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Abstract

We are at the dawn of a significant transformation in the electric industry. Renewable generation

and customer participation in grid operations and markets have been growing at tremendous rates

in recent years and these trends are expected to continue. These trends are likely to be accompanied

by both engineering and market integration challenges. Therefore, to incorporate these resources

efficiently into the grid, it is important to deal with the inefficiencies in existing markets. The goal

of this thesis is to contribute new insights towards improving the design of electricity markets.

This thesis makes three main contributions. First, we provide insights into how the economic

dispatch mechanism could be designed to account for price-anticipating participants. We study this

problem in the context of a networked Cournot competition with a market maker and we give an

algorithm to find improved market clearing designs. Our findings illustrate the potential inefficiencies

in existing markets and provides a framework for improving the design of the markets. Second, we

provide insights into the strategic interactions between generation flexibility and forward markets.

Our key insight is an observation that spot market capacity constraints can significantly impact

the efficiency and existence of equilibrium in forward markets, as they give producers incentives to

strategically withhold offers from the markets. Third, we provide insights into how optimization

decomposition theory can guide optimal design of the architecture of power systems control. In

particular, we illustrate a context where decomposition theory enables us to jointly design market

and control mechanisms to allocate resources efficiently across both the economic dispatch and

frequency regulation timescales.
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Chapter 1

Introduction

We are at the dawn of a significant transformation in the electric industry. Renewable generation

and customer participation in grid operations and markets have been growing at tremendous rates

in recent years. These trends are supported in part by federal law which requires grid modernization

to increase dependency on variable and distributed energy resources [41]. Therefore, the electrical

grid is likely to transition from a vertical structure with large predictable resources and centralized

operations to a more horizontal structure with intermittent resources and distributed operations.

This revolution presents both challenges and opportunities. There has never been a more important

and exciting time for power researchers.

To date, 38 states have enacted renewable portfolio standards or goals that require 10% to 33% of

energy delivered to customers to be generated from renewable resources by 2020 [3, 43]. Currently,

renewable generation accounts for 17.27% of total generation capacity in the U.S. and 70% of total

generation capacity installed in the first half of 2015 [1, 2]. The unpredictability of some of these

resources, such as solar power, wind power, and tidal power, can lead to grid integration challenges,

because the existing grid has been designed to operate primarily with dispatchable generation such

as gas, coal, nuclear, or hydro plants [52, 7]. Renewable resources also have high fixed costs and

close to zero variable costs – a completely different cost structure from the majority of dispatchable

resources – which could lead to undesirable market behavior [117].

Customers are also increasingly active in grid operations and markets. Onsite generation such

as rooftop solar photovoltaics and energy storage enable customers to supply excess energy to the

grid. Demand response technologies such as remotely controllable electric vehicle chargers and smart

appliances allow customers to provide flexible demand services to the market. These are new sources

of flexibility that can be utilized to manage the grid. However, they also introduce new dynamics

and feedback loops that could destabilize both the grid and markets, because the latter have been

designed to operate with power flowing one way from generators to unresponsive demand [109].

To deal with these challenges, new operational and market architectures are needed. This thesis

addresses some of the challenges in electricity markets.
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1.1 Role of Markets in the Power Grid

Markets have important roles in the functioning of the power grid. Power grids in the U.S. are

operated by an Independent Systems Operator (ISO), which is a regulated non-profit entity with the

responsibility of ensuring efficient and reliable grid operations. To operate the grid efficiently, the ISO

operates wholesale spot markets. In these markets, the ISO uses bids/offers from generators/retailers

to solve a problem known as economic dispatch, which allocates resources on the transmission

network to meet demand at least cost subject to operational constraints [34, 138, 35, 74, 14, 66, 114].

This problem is important because resources at different locations of the network could have different

costs. The operational constraints include Kirchoff’s laws that govern how power can flow, as well

as safety constraints, such as capacity constraints, line limits, contingency constraints, and stability

constraints. The economic dispatch problem is solved numerous times every day and as frequently

as every 5 minutes. The ISO also calculates the payments/fees to the generators/retailers based

on locational marginal prices which are derived from Lagrange multipliers of the economic dispatch

problem.

To ensure that the grid performs reliably and provide appropriate incentives for investments

in capacity, the ISO also operates other markets that ensure there are always adequate resources

for meeting demand so that the probability of blackouts is low. This is important because of the

non-storable nature of electricity, capacity and ramping limitations of generators, and the need to

balance supply and demand at every instant and at every location. The ISO operates multiple

forward markets ahead of time where power is procured in advance. These forward markets range

from hour-ahead markets to day-ahead markets and beyond. The ISO also operates markets to

procure reserve capacity for ancillary services such as frequency regulation or reactive power control.

These markets provide resources for power systems controllers to use to maintain the stability and

security of the grid.

Although electricity markets have been prevalent and widely studied since the deregulation in

the 90s, market design issues continue to be relevant and important as market inefficiencies can be

extremely costly. During 2000-01, market manipulations in California led to state-wide blackouts

which were estimated to cost between $40 to $45 billion [125]. Even though California’s electricity

crisis is long past, examples of generators attempting to exploit this sort of market power are still

common today, e.g., JPMorgan Chase was fined $410 million for market manipulations in California

and the Midwest from September 2010 to November 2012 [54].
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1.2 Challenges Facing Electricity Markets Today

The growth of intermittent renewable resources and active customer participation in grid operations

and markets could exacerbate existing market inefficiencies and undermine the efficiency and reli-

ability of the grid. Among other impacts, these trends are likely to be accompanied by increased

usage of fast-ramping resources and ancillary services [107, 47, 122]. Increased dependence on the

latter resources could give those producers more opportunities to manipulate the market. Forward

markets will have an increasingly important role in hedging against the variability of renewable

resources but market inefficiencies will impede their ability to ensure there are adequate resources

to balance unexpected loss of output from renewables [21, 29]. Ancillary service markets need to

provide the right price signals to ancillary service providers to offer their capacity where and when

it is needed most. Therefore, to reduce the costs of integrating intermittent renewable resources

and customer participation in markets, it is important to first address the inefficiencies in markets

today. This thesis focuses on three challenges.

1.2.1 How to allocate resources efficiently on the network

The economic dispatch problem and pricing mechanism is the basis by which resources are allocated

on the power grid in real-time, and therefore, the ISO’s design of the problem and pricing mechanism

has a significant impact on the efficiency of the market and the incentives to the participants. Exist-

ing implementations typically seek to maximize some metric of social benefit and derive locational

marginal prices from the Lagrange multipliers of the optimization problem. These designs have their

roots in [34] and can be viewed as extensions of classical results in microeconomics to the power grid.

However, these implementations are susceptible to strategic manipulations by market participants,

as have been observed in both theoretical models and data [22, 81, 130, 83, 82, 112, 132, 53].

There are many reasons for why producers are able to strategically manipulate the market. The

operating constraints of the network such as Kirchoff’s laws and safety constraints could restrict

the competition between different regions of the network. Moreover, dispatchable resources, such as

gas, coal, or nuclear, are typically served by large generating plants that may individually produce

a significant fraction of the total load. In addition, the grid is typically composed of a few firms,

each owning multiple generators. These factors imply that producers could drive up market prices

significantly when they withhold offers from the market.

Therefore, a key challenge is how to improve the efficiency of the economic dispatch mechanism

against the strategic incentives of market participants. The pricing mechanism needs to provide

incentives for generators to offer their resources to the market without distorting prices. The design

must also respect the operating constraints of the system and be computationally efficient since

economic dispatch operates as frequently as every 5 minutes.



4

1.2.2 How to ensure adequate resources to meet demand

Forward markets ranging from short term (1 to 24 hours) to medium term (1 to 3 years) and long

term (3 years and beyond) provide multiple benefits such as helping to reduce risk, mitigating market

power, and coordinating new investment in generation capacity [13]. Short term forward markets

are typically operated by the ISO while the medium to long term markets are typically left to

bilateral negotiations. Forward contracts cause producers to enter the real-time market with more

balanced positions and reduce incentives for them to manipulate the market. They also provide

needed long-term price signals to coordinate investment in capacity where and when they are most

needed.

However, forward markets are also susceptible to strategic manipulation by market participants.

Producers can anticipate the impact of their actions in the forward markets on the real-time market,

and have incentive to withhold offers from the forward markets, if doing so would cause real-time

prices to increase disproportionately and earn them more profits. Such sophisticated incentives

could arise due to network constraints and the nature of dispatchable resources being typically

owned by large firms. In addition, timescale constraints such as ramping limitations could also

restrict generators’ competitiveness in the markets.

Therefore, a key challenge is how to improve the efficiency of forward markets against the strategic

anticipatory behavior of market participants. These questions include: How many markets should

the ISO operate? How far in advance should the ISO operate these markets? What mechanisms

should the ISO use to clear these markets? What is the impact of timescale constraints on the

competitiveness of these markets?

1.2.3 How to integrate markets with control systems

Grid operations are divided into two timescales/layers. The timescale of 5 minutes and longer is

focused on efficiency and comprises economic dispatch and forward markets. Balancing of supply

and demand within 5-minute intervals is focused on stability and is handled by frequency regula-

tion [64, 18, 46]. In the latter, the ISO seeks to restore the nominal frequency in the system by

rescheduling fast ramping generators. It is currently implemented by a control mechanism known

as Automatic Generation Control (AGC). In this mechanism, the ISO uses information on local

frequency deviation to compute the aggregate generation that would rebalance power and restore

the nominal frequency. Then, the ISO divides the needed generation among frequency regulation

resources based on participation factors, which are computed from the outcome of the previous eco-

nomic dispatch run [138]. The resources are also compensated based on the LMP in the previous

economic dispatch run.

The economic dispatch and frequency regulation layers have largely been studied and designed
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independently. However, such a separation could be costly. Participation factors and prices from

the previous economic dispatch run might not be the most efficient way to dispatch frequency

regulation resources. Such inefficiencies could in turn distort the incentives of the providers of

frequency regulation resources. It could also lead to over or (worse) under procurement of frequency

regulation reserves.

Hence, a key challenge is how to jointly design the market and control mechanisms to achieve ef-

ficiency and reliability across both timescales. At the fast timescale, frequency regulation controllers

need to utilize information on cost of resources to maintain stability in a cost-efficient manner.

At the slow timescale, economic dispatch mechanisms also need to consider the cost and stability

benefits of frequency regulation resources when allocating generation.

1.3 Contributions of This Thesis

This thesis contributes to each of the three challenges described above.

1.3.1 Strategic design of the economic dispatch objective

In Chapter 2, we study the problem of designing the economic dispatch objective to account for

price-anticipating producers. We model the market using a networked Cournot competition with a

market maker who clears the market by maximizing a parameterized objective function subject to

DC power flow constraints. Hence, the market maker models an ISO who could choose from a class

of market clearing designs. We make a few contributions.

The first contribution is the formulation of the parameterized objective function, which in itself

is a novel formulation that includes the design of social welfare that is typically used in existing

work. The second contribution is characterizing a subregion of the design space where the market

has a unique Nash equilibrium that is also the solution to a convex program (Theorem 2.2). This

result provides both analytical insights as well as a new computational tool for finding the Nash

equilibrium of the market. This result is novel even in the restricted setting where the market maker

maximizes social welfare, which is the setting that is commonly used in existing work [142]. The third

contribution is in finding the most efficient design for the market maker. In general, this problem

is not convex and hence it is challenging to solve. We exploit our characterization to propose an

algorithm for finding an approximate solution and provide another algorithm to judge the quality

of our solution. Although this work is restricted to a Cournot model, our findings illustrate the

potential inefficiencies in existing markets and provide a framework for improving the design of the

markets.
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1.3.2 Impact of generation flexibility on forward markets

In Chapter 3, we study the strategic interaction between generation flexibility and forward markets

in the context of a non-networked setting with two classes of generators with different flexilibities.

Generators are typically classified into two types: baseloads and peakers [123, 61, 75]. Baseloads refer

to generators that are suited for supplying base demand – they have long start-up times and slow

ramping rates but are typically bigger units with lower marginal costs (e.g. nuclear ($11.6/MWh)

and coal ($28.6/MWh)). In contrast, peakers refer to generators that are suited for supplying peak

demand – they have short start-up times and fast ramping rates but are typically smaller units with

higher marginal costs (e.g. gas turbine ($48.0-$79.9/MWh)).

We model the market by combining the classical Stackelberg and forward contracting models.

We assume that there are two types of firms and two stages. Leaders choose productions in the first

stage while followers choose productions in the second stage. In addition, followers have capacity

constraints and they sell forward contracts in the first stage. Hence, leaders model less flexible

generation such as baseloads while followers model more flexible generation such as peakers.

We derive closed-form expressions of all symmetric Nash equilibria of the market. Our results

yield novel insights into the impact of generation constraints on strategic incentives, among which

two key insights are (1) peakers’ generation constraints may give producers incentive to withhold

offers from the forward market which could lead to non-existence of market equilibria, and (2)

peakers’ generation constraints may decrease the efficiency of the forward market to the extent that

removing the forward market could increase the efficiency of the equilibrium. Hence, our results

illustrate that forward markets might not always be beneficial.

1.3.3 Joint design of economic dispatch and frequency regulation

In Chapter 4, we study the joint problem of economic dispatch and frequency regulation in the

context of a DC power flow model and two classes of generators with different flexibilities. We show

that the two-timescale problem can be decomposed into two sub-problems that correspond to the

economic dispatch and frequency regulation timescales, without loss of optimality, as long as the

ISO is able to estimate the difference between the frequency regulation and economic dispatch LMPs

(Theorem 4.1). Using this result, we design a frequency control algorithm and a market mechanism

for economic dispatch, in a way such that the two mechanisms jointly solve the two-timescale prob-

lem. Our results can be viewed as a first-principles justification for the separation of power systems

control into economic dispatch and frequency regulation problems. More importantly, our results

illustrate how optimization decomposition theory can guide optimal design of the architecture of

power systems control.
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1.4 Overview of This Thesis

This thesis is organized as follows.

1. In Chapter 2, we study a class of market clearing objectives for economic dispatch using

a networked cournot framework. We characterize cases where market equilibrium can be

computed by solving a convex program and exploit this to design an algorithm for finding an

improved design for the market clearing objective. This work has been submitted to a journal

and is under review.

2. In Chapter 3, we study a game between two types of generators with different flexibilities in a

forward market. We provide insights into the strategic incentives and equilibria of the game.

This work appeared in [32]. A journal submission of this work is forthcoming.

3. In Chapter 4, we study the joint design of economic dispatch and frequency regulation. We

propose a market mechanism and a frequency control algorithm such that the combination

solves the joint problem. This work appeared in [27]. This work has also been submitted to a

journal and is under review.

Not included in this thesis are papers on other market issues, such as contracting wind power [29], op-

timal investment of renewable generation [33], and the impact of rooftop solar photovoltaic adoption

on the utility death spiral [30, 8], which were also written during my time at Caltech.
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Chapter 2

Network Cournot Competition
with Market Maker

In this chapter, we study the problem of designing the economic dispatch objective. This work has

wider applications beyond electricity to other modern networked marketplaces. Classical models

of competition often feature multiple firms operating in a single, isolated market; however, power

systems, the internet, transportation networks, infrastructure networks, and global supply chains

are just a few of the places where varied and complex interconnections among participants are

crucial to understanding and optimizing marketplaces. Consequently, the study of competition in

networked markets has emerged as an area with both rich theoretical challenges and important

practical applications.

At this point, a wide variety of models for competition in networked markets have emerged

across economics, operations research, and computer science. The work in this literature focuses

both on extensions of classical models of competition to networked settings, e.g. networked Bertrand

competition [60, 12, 37, 6] and networked Cournot competition [20, 4, 65], and on models of specific

applications where networked competition is fundamental, e.g. electricity markets [97, 17, 16, 140,

141, 142, 67].

Intermediaries, market makers, and transport

The complexity of networked marketplaces typically leads to (and often necessitates) the emergence

of intermediaries. A prominent illustration of this is financial markets, where central core banks in-

termediate trade between smaller periphery banks. Similar examples are common in infrastructure

networks: natural gas is traded through pipelines, which are managed by a Transmission System

Operator (TSO), and transport in electricity markets is governed by an Independent System Oper-

ator (ISO). One can view platforms in the sharing economy, e.g., Uber, as intermediaries between

service providers and customers, and supply chains can be regarded as a form of intermediation in

networked markets.



9

Intermediaries can play many roles in networked markets, from aggregation to risk mitigation to

informational and beyond. Our focus in this study is on the role intermediaries play with respect to

transport and trade. In particular, in many networked marketplaces participating firms depend on

an intermediary, a.k.a., market maker, to provide transport of their goods between geographically

distinct markets.

Electricity markets is a particularly prominent example. In these markets, the ISO solves a

centralized dispatch problem by utilizing the offers/bids from the generators/retailers. This problem

seeks to maximize some metric of social benefit subject to the operational constraints of the grid.

These operational constraints include physical laws that govern the flow of power in the network

as well as safety constraints such as line capacity limits. The payments are calculated based on

locational marginal prices (LMP). Therefore, the ISO plays a crucial role in matching the demand and

supply of power within the confines of the grid and also defines payments to the market participants.

As an independent regulated entity, it further designs rules to limit the possible exercise of market

power by the suppliers.

Beyond electricity markets, natural gas markets, and more generally, supply chains often have

a similar structure where a market maker manages transport between geographically distributed

markets.

Clearly, the design of the market maker in such situations is crucial to the efficiency of the

marketplace. By facilitating trade, the market maker is providing a crucial opportunity for increased

efficiency. However, constraints inherent to the transport network can make it difficult to realize

this potential. As an example, network constraints can give rise to hidden monopolies, where even

a small firm can exhibit market dominance because of its position in the network.

The dangers of such hidden monopolies are especially salient (and the corresponding efficiency

loss is especially large) in the case of electricity markets, since power flows cannot be controlled in an

end-to-end manner due to Kirchhoff’s laws. Even though California’s electricity crisis is long past,

examples of generators attempting to exploit this sort of market power are still common today, e.g.,

JP Morgan was fined $410 million for market manipulations in California and the midwest from

September 2010 to November 2012 [54].

2.1 Our Contributions

Our goal in this study is to provide insight into the design (and regulation) of market makers that

govern transport in networked marketplaces. In particular, we study a model of networked Cournot

competition in which transport between geographically distinct markets is governed by a market

maker (market operator) and subject to network flow constraints. Our results focus on the impact

the design of the market maker has on the equilibrium outcomes of the game between firms and the
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market maker.

Our first contribution is the model itself. We introduce a general, parameterized model of a

market maker (Section 3.3) in a centrally managed networked Cournot competition. In our model,

each market contains multiple firms competing locally in a Cournot competition. The market maker

acts as an intermediary between markets by buying from some markets and selling to other markets,

using its network to transport the goods between markets, subject to the constraints of the network.

The market maker clears the market by maximizing a payoff function that is parameterized by the

tradeoff between the benefit to each of the three key parties – the consumer, the producer, and the

market maker itself.

Our second contribution is the characterization of the equilibria structure as a function of the

design parameters of the market maker (Section 2.4). Our main result (Theorem 2.2) highlights a

wide variety of behaviors – depending on the design of the market maker, there may be a unique

equilibrium, multiple equilibria, or no equilibria. Furthermore, when equilibria do exist, the game

may form a weighted potential game or not depending on the design choice. Beyond characterizing

the existence of equilibria in the case of linear costs, homogeneous demands, and an unconstrained

network, we are able to explicitly characterize the unique equilibrium outcome as a function of

the market maker design. This allows us to perform a more detailed study of the impact of the

market maker. For example, the characterization highlights that the total production by all firms

is independent of the design of the market maker (in this setting), but that the relative production

of the firms may vary dramatically depending on the design of the market maker. Additionally,

the characterization allows us to provide results highlighting the value of the trade provided by the

market maker as well as the efficiency of the market maker (i.e., how close the outcomes of the game

are to the outcomes of a single, aggregate Cournot market) as a function of the market maker design.

Our third contribution focuses on the design of the market maker. In particular, we show

how to (approximately) optimally design the market maker payoff so as to maximize a desired so-

cial/regulatory objective, e.g., social welfare, (Section 2.5). Our primary tool is the characterization

of the equilibria provided in Section 2.4. Then, we utilize the sum of squares (SOS) relaxation frame-

work to judge the quality of our approximately optimal design choice. The results highlight the,

perhaps counterintuitive, observation that if the market maker intends to optimize social welfare,

it should not use social welfare as the objective in clearing the market. We further illustrate our

proposed approach to market maker design on a stylized example that represents a caricature of the

California electricity market. Our results underscore the importance of careful design.
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2.2 Related Literature

Models of competition in networked settings have received considerable attention in recent years.

These models come in various forms, including networked Bertrand competition, e.g., [60, 12, 37, 6],

networked Cournot competition, e.g., [20, 4, 65], and various other non-cooperative bargaining games

where agents can trade via bilateral contracts and a network determines the set of feasible trades,

e.g., [51, 40, 96, 5, 88].

Our study fits into the emerging literature on networked Cournot competition; however our focus

and model differ considerably from existing work. In particular, beginning with [25] and continuing

through [65, 20, 4], the literature on networked Cournot competition has focused on models where

the network structure emerges as a result of firms having a fixed, limited set of markets in which they

can participate and participation in these markets is unconstrained and independent of the actions

of other firms. In contrast, in our model the network constrains flows between markets, and so there

are coupled participation constraints for the firms. Further, the literature on networked Cournot

competition has focused on situations where firms operate independently, without governance, while

we focus on situations where transport across markets is managed by a market maker.

The line of work that is most relevant to the questions studied in this study comes from the

electricity market literature, where versions of Cournot competition subject to network constraints

have been studied for nearly two decades, see [129] for a survey. In this setting Cournot models

often provide good explanations for observed price variations [133], and so are quite popular. For

example, Cournot models have been applied to perform detailed studies of electricity markets in the

US [23], Scandinavia [11], Spain [9, 108], and New Zealand [116, 115], among others.

Due to the importance of the ISO in electricity markets, papers within this literature often include

a model of a market maker, e.g., [134, 140, 92, 67, 62, 142, 24]. However, with rare exception, these

papers focus on a market maker that is regulated to maximize social welfare, and thus do not explore

the impact of differing market maker payoffs, nor how to design the market maker to optimize a

particular social objective. Further, these papers focus exclusively on detailed models of power flows,

and thus do not apply to more general network models, such as classical flow models, which are

relevant to other applications. Our results, on the other hand, apply to networks with general linear

constraints, including both linearized power flow constraints and classical network flow constraints.

To the best of our knowledge, this is the first work to focus on understanding the impact of, and

how to optimally design a market maker that governs transport in a networked marketplace.
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2.3 Model

Our focus is a marketplace where a constrained transport network, operated by a market maker,

connects firms and markets. Specifically, we consider an economy dealing in a single commodity that

is composed of a set of markets M, a set of firms F , and a market maker who facilitates transport

of the commodity between the markets. Within this setting, we study Cournot competition over

the networked markets, considering a static game of complete information among the firms and the

market maker.

Each firm f ∈ F supplies to exactly one market, denoted by M(f). Let F(m) denote the set of

firms that supply to market m ∈M. Denote the supply of firm f ∈ F to marketM(f) by qf ∈ R+,

and let q := (qf , f ∈ F) ∈ R|F|+ denote the vector of supplies of all firms in F . Additionally, for

each f ∈ F , let q−f denote the vector of supplies of all firms in F , except f . The cost incurred

by firm f ∈ F for producing qf ∈ R+ is cf (qf ). Assume cf : R+ → R+ is nondecreasing, convex,

differentiable, and cf (0) = 0.

Crucially, the production of each firm in our model can be reallocated to other markets by a

market maker that controls a constrained transport network. We consider a single market maker

that facilitates transport of the commodity between markets. The market maker can procure supply

from one market and transport it to a different market, subject to network constraints. Denote the

quantity supplied by the market maker to market m ∈ M by rm. Our convention is that rm ≥ 0

(rm < 0) denotes a net supply (net demand) of the commodity by the market maker in market m.

For convenience, let r := (rm, m ∈M) ∈ R|M| denote the vector of supplies by the market maker.

Since the market maker only transports the commodity, the market maker neither consumes nor

produces. So, we have 1>r = 0, where 1 is a vector of ones with dimension |M|.1

The reallocation of supply by the market maker, r, is subject to the flow constraints of the net-

work. We model these constraints by restricting r to a polyhedral set P :=
{
r ∈ R|M| : Ar ≤ b

}
⊆

R|M|, where A and b define the half-spaces of P. This formulation can capture constraints in tra-

ditional flow networks, as well as power flow constraints arising from linearized Kirchoff’s laws and

line limits.

The price at each market in the network is dependent on both the production of the firms and the

reallocation performed by the market maker. As is traditional when studying Cournot competition,

we focus on the case of linear inverse demand functions. In particular, assume that the price pm, in

each market m ∈M, has the form

pm(dm) := αm − βmdm, (2.1)

1We recognize that, in some cases, the market maker may have an incentive to dispose of some of its purchases.
We can model such behavior by replacing the constraint 1>r = 0 with 1>r ≤ 0. However, our motivating application
of electricity markets does not feature disposal; thus, we assume 1>r = 0.
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for some αm, βm > 0. Here, dm is the aggregate demand in market m. Importantly, the aggregate

demand in each market is determined by both the actions of the firms and the market maker, i.e.,

dm = rm +
∑
f∈F(m) qf .

Given the prices in each market, pm, we can write the payoff functions for the firms and the

market maker. The payoff of firm f ∈ F is given by its profit, defined as

πf (q, r) := qf · pM(f)

rM(f) +
∑

f ′∈F(M(f))

qf ′

− cf (qf ). (2.2)

Thus, firm f maximizes πf (q, r) over qf ∈ R+, given (q−f , r).

For the market maker, the payoff function is a design choice. In many regulated settings, e.g.,

electricity markets, it is common for the market maker to optimize some metric of social benefit.

Our goal in this study is to explore the impact of the market maker payoff functions, and so we

focus on a broad, parameterized class of maker maker payoff functions defined as follows. Given q,

the market maker maximizes Π(q, r;θ) over r ∈ P and 1>r = 0, where

Π(q, r;θ) :=
∑
m∈M

[θC · CSm(q, r) + θP · PSm(q, r) + θM ·MSm(q, r)] . (2.3)

In Π(q, r;θ), the design parameter θ := (θC , θP , θM )
> ∈ R3

+ allows the designer to weigh the

importance of the following terms, for each m ∈M:2

CSm(q, r) :=

∫ rm+
∑
f∈F(m) qf

0

pm(wm) dwm −

rm +
∑

f∈F(m)

qf

 · pm
rm +

∑
f∈F(m)

qf

 ;

PSm(q, r) :=

 ∑
f∈F(m)

qf

 · pm
rm +

∑
f∈F(m)

qf

− ∑
f∈F(m)

cf (qf );

MSm(q, r) := rm · pm

rm +
∑

f∈F(m)

qf

 ,

The quantities CSm, PSm, and MSm admit natural interpretations. Namely, CSm equals the con-

sumer surplus in market m, PSm equals the collective producer surplus of all firms supplying in

market m, and MSm equals the merchandizing surplus of the market maker by supplying in market

m.

The parameterized class of market maker payoff functions defined in (2.3) encompasses a wide

2The notation θ ∈ R3
+ should be understood to mean that θ  0 since the market maker’s payoff becomes zero

trivially when θ = 0.
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Figure 2.1: Example of a two-market two-firm networked marketplace. This example reperesents a
caricature of the wholesale electricity market in California. Here, northern and southern California
are represented as two nodes connected by a transmission line – Path 15 – that is often congested
(see [125]).

class of common objectives. To illustrate a few, consider the following definitions.

θSW := (1, 1, 1) , θCS := (1, 0, 0) , θRSW := (1, 0, 1) , θMS := (0, 0, 1) . (2.4)

The market maker’s payoff function with θSW as the design parameter is the Walrasian social wel-

fare that is widely used in many centrally managed networked marketplaces, including wholesale

electricity markets. In the same vein, Π
(
q, r,θCS

)
is the collective consumer surplus across all

markets, and hence defines a pro-consumer design choice by the market maker. Another common

choice is Π
(
q, r,θRSW

)
, the residual social welfare, which equals the Walrasian social welfare less

the collective producer surplus of all firms. By maximizing the residual social welfare, one hopes

that the market maker strikes a balance in optimizing the different components of the Walrasian

social welfare by different players of the game. In contrast with θSW, θCS, and θRSW, the choice of

θMS as the design parameter defines a profit-maximizing market maker.

Note that the class of payoffs we consider does not account for any variable costs associated with

transporting the commodity through the network. However, as long as the variable costs are convex

in r, most of our results continue to hold.

A motivating example: Many networked marketplaces with market makers that govern trans-

port can be described by the model discussed above, but to provide a concrete motivating example

for use throughout this study, we consider the case of wholesale electricity markets. We illustrate

our results with this example in Section 2.5.3.

Most electricity markets in the US are managed by a regulatory entity known as an Independent

System Operator (ISO). The role of the ISO is to facilitate efficient exchange of power between supply
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and demand while ensuring that power flows through the network satisfy the operating constraints

of the grid. Thus, the ISO plays the role of the market maker in our model.

To illustrate the model, consider the two-node network in Figure 2.1. Here, northern and southern

California are modeled as two nodes connected by a transmission line – Path 15. Assume, for

simplicity, that there is one generator at each node and the transmission line has a capacity b ∈

R+. The California Independent System Operator (CAISO) serves as the market maker, governing

transport, and seeks to maximize social welfare through reallocating generation.

We can model the strategic interactions in this simple example as a game G(θ), where there are

two marketsM = {1, 2} with inverse linear demand functions p1(d1) = α1−β1d1 and p2(d2) = α2−

β2d2, and two firms F(1) = {1} and F(2) = {2} with cost functions c1(q1) and c2(q2), respectively.

The set of feasible reallocations by the market maker is P = {r ∈ R2 : |r1| ≤ b, |r2| ≤ b}. The

market maker’s payoff is the social welfare, i.e., the design parameter is θSW.

Equilibrium definition: We conclude this section by formally describing the networked Cournot

competition as a game, G(θ), where the players include the collection of firms F and the market

maker, the strategy sets are defined by qf ∈ R+ for each f ∈ F and r ∈ P and 1>r = 0, and the

payoff functions are πf for each firm f ∈ F and Π for the market maker.

We focus our analysis on the Nash equilibria outcomes, which are defined as follows: (q, r) ∈

R|F|+ × P, satisfying 1>r = 0, comprises a Nash equilibrium of G(θ), if

πf (q, r) ≥ πf (q′f , q−f , r) for all q′f ∈ R+,

Π(q, r;θ) ≥ Π(q, r′;θ), for all r′ ∈ P, 1>r′ = 0.

The effect of θ on the Nash equilibria of G(θ) represents the impact of market maker design, and is

the focus of the current study.

2.4 Characterizing the Nash Equilibria

In this section, we describe our first set of results, which provide characterizations of the equilibria

outcomes, and contrast the equilibrium in our networked Cournot marketplace to non-networked

Cournot models. Then, in Section 2.5, we use the characterizations provided here in order to inform

the design of the market maker.

2.4.1 Existence and uniqueness

Classical Cournot competition among a set of firms in a single market with inverse linear demand

functions is known to be a potential game (see [121] and [94]) and, recently, this property has been

shown to extend to a form of networked Cournot competition, as shown in [4]). These character-
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izations are powerful, since they allow results about equilibrium existence and uniqueness to be

derived through analysis of the underlying potential function of the game. However, the results in

[4] focus on a form of networked competition over bipartite graphs with no market maker; thus they

do not apply to the model we consider here. But, given the results for these classical and networked

Cournot models, an optimistic reader expects a similar conclusion for the model we consider. In the

results that follow, we show that this is true in some situations – under some assumptions, we show

that the model we consider yields a weighted potential game – however, the structure of the game

is more complex in general.

Before stating our results, we begin by formally defining the notion of a weighted potential game.

Consider a game G with players 1, . . . , N , actions xi ∈ Rni for i = 1, . . . , N , where (x1, . . . ,xN ) ∈

X ⊆ Rn1+...+nN , and payoff functions ϕi : Rn1+...+nN → R for each player i = 1, . . . N . The game G

is said to be a weighted potential game, if there exists a vector of weights w ∈ RN++ and a potential

function Φ : Rn1+...+nN → R that satisfies

Φ(xi,x−i)− Φ(x′i,x−i) = wi · [ϕi(xi,x−i)− ϕi(x′i,x−i)] (2.5)

for each (xi,x−i) ∈ X , and i = 1, . . . , N .

Our first result highlights that, for some design parameters θ, the model of networked competition

we consider is a weighted potential game with a potential function that can be represented as a

perturbed version of the market maker payoff.

Theorem 2.1. If θM + θP − θC > 0, then G(θ) is a weighted potential game with the potential

function Π̂(q, r;θ), given by

Π̂(q, r;θ) := Π(q, r;θ)− (θM − θP )
∑
m∈M

βm
2

 ∑
f∈F(m)

qf

2

−
∑
f∈F

[
(θM + θP − θC)

βM(f)

2
q2
f + (θC − θM )

(
αM(f)qf − cf (qf )

)]
. (2.6)

A proof of this result is provided in Appendix 2.A. The fact that G(θ) is a weighted potential

game highlights that the game has a number of favorable properties. In particular, maximizers of

Π̂(q, r;θ) over the joint strategy set of G(θ) are Nash equilibria, and this fact can be used to infer

the existence of Nash equilbria. Furthermore, strict concavity of Π̂ can be leveraged to conclude the

uniqueness of Nash equilibrium, that is characterized as the solution to

C(θ) : maximize
q,r

Π̂(q, r;θ),

subject to q ∈ R|F|+ , r ∈ P, 1>r = 0.

(2.7)
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In addition, if cost functions are increasing linear functions or convex quadratic functions, there

exists a unique equilibrium that can be found efficiently. Finally, many natural learning dynamics are

guaranteed to converge to an equilibrium in potential games. See [94] and more recent publications,

e.g., [55, 144, 118, 89, 90], for a comprehensive discussion on the topic.

However, the characterization of existence provided by Theorem 2.1 is not complete. It turns

out that, for many design parameters, the structure of the game is more complex and, in particular,

the game is not a weighted potential game. Despite this, in many such cases a Nash equilibrium is

still guaranteed to exist. The theorem below provides a more complete view of equilibrium existence

and uniqueness.

Theorem 2.2. Suppose P is compact, and let

γ := 1− min
m∈M

1 +
∑

f∈F(m)

βm
βm + infqf≥0 c′′f (qf )

−1

. (2.8)

(a) If 2θM − θC ≥ 0 or θM + θP − θC > 0, then G(θ) has a Nash equilibrium.

(b) If 2θM − θC ≥ γ · (θM + θP − θC) > 0, then the set of Nash equilibria of G(θ) is nonempty, and

is identical to the set of optimizers of C(θ). Furthermore, if the inequalities are strict, then G(θ)

has a unique Nash equilibrium.

The formal proof is deferred till Appendices 2.B and 2.C. The argument hinges on a result due

to [110]. It relies on the market maker’s payoff Π (q, r;θ) being continuous in q and concave in r.

