formation in this flow field. Topologically, the LEV detaches

when the rear stagnation point reaches the trailing edge, and the growth of the LEV is limited by the

chord length (Rival et al., 2013). In equation 4.2, t0 is arbitrary, as we are considering the (periodic)

steady-state after a certain amount of time has passed. The function Tdf (t) is shown schematically
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Figure 4.7: Time history of lift coefficient, CL, for 2 oscillating periods of the motion. Increasing
sequence of reduced frequency from k = 0.25 to k = 0.75. u′ is the fluctuating velocity of the airfoil’s
motion. α = 20◦, Re = 1000, and σx = 0.4.
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Figure 4.8: Corresponding flow field of figure 4.7. ωc/U ∈ [−20, 20].
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(a) k=0.38 (b) k=0.63 (c) k=0.75

Figure 4.9: LEV formations during the advancing period. α = 20◦, Re = 1000 and σx = 0.4.
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Figure 4.10: The dynamic formation time, Tdf , at various σx. The dynamic formation time is
measured from the start of the advancing phase, i.e., t0 = 0.

for a period in figure 4.10 for various amplitudes of the motion. To determine the formation time

of the LEV, there are several different possibilities to consider depending on the values of k and

σx. For sufficiently large k and σx, we expect a LEV to be shed once per period. Moreover, the

shedding can be initiated by the retreating phase of the motion rather than the LEV having reached

its maximum circulation. That is, we evaluate T ∗ = Tdf (t0 + T ) = π/k. This limit is depicted

in figure 4.11. For values of k less than a critical value, k∗, the LEV will reach its critical value

and shed before the oscillation cycle is complete. In this case, it is unclear how to choose t0 and

t in the dynamic formation time since there can be a phase shift between the time at which the

nascent LEV is forming and the (arbitrary) phase associated with the beginning of the advancing

phase of the motion. However, having measured the strength of the LEV based on the Γ2 criterion

(equation 3.4), we can take t0 and t as the respective times at which the minimum and maximum

circulation are measured.

Figure 4.11 plots the resulting LEV formation time, T ∗ as a function of k. As expected, the

LEV formation time reaches a plateau for the lower values of k and is bounded by the period of
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Figure 4.11: LEV formation time, T ∗, is measured at various reduced frequencies (blue circle line).
The formation time evaluated using the period of the motion, π/k, is also shown as the upper bound
(black solid line). Flat plate, α = 20◦ and σ = 0.4 at Re = 1000.

the motion for higher values of k. Based on the values, we find the limiting “universal” formation

number T ∗ ≈ 3.5, which is well within the range of values observed in previous studies of vortex

formation in a variety of different flows (Gharib et al., 1998; Milano & Gharib, 2005; Chen et al.,

2010). In figure 4.11, we have restricted the values of k to k ≥ 0.38, as we find that it becomes more

difficult to identify a distinct minimum and maximum circulation during each period of motion.

For σx = 0.4, when k < 0.38, we observe instead an oscillating shear layer emanating from the

leading edge that does not roll-up into a distinct LEV. We expect this behavior to occur at different

threshold values of k depending on the surging amplitude, but so far we have only analyzed the

σx = 0.4 case in detail.

In figure 4.12, the total amount of (negative sign) vorticity generated at the leading edge during

a period (which is Γ−) is compared with the maximum strength of shed LEV at various reduced

frequencies. For the range of 0.38 < k < 1, as with the LEV formation time, the maximum strength

of shed LEV is also nearly constant, |Γ| ≈ 4.3.

In figure 4.13 and figure 4.14, snapshots of flow fields are shown at different instants in time

for 0.25 < k < 2.01. Time is measured from the start of the advancing motion, and the left and

right arrows indicate the advancing and retreating portion of the period, respectively. The double
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Figure 4.12: Total and max LEV circulation at various reduced frequencies. Flat plate, α = 20◦

and σ = 0.4 at Re = 1000. Circulation is non-dimensionalized as Γ∗ = Γ/Uc. For the range of
0.38 < k < 1, the LEV is grown to its maximum strength and the rest of the total vorticity is
analogous to the vortices in the trailing jet in the vortex ring case (Gharib et al., 1998).

horizontal line denotes T ∗, and the single horizontal line, the end of a period. For k = 0.5, and

0.75, the LEV grows to its maximum strength. For k = 1.26, and 2.01, the period ends before the

formation time, and the LEV is shed before it reaches to its full strength. At k = 1 ≈ k∗, the

formation time just coincides with the period of the motion. At the lowest frequency of k = 0.25,

we observe a separated shear layer that does not rollup into a distinct LEV, as discussed above.