In essence, G(θ) has additional structure for design parameters even beyond where it is a potential

game. Some insight for the form of the conditions in the theorem can be understood from the

proof. In particular, the market maker’s payoff function Π (q, r;θ) is concave in r if and only if

2θM − θC ≥ 0. Additionally, from Theorem 2.1, we know that G(θ) is a potential game with Π̂ as

the potential function when θM + θP − θC > 0. Finally, 2θM − θC ≥ γ · (θM + θP − θC) > 0 implies

that Π̂ is concave, and it is strictly concave when the inequality is strict. Finally, the concavity of Π̂,

together with Neyman’s result [99], yields the equality between the sets of Nash equilibria of G(θ)

and the optimizers of C(θ).

In Figure 2.2, we visualize the regions defined by the conditions in Theorem 2.2. Note that the

Nash equilibria of G(θ) is invariant under a positive scaling of θ; thus it suffices to consider θ ∈ R3
+

for which θC + θP + θM = 1, i.e., θ lies on the 3-dimensional simplex. Hereafter, denote by ∆ the

3-dimensional simplex. Notice that the conditions on θ in Theorem 2.2(b) depend on γ, which in

turn is a function of the inverse linear demand functions in the markets and the cost functions of

the firms. Since costs are convex, c′′f is nonnegative, and thus,

γ ≤ max
m∈M

|F(m)|
1 + |F(m)|

.
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The fraction on the right hand side of the above equation is the smallest when each market has one

firm, and hence γ ≤ 1
2 . In fact, γ = 1

2 when each market has only one firm, and costs are increasing

linear functions. For illustrative purposes, we choose γ = 1
2 to portray the various regions of ∆ in

Figure 2.2, where G(θ) has different properties.
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Figure 2.2: (a) An illustration of Theorem 2.2 for θ ∈ ∆. A Nash equilibrium may not exist in
the unshaded region, it exists but may not be unique in the brown region, and it is unique and is
given by the unique optimizer of C(θ) in the green region. (b) An illustration of Theorem 2.2(a) for
θ ∈ ∆. The grey region is defined by 2θM − θC ≥ 0, where a Nash equilibrium exists owing to a
variant of G(θ) being a concave game. The blue region is defined by θM + θP − θC > 0, where a
Nash equilibrium exists because G(θ) is a potential game. Dotted line segments on the boundaries
of various sets do not belong to the respective sets.

Theorems 2.1 and 2.2 provide sufficient conditions for equilibrium existence and uniqueness,

but do not address the question of necessity or tightness. To provide some insight into necessity, we

provide examples to highlight that each of the properties may fail to hold if the respective conditions

are not met. The examples are all constructed using the simple two-market two-firm example in

Section 2.3. Furthermore, they all focus only on the case when each firm has increasing linear costs

and both markets have identical inverse linear demand functions.

The Nash equilibrium of G(θ) in this restricted setting can be explicitly computed for all θ ∈ R3
+.

The results are derived in Lemmas 2.2, 2.3, and 2.4 in Appendix 2.F. Using these results, we

construct examples of θ in Appendix 2.F to illustrate the following:

1. When neither θM + θP − θC > 0 nor 2θM ≥ θC holds, a Nash equilibrium of G(θ) may not

exist.

2. When 2θM ≥ θC , but not θM + θP − θC > 0, a Nash equilibrium of G(θ) exists, but G(θ) is

not a weighted potential game.

3. When 2θM − θC ≥ 0, and θM + θP − θC > 0, but 2θM − θC ≥ γ · (θM + θP − θC) does not

hold, a Nash equilibrium of G(θ) may exist that is not an optimizer of C(θ).
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4. When 2θM − θC = γ (θM + θP − θC) > 0, then G(θ) may have a multitude of Nash equilibria,

all of which are optimizers of C(θ).

2.4.2 Example with linear costs and homogeneous demands

To this point our results have focused only on existence and uniqueness. We now provide a more de-

tailed characterization of the equilibria. Specifically, our goal is to study the parametric dependence

of the Nash equilibria on θ.

Without making stronger assumptions on the nature of the game, such a characterization is

difficult. To allow interprebility of the results, we focus on a restricted setting where each market

has a single firm with linear increasing cost and the markets have identical linear demand functions.

Additionally, we focus on the case of an unconstrained network, i.e., P = R|M|. It is possible to

provide a more general characterization at the expense of interprebility.

In this setting, we are able to offer explicit formulae for the unique Nash equilibrium of G(θ)

under a subset of the design parameters in Proposition 2.1. Importantly, this characterization allows

us to contrast the result of competition in the networked marketplace we consider with two cases of

particular interest: (a) competition in a collection of non-networked markets, i.e., a setting without

transport between markets, and (b) competition in an aggregated market, i.e., a setting where the

markets are merged into a single aggregate marketplace without a market maker. The comparison

with (a) provides insight into the efficiency of the network and the comparison with (b) provides

insight into the efficiency of the market maker.

Consider G(θ) with: (1) an unconstrained network, P := R|M|, (2) a collection of firms F having

linear costs cf (qf ) := Cfqf for each f ∈ F , where Cf > 0, (3) a collection of markets M, where

a single firm supplies in each market, i.e., |F(m)| = 1, for m ∈ M, and (4) spatially homogeneous

inverse linear demand functions, given by pm(dm) = α − βdm, for each m ∈ M, for some α, β > 0.

Define C := (Cf , f ∈ F). Denote the mean and the standard deviation of the firms’ marginal costs

by

C̄ :=
1

|F|
∑
f∈F

Cf , and σC :=

√
1

|F|
∑
f∈F

(Cf − C̄)2, (2.9)

respectively. Denote this family of games by Gu(θ;C, α, β), parameterized by the design parameter,

firms’ marginal costs, and the parameters defining the identical market demand functions. Then,

we have the following result on Gu(θ;C, α, β).

Proposition 2.1. Consider Gu(θ;C, α, β), where C̄ and σC are as defined in (2.9). If 2θM − θC >

1
2 (θM + θP − θC) > 0 and α ≥ (1 + κ(θ)) maxf∈F Cf − κ(θ)C̄, then Gu(θ;C, α, β) has a unique
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Nash equilibrium, given by

qf =
1

2β

[
α− C̄ − (1 + κ(θ))

(
Cf − C̄

)]
, (2.10)

rM(f) =
κ(θ)

β

(
Cf − C̄

)
, (2.11)

for each f ∈ F , where κ(θ) := θM+θP−θC
3θM−θP−θC . Moreover, the Walrasian social welfare at the unique

Nash equilibrium is given by

∑
m∈M

[CSm(q, r) + PSm(q, r) + MSm(q, r)] =
3|F|
8β

[
(α− C̄)2 + σ2

C +
1

3
κ(θ)(6− κ(θ))σ2

C

]
.

A proof is given in Appendix 2.D. Note that, because we consider an unconstrained network,

our proof technique from Theorem 2.2(b) no longer applies. Thus, we take a different approach to

analyzing C(θ) focused on the Karush-Kuhn-Tucker (KKT) optimality conditions.

To obtain some insight from Proposition 2.1, note that equations (2.10) – (2.11) reveal that, the

production of a firm qf and the market-maker’s supply in the market served by that firm rM(f),

both depend on the marginal cost of the firm Cf relative to the average marginal cost of all firms C̄.

Under the conditions of Proposition 2.1, one can show that κ(θ) > 0. Hence, the firms’ productions

are in fact ordered inversely by their marginal costs. Moreover, the market maker buys from markets

having firms with lower marginal costs and supplies to markets having firms with higher marginal

costs. The total production by all firms, however, is independent of θ, and is given by

∑
f∈F

qf =
|F|
2β

(
α− C̄

)
. (2.12)

The market maker’s design choice only influences the relative production between the firms and the

quantities supplied by the market maker to various markets.

Proposition 2.1 also lets us investigate the efficiency of the equilibria. By studying the effect of

the design parameter on the social welfare at the unique Nash equilibrium, we unravel the impact

of the design choice on the competitiveness of the market. As we remarked earlier, a popular choice

of θ for a regulated marketplace like the wholesale electricity markets is θSW defined in (2.4), i.e.,

the market maker optimizes the social welfare function. Then, κ
(
θSW

)
= 1. We notice that the

social welfare at the unique Nash equilibrium increases with κ(θ) over the interval [1, 3]. Moreover,

it is easy to construct a θ that satisfies the conditions in Proposition 2.1 with 1 < κ(θ) < 3. So, if

maximizing the social welfare at the unique Nash equilibrium is indeed the design goal, θSW is not

the optimal design choice.

This motivates the question of how much efficiency is lost by naively choosing the design param-

eter θSW. To address this, note that the social welfare at the Nash equilibrium with θSW is given
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by (α − C̄)2 + 8
3σ

2
C . Also, observe that κ(θ)(6 − κ(θ)) ≤ 9. Combining these allows us to derive

a simple upper bound on the ratio of the largest attainable social welfare at a Nash equilibrium to

that obtained with θSW.

(α− C̄)2 + σ2
C + 1

3κ(θ)(6− κ(θ))σ2
C

(α− C̄)2 + 8
3σ

2
C

≤
1 + 4

(
σC
α−C̄

)2

1 + 8
3

(
σC
α−C̄

)2 ≤
3

2
.

The last step follows from the fact that h(x) := (1 + 4x)/
(
1 + 8

3x
)

is increasing in x ≥ 0, and is

bounded from above by limx→∞ h(x) = 3
2 .

When θ is varied such that κ(θ) increases from one, we have already argued that the social

welfare at the Nash equilibrium increases. Who stands to benefit from such an increase? Is it the

consumers, the producers, or the market maker? Recall that a metric of consumer benefit is the

aggregate consumer surplus
∑
m∈M CSm(q, r) at the Nash equilibrium. Similarly, the aggregate

producer surplus
∑
m∈M PSm(q, r) and the merchandising surplus

∑
m∈MMSm(q, r) at the Nash

equilibrium measures the benefits to the producers and the market maker, respectively. One can

show that the aggregate consumer and producer surpluses both increase, when θ is changed to

increase κ(θ) from one. However, the merchandising surplus decreases. Thus, in the framework

considered, a design choice that improves the efficiency of the market, does so to the benefit of the

consumers and the producers, but at the expense of the market maker.

Comparison with non-networked Cournot

To study the role of the network, we next analyze the same setting, but remove the network. That

is, P only contains the origin. Each firm then effectively competes as a monopoly in its own market,

and the market maker plays no role. Define Gn(C, α, β) as the non-networked Cournot competition

among a collection of firms F . Here, C again denotes the vector of firms’ marginal costs, and

identical market demand functions are identified by parameters α, β. We characterize the Nash

equilibria of Gn(C, α, β) in the following result.

Proposition 2.2. Consider Gn(C, α, β), where C̄ and σC are as defined in (2.9). If α ≥ maxf∈F Cf ,

then Gn(C, α, β) has a unique Nash equilibrium, given by

qnf =
1

2β
(α− Cf ) .

Moreover, the Walrasian social welfare at the unique Nash equilibrium is given by

∑
f∈F

[∫ qnf

0

pM(f)(wf ) dwf − Cfqnf

]
=

3|F|
8β

[(
α− C̄

)2
+ σ2

C

]
.
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The proof is straightforward and is omitted. To compare Propositions 2.1 and 2.2, assume that

α satisfies the conditions required in both results.

Like in the networked marketplace, the production quantities of the firms are ordered inversely

by their marginal costs. Also, the total production of the firms at the Nash equilibrium is given by

∑
f∈F

qnf =
|F|
2β

(
α− C̄

)
,

which, due to (2.12), happens to be identical to that in the networked marketplace. Thus, the

network does not impact the total production of the firms. Instead, the value of the network is

reflected in the social welfare at the Nash equilibrium.

It is straightforward to conclude from Propositions 2.1 and 2.2 that the social welfare at the

Nash equilibrium is higher for the networked marketplace for any design choice θ. This aligns

with the intuition that a network available for trade improves the efficiency of the marketplace.

Recall that in the networked setting, the social welfare at the unique Nash equilibrium is given by

(α− C̄)2 + σ2
C + 1

3κ(θ)(6− κ(θ))σ2
C . Again, leveraging the fact that κ(θ)(6− κ(θ)) ≤ 9, we obtain

the following bound on the ratio of the social welfares in the networked and the non-networked case.

(α− C̄)2 + σ2
C + 1

3κ(θ)(6− κ(θ))σ2
C

(α− C̄)2 + σ2
C

≤
1 + 4

(
σC
α−C̄

)2

1 +
(

σC
α−C̄

)2 ≤ 4.

The last step follows from the fact that h(x) := (1 + 4x)/ (1 + x) is increasing in x ≥ 0, and is

bounded from above by limx→∞ h(x) = 4.

Comparison with aggregated Cournot

To study the efficiency of the market maker, we next analyze the same setting, but where the firms

are aggregated into a single Cournot market. This comparison is motivated by the fact that one

may hope an efficient market maker can facilitate trade in order to allow the networked marketplace

to behave like a single market – especially when the network is unconstrained.

Recall that in our example, we considered |M| markets with identical inverse linear demand

functions pm(dm) = α − βdm for each m ∈ M. Then, an aggregation of these markets with

a collective demand d admits an inverse linear demand function p(d) = α − β
|F|d. Denote the

aggregated Cournot competition by Ga(C, α, β), where C denotes the vector of firms’ marginal

costs. The following result then characterizes the unique Nash equilibrium of Ga(C, α, β).

Proposition 2.3. Consider Ga(C, α, β), where C̄ and σC are as defined in (2.9). If
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α ≥ (1 + |F|) maxf∈F Cf − |F|C̄, then Ga(C, α, β) has a unique Nash equilibrium, given by

qaf =
|F|

(1 + |F|)β
[
α− C̄ − (1 + |F|)

(
Cf − C̄

)]
.

Moreover, the Walrasian social welfare at the unique Nash equilibrium is given by

∫ ∑
f∈F q

a
f

0

p(w) dw −
∑
f∈F

Cfq
a
f =
|F|2(2 + |F|)
2(1 + |F|)2β

[
(α− C̄)2 +

2(1 + |F|)2

2 + |F|
σ2
C

]
.

A proof can be found in [80], and is omitted for brevity. When comparing the results obtained

in Proposition 2.3 to 2.1 or 2.2, assume α satisfies the conditions delineated in each result.

As in each case before, the firms’ productions in the aggregated Cournot competition are ordered

inversely by their marginal costs. However, in this case the total production quantity is different.

In particular, we have

∑
f∈F

qaf =
|F|2

(1 + |F|)β
(
α− C̄

)
.

Since |F|2
1+|F| ≥

|F|
2 , it follows from (2.12) that the total production quantity in the aggregated

Cournot competition is no less than that in the networked marketplace with an unconstrained

network. Furthermore, the inequality is strict when |F| ≥ 2.

Given increased production, it is natural to expect that the social welfare will be larger in the

aggregated Cournot market as well. This turns out to be true. Towards comparing the social welfare

of the aggregated Cournot case to our networked marketplace with an unconstrained network, notice

that (i) |F|
2(2+|F|)

2(1+|F|)2 ≥
3|F|

8 for all |F| ≥ 1, (ii) 2(1+|F|)2
2+|F| ≥ 4 for all |F| ≥ 2, and (iii) |F| = 1 imply

σC = 0. These observations, together with κ(θ) (6− κ(θ)) ≤ 9, yield

|F|2(2 + |F|)
2β(1 + |F|)2

[
(α− C̄)2 +

2(1 + |F|)2

2 + |F|
σ2
C

]
≥ 3|F|

8β

[
(α− C̄)2 + σ2

C +
κ(θ)(6− κ(θ))

3
σ2
C

]
.

As a result, the social welfare in the aggregate Cournot model is no less than that in the networked

Cournot model for all possible choices of the design parameter. The inequality is strict when |F| ≥ 2.

Also, 2(1+|F|)2
2+|F| → ∞ as |F| → ∞. Thus, the ratio of equilibrium social welfares in the aggregated

market and the unconstrained networked marketplace (with any choice of θ) grows without bound

as the number of firms increases. In a sense, the higher the number of firms, the larger the need for

transport, leading to a higher efficiency loss due to the market maker’s transport.
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2.5 Market Maker Design

The characterization results from the previous section provide the foundation for us to approach

the question of market maker design. That is, to engineer the ‘right’ design parameter θ, when the

market maker has a certain design objective. The example considered in Section 2.4.2 highlights the

importance of this task – even in simple settings, using θSW yields suboptimal outcomes if the goal

is to optimize social welfare.

Concretely, the contribution of this section is to find an approximation to the optimal design

parameter, and leverage a sum of squares (SOS) framework to bound the suboptimality of that

choice. We illustrate the efficacy of our approach to market maker design on our two-market two-

firm example in Figure 2.1.

2.5.1 Formulating the market maker design problem

Assume that the design objective of the market maker is given by a polynomial function g : R|F| ×

R|M| → R. That is, if the market maker owned and operated the firms, it would maximize g(q, r)

over the joint strategy set, defined by q ∈ R|F|+ , r ∈ P,1>r = 0. When playing the game with

a collection of strategic firms, the market maker would ideally seek a design parameter θ that

maximizes g at the Nash equilibrium outcome of G(θ). If there are multiple Nash equilibria, one

can modify the goal to maximize the worst case g over all Nash equilibria of G(θ).

Recall that we can restrict θ to the 3-dimensional simplex ∆ without loss of optimality. However,

optimizing θ over ∆ is challenging. A difficulty arises from having to minimize g(q, r) over all Nash

equilibria (q, r) of G(θ) for any candidate θ. For instance, if G(θ) has multiple isolated Nash

equilibria, such a minimization amounts to solving a combinatorial problem. However, even if G(θ)

has a unique Nash equilibrium, describing said equilibrium is challenging. For example, if the market

maker’s payoff function is not a concave function of its action, then its optimal strategy cannot be

described by first-order conditions alone. Even if it is concave, computing a Nash equilibrium of

G(θ) – and hence computing g for any candidate θ – is generally hard.

In light of these challenges, we restrict the search space for θ to Θε, described by:

θC , θP , θM ≥ 0, θC + θP + θM = 1, 2θM − θC ≥ ε+ γ · (θM + θP − θC) ≥ (1 + γ) · ε,

where ε > 0 is sufficiently small. Theorem 2.2(b) implies that G(θ) has a unique Nash equilibrium for

each θ ∈ Θε that also equals the unique optimizer of the convex program C(θ) in (2.7). Hence, the

unique Nash equilibrium is exactly characterized by the Karush-Kuhn-Tucker conditions for C(θ).

Thus, we can formulate the following market design problem over Θε.
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maximize
q,r,µ,λ,θ

g(q, r),

subject to q ∈ R|F|+ ,A′r ≤ b′,

µ ∈ R|F|+ ,λ ∈ Rdim(b′)
+ ,θ = (θC , θP , θM ) ∈ ∆,

∇r
[
Π̂(q, r;θ) + λ>

(
b′ −A′r

)]
= 0,

∇q
[
Π̂(q, r;θ) + µ>q

]
= 0,

µ>q = 0, λ>
(
b′ −A′r

)
= 0,

2θM − θC ≥ ε+ γ · (θM + θP − θC) ≥ (1 + γ) · ε,

(2.13)

where A′ =
(
A>,1,−1

)>
, b′ =

(
b>, 0, 0

)>
, and dim(b′) denotes the dimension of b′. For an

arbitrary function h : Rmx+my → R, define ∇xh(x,y) as the gradient of h with respect to x. In an

optimization problem, if the search space is not closed, an optimizer may not exist. To avoid such

technical difficulties, we choose to optimize over the closed subset Θε of the design space where G(θ)

admits a unique Nash equilibrium. Denote by θ∗ an optimizer of (2.13) that defines an optimal

design choice. As we illustrated in Section 2.4.2 through an example, even if g(q, r) = Π(q, r;θ0)

for some θ0 ∈ Θε, the design choice θ0 may not be optimal, that is, it may not be an optimizer of

(2.13).

2.5.2 Approximately solving the market maker design problem

The market maker design problem in (2.13) is a so-called Mathematical Program with Equilibrium

Constraints (MPEC). Such problems are nonconvex and hard to solve efficiently in general (see

[86, 106, 102]). Many heuristic searches have been applied to MPECs, but they often do not come

with any optimality guarantees. Instead of using such a heuristic, we provide a scheme to find an ap-

proximate solution by exploiting our characterization results, and further bound the approximation

quality.

Assume henceforth that the cost functions cf , f ∈ F are polynomial functions for which C(θ) can

be cast as a convex program that is solvable in polynomial time. For example, when said costs are

quadratic, C(θ) can be solved as a convex quadratic program. For each θ ∈ Θε, one can efficiently

compute the unique Nash equilibrium of G(θ) by solving C(θ). Denote the unique Nash equilibrium

by (q(θ), r(θ)). Any metaheuristic (e.g., grid search, simulated annealing, Monte-Carlo sampling)

can be used to explore the space Θε for the largest g(q(θ), r(θ)) to obtain an approximate solution

of (2.13). For this exposition, we choose a finite and uniform discretization of Θε. If g(q(θ), r(θ))

attains its maximum at θmax over this finite set, we have

g(q(θmax), r(θmax)) ≤ g(q(θ∗), r(θ∗)),
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where θ∗ is an optimizer of (2.13). The difference between the two expressions in the above inequality

is a measure of the optimality gap of θmax.

We next present a hierarchy of successively tighter upper bounds for g(q(θ∗), r(θ∗)). The upper

bound at any level of the hierarchy can be computed in polynomial time, and yields a bound on

the optimality gap of θmax. In presenting this hierarchy, we need the following technical result that

allows us to restrict the feasible set of (2.13) to a compact basic semi-algebraic set. The proof is

deferred till Appendix 2.E.

Lemma 2.1. Suppose P is compact. Consider the optimization problem (2.13), defined in the

variables z := (q, r,µ,λ,θ). There exists a compact set Z := {z : hi(z) ≥ 0, i = 1, . . . , I}, where

hi, i = 1, . . . , I − 1 are polynomial functions, and hI(z) = Z̄−‖z‖2 for some constant Z̄ ∈ R+, such

that the feasible set of (2.13) can be restricted to Z without loss of optimality.

With a slight abuse of notation, we use g(z) to denote g(q, r). Equipped with Lemma 2.1, (2.13)

can be reformulated as a polynomial optimization problem that seeks to minimize t ∈ R, subject to

g(z) ≤ t and z ∈ Z. Our upper bounds are then given by the so-called Lasserre hierarchy to this

polynomial optimization problem (see [78, Chapter 4], [113, 42]).

A polynomial is said to be sum of squares, denoted SOS, if it can be expressed as a sum of

other squared polynomials. For a positive integer d such that 2d ≥ maxi=1,...,I deg(hi), consider the

following optimization problem and its optimal value.

v∗d := minimize
t,σ0,...,σI

t,

subject to t = g + σ0 + σ1h1 + . . . , σIhI ,

deg(σ0) ≤ 2d, deg(σihi) ≤ 2d, i = 1, . . . , I,

t ∈ R, σ0, . . . , σI are SOS.

(2.14)

The convergence of the Lasserre hierarchy, as given by [78, Theorem 4.1], yields v∗d ↓ g(q(θ∗), r(θ∗)).

That is, v∗d approaches g(q(θ∗), r(θ∗)) monotonically from above. Furthermore, the determination

of whether a polynomial with degree ≤ 2d is SOS can be written as a linear matrix inequality in the

coefficients of that polynomial (see [113]). Therefore, (2.14) can be reformulated as a semidefinite

program that is solvable in polynomial time. If θmax is a candidate approximate solution for (2.13),

then v∗d − g(q(θmax), r(θmax)) defines a bound on the optimality gap of θmax.

2.5.3 Returning to our motivating example

Consider again the two-market two-firm example discussed in Section 2.3 that is motivated by the

California electricity market. Assume that the design objective is social welfare, i.e., g(q, r) =

Π
(
q, r;θ0

)
, where θ0 := 1

3θ
SW. In Section 2.4.2, we argued that θ0 is not the optimal choice for



27

such a design objective. In the following, we apply our approximation scheme towards choosing the

design parameter to maximize g(q, r) at the equilibrium.

Consider a particular setting where the two markets have identical linear inverse demand func-

tions pm(dm) := 1 − dm for each m ∈ {1, 2}, the firms have linear costs c1(q1) := 1
2qf and

c2(q2) := 1
4q2, and the capacity of the line is b = 1

2 . As a benchmark for comparison, consider

G(θ) with θ = θ0, which represents the current practice in electricity markets. Our results in Ap-

pendix 2.F indicate that q1 = 3
16 , q2 = 7

16 , r1 =−r2 = 1
8 defines the unique Nash equilibrium of G

(
θ0
)

with a social welfare of 83
256 ≈ 0.324.

Now, let us design θ using our approximation scheme. Assume ε = 0.001 and discretize the set

Θε as follows. Tile the triangle in Fig. 2.2 by squares (aligning with the base) with sides that are

one-tenth the length of the base. Solve C(θ) as a convex quadratic program at the vertices of the

square tiles that satisfy θ ∈ Θε. Upon maximizing g(q, r) = Π
(
q, r;θ0

)
at the solutions of C(θ)

over this discrete set, we obtain θmax = (0.027, 0.627, 0.346)>, and the social welfare at the unique

Nash equilibrium of G(θmax) is 0.339, which is higher than 0.324 obtained at that of G
(
θ0
)
. One

can show that, while the total production from the two firms is identical for both design choices,

the cheaper firm produces a larger share with θmax than with θ0.

To gauge the suboptimality of our design choice θmax, we obtain an upper bound v∗1 = 0.340 on

the maximum attainable social welfare at a Nash equilibrium of G(θ) over Θε. The upper bound

is remarkably close to the social welfare obtained with θmax. Hence, our design choice θmax has a

provably good approximation quality.
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Appendices

In the following Appendices, we prove Theorems 2.1, 2.2, Proposition 2.1, and Lemma 2.1. We

begin by defining some notation important in the sequel. For a symmetric matrix X, let X � 0

(resp. X ≺ 0) denote that X is negative semidefinite (resp. negative definite). For a finite

index set I, let (xi, i ∈ I) define a vertical vector concatenation of xi’s, for which i ∈ I. For an

arbitrary function h : Rm → R, define ∂
∂xi

h
∣∣∣
x=x0

as the partial derivative of h with respect to xi at

x0 ∈ Rm for i = 1, . . . ,m. Further, let ∂2

∂xi∂xj
h
∣∣∣
x=x0

:= ∂
∂xi

∂
∂xj

h
∣∣∣
x=x0

. For an arbitrary function

h : Rmx+my → R, define ∇xh(x,y) as the gradient of h with respect to x. The sub-level and

super-level sets of h are given by {x ∈ Rm : h(x) ≤ η} and {x ∈ Rm : h(x) ≥ η}, respectively, as η

varies over R. Let 0 denote a vector of zeros of appropriate dimension.

Also, define

P ′ := {r ∈ R|M| : Ar ≤ b, 1>r = 0},

and hence r ∈ P and 1>r = 0 is succinctly represented as r ∈ P ′, henceforth.

Our proofs shall make use of two known results in the literature. We describe them briefly.

Consider a game G with (a) players 1, . . . , N , (b) actions xi ∈ Rni for i = 1, . . . , N , where

(x1, . . . ,xN ) ∈ X ⊆ Rn1+...+nN , and (c) payoff functions ϕi : Rn1+...+nN → R for each player

i = 1, . . . N .

• Game G is said to be concave, if X is a compact convex set, and ϕi is concave in xi for each

i = 1, . . . , N . Then, Theorem 1 in [110] states that a Nash equilibrium always exists for a

concave game.

• Recall that game G is said to be a weighted potential game, if there exists a vector of weights

w ∈ RN++ and a potential function Φ : Rn1+...+nN → R that satisfies (2.5). Then, Theorem 1

in [99] implies that if G is a weighted potential game with Φ as the potential function, and Φ

is concave and continuously differentiable, then any Nash equilibrium of G is an optimizer of

Φ over X .3

3Neyman’s result guarantees that if a game with finitely many players admits a concave and continuously differ-
entiable potential function, then any correlated equilibrium of the game is a pure strategy Nash equilibrium, and is
given by a global optimizer of the potential function of the game.
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2.A Proof of Theorem 2.1

Proof. From the definition of Π̂, it follows that Π̂(q, r;θ)−Π(q, r;θ) does not depend on r. Hence,

for every q ∈ R|F|+ , we have

Π̂(q, r;θ)− Π̂(q, r′;θ) = Π(q, r;θ)−Π(q, r′;θ) (2.15)

for each r, r′ ∈ P ′. Expanding Π̂(q, r;θ), we obtain

Π̂(q, r;θ) = (θM + θP − θC)
∑
m∈M

 ∑
f∈F(m)

((αm − βmrm) qf − cf (qf ))− βm
2

∑
f,f ′∈F(m)

qfqf ′


+ (θC − 2θM )

∑
m∈M

βm
2
r2
m + θM

∑
m∈M

αmrm.

Then, for every f ∈ F and r ∈ P ′, it follows that

Π̂(qf , q−f , r;θ)− Π̂(q′f , q−f , r;θ)

= (θM + θP − θC)

(αM(f) − βM(f)rM(f)

) (
qf − q′f

)
− βM(f)

 ∑
f ′∈F(M(f))

qf ′

 qf

+βM(f)

q′f +
∑

f ′∈F(M(f))\{f}

qf ′

 q′f −
(
cf (qf )− cf (q′f )

)
= (θM + θP − θC)

αM(f) − βM(f)

rM(f) +
∑

f ′∈F(M(f))

qf ′

 qf − cf (qf )

−

αM(f) − βM(f)

rM(f) + q′f +
∑

f ′∈F(M(f))\{f}

qf ′

 q′f + cf (q′f )


= (θM + θP − θC)

[
πf (qf , q−f , r)− πf (q′f , q−f , r)

]
for each qf , q

′
f ∈ R+. Hence, if θM + θP − θC > 0, then G(θ) is a weighted potential game with

Π̂(q, r;θ) as the potential function.

2.B Proof of Theorem 2.2(a)

Proof. We prove the existence of a Nash equilibrium of G(θ) for 2θM −θC ≥ 0 and θM +θP −θC > 0

separately.

When 2θM − θC ≥ 0. We leverage Rosen’s result to show that a Nash equilibrium exists. Note

that G(θ) is not a concave game since its joint strategy set is unbounded. Our key idea is to define

another game Ĝ(θ) with a bounded joint strategy set such that any Nash equilibrium of Ĝ(θ) is also
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a Nash equilibrium of G(θ). Then, we utilize Rosen’s result to guarantee the existence of a Nash

equilibrium of Ĝ(θ), and by extension, to that of G(θ).

Recall that r ∈ P ′. Since P ′ is compact, there exists r̄ ∈ R+ such that |rm| ≤ r̄ for every m ∈M.

Let q̄ := maxf∈F (1/2)
(
αM(f)/βM(f) + r̄

)
. Consider a game Ĝ(θ) that is identical to G(θ) except

that each firm f ∈ F has a strategy set [0, q̄]. Then (q, r) ∈ [0, q̄]|F| × P ′ is a Nash equilibrium of

Ĝ(θ) if

πf (q, r) ≥ πf (q′f , q−f , r), for all q′f ∈ [0, q̄];

Π(q, r;θ) ≥ Π(q, r′;θ), for all r′ ∈ P ′.

Now, πf is continuous in its arguments. It is also concave in qf because

∂2

∂q2
f

πf (q, r) = −2βM(f) − c′′f (qf ) < 0.

Moreover, we have

∂

∂qf
πf (q, r)

∣∣∣∣
qf=q̄

= αM(f) − βM(f)rM(f) − 2βM(f)q̄ − c′f (q̄)

≤ αM(f) + βM(f)r̄ − 2βM(f)q̄

≤ 0.

The first inequality holds since cf is nondecreasing and |rM(f)| ≤ r̄. The second inequality follows

from the definition of q̄. Hence, we infer that πf (q, r) is decreasing over qf ≥ q̄. In turn, it implies

that if (q, r) is a Nash equilibrium of Ĝ(θ), then

πf (q, r) ≥ πf (q′f , q−f , r)

for all q′f ∈ R+. Hence, any Nash equilibrium of Ĝ(θ) is also a Nash equilibrium of G(θ).

Next, we argue that Ĝ(θ) is a concave game. The joint strategy set of Ĝ(θ) is given by the

compact set [0, q̄]|F| × P ′. The payoff function of firm f , i.e., πf , is continuous in all its arguments

and concave in qf . The market maker’s payoff function Π(q, r;θ) is continuous in all its arguments,

and we have

∂2

∂rm∂rm′
Π(q, r;θ) =

−(2θM − θC)βm, if m = m′,

0, otherwise.

(2.16)

Since −(2θM − θC)βm ≤ 0, the Hessian of Π(q, r,θ) with respect to r is then negative semidefinite,

and hence Π(q, r;θ) is concave in r. We conclude that Ĝ(θ) is a concave game, and therefore has a
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Nash equilibrium. Hence, G(θ) has a Nash equilibrium.

When θM + θP − θC > 0. For such a design parameter, Theorem 2.1 implies that G(θ) is a

weighted potential game. Then, if C(θ) has a finite optimizer, this optimizer is a Nash equilib-

rium of G(θ), and therefore a Nash equilibrium of G(θ) exists. We show that the super-level sets of

Π̂(q, r;θ) are compact, and thus that Π̂(q, r;θ) has a finite optimizer. Rewrite Π̂(q, r;θ) as

Π̂(q, r;θ) = −(θM + θP − θC)h1(q, r) + h2(r),

where h1(q, r) and h2(r) are defined as

h1(q, r) :=
∑
m∈M

βm
2


 ∑
f∈F(m)

qf

2

+
∑

f∈F(m)

q2
f


−

∑
f∈F(m)

(αmqf − cf (qf )) + βmrm
∑

f∈F(m)

qf

 ,
h2(r) :=

(
θC
2
− θM

) ∑
m∈M

βmr
2
m +

∑
m∈M

(θMαm + θCβm)rm.

Recall that P ′ is compact, and hence there exists r̄ ∈ R+ such that |rm| ≤ r̄ for all r ∈ P ′. It is

easy to verify from the definition of h1 that

h1(q, r) ≤ h1(q, r̄1)

for all q ∈ R|F|+ . Continuity of h1 and h2 implies that the super-level set of Π̂ is closed. Furthermore,

since cf is convex and non-decreasing, we have that lim‖q‖→∞ h1(q, r̄1) → ∞. Hence, its sub-level

sets are bounded. In turn, it implies that the sub-level sets of h1(q, r) are bounded. Also, h2(r)

solely depends on r, which varies over a compact set P ′. Then, h2 takes values over a bounded set

in R. Putting the arguments together then implies that the super-level sets of Π̂ are compact.