4.5 Square waveform streamwise velocity

The time-averaged lift and vortical structures are also investigated using a square waveform of

streamwise velocity. Unlike sinusoidal waveforms, square waveforms have a large acceleration at the

start of the advancing phase and the initial time, t1, of a growing LEV in equation 4.2 can be set

according to this time. For square waveform velocity, we expect to detect a LEV forming during

the advancing period even for the low frequency oscillations, k < 0.38. The wake structure for

the sinusoidal waveform at k = 0.25 was close to the non-oscillatory flow of σx = 0 (figure 4.13).

Figure 4.15 depicts the profile of a sinusoidal and a square wave of σx = 0.4. The square wave is

smoothed using a cosine function such as,
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(a) k=0.25 (b) k=0.5 (c) k=0.75

Figure 4.13: Flow fields shown as a series of increasing convective time, tU/c, for k = 0.25, k = 0.5,
and k = 0.75. Time is measured from the start of the advancing motion. Left and right pointed
arrows indicate the advancing and retreating portion of the period, respectively. Double horizontal
line is associated with the LEV formation time, which occurs at 3 < T ∗ < 4. Single horizontal line
indicates the end of one period of the motion. α = 20◦, Re = 1000, and σx = 0.4.
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(a) k=1 (b) k=1.26 (c) k=2.01

Figure 4.14: Same as figure 4.13, but at k = 1, 1.25, and 2.01.
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Figure 4.15: Sinusoidal and square waveform of streamwise velocity. σx = 0.4.
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where fp is the frequency associated with the cosine function used to represent the pulse. τ is

the period of the pulse (= 1/fp), and the reduced frequency of this pulse is set to be kp = 12.6.

Figure 4.16 plots the time-averaged lift coefficients using the square wave as the streamwise

velocity. Comparing the results with the sinusoidal case of σx = 0.4, there are two noticeable

changes in the behavior of the mean lift. The mean lift at low reduced frequencies has substantially

increased, while at the peak it has decreased.

The time history of lift of the square wave motion is shown in figure 4.17 over 0.13 < k < 1.51.

Only the advancing portion of the period, 0 < t/T < 0.5, is shown to clearly display the results

that collapse on the same curve. Acceleration is high enough at the start of the advancing period,

and nearly identical flow structures emerge around the airfoil regardless of the reduced frequency.

In figure 4.18 and figure 4.19 snapshots of flow fields over 0.25 ≤ k ≤ 1.51 are shown as a series of
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Figure 4.16: Time-averaged lift coefficient, C̄L. Black solid line shows the result obtained using the
square waveform streamwise velocity.

increasing convective time units, similar to the figure 4.13. The LEV that develops from the early

roll-up of a leading-edge shear layer is evident. As all frequencies benefit from LEV lift enhancement

at every period, the mean lift resulting from a square wave velocity is higher than the sinusoidal

case at low reduce frequencies.

During the retreating portion of the period, the wake capturing phenomenon allowed a further

increase in lift over 0.75 < k < 1 for the sinusoidal waveforms. Examining the corresponding flow

fields of the square wave velocity motion at k = 0.75 and k = 1 in figure 4.19, the abrupt deceleration

generates opposite sign vortices on the upper surface of the airfoil. These vortices accumulate near

the leading edge and form a dipole with the shed LEV. The self-induced velocity of the dipole moves

the vortex pair away from the body, and there is no LEV lift enhancement during the retreating

phase. As the incremental lift of LEV is limited only to the advancing period, the mean lift is

significantly reduced compared to the sinusoidal motions at 0.75 < k < 1.

The formation time measured for the sinusoidal case was T ∗ ≈ 3.14, and from equation 4.2, the

LEV that starts to form at the beginning of the advancing period is expected to grow until t∗ = 2.24

convective time units, which match well with the maximum lift in figure 4.17. The frequency of the

motion associated with this time is k∗ = 0.7, and the mean lift peak of the square waveform occurs
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Figure 4.17: Time history of lift coefficient at various reduced frequencies. Only the advancing
portion of the period, 0 < t/T < 0.5, is shown.

near this value (figure 4.16). We believe the same mechanism is occurring for the square wave as

for the sinusoidal surging. The time-averaged lift increases as a function of k for k < k∗ as the

time scale associated with LEV formation possesses a larger portion of the period, and decreases for

k > k∗ as the strength of LEV diminish with increasing reduced frequency.

4.6 Summary

The time-averaged forces and LEV strength of a two-dimensional flat plate with high-amplitude

streamwise oscillations were investigated to understand the vortical structures that lead to the peak

in the mean lift. Comparison with the experiment (Gursul & Ho, 1992) showed good agreement,

where the peak occurred at a reduced frequency near k = 0.8, regardless of the velocity amplitude.

The peak seemed to be unrelated to the natural wake instability, but rather closely related to the

competing time scales of the airfoils motion and the LEV inherent formation time. From circulation

analysis, the formation time of LEV was determined to be T ∗ ≈ 3.14, where the associated k value

was close to 1. The mean lift peak occurred when the period of the motion was close to the formation

time, as the airfoil continuously formed a LEV during the whole period. Above k = 1, as the period

of the motion becomes shorter than the formation time, the strength of the LEV diminished as the

motion of the airfoil forced the LEV to shed before it has reached its maximum strength.
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(a) k=0.25 (b) k=0.5 (c) k=0.63

Figure 4.18: Same as figure 4.19, but with square waveform of streamwise velocity. Results are
shown at k = 0.25, 0.5, and 0.63.
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(a) k=0.75 (b) k=1 (c) k=1.51

Figure 4.19: Same as figure 4.19, but with square waveform of streamwise velocity. Results are
shown at k = 0.75, 1, and 1.51.
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Results using square waveform as the streamwise velocity showed that when acceleration is high

enough, a LEV is formed even for the low frequency motions, enhancing the mean lift. At the peak

frequency, however, the wake capturing phenomenon was no longer apparent and the time-averaged

lift was substantially decreased. A dipole was formed during the retreating portion of the period

and moved the LEV away from the body.
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Chapter 5

Optimal Control of an Airfoil

In this chapter, unsteady flow control problems are formulated based on the mathematical framework

of chapter 2. Our objective is to maximize the amount of lift on a constantly moving airfoil and also

the vertical force on a reciprocating airfoil by controlling the pitch rate of the airfoil. A detailed

study of the flow structure associated with the optimized motion is investigated and summarized to

understand the mechanism that enhances the aerodynamic forces.

5.1 Test problem

For our test problem, we apply adjoint-based optimal control to determine how the (flat plate) airfoil

should pitch to maximize lift. The plate is moving at a constant velocity, U , and the Reynolds

number (Re = Uc/ν) is set to 500. If the flow were always steady, the optimization should pitch

the plate up to a fixed angle of attack corresponding to the maximum lift (about 45 degrees for this

airfoil and Reynolds number). For unsteady flow, it is unclear a priori what the optimal strategy is.

Grid resolution (100 grid points per chord) is slightly higher than the ones used in chapter 3, with

each of the 5 multiple grid levels having 200 × 200 number of grid points. The domain extends to

32 by 32 chord lengths in the x and y direction. A schematic of the problem is shown in figure 5.1.

At high angles of attack, the center of pressure on a symmetric airfoil is known to move towards the

rear, and we set the rotational axis 0.3 chord length away from the leading-edge, rather than at the

quarter chord. The control is applied after the transient part of the time history is removed.

Before applying control, the static map of the lift and drag coefficients are evaluated at various
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Figure 5.1: Schematic of the test problem. Flat plate moving at a constant velocity, U , with the
rotational axis located 0.3 chord length from the leading-edge. Ω is the angular velocity of the body.
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Figure 5.2: Drag and lift coefficient of uniform flow at various angles of attack. Shaded region shows
the range of values, and the dash line, the average. Flat plate, Re = 500. Aerodynamic forces
measured at every 2◦. Transition from a stable equilibrium to periodic vortex shedding occurs at
10◦.

angles of attack (in figure 5.2) to understand the general behavior of the aerodynamic forces. As

expected, drag coefficient monotonically increases with increasing angle of attack. At an angle near

10◦, the flow undergoes a Hopf bifurcation (refer to the bifurcation diagram of figure 3.2), and the

presence of the wake instability becomes more significant as the angles of the inclined plate increase.