2.C Proof of Theorem 2.2(b)

Proof. When 2θM − θC ≥ γ · (θM + θP − θC) ≥ 0, part (a) implies that G(θ) has at least one Nash

equilibrium. To equate the set of Nash equilibria of G(θ) to the set of optimizers of C(θ), we first

establish that the potential function Π̂(q, r;θ) is jointly concave in (q, r). The Hessian of Π̂(q, r;θ)

with respect to (q, r) can be shown to be block diagonal with |M| block matrices. Denote said block
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matrices by Hm,m ∈M, where

Hm = −

(θM + θP − θC)
(
βm11> + diag(dm)

)
(θM + θP − θC)βm1

(θM + θP − θC)βm1> (2θM − θC)βm

 ,

and dm :=
(
βm + c′′f (qf ), f ∈ F(m)

)
∈ R|F(m)|

+ . It suffices to show that Hm � 0 for each m ∈ M.

By the Sherman-Woodbury matrix identity (see [63] for example), we have

(
βm11> + diag(dm)

)−1

= diag (dm)
−1 −

(
1

1/βm + 1> diag (dm)
−1

1

)
diag (dm)

−1
11> diag (dm)

−1
.

Using Schur complements, we obtain

Hm � 0 ⇐⇒ (2θM − θC)βm − (θM + θP − θC)βm1>(βm11> + diag(dm))−1βm1 ≥ 0

⇐⇒ (2θM − θC)− (θM + θP − θC)

(
1− 1

1 + βm1> diag (dm)
−1

1

)
≥ 0. (2.17)

And Hm ≺ 0 follows from the observation that

1− 1

1 + βm1> diag (dm)
−1

1
≤ 1−

1 +
∑

f∈F(m)

βm
βm + infqf≥0 c′′f (qf )

−1

≤ γ.

Also, Π̂ (q, r;θ) is continuously differentiable. Thus, G(θ) is a potential game with a concave and

continuously differentiable potential function. Neyman’s result then implies that the set of Nash

equilibria of G(θ) is identical to the set of optimizers of C(θ).

When 2θM−θC > γ ·(θM +θP −θC) ≥ 0, it follows from (2.17) that Π̂ (q, r;θ) is strictly concave.

Then, C(θ) has at most one optimizer. Finally, the desired result follows from the equality of the

sets of Nash equilibria of G(θ) and the optimizers of C(θ), and the fact that G(θ) has at least one

Nash equilibrium.

2.D Proof of Proposition 2.1

Proof. Since θM + θP − θC > 0 and 2θM − θC > γ · (θM + θP − θC), we infer from Theorem 2.1 that

G(θ) is a weighted potential game with a strictly concave and continuously differentiable potential

function Π̂(q, r;θ). Hence, the set of Nash equilibria of G(θ) is identical to the set of optimizers of

C(θ). Moreover, since Π̂(q, r;θ) is strictly concave, C(θ) has at most one finite optimizer. When

P = R|M|, then C(θ) seeks to maximize Π̂ (q, r;θ) subject to q ∈ R|F|+ and 1>r = 0. Now, C(θ)
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being equivalent to a convex optimization problem with linear constraints, the KKT conditions

imply that (q, r) solves C(θ) if and only if q ∈ R|F|+ , 1>r = 0, and there exists µ ∈ R|F|+ and λ ∈ R

that satisfy

∇r
[
Π̂(q, r;θ)− λ1>r

]
= 0, (2.18a)

∇q
[
Π̂(q, r;θ) + µ>q

]
= 0, (2.18b)

µ>q = 0. (2.18c)

Let µ ∈ R|F|+ be the all-zero vector, and

λ :=
1

2
(θP + θM − θC)

 1

|F|
∑
f ′

Cf ′ − α

+ θMα. (2.19)

In what follows, we show that q, r defined in (2.10) – (2.11) and µ, λ defined above together satisfy

the Karush-Kuhn-Tucker optimality conditions.

Using the lower bound on α, we infer that q ∈ R|F|+ . Also, it is easy to verify that 1>r = 0.

Substituting the values of q, r into the left hand side of (2.18a), we get

∂

∂rM(f)

[
Π̂(q, r;θ)− λ1>r

]
= − (2θM − θC)βrM(f) − (θP + θM − θC)βqf + θMα− λ

= 0,

where the last step follows from (2.19). Similarly, substituting the values of q, r into the left hand

side of (2.18b) gives

∂

∂qf

[
Π̂(q, r;θ) + µ>q

]
= α− β

(
rM(f) + 2qf

)
− Cf + µf = 0.

Finally, (2.18c) trivially holds, since µ is the all-zero vector. Hence, we conclude that (q, r), as

defined in (2.10) – (2.11), defines the unique Nash equilibrium of G(θ).
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Towards computing the social welfare at the unique Nash equilibrium, we obtain

∑
m∈M

CSm(q, r) =
β

2

∑
f∈F

(
qf + rM(f)

)2
=

1

8β

|F|(α− C̄)2 + (κ(θ)− 1)
2
∑
f∈F

(Cf − C̄)2

 ;

∑
m∈M

PSm(q, r) =
∑
f∈F

[
α− Cf − β

(
qf + rM(f)

)]
· qf

=
1

4β

|F|(α− C̄)2 + (κ(θ) + 1)
2
∑
f∈F

(Cf − C̄)2

 ;

∑
m∈M

MSm(q, r) = −β
∑
f∈F

(
qf + rM(f)

)
· rM(f)

= − 1

2β
κ(θ)(κ(θ)− 1)

∑
f∈F

(Cf − C̄)2.

The details are omitted for space constraints. Then the social welfare at the unique Nash equilibrium

is given by

∑
m∈M

[CSm(q, r) + PSm(q, r) + MSm(q, r)]

=
3|F|
8β

(
α− C̄

)2
+

1

8β

[
(κ(θ)− 1)2 + 2(κ(θ) + 1)2 − 4κ(θ)(κ(θ)− 1)

]∑
f∈F

(
Cf − C̄

)2
=

3|F|
8β

(
α− C̄

)2
+

1

8β

(
−κ(θ)2 + 6κ(θ) + 3

)∑
f∈F

(
Cf − C̄

)2
.

Finally, utilizing the definition of σ2
c in the above equation yields the desired result.

2.E Proof of Lemma 2.1

Proof. C(θ) is a multiparametric convex program, parameterized by θ. When θ ∈ Θε, C(θ) admits

a unique primal optimal solution for each θ ∈ Θε; call it (q(θ), r(θ)). Let (λ(θ), µ(θ)) denote a dual

optimal solution of C(θ). Dual optimal solutions may not be unique. Since Θε is compact, it suffices

to argue that there exists positive constants q̄, r̄, λ̄, and µ̄, such that C(θ) admits a primal/dual

pair of optimal solutions that satisfies

‖q(θ)‖2 ≤ q̄, ‖r(θ)‖2 ≤ r̄, ‖λ(θ)‖2 ≤ λ̄, ‖µ(θ)‖2 ≤ µ̄

for each θ ∈ Θε.

If r is feasible in C(θ), then r ∈ P ′, where P ′ is compact. That yields a uniform bound on



35

‖r(θ)‖2 for all θ ∈ Θε. Call that bound r̄.

Recall that (q(θ), r(θ)) is also the unique Nash equilibrium of G(θ). Therefore, qf (θ) maximizes

πf
(
qf , q−f (θ), r(θ)

)
over qf ≥ 0. However, we also have

∂

∂qf
πf
(
qf , q−f (θ), r(θ)

)
= αM(f) − βM(f)rM(f)(θ)− 2βM(f)qf − c′f (qf )

≤ αM(f) + βM(f)r̄ − 2βM(f)qf ,

which implies that πf
(
qf , q−f (θ), r(θ)

)
decreases with qf for qf >

r̄
2 + maxm∈M

αm
2βm

. In turn, we

conclude

‖q(θ)‖2 ≤ q̄ := |F|
(
r̄

2
+ max
m∈M

αm
2βm

)
.

For each f ∈ F , we have assumed cf to be continuously differentiable, implying ∇qΠ̂(q, r;θ) is

continuous in (q, r,θ). Therefore, ∇qΠ̂(q, r;θ) remains bounded over {q : ‖q‖2 ≤ q̄}×P ′×Θε. As

a result, µ(θ) = − ∇qΠ̂(q, r;θ)
∣∣∣
q(θ),r(θ)

admits a uniform bound µ̄.

Let Λ(θ) denote the set of optimal Lagrange multipliers for the constraint A′>r ≤ b′ in C(θ). We

conclude the proof by showing that infλ(θ)∈Λ(θ) ‖λ(θ)‖2 is uniformly bounded over θ ∈ Θε. To that

end, suppose the rows of A′ are given by a>1 , . . . ,a
>
dim(b′), where ai ∈ R|M|. Denote by S(θ), the set

of active constraints at optimality of C(θ). That is, a>i r(θ) = b′i for each i ∈ S(θ) ⊆ {1, . . . ,dim(b′)},

and a>i r(θ) < b′i for i ∈ Sc(θ) := {1, . . . ,dim(b′)} \ S(θ). Then, Λ(θ) is given by

Λ(θ) =

λ ∈ Rdim(b′) : λi = 0 for i ∈ Sc(θ),
∑
i∈S(θ)

λiai = −∇r Π̂(q, r;θ)
∣∣∣
q(θ),r(θ)

 . (2.20)

If A′(θ) denotes the |S(θ)| × |M| matrix with rows a>i for i ∈ S(θ), we conclude from (2.20) that

inf
λ(θ)∈Λ(θ)

‖λ(θ)‖2 =

∥∥∥∥[A′>(θ)]†∇r Π̂(q, r;θ)
∣∣∣
q(θ),r(θ)

∥∥∥∥
2

,

where [A′>(θ)]† denotes the Moore-Penrose inverse of A′>(θ). Using the continuous differentiability

of cf , f ∈ F , one can argue that ∇rΠ̂(q, r;θ) remains bounded over {q : ‖q‖2 ≤ q̄}×P ′ ×Θε. And

the rest follows from the fact that A′(θ) has finitely many possibilities for θ ∈ Θε.

2.F Analyzing the Two-Market Two-Firm Example in Fig.

2.1

This section is devoted to deriving all Nash equilibria of G(θ) for all θ ∈ R3
+ in a two-market two-firm

example, portrayed in Figure 2.1. Our formulae let us gain insights into the parametric dependence

of the Nash equilibria on the design parameter.
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Consider G(θ), where M = {1, 2}, F = {1, 2}, and F(1) = {1}, F(2) = {2}. Each firm has an

increasing linear cost, given by cf (qf ) = Cfqf . Assume that the markets are spatially homogeneous,

having inverse linear demand functions pm(dm) = α−βdm for m ∈M, where α, β > 0. The network

constraint is given by P := {r = (r1, r2)> : |r1| ≤ b, |r2| ≤ b}, where b denotes the capacity of

the link between the two markets. Hence, the markets only differ in the marginal costs of the firms

supplying in each market.

Notice that 1>r = 0 for our example implies r1 = −r2. Defining r := r1 = −r2, the market

maker’s strategy set can be described by {r ∈ R : |r| ≤ b}. And, the market maker’s payoff (with a

slight abuse of notation) is given by

Π(q1, q2, r;θ) = − (θM + θP − θC) (q1 − q2)βr − (2θM − θC)βr2

+ θP ((α− C1) q1 + (α− C2) q2) +
1

2
(θC − 2θP )β

(
q2
1 + q2

2

)
.

Restrict attention to the case where

0 ≤ b ≤ α−max{C1, C2}
β

.

Then, (q1, q2, r), where q1, q2 ≥ 0 and |r| ≤ b, constitutes a Nash equilibrium of G(θ) if and only if

1. Π(q1, q2, r;θ) ≥ Π(q1, q2, r
′;θ) for any r′ such that |r′| ≤ b, and

2. the production quantities satisfy

q1 =
1

2

(
α− C1

β
− r
)
, q2 =

1

2

(
α− C2

β
+ r

)
. (2.21)

Let R(θ) denote the set of all r’s that comprise a Nash equilibrium for the game, when the design

parameter is θ. Then, for each r ∈ R(θ), the production quantities at the Nash equilibrium are

uniquely identified by (2.21). We provide R(θ) for all θ ∈ R3
+ in Table 2.F.1 by summarizing the

results of Lemmas 2.2 – 2.4. We state and prove Lemmas 2.2 – 2.4 at the end of this section.

Presenting our results requires the following additional notation. For any x ∈ R, define

[x]
u
` :=


x, if ` ≤ x ≤ u,

`, if x < `,

u, otherwise.

.

Let sgn (x) denote the sign of x ∈ R. We denote the null set by ∅. For convenience, define

∆C := C1 − C2, and κ(θ) :=
θP + θM − θC
3θM − θC − θP

.
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Table 2.F.1: Summary of R(θ) for the two-market two-firm example.

Conditions on θ R(θ)

2θM − θC > 0

3θM − θC − θP > 0

{[
κ(θ)∆C

2β

]+b
−b

}
3θM − θC − θP = 0

[−b,+b] , if ∆C = 0,

{b · sgn (∆C)} , otherwise.

3θM − θC − θP < 0

{
±b, κ(θ)∆C

2β

}
, if

∣∣∣∣κ(θ)∆C

2β

∣∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

2θM − θC = 0

θP + θM − θC < 0

{[
−∆C

2β

]+b
−b

}
θP + θM − θC = 0 [−b,+b]

θP + θM − θC > 0

{
±b,−∆C

2β

}
, if

∣∣∣∣∆C2β

∣∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

2θM − θC < 0

θP + θM − θC < 0
{−b · sgn (∆C)} , if

∣∣∣∣∆C2β

∣∣∣∣ ≥ b,
∅, otherwise.

θP + θM − θC = 0 {±b}

θP + θM − θC > 0
{±b} , if

∣∣∣∣∆C2β

∣∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

Recall that Theorems 2.1 and 2.2 provide sufficient conditions on θ for G(θ) to exhibit certain

properties. Though we do not address the question of necessity or tightness, we use the results in

Table 2.F.1 for the two-market two-firm example to illustrate that each of the properties may fail

to hold if the respective conditions are not satisfied.

1. When neither θM + θP − θC > 0 nor 2θM ≥ θC holds, a Nash equilibrium may not exist.

Consider θ that satisfies the above conditions, such that θM + θP − θC < 0, and let
∣∣∣∆C2β

∣∣∣ < b

in our example. Then, Table 2.F.1 implies that R(θ) = ∅.

2. When 2θM ≥ θC , but not θM +θP −θC > 0, a Nash equilibrium of G(θ) exists, but G(θ) is not

a weighted potential game. Consider our example, where 2θM −θC = 0, θM +θP −θC < 0 and

C1 = C2. From Table 2.F.1, the game admits a unique Nash equilibrium with R(θ) = {0}.

However, it can be shown that the actions of the players under best response dynamics exhibit

the following cycle:

r q1 q2

+b 1
2

(
α−C1

β − b
)

1
2

(
α−C2

β + b
)

−b 1
2

(
α−C1

β + b
)

1
2

(
α−C2

β − b
)

+b 1
2

(
α−C1

β − b
)

1
2

(
α−C2

β + b
)

...
...

...
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implying that the game under consideration is not a potential game.

3. When 2θM −θC ≥ 0, and θM +θP −θC > 0, but 2θM −θC ≥ γ · (θM + θP − θC) does not hold,

there may exist a Nash equilibrium of G(θ) that is not an optimizer of C(θ). In our example,

γ = 1
2 , and hence

2θM − θC − γ · (θM + θP − θC) =
1

2
(3θM − θC − θP ).

Consider θ that satisfies 2θM − θC > 0, 3θM − θC − θP < 0, and additionally,
∣∣∣κ(θ)∆C

2β

∣∣∣ < b.

Then, Table 2.F.1 reveals that R(θ) =
{
±b, κ(θ)∆C

2β

}
, and hence, the game has three distinct

Nash equilibria.

Now, C(θ) maximizes Π̂(q1, q2, r;θ) over q1, q2 ≥ 0 and |r| ≤ b, where

Π̂(q1, q2, r;θ) =(θM + θP − θC)
(
(α− C1)q1 + (α− C2)q2 − β(q2

1 + q2
2)− (q1 − q2)βr

)
− (2θM − θC)βr2.

One can argue that if q1, q2, r solves C(θ), then, q1, q2 are related to r as in equation (2.21).

In turn, solving C(θ) then reduces to maximizing

1

2
(θM + θP − θC)

[
r ·∆C +

1

2β
(α− C1)2 +

1

2β
(α− C2)2

]
− 1

2
(3θM − θC − θP )βr2,

subject to |r| ≤ b. The above function being a strictly convex function in r attains its maximum

at the boundary of the feasible set, i.e., at ±b. As a result, there does not exist an optimizer

of C(θ) with r = κ(θ)∆C
2β .

4. When 2θM − θC = γ (θM + θP − θC) > 0, then G(θ) may have a multitude of Nash equilibria,

all of which are optimizers of C(θ). This is observed in our example, where R(θ) = [−b,+b],

when 2θM − θC > 0, 3θM − θC − θP = 0, and C1 = C2.

In what follows, we formally characterize R(θ) for all θ ∈ R3
+ for our example.

Lemma 2.2. Suppose θP + θM − θC = 0. Then, R(θ) is given by

R(θ) =


{0}, if 2θM − θC > 0,

[−b,+b] , if 2θM − θC = 0,

{±b}, otherwise.

Proof. When θP + θM − θC = 0, the maximizer of Π(q1, q2, r;θ) over r is independent of q1 and

q2. Further, if 2θM − θC > 0, then Π(q1, q2, r;θ) is a concave quadratic even function of r, and
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hence r = 0 is its unique maximizer. On the other hand, if 2θM − θC = 0, then Π(q1, q2, r;θ) is

independent of r, implying each r ∈ [−b, b] constitutes a maximizer of Π(q1, q2, r;θ). Finally, if

2θM −θC < 0, then Π(q1, q2, r;θ) is a convex quadratic even function of r, that attains its maximum

at the boundaries of the feasible set, i.e., at r = ±b.

Lemma 2.3. Suppose θP + θM − θC < 0. Then, R(θ) is given by

R(θ) =



{[
κ(θ)∆C

2β

]+b
−b

}
, if 2θM − θC > 0,{[

−∆C
2β

]+b
−b

}
, if 2θM − θC = 0,

{−b · sgn (∆C)} , if 2θM − θC < 0, and
∣∣∣∆C2β

∣∣∣ ≥ b,
∅, otherwise.

Proof. Suppose θP + θM − θC < 0. Define the expressions in (2.21) as q1(r) and q2(r), respectively,

to make explicit its dependence on r. When 2θM − θC > 0, the function Π(q1, q2, r;θ) is strictly

concave in r, and hence q1(r), q2(r), r constitutes a Nash equilibrium of the game, if and only if one

of three cases arise:

ρ(r,θ) = 0, and |r| ≤ b, (2.22a)

or ρ(r,θ) ≤ 0, and r = −b, (2.22b)

or ρ(r,θ) ≥ 0, and r = +b. (2.22c)

where ρ(r,θ) is the derivative of Π(q1, q2, r;θ) with respect to r, evaluated at q1(r), q2(r), r, given

by

ρ(r,θ) =
∆C

2
(θP + θM − θC)− (3θM − θC − θP )βr. (2.23)

Now, θP + θM − θC < 0 and 2θM − θC > 0 together imply 3θM − θC − θP > 0. Using the relations

in (2.22a) – (2.22c), it is then straightforward to conclude that

R(θ) =

{[
κ(θ)∆C

2β

]+b

−b

}
,

when θP + θM − θC < 0 and 2θM − θC > 0.

Next, consider the case, when 2θM − θC = 0. Then, Π(q1, q2, r;θ) is a linear function of r with

slope β(q1−q2). Thus, q1(r), q2(r), r constitutes a Nash equilibrium of the game if and only if one of

three cases arise: (i) q1(r) = q2(r), and |r| ≤ b, or (ii) q1(r) > q2(r) and r = +b, or (iii) q1(r) < q2(r)
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and r = −b. Substituting the values of q1(r) and q2(r) from (2.21), and rearranging, we get

R(θ) =

{[
∆C

2β

]+b

−b

}
.

Finally, consider the case when 2θM − θC < 0. Then, Π(q1, q2, r;θ) is strictly convex in r, and is

maximized at either r = −b or r = +b or both. Notice that

Π(q1, q2,+b;θ)−Π(q1, q2,−b;θ) = −2(θM + θP − θC)(q1 − q2)βb,

implying (i) +b is an optimizer if q1(+b) ≥ q2(+b), and (ii) −b is an optimizer if q1(−b) ≤ q2(−b).

Upon simplifying these conditions, we conclude,

R(θ) =

{−b · sgn (∆C)} , if
∣∣∣∆C2β

∣∣∣ ≥ b,
∅, otherwise.

The rest follows from combining the values of R(θ) under different cases.

Lemma 2.4. Suppose θP + θM − θC > 0. Then, R(θ) is given by

R(θ) =



{[
κ(θ)∆C

2β

]+b
−b

}
, if 2θM − θC > 0, and 3θM − θC − θP > 0,

[−b,+b] , if 2θM − θC > 0, 3θM − θC − θP = 0, and ∆C = 0,{
±b, κ(θ)∆C

2β

}
, if 2θM − θC > 0, 3θM − θC − θP < 0, and

∣∣∣κ(θ)∆C
2β

∣∣∣ ≤ b,{
±b,−∆C

2β

}
, if 2θM − θC = 0, and

∣∣∣∆C2β

∣∣∣ ≤ b,
{±b} , if 2θM − θC < 0, and

∣∣∣∆C2β

∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

Proof. Suppose θP +θM −θC > 0. First, consider the case, when 2θM −θC > 0. Then, Π(q1, q2, r;θ)

is strictly concave in r. Similar to our analysis in the proof of 2.3, it follows that q1(r), q2(r), r

constitute a Nash equilibrium of the game, if and only if one of three cases, given by (2.22a) –

(2.22c), arises. We tackle three further cases separately, depending on the sign of 3θM − θC − θP .

Case (i): 3θM − θC − θP > 0. This case is identical to the case when θP + θM − θC < 0 and

3θM − θC − θP > 0, and we obtain

R(θ) =

{[
κ(θ)∆C

2β

]+b

−b

}
.
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Case (ii): 3θM − θC − θP = 0. Since θP + θM − θC > 0, the sign of ρ(r,θ), defined in (2.23), is

given by the sign of ∆C. Then, (2.22a) – (2.22c) implies that

R(θ) =

[−b,+b], if ∆C = 0,

{b · sgn (∆C), otherwise.

Case (iii): 3θM − θC − θP < 0. We solve for r by setting ρ(r,θ) = 0, and further utilize (2.22a) –

(2.22c) to obtain

R(θ) =


{
±b, κ(θ)∆C

2β

}
, if

∣∣∣κ(θ)∆C
2β

∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

Second, consider that case when 2θM − θC = 0. Then, Π(q1, q2, r;θ) is linear in r with slope

β(q1 − q2). The analysis is similar to the case when 2θM − θC = 0, but with θP + θM − θC < 0.

Proceeding as in the proof of Lemma 2.3, we obtain

R(θ) =


{
±b,−∆C

2β

}
, if

∣∣∣∆C2β

∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

Finally, consider the case when 2θM − θC < 0. Then, Π(q1, q2, r;θ) is strictly convex in r, and

is maximized at either r = −b or r = +b or both. Again, the analysis mirrors the argument in the

proof of Lemma 2.3, and yields

R(θ) =

{±b} , if
∣∣∣∆C2β

∣∣∣ ≤ b,
{b · sgn (∆C)} , otherwise.

The rest follows from combining the values of R(θ) under different cases.
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Chapter 3

Inefficiency of Forward Markets in
Leader-Follower Competition

In this chapter, we study the strategic interaction between generation flexibility and forward markets.

This work has wider applications beyond electricity to other settings such as manufacturing where

firms could have heterogeneous production lead times and forward contracts are commonly used to

lock in business in advance. The significance of forward trading in many industries have motivated

numerous studies into forward markets. Among the literature, one of the most important issues has

been the relationship between forward contracts and market power. In this area, the seminal paper

is [10] which showed using a two-stage model that long forward positions mitigate market power. The

intuition is that any individual firm has a strategic incentive to sell forward. This creates a prisoner’s

dilemma, and therefore, in equilibrium, all firms produce more. Subsequently, this phenomenon was

also developed further and tested empirically by others [72, 57, 59, 128, 136, 135, 26]. Some studies,

on the other hand, sought to investigate the robustness of those findings, and found different results

with other models [56, 98, 58, 124, 85, 79].

In this work, we study the impact of forward contracting on markets where there is a group of

leader firms that choose their productions before a group of follower firms. This game is also known

as a leader-follower (or Stackelberg) competition [120]. This classical setting arises, for example,

when new entrants to an industry such as gas and telecommunication must decide whether to invest

in capacities [44, 48]. The capacity expansion process is time consuming so the new entrants (leaders)

must decide in advance the quantities they will supply to the market. The incumbents (followers)

already have capacity and need only decide how much goods/services to provide. Another prominent

example is electricity, where generators have significantly different startup times and ramp rates.

Generators with longer startup times and slower ramp rates (leaders) must decide on the amount

of power they will supply to the market before the more flexible generators (followers). In both

examples, although follower firms choose their productions later than leader firms, they may still

sell a fraction of their outputs in advance. In fact, gas, telecommunications, and electricity, are all
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industries where forward contracts form a significant portion of the total output. These contracts

are traded through bilateral negotiations or in centralised exchanges. Hence, the study of how

forward contracting impacts leader-follower competition is a crucial area with important practical

applications.

We analyze a model that combines key elements from the classical forward contracting model

by [10] and the classical leader-follower model by [120]. In particular, we consider a setting in which

there are two types of firms – leaders and followers – that choose production levels at different

stages. Leaders choose production levels before followers. However, followers are allowed to sell

forward contracts when leaders are choosing their productions. We assume that followers have

capacity constraints while leaders are unconstrained. Imposing capacity constraints on leaders does

not change the analysis significantly and the same insights still hold.

Both classical models are appealing due to their tractability and each model has been extensively

studied and further developed. However, to our knowledge, the combined setting has not been inves-

tigated before. Due to the prisoner’s dilemma effect, the natural inference is that allowing followers

to trade forward contracts would increase their productions. Moreover, because forward contracts

mitigate market power, another expectation is that the total production would also increase. In

this work, we show that this intuition is not always true, and the impact of forward contracting

is ambiguous. The market power mitigation property of forward contracting might, in fact, create

opportunities for leaders to manipulate the market by exploiting followers’ capacity constraints.

3.1 Our Contributions

Our goal in this study is to provide insight into the strategic interactions between leaders and followers

in forward markets. We contribute to the existing literature in the following ways.

Our first contribution is the insight that forward contracting may decrease the efficiency of the

market. The reason is that forward contracting may create opportunities for leaders to exploit the

capacity constraints of the followers. Forward contracts provide incentives for followers to produce

more. However, if this results in followers becoming capacity constrained, then leaders would be

able to profit by withholding their productions disproportionately, and the net effect is a decrease

in total production. Informally, the increased competition due to forward contracting is offset by the

decreased competition faced by the leaders due to followers being capacity constrained. Therefore, this

is a phenomenon where capacity constraints and forward markets create opportunities for market

manipulation.

Our second contribution is the insight that non-existence of symmetric equilibrium could be

attributed to exploitation of capacity constraints. In particular, we show that symmetric equilibria

do not exist precisely when followers are operating close to capacity. Our analyses shows that, when



44

any follower operates close to capacity, other followers have a strategic incentive to exploit the fact

that this follower is now less flexible by reducing their forward positions. However, if all firms were

to reduce their forward positions simultaneously, the high prices would create incentives for them to

increase their forward positions. Therefore, there is no symmetric equilibria. This insight is related

to the observation by [95] that equilibria may not exist. However, the argument in [95] was based

on showing that profit functions are not convex and no explicit insights into strategic incentives

or the circumstances under which equilibria do not exist were provided. On the other hand, we

provide explicit conditions under which symmetric equilibria do not exist, and our analyses reveal

the strategic interactions that lead to no symmetric equilibria.

Our third contribution is a complete characterization of symmetric equilibria for a model that

is technically challenging to analyze. As observed by [95], capacity constraints may cause profit

functions to be non-convex. Hence, standard techniques used to show existence and uniqueness no

longer apply. Nevertheless, we provide closed-form expressions of equilibria as a function of the

parameters, including the number of leaders, number of followers, their marginal costs, and the

capacity of the followers. Our explicit characterizations enable us to infer tradeoffs between the

parameters as well as obtain the asymptotic behavior of the system as the numbers of leaders and

followers increase. Our characterizations also show that market equilibria are especially interesting

– they may not exist or may not be unique – at the transition between interior equilibria and full

capacity utilization due to opportunities for market power exploitation. Hence, our work motivates

further analysis on capacity constrained games. Moreover, since capacity constraints may be due to

lack of flexibility in adjusting production levels or long-run production capacities, both operational

and long-term market power analyses are important.

3.2 Related Literature

Our model, being a combination of the classical forward contracting and leader-follower models, has

not been studied before. However, our study fits into the extensive literature on forward contract-

ing and leader-follower competition. We review the literature on these and explain how our work

contributes to them.

Forward markets

[10] was the first to provide and analyze a model showing that strategic forward contracting mitigates

market power. Later studies by [56, 98, 58, 124, 85, 79] reaffirmed or invalidated their findings under

other assumptions. As these are not directly relevant to our work, we do not discuss their details

here (see [95] for a survey). However, the general conclusion is that the original findings do not

always hold when the assumptions change.
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The domain of electricity markets has seen the most application of the model from [10]. This may

be attributed to the fact that the bulk of trade in electricity are through forward contracts and market

power was a significant issue in wholesale electricity markets after their deregulation. However,

capacity constraints is an important feature in electricity markets, and this feature was not present

in their model. Therefore, there have been numerous extensions in this direction. [73] and [141]

added network constraints and price caps. However, due to the complexity of the problem, only

numerical solutions were provided. [101, 71] proposed the idea that forward contracts may increase

capacity investment. This idea was then investigated analytically by [95] by adding an endogenous

capacity investment stage. The authors made the interesting finding that forward contracts may

not mitigate market power when capacities are endogenous.

To our knowledge, our work is the first to study the robustness of the findings by [10] in the clas-

sical leader-follower setting with capacity-constrained followers. In addition, our work supplements

existing results on the impact of capacity constraints on existence of equilibria, by providing explicit

characterizations under which symmetric equilibria exists and vice versa.

Leader-follower competition

The first extension of Stackelberg’s framework to multiple leaders and followers was provided by [120,

119]. The author also gave conditions for existence and uniqueness of equilibria. Subsequently, there

has been significant interest in relaxing the assumptions of the model. However, most studies focus

on the technical conditions required for existence and uniqueness, and neglect to study the under-

lying strategic behavior. [49] showed that equilibrium is no longer unique if one removes Sherali’s

assumption that identical producers make identical decisions. [44, 139, 48] generalized some of Sher-

ali’s existence and uniqueness results to the setting with uncertainty. There are also other efforts

by [105, 77] that provide conditions for existence using variational inequality techniques.

We are not aware of any work that add capacity constraints to Sherali’s model. The closest

related work was by [100] but the authors were investigating price competition (while we focus on

quantity competition). [48] might appear to have included capacity limits in their analyses. However,

the authors used the capacity limits as a technical condition for their proof, since it was defined by

the point where marginal cost exceeds price. Hence, their capacity constraints are never binding,

and firms in their model do not strategically withhold productions unlike in our model.

To our knowledge, our work is the first to extend Sherali’s model with capacity constraints

on followers and allowing them to sell forward contracts. Similar to Sherali’s work, we restrict

ourselves to symmetric equilibria in the sense that leaders have equal productions and followers

have equal forward positions. We characterize all symmetric equilibria and provide insights into

strategic behavior. Note that [49] showed that equilibrium is no longer unique if Sherali’s symmetry

assumptions are relaxed. However, his findings are technically different from ours. His results are
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attributed to non-smoothness due to the non-negativity constraints on quantities, while our results

are attributed to non-smoothness due to the capacity constraints. Hence, symmetric equilibria

always exists in [49] but may not exist in our model.

3.3 Model

Our goal is to understand whether forward contracting mitigates market power when firms have

capacity constraints and heterogeneous production lead times. To this end, we formulate a model

that combines key elements from the classical forward contracting model proposed in [10] as well as

the classical leader-follower model proposed in [120].

We assume that there are two types of firms – leaders and followers – that choose production

quantities at two different times. Leaders, who have longer lead times than followers, choose pro-

duction quantities in the first stage while followers choose production quantities in the second stage.

However, followers sell forward contracts in the first stage. Hence, we also refer to the first stage as

the forward market and the second stage as the spot market.

3.3.1 Forward contracting

Our model for forward contracting is based on the classical model from [10]. This model is commonly

used in many studies of forward markets [98, 58, 73, 85, 79, 141, 95]. In the forward market, firms

sign contracts to deliver a certain quantity of good at a price pf . These contracts are binding and

observable pre-commitments. Then, in the spot market, firms sell the good at a price P (q) which

is a function of the total quantity q of the good sold in both the forward and spot markets. We

assume a linear demand model given by

P (q) = α− βq,

where the constants α, β > 0. This is a common model for demand [10, 95] and implies that buyers’

aggregate utility is quasilinear in money and quadratic in the quantity of the good consumed.

We assume that there is perfect foresight. That is, in the first stage, both leaders and followers

know the demand in the second stage. Equilibrium then requires that the forward and spot prices

are aligned:

pf = P (q).

That is, no arbitrage is possible. This assumption was also used in both the classical forward

contracting model [10] and the classical leader-follower model [120]. An extension to the case of
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uncertain demand is definitely relevant and interesting. But our results show that the model with

certain demand is rich enough to capture interesting strategic interactions between leaders and

followers. The case of uncertain demand is left to future work.

3.3.2 Production lead times

Our model for leader-follower competition is based on the classical model from [120]. We assume that

there are M leaders and N followers, with marginal costs C and c, respectively, where c ≥ C > 0.

We also abuse notation and use M and N to denote the set of leaders and followers, respectively. The

assumption that c ≥ C is motivated by the expectation that there is typically a cost to flexibility,

e.g. in electricity markets more flexible generators typically have higher operating costs than less

flexible generators.

Each leader i ∈ M chooses its production quantity xi in the forward market. Each follower

j ∈ N chooses its production quantity yj in the spot market and also sells a forward contract of

quantity fj in the forward market. We assume that leaders sell forward contracts in the forward

market equal to their committed productions. It is possible to show that allowing leaders to sell

forward contracts that differ from their committed productions does not change the analyses.

We assume that each follower has a production capacity k > 0 but leaders are not capacity

constrained. In practice, followers might only be able to adjust productions within a limited range

around operating points. Hence, a more sophisticated model would have followers choose set points

in the forward market and impose constraints on deviations from those set points. Our model for

followers can be interpreted as them having zero set points and being allowed to ramp productions

to a maximum of k. Similarly, our model for leaders can be interpreted as them choosing their

operating points in the forward market and not being allowed to deviate from them.

3.3.3 Competitive model

We adopt the following equilibria concept for the market. Let the vectors x = (x1, . . . , xM ),

y = (y1, . . . , yN ), and f = (f1, . . . , fN ) denote the leaders’ productions, followers’ productions, and

followers’ forward contracts, respectively. We also use the notation f−j = (f1, . . . , fj−1, fj+1, . . . , fN )

to denote the forward contracts of all followers other than i. Similarly, we use the notations

x−i = (x1, . . . , xi−1, xi+1, . . . , xM ) and y−j = (y1, . . . , yj−1, yj+1, . . . , yN ).