For the lift coefficient, the maximum time-averaged lift occurs at an angle of 45◦. From these

observations of static aerodynamic forces, we run several optimization cases at different angles of

airfoils and examine whether the optimal solution converges near to the angle of 45◦ that produces

the highest lift.
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Figure 5.3: Optimization results of a flat pate at α = 0◦ (black), 15◦ (red), 30◦ (green), and 60◦

(blue). Angle of attack (left) and lift coefficient (right) is plotted as a function of time. Dashed
line indicates the case before control and solid line, after. Optimization leads the airfoil to rotate
towards the angle that maximizes lift, which is near 45◦. Control time horizon, T , is 40 convective
time units.

The cost function we use is defined as,

JF =
1

2

∫ T

0

[
(FL − FL,ref)

2 + QR Ω2
]
dt. (5.1)

FL is the integrated IB forces in the y direction (lift), and FL,ref, the reference lift. Ω is the

angular velocity, which is used as the control variable. It is penalized in the cost function with

the coefficient, QR, to avoid rapid rotations that require a large amount of energy and to aviod

unrealistic control solutions such as constant rotations. The performance of each optimization result

is quantified by the amount of lift enhancement by setting FL,ref to a sufficiently high value.

Figure 5.3 shows time series of the angles and lift coefficients for representative cases at initial

angles of α = 0◦, 15◦, 30◦, and 60◦. The cases before the optimization are the ones at constant α,

with zero angular velocity. Applying adjoint-based control, the optimal waveform of the angular

velocity, Ω(t), is computed and the corresponding angles are shown in figure 5.3. Consistent with

the result shown in figure 5.2, the angle of the airfoil rotates toward a value near 45◦. Resulting

lift coefficients before and after the optimization are also plotted, where the enhancement of lift is

evident.

In table 5.1, we summarize the results (including the ones in figure 5.3) of the case at α =
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Table 5.1: Summary of optimization results. C̄L is the time-averaged lift coefficient after control,

and C̄L0 before. The integrated control cost is defined as
∫ T

0
QRΩ2dt, and reference lift coefficient

normalized as CL,ref = 2FL,ref/ρU
2c. T is the control horizon.

α CL,ref QR C̄L C̄L/C̄L0 Control cost T

0◦ 20 10 1.915 - 1.013 40

15◦ 20 1 1.971 2.289 0.166 40

20◦ 20 1 2.159 2.151 0.134 40

30◦ 20 1 1.986 1.509 0.093 40

45◦ 20 1 1.903 1.006 0.001 40

60◦ 20 1 1.905 1.215 0.009 40

90◦ 20 1 1.807 - 4.006 40

0◦, 15◦, 30◦, 45◦, 60◦, and 90◦. For the particular set of parameters in table 5.1, the 20◦ case reached

the highest mean CL, and since the 45◦ case is already at the optimal angle, only a small increment

of lift was obtained with negligible control cost. For obvious reasons, the control cost tended to

increase when the initial angle of the plate was further from the optimal angle.

Although the results obtained in table 5.1 were for specific values of QR, we believe that for

sufficiently large QR, the converged solutions would not differ much from the results above. We also

note that the control horizon, T, used in our computations is long enough to capture the important

time scales in the flow, e.g., vortex shedding. Only marginal improvements are expected beyond a

certain control horizon (Bewley et al., 2001; Protas & Styczek, 2002; Flinois & Colonius, 2015), and

for all of our cases, we chose a control horizon that is sufficiently long such that the results were not

sensitive.

5.2 Flapping flight

Over the past decades, extensive computational and experimental studies of flapping flight have

been conducted to reveal the important parameters and mechanisms that control lift, thrust, and

propulsive efficiency. For insects and small birds that operate at low Reynolds number (Re =

O(102 − 103)) and high angles of attack (> 30◦), the flow around the wing is vulnerable to flow

separation. The unsteady motion of flapping produces much higher lift than the corresponding
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steady case (Ellington et al., 1996), and the presence of a leading-edge vortex was found to enhance

lift by generating low pressure regions on the suction side of the wing (Dickinson & Gotz, 1993;

Ellington et al., 1996). The flapping motion of an insect’s wing, in general, consists of a translational

and a rotational motion (pronation and supination), and during rotation, insects are known to use

less energy to pitch their wings by capturing the wake generated during the previous stroke cycle

(Dickinson et al., 1999; Bergou et al., 2007; Pesavento & Wang, 2009).

In the present study, we investigate the aerodynamic forces and flow structure associated with

flapping, and apply optimal control. The adjoint approach is implemented to maximize the force in

the vertical direction, Fy, by finding the optimal pitch angles during flapping. The cost function, J

is defined as,

JF =
1

2

∫ T

0

(FY − FY,ref)
2 dt, (5.2)

where FY,ref is set to a high value.

The majority of wing motions of insects employ a superposition of heaving and pitching motion

(sometimes referred as a “figure-eight” motion), which can be simplified as,

x =
A0

2
cos (2πft) cos (β) (5.3)

y =
A0

2
cos (2πft) sin (β) (5.4)

α =
π

4
(1− sin (2πft)) , (5.5)

where the schematic of the motion is plotted in figure 5.4 (Wang, 2000). Among various choices

of waveforms that describe the flapping motion of a wing, sinusoidal motions are one of the simplest

and realistic representation of a flying insect (Azuma et al., 1985).

In our studies, the stroke amplitude, A0, is set to be 2.5 times the chord length and the Reynolds

number, Re(= Uc/ν), is set to be 100. The reference velocity, U , is equal to the maximum velocity

(= A0πf). Assuming a wing of 1 mm chord length in air (ν = 1.8 × 10−5 m2/s), the frequency
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Figure 5.4: Flapping motion of a wing element in 2D. Downstroke phase indicated by the dotted
line and upstroke by the solid line. The stroke plane is inclined at an angle β, with an amplitude of
A0. a is the distance of the rotating axis from the leading edge, and α, the pitch angle.

is close to 230 Hz, similar to the beating frequency of a fruit fly (Fry et al., 2005). We set the

translational motion (equation 5.3 and equation 5.4) to be prescribed and consider the sinusoidal

pitch angles (equation 5.5) as our initial control waveform for cases of β = 0◦, 30◦, 60◦, and 90◦.

Table 5.2 summarizes the results of the optimizations. Minimizing the cost function of equa-

tion 5.2, optimization results in increasing the net vertical force, with the trade-off of increased

input power. However, the effect is beneficial to the efficiency of enhancing Fy, as the increment of

Fy is significant compared to the increase of required power, P . The maximum Fy occurs at β = 0◦

and β = 60◦, and β = 0◦ requires less power than β = 60◦. Figure 5.5 plots the trajectories of the

wings before and after optimization.

For β = 0◦, the motion of the wing becomes more symmetric for each stroke. Figure 5.6 plots

the vorticity field of the optimized wing motion at β = 0◦. The airfoil adjusts its angles during the

stroke to grow a large LEV, which remains close to the airfoil until it changes the direction. The

angle of attack at the middle of the stroke is between 40◦ and 60◦, which according to figure 5.2

is within the regime of maximum static lift. At the time the airfoil changes it direction, the LEV
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Table 5.2: Summary of optimization results. A0 = 2.5c, a = 0.3c, and Re = 100 for all cases.
Time-averaged normalized forces, C̄x = 2Fx/(ρU

2c), and C̄y = 2Fy/(ρU
2c), in the x and y direction

are given, respectively. Time-averaged power is also presented in the table, where P̄ includes both
the rotational and translational power. The subscript with 0 indicates the values for cases before
optimization. Control horizon, T , is set to 40 convective time units, which is close to 5 flapping
period.

β C̄0,x C̄x C̄0,y C̄y P̄0 P̄

0◦ −0.463 0.019 −0.008 0.850 −0.784 −1.015

30◦ −0.723 −0.021 0.361 0.764 −0.932 −0.935

60◦ −0.354 −0.049 0.714 0.849 −0.924 −1.036

90◦ 0.009 0.211 0.465 0.490 −0.786 −0.798

� = 0�

� = 30�

� = 60�

� = 90�

Figure 5.5: Flapping motions before (left) and after (right) optimization.
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Figure 5.6: Vorticity field of the optimized wing motion at β = 0◦.

is shed, and the airfoil grows a new vortex of opposite sign. During stroke reversal, the shed LEV

still remains above the airfoil providing beneficial effects, such as reducing the required power of the

motion (Dickinson et al., 1999).

To understand the effect of LEV on the aerodynamic forces, time history of the vertical force is

plotted in figure 5.7. The figure shows the normalized y-force, CY (t), for one flapping period, with

the first half corresponding to the motion moving from right to left, and the second half, vice versa.

The peak force occurs at a time close to the moment when the airfoil moved half of the stroke line.