Spot market (followers): We define the spot market equilibrium as follows. Only followers

compete in the spot market. Follower j’s profit from the spot market is:

φ
(s)
j (yj ; y−j) = P

 M∑
i′=1

xi′ +

N∑
j′=1

yj′

 · (yj − fj)− cyj .
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Given y−j , follower j chooses a production yj to maximize its profit subject to its capacity constraint.

Hence, a Nash equilibrium of the spot market is a vector y such that for all j:

φ
(s)
j (yj ; y−j) ≥ φ(s)

j (ȳj ; y−j) , for all ȳj ∈ [0, k] .

Theorem 5 of [67] implies that there always exists a unique spot equilibrium given any leader

productions and follower forward positions (x, f). We denote this unique equilibrium by y (f ,x) =

(y1 (f ,x) , . . . , yN (f ,x)).

Forward market: The forward market equilibrium depends on behaviors of both followers and

leaders. Their profits depend on the outcome of the spot market. In particular, follower j’s profit is

given by:

φj (fj ; f−j ,x) = P

 M∑
i′=1

xi′ +

N∑
j′=1

yj′(f ,x)

 · fj + φ
(s)
j (y(f ,x))

=

P
 M∑
i′=1

xi′ +

N∑
j′=1

yj′(f ,x)

− c
 · yj(f ,x),

where the second equality follows by substituting for φ
(s)
j (f ,x). Note that follower j anticipates the

impact of the actions in the forward market on the spot market. Given (f−j ,x), follower j chooses

its forward contract fj to maximize its profit. This is an unconstrained maximization as followers

can take positive or negative positions in the forward market. Next, leader i’s profit is given by:

ψi (xi; x−i, f) =

P
 M∑
i′=1

xi′ +

N∑
j′=1

yj′(f ,x)

− C
 · xi.

Given (x−i, f), leader i chooses a production xi ∈ R+ to maximize its profit.

Hence, a subgame perfect Nash equilibrium of the forward market is a tuple (f ,x) such that for

all i:

ψi (xi; x−i, f) ≥ ψi (x̄i; x−i, f) , for all x̄i ∈ R+, (3.1)

and for all j:

φj (fj ; f−j ,x) ≥ φj
(
f̄j ; f−j ,x

)
, for all f̄j ∈ R. (3.2)

It is this equilibrium that is the focus of this study. To capture the key strategic interactions

between followers and leaders, we focus on equilibria in which leaders have symmetric productions

and followers have symmetric forward positions. This symmetric case already offers many insights.
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3.4 Summary of Main Insights

Our model differs from previous studies on forward contracting in two important aspects. First,

in our model, firms may choose productions (not just forward contracts) in the forward market,

which is a feature that has not been investigated before. Second, in our model, firms have capacity

constraints, while the majority of forward market studies assume unconstrained productions. The

most in-depth analysis on capacity-constrained forward markets, provided by [95], did not give

explicit conditions under which equilibria do not exist; while our work provides explicit expressions

for equilibria and hence offer stronger insights into the strategic interactions. We provide two macro

insights into the strategic interactions of leader-follower competition with forward contracting.

Our first insight is that forward contracting may decrease the efficiency of the market. The intu-

ition is that forward contracting creates opportunities for leaders to exploit the capacity constraints

of followers. Conventional intuition on forward contracting suggests that followers will increase their

productions with the introduction of forward contracting [10]. However, this may cause followers to

operate closer to capacity. Leaders, in order to exploit the fact that followers are now less flexible,

reduce productions to the extent that the equilibrium total market production decreases. Informally,

the increased competition in the forward market due to forward contracting is offset by the decreased

competition in the spot market due to followers operating closer to capacity. Hence, the capacity

constraints create opportunities for market manipulation. Note that, while [95] also showed that

forward contracting may decrease the efficiency of the market, that was a different phenomenon

caused by the impact of forward contracting on capacity investment.

Our second insight is that non-existence of symmetric equilibria may be attributed to exploitation

of followers’ capacity constraints. The intuition is that each firm’s individual incentive to exploit

the capacity constraints of followers could lead to disequilibrium in the forward market. When any

follower operates close to capacity, other firms have incentive to exploit the fact that the follower is

now less flexible by withholding offers from the forward market. However, if all firms were to reduce

their offers, the high prices would create incentives for them to increase their offers. Hence, there

is no equilibrium. Note that, while [95] also observed that equilibria may not exist when there are

capacity constraints, their argument was based on showing that profit functions are not convex and

no explicit conditions or strategic insights were provided. In contrast, we give explicit conditions

under which symmetric equilibria do not exist and hence are able to attribute non-existence of

symmetric equilibria to strategic withholding.
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3.5 One Leader and Two Followers

To develop the intuition for our results, we start by considering only M = 1 leader, N = 2 followers,

and equal marginal costs C = c. Throughout this section, we denote by ᾱ the normalized demand:

ᾱ :=
1

β
(α− C).

Recall that α is the maximum price that demand is willing to pay and C is the minimum price that

producers need to receive for them to supply to the market. Hence, we restrict our analyses to the

case where ᾱ ≥ 0.

First, in Sections 3.5.1 and 3.5.2, we study the reactions of the followers to the leader and

vice versa. In particular, we focus on the impact of followers’ capacity constraints and leader’s

commitment power on their responses to the other producers’ actions. Then, in Section 3.5.3, we

study how they impact the equilibria of the market. Finally, in Sections 3.5.4, we study how followers’

forward contracting impact market outcomes.

3.5.1 Follower reaction

We begin by studying how followers respond when the leader produces a fixed quantity x ∈ R+. We

focus on symmetric responses, that is, those where followers take equal forward positions. Let F :

R+ → P(R) denote the symmetric reaction correspondence of the followers, i.e., for each f ∈ F (x),

φ1(f ; f, x) ≥ φ1(f̄ ; f, x), ∀f̄ ∈ R;

and φ2(f ; f, x) ≥ φ2(f̄ ; f, x), ∀f̄ ∈ R.

Proposition 3.2 in the Appendix implies that the followers produce equal quantities y1(f ; f, x) =

y2(f ; f, x). Let Y : R+ → P(R+) denote the production correspondence of the followers, i.e., for each

y ∈ Y (x), there exists f ∈ F (x) such that y1(f ; f, x) = y2(f ; f, x) = y. Applying Propositions 3.2

and 3.3 in the Appendix, the reaction and production correspondences are given by:

F (x) = [−ᾱ+ x+ 3k,∞), Y (x) = {k}, if x ≤ ᾱ− 3k,

F (x) = ∅, Y (x) = ∅, if ᾱ− 3k < x < ᾱ− 5
5−2
√

2
k,

F (x) =
{

1
5 (ᾱ− x)

}
, Y (x) =

{
2
5 (ᾱ− x)

}
, if ᾱ− 5

5−2
√

2
k ≤ x ≤ ᾱ,

F (x) = (−∞,−ᾱ+ x], Y (x) = {0}, if ᾱ ≤ x.

Figure 3.1 shows the characteristic shapes of F and Y . There are four major segments labelled

(i) – (iv). Note that the follower productions are always k in segment (i) and 0 in segment (iv). In

general, one expects followers’ reactions to decrease as x increases because a higher leader production
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Figure 3.1: Follower reaction correspondence F and production correspondence Y .

decreases the demand in the spot market. This behavior indeed holds in segment (ii), which is also

the behavior in a conventional forward market in the absence of capacity constraints. However, the

capacity constraints lead to complex reactions, as seen in segments (i), (iii), and (iv).

Segments (i) and (iv): x ≤ ᾱ− 3k or ᾱ ≤ x. Multiple equilibria. These are degenerate scenarios

where followers have binding productions, and hence are neutral to a range of different forward

positions, as they all lead to the same production outcomes. The structure of the reaction set is

also intuitive. Consider segment (i), where followers produce zero quantities. If f ′ is a symmetric

reaction, then any f ′′ < f ′ is also a symmetric reaction, since decreasing forward positions create

incentives to decrease productions, and productions cannot drop below zero. Hence, the reaction

sets are left half-lines. A similar argument applies to segment (iv), but in this case, the reaction sets

are right half-lines.

Segment (iii): ᾱ − 5
5−2
√

2
k ≤ x ≤ ᾱ. No equilibrium. This is the scenario where followers’

capacity constraints create incentives for market manipulation which causes symmetric reactions to

disappear. The type of symmetric reactions in segment (ii) are unsustainable here because each

follower has incentive to reduce its forward position. For example, when follower 1 reduces its

forward position, it induces follower 2 to increase its production. However, since follower 2 can

only increase its production up to k, the total production decreases, the market price increases, and

follower 1’s profit increases. By symmetry, follower 2 has incentive to manipulate the market in

a similar manner. Yet, should both followers reduce their forward positions, there will be excess

demand in the market. Hence, there is no symmetric equilibrium between the followers.
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3.5.2 Leader reaction

Next, we study how the leader responds when both followers take a fixed forward position f ∈ R.

Let X : R→ P(R+) denote the leader’s reaction correspondence, i.e., for each x ∈ X(f),

ψ1 (x; f, f) ≥ ψ1 (x̄; f, f) , ∀x̄ ∈ R+.

Let Y : R → P(R+) denote the production correspondence of the followers, i.e., for each y ∈ Y (f),

there exists x ∈ X(f) such that y1(f ; f, x) = y2(f ; f, x) = y. The expressions for X and Y can be

obtained from Propositions 3.4 and 3.2 in the Appendix. X and Y takes three distinctive shapes

depending on the value of ᾱ.

Low demand: 0 ≤ ᾱ ≤ 2k. In this case, the reaction and production correspondences are given

by

X(f) = { 1
2 ᾱ}, Y (f) = {0}, if f ≤ − 1

2 ᾱ,

X(f) = {ᾱ+ f}, Y (f) = {0}, if − 1
2 ᾱ ≤ f ≤ −

1
4 ᾱ,

X(f) = { 1
2 ᾱ− f}, Y (f) = { 1

6 ᾱ+ 2
3f}, if − 1

4 ᾱ ≤ f ≤
1
2 ᾱ,

X(f) = {0}, Y (f) = { 1
3 (ᾱ+ f), if − 1

2 ᾱ ≤ f ≤ 3k − ᾱ,

X(f) = {0}, Y (f) = {k}, if 3k − ᾱ ≤ f.

Figure 3.2a shows the characteristic shapes of X and Y . There are four major segments labelled

(i) – (iv). The follower supplies 0 in segments (i) and (ii) and supplies k for a subset of segment (iv).

In general, one expects the leader’s production to decrease as f increases, because larger forward

positions lead to larger follower supplies, which decreases the market price. This behavior indeed

holds in segment (iii). However, the capacity constraints and leader’s commitment power lead to

complex reactions in segments (i), (ii), and (iv).

Segment (i) and (iv): f ≤ − 1
2 ᾱ or 3k − ᾱ ≤ f . Constant production. These are degenerate

scenarios where the leader is insensitive to the followers’ forward positions. When f ≤ − 1
2 ᾱ, it is

because followers’ always supply zero regardless of their forward positions. When 3k − ᾱ ≤ f , it

is because followers supply large quantities, and drive prices down below the level at which it is

profitable for leaders to produce.

Segment (ii): − 1
2 ᾱ ≤ f ≤ − 1

4 ᾱ. Increasing production. In this scenario, the leader uses its

commitment power to drive the followers out of the market. As followers increase their forward

positions, the leader, instead of decreasing its production (as one would typically expect), actually

increases its production, as doing so allows it to depress demand below the level at which followers

are willing to supply.

Medium demand: 2k < ᾱ < 4
2−
√

3
k. In this scenario, the reaction and production correspon-
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dences are given by

X(f) = { 1
2 ᾱ}, Y (f) = {0}, if f ≤ − 1

2 ᾱ,

X(f) = {ᾱ+ f}, Y (f) = {0}, if − 1
2 ᾱ ≤ f ≤ −

1
4 ᾱ,

X(f) = {− 1
2 ᾱ}, Y (f) = { 1

6 ᾱ+ 2
3f}, if − 1

4 ᾱ ≤ f ≤ −
√

3−1
2 ᾱ+

√
3k,

X(f) = { 1
2 ᾱ− f,

1
2 ᾱ− k}, Y (f) = { 1

6 ᾱ+ 2
3f, k}, if f = −

√
3−1
2 ᾱ+

√
3k,

X(f) = { 1
2 ᾱ− k}, Y (f) = {k}, if −

√
3−1
2 ᾱ+

√
3k < f.

Figure 3.2b shows the characteristic shapes of X and Y . There are, again, four major segments

labelled (i) – (iv). Segments (i), (ii), and (iii), are similar to that in the low demand case when

0 ≤ ᾱ ≤ 2k. Segment (iv), however, is different in that, while the leader produces zero in this

segment when 0 ≤ ᾱ ≤ 2k, the leader now produces a strictly positive quantity in this segment.

This is due to the fact that the leader’s profit on each unit is given by

α− β(y1 + y2 + x)− C = β(ᾱ− y1 − y2 − x),

and hence, when ᾱ > 2k, the leader is still able to profit from producing when both followers

produce k. Due to this, the leader also has an incentive to exploit followers’ capacity constraints,

unlike previously when the leader was producing zero. The leader does so by sharply reducing its

production at the end of segment (iii). This induces the followers to increase their supply, but since

followers can only increase their supply up to k, the total market production decreases, the market

price increases, and the leader’s profit increases. Hence, there is a discontinuity in the leader’s

reaction curve between segments (iii) and (iv).

High demand: 4
2−
√

3
k ≤ ᾱ. In this scenario, the reaction and production correspondences are

given by

X(f) = { 1
2 ᾱ}, Y (f) = {0}, if f ≤ − 1

2 ᾱ,

or X(f) = {ᾱ+ f}, Y (f) = {0}, if − 1
2 ᾱ ≤ f < −

1
2 ᾱ+

√
(ᾱ− k)k,

or X(f) = {ᾱ+ f, 1
2 ᾱ− k}, Y (f) = {0, k}, if f = − 1

2 ᾱ+
√

(ᾱ− k)k,

or X(f) = { 1
2 ᾱ− k}, Y (f) = {k}, if − 1

2 ᾱ+
√

(ᾱ− k)k < f.

Figure 3.2c shows the characteristic shapes of X and Y . There are now only three segments labelled

(i), (ii), and (iv). These segments are similar to segments (i), (ii), and (iv), respectively, in the

medium demand case where 2k < ᾱ < 4
2−
√

3
k. The difference is that, now, the leader decreases its

production sharply once followers begin to supply to the market. As a consequence, the followers’

supply jumps from 0 to k.
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Figure 3.2: Leader reaction correspondence X and follower production correspondence Y .

3.5.3 Forward market equilibrium

We now study the equilibria of the forward market. Let Q ⊆ R×R+ denote the set of all symmetric

equilibria and Y ⊆ R+ denote the set of all follower productions, i.e., (f, x) ∈ Q if (f, f, x) is a

Nash equilibrium of the forward market, and y ∈ Y if there exists (f, x) ∈ Q such that y1(f ; f, x) =

y2(f ; f, x) = y. From Proposition 3.5 and 3.2, the symmetric equilibria and follower productions are

given by

Q = {(f, x) : f = 1
8 ᾱ, x = 3

8 ᾱ}, Y = { 1
4 ᾱ}, if 0 ≤ ᾱ ≤ 8

4−
√

3
k,

Q = ∅, Y = ∅, if 8
4−
√

3
k < ᾱ < 4k,

Q = {(f, x) : f ∈ [− 1
2 ᾱ+ 2k,∞), x = 1

2 ᾱ− k}, Y = {k}, if 4k ≤ ᾱ.

Observe that there are three operating regimes.

Low demand: 0 ≤ ᾱ ≤ 8
4−
√

3
k. There is a one symmetric equilibrium. Productions increase

as ᾱ increases. This regime is identical to that in the absence of capacity constraints (to see this,

substitute k =∞).

Medium demand: 8
4−
√

3
k < ᾱ < 4k. There is no symmetric equilibrium. This phenomena is due

to leaders and followers withholding productions and forward contracts respectively. As observed in

the separate reaction curves, each individual follower or leader has incentive to exploit the capacity
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constraints of the followers by reducing its position in the forward market. But should all producers

do so, there will be excess demand in the market, and hence no symmetric equilibria are sustainable.

High demand: 4k ≤ ᾱ. There is a unique equilibrium leader production 1
2 ᾱ − k and infinitely

many equilibrium follower forward positions [− 1
2 ᾱ + 2k,∞). The latter is a right half-line because

followers are supplying all their capacity and so are indifferent once forward positions exceed a

certain value. There leader production increases with demand; although the rate of increase of 1
2 is

slower than in the case when demand is low, where it increased at the rate 3
8 . This distinction is

due to the leader facing less competition than before when followers were not capacity-constrained.

Note that, unlike with the leader’s reaction curve, there is no apparent phenomenon where

leader’s increase their productions to drive followers out of the market. This can be attributed to

the fact that the leader and followers have equal marginal costs. In Section 3.6, we will see that the

leader’s commitment power does cause its equilibrium production to increase with demand, when

we relax the assumption of equal marginal costs.

3.5.4 Inefficiency of the forward market

To study the efficiency of the forward market, we compare the outcome in our market against that in

a Stackelberg competition, where followers do not sell forward contracts. Hence, the leader continues

to commit to its production ahead of the followers.

Note that the symmetric Stackelberg equilibria are simply the symmetric reactions of the leader

when followers take neutral forward positions. Hence, using the notation in Section 3.5.2, we let

X(0) denote the set of all symmetric Stackelberg equilibria, i.e., for each x ∈ X(0),

ψ1(x; 0, 0) ≥ ψ1(x̄; 0, 0), ∀x̄ ∈ R+,

and we let Y ⊆ R+ denote the set of all follower productions, i.e., y ∈ Y if there exists x ∈ X(0)

such that y1(0; 0, x) = y2(0; 0, x) = y. From Proposition 3.6, the Stackelberg equilibria are given by

X(0) =
{

1
2 ᾱ
}
, Y =

{
1
6 ᾱ
}
, if 0 ≤ ᾱ < 2

√
3√

3−1
k,

X(0) =
{

1
2 ᾱ,

1
2 ᾱ− k

}
, Y =

{
1

3−
√

3
k, k
}
, if ᾱ = 2

√
3√

3−1
k,

X(0) =
{

1
2 ᾱ− k

}
, Y = {k} , if 2

√
3√

3−1
k < ᾱ.

Observe that there are two operating regimes. The regime 0 ≤ ᾱ < 2
√

3√
3−1

k is the regime of low

demand. In this regime, the market has a unique equilibrium and both leader and follower produc-

tions increase with demand. The regime 2
√

3√
3−1

k < ᾱ is the regime of high demand. In this regime,

followers produce all their capacity. The leader produces 1
2 ᾱ − k, which is less than its production

1
2 ᾱ in the low demand regime, because it faces less competition now since followers have no capacity
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left to supply.

By comparing the Stackelberg equilibria to the forward market equilibria, we can see that in-

troducing a forward market does not always increase the total market production. In particular,

when 4k ≤ ᾱ < 2
√

3√
3−1

k, the total production 1
2 ᾱ + k with the forward market is less than the total

production 5
6 ᾱ in the Stackelberg market. In this scenario, demand is high and followers produce

almost all their capacity in the Stackelberg market. Having followers trade forward contracts give

them more incentive to produce and they increase their productions to k. However, this has the

side effect of reducing the competition faced by the leader, and giving it an incentive to withhold its

production. The net effect is a decrease in total market production. Since all producers have equal

marginal costs, a decrease in total market production implies a decrease in social welfare.

3.6 Structural Insights

We now extend the insights obtained from studying the case of 1 leader, 2 followers, and equal

marginal costs, to general numbers of leaders and followers with marginal costs C and c that are

possibly different. In addition, we characterize the asymptotic behavior as the number of producers

increase. Unless otherwise stated, the proofs for all the results in this section are provided in

Appendix 3.E.

Throughout this section, we denote by αx and αy the normalized leader and follower demands

respectively and by 4C the normalized marginal cost difference between the leaders and followers:

αx =
1

β
(α− C),

αy =
1

β
(α− c),

4C =
1

β
(c− C).

Note that αy = αx − 4C. Since c ≥ C, it suffices to restrict our analyses to the case where

αx ≥ 0. We focus on symmetric equilibria, by which we mean equilibria where leaders have symmetric

productions and followers have symmetric forward positions (which, by Proposition 3.2, implies that

the latter have symmetric productions).

3.6.1 Follower reaction

Suppose all leaders produce a quantity x ∈ R+ and let F (x) ⊆ R denote the set of all symmetric

follower reactions, i.e., for each f ∈ F (x) and j ∈ N ,

φj(f ; f1, x1) ≥ φj(f̄ ; f1, x1), ∀f̄ ∈ R.
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Proposition 3.3 gives the solution for F (x). Observe that F (x) has a similar shape to the graph in

Figure 3.1. We focus on the segment where F (x) = ∅ and highlight key properties that attribute

this segment to market manipulation when followers are operating just below capacity.

Lemma 3.1. The following holds.

1. There exists a unique ȳ < k, such that there exists f ∈ F (x) such that yj(f1, x1) = y if and

only if 0 ≤ y ≤ ȳ or y = k. Moreover,

ȳ =

(
1−O

(
1

N

))
k.

2. There exists a unique
¯
ξ ∈ R+, such that x ≤ 1

M (αy−
¯
ξ) if and only if there exists f ∈ F (x) such

that yj(f1, x1) = k, and a unique ξ̄ <
¯
ξ, such that x ≥ 1

M (αy − ξ̄) if and only if there exists

f ∈ F (x) such that yj(f1, x1) ≤ ȳ. Moreover, F (x) = ∅ for all x ∈
(

1
M

(
αy −

¯
ξ
)
, 1
M

(
αy − ξ̄

))
and

¯
ξ − ξ̄ =

¯
ξ ·O

(
1
N

)
.

Hence, there exists an open interval of symmetric leader productions inside which there is no

symmetric follower reaction. Due to this interval, there is a set of symmetric follower productions

just below k that are never equilibria. As N increases, this set shrinks at the rate 1
N . In the limit, all

symmetric follower productions could be equilibria. These asymptotic behavior are consistent with

the intuition that followers have less ability to manipulate the market as their numbers increase.

3.6.2 Leader reaction

Suppose all followers take a forward position f ∈ R and let X(f) ⊆ R+ denote the set of all

symmetric leader reactions, i.e., for each x ∈ X(f) and i ∈M ,

ψi(x;x1, f1) ≥ ψi(x̄;x1, f1), ∀x̄ ∈ R+.

Proposition 3.4 gives the solution for X(f). When αx ≤ Nk, we have η3 ≤ k − (αx −Nk), and one

can check that X(f) has a similar shape to the graph in Figure 3.2a. When αx > Nk, then X(f)

differs from the graphs in Figures 3.2b and 3.2c in that segment (iv) may overlap with segments

(iii) and (ii), i.e., there might be up to two reactions. Here, we focus on segment (ii) where the

leader reaction is strictly increasing, as well as the discontinuous transition between segment (iv)

and segments (ii) or (iii). The following result highlights key properties of segment (ii).

Lemma 3.2. There exists unique
¯
f, f̄ ∈ R, such that f ∈

[
¯
f, f̄
]

if and only if 1
M (αx −4C + f) ∈

X(f). Moreover, the following holds:

1. yj
(
f1, 1

M (αx −4C + f) 1
)

= 0 for all f ∈
[
¯
f, f̄
]
.
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2. f̄ −
¯
f = O

(
αx
M

)
.

Hence, there exists a closed interval
[
¯
f, f̄
]

of symmetric follower productions inside which there

is a graph of strictly increasing leader reactions. Moreover, the followers’ productions are zero. This

is due to leaders using their commitment power to drive the followers out of the market. As M

increases, this interval shrinks at the rate αx
M .

The next result highlights key properties of the transition between segment (iii) and (iv).

Lemma 3.3. Suppose αx > Nk.

1. There exists a unique ȳ < k, such that there exists f ∈ R and x ∈ X(f) such that yj(f1, x1) = y

if and only if 0 ≤ y ≤ ȳ or y = k. Moreover,

ȳ =


(
1−O

(
αx−Nk
MN

))
k, if αx ≤ Nk

(
1 + (M+1)

√
N+1

(
√
N+1−1)2

+ (M−1)
√
N+1√

N+1−1

)
,

0, otherwise.

2. There exists a unique f̄ ∈ R, such that f ≤ f̄ if and only if there exists x ∈ X(f) such that

yj(f1, x1) ≤ ȳ, and a unique
¯
f ≤ f̄ , such that f ≥

¯
f if and only if there exists x ∈ X(f)

such that yj(f1, x1) = k. Moreover, |X(f)| = 2 for all f ∈
[
¯
f, f̄
]
. Furthermore, if αx ≤

Nk
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
, then

f̄ −
¯
f = O

(
αx −Nk
M
√
N

)
.

Hence, there exists an open interval of follower productions (ȳ, k) that are never supported by any

leader reaction. This interval is due to leaders manipulating the market when followers are operating

just below capacity. As M , N , αx increases, This interval shrinks at the rate αx−Nk
MN . In the limit,

all follower productions can be sustained. Moreover, there is also an interval of follower forward

positions
[
¯
f, f̄
]

inside which there are two leader reactions that have different follower productions

(one equal to k and one less than ȳ). This interval shrinks at the rate αx−Nk
M
√
N

.

Note that, since the follower production is continuous in f and x, the second claim in Lemma 3.2

implies that the leader reaction is discontinuous. This was also observed in the case of one leader and

two followers. Also, note that followers’ capacity constraints have different impacts on the reactions

of the followers and that of the leaders. In the case of followers, it led to non-existence of symmetric

reactions. In the case of leaders, there always exists a symmetric reaction but there is a discontinuity

in the reaction correspondence.
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3.6.3 Forward market equilibrium

We now present structural results for the symmetric equilibria of the forward market. LetQ ⊆ R×R+

denote the set of all symmetric equilibria, i.e., for each (f, x) ∈ Q, (f1, x1) is a Nash equilibrium.

Proposition 3.5 gives the solution for Q.

First, we focus on the case where 4C = 0. The structure of the equilibria is almost identical

to that in Section 3.5.3; the key difference is that, while there is either one or no equilibria in

Section 3.5.3, there could be up to two equilibria now. This is highlighted in the following result.

Lemma 3.4. Suppose 4C = 0.

1. There exists a unique ȳ < k, such that there exists (f, x) ∈ Q such that yj(f1, x1) = y if and

only if 0 ≤ y ≤ ȳ or y = k. Moreover,

ȳ =

(
1−O

(
1

N

))
k.

2. There exists a unique ᾱx ∈ R+, such that αx ≤ ᾱx if and only if there exists (f, x) ∈ Q such

that yj(f1, x1) ≤ ȳ, and a unique
¯
αx ∈ R+, such that αx ≥

¯
αx if and only if there exists

(f, x) ∈ Q such that yj(f1, x1) = k. Moreover, if

M < N
√
N + 1− 1,

then ᾱx <
¯
αx, Q = ∅ for all αx ∈ (ᾱx,

¯
αx), and

¯
αx − ᾱx =

¯
αx · O

(
1
N

)
. Otherwise, then

ᾱx ≥
¯
αx, |Q| = 2 for all αx ∈ [

¯
αx, ᾱx], and ᾱx −

¯
αx =

¯
αx ·O

(
1

N
√
N

)
.

Hence, there exists an open interval of follower productions (ȳ, k) that are never symmetric

equilibria. As N increases, this interval shrinks to the empty set at the rate 1
N . The latter is

independent of the number of leaders M or demand αx. However, M has an impact on whether

there might be no symmetric equilibria or multiple symmetric equilibria. In particular, when M <

N
√
N + 1 − 1, there are no symmetric equilibria when

¯
αx < αx < ᾱx. Otherwise, when M ≥

N
√
N + 1− 1, there are two symmetric equilibria when ᾱx ≤ αx ≤

¯
αx.

Next, we consider the case where 4C > 0. In this case, the structure of the equilibria has an

additional feature that was not present when 4C = 0. In particular, when demand is low, followers

might not supply to the market. The next lemma highlights the structure of the transition to strictly

positive follower productions.

Lemma 3.5. Suppose 4C > 0. Let ζ1 = (M + 1)4C + min
(
MN4C,MNk + 2M

√
Nk4C

)
.

Then there exists (f, x) ∈ Q, such that yj(f1, x1) = 0 if and only if αx ≤ ζ1. Furthermore, if
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αx > (M + 1)4C, then yj(f1, x1) = 0 if and only if

(f, x) ∈
{

(f, x) ∈ R× R+

∣∣∣∣ x =
1

M
(αx − (4C − f)) and 0 ≤ f ≤ f̄

}
⊆ Q,

where f̄ > 0 if αx < ζ1.

The proof is omitted as it is a straightforward observation from Proposition 3.5. As the mar-

ket transitions from zero to strictly positive follower productions, there is a regime of demand

where there are multiple equilibria, characterized by leaders increasing supply when followers take

larger forward positions. This phenomenon is due to leaders using their commitment power to

drive followers out of the market (recall Lemma 3.2). Hence, although followers are not supply-

ing to the market, their forward positions have an impact on the efficiency of the equilibrium.

Moreover, note that the size of the interval of demand values where this phenomenon occurs is

min
(
MN4C,MNk + 2M

√
Nk4C

)
= Θ (MN).

When demand is high, the structure of the equilibria is similar to that when4C = 0, in that there

could be two or zero equilibria, except that the threshold for M now depends on 4C. Furthermore,

even in the limit as N tends to infinity, certain follower productions are never equilibria..

Lemma 3.6. Suppose 4C > 0.

1. There exists a unique ȳ < k, such that there exists (f, x) ∈ Q such that yj(f1, x1) = y if and

only if y ≤ ȳ or y = k. Moreover,

ȳ =


(
1−O

(
1
N

)) (
k − (

√
N+1−1)2

N 4C
)
, if 4C < Nk

(
√
N+1−1)2

,

0, otherwise.

2. There exists a unique ᾱx ∈ R+, such that αx ≤ ᾱx if and only if there exists (f, x) ∈ Q such

that yj(f1, x1) ≤ ȳ, and a unique
¯
αx ∈ R+, such that αx ≥

¯
αx if and only if there exists

(f, x) ∈ Q such that yj(f1, x1) = k. Moreover, if

M <


(N+1)k− N2+1

N2+(
√
N+1−1)2

(
Nk−(

√
N+1−1)

24C
)

N4C−k+ N+1

N2+(
√
N+1−1)2

(
Nk−(

√
N+1−1)

24C
) , if 4C < Nk

(
√
N+1−1)2

,

(N+1)k−4C
Nk+4C−k+2

√
Nk4C , otherwise,

(3.3)

then ᾱx <
¯
αx and Q = ∅ for all αx ∈ (ᾱx,

¯
αx). Otherwise, ᾱx ≥

¯
αx and |Q| = 2 for all

αx ∈ [
¯
αx, ᾱx].
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3.6.4 Inefficiency of the forward market

We compare the outcome against a Stackelberg competition where followers do not sell forward

contracts. Note that the symmetric equilibria of a Stackelberg competition are given by the sym-

metric reactions of the leaders when followers take neutral forward positions, i.e., X(0), where X is

defined in Section 3.6.2. Proposition 3.6 gives the solution for X(0). The structure is similar to the

equilibria of the forward market. We highlight the key features in the following three lemmas.

Lemma 3.7. Suppose 4C = 0.

1. There exists a unique ȳ < k, such that there exists x ∈ X(0) such that yj(0, x1) = y if and

only if y ≤ ȳ or y = k. Moreover,

ȳ =

(
1 +O

(
1√
N

))
k

2
.

2. There exists a unique ᾱx ∈ R+, such that αx ≤ ᾱx if and only if there exists x ∈ X(0) such that

yj(0, x1) ≤ ȳ, and a unique
¯
αx ≤ ᾱx, such that αx ≥

¯
αx if and only if there exists x ∈ X(0)

such that yj(0, x1) = k. Moreover, |X(0)| = 2 for all αx ∈ [
¯
αx, ᾱx].

Again, we see that there is an open interval of follower productions (ȳ, k) that are never symmetric

equilibria. However, as N increases, this interval, instead of shrinking as in the case of the forward

market, expands at the rate 1√
N

to a size of k
2 . That is, as the followers become more competitive,

the leaders are better able to exploit the capacity constraints of the followers.

When 4C > 0, followers might not supply to the market. The next lemma highlights the

structure of this regime.

Lemma 3.8. Suppose 4C > 0. Let ζ1 = (M+1)4C+min
(
MN4C,MNk + 2M

√
Nk4C

)
. Then

there exists x ∈ X(0) satisfying yj(0, x1) = 0 if and only if αx ≤ ζ1. Furthermore,

x =


1

M+1αx if 0 ≤ αx < (M + 1)4C,

1
M (αx −4C) if (M + 1)4C ≤ αx ≤ ζ1,

The proof is omitted as it is a straightforward observation from Proposition 3.6. The key insight

is that this regime exhibits different behavior depending on whether αx is less than or greater than

(M+1)4C. The leader productions increase at a faster rate when αx > (M+1)4C because leaders

use their commitment power to drive followers out of the market.

When demand is high, the structure of the equilibria is similar to the case when 4C = 0, except

that the range of follower productions that could be equilibria is now smaller. The larger the value

of 4C, the smaller the range of supportable follower productions.
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Lemma 3.9. Suppose 4C > 0.

1. There exists a unique ȳ < k, such that there exist x ∈ X(0) such that yj(0, x1) = y if and only

y ≤ ȳ or y = k. Moreover,

ȳ =


(

1 +O
(

1√
N

))
1
2

(
k − (

√
N+1−1)2

N 4C
)
, if 4C ≤ Nk

(
√
N+1−1)2

,

0, otherwise.

2. There exists a unique ᾱx ∈ R+, such that αx ≤ ᾱx if and only if there exists x ∈ X(0) such that

yj(0, x1) ≤ ȳ, and a unique
¯
αx ≤ ᾱx, such that αx ≥

¯
αx if and only if there exists x ∈ X(0)

such that yj(0, x1) = k. Moreover, |X(0)| = 2 for all αx ∈ [
¯
αx, ᾱx].

We now contrast the efficiency of the equilibria in the forward and Stackelberg markets. Given

follower and leader productions y and x respectively, let SW(y, x) denote the social welfare:

SW(y, x) :=

∫ Mx+Ny

0

P (w) dw − (MCx+Ncy) .

The next lemma highlights that adding a forward market to a Stackelberg market could be inefficient.

Lemma 3.10. Suppose 4C = 0. Let
¯
αx := (M +N + 1)k and ᾱx := (M+1)

√
N+1

2(
√
N+1−1)

Nk. Then, for all

αx ∈ [
¯
αx, ᾱx], there exists (f, x) ∈ Q and xS ∈ X(0) such that

Mx+Nyj(f1, x1) < MxS +Nyj(0, xS1),

SW(yj(f1, x1), x) < SW(yj(0, xS1), xS).