The power required for the flapping airfoil is also shown in figure 5.8. Power can be decomposed

into translational and rotational power, which originates from the heaving and pitching motion,

respectively. Ptrans and Prot are defined as follows,

Ptrans(t) =
ux(t)

U
· 2F̄x(t)

ρU2c
+
uy(t)

U
· 2F̄y(t)

ρU2c
(5.6)

Prot(t) =
Ω(t)c

U
· 2τ

ρU2c2
, (5.7)

where ux and uy are the translational velocities of the airfoil, and τ is the torque measured at
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Figure 5.7: Time history of the vertical force coefficient, Cy, for the optimized result of β = 0◦.
Dashed line indicates the data before optimization, and solid line, after. Shaded region indicates
the stroke moving from right to left.

the rotation axis (xc, yc),

τ =

∫
Fy(t) · (x− xc)− Fx(t) · (y − yc) ds.

Mostly, the power is negative, indicating that the body requires input of energy to follow the

prescribed translational motion; however, at the stroke reversal, due to the suction region created

by the previous shed LEV, the resultant force directs to the same direction as the velocity. Prot is

positive during stroke reversal, and the airfoil would be able to change its orientation without using

much energy.
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Figure 5.8: Time history of power, P , for the optimized result of β = 0◦. Shaded region indicates
the stroke moving from right to left.
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Chapter 6

Concluding Remarks

6.1 Summary and conclusions

In the present work, the flow structures and aerodynamic forces associated with simple harmonic

oscillations of an airfoil were investigated. The characteristics of the mean and fluctuating forces

were successfully explained by analyzing vortical flow features, and further extended to apply optimal

control strategies to unsteady flows.

In chapter 3, the aerodynamic forces and flow structures associated with low-amplitude surging

and plunging airfoils were investigated. Flows were limited to low Reynolds number, and high angles

such that the flows were fully separated. For the surging motion, the wake instability locked-in to

the harmonic frequency of the motion when the reduced frequencies were close to the shedding

frequency or its subharmonic. These lock-in regions occurred within a continuous range of reduced

frequencies and widened with increasing amplitude, σx, consistent with the phenomenon known as

the Arnold’s tongue. As resonance occurred, the time-averaged forces also increased in this regime.

Fluctuating behavior of lift was also investigated and found to be closely related to the formation

and detachment of the leading-edge vortex. The frequency regime of k = 0.6 and k = 1.2, where the

fluctuations were amplified and attenuated, respectively, did not seem to be fundamentally related

to the wake instability as it showed no significant dependence on the Reynolds number. Analysis

of the flow structure revealed that fluctuating forces were amplified when the incremental force of

LEV was added in-phase with the quasi component of velocity, and attenuated when out-of-phase.
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At the amplification frequency, the LEV extended to its full strength at the maximum velocity, and

separated before the start of the retreating period, whereas at the attenuation frequency, the LEV

developed for a much longer portion of the period and separated during the retreating portion of

the cycle. After this separation, it remained close to the airfoil and produced additional lift that

canceled out the negative component of the quasi-static lift suppressing the fluctuations.

The aerodynamic forces that were associated with plunging motions were also shown to produce

similar behavior to the surging case, where lock-in occurred near the vortex shedding frequency and

its sub harmonic, and fluctuations amplified or attenuated depending on the phase of LEV acting

constructively or destructively with the quasi-steady component of the forces. These frequency

regimes coincided with surging.

For high-amplitude surging in chapter 4, the time-averaged lift of a flat pate at Re = 1000 was

compared to the experimental results of Gursul & Ho (1992) at Re = 50, 000 to understand the

mechanism that led to the peak in the mean lift near the reduced frequency of k = 0.8. Circulation

analysis led to an observation that there exists an inherent time scale of the LEV associated with

its formation and detachment (LEV formation time), which does not change with the period of

the motion. The formation time, T ∗, was associated with a frequency of k = 1, and below this

frequency there was a constant strength of maximum LEV formed during the period. The mean lift

peak occurred when the period of the motion was close to the formation time as the portion of LEV

lift enhancement increased during the period. For reduced frequency above k = 1, the LEV was

forced to shed before it reached the formation time as the period of the motion became shorter than

the formation time. The strength and size of LEV diminished as the total circulation decreased with

increasing k, and as the strength of LEV diminished, the mean lift also decreased until the force

associated with the LEV had no substantial contribution to C̄L.

Results were also compared with the square waveform of streamwise velocity. The square wave-

form velocity motion showed that high mean lift is achievable even for the low reduced frequencies

as the abrupt change in velocity initiated the roll-up of a shear layer and formed a strong LEV

regardless of the reduce frequency. However, at the peak, the dipole formed during the retreating
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period moved the LEV away from the airfoil and there was no lift enhancement associated with the

wake capturing phenomenon. The formation time obtained from the sinusoidal motion was applied

to the square wave case, and the results matched well, showing a time-averaged peak near k = 0.7.

In chapter 5, adjoint-based optimal control was applied to an airfoil moving at a constant speed.

The control objective was to maximize lift by controlling the pitch rate of the airfoil. The static map

of lift showed maximum mean lift near the angle of 45◦, and all of the optimized results converged

to this angle.

The flapping motion of an insect’s wing was also considered as a control problem to maximize the

vertical force. The translational motion of the flapping wing was prescribed, and by controlling the

pitch rate of the airfoil, optimization resulted in increasing the net vertical force, with the trade-off

of increased input power required for the optimized flapping motion. For the motion that flaps

horizontally (β = 0◦), the optimized motion formed a large LEV, which remained close to the airfoil

until the stroke reversal. The angles of the airfoil at the mid stroke was between 40◦ and 60◦, which

corresponded to the maximum static lift regime. During stroke reversal, the previous shed LEV still

remained above the airfoil reducing the rotational power required for the motion.

6.2 Suggestions for future work

The focus of the present study has been on two-dimensional unsteady flows at low Reynolds number.

Although the aerodynamic forces and flow fields of the two-dimensional simulations compared well

with the high Reynolds number experiments, a firm conclusion must await future three-dimensional

simulations at higher Reynolds number. The wake structure of a two-dimensional flow and a three-

dimensional flow is essentially different, and a two-dimensional simulation at a higher Reynolds

number would not represent the real three-dimensional wake structures as the three-dimensional

instabilities develop.

Flow features that emerge in translational oscillating motions have been described in detail, and

investigating the effects of the pitch rate on the aerodynamic forces would be an interesting problem

to explore. At low reduced frequencies where quasi-steady assumptions are valid, plunging motions
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may be considered as pitching as the effective angle changes during their motion; however, at higher

pitch rates, the spatial variations of the velocity that occur due to rotation will display different flow

structures compared to the translational motions.

Finally, the adjoint equations and gradients were derived for a rigid body that does not de-

form relative to the grid. Developing a framework to control flexible bodies would be a feature

that broadens its application to a more general case, including numerous fluid-structure interaction

problems.
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Appendix A

Flow fields of rigid body motion in
non-inertial frame of reference

For moving rigid bodies, the external flow around the body is more conveniently and efficiently

solved in the non-inertial frame of the body. Usually the origin of the body-fixed frame being fixed

at the center of mass, the arbitrary motion of the frame composes of a non-uniform translational,

UUU(t), and rotational velocity, ΩΩΩ(t). Figure A.1 depicts the position vectors respect to the fixed and

the moving frame of reference. Subscript f and r denotes the variables expressed in the fixed and

rotational frame of reference, respectively.

The position, velocity, and accelerations vectors expressed in each of the reference frames are

xxxf

xxxr

RRR(t)

⌦⌦⌦(t)

Fixed	  iner)al	  frame	  

Body-‐fixed	  non-‐iner)al	  frame	  

Figure A.1: Coordinate systems of fixed (inertial) and (non-inertial) rotating frame or reference.
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related as,

xxxf = RRR(t) + xxxr (A.1)

uuuf = ṘRR(t) + uuur + ΩΩΩ(t)× xxxr (A.2)

aaaf = R̈RR(t) + aaar + 2 ΩΩΩ(t)× uuur + Ω̇ΩΩ(t)× xxxr + ΩΩΩ(t)×ΩΩΩ(t)× xxxr. (A.3)

The Navier-Stokes equation in the non-inertial frame takes the form (Batchelor, 1967),

∂uuur
∂t

+ uuur · ∇uuur = −∇p+
1

Re
∇2uuur − R̈RR(t)− 2 ΩΩΩ(t)× uuur − Ω̇ΩΩ(t)× xxxr −ΩΩΩ(t)×ΩΩΩ(t)× xxxr, (A.4)

where the boundary conditions satisfy the following conditions:

as |xxxr| −→ ∞





uuur −→ −ṘRR(t)−ΩΩΩ(t)× xxxr

ωωωr −→ −2 ΩΩΩ(t)

p −→ p∞.