Moreover,

MxS +Nyj(0, xS1)

Mx+Nyj(f1, x1)
≤ (MN +M +N)(M + 1)

M(M + 1)(N + 1) + 2(N + 1−
√
N + 1)

,

SW(yj(0, xS1), xS)

SW(yj(f1, x1), x)
≤ (M + 1)2(MN +M +N)(MN +M +N + 2)

(N + 1)
(
(M2 +M + 2)

√
N + 1− 2

) (
(M2 + 3M)

√
N + 1 + 2

) ,
where the inequalities are tight.

This inefficiency is attributed to equilibria in the forward market where followers produce k while

there are equilibria in the Stackelberg market where followers produce strictly less than k. Hence,

this inefficiency is due to leaders exploiting the capacity constraints of the followers in the forward

market. To see this, note that this inefficiency does not disappear even with a large number of
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followers:

lim
N→∞

MxS +Nyj(0, xS1)

Mx+Nyj(f1, x1)
≤ (M + 1)2

M2 +M + 2
,

lim
N→∞

SW(yj(0, xS1), xS)

SW(yj(f1, x1), x)
≤ (M + 1)4

(M2 +M + 2)(M2 + 3M)
.

On the other hand, this inefficiency disappears with a large number of leaders:

lim
M→∞

MxS +Nyj(0, xS1)

Mx+Nyj(f1, x1)
≤ 1,

lim
M→∞

SW(yj(0, xS1), xS)

SW(yj(f1, x1), x)
≤ 1.

The statement of Lemma 3.10 does not specify whether there exists forward equilibria that are

equally or more efficient than Stackelberg equilibria. However, it is possible to impose further

conditions on the system and demand such that the Stackelberg equilibria are always strictly more

efficient.

The same approach in the proof of Lemma 3.10 can be used to obtain bounds on the production

and efficiency losses when 4C > 0. However, the bounds are more complicated and depend on 4C

and k.
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Appendices

In the following Appendices, we derive closed-form expressions for the symmetric follower reactions,

symmetric leader reactions, the symmetric forward market equilibria, and the symmetric Stackelberg

equilibria. Then, we derive the structural results in Section 3.6. We denote by αx and αy the

normalized leader and follower demands respectively, and by 4C the normalized marginal cost gap:

αx =
1

β
(α− C),

αy =
1

β
(α− c),

4C =
1

β
(c− C).

We use the following notation. For scalars z, a, b ∈ R such that a ≤ b, let

[z]ba :=


a, if z ≤ a,

b, if z ≥ b,

z, otherwise.

We will use the following properties:

(i) For any c ∈ R, c+ [z]
b
a = [z + c]

b+c
a+c.

(ii) If c > 0, then c [z]
b
a = [cz]

cb
ca.

(iii) If c < 0, then c [z]
b
a = [cz]

ca
cb .

3.A Spot Market Analyses

Proposition 3.1. Fix a follower l ∈ N and suppose fj = f for every j 6= l. There is a unique Nash

equilibrium y in the spot market such that, for each j 6= l,

yj =

[
1

N

(
αy + f −

M∑
i=1

xi − yl

)]k
0

. (3.4)
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Proof. The uniqueness of the Nash equilibrium follows from Theorem 5 of [67]. Each follower j ∈ N

has a strategy set [0, k] which is compact. Its payoff function in the spot market φ
(s)
j is continuous in

all arguments and is strictly concave in yj . Hence, from the Karush-Kuhn-Tucker (KKT) conditions,

we infer that y ∈ [0, k]N is a Nash equilibrium of the spot market, if and only if there exists λ,µ ∈ RN+
such that, for each j ∈ N :

∇yj
[
φ

(s)
j (yj ; y−j) + λjyj + µj(k − yj)

]
= 0, (3.5)

λjyj = µj(k − yj) = 0. (3.6)

Take any j 6= l. Expanding the LHS of (3.5) gives:

∇yj
[
φ

(s)
j (yj ; y−j) + λjyj + µj(k − yj)

]
= β

αy + f −
M∑
i=1

xi − yj −
N∑
j′=1

yj′

+ λj − µj

= β

(
αy + f −

M∑
i=1

xi − yl −Nyj

)
+ λj − µj .

Suppose 0 < yj < k. Then (3.6) imply that λj = µj = 0. From (3.5), we obtain

yj =
1

N

(
αy + f −

M∑
i=1

xi − yl

)
. (3.7)

Suppose yj = 0. Then (3.6) imply that µj = 0. From (3.5), we obtain

−

(
αy + f −

M∑
i=1

xi − yl

)
= λj ≥ 0. (3.8)

Suppose yj = k. Then (3.6) imply that λj = 0. From (3.5), we obtain

(
αy + f −

M∑
i=1

xi − yl −Nk

)
= µj ≥ 0. (3.9)

Since 0 ≤ yj ≤ k, (3.7) – (3.9) together imply that

yj =


0, if 1

N

(
αy + f −

∑M
i=1 xi − yl

)
≤ 0,

k, if 1
N

(
αy + f −

∑M
i=1 xi − yl

)
≥ k,

1
N

(
αy + f −

∑M
i=1 xi − yl

)
, otherwise,

which is equivalent to (3.4).

Proposition 3.2. Suppose fj = f for every j ∈ N . There is a unique Nash equilibrium in the spot
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market, given by

yj =

[
1

N + 1

(
αy + f −

M∑
i=1

xi

)]k
0

. (3.10)

Proof. The uniqueness of the Nash equilibrium follows from Theorem 5 of [67]. Hence, it suffices to

show that the given productions form a Nash equilibrium. From the optimality conditions in (3.5) –

(3.6), we infer that y ∈ [0, k] is a symmetric Nash equilibrium in the spot market, if and only if there

exists scalars λ, µ ∈ R+ such that,

β

(
αy + f −

M∑
i=1

xi − (N + 1)y

)
+ λ− µ = 0,

λy = µ (k − y) = 0.

Let

λ =

[
−β

(
αy + f −

M∑
i=1

xi − (N + 1)y

)]∞
0

,

µ =

[
β

(
αy + f −

M∑
i=1

xi − (N + 1)y

)]∞
0

.

It is straightforward to show that y defined in (3.10), and λ, µ defined above, together satisfy the

optimality conditions.

3.B Follower Reaction Analyses

Proposition 3.3. Fix the leaders’ productions x ∈ RM+ . Let F ⊆ R denote the set of symmetric

follower reactions, i.e., for each f ∈ F and j ∈ N ,

φj (f ; f1,x) ≥ φj
(
f̄ ; f1,x

)
, ∀f̄ ∈ R. (3.11)

Let ξ := αy −
∑M
i=1 xi. Then,

F =



(−∞,−ξ] , if ξ < 0,{
N−1
N2+1ξ

}
, if 0 ≤ ξ ≤ (N2+1)(N−1)

N2−2
√
N+1

k,

∅, if (N2+1)(N−1)

N2−2
√
N+1

k < ξ < (N + 1) k,

[−ξ + (N + 1)k,∞) , if (N + 1) k ≤ ξ.

(3.12)
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Moreover, for each f ∈ F ,

yj(f1,x) = 0 ⇐⇒ ξ ≤ 0,

0 < yj(f1,x) < k ⇐⇒ 0 < ξ ≤ (N2 + 1)(N − 1)

N2 − 2
√
N + 1

k,

yj(f1,x) = k ⇐⇒ (N + 1)k ≤ ξ.

Proof. The proof proceeds in three steps. In step 1, we reformulate a follower’s payoff maximization

problem into a problem involving its production quantity only. In step 2, we compute its payoff

maximizing production quantity. In step 3, we compute the symmetric follower forward positions

that satisfy the condition that every follower is producing at its payoff maximizing quantity. The

latter gives the set of symmetric follower reactions.

Step 1: Fix a follower l ∈ N and suppose fj = f for every j 6= l. Using Proposition 3.1 to

substitute for yj(fj ; f−j ,x) for every j 6= l, we infer that the total production in the spot market is

given by

N∑
j=1

yj(fj ; f−j ,x) = yl(fl; f1,x) + (N − 1)

[
1

N

(
αy + f −

M∑
i=1

xi − yl(fl; f1,x)

)]k
0

= yl(fl; f1,x) +

[
N − 1

N

(
αy + f −

M∑
i=1

xi − yl(fl; f1,x)

)](N−1)k

0

=

[
N − 1

N

(
αy + f −

M∑
i=1

xi

)
+

1

N
yl(fl; f1,x)

]yl(fl;f1,x)+(N−1)k

yl(fl;f1,x)

,

By substituting the above into follower l’s payoff, and using the fact that yl(R; f1,x) = [0, k], we

obtain

sup
fl∈R

φl(fl; f1,x) = sup
fl∈R

P
[N − 1

N

(
αy + f −

M∑
i=1

xi

)
+

1

N
yl(fl; f1,x)

]yl(fl;f1,x)+(N−1)k

yl(fl;f1,x)

+

M∑
i=1

xi

)
− c

)
· yl(fl; f1,x) (3.13)

= sup
y∈[0,k]

φ̂l(y; f,x), (3.14)

where

φ̂l(y; f,x) :=

P
[N − 1

N

(
αy + f −

M∑
i=1

xi

)
+

1

N
y

]y+(N−1)k

y

+

M∑
i=1

xi

− c
 · y.
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Step 2: We solve for the solution to (3.14). Substituting for the demand function yields

φ̂l(y; f,x) = β

(
ξ −

[
N − 1

N
(ξ + f) +

1

N
y

]y+(N−1)k

y

)
y

=



β (ξ − y) y, if (3.15a) holds,β
(

1
N ξ −

N−1
N f − 1

N y
)
y, if 0 ≤ y < ξ + f,

β (ξ − y) y, if k ≥ y ≥ ξ + f,

if (3.15b) holds,

β
(

1
N ξ −

N−1
N f − 1

N y
)
y, if (3.15c) holds,β (ξ − y − (N − 1)k) y, if 0 ≤ y ≤ ξ + f −Nk,

β
(

1
N ξ −

N−1
N f − 1

N y
)
y, if k ≥ y > ξ + f −Nk,

if (3.15d) holds,

β (ξ − y − (N − 1)k) y, if (3.15e) holds,

where the second equality follows from the fact that y ∈ [0, k] and the five cases (3.15a) – (3.15e)

are defined by

ξ + f ≤ 0, (3.15a)

0 < ξ + f < k, (3.15b)

k ≤ ξ + f ≤ Nk, (3.15c)

Nk < ξ + f < (N + 1)k, (3.15d)

(N + 1)k ≤ ξ + f. (3.15e)

We analyze each case separately.

Case (i): ξ + f ≤ 0. Then φ̂l(y; f,x) is a smooth function in y over the interval [0, k]. The first

and second derivatives are given by

∂

∂y
φ̂l(y; f,x) = β (ξ − 2y) ,

∂2

∂y2
φ̂l(y; f,x) = −2β < 0,

which implies that φ̂l(y; f,x) is strictly concave in y. Hence, y is a solution to (3.14) if and only if

it satisfies the following first order optimality conditions:

∂+

∂y
φ̂l(y; f,x) ≤ 0, if 0 ≤ y < k, (3.16)

∂−

∂y
φ̂l(y; f,x) ≥ 0, if 0 < y ≤ k. (3.17)
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It is straightforward to show that there is a unique solution given by

y =

[
1

2
ξ

]k
0

. (3.18)

Case (ii): 0 < ξ + f < k. Then φ̂l(y; f,x) is a piecewise smooth function in y over the interval

[0, k]. The first and second derivatives are given by

∂

∂y
φ̂l(y; f,x) =

β
(

1
N ξ −

N−1
N f − 2

N y
)
, if 0 ≤ y < ξ + f,

β (ξ − 2y) , if k ≥ y > ξ + f,

∂2

∂y2
φ̂l(y; f,x) =

−
2
N β, if 0 ≤ y < ξ + f,

−2β, if k ≥ y > ξ + f,

< 0.

Moreover, we have

∂+

∂y
φ̂l(y; f,x)

∣∣∣∣
y=ξ+f

= β (−ξ − 2f)

=
1

N
β (−Nξ − 2Nf)

≤ 1

N
β (−ξ + (N − 1)f − 2Nf)

=
1

N
β (ξ − (N − 1)f − 2ξ − 2f)

=
∂−

∂y
φ̂l(y; f,x)

∣∣∣∣
y=ξ+f

,

where the inequality follows from the fact that ξ+f > 0. Hence, φ̂l(y; f,x) is concave in y over [0, k].

Hence, y is a solution to (3.14) if and only if it satisfies the first order optimality conditions (3.16) –

(3.17). It is straightforward to show that there is a unique solution given by

y =



0, if ξ ≤ (N − 1)f,

1
2 (ξ − (N − 1) f) , if ξ > max((N − 1)f,−(N + 1)f),

ξ + f, if − 2f ≤ ξ ≤ −(N + 1)f,

1
2ξ, if ξ < min(2k,−2f),

k, if ξ ≥ 2k.

(3.19)
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Case (iii): k ≤ ξ + f ≤ Nk. Then φ̂l(y; f,x) is a smooth function in y over the interval [0, k].

The first and second derivatives are given by

∂

∂y
φ̂l(y; f,x) = β

(
1

N
ξ − N − 1

N
f − 2

N
y

)
,

∂2

∂y2
φ̂l(y; f,x) = − 2

N
β < 0,

which implies that φ̂l(y; f,x) is strictly concave in y. Hence, y is a solution to (3.14) if and only if

it satisfies the first order optimality conditions (3.16) – (3.17). It is straightforward to show that

there is a unique solution given by

y =

[
1

2
(ξ − (N − 1)f)

]k
0

. (3.20)

Case (iv): Nk < ξ + f < (N + 1)k. Then φ̂l(y; f,x) is a piecewise smooth function in y over the

interval [0, k]. The first and second derivatives are given by

∂

∂y
φ̂l(y; f,x) =

β (ξ − 2y − (N − 1)k) , if 0 ≤ y < ξ + f −Nk,

β
(

1
N ξ −

N−1
N f − 2

N y
)
, if k ≥ y > ξ + f −Nk,

∂2

∂y2
φ̂l(y; f,x) =

−2β, if 0 ≤ y < ξ + f −Nk,

− 2
N β, if k ≥ y > ξ + f −Nk,

< 0.

It is straightforward to check that φ̂l(y; f,x) is not concave in y over the interval [0, k]. However,

φ̂l(y; f,x) is piecewise concave in y. Hence, solve the following sub-problems:

sup
y∈[0,ξ+f−(N−1)k]

φ̂l(y; f,x), (3.21)

and

sup
y∈[ξ+f−(N−1)k,k]

φ̂l(y; f,x). (3.22)

The solution of the sub-problem with the larger optimal value is the solution to (3.14). Using the

first-order optimality conditions, the unique solution to (3.21) is given by

y =

[
1

2
(ξ − (N − 1)k)

]ξ+f−Nk
0

=: z1,
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and that to (3.22) is given by

y =

[
1

2
(ξ − (N − 1)f)

]k
ξ+f−Nk

=: z2.

Hence, the solution(s) to (3.14) are given by:

y = z1, if φ̂l(z1; f,x) > φ̂l(z2; f,x), (3.23a)

y = z2, if φ̂l(z1; f,x) < φ̂l(z2; f,x), (3.23b)

y = z1 or z2, if φ̂l(z1; f,x) = φ̂l(z2; f,x). (3.23c)

Case (v): (N + 1)k ≤ ξ + f . Then φ̂l(y; f,x) is a smooth function in y over the interval [0, k].

The first and second derivatives are given by

∂

∂y
φ̂l(y; f,x) = β (ξ − (N − 1)k − 2y) ,

∂2

∂y2
φ̂l(y; f,x) = −2β < 0,

which implies that φ̂l(y; f,x) is strictly concave in y. Hence, y is a solution to (3.14) if and only if

it satisfies the first order optimality conditions (3.16) – (3.17). It is straightforward to show that

there is a unique solution given by

y =

[
1

2
(ξ − (N − 1)k)

]k
0

. (3.24)

Step 3: We solve for the symmetric follower forward positions that satisfy the condition that

every follower is producing at its payoff maximizing quantity. The latter gives the set of symmetric

follower reactions since

φl (f ; f1,x) ≥ φl
(
f̄ ; f1,x

)
, ∀f̄ ∈ R

⇐⇒ φ̂l (yl(f ; f1,x); f,x) ≥ φ̂l
(
yl(f̄ ; f1,x); f,x

)
, ∀f̄ ∈ R

⇐⇒ φ̂l (y; f,x) ≥ φ̂l (ȳ; f1,x); f,x) , ∀ȳ ∈ [0, k] , and y =

[
1

N + 1
(ξ + f)

]k
0

. (3.25)

The first equivalence is due to (3.13). The second equivalence is due to the fact that yl(f ; f1,x) =[
1

N+1 (ξ + f)
]k

0
and yl (R; f1,x) = [0, k]. We divide the analyses into five cases depending on the

value of ξ + f .
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Case (i): ξ + f ≤ 0. Note that y is given by (3.18). Hence, the symmetric follower reactions are

given by:

[
1

2
ξ

]k
0

=

[
1

N + 1
(ξ + f)

]k
0

and (3.15a) holds ⇐⇒
[

1

2
ξ

]k
0

= 0 and (3.15a) holds

⇐⇒ ξ ≤ 0 and f ≤ −ξ. (3.26)

Case (ii): 0 < ξ + f < k. Note that y is given by (3.19). Since 0 < ξ + f < k =⇒ 0 <

1
N+1 (ξ + f) < k, the symmetric follower reactions are given by:

1

2
(ξ − (N − 1)f) =

1

N + 1
(ξ + f) and ξ > max((N − 1)f,−(N + 1)f) and (3.15b) holds

or ξ + f =
1

N + 1
(ξ + f) and − 2f ≤ ξ ≤ −(N + 1)f and (3.15b) holds

or
1

2
ξ =

1

N + 1
(ξ + f) and ξ < min(2k,−2f) and (3.15b) holds

⇐⇒ f =
N − 1

N2 + 1
ξ and ξ > max((N − 1)f,−(N + 1)f) and (3.15b) holds

or f = −ξ and − 2f ≤ ξ ≤ −(N + 1)f and (3.15b) holds

or f =
N − 1

2
ξ and ξ < min(2k,−2f) and (3.15b) holds

⇐⇒ f =
N − 1

N2 + 1
ξ and ξ > max

(
(N − 1)2

N2 + 1
ξ,−N

2 − 1

N2 + 1
ξ

)
and 0 < ξ <

N2 + 1

N(N + 1)
k

or f =
N − 1

2
ξ and ξ < min(2k,−(N − 1)ξ) and 0 <

N + 1

2
ξ < k

⇐⇒ f =
N − 1

N2 + 1
ξ and 0 < ξ <

N2 + 1

N(N + 1)
k. (3.27)

The second equivalence is due to the fact that f = −ξ =⇒ ξ+ f = 0. The third equivalence is due

to the fact that ξ > 0 =⇒ (N−1)2

N2+1 ξ ≥ −
N2−1
N2+1ξ and N+1

2 ξ > 0 =⇒ 2k > −(N − 1)ξ.

Case (iii): k ≤ ξ + f ≤ Nk. Note that y is given by (3.20). Hence, the symmetric follower

reactions are given by:

[
1

2
(ξ − (N − 1)f)

]k
0

=

[
1

N + 1
(ξ + f)

]k
0

and (3.15c) holds

⇐⇒ 1

2
(ξ − (N − 1)f) =

1

N + 1
(ξ + f) and (3.15c) holds and 0 <

1

2
(ξ − (N − 1)f) < k

⇐⇒ f =
N − 1

N2 + 1
ξ and (3.15c) holds and 0 <

1

2
(ξ − (N − 1)f) < k

⇐⇒ f =
N − 1

N2 + 1
ξ and

N2 + 1

N(N + 1)
k ≤ ξ ≤ N2 + 1

N + 1
k and 0 < ξ <

N2 + 1

N − 1
2

k

⇐⇒ f =
N − 1

N2 + 1
ξ and

N2 + 1

N(N + 1)
k ≤ ξ ≤ N2 + 1

N + 1
k. (3.28)
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The first equivalence is due to the fact that (3.15c) =⇒ 0 < 1
N+1 (ξ + f) < k. The last equivalence

is due to the fact that N2+1
N(N+1) <

N2+1
N+1 < N2+1

N− 1
2

.

Case (iv): Nk < ξ + f < (N + 1)k. Note that y is described by (3.23). We show that there does

not exist a symmetric follower reaction such that y = z1. Suppose otherwise. By Proposition 3.1,

for each j 6= l,

yj =

[
1

N

(
ξ + f −

[
1

2
(ξ − (N − 1)k)

]ξ+f−Nk
0

)]k
0

=

[
− 1

N

[
1

2
(−ξ − 2f − (N − 1)k)

]−Nk
−ξ−f

]k
0

=

[[
1

2N
(ξ + 2f + (N − 1)k)

] 1
N (ξ+f)

k

]k
0

= k

However, (3.15d) =⇒ 1
N+1 (ξ + f) < k =⇒ y < k = yj , which contradicts with the fact that a

symmetric follower reaction implies symmetric productions (by Proposition 3.2).

Hence, the symmetric follower reactions are given by:

[
1

2
(ξ − (N − 1)f)

]k
ξ+f−Nk

=
1

N + 1
(ξ + f) and (3.15d) holds and φ̂l(z1; f,x) ≤ φ̂l(z2; f,x)

⇐⇒ 1

2
(ξ − (N − 1)f) =

1

N + 1
(ξ + f) and (3.15d) holds and φ̂l(z1; f,x) ≤ φ̂l(z2; f,x)

⇐⇒ f =
N − 1

N2 + 1
ξ and (3.15d) holds and φ̂l(z1; f,x) ≤ φ̂l(z2; f,x)

⇐⇒ f =
N − 1

N2 + 1
ξ and

N2 + 1

N + 1
k < ξ <

N2 + 1

N
k and φ̂l(z1; f,x) ≤ φ̂l(z2; f,x)

⇐⇒ f =
N − 1

N2 + 1
ξ and

N2 + 1

N + 1
k < ξ ≤ (N2 + 1)(N − 1)

N2 − 2
√
N + 1

k. (3.29)

The first equivalence follows from the fact that ξ + f −Nk = 1
N+1 (ξ + f) =⇒ ξ + f = (N + 1)k

and k = 1
N+1 (ξ + f) =⇒ ξ + f = (N + 1)k. The last equivalence follows from the following facts.



74

First, note that

z1 =

[
1

2
(ξ − (N − 1)k)

]N(N+1)

N2+1
ξ−Nk

0

=


N(N+1)
N2+1 ξ −Nk, if N2+1

N+1 k < ξ < N2+1
N k and 1

2 (ξ − (N − 1)k) > N(N+1)
N2+1 ξ −Nk,

1
2 (ξ − (N − 1)k) , if N2+1

N+1 k < ξ < N2+1
N k and 1

2 (ξ − (N − 1)k) ≤ N(N+1)
N2+1 ξ −Nk,

=


N(N+1)
N2+1 ξ −Nk, if N2+1

N+1 k < ξ < (N+1)(N2+1)
N2+2N−1 k,

1
2 (ξ − (N − 1)k) , (N+1)(N2+1)

N2+2N−1 k ≤ ξ < N2+1
N k.

where the second equality is due to ξ > N2+1
N+1 k > N2−1

N+1 k = (N − 1)k. Hence, if N2+1
N+1 k < ξ <

(N+1)(N2+1)
N2+2N−1 k, then

φ̂l(z1; f,x) ≤ φ̂l(z2; f,x)

⇐⇒ (ξ − (N − 1)k − z1) z1 ≤
1

N
(ξ − (N − 1)f − z2) z2

⇐⇒ (k − f) (ξ + f −Nk) ≤ 1

4N
(ξ − (N − 1)f)

2

⇐⇒ True.

On the other hand, if (N+1)(N2+1)
N2+2N−1 k ≤ ξ < N2+1

N k, then

φ̂l(z1; f,x) ≤ φ̂l(z2; f,x)

⇐⇒ (ξ − (N − 1)k − z1) z1 ≤
1

N
(ξ − (N − 1)f − z2) z2

⇐⇒ 1

2
(ξ − (N − 1)k)

2 ≤ 1

4N
(ξ − (N − 1)f)

2

⇐⇒ ξ ≤ (N2 + 1)(N − 1)

N2 − 2
√
N + 1

k,

where (N+1)(N2+1)
N2+2N−1 k ≤ (N2+1)(N−1)

N2−2
√
N+1

k < N2+1
N k.

Case (v): (N + 1)k ≤ ξ + f . Note that y is given by (3.24). Hence, the symmetric follower

reactions are given by:

[
1

2
(ξ − (N − 1)k)

]k
0

=

[
1

N + 1
(ξ + f)

]k
0

and (3.15e) holds

⇐⇒
[

1

2
(ξ − (N − 1)k)

]k
0

= k and (3.15e) holds

⇐⇒ f ≥ −ξ + (N + 1)k and ξ ≥ (N + 1)k. (3.30)
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Putting together the descriptions in (3.26) – (3.30) yield (3.12).

3.C Leader Reaction Analyses

Proposition 3.4. Fix the followers’ forward positions f = f1 ∈ RN . Let X ⊆ R+ denote the set of

symmetric leader reactions, i.e., for each x ∈ X and i ∈M ,

ψi (x;x1, f1) ≥ ψi (x̄;x1, f1) , ∀x̄ ∈ R+. (3.31)

Let:

x1 =
1

M + 1
[αx]

∞
0 ,

x2 =
1

M
(αx −4C + f) ,

x3 =
1

M + 1
[αx +N (4C − f)]

∞
0 ,

x4 =
1

M + 1
[αx −Nk]

∞
0 .

Then,

X =



x ∈ R+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x = x1 if f −4C < − αx
M+1 ,

or x = x2 if − αx
M+1 ≤ f −4C ≤ min

(
− αx
MN+M+1 , η4

)
,

or x = x3 if − αx
NM+M+1 < f −4C ≤ max (η3, k − (αx −Nk)) ,

or x = x4 if f −4C ≥


k − (αx −Nk), if αx < Nk,

η2, if αx ≥
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
Nk,

η1, otherwise.



,

where

η1 := k − αx−Nk
N

(
2(
√
N+1−1)
M+1

)
,

η2 := − 1
2

(
2(αx−Nk)
M+1 +Nk

)1−

√
1−

(
2(αx−Nk)
M+1

2(αx−Nk)
M+1 +Nk

)2
 ,

η3 := k − αx−Nk
N

(
2(
√
N+1−1)

2+(M−1)
√
N+1

)
,

η4 := − 1
2

(
2(αx−MNk)

M+1 +
(

2M
M+1

)2

Nk

)1−

√
1−

(
2(αx−MNk)

M+1
2(αx−MNk)

M+1 +( 2M
M+1 )

2
Nk

)2
 .
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Moreover, for each x ∈ X,

yj(f1, x1) = 0 ⇐⇒ x = x1 or x2,

0 < yj(f1, x1) < k ⇐⇒ x = x3,

yj(f1, x1) = k ⇐⇒ x = x4.

Proof. The proof proceeds in three steps. In step 1, we solve for a leader’s payoff maximizing

production quantity given that all other leaders produce equal quantities. In step 2, we solve for the

symmetric leader productions that satisfy the condition that every leader is producing at its payoff

maximizing quantity. The latter gives the set of symmetric leader reactions. In step 3, we explain

how the solutions obtained in step 2 is equivalent to X.

Step 1: Fix a leader l ∈M and suppose xi = x for every i 6= l. We solve for the solution to

sup
xl∈R+

ψl (xl;x1, f1) . (3.32)

Substituting for the demand function yields

ψl (xl;x1, f1) = β

αx − xl − (M − 1)x−
N∑
j=1

yj(f1, xl, x1)

xl

where the follower productions are given by

N∑
j=1

yj(f1, xl, x1)

= N

[
1

N + 1
(αy + f − xl − (M − 1)x)

]k
0

=



0, if (3.33a) holds,0, if αy + f − xl − (M − 1)x ≤ 0,

N
N+1 (αy + f − xl − (M − 1)x) , otherwise,

if (3.33b) holds,


0, if αy + f − xl − (M − 1)x ≤ 0,

k, if αy + f − xl − (M − 1)x ≥ (N + 1)k,

N
N+1 (αy + f − xl − (M − 1)x) , otherwise,

if (3.33c) holds,

where the second equality is due to the fact that xl, x ≥ 0 and the three cases (3.33a) – (3.33c) are
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defined by

αy + f − (M − 1)x ≤ 0, (3.33a)

0 < αy + f − (M − 1)x ≤ (N + 1)k, (3.33b)

(N + 1)k < αy + f − (M − 1)x. (3.33c)

We analyze each case separately.

Case (i): αy + f − (M − 1)x < 0. We obtain

ψl (xl;x1, f1) = β (αx − xl − (M − 1)x)xl.

Hence, ψl(xl;x1, f1) is a smooth function in xl over R+. The first and second derivatives are given

by

∂

∂xl
ψl (xl;x1, f1) = β (αx − (M − 1)x− 2xl) ,

∂2

∂x2
l

ψl (xl;x1, f1) = −2β < 0,

which implies that ψl (xl;x1, f1) is strictly concave in xl. Hence, xl is a solution to (3.32) if and

only if it satisfies the following first order optimality conditions:

∂+

∂xl
ψl (xl;x1, f1) ≤ 0, if 0 ≤ xl, (3.34)

∂−

∂xl
ψl (xl;x1, f1) ≥ 0, if 0 < xl. (3.35)

It is straightforward to show that there is a unique solution is given by

xl =

[
1

2
(αx − (M − 1)x)

]∞
0

. (3.36)

Case (ii): 0 ≤ αy + f − (M − 1)x < (N + 1)k. We obtain

ψl (xl;x1, f1) =

β (αx − xl − (M − 1)x)xl, if xl ≥ αy + f − (M − 1)x,

β
(

1
N+1αx + N

N+1 (4C − f)− M−1
N+1 x−

1
N+1xl

)
xl, otherwise.
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Hence, ψl (xl;x1, f1) is a piecewise smooth function in xl over R+. The first and second derivatives

are given by

∂

∂xl
ψl (xl;x1, f1) =

β (αx − (M − 1)x− 2xl) , if xl > αy + f − (M − 1)x,

β
N+1 (αx +N (4C − f)− (M − 1)x− 2xl) , otherwise,

∂2

∂x2
l

ψl (xl;x1, f1) =

−2β, if xl > αy + f − (M − 1)x,

− 2
N+1β, otherwise,

< 0.

Moreover, we have

∂−

∂xl
ψl (xl;x1, f1)

∣∣∣∣
xl=αy+f−(M−1)x

= β

(
1

N + 1
αx +

N

N + 1
(4C + f)− M − 1

N + 1
x− 2

N + 1
(αy + f − (M − 1)x)

)
= β

(
−αx + 2 (4C − f) +

N

N + 1
(αy + f) +

M − 1

N + 1
x

)
≥ β (−αx + 2 (4C − f) + (M − 1)x)

=
∂+

∂xl
ψl (xl;x1, f1)

∣∣∣∣
xl=αy+f−(M−1)x

,

where the inequality follows from (3.33b). Hence, ψl (xl;x1, f1) is concave in xl over R+. Therefore,

xl is a solution to (3.32) if and only if it satisfies the first order optimality conditions (3.34) – (3.35).

It is straightforward to show that there is a unique solution given by

xl =



0, if (3.38a) holds,

1
2 (αx +N (4C − f)− (M − 1)x) , if (3.38b) holds,

αx −4C + f − (M − 1)x, if (3.38c) holds,

1
2 (αx − (M − 1)x) , if (3.38d) holds,

(3.37)

where the cases (3.38a) – (3.38d) are defined by:

αx +N (4C − f) ≤ (M − 1)x, (3.38a)

(M − 1)x < min (αx +N(4C − f), αx − (N + 2)(4C − f)) , (3.38b)

αx − (N + 2)(4C − f) ≤ (M − 1)x ≤ αx − 2(4C − f), (3.38c)

αx − 2(4C − f) < (M − 1)x. (3.38d)
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Case (iii): (N + 1)k ≤ αy + f − (M − 1)x. We obtain

ψl (xl;x1, f1)

=


β (αx − xl − (M − 1)x)xl, if xl ≥ αy + f − (M − 1)x,

β (αx − xl − (M − 1)x−Nk)xl, if xl ≤ αy + f − (M − 1)x− (N + 1)k,

β
(

1
N+1αx + N

N+1 (4C − f)− M−1
N+1 x−

1
N+1xl

)
xl, otherwise.

Hence, φl (xl;x1, f1) is a piecewise smooth function in xl over R+. The first and second derivatives

are given by

∂

∂xl
ψl (xl;x1, f1)

=


β (αx − (M − 1)x− 2xl) , if xl > αy + f − (M − 1)x,

β (αx − (M − 1)x−Nk − 2xl) , if xl < αy + f − (M − 1)x− (N + 1)k,

β
N+1 (αx +N (4C − f)− (M − 1)x− 2xl) , otherwise,

∂2

∂x2
l

ψl (xl;x1, f1)

=


−2β, if xl > αy + f − (M − 1)x,

−2β, if xl < αy + f − (M − 1)x− (N + 1k,

− 2
N+1β, otherwise,

< 0.

Moreover, we have

∂−

∂xl
ψl (xl;x1, f1)

∣∣∣∣
xl=αy+f−(M−1)x

= β

(
1

N + 1
αx +

N

N + 1
(4C − f)− M − 1

N + 1
x− 2

N + 1
(αy + f − (M − 1)x)

)
= β

(
−αx + 2(4C − f) +

N

N + 1
(αx −4C + f) +

M − 1

N + 1
x

)
> β (−αx + 2(4C − f) + (M − 1)x)

=
∂+

∂xl
ψl (xl;x1, f1)

∣∣∣∣
xl=αy+f−(M−1)x

.

Hence, φl (xl;x1, f1) is concave in xl over [αy + f − (M − 1)x− (N + 1)k,∞). However, it is

straightforward to check that φl (xl;x1, f1) has a non-concave kink at xl = αy + f − (M − 1)x −

(N + 1)k, and therefore φl (xl;x1, f1) is not concave in xl over R+. Hence, solve the following
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sub-problems:

sup
xl∈[0,αy+f−(M−1)x−(N+1)k]

ψl (xl;x1, f1) , (3.39)

and

sup
xl∈[αy+f−(M−1)x−(N+1)k,∞)

ψl (xl;x1, f1) . (3.40)

The solution of the sub-problem with the larger optimal value is the solution to (3.32). Using the

first order optimality conditions, the unique solution to (3.39) is given by

xl =

[
1

2
(αx − (M − 1)x−Nk)

]αy+f−(M−1)x−(N+1)k

0

=: z1,

and that to (3.40) is given by

xl =



αy + f − (M − 1)x− (N + 1)k, if (3.41a) holds,

1
2 (αx +N(4C − f)− (M − 1)x) , if (3.41b) holds,

αy + f − (M − 1)x, if (3.41c) holds,

1
2 (αx − (M − 1)x) , if (3.41d) holds,

=: z2.

where the cases (3.41a) – (3.41d) are defined by:

(M − 1)x ≤ αx − (N + 2)(4C − f)− 2(N + 1)k, (3.41a)

αx − (N + 2)(4C − f)− 2(N + 1)k < (M − 1)x < αx − (N + 2)(4C − f), (3.41b)

αx − (N + 2)(4C − f) ≤ (M − 1)x ≤ αx − 2(4C − f), (3.41c)

αx − 2(4C − f) < (M − 1)x. (3.41d)

Hence, the solution(s) to (3.32) are given by:

xl = z1, if ψl (z1;x1, f1) > ψl (z2;x1, f1) , (3.42a)

xl = z2, if φl (z2;x1, f1) > φl (z1;x1, f1) , (3.42b)

xl = z1 or z2, if ψl (z1;x1, f1) = ψl (z2;x1, f1) . (3.42c)

Step 2: We solve for the symmetric leader productions that satisfy the condition that every leader

is producing at its payoff maximizing quantity. We divide the analyses into three cases depending
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on the value of αy + f − (M − 1)x.

Case (i): αy + f − (M − 1)x < 0. Note that xl is given by (3.36). Hence, the symmetric leader

reactions are given by:

x = 0 and αx < (M − 1)x and (3.33a) holds

or x =
1

2
(αx − (M − 1)x) and αx ≥ (M − 1)x and (3.33a) holds

⇐⇒ x = 0 and αx < 0 and (3.33a) holds

or x =
1

M + 1
αx and αx ≥ 0 and (3.33a) holds.

Case (ii): 0 ≤ αy + f − (M − 1)x < (N + 1)k. Note that xl is given by (3.37). Hence, the

symmetric leader reactions are given by:

x = 0 and (3.38a) and (3.33b) holds

or x =
1

2
((N + 1)αx −N(αy + f)− (M − 1)x) and (3.38b) and (3.33b) holds

or x = αy + f − (M − 1)x and (3.38c) and (3.33b) holds

or x =
1

2
(αx − (M − 1)x) and (3.38d) and (3.33b) holds

⇐⇒ x = 0 and
αx
N
≤ f −4C and (3.33b) holds

or x =
1

M + 1
(αx +N(4C − f)) and − αx

NM +M + 1
< f −4C <

αx
N

and (3.33b) holds

or x =
1

M
(αx − (4C − f)) and − αx

M + 1
≤ f −4C ≤ − αx

NM +M + 1
and (3.33b) holds

or x =
1

M + 1
αx and f −4C < − αx

M + 1
and (3.33b) holds.

Case (iii): (N + 1)k ≤ αy + f − (M − 1)x. Note that xl is described by (3.42). Hence, the

symmetric leader reactions are given by

x = z1 and (3.33c) holds and ψl (z1;x1, f1) > ψl (z2;x1, f1) (3.43)

or x = z2 and (3.33c) holds and ψl (z1;x1, f1) < ψl (z2;x1, f1) (3.44)

or x = z1 or z2 and (3.33c) holds and ψl (z1;x1, f1) = ψl (z2;x1, f1) . (3.45)

We analyze the cases x = z1 and x = z2 separately.
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Suppose x = z1 is a symmetric leader reaction. Since

∂−

∂xl
ψl(xl;x1, f1)

∣∣∣∣
xl=αy+f−(M−1)x−(N+1)k

= β (−αx + 2(4C − f) + (M − 1)x+ (N + 2)k)

≤ β

N + 1
(−αx + (N + 2)(4C − f) + (M − 1)x+ 2(N + 1)k)

=
∂+

∂xl
ψl(xl;x1, f1)

∣∣∣∣
xl=αy+f−(M−1)x−(N+1)k

,

we infer that x < αy + f − (M − 1)x− (N + 1)k. Hence, we obtain

x = z1

⇐⇒ x = 0 and (3.33c) holds and ψl (z1;x1, f1) ≥ ψl (z2;x1, f1) and αx − (M − 1)x−Nk ≤ 0

or x =
1

2
(αx − (M − 1)x−Nk) and (3.33c) holds and ψl (z1;x1, f1) ≥ ψl (z2;x1, f1)

and 0 <
1

2
(αx − (M − 1)x−Nk) < αy + f − (M − 1)x− (N + 1)k

⇐⇒ x = 0 and (3.33c) holds and αx −Nk ≤ 0

or x =
1

M + 1
(αx −Nk) and (3.33c) holds and ψl (z1;x1, f1) ≥ ψl (z2;x1, f1)

and αx −Nk > 0 and f −4C > − 1

M + 1
(αx −Nk) + k

The second equivalence follows from solving for x in the equations, and the fact that in the case

x = 0, the inequalities (3.33c) and αx −Nk ≤ 0 =⇒ ψl (z1;x1, f1) ≥ ψl (z2;x1, f1).

Suppose x = z2. Then, using the same arguments in (3.43), we infer that x < αy + f − (M −
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1)x− (N + 1)k. Hence, we obtain

x = z2

⇐⇒ x =
1

2
(αx +N(4C − f)− (M − 1)x) and (3.33c) and (3.41b) holds

and ψl (z1;x1, f1) ≤ ψl (z2;x1, f1)

or x = αx + (f −4C)− (M − 1)x and (3.33c) and (3.41c) holds

and ψl (z1;x1, f1) ≤ ψl (z2;x1, f1)

or x =
1

2
(αx − (M − 1)x) and (3.33c) and (3.41d) holds

and ψl (z1;x1, f1) ≤ ψl (z2;x1, f1)

⇐⇒ x =
1

M + 1
(αx +N(4C − f)) and (3.33c) holds and ψl (z1;x1, f1) ≤ ψl (z2;x1, f1)

and − 1

NM +M + 1
αx < f −4C <

1

NM +M + 1
(−αx + (M + 1)(N + 1)k)

or x =
1

M
(αx + (f −4C)) and (3.33c) holds and ψl (z1;x1, f1) ≤ ψl (z2;x1, f1)

and − 1

M + 1
αx ≤ f −4C ≤ −

1

NM +M + 1
αx

or x =
1

M + 1
αx and (3.33c) holds and and f −4C < − 1

M + 1
αx

The second equivalence follows from solving for x in the equations, and the fact that in the case

x = 1
M+1αx, the inequalities (3.33c) and f −4C < − 1

M+1αx =⇒ ψl (z1;x1, f1) ≤ ψl (z2;x1, f1).

Step 3: We explain how the solutions obtained in step 2 is equivalent to X. Observe that step 2

obtains five cases for x:

x =
1

M + 1
αx,

x =
1

M
(αx − (4C − f)) ,

x =
1

M + 1
(αx +N(4C − f)) ,

x =
1

M + 1
(αx −Nk) ,

x = 0.

We analyze each case separately.
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Case (i): x = 1
M+1αx. This case is characterized by

αx ≥ 0 and (3.33a) holds

or f −4C < − αx
M + 1

and (3.33b) holds

or f −4C < − αx
M + 1

and (3.33c) holds

⇐⇒ αx ≥ 0 and f −4C < − αx
M + 1

.

The equivalence is due to the following facts. First, (3.33b) =⇒ αx ≥ 0 and (3.33c) =⇒ αx ≥ 0.

Second, (3.33a) and αx ≥ 0 =⇒ f −4C < − 1
M+1αx. Third, (3.33a), (3.33b), (3.33c) =⇒ True.

Case (ii): x = 1
M (αx − (4C − f)). This case is characterized by

− αx
M + 1

≤ f −4C ≤ − αx
NM +M + 1

and (3.33b) holds

or − αx
M + 1

≤ f −4C ≤ − αx
NM +M + 1

and ψl (z1;x1, f1) ≤ ψl (z2;x1, f1) and (3.33c) holds

⇐⇒ − αx
M + 1

≤ f −4C ≤ min

(
− αx
NM +M + 1

,−αx +M(N + 1)k

)
or − αx

M + 1
≤ f −4C ≤ − αx

NM +M + 1

and f −4C ≤ η4 and f −4C > −αx +M(N + 1)k

⇐⇒ − αx
M + 1

≤ f −4C ≤ min

(
− αx
MN +M + 1

, η4

)
.

The first equivalence is due to the following facts. First, (3.33b) ⇐⇒ −αx < f − 4C ≤ −αx +

M(N + 1)k. Second, ψl (z1;x1, f1) ≤ ψl (z2;x1, f1) ⇐⇒ f − 4C ≤ η4. Third, (3.33c) ⇐⇒

f − 4C > −αx + M(N + 1)k. The second equivalence is due to the fact that − αx
MN+M+1 ≤

−αx +M(N + 1)k =⇒ η4 > − αx
MN+M+1 .
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Case (iii): x = 1
M+1 (αx +N(4C − f)). This case is characterized by

− αx
NM +M + 1

< f −4C <
αx
N

and (3.33b) holds

or − αx
NM +M + 1

< f −4C <
1

NM +M + 1
(−αx + (M + 1)(N + 1)k)

and ψl (z1;x1, f1) ≤ ψl (z2;x1, f1) and (3.33c) holds

⇐⇒ − αx
NM +M + 1

< f −4C <
αx
N

and f −4C ≤ −2αx + (M + 1)(N + 1)k

M + 1 +N(M − 1)

or − αx
NM +M + 1

< f −4C <
1

NM +M + 1
(−αx + (M + 1)(N + 1)k)

and f −4C ≤ η3 and f −4C >
−2αx + (M + 1)(N + 1)k

M + 1 +N(M − 1)

⇐⇒ αx < Nk and − αx
NM +M + 1

< f −4C <
αx
N

or αx ≥ Nk and − αx
NM +M + 1

< f −4C ≤ η3.

The first equivalence is due to the following facts. First, (3.33b) ⇐⇒ − 2αx
M+1+N(M−1) < f −4C ≤

−2αx+(M+1)(N+1)k
M+1+N(M−1) . Second, (3.33c) ⇐⇒ f − 4C > −2αx+(M+1)(N+1)k

M+1+N(M−1) . Third, ψl (z1;x1, f1) ≤

ψl (z2;x1, f1) ⇐⇒ f −4C ≤ η3. The second equivalence is due to the following facts. First, αxN ≤
−2αx+(M+1)(N+1)k

M+1+N(M−1) ⇐⇒ αx ≤ Nk. Second, αx ≥ Nk =⇒ η3 <
1

NM+M+1 (−αx + (M + 1)(N + 1)k).

Case (iv): x = 1
M+1 (αx −Nk). This case is characterized by

αx −Nk > 0 and f −4C > − 1

M + 1
(αx −Nk) + k

and ψl (z1;x1, f1) ≥ ψl (z2;x1, f1) and (3.33c) holds

⇐⇒ αx −Nk > 0 and f −4C > − 1

M + 1
(αx −Nk) + k and ψl (z1;x1, f1) ≥ ψl (z2;x1, f1)

⇐⇒ Nk < αx <

(
1 +

(M + 1)
√
N + 1

(
√
N + 1− 1)2

)
Nk and f −4C ≥ η1

or

(
1 +

(M + 1)
√
N + 1

(
√
N + 1− 1)2

)
Nk ≤ αx and f −4C ≥ η2.

The first equivalence is due to the fact that (3.33c) =⇒ f − 4C > − 1
M+1 (αx − Nk) + k. The

second equivalence is due to the fact that ψl (z1;x1, f1) ≥ ψl (z2;x1, f1) ⇐⇒ Nk < αx <(
1 + (M+1)

√
N+1

(
√
N+1−1)2

)
Nk and f −4C ≥ η1 or

(
1 + (M+1)

√
N+1

(
√
N+1−1)2

)
Nk ≤ αx and f −4C ≥ η2.
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Case (v): x = 0. This case is characterized by

αx < 0 and (3.33a)

or
αx
N
≤ f −4C and (3.33b)

or αx −Nk ≤ 0 and (3.33c)

⇐⇒ αx < 0

or αx ≥ 0 and αx +N(4C − f) ≤ 0 and 0 ≤ αx + (f −4C) < (N + 1)k

or αx ≥ 0 and αx −Nk ≤ 0 and (N + 1)k ≤ αx + (f −4C).

The equivalence is due to the following facts. First, (3.33b) and αx < 0 =⇒ αx +N(4C − f) < 0.

Second, (3.33c) and αx < 0 =⇒ αx −Nk < 0.

3.D Forward Market Equilibrium

Proposition 3.5. Suppose αx > 0. Let Q ⊆ R×R+ denote the set of all symmetric Nash equilibria,

i.e., (f, x) ∈ Q if (f1, x1) is a Nash equilibrium of the forward market. Let:

Q1 :=

(f, x) ∈ R× R+

∣∣∣∣∣∣ x = 1
M+1αx

f < 4C − 1
M+1αx

 ,

Q2 :=

(f, x) ∈ R× R+

∣∣∣∣∣∣∣
x = 1

M (αx − (4C − f))

max
(

0,4C − αx
M+1

)
≤ f ≤ 4C + min

(
− αx
MN+M+1 , η4

)
 ,

Q3 :=

(f, x) ∈ R× R+

∣∣∣∣∣∣ x = N+1
N2+MN+M+1

(
αx +N24C

)
f = N−1

N2+MN+M+1 (αx − (MN +M + 1)4C)

 ,

Q4 :=

(f, x) ∈ R× R+

∣∣∣∣∣∣∣∣∣∣
x = 1

M+1 (αx −Nk)

f ≥ 4C +

η1, if Nk < αx ≤
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
Nk,

η2, if
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
Nk < αx.

 .

where η1, η2, η4 are as defined in Proposition 3.4. Then,

Q =


(f, x) ∈ R× R+

∣∣∣∣∣∣∣∣∣∣∣∣∣

(f, x) ∈ Q1 if αx ≤ (M + 1)4C,

or (f, x) ∈ Q2 if αx ≤ min ((MN +M + 1)4C, ζ1) ,

or (f, x) ∈ Q3 if (MN +M + 1)4C < αx ≤ ζ2,

or (f, x) ∈ Q4 if (M + 1)(4C + k) +Nk ≤ αx.


,
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where

ζ1 = MNk + (M + 1)4C + 2M
√
Nk4C, (3.46)

ζ2 = (MN +M + 1)4C +
N2 +NM +M + 1

N(N + 1) + 2(1−
√
N + 1)

(
Nk − (

√
N + 1− 1)24C

)
. (3.47)

Moreover, for each (f, x) ∈ Q,

yj(f1, x1) = 0 ⇐⇒ (f, x) ∈ Q1 ∪Q2,

0 < yj(f1, x1) < k ⇐⇒ (f, x) ∈ Q3,

yj(f1, x1) = k ⇐⇒ (f, x) ∈ Q4.

Proof. The symmetric equilibria are given by the intersection of the follower and leader reactions

obtained in Propositions 3.3 and 3.4. We divide the analyses into three separate cases depending on

the value of the follower productions yj(f1, x1).

Case (i): yj(f1, x1) = 0. Using Propositions 3.3 and 3.4, we infer that (f, x) is a symmetric

equilibrium with yj(f1, x1) = 0 if and only if

f ≤ − (αx −4C −Mx) , (3.48a)

0 ≥ αx −4C −Mx, (3.48b)

x =


1

M+1 [αx]
∞
0 , if f −4C < − αx

M+1 ,

1
M (αx −4C + f) , if − αx

M+1 ≤ f −4C ≤ min
(
− αx
MN+M+1 , η4

)
.

(3.48c)

Suppose x = 1
M+1 [αx]

∞
0 . Since αx > 0, we infer that x = 1

M+1αx. Substituting into (3.48a)

and (3.48b) yields

(3.48a) ⇐⇒ f < 4C − αx
M + 1

,

(3.48b) ⇐⇒ αx ≤ (M + 1)4C.

The above inequalities, together with (3.48c), imply that (f, x) satisfies (3.48) with x = 1
M+1αx, if

and only if (f, x) ∈ Q1 and αx ≤ (M + 1)4C.

Suppose x = 1
M (αx −4C + f). Substituting into (3.48a) and (3.48b) yields

(3.48a) ⇐⇒ f ≤ f ⇐⇒ True,

(3.48b) ⇐⇒ f ≥ 0.



88

Hence, there exists (f, x) that satisfies (3.48) with x = 1
M (αx −4C + f) if and only if

[
max

(
0,4C − αx

M + 1

)
,4C + min

(
− αx
MN +M + 1

, η4

)]
6= ∅

⇐⇒ 0 ≤ 4C + min

(
− αx
MN +M + 1

, η4

)
⇐⇒ αx ≤ (MN +M + 1)4C and 0 ≤ 4C + η4

⇐⇒ αx ≤ (MN +M + 1)4C and αx ≤ ζ1.

Hence, (f, x) satisfies (3.48) with x = 1
M (αx −4C + f), if and only if (f, x) ∈ Q2 and αx ≤

min ((MN +M + 1)4C, ζ1).

Case (ii): 0 ≤ yj(f1, x1) ≤ k. Using Propositions 3.3 and 3.4, we infer that (f, x) is a symmetric

equilibrium if and only if

f =
N − 1

N2 + 1
(αx −4C −Mx) , (3.49a)

0 ≤ αx −4C −Mx ≤ ξ1, (3.49b)

x =
1

M + 1
[αx +N(4C − f)]

∞
0 , (3.49c)

− αx
MN +M + 1

< f −4C ≤ max (k − (αx −Nk), η3) . (3.49d)

We show that x > 0. Suppose otherwise. Substituting into (3.49a) implies that f = N−1
N2+1 (αx−4C).

Substituting further into (3.49c) yields

αx +N

(
4C − N − 1

N2 + 1
(αx −4C)

)
≤ 0 ⇐⇒ αx +N4C < 0,

which is a contradiction since αx > 0, 4C ≥ 0, and N ≥ 2. Henceforth, we assume that x > 0.

Solving (3.49a) and (3.49c) gives

f =
N − 1

N2 +MN +M + 1
(αx − (MN +M + 1)4C) ,

x =
N + 1

N2 +MN +M + 1

(
αx +N24C

)
.

Substituting for x yields

(3.49b) ⇐⇒ (MN +M + 1)4C ≤ αx ≤ (MN +M + 1)4C +
(N2 +MN +M + 1)(N − 1)

N2 − 2
√
N + 1

k.
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Substituting for f yields

(3.49d) ⇐⇒ (MN +M + 1)4C < αx and αx ≤


N(M+1)
M+N 4C +

(
N + M+1

M+N

)
k, if αx ≤ Nk,

ζ2, if αx > Nk,

⇐⇒ (MN +M + 1)4C < αx and αx ≤

Nk, if αx ≤ Nk,

ζ2, if αx > Nk,

⇐⇒ (MN +M + 1)4C < αx ≤ ζ2.

The first equivalence is due to the fact that k − (αx − Nk) ≥ η3 ⇐⇒ αx ≤ Nk. The second

equivalence is due to the fact that 4C ≥ 0 and k > 0. Next, using the fact that N ≥ 2,4C ≥

0, k > 0, we obtain

ζ2 < (MN +M + 1)4C +
(N2 +MN +M + 1)(N − 1)

N2 − 2
√
N + 1

k,

from which it follows that (f, x) satisfies (3.49) if and only if (f, x) ∈ Q3 and (MN +M + 1)4C ≤

αx ≤ ζ2.

Case (iii): yj(f1, x1) = k. From Propositions 3.3 and 3.4, we infer that (f, x) is a symmetric

equilibrium if and only if

f ≥ −(αx −4C −Mx) + (N + 1)k, (3.50a)

(N + 1)k ≤ αx −4C −Mx, (3.50b)

x =
1

M + 1
[αx −Nk]

∞
0 , (3.50c)

f −4C ≥


k − (αx −Nk), if αx < Nk,

η2, if αx ≥
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
Nk,

η1, otherwise.

(3.50d)

We divide the analyses into three cases depending on the value of αx.

Suppose 0 < αx ≤ Nk. Then, (3.50c) implies x = 0. However, substituting into (3.50b) implies

that αx − Nk ≥ k +4C > 0 which is a contradiction. Hence, there does not exist an equilibrium

such that 0 < αx ≤ Nk.

Suppose Nk < αx ≤
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
Nk. Then, (3.50c) implies x = 1

M+1 (αx −Nk). Substi-
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tuting for x yields

(3.50a) ⇐⇒ f ≥ 4C − 1

M + 1
(αx −Nk) + k,

(3.50b) ⇐⇒ 4C − 1

M + 1
(αx −Nk) + k ≤ 0.

From (3.50d), we infer that f ≥ 4C + η1. Since N ≥ 2 =⇒ η1 ≥ k − αx−Nk
M+1 , it follows that the

symmetric equilibria are characterized by

x =
1

M + 1
(αx −Nk) and f ≥ 4C + η1 and 4C − 1

M + 1
(αx −Nk) + k ≤ 0. (3.51)

Suppose
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
Nk < αx. Then, we again have

(3.50a) ⇐⇒ f ≥ 4C − 1

M + 1
(αx −Nk) + k,

(3.50b) ⇐⇒ 4C − 1

M + 1
(αx −Nk) + k ≤ 0.

From (3.50d), we infer that f ≥ 4C + η2. Since N ≥ 2 =⇒ η2 ≥ k − αx−Nk
M+1 , it follows that the

symmetric equilibria are characterized by

x =
1

M + 1
(αx −Nk) and f ≥ 4C + η2 and 4C − 1

M + 1
(αx −Nk) + k ≤ 0. (3.52)

By combining the characterizations in (3.51) and (3.52), we infer that (f, x) satisfies (3.50) if

and only if (f, x) ∈ Q4 and (M + 1)(4C + k) +Nk ≤ αx.

Proposition 3.6. Suppose followers’ forward positions f = 0. Let X ⊆ R+ denote the set of

symmetric leader reactions, i.e., for each x ∈ X and i ∈M ,

ψi(x;x1,0) ≥ ψi(x̄;x1,0), ∀x̄ ∈ R+.

Let:

x1 =
1

M + 1
[αx]

∞
0 ,

x2 =
1

M
(αx −4C) ,

x3 =
1

M + 1
[αx +N4C]

∞
0 ,

x4 =
1

M + 1
[αx −Nk]

∞
0 .
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Then,

X =


x ∈ R+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x = x1 if αx < (M + 1)4C,

or x = x2 if (M + 1)4C ≤ αx ≤ min ((MN +M + 1)4C, ζ1) ,

or x = x3 if (MN +M + 1)4C < αx ≤ ζ2,

or x = x4 if αx ≥

Nk + N(M+1)

2(
√
N+1−1)

(4C + k), if (
√
N + 1− 1)24C < Nk,

Nk + (M + 1)
(
4C +

√
Nk4C

)
, otherwise.


.

where

ζ1 := MNk + (M + 1)4C + 2M
√
Nk4C,

ζ2 := (MN +M + 1)4C +
(M + 1)

√
N + 1

2(
√
N + 1− 1)

(
Nk −

(√
N + 1− 1

)2

4C
)
.

Moreover, for each x ∈ X,

yj(0, x1) = 0 ⇐⇒ x = x1 or x2,

0 < yj(0, x1) < k ⇐⇒ x = x3,

yj(0, x1) = k ⇐⇒ x = x4.

Proof. The result is obtained by substituting f = 0 into Proposition 3.4 and simplifying the inequal-

ities in X. For the case of x = x1, we have

f −4C < − αx
M + 1

⇐⇒ αx < (M + 1)4C.

For the case of x = x2, we have

− αx
M + 1

≤ f −4C ≤ min

(
− αx
MN +M + 1

, η4

)
⇐⇒ − αx

M + 1
≤ −4C and −4C ≤ − αx

MN +M + 1
and −4C ≤ η4

⇐⇒ (M + 1)4C ≤ αx and αx ≤ (MN +M + 1)4C and αx ≤ ζ1

⇐⇒ (M + 1)4C ≤ αx ≤ min ((MN +M + 1)4C, ζ1) ,

where the second equivalence is due to the fact that −4C ≤ η4 ⇐⇒ αx ≤ ζ1. For the case of
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x = x3, we have

− αx
MN +M + 1

< f −4C ≤ max (η3, k − (αx −Nk))

⇐⇒ − αx
MN +M + 1

< −4C ≤

k − (αx −Nk), if αx ≤ Nk,

η3, if αx > Nk,

⇐⇒ (MN +M + 1)4C < αx ≤

Nk, if αx ≤ Nk,

ζ2, if αx > Nk,

⇐⇒ (MN +M + 1)4C < αx ≤ ζ2.

The first equivalence is due to the fact that k − (αx − Nk) ≥ η3 ⇐⇒ αx ≤ Nk. The second

equivalence is due to the fact that 4C ≥ 0 and k > 0. For the case of x = x4, we have

f −4C ≥


k − (αx −Nk), if αx < Nk,

η2, if αx ≥
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
Nk,

η1, otherwise.

Suppose αx < Nk. Then, the above inequality implies that −4C ≥ k − (αx − Nk) =⇒ αx ≥

4C + (N + 1)k > Nk, which is a contradiction. Henceforth, we assume that αx ≥ Nk, and obtain

−4C ≥

η2, if αx ≥
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
Nk,

η1, if Nk ≤ αx <
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
Nk,

⇐⇒ αx ≥

Nk + (M + 1)
(
4C +

√
Nk4C

)
, if αx ≥

(
1 + (M+1)

√
N+1

(
√
N+1−1)2

)
Nk,

Nk + N(M+1)

2(
√
N+1−1)

(4C + k), if Nk ≤ αx <
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
Nk,

⇐⇒ αx ≥

Nk + N(M+1)

2(
√
N+1−1)

(4C + k), if (
√
N + 1− 1)24C < Nk,

Nk + (M + 1)
(
4C +

√
Nk4C

)
, otherwise.

The last equivalence is due to the fact that N(M+1)

2(
√
N+1−1)

(4C + k) < (M+1)
√
N+1

(
√
N+1−1)2

Nk ⇐⇒ (
√
N + 1−

1)24C < Nk.
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3.E Proofs of Structural Results

Proof of Lemma 3.1. From Proposition 3.3, note that 0 < yj(f1, x1) < k if and only if f =

N−1
N2+1 (αx −4C −Mx). Substituting into the follower productions from Proposition 3.2 gives

yj(f1, x1) =
N

N2 + 1
ξ,

which is strictly increasing in ξ. Since ξ ≤ (N2+1)(N−1)

N2−2
√
N+1

k, we obtain

ȳ =

(
1− N − 2

√
N + 1

N2 − 2
√
N + 1

)
k

≥
(

1− N + 1

N2 − 2
√
N

)
k

≥
(

1− 1

N

N + 1

N

N2

N2 − 2
√
N

)
k,

which gives the first claim.

Next, from Proposition 3.3,
¯
ξ and ξ̄ are given by

¯
ξ = (N + 1)k,

ξ̄ =
(N2 + 1)(N − 1)

N2 − 2
√
N + 1

k,

from which we obtain

¯
ξ − ξ̄

¯
ξ

=
2(N2 −N

√
N −

√
N + 1)

(N2 − 2
√
N + 1)(N + 1)

≤ 2(N2 + 1)

N(N2 − 2
√
N)

=
2

N

N2 + 1

N2

N2

N2 − 2
√
N
,

which gives the rest of the second claim.

Proof of Lemma 3.2. From Proposition 3.4,
¯
f and f̄ are given by

¯
f = 4C − αx

M + 1
,

f̄ = 4C + min

(
− αx
MN +M + 1

, η4

)
.
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The first claim follows from Proposition 3.4. Next,

f̄ −
¯
f =

αx
M + 1

+ min

(
− αx
MN +M + 1

, η4

)
≤ αx
M + 1

− αx
MN +M + 1

=
MNαx

(M + 1)(MN +M + 1)

≤ MNαx
M2(N + 1)

=
αx
M

N

N + 1
,

which gives the second claim.

Proof of Lemma 3.3. From Proposition 3.4, note that 0 < yj(f1, x1) < k =⇒ x = x3. Substituting

into the follower productions from Proposition 3.2 gives

yj(f1, x1) =

[
1

N + 1

(
αx + (f −4C)− M

M + 1
(αx +N(4C − f))

)]k
0

,

which is strictly increasing in f . Note that x = x3 is a reaction if and only if

− αx
MN +M + 1

< f −4C ≤ max (η3, k − (αx −Nk)) ⇐⇒ − αx
MN +M + 1

< f −4C ≤ η3,

where we used the fact that αx > Nk =⇒ η3 ≥ k − (αx −Nk). Since

αx ≤ Nk
(

1 +
(M + 1)

√
N + 1

(
√
N + 1− 1)2

+
(M − 1)

√
N + 1√

N + 1− 1

)
=⇒ − αx

NM +M + 1
≤ η3,

we infer the case for ȳ = 0. Otherwise, substituting for η3 gives

ȳ = yj ((4C + η3)1, x31)

= k +
αx −Nk
N + 1

1

M + 1

(
2(M + 1)(N + 1)− (M + 1)(N + 2)

√
N + 1

N(2 + (M − 1)
√
N + 1

)
≥ k − αx −Nk

N

(
N + 2

(N + 1)(M − 1)

)
,

from which we obtain the first claim. From Proposition 3.4, we infer that f̄ = η3 and
¯
f = η1 when
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αx ≤ Nk
(

1 + (M+1)
√
N+1

(
√
N+1−1)2

)
. Hence, we obtain

f̄ −
¯
f =

αx −Nk
N

(
2(
√
N + 1− 1

)(2 + (M − 1)
√
N + 1− (M + 1)

(M + 1)(2 + (M − 1)
√
N + 1

)
≤ 2

(
αx −Nk

N

)(√
N + 1− 1

M − 1

)
≤ αx −Nk

M
√
N

2

(√
N + 1√
N

M

M − 1

)
,

which gives the second claim.

Proof of Lemma 3.4. From Proposition 3.5, note that 0 < yj(f1, x1) < k =⇒ (f, x) ∈ Q3.

Substituting into the follower productions from Proposition 3.2 gives

yj(f1, x1) =
N

N2 +NM +M + 1
αx,

which is strictly increasing in αx. Since αx ≤ ζ2, it follows that

ȳ =
N

N2 +NM +M + 1
ζ2

=

(
1− N + 2− 2

√
N + 1

N2 +N + 2− 2
√
N + 1

)
k

≥
(

1− N

N2 +N

)
k

=

(
1− 1

N

N

N + 1

)
k,

from which we obtain the first claim.

Next, from Proposition 3.5, we infer that ᾱx = ζ2 and
¯
α = (M + N + 1)k. It is easy to show

that ζ2 < (M +N + 1)k ⇐⇒ M < N
√
N + 1− 1. Moreover,

(M +N + 1)k − ζ2 =
2

N2 + (
√
N + 1− 1)2

(
(N2 +N +M + 1)− (M +N + 1)

√
N + 1

)
k.

Hence, if
¯
αx ≤ ᾱx, then

¯
αx − ᾱx

¯
αx

=
2

N2 + (
√
N + 1− 1)2

(
1 +

N2

M +N + 1
−
√
N + 1

)
≤ 2N

N2 + (
√
N + 1− 1)2

≤ 2N

N2
,
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from which we obtain the first part of the second claim. If
¯
αx ≥ ᾱx, then

ᾱx −
¯
αx

¯
αx

=
2

N2 + (
√
N + 1− 1)2

(√
N + 1− 1− N2

M +N + 1

)
≤ 2

N2 + (
√
N + 1− 1)2

(√
N + 1

)
≤ 2

N2

√
N + 2

≤ 2

N
√
N

√
N + 2

N
,

from which we obtain the rest of the second claim.

Proof of Lemma 3.6. From Proposition 3.5, note that 0 < yj(f1, x1) < k ⇐⇒ (f, x) ∈ Q3.

Substituting into the follower productions from Proposition 3.2 gives

yj(f1, x1) =
N

N2 +MN +M + 1
(αx − (MN +M + 1)4C) ,

which is strictly increasing in αx. Since αx ≤ ζ2, it follows that

ȳ =
N

N2 +MN +M + 1
(ζ2 − (MN +M + 1)4C)

=
N2

N2 + (
√
N + 1− 1)2

(
k − (

√
N + 1− 1)2

N
4C

)
≥
(

1− N + 2− 2
√
N + 1

N2

)(
k − (

√
N + 1− 1)2

N
4C

)
≥
(

1− 1

N

)(
k − (

√
N + 1− 1)2

N
4C

)
,

from which we obtain the first claim.

Next, from Proposition 3.5, we infer that if (
√
N + 1 − 1)24C < Nk, then ᾱx = ζ2 and

¯
αx =

(M +N + 1)k, and it is straightforward to show that ζ2 < (M +N + 1)k if and only if the first case

in (3.3) holds. Otherwise, then ᾱx = ζ1 and
¯
αx = (M +N + 1)k, and it is straightforward to show

that ζ1 < (M +N + 1)k if and only if the second case in (3.3) holds.

Proof of Lemma 3.7. From Proposition 3.6, note that 0 < yj(0, x1) < k ⇐⇒ x = x3. Substituting

into the follower productions from Proposition 3.2 gives

yj(0, x1) =
1

(N + 1)(M + 1)
(αx − (MN +M + 1)4C) ,
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which is strictly increasing in αx. Since αx ≤ ζ2, it follows that

ȳ =
1

(N + 1)(M + 1)
(ζ2 − (MN +M + 1)4C)

=

(
1 +

1√
N + 1

)
k

2
,

from which we obtain the first claim.

Next, from Proposition 3.6, we infer that ᾱx = ζ2 and
¯
αx = Nk + N(M+1)

2(
√
N+1−1)

(4C + k). It is

straightforward to show that ᾱx ≥
¯
αx.

Proof of Lemma 3.9. From Proposition 3.6, note that 0 < yj(0, x1) < k ⇐⇒ x = x3. Substituting

into the follower productions from Proposition 3.2 gives

yj(0, x1) =
1

(N + 1)(M + 1)
(αx − (MN +M + 1)4C) ,

which is strictly increasing in αx. Since αx ≤ ζ2, it follows that

ȳ =
1

(N + 1)(M + 1)
(ζ2 − (MN +M + 1)4C)

=

(
1 +

1√
N + 1

)
1

2

(
k − (

√
N + 1− 1)2

N
4C

)
,

from which we obtain the first claim.

Next, from Proposition 3.6, we infer that, if (
√
N + 1 − 1)24C < Nk, then ᾱx = ζ2 and

¯
αx = Nk + N(M+1)

2(
√
N+1−1)

(4C + k), and it is straightforward to show that ᾱx ≥
¯
αx. Otherwise, then

ᾱx = ζ1 and
¯
αx = Nk+(M+1)(4C+

√
Nk4C), and it is straightforward to show that ᾱx ≥

¯
αx.

Proof of Lemma 3.10. The proof proceeds in three steps. In step 1, we compute an equilibria with

the smallest (resp. largest) market production in the forward (resp. Stackelberg) market. In step

2, we compute an equilibria with the smallest (resp. largest) social welfare in the forward (resp.

Stackelberg) market. In step 3, we show that the worst case ratios of productions and efficiencies

are both strictly increasing in αx. The bounds in the lemma are obtained by evaluating those ratios

at αx = ᾱx.