If the body does not deform, i.e., rigid body, it additionally satisfies uuur = 0 on the surface of

the body. Vorticity, ωωωr, reaching the value of −2 ΩΩΩ(t) at far field can be derived by taking curl of

equation A.2,

ωωωf = ωωωr + 2 ΩΩΩ(t). (A.5)

Although the velocity field and pressure can be computed using the non-inertial form of the

Navier-Stokes equation (equation A.4) and the time-varying far field boundary conditions, there

exists a more compact and convenient way of solving this problem. Substituting equation A.2 and
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using vector identities,

uuur · ∇uuur = ∇
(

1

2
|uuur|2

)
− uuur ×ωωωr = ∇

(
1

2
|uuur|2

)
− uuur ×ωωωf − 2 ΩΩΩ× uuur (A.6)

∇2uuur = ∇ (∇ · uuur)−∇× (∇× uuur) = −∇×ωωωr = −∇×ωωωf (A.7)

ΩΩΩ×ΩΩΩ× xxxr = ∇
(

1

2
|ΩΩΩ× xxxr|2

)
, (A.8)

equation A.4 is now written as,

(
∂uuuf
∂t

)

r

= −∇φ+ (uuuf − uuua)×ωωωf −
1

Re
∇×ωωωf , (A.9)

where

uuua(xxxr, t) = ṘRR(t) + ΩΩΩ(t)× xxxr (A.10)

φ = p+
1

2
|uuuf − uuua|2 −

1

2
|uuua|2. (A.11)

uuua is the translational and rotational velocity associated with the moving axes. The boundary

conditions now satisfies,

as |xxxr| −→ ∞





uuuf −→ 0

ωωωf −→ 0

p −→ p∞,

and uuuf = uuua on the surface of the body. Note that the variables, uuuf and ωωωf , that are expressed in

the inertial reference frame are computed (rather than uuur and ωωωr). Also, the dependent variables

vanish at the far field, alleviating the boundary condition treatments at infinity.
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Appendix B

Checkpointing algorithm

In numerical simulation of a dynamical systems, adjoint equations are commonly used to obtain the

gradient of a predefined objective function. For a general nonlinear dynamical system,

ẋ = h(x, t), x(0) = x0, 0 ≤ t ≤ T, (B.1)

its adjoint equation is a linear dynamical system (in terms of the adjoint variables) that evolves

backward in time,

q̇ = a(x, t)q + b(x, t), q(T ) = q0(x(T )), 0 ≤ t ≤ T. (B.2)

As the coefficients of the term a(x, t) and b(x, t) require information of x, the solution of the

forward system must be either already stored in memory or recalculated from the solution at the

last sorted time step. Since saving the forward solution at every time step is impractical and even

impossible for most cases, the checkpointing scheme, which gives the optimal time steps to minimize

the recalculations, is frequently used to solve the adjoint equation.

We implement the method developed by Wang et al. (2009), where figure B.1 demonstrates the

algorithm. Assuming that the dynamical system has a total of 25 step to evolve from 0 to T , and the

memory is limited to save only 5 time steps, the checkpoint algorithm provides the best / optimal

time steps that should be saved to minimize the recalculations. For example, the index number

of 8, 13, 18, 22, and 23 would be the time steps that are saved while solving the forward system.
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Figure B.1: Checkpointing algorithm developed by Wang et al. (2009). Evolution of the algorithm
assuming a total of 25 time steps. 5 checkpoints are assigned to save the forward variables. Copyright
c©2009 Society for Industrial and Applied Mathematics. Reprinted with permission.

Now, as it solves the adjoint system backwards in time, the forward variables would be loaded from

memory if they exist, or else recalculated from one of saved solutions. For example, at the start of

the adjoint equation, it requires the forward solution at time step index=24 (assuming that time

marching scheme is implicit). Since the closest forward solution saved is at index=23, the forward

solution at index=24 is obtained by computing the forward system from index=23 to 24. This can

be generalized to any number of time step and saved checkpoints.

As the forward equation is recalculated while solving the adjoint equation, the computation time

increases; however, the checkpointing scheme significantly reduces the memory requirement and

efficiently solves the adjoint equation.
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