Step 1: We compute an equilibria with the smallest (resp. largest) market production in the

forward (resp. Stackelberg) market. First, we tackle the forward market. Substituting 4C = 0 into

Proposition 3.5, we infer that (f, x) ∈ Q if and only if (f, x) ∈ Q3 or (f, x) ∈ Q4. By substituting into

Proposition 3.2, and using the fact that yj(f1, x1) = 0 for all (f, x) ∈ Q4, we obtain the following
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market productions:

Mx+Nyj(f1, x1) =


1

N2+MN+M+1

(
N2 +MN +M

)
αx, if (f, x) ∈ Q3,

1
M+1 (Mαx +Nk) , if (f, x) ∈ Q4.

Note that

1

M + 1
[Mαx +Nk]

=
1

N2 +MN +M + 1

[
(N2 +MN +M)αx +

−N2 −MN

M + 1
αx +

N(N2 +MN +M + 1)

M + 1
k

]
≤ 1

N2 +MN +M + 1

[
(N2 +MN +M)αx +

N(M + 1)(1−N −M)

M + 1
k

]
≤ 1

N2 +MN +M + 1

(
N2 +MN +M

)
αx,

where the first inequality is due to the fact that αx ≥
¯
αx and the second inequality is due to the

fact that M ≥ 1, N ≥ 2, and k > 0. Hence, we infer that the smallest equilibrium production in the

forward market is given by

yF = k,

xF =
1

M + 1
(αx −Nk).

Next, we tackle the Stackelberg market. Substituting 4C = 0 into Proposition 3.6, we infer that

(0, xs) ∈ X(0) if and only if xs = x3 or xs = x4. Suppse

αx < Nk +
N(M + 1)

2(
√
N + 1− 1)

k. (3.53)

Then, from Proposition 3.6, we conclude that xs = x3 is the only Stackelberg equilibrium, and hence

it is also the equilibrium with the largest market production. Suppose, instead, that (3.53) does not

hold. By substituting into Proposition 3.2, and using the fact that yj(0, x41) = 0, we obtain the

following market productions:

Mxs +Nyj(0, xs1) =


MN+M+N

(M+1)(N+1)αx, if xs = x3,

1
M+1 (Mαx +Nk) , if xs = x4.
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Note that

MN +M +N

(M + 1)(N + 1)
αx

=
1

M + 1

[
Mαx +

N

N + 1
αx

]
≥ 1

M + 1

[
Mαx +

N

N + 1

(
N +

N(M + 1)

2(
√
N + 1− 1)

)
k

]
≥ 1

M + 1

[
Mαx +

N

N + 1
(N + 1) k

]
=

1

N + 1
[Mαx +Nk] ,

where the first inequality is due to the fact that (3.53) does not hold and the second inequality is

due to the fact that M ≥ 1 and N ≥ 2. Hence, we infer that the largest equilibrium production in

the Stackelberg market is given by

yS =
1

N + 1
(αx −Mxs) ,

xS =
1

M + 1
αx.

Step 2: We compute the equilibria with the smallest (resp. largest) social welfare in the forward

(resp. Stackelberg) market. Substituting the demand function into the social welfare gives

SW(y, x) = β

(
αx (Mx+Ny)−4CNy − 1

2
(Mx+Ny)

2

)
= β

(
αx (Mx+Ny)− 1

2
(Mx+Ny)

2

)
,

where the second equality is obtained by substituting 4C = 0. Given any two equilibrium produc-

tions (y, x) and (y′, x′), we have

SW(y, x) ≥ SW(y′, x′)

⇐⇒ αx(Mx+Ny)− 1

2
(Mx+Ny)2 ≥ αx(Mx′ +Ny′)− 1

2
(Mx′ +Ny′)2

⇐⇒ 1

2
((Mx+Ny)− (Mx′ +Ny′)) (αx − (Mx+Ny) + αx − (Mx′ +Ny′)) ≥ 0

⇐⇒ 1

2
((Mx+Ny)− (Mx′ +Ny′))

(
1

β
(P (Mx+Ny)− C) +

1

β
(P (Mx′ +Ny′)− C)

)
≥ 0

⇐⇒Mx+Ny ≥Mx′ +Ny′,

where the last equivalence follows from the fact that, since (y, x) and (y′, x′) are equilibrium pro-

ductions, the profit margins P (Mx+Ny)−C > 0 and P (Mx′+Ny′)−C > 0. Hence, the equilibria

with the smallest (resp. largest) social welfare in the forward (resp. Stackelberg) market are those
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with the smallest (resp. largest) market productions, which were obtained in step 1.

Step 3: We show that the worst-case ratios of productions and social welfares are strictly in-

creasing in αx. From step 1, the ratio of productions is bounded from above by

rP :=
MxS +NyS
MxF +NyF

.

Taking derivatives gives

∂rP
∂αx

=
(MxF +NyF )

(
M ∂xS

∂αx
+N ∂yS

∂αx

)
− (MxS +NyS)

(
M ∂xF

∂αx
+N ∂yF

∂αx

)
(MxF +NyF )2

=

N(MN+M+N)k
(M+1)2(N+1)

(MxF +NyF )2

> 0.

Next, the ratio of social welfares is bounded from above by

rW :=
SW(yS , xS)

SW(yF , xF )
.

Taking derivatives gives

∂rW
∂αx

=
SW(yF , xF )∂SW(yS ,xS)

∂αx
− SW(yS , xS)∂SW(yF ,xF )

∂αx

SW(yF , xF )2

=

β
2(M+1)4(N+1)2 (MN +M +N)(MN +M +N + 2)(αx −Nk)Nkαx

SW(yF , xF )2

> 0,

where the inequality is due to αx ≥
¯
αx > Nk. Hence, rP and rW are both strictly increasing in αx

over [
¯
αx, ᾱx]. By substituting αx = ᾱx into rP and rW , we obtain the desired result.
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Chapter 4

Optimization Decomposition for
Joint Economic Dispatch and
Frequency Regulation

In this chapter, we focus on the joint design of economic dispatch and frequency regulation. Recall

that grid operations are divided into two timescales/layers. The timescale of 5 minutes and longer is

focused on efficiency and resources are dispatched using market mechanisms and solving economic

dispatch. The timescale within 5-minute intervals is focused on stability where the faster timescale

resources are dispatched using engineered frequency regulation controllers. Economic dispatch and

frequency regulation each have large and active literatures; however, these literatures are almost

completely disparate. While there have been studies on integrating the two mechanisms more

efficiently [127], we are not aware of any rigorous analysis of whether their combination solves the

global system operator’s goal of dispatching generation resources efficiently across both timescales.

4.1 Our Contributions

The goal of this work is to initiate a study into the joint design of economic dispatch and frequency

regulation mechanisms. Our main result provides an initial answer. In the context of a DC power

flow model and two classes of generators (dispatch and regulation), we show that the global system

operator’s problem can be decomposed into two sub-problems that correspond to the economic

dispatch and frequency regulation timescales, without loss of optimality, as long as the ISO is

able to estimate the difference between the average LMP in the frequency regulation periods and

the LMP in the economic dispatch period (Theorem 4.1). This result can be viewed as a first-

principles justification for the existing separation of power systems control into economic dispatch

and frequency regulation problems. Moreover, this result provides a guide to modify the existing

architecture to optimally control power systems across timescales. In particular, using this result,

we design an optimal control policy for frequency regulation and an optimal market mechanism for
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economic dispatch, in a way such that the control and market mechanisms jointly solve the global

system operator’s problem. Our mechanims differ from existing economic dispatch and frequency

regulation mechanisms in important ways.

In the case of frequency regulation (Section 4.4), our mechanism has a key advantage over the

AGC mechanism in that our mechanism is efficient. The frequency regulation controller proposed

in this work is built on the distributed controller in [146, 87] and controls generation based on in-

formation about generators’ costs in a way such that the power system converges to an operating

point that minimizes system costs. On the other hand, AGC allocates generation based on partici-

pation factors, which might not reflect actual costs, and hence the resulting allocation might not be

efficient. In [84], the authors proposed a modification of the participation factors so that the AGC

mechanism is cost efficient. However, unlike our mechanism, the mechanism in [84] does not respect

line constraints.

In the case of economic dispatch (Section 4.5), our mechanism has a key advantage over the

existing economic dispatch operations in that it coordinates efficiently with the frequency regulation

timescale. This coordination does not require additional communication in the market beyond

the existing mechanism used in practice. This coordination involves two main components. First,

our economic dispatch mechanism communicates the supply function bids from the generators to

the frequency regulation mechanism, which uses them in the distributed controllers to allocate

frequency regulation resources efficiently. In contrast, the AGC mechanism allocates frequency

regulation resources without regard to generation costs. Second, our economic dispatch mechanism

accounts for the value that economic dispatch resources provide to frequency regulation. It does so

by adjusting the resource costs in the economic dispatch objective based on the difference between

the LMP in the frequency regulation periods and that in the economic dispatch period. In contrast,

the existing economic dispatch objective does not perform this adjustment and hence might allocate

economic dispatch resources inefficiently.

In practice, the ISO is unlikely to be able to estimate exactly the adjustment it should make to

the economic dispatch objective. In Section 4.6, we investigate numerically the sensitivity of the

suboptimality of our decomposition to those estimation errors on the IEEE 24-bus reliability test

system.

4.2 System Model

Our aim is to understand how the combination of economic dispatch and frequency regulation can

dispatch generation resources efficiently across both timescales. To this end, we formulate a model

of the global objective that includes balancing supply and demand at both timescales. We use a

DC power flow model and consider two generation types – dispatch and regulation – which differ in
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Figure 4.1: Example of a scenario tree with S = 16 outcomes over K = 5 periods. The outcomes
are numbered 1, . . . , S.

responsiveness.

Consider a connected network consisting of a set of nodes N and a set of links L. We focus on

a single economic dispatch interval of the real-time market which is typically 5 minutes in existing

markets. We partition this time interval into K discrete periods numbered 1, . . . ,K. In general, the

length of each period may range from as little as seconds to as long as minutes. However, in this

work, we focus on the case where each period is on the order tens of seconds.

4.2.1 Stochastic demand

We use a stochastic demand model motivated by the frameworks in [36, 126, 103]. Assume that

there is a set of possible demand outcomes S that can be described by a scenario tree (an example

is given in Figure 4.1). For each outcome s ∈ S, let ds,n ∈ R denote the real power demand

at node n ∈ N and ds := (ds,n, n ∈ N) ∈ RN denote the vector of demands at all nodes. In

addition, let κ(s) ∈ {1, . . . ,K} denote the period of this outcome and ps denote the probability of

this outcome conditioned on the information that the period is κ(s). Hence,
∑
{s|κ(s)=k} ps = 1 for

each k ∈ {1, . . . ,K}. Without loss of generality, we assume that κ(1) = 1 and p1 = 1. That is,

there exists an outcome labeled 1 ∈ S associated with period 1 and the demand in that period is

deterministic.

4.2.2 Generation

We assume that each node n ∈ N has two generators – a dispatch generator and a regulation

generator – where the regulation generator is more responsive than the dispatch generator. To model

the differing responsiveness, we assume that the dispatch generator produces at a constant level over

the entire economic dispatch interval while the regulation generator may change its production level

every period after uncertain demand is realized [50]. Formally, we assume that the dispatch generator

produces qbn ∈ R in all outcomes, and the regulation generator produces qpn ∈ R in period 1 and
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qpn + rps,n ∈ R in each subsequent outcome s ∈ S \ {1}. Hence, qpn and rps,n can be interpreted as the

regulation generator’s setpoint and recourse respectively. To simplify notations, we define a dummy

variable rp1,n := 0 so that we may write the regulation generator’s production in period 1 as qpn+rp1,n.

We assume that the regulation and dispatch generators have capacity constraints [
¯
qpn, q̄

p
n] and [

¯
qbn, q̄

b
n]

respectively, and incur costs cpn(qpn+rps,n) and cbn(qbn) respectively in period κ(s), where the functions

cpn : [
¯
qpn, q̄

p
n]→R+ and cbn : [

¯
qbn, q̄

b
n]→R+ are strictly convex and continuously differentiable.

Define vectors qp := (qpn, n ∈ N), rps := (rps,n, n ∈ N), qb := (qbn, n ∈ N),
¯
qp := (

¯
qpn, n ∈ N),

¯
qb := (

¯
qbn, n ∈ N), q̄p := (q̄pn, n ∈ N), q̄b := (q̄bn, n ∈ N). Then the generation constraints in outcome

s ∈ S are given by:

¯
qb ≤ qb ≤ q̄b, (4.1)

¯
qp ≤ qp + rps ≤ q̄p. (4.2)

We also let the vector rp := (rps , s ∈ S).

4.2.3 Network constraints

Note that qb + qp + rps − ds is the vector of nodal injections for s ∈ S. Thus, the supply-demand

balance constraint is:

1>(qb + qp + rps − ds) = 0, (4.3)

where 1 ∈ RN denotes the vector of all ones.

We adopt the DC power flow model for line flows. Let θs,n denote the phase angle of node n.

Without loss of generality, assign each link l an arbitrary orientation and let i(l) and j(l) denote

the tail and head of the link respectively. Let Bl denote the sensitivity of the flow with respect to

changes in the phase difference θs,i(l) − θs,j(l) and let vs,l denote its power flow. Define the vectors

θs := (θs,n, n ∈ N) and vs := (vs,l, l ∈ L) and the matrix B := diag(Bl, l ∈ L). Then, the line flows

are given by vs = BC>θs, where C ∈ RN×L is the incidence matrix of the directed graph. And the

injections are:

qb + qp + rps − ds = Cvs = Lθs, (4.4)

where L := CBC>.

Note that (4.3) and (4.4) are equivalent. For any set of injections that satisfy (4.3), we can

always find θs that satisfies (4.4). Conversely, since 1>C = 0, any injections that satisfy (4.4) also
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satisfy (4.3). Hence, the line flows can be written in terms of the power injections:

vs = BC>L†(qb + qp + rps − ds),

where L† denotes the pseudo-inverse of L. Let H := BC>L†. Let fl denote the capacity of line l

and define the vector f := (fl, l ∈ L). Then the line flow constraints are:

−f ≤ H
(
qb + qp + rps − ds

)
≤ f . (4.5)

To simplify notations, we define the set Ω(ds) of feasible generation for a given demand vector ds

as:

Ω(ds) :=
{

(qb,qp, rps) : (4.1), (4.2), (4.3), (4.5) holds
}
.

4.2.4 System operator’s objective

The global system operator’s objective is to allocate the dispatch and regulation generations (qb,qp, rp)

to minimize the expected cost of satisfying demand and operating constraints. This is formalized as

follows.

SY STEM : min
qb,qp,rp

∑
s∈S

ps
∑
n∈N

(
cbn(qbn) + cpn(qpn + rps,n)

)
s.t. (qb,qp, rps) ∈ Ω(ds), ∀s ∈ S,

rp1 = 0.

We assume that this optimization is feasible. Note that SY STEM differs from the existing economic

dispatch mechanism which minimize costs under the assumption that the demand during all the K

periods in the economic dispatch interval is equal to the demand d1 in period 1.

Let λs and (
¯
µs, µ̄s) be the Lagrange multipliers associated with constraints (4.3) and (4.5)

respectively in SY STEM . Then, the function π : R× R2L
+ → RN , defined by:

π(λs,
¯
µs, µ̄s) := λs1 + H>(

¯
µs − µ̄s), (4.6)

gives the nodal prices in outcome s ∈ S.

4.3 Architectural Decomposition

Our main result is a decomposition of SY STEM into setpoint and recourse sub-problems. Im-

portantly, our decomposition identifies a rigorous connection between the setpoint and recourse

sub-problems that ensures that the combination solves SY STEM . In particular, our decomposition
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divides SY STEM into sub-problems ED and FR defined by:

ED(d1) : min
qb,qp

∑
n∈N

(
Kcbn(qbn) +Kcpn(qpn)− δnqbn

)
s.t. (qb,qp,0) ∈ Ω(d1),

FR(qb,qp,ds) : min
rps

∑
n∈N

cpn(qpn + rps,n)

s.t. (qb,qp, rps) ∈ Ω(ds),

where δ ∈ RN is a constant. ED(d1) is implemented in time period 1 and FR(qb,qp,ds) is

implemented in subsequent time periods κ(s) > 1.

We denote the first optimization problem by ED, since it optimizes only generation setpoints

(qb,qp) assuming constant demand d1 over the K time periods, and hence it is on the same timescale

as the existing economic dispatch mechanism. We denote the second optimization problem by FR,

since it optimizes regulation generators’ recourse production rps in subsequent time periods, and

hence it is on the same timescale as the existing frequency regulation mechanism.

Definition 4.1. We say that SY STEM can be optimally decomposed into ED-FR if (qb,qp, rp) is

an optimal solution to SY STEM if and only if rp1 = 0, (qb,qp) is an optimal solution to ED(d1),

and rps is an optimal solution to FR(qb,qp,ds) for all s ∈ S.

Theorem 4.1 (Decomposition). Let λs and (
¯
µs, µ̄s) be any Lagrange multipliers associated with

constraints (4.3) and (4.5) respectively in SY STEM .

(a) If δ is the average, over all time periods, of the difference between the expected nodal prices in

each period and that in period 1, that is, for each n ∈ N ,

δn =
∑
s∈S

ps
(
πn(λs,

¯
µs, µ̄s)− πn(λ1,

¯
µ1, µ̄1)

)
, (4.7)

then SY STEM can be optimally decomposed into ED-FR.

(b) If SY STEM can be optimally decomposed into ED-FR, then for all n such that
¯
qbn < qbn < q̄bn

and
¯
qpn < qp1,n < q̄pn, (4.7) holds.

The proof of Theorem 4.1 is given in the Appendix. The result follows from analyzing the

Karush-Kuhn-Tucker conditions of the system operator’s problem and those of ED and FR. As

mentioned, we denote the two sub-problems by ED and FR because they focus on the economic

dispatch and frequency regulation timescales respectively. Hence, these sub-problems can serve

as guides for the optimal design of economic dispatch and frequency regulation mechanisms. The

insights are immediate in the case of economic dispatch and we show how ED leads to an improved



107

market mechanism in Section 4.5. However, the insights may not be as clear in the case of frequency

regulation. We show in Section 4.4 that FR can in fact be solved via distributed frequency control

algorithms, although these algorithms deviate from current practice that do not optimize generation

costs.

The most important feature of Theorem 4.1 is that one way to choose generation setpoints

optimally at the economic dispatch timescale, is to include, in the optimization objective, an offset of

the dispatch generators’ marginal costs by the expected changes in nodal prices during the frequency

regulation timescale. The latter can be interpreted as the expected changes in the marginal value of

dispatch generation. Hence, if the latter is zero, then generation setpoints can be chosen optimally

at the economic dispatch timescale without regard to the behavior of the system in the frequency

regulation timescale [28].

An important extension of this result is to understand the efficiency loss of the decomposition

when we are unable to estimate the RHS of (4.7) accurately. Note that negative estimation errors

cause ED(d1) to use less than optimal dispatch resources (and more than optimal regulation re-

sources) and vice versa. We investigate the efficiency loss in Section 4.6. In such situations, the

dispatch generation qb might not be optimal, and therefore FR(qb,qp,ds) might not be feasible. To

ensure that FR(qb,qp,ds) is feasible, we may modify ED(d1) into a robust optimization problem

by adding constraints (qb,qp, rps) ∈ Ω(ds) for all s ∈ S \{1}. The size of such a problem is exponen-

tial in S but can be reduced using the technique in [93]. Note that this should not be viewed as a

drawback of our decomposition, as the current practice based on AGC might also not be feasible. In

practice, the risks of infeasibility are mitigated using reserves. Moreover, our decomposition has the

advantage that it coordinates the economic dispatch and frequency regulation resources efficiently,

and hence, may reduce reserve requirements.

Theorem 4.1 is close in spirit to work in communication networks that use optimization decompo-

sition to justify and optimize protocol layering [39, 104, 31]. Hence, Theorem 4.1 provides a rigorous

way to think about architectural design of power networks.

4.4 Distributed Frequency Regulation

This section illustrates how to implement the solution to FR using distributed frequency regula-

tion controllers. Besides achieving optimality, a practical implementation should preserve network

stability, be robust to unexpected system events, aggregate network information in a distributed

manner, and satisfy constraints (4.2), (4.3) and (4.5). The distributed algorithm that we provide

in this section satisfies all the above characteristics. It can be interpreted as performing distributed

frequency regulation by sending different regulation signals to each bus.
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4.4.1 Dynamic model

Before introducing our algorithm we add dynamics to our system model to describe the system

behavior within a single time period. Let t denote the time evolution within the time period

of outcome s, and assume without loss of generality that t ∈ (k, k + 1] where k = κ(s). Let

rps(t) := (rps,n(t), n ∈ N) denote the recourse quantities generated by the regulation generators at

time t. We assume that dispatch generation and demand do not change within the time period.

Then, the system changes within the time period are governed by the swing equations, which we

assume to be:

θ̇s(t) = ωs(t); (4.8a)

Mω̇s(t) = qb + qp + rps(t)− ds −Dωs(t)− Lθs(t), (4.8b)

where ωs(t) := (ωs,n(t), n ∈ N) are the frequency deviations from the nominal value at time t,

θs(t) := (θs,n(t), n ∈ N) are the phase angles at time t, M := diag(M1, . . . ,MN ) where Mn is the

aggregate inertia of the generators at node n, and D := diag(D1, . . . , DN ) where Dn is the aggregate

damping of the generators at node n. The notation ẋ denotes the time derivative, i.e. ẋ = dx/dt.

Equation (4.8) is a linearized version of the nonlinear network dynamics [19, 18], and has been widely

used in the design of frequency regulation controllers. See, e.g., [45, 46].

4.4.2 Distributed frequency regulation

We now introduce a distributed, continuous-time algorithm that provably solves FR while preserving

system stability. Our solution is based on a novel reverse and forward engineering approach for

distributed control design in power systems [147, 145, 87, 84, 143, 70]. The algorithm operates as

follows. Each regulation generator n updates its power generation using

rps,n(t) = [cp′−1
n (−ωs,n(t)− πps,n(t))]

q̄pn−q
p
n

¯
qpn−qpn

, (4.9)

where cp′n (x) = ∂
∂xc

p
n(x) and cp′−1

n denotes its inverse. The projection [r]
q̄pn−q

p
n

¯
qpn−qpn

ensures that
¯
qpn−qpn ≤

r ≤ q̄pn − qpn (or equivalently
¯
qpn ≤ r + qpn ≤ q̄pn) and πps,n(t) is a control signal generated using:

DFR : π̇ps(t) = ζπ
(
qb + qp + rps(t)− ds −Lφs(t)

)
; (4.10a)

˙̄µs(t) = ζµ̄
[
BC>φs(t)− f

]+
µ̄s

; (4.10b)

¯
µ̇s(t) = ζ¯

µ
[
− f −BC>φs(t)

]+
¯
µs

; (4.10c)

φ̇s(t) = χφ
(
Lπps(t)−CB(µ̄s(t)−

¯
µs(t))

)
, (4.10d)
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where ζπ := diag(ζπ1 , . . . , ζ
π
N ), ζµ̄ := diag(ζ µ̄1 , . . . , ζ

µ̄
L), ζ¯

µ := diag(ζ¯
µ

1 , . . . , ζ¯
µ

L), χφ := diag(χφ1 , . . . , χ
φ
N )

denote the respective control gains. The element-wise projection [y]+x := ([yn]+xn , n ∈ N) ensures

that the dynamics ẋ = [y]+x have a solution x(t) that remains in the positive orthant, that is,

[yn]+xn = 0 if xn = 0 and yn < 0, and [yn]+xn = yn otherwise.

The proposed solution (4.9) – (4.10) can be interpreted as a frequency regulation algorithm in

which each regulation generator receives a different regulation signal (4.9) depending on its location

in the network. The key step in the design of DFR is reformulating FR into the following equivalent

optimization problem:

FR′(qb, qp,ds) : min
rps ,ωs,vs,φs

∑
n∈N

(
cpn(qpn + rps,n) +Dnω

2
s,n/2

)
s.t. qb + qp + rps − ds −Dωs = Cvs; (4.11a)

qb + qp + rps − ds = Lφs; (4.11b)

− f ≤ BC>φs ≤ f ; (4.11c)

¯
qp ≤ qp ≤ q̄p. (4.11d)

Recall from Section 4.2.3 that vs denote line flows. Constraint (4.11a) is reformulated from the per

node supply-demand balance constraint (4.4), and makes explicit the fact that, whenever supply and

demand do not match, the mismatch is compensated by a change in the frequency. Constraint (4.11b)

ensures that ωs = 0 at the optimal solution so that supply and demand are balanced. Constraint

(4.11c) imposes line flow limits. However, instead of using actual line flows vs, these limits are

imposed on virtual flows BC>φs, which are identical to line flows at the optimal solution [87].

It can be shown that FR′ has a primal-dual algorithm that contains the component (4.8) re-

sembling power network dynamics and the components (4.9) – (4.10) that can be implemented via

distributed communication and computation. This new problem FR′ also makes explicit the role of

frequency in maintaining supply-demand balance.

The next proposition formally relates the optimal solutions of FR and FR′ and guarantees the

optimality of (4.9) – (4.10).

Proposition 4.1 (Optimality). Let rps and (rp′s ,ω
′
s,v
′
s,φ
′
s) be optimal solutions of FR and FR′

respectively. Then, the following statements are true: (i) Frequency restoration: ω′s = 0; (ii)

Generation equivalence: rps = rp′s ; (iii) Line flow equivalence: H
(
qb + qp + rps − ds

)
= BC>φ′s.

Moreover, there exists θ′s ∈ RN and y′s ∈ RL, satisfying Cy′s = 0, such that v′s = BC>θ′s + y′s

and BC>φ′s = BC>θ′s. And (rp′s ,ω
′
s,θ
′
s,φ
′
s,π

p′
s ,

¯
µ′s, µ̄

′
s) is an equilibrium point of (4.8) – (4.10)

if and only if (rp′s ,ω
′
s,v
′
s,φ
′
s,π

p′
s ,

¯
µ′s, µ̄

′
s) is a primal-dual optimal solution of FR′, where ω′s, π

p′
s ,

and (
¯
µ′s, µ̄

′
s) are the Lagrange multipliers associated with constraints (4.11a), (4.11b), and (4.11c),

respectively.
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The proof of Proposition 4.1 is given in the Appendix. What remains is to guarantee the

convergence of the distributed frequency regulation algorithm.

Proposition 4.2 (Convergence). If cpn is twice continuous differentiable with cp′′n ≥ α > 0 (i.e.,

α-strictly convex) and cpn(qpn + rps,n) → +∞ as qpn + rps,n → {
¯
qpn, q̄

p
n}, then rps(t) in (4.8) – (4.10)

converge globally to an optimal solution of FR.

The proof of Proposition 4.2 follows from [87] and uses the machinery developed in [38] to

handle projections (4.10b) – (4.10c). By substituting the line flows vs(t) = BC>θs(t) into (4.8) and

eliminating θs(t), we can show that the entire system (4.8) – (4.10) is a primal-dual algorithm of FR′

(see [87, Theorem 5]). Therefore, Theorem 10 in [87] guarantees global asymptotic convergence to an

equilibrium point which by Proposition 4.1 is an optimal solution of both FR′ and FR. Our setup

is simpler than the controllers in [87], which had additional states, but the same proof technique

applies. Although Proposition 4.2 requires costs to blow up as regulation generations approach

minimum and maximum capacities, this assumption is not restrictive, as it can be achieved by

adding a barrier function to the actual cost before implementing in the controllers.

4.5 Market Mechanism for Economic Dispatch

This section illustrates how to implement the solution to ED through a market mechanism for

economic dispatch. The mechanism works in the following manner. In the first time period, the

ISO collects supply function bids from generators (both dispatch and regulation) and uses those

bids to solve ED. Then, in subsequent time periods, the ISO uses the regulation generators’ supply

function bids to implement the controller in (4.9). This mechanism is efficient if SY STEM can be

decomposed into ED-FR and does not require any more communication than the existing market

mechanisms used in practice.

4.5.1 Market model

We assume that generators are price-takers. Let πbn denote the price paid to dispatch generator n

in each period and πps,n denote the price paid to regulation generator n in outcome s. Then, the

expected profit of the dispatch and regulation generators at node n are:

PFbn(qbn, π
b
n) := K

(
πbnq

b
n − cbn(qbn)

)
,

PFpn((qpn + rps,n, π
p
s,n), s ∈ S)

:=
∑
s∈S

ps
(
πps,n

(
qpn + rps,n

)
− cpn(qpn + rps,n)

)
.
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Note that the regulation generator’s profit is a function of its total production qpn + rps,n in each

outcome s ∈ S. The supply function bids indicate the quantities the generators are willing to

produce at every price. We assume that these bids are chosen from a parameterized family of

functions. In particular, for node n, we represent the dispatch and regulation generators’ supply

functions by parameters αbn > 0 and αpn > 0 respectively, and these bids indicate that the dispatch

generator is willing to supply the quantity qbn = [αbns
b
n(πbn)]

q̄bn

¯
qbn

in the first time period and the

regulation generator is willing to supply the quantity qpn + rps,n = [αpns
p
n(πps,n)]

q̄pn

¯
qpn

in outcome s, for

some fixed functions sbn : [
¯
qbn, q̄

b
n] → R+ and spn : [

¯
qpn, q̄

p
n] → R+.1 We also assume that sbn(πbn) 6= 0

for all πbn ∈ R and spn(πps,n) 6= 0 for all πps,n ∈ R.2 The generators choose their bids to maximize

their profits subject to their capacity constraints. Note that the regulation generator submits only

one supply function for all possible outcomes. Hence, its bid in the economic dispatch timescale is

also used as its bid in the frequency regulation timescale.

The system operator interprets bids αbn and αpn as signals that the dispatch and regulation gen-

erators at node n have marginal costs πbn and πps,n respectively when supplying quantities αbns
b
n(πbn)

and αpns
p
n(πps,n) respectively. Hence, it associates with the generators the following bid cost functions:

ĉbn(qbn) :=

∫ qbn

¯
qbn

(sbn)−1(w/αbn) dw, (4.12)

ĉpn(qpn) :=

∫ qpn

¯
qpn

(spn)−1(w/αpn) dw. (4.13)

Let αb := (αbn, n ∈ N) and αp := (αpn, n ∈ N) denote the vectors of bids. Given bids (αb,αp), the

system operator solves ED to minimize expected bid costs. The prices for the regulation generator

in the first time period are the nodal prices in ED while the prices for the dispatch generator are the

nodal prices offset by δ. Then, in each subsequent outcome s ∈ S, the system operator implements

the controller in (4.9) using regulation generators’ bid costs. The prices are the nodal prices in FR

(which are computed by DFR).

4.5.2 Market equilibrium

Our focus is on understanding the efficiency of the mechanism. Formally, we consider the following

notion of a competitive equilibrium.

Definition 4.2. We say that bids (αb,αp) are a competitive equilibrium if there exists prices πb ∈
1Numerous studies have explored different functional forms of the supply functions and their impact on market

efficiency, e.g., see [111, 15, 68, 14, 76]. The focus of this work is on illustrating that ED can be implemented using
a simple market mechanism. Hence, we restrict ourselves to linearly parameterized supply functions and leave the
analyses of other more sophisticated supply functions to future work. We refer the reader to [68] for some appealing
properties of linearly parameterized supply functions.

2This assumption is a technical condition to avoid the degenerate situation where a generator’s supply quantity is
not sensitive to its bid parameter which would occur if sbn(πb

n) = 0 or spn(πp
s,n) = 0.
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RN and πp = (πps , s ∈ S) ∈ RNS such that:

(a) For all n, αbn is an optimal solution to:

max
α̂bn>0

PFbn

(
[α̂bns

b
n(πbn)]

q̄bn

¯
qbn
, πbn

)
.

(b) For all n, αpn is an optimal solution to:

max
α̂pn>0

PFpn

(
([α̂pns

p
n(πps,n)]

q̄pn

¯
qpn
, πps,n), s ∈ S

)
.

(c) πb = (1/K)
(
π(λ1,

¯
µ1, µ̄1) + δ

)
and πp1 = (1/K)π(λ1,

¯
µ1, µ̄1) where λ1 and (

¯
µ1, µ̄1) are the

Lagrange multipliers associated with constraints (4.3) and (4.5) respectively in:

ˆED(d1) : min
qb,qp

∑
n∈N

(
Kĉbn(qbn) +Kĉpn(qpn)− δnqbn

)
s.t. (qb,qp,0) ∈ Ω(d1).

(d) For all s ∈ S, πps = π(λs,
¯
µs, µ̄s) where λs and (

¯
µs, µ̄s) are the Lagrange multipliers associated

with constraints (4.3) and (4.5) respectively in:

ˆFR(qb,qp,ds) : min
rps

∑
n∈N

ĉpn(qpn + rps,n)

s.t. (qb,qp, rps) ∈ Ω(ds),

where qb =
(

[αbns
b
n(πbn)]

q̄bn

¯
qbn
, n ∈ N

)
and qp =

(
[αpns

p
n(πp1,n)]

q̄pn

¯
qpn
, n ∈ N

)
.

At each node n ∈ N , the dispatch and regulation generators produce at setpoints [αbns
b
n(πbn)]

q̄bn

¯
qbn

and

[αpns
p
n(πp1,n)]

q̄pn

¯
qpn

respectively in period 1, and the regulation generator produces an additional quantity

[αpns
p
n(πps,n)]

q̄pn

¯
qpn
− [αpns

p
n(πp1,n)]

q̄pn

¯
qpn

in outcome s ∈ S.

The following is our main result for this section. It highlights that, as a consequence of Theo-

rem 4.1, any competitive equilibrium is efficient.

Proposition 4.3 (Efficiency). Suppose that, for each n ∈ N , the functions sbn(·) = cb′−1
n (·)/γbn and

spn(·) = cp′−1
n (·)/γpn for some constants γbn, γ

p
n > 0. Let λs and (

¯
µs, µ̄s) be the Lagrange multipliers

associated with constraints (4.3) and (4.5) respectively in SY STEM . Suppose that (4.7) holds.

Then:

(a) Any competitive equilibrium has a production schedule that solves SY STEM .

(b) Any production schedule that solves SY STEM can be sustained by a competitive equilibrium.
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Table 4.1: Generators on test system.

Unit Group Unit Type Production Marginal Cost Assignment

Range (MW) Range ($/MWh)

U12 Oil/Steam [10, 60] [58.14, 64.446] Dispatch

U20 Oil/CT [64, 80] [130.0, 130.0] Regulation

U50 Hydro [60, 300] [0.001, 0.001] Regulation

U76 Coal/Steam [60, 304] [16.511, 18.231] Dispatch

U100 Oil/Steam [75, 300] [46.295, 54.196] Dispatch

U155 Coal/Steam [216, 620] [13.294, 14.974] Dispatch

U197 Oil/Steam [207, 591] [49.57, 51.405] Dispatch

U350 Coal/Steam [140, 350] [13.22, 15.276] Dispatch

U400 Nuclear [200, 800] [4.466, 4.594] Dispatch

Proposition 4.3 resembles classical welfare theorems, e.g., [68, 91, 69, 131]. However, it differs

from typical competitive equilibria frameworks because each regulation generator is restricted to

bidding a single supply function over the entire economic dispatch interval even though there are

multiple fast timescale instances. The latter creates challenges in guaranteeing existence and effi-

ciency of equilibria that do not arise in typical competitive equilibria frameworks. In particular, the

space of bid functions needs to be sufficiently expressive for generators to convey their costs over

multiple fast timescale instances via a single bid function. This is not an issue in market frameworks

where separate bids are collected for separate market instances. Proposition 4.3 circumvented this

challenge by restricting supply functions to be in the linear space of regulation generators’ true

cost functions. An important extension is to understand the existence and efficiency of equilibria

under less restrictive bid spaces. Proposition 4.3 also highlights that nodal pricing is not always effi-

cient and that the pricing mechanism needs to be jointly designed and analyzed with decomposition

principles in order to achieve efficiency.

4.6 Case Study

The efficiency of the mechanisms in Sections 4.4 and 4.5 depends on how accurately the system

operator can predict the RHS of equation (4.7). In this section, we investigate the sensitivity of the

performance of the decomposition to the value of δ using a case study on the IEEE 24-bus reliability

test system [137].

Table 4.1 summarizes the properties of the generators on the system. We assume that the hydro

and combustion turbine (CT) generators are regulation resources while all other generators are

dispatch resources. Note that, the hydro resources, which generate between 60 to 300 MW, have

the lowest marginal cost, while the CT resources, which generate between 64 to 80 MW, have the

highest marginal cost.

We assume that there are K = 20 time periods in the economic dispatch interval. Hence, each
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time period lasts 15 seconds. We construct the scenario tree as follows. Abusing notation, let

dk ∈ RN denote the demand at all nodes in period k. Set d1 to the values in the test system data

and let

dk = diag

(
1 +

k−1∑
k′=1

wk′

)
· d1,

where wk′ ∼ N (µd1, (0.0022)I) is a Gaussian vector with mean µd1 and covariance (0.0022)I. We

simulate µd = −0.0002, 0,+0.0002 to model scenarios with increasing, constant, and decreasing

demands, respectively. For each value of µd, we generate 50 length-K samples of the random process

and assign equal probabilities to all the samples. Hence, the scenario tree is a tall tree, where the

root node has 50 children, and all other nodes either have one child or is a leaf node. Figure 4.1

shows the sample trajectories of total system demand. The RHS of equation (4.7) have values

δ∗n = −80.34, 49.67, 49.72 (in $/MWh) corresponding to µd = −0.0002, 0,+0.0002, respectively.

Note that the optimal δn is non-zero even when the demand evolution has zero mean. To study the

impact when δ deviates from δ∗, we consider

δ = δ∗ + ε,

where ε ∼ N (µε1, σ
2
ε I). Hence, µε and σε can be interpreted as the bias and standard deviation

of the prediction errors. Given any specified µε and σε, we generate 50 samples of δ and randomly

match these samples to the 50 demand samples. Figure 4.2 shows the percentage increase in average

total costs under the decomposition (compared to the optimal solution) for different values of µε

and σε.
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Figure 4.1: Samples paths of total demand.

Observe the asymmetry in the plots between the different choices of µε. In particular, when

demand is constant (µd = 0) or increasing (µd = 0.0002), the sub-optimality is less sensitive to neg-

ative prediction errors (µε = −10) than to positive prediction errors (µε = 10). This phenomenon

is due to high utilization of regulation resources at the optimal solution. Since majority of the
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Figure 4.2: Percentage change in average total costs under ED-FR.

regulation resources are hydro resources with low marginal costs, almost all the regulation resources

are dispatched in the first time period, and there are less than 30MW of unused regulation capacity.

Recall that negative prediction errors create incentive for economic dispatch to use less-than-optimal

dispatch resources and more-than-optimal regulation resources. However, in the scenario with in-

creasing demand, system demand increases by up to about 30MW. This deviation must be met by

regulation resources, and since there are only 30MW of unused regulation capacity, the economic

dispatch mechanism is unable to significantly increase the usage of regulation resources in the first

time period, and therefore the sub-optimality is small under negative prediction errors. On the

other hand, at the optimal solution, there is significant excess capacity of dispatch resources. Hence,

positive prediction errors could lead to significantly more usage of dispatch resources and less usage

of regulation resources, and cause a larger increase in total costs. We do not observe this asymmetry

when demand is decreasing. This is due to the fact that δ∗n = −80.34 and hence a larger positive

prediction error is needed for the asymmetry to manifest.

The simulations illustrate the complex interactions between δ and the performance of ED-FR.

In particular, both marginal costs and feasibility constraints have crucial impacts on the performance

of ED-FR.
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Appendices

4.A Proof of Theorem 4.1

Proof. The result follows from analyzing the Karush-Kuhn-Tucker (KKT) conditions of SY STEM ,

ED, and FR. However, we first reformulate the problems as the notations are simpler with the

reformulations. Define qps := qp + rps . Note that, due to the constraint that rp1 = 0, there is

a bijection between the set of feasible (qb,qp, rp) and the set of feasible (qb,qp1, . . . ,q
p
S). Hence,

SY STEM can be reformulated as:

min
qb,qp1 ,...,q

p
S

∑
s∈S

ps
∑
n∈N

(
cbn(qbn) + cpn(qps,n)

)
s.t. (qb,qp1,q

p
s − qp1) ∈ Ω(ds), ∀s ∈ S.

(4.14)

Also, ED(d1) can be reformulated as:

min
qb,qp1

∑
n∈N

(
Kcbn(qbn) +Kcpn(qp1,n)− δnqbn

)
s.t. (qb,qp1,0) ∈ Ω(d1).

(4.15)

And, FR(qb,qp,ds) can be reformulated as:

min
qps

∑
n∈N

cpn(qps,n)

s.t. (qb,qp1,q
p
s − qp1) ∈ Ω(ds).

(4.16)

Hence, SY STEM can be optimally decomposed into ED-FR if (qb,qp1, . . . ,q
p
S) is an optimal solu-

tion to (4.14) if and only if (qb,qp1) is an optimal solution to (4.15) and qps is an optimal solution

to (4.16) for all s ∈ S.

Next, we prove (a). It is easy to see that (4.14) has compact sub-level sets. Moreover, its objective

function is strictly convex. Hence, (4.14) has a unique optimal solution. By similar arguments, we

conclude that (4.15) has a unique optimal solution, and that (4.16) has a unique optimal solution if

the set
{
qps ∈ RN : (qb,qp1,q

p
s − qp1) ∈ Ω(ds)

}
is non-empty. Hence, to prove (a), it suffices to show
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the forward implication, that is, if (4.7) holds, then (qb,qp1, . . . ,q
p
S) is an optimal solution to (4.14)

implies that (qb,qp1) is an optimal solution to (4.15) and qps is an optimal solution to (4.16) for all

s ∈ S. The reverse implication follows from the existence and uniqueness of the optimal solutions.

Let the Lagrangian of (4.14) be denoted by:

L(qb,qp1, . . . ,q
p
S ,

¯
ξ, ξ̄,

¯
ν, ν̄,

¯
µ, µ̄,λ)

:=
∑
s∈S

ps
∑
n∈N

(
cbn(qbn) + cpn(qps,n)

)
+ Lb(qb,

¯
ξ, ξ̄)

+
∑
s∈S

psL
p(qps , ¯

νs, ν̄s) +
∑
s∈S

psL
f (qb,qps ,

¯
µs, µ̄s)

−
∑
s∈S

psλs1
> (qb + qps − ds

)
,

where:

Lb(qb,
¯
ξ, ξ̄) :=

¯
ξ>
(
¯
qb − qb

)
+ ξ̄>

(
qb − q̄b

)
Lp(qps , ¯

νs, ν̄s) :=
¯
ν>s
(
¯
qp − qps

)
+ ν̄>s (qps − q̄p)

Lf (qb,qps ,
¯
µs, µ̄s) :=

¯
µ>s
(
−f −H

(
qb + qps − ds

))
+ µ̄>s

(
H
(
qb + qps − ds

)
− f
)
.

Note that we scaled the constraints by their probabilities, and
¯
ξ ∈ RN+ , ξ̄ ∈ RN+ ,

¯
ν = (

¯
νs, s ∈ S) ∈

RNS+ , ν̄ = (ν̄s, s ∈ S) ∈ RNS+ ,
¯
µ = (

¯
µs, s ∈ S) ∈ RLS+ , µ̄ = (µ̄s, s ∈ S) ∈ RLS+ , λ = (λs, s ∈ S) ∈ RS

are appropriate Lagrange multipliers.

Since (4.14) has a convex objective and linear constraints, from the KKT conditions, we infer

that (qb,qp1, . . . ,q
p
S) is an optimal solution to (4.14) if and only if (qb,qp1,q

p
s − qp1) ∈ Ω(ds) for all

s ∈ S and there exists
¯
ξ, ξ̄ ∈ RN+ , ¯ν, ν̄ ∈ R

NS
+ ,

¯
µ, µ̄ ∈ RLS+ ,λ ∈ RS such that:

(
Kcb′n (qbn), n ∈ N

)
+ ξ̄ −

¯
ξ −

∑
s∈S

psπ(λs,
¯
µs, µ̄s) = 0; (4.17a)

Lb(qb,
¯
ξ, ξ̄) = 0; (4.17b)(

cp′n (qps,n), n ∈ N
)

+ ν̄s −
¯
νs − π(λs,

¯
µs, µ̄s) = 0; (4.17c)

Lp(qps , ¯
νs, ν̄s) = 0; (4.17d)

Lf (qb,qps ,
¯
µs, µ̄s) = 0, (4.17e)

for all s ∈ S.

Similarly, (qb,qp1) is an optimal solution to (4.15) if and only if (qb,qp1,0) ∈ Ω(d1) and there
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exists
¯
ξ, ξ̄ ∈ RN+ , ¯ν1, ν̄1 ∈ RN+ ,

¯
µ1, µ̄1 ∈ RL+, λ1 ∈ R such that:

(
Kcb′n (qbn), n ∈ N

)
+ ξ̄ −

¯
ξ − π(λ1,

¯
µ1, µ̄1)− δ = 0; (4.18a)

Lb(qb,
¯
ξ, ξ̄) = 0; (4.18b)(

Kcp′n (qp1,n), n ∈ N
)

+ ν̄1 −
¯
ν1 − π(λ1,

¯
µ1, µ̄1) = 0; (4.18c)

Lp(qp1, ¯
ν1, ν̄1) = 0; (4.18d)

Lf (qb,qp1,
¯
µ1, µ̄1) = 0. (4.18e)

And qps is an optimal solution to (4.16) if and only if (qb,qp1,q
p
s − qp1) ∈ Ω(ds) and there exists

¯
νs, ν̄s ∈ RN+ ,

¯
µs, µ̄s ∈ RL+, λs ∈ R such that:

(
cp′n (qps,n), n ∈ N

)
+ ν̄s −

¯
νs − π(λs,

¯
µs, µ̄s) = 0; (4.19a)

Lp(qps , ¯
νs, ν̄s) = 0; (4.19b)

Lf (qb,qps ,
¯
µs, µ̄s) = 0. (4.19c)

Suppose (qb,qp1, . . . ,q
p
S) is an optimal solution to (4.14) with associated Lagrange multipliers

(
¯
ξ, ξ̄,

¯
ν, ν̄,

¯
µ, µ̄,λ). Note that (qb,qp1,0) ∈ Ω(d1). From the fact that the variables (qb,

¯
ξ, ξ̄,

¯
µ, µ̄, λ)

satisfy (4.17a) and (4.7) and the fact that
∑
s∈S ps = K, we infer that the variables (qb,

¯
ξ, ξ̄,

K
¯
µ1,Kµ̄1,Kλ1) satisfy (4.18a). From the fact that (qb,qps , ξ̄,

¯
ξ, ν̄s,

¯
νs, µ̄s,

¯
µs, λs) satisfy (4.17b) –

(4.17e), we infer that the variables (qb,qp1, ξ̄,
¯
ξ,Kν̄1,K

¯
ν1,Kµ̄1,K

¯
µ1,Kλ1) satisfy (4.18b) – (4.18e).

Hence, (qb,qp1) is an optimal solution to (4.15). Note also that (qb,qp1,q
p
s−qp1) ∈ Ω(ds) for all s ∈ S.

From the fact that the variables (qb,qps , ¯
νs, ν̄s,

¯
µs, µ̄s, λs) satisfy (4.17c) – (4.17e), we infer that those

variables satisfy (4.19). Hence, qps is an optimal solution to (4.16) for all s ∈ S.

Next, we prove (b). Let (qb,qp1, . . . ,q
p
S) be a solution to (4.14) such that (qb,qp1) is a solution

to (4.15). If
¯
qbn < qbn < q̄bn and

¯
qpn < qp1,n < q̄pn, then the complementary slackness conditions imply

that
¯
ξn = ξ̄n = 0 and

¯
ν1,n = ν̄1,n = 0. From the KKT conditions of (4.14), which are given by (4.17),

we infer that:

Kcb′n (qbn)−
∑
s∈S

psπn(λs,
¯
µs, µ̄s) = 0; (4.20)

cp′n (qp1,n)− πn(λ1,
¯
µ1, µ̄1) = 0, (4.21)

where (
¯
µs, µ̄s,λ) are the associated Lagrange multipliers. From the KKT conditions of (4.15), which
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are given by (4.18), we infer that:

Kcb′n (qbn)− πn(λ′1,
¯
µ′1, µ̄

′
1)− δn = 0; (4.22)

Kcp′n (qp1,n)− πn(λ′1,
¯
µ′1, µ̄

′
1) = 0, (4.23)

where (
¯
µ′s, µ̄

′
s,λ
′) are the associated Lagrange multipliers. It follows that:

δn =
∑
s∈S

psπn(λs,
¯
µs, µ̄s)− πn(λ′1,

¯
µ′1, µ̄

′
1)

=
∑
s∈S

psπn(λs,
¯
µs, µ̄s)−Kπn(λ1,

¯
µ1, µ̄1)

=
∑
s∈S

ps
(
πn(λs,

¯
µs, µ̄s)− πn(λ1,

¯
µ1, µ̄1)

)
.

The first equality follows from comparing (4.20) and (4.22). The second equality follows from

comparing (4.21) and (4.23). The last equality follows from the fact that
∑
s∈S ps = K.

4.B Proof of Proposition 4.1

Proof. We provide a proof sketch of this result. The skipped details can be found in [87]. (i) follows

from the KKT conditions of FR′(qb,qp,ds) and is shown in [87, Lemma 2]. Since ω′s = 0, it follows

from constraints (4.11a) and (4.11b) of FR′(qb,qp,ds) that Lθ′s = Lφ′s, which, since the null space

of L is span{1}, implies that θ′s = φ′s + α1 for some α ∈ R. This implies that BC>φ′s = BC>θ′s.

Therefore, without loss of generality, we can substitute constraint (4.11a) in FR′(qb,qp,ds) by the

constraint ωs = 0. Then, using the definition of H and the equivalence between (4.3) and (4.4),

we infer that the feasible sets of FR(qb,qp,ds) and FR′(qb,qp,ds) are equivalent. Finally, since

cpn(·) is strictly convex, by uniqueness of the optimal solutions, we get (ii). Lastly, (iii) follows from

the definition of H and BC>φ′s = BC>θ′s. The final statement of the proposition follows directly

from [87, Theorem 8].

4.C Proof of Proposition 4.3

Proof. Our proof proceeds in 6 steps: (1) Characterizing regulation generators’ optimal bids αp

given their prices πp; (2) Characterizing dispatch generators’ optimal bids αb given their prices

πb; (3) Characterizing prices (πb,πp) given bids (αb,αp) using KKT conditions; (4) Showing that,

at an equilibrium, the production schedule is the unique optimal solution to ˆED- ˆFR; (5) Showing

that any production schedule (qb,qp, rp) that solves SY STEM can be obtained using bids (γb,γp)

and the latter satisfy the equilibrium characterizations in steps 1 to 3; and (6) Showing that any
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bids (αb,αp) that satisfy the equilibrium characterizations in steps 1 to 3 give the same production

schedule as that under bids (γb,γp) (which also solves SY STEM). Note that part (a) follows from

step 6 and part (b) follows from step 5.

Step 1: Characterizing regulation generators’ optimal bids αp given their prices πp. Since cpn

is strictly convex and cpn(qps,n)→ +∞ as qps,n → {
¯
qpn, q̄

p
n}, cp′n is invertible. Let σ : S → S be any

permutation function that satisfies:

cp′−1
n (πpσ(1),n) ≤ cp′−1

n (πpσ(2),n) ≤ . . . ≤ cp′−1
n (πpσ(S),n),

and let integers i, j ∈ {0, 1, . . . , S} be such that:

cp′−1
n (πpσ(s),n) ≤

¯
qpn ∀s = 1, . . . , i; (4.24a)

¯
qpn < cp′−1

n (πpσ(s),n) < q̄pn ∀s = i+ 1, . . . , j; (4.24b)

q̄pn ≤ cp′−1
n (πpσ(s),n) ∀s = j + 1, . . . , S. (4.24c)

We now show that αpn ∈ R++ maximizes PFpn if and only if:

αpns
p
n(πpσ(s),n) ≤

¯
qpn ∀s = 1, . . . , i; (4.25a)

αpns
p
n(πpσ(s),n) = cp′−1

n (πpσ(k),n) ∀s = i+ 1, . . . , j; (4.25b)

αpns
p
n(πpσ(s),n) ≥ q̄pn ∀s = j + 1, . . . , S. (4.25c)

For notational brevity, in the rest of this step, we abuse notation and let:

qps,n(αpn) = [αpns
p
n(πpσ(s),n)]

q̄pn

¯
qpn
.

To prove our characterization, it suffices to show that, given any αpn ∈ R++ that satisfies (4.25), the

vector of per-outcome profits

(
πpσ(s),nq

p
s,n(αpn)− cpn

(
qps,n(αpn)

)
, s ∈ S

)

(
πpσ(s),nq

p
s,n(ᾱpn)− cpn

(
qps,n(ᾱpn)

)
, s ∈ S

)
(4.26)
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for any ᾱpn that does not satisfy (4.25). Since pσ(s) > 0 for all s ∈ S, it then follows that:

PFpn|αpn =
∑
s

pσ(s)

(
πpσ(s),nq

p
s,n(αpn)− cpn

(
qps,n(αpn)

))
>
∑
s

pσ(s)

(
πpσ(s),nq

p
s,n(ᾱpn)− cpn

(
qps,n(ᾱpn)

))
= PFpn|ᾱpn .

Suppose s ∈ {1, . . . , i}. From (4.24a) and the fact that cpn is strictly convex, we infer that

πpσ(s),n ≤ c
p′
n (

¯
qpn). From (4.25a), we infer that qps,n(αpn) =

¯
qpn. Then:

cpn(qps,n(ᾱpn))

≥ cpn(
¯
qpn) + cp′n (

¯
qpn)
(
qps,n(ᾱpn)−

¯
qpn
)

≥ cpn(
¯
qpn) + πpσ(s),n

(
qps,n(ᾱpn)−

¯
qpn
)

= cpn(qps,n(αpn)) + πpσ(s),n

(
qps,n(ᾱpn)− qps,n(αpn)

)
,

where the first inequality follows from the fact that cpn is strictly convex, the second inequality

follows from πpσ(s),n ≤ cp′n (
¯
qpn) and qps,n(ᾱpn) ≥

¯
qpn, and the last equality follows from qps,n(αpn) =

¯
qpn.

Furthermore, if qps,n(ᾱpn) >
¯
qpn, then the first inequality is strict, and hence:

cpn(qps,n(ᾱpn))

> cpn(qps,n(αpn)) + πpσ(s),n

(
qps,n(ᾱpn)− qps,n(αpn)

)
.

Suppose s ∈ {i+ 1, . . . , j}. From (4.24b) and (4.25b), we infer that qps,n(αpn) = cp′−1
n (πpσ(s),n) and

¯
qpn < qps,n(αpn) < q̄pn. From

¯
qpn < qps,n(αpn) < q̄pn, and the fact that spn(πpσ(s),n) 6= 0 and ᾱpn 6= αpn, we

infer that qps,n(ᾱpn) 6= qps,n(αpn). Then:

cpn(qps,n(ᾱpn))

> cpn(qps,n(αpn)) + cp′n (qps,n(αpn))
(
qps,n(ᾱpn)− qps,n(αpn)

)
= cpn(qps,n(αpn)) + πpσ(s),n

(
qps,n(ᾱpn)− qps,n(αpn)

)
,

where the first inequality follows from the fact that cpn is strictly convex and qps,n(ᾱpn) 6= qps,n(αpn)

and the equality follows from qps,n(αpn) = cp′−1
n (πpσ(s),n).

Suppose s ∈ {i + 1, . . . , S}. From (4.24c) and the fact that cpn is strictly convex, we infer that



122

πpσ(s),n ≥ c
p′
n (q̄pn). From (4.25c), we infer that qps,n(αpn) = q̄pn. Then:

cpn(qps,n(ᾱpn))

≥ cpn(q̄pn) + cp′n (q̄pn)
(
qps,n(ᾱpn)− q̄pn

)
≥ cpn(q̄pn) + πpσ(s),n

(
qps,n(ᾱpn)− q̄pn

)
= cpn(qps,n(αpn)) + πpσ(s),n

(
qps,n(ᾱpn)− qps,n(αpn)

)
,

where the first inequality follows from the fact that cpn is strictly convex, the second inequality

follows from πpσ(s),n ≥ cp′n (q̄pn) and qps,n(ᾱpn) ≤ q̄pn, and the last equality follows from qps,n(αpn) = q̄pn.

Furthermore, if qps,n(ᾱpn) < q̄pn, then the first inequality is strict, and hence:

cpn(qps,n(ᾱpn))

> cpn(qps,n(αpn)) + πpσ(s),n

(
qps,n(ᾱpn)− qps,n(αpn)

)
.

Hence, for all s ∈ S:

cpn(qps,n(ᾱpn))

≥ cpn(qps,n(αpn)) + πpσ(s),n

(
qps,n(ᾱpn − qps,n(αpn)

)
. (4.27)

Moreover, this inequality is strict for some s ∈ S. If i < j, the inequality is strict for s ∈ {i +

1, . . . , j}. If i = j, then, since ᾱpn does not satisfy (4.25), there exists some s ∈ {1, . . . , i} such that

αpns
p
n(πpσ(s),n) >

¯
qpn or some s ∈ {i+ 1, . . . , S} such that αpns

p
n(πpσ(s),n) < q̄pn, and hence there exists

some s ∈ {1, . . . , i} such that qps,n(ᾱpn) >
¯
qpn or some s ∈ {i+ 1, . . . , S} such that qps,n(ᾱpn) < q̄pn, and

the inequality in (4.27) is strict for that s. Hence, we conclude that:

(
cpn(qps,n(ᾱpn)), s ∈ S

)

(
cpn(qps,n(αpn)) + πpσ(s),n

(
qps,n(ᾱpn)− qps,n(αpn)

)
, s ∈ S

)
for any ᾱpn that does not satisfy (4.25). By rearranging terms, we obtain (4.26).

Step 2: Characterizing dispatch generators’ optimal bids αb given their prices πb. Note that

the profit maximization problem for a dispatch generator is a special case of that for a regulation

generator with S = 1. By applying the characterization in step 1, we infer that αbn ∈ R++ maximizes
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PFbn if and only if:

αbns
b
n(πbn) ≤

¯
qbn, if cb′−1

n (πbn) ≤
¯
qbn; (4.28a)

αbn = γbn, if
¯
qbn < cb′−1

n (πbn) < q̄bn; (4.28b)

αbns
b
n(πbn) ≥ q̄bn, if q̄bn ≤ cb′−1

n (πbn). (4.28c)

Step 3: Characterizing prices (πb,πp) given bids (αb,αp) using KKT conditions. First, we take

the same approach as in the proof of Theorem 4.1 and reformulate ˆED and ˆFR before applying the

KKT conditions. Relabeling the variable qp to qp1 in ˆED gives:

min
qb,qp1

∑
n∈N

(
Kĉbn(qbn) +Kĉpn(qp1,n)− δnqbn

)
s.t. (qb,qp1,0) ∈ Ω(d1).

(4.29)

And substituting qps = qp + rps in ˆFR gives:

min
qps

∑
n∈N

ĉpn(qps,n)

s.t. (qb,qp1,q
p
s − qp1) ∈ Ω(ds).

(4.30)

Substituting sbn = cb′−1
n (·)/γbn and spn = cp′−1

n (·)/γpn into the definition of ĉbn and ĉpn implies that:

ĉbn(qbn) =

∫ qbn

¯
qbn

cb′n ((γbn/α
b
n)w) dw,

ĉpn(qpn) =

∫ qpn

¯
qpn

cp′n ((γpn/α
p
n)w) dw.

Hence, (4.29) has a continuous and strictly convex objective and linear constraints. Thus, from the

KKT conditions, (qb,qp1) is an optimal solution to (4.29) if and only if (qb,qp1,0) ∈ Ω(d1) and there

exists
¯
ξ, ξ̄ ∈ RN+ , ¯ν1, ν̄1 ∈ RN+ ,

¯
µ1, µ̄1 ∈ RL+, λ1 ∈ R such that:

(
Kcb′n ((γbn/α

b
n)qbn), n ∈ N

)
+ ξ̄ −

¯
ξ −Kπb = 0; (4.31a)

Lb(qb,
¯
ξ, ξ̄) = 0; (4.31b)(

Kcp′n ((γpn/α
p
n)qp1,n), n ∈ N

)
+ ν̄1 −

¯
ν1 −Kπp1 = 0; (4.31c)

Lp(qp1, ¯
ν1, ν̄1) = 0; (4.31d)

Lf (qb,qp1,
¯
µ1, µ̄1) = 0, (4.31e)
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where:

πb = (1/K)
(
π(λ1,

¯
µ1, µ̄1) + δ

)
; (4.31f)

πp1 = (1/K)π(λ1,
¯
µ1, µ̄1). (4.31g)

Similarly, from the KKT conditions, qps is an optimal solution to (4.30) if and only if (qb,qp1,q
p
s −

qp1) ∈ Ω(ds) and there exists
¯
νs, ν̄s ∈ RN+ ,

¯
µs, µ̄s ∈ RL+, λs ∈ R such that:

(
cp′n ((γpn/α

p
n)qps,n), n ∈ N

)
+ ν̄s −

¯
νs − πps = 0; (4.32a)

Lp(qps , ¯
νs, ν̄s) = 0; (4.32b)

Lf (qb,qps ,
¯
µs, µ̄s) = 0, (4.32c)

where:

πps = π(λs,
¯
µs,µs). (4.32d)

Step 4: Showing that, at an equilibrium, the production schedule is the unique optimal solution

to ˆED- ˆFR. Let (qb,qp) be an optimal solution to ˆED(d1) and rps be an optimal solution to

ˆFR(qb,qp,ds). We will show that:

qb =
(

[αbns
b
n(πbn)]

q̄bn

¯
qbn
, n ∈ N

)
;

qp =
(

[αpns
p
n(πp1,n)]

q̄pn

¯
qpn
, n ∈ N

)
;

rps =
(

[αpns
p
n(πps,n)]

q̄pn

¯
qpn
− [αpns

p
n(πp1,n)]

q̄pn

¯
qpn
, n ∈ N

)
.

It suffices to show that, if (qb,qp1) is an optimal solution to (4.29) and qps is an optimal solution

to (4.30), then:

qb =
(

[αbns
b
n(πbn)]

q̄bn

¯
qbn
, n ∈ N

)
; (4.33)

qps =
(

[αpns
p
n(πps,n)]

q̄pn

¯
qpn
, n ∈ N

)
. (4.34)

By rewriting (4.31a) for dispatch generator n, we infer that:

qbn = αbns
b
n

(
πbn +

¯
ξn/K − ξ̄n/K

)
.

If
¯
qbn < qbn < q̄bn, then from (4.31b), we infer that ξ̄n =

¯
ξn = 0, which implies that qbn = αbns

b
n(πbn).

If qbn =
¯
qbn, then from (4.31b), we infer that ξ̄n = 0 and

¯
ξn ≥ 0, which implies that

¯
qbn = qbn =
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αbns
b
n(πbn +

¯
ξn/K) ≥ αbns

b
n(πbn), where the last inequality follows from the fact that cbn is strictly

convex. If qbn = q̄bn, then from (4.31b), we infer that
¯
ξn = 0 and ξ̄n ≥ 0, which implies that

q̄bn = qbn = αbns
b
n(πbn − ξ̄n/K) ≤ αbns

b
n(πbn), where the last inequality follows from the fact that cbn is

strictly convex. Hence, we conclude that qb is given by (4.33). By making similar arguments, we

conclude that qps is given by (4.34).

Step 5: Showing that any production schedule (qb,qp, rp) that solves SY STEM can be obtained

using bids (γb,γp) and the latter satisfy the characterizations in steps 1 to 3. By Theorem 4.1,

(qb,qp) is the unique solution to ED(d1) and rps is the unique solution to FR(qb,qp,ds). Under

bids (γb,γp), the problems ED(d1) and ˆED(d1) are equivalent. Hence, (qb,qp) is the unique

solution to ˆED, and by step 4, the production in the first time period is (qb,qp). Under bids

(γb,γp), the problems FR(qb,qp,ds) and ˆFR(qb,qp,ds) are equivalent. Hence, rps is the unique

solution to ˆFR(qb,qp,ds), and by step 4, the recourse production is rps . Hence, the production

schedule is (qb,qp, rp).

It suffices to show that bids (γb,γp) constitute an equilibrium. It is easy to check that αp = γp

and αb = γb satisfy conditions (4.25) and (4.28) respectively for any prices (πb,πp). Hence, simply

choose (πb,πp) based on equations (4.31) and (4.32). This proves part (a) of the proposition.

Step 6: Showing that any bids (αb,αp) that satisfy the characterizations in steps 1 to 3 give the

same dispatch as that under bids (γb,γp). Suppose that (αb,αp) satisfy the characterizations in step

4 with productions (qb,qp1, . . . ,q
p
S), Lagrange multipliers (

¯
ξ, ξ̄,

¯
ν, ν̄,

¯
µ, µ̄,λ), and prices (πb,πp). We

will construct
¯
ξ′, ξ̄′ ∈ RN+ and

¯
ν′1, ν̄

′
1 ∈ RN+ such that:

(
Kcb′n (qbn), n ∈ N

)
+ ξ̄′ −

¯
ξ′ −Kπb = 0; (4.35a)

Lb(qb,
¯
ξ′, ξ̄′) = 0; (4.35b)(

Kcp′n (qp1,n), n ∈ N
)

+ ν̄′1 − ¯
ν′1 −Kπ

p
1 = 0; (4.35c)

Lp(qp1, ¯
ν′1, ν̄

′
1) = 0, (4.35d)

and
¯
ν′s, ν̄

′
s ∈ RN+ for all s ∈ S \ {1} such that:

(
cp′n (qps,n), n ∈ N

)
+ ν̄′s − ¯

ν′s − πps = 0; (4.36a)

Lp(qps , ¯
ν′s, ν̄

′
s) = 0, (4.36b)

which are the KKT conditions for (4.29) and (4.30) under bids (γb,γp). Then, step 5 allows us to

infer that the production schedule is an optimal solution to SY STEM . Our construction is given
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by:

¯
ξ′n =

K
(
cb′n (

¯
qbn)− πbn

)
, if qbn =

¯
qbn;

0, else,

ξ̄′n =

K
(
πbn − cb′n (q̄bn)

)
, if qbn = q̄bn;

0, else,

¯
ν′1,n =

K
(
cp′n (

¯
qpn)− πp1,n

)
, if qp1,n =

¯
qpn;

0, else,

ν̄′1,n =

K
(
πp1,n − cp′n (q̄pn)

)
, if qp1,n = q̄pn;

0, else,

and:

¯
ν′s,n =

c
p′
n (

¯
qpn)− πps,n, if qps,n =

¯
qpn;

0, else,

ν̄′s,n =

π
p
s,n − cp′n (q̄pn), if qps,n = q̄pn;

0, else,

for all s ∈ S \ {1}.

First, we show that
¯
ξ′, ξ̄′,

¯
ν′s, ν̄

′
s ≥ 0. Suppose qbn =

¯
qbn. Then, from (4.28a), we infer that

cb′−1
n (πbn) ≤

¯
qbn, and since cbn is strictly convex, we infer that πbn ≤ cb′n (

¯
qbn), and hence

¯
ξ′n ≥ 0.

Suppose qbn = q̄bn. Then, from (4.28c), we infer that cb′−1
n (πbn) ≥ q̄bn, and since cbn is strictly convex,

we infer that πbn ≥ cb′n (q̄bn), and hence ξ̄′n ≥ 0. By similar arguments, we infer that
¯
ν′s,n ≥ 0 and

ν̄′s,n ≥ 0.

Second, we show that this construction satisfies (4.35) and (4.36). It is easy to check that the

complementary slackness conditions (4.35b), (4.35d), (4.36b) are satisfied. Suppose
¯
qbn < cb′−1

n (πbn) <

q̄bn. From (4.28b), we infer that αbn = γbn. From the fact that qbn =
[
αbns

b
n(πbn)

]q̄bn
¯
qbn

= cb′−1
n (πbn), we

infer that
¯
qbn < qbn < q̄bn. From (4.31b), we infer that

¯
ξn = ξ̄n = 0. Substituting into (4.31a), we

infer that our construction satisfies (4.35a). Suppose cb′−1
n (πbn) ≤

¯
qbn. From (4.28a), we infer that

qbn =
¯
qbn. Hence, our construction satisfies (4.35a). Suppose q̄bn ≤ cb′−1

n (πbn). From (4.28c), we infer

that qbn = q̄bn. Hence, our construction satisfies (4.35a). Using similar arguments, we can infer that

our construction satisfies (4.35c) and (4.36a). This proves part (b) of the proposition.
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[79] Chloé Le Coq and Henrik Orzen. Do forward markets enhance competition?: Experimental

evidence. Journal of Economic Behavior & Organization, 61(3):415–431, 2006.



133

[80] Andrew Ledvina and Ronnie Sircar. Bertrand and cournot competition under asymmetric

costs: number of active firms in equilibrium. 2010.

[81] Y. Y. Lee, R. Baldick, and J. Hur. Firm-based measurements of market power in transmission-

constrained electricity markets. IEEE Trans. on Power Systems, 26(4):1962–1970, November

2011.

[82] Y. Y. Lee, J. Hur, R. Baldick, and S. Pineda. New indices of market power in transmission-

constrained electricity markets. IEEE Trans. on Power Systems, 26(2):681–689, May 2011.

[83] B. C. Lesieutre, R. J. Thomas, and T. D. Mount. Identification of load pockets and market

power in electric power systems. Decision Support Systems, 40:517–528, October 2005.

[84] N. Li, L. Chen, and C. Zhao. Connecting automatic generation control and economic dispatch

from an optimization view. Control of Network Systems, IEEE Transactions on. to appear.

[85] Matti Liski and Juan-Pablo Montero. Forward trading and collusion in oligopoly. Journal of

Economic Theory, 131(1):212–230, 2006.

[86] Zhi-Quan Luo, Jong-Shi Pang, and Daniel Ralph. Mathematical programs with equilibrium

constraints. Cambridge University Press, 1996.

[87] E. Mallada, C. Zhao, and S. H. Low. Optimal load-side control for frequency regulation in

smart grids. ArXiv e-prints, October 2014.

[88] Mihai Manea. Bargaining in stationary networks. The American Economic Review,

101(5):2042–2080, 2011.
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