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ABETRACT

This thesis presents methods by which electrical snaloe
glies can be obtained for nonlineer systems., The accurscy of
these methods is inveutligated snd severel sueéific types of
nonlinear egqueotions sre studied in detall.

In Pert I o gonerel method is given for obteining elec=
tricel snslogs of nonlinesr systems with one dsgree of free-
dome, Loop end node methods rre compsred =nd the stebility
of the loop snelogy 18 briefly considered.,

Perts II ond III give & deseription of the equipment
end o discussion of its asccuracy., Comparisons are made be-
tween experimentsl end analytlc solutions of linear systems,.

Part IV is concerned with systems heving & nonlinesr
restoring force. In particular, solutions of Duffing's
equation are obtalned, both by using the electrical anslopy
and also vty approximate analytical methods.

Systems with nonlinear damping are considered in Part V.,
Two specific exsmples aré chosen: (1) forced oscilletions
and (2) self-excited oscillations (ven der Pol's eguetion),
Comparisons are mede with approximate analytic solutions,

Part VI gives experimental data for a systom obeying
Mathieu's equation, Regiond of stebility ere obtained, Ex=
amples of subharmonic, ultraharmonic, snd ultrasubharmoniec

oscillstions are shown,



PART I
INTRODUCTION

1. Vibrations of single degree of freedom systems

This thesis will be conecerned with an analysis of vibrat-
ing systems with one degree of freedom, A typicél example of
such a system might be ss shown in Fig. 1.0l1. 4 foree F(t)
is applied to mass m. Due to the spring, an opposing force
k(x,t)x is applied to m., Also, an opposing foree of friection
c{x,t)x may sct on mess m. The equation of motion for this

cese isa
(1) mx+ el{x,t)%x + kix,t)x = F(t)

In the usual linesr cese, c(x,t) end k(x,t) are constant.
Vibrations of linesr systems have been thoroughly étudied,and
we will not consider them in this paper except s & mesns of
checking the eseccuracy of the methods used on nonlinesr systems,

Vibrations of nonlinesr systems, however, have not re-
ceived sueh thorough treetment. This is not due to lack of
interest in or importance of the problem. It 1s rather =
result of: (1) the difficulty of generslizing the problem
into a few types, each having an snalytiec solution, and (2)
the sbasence, until relestively recently, of sdequate experi-
mental methods of ettecking a veriety of nonlinear problems
wherein some of the psrameters could be veried continuously,

This thesis will be concerned primarily with'electrie

analog methods of analyzing some general types of nonlinear
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second order differentiesl egustions. The methods will be
illustrated by obtaining solutions for several specific non-

linear equations,

2., DTwo types of electrical snalogfies

Electrical aneslogies of mecheniecsl systems cen be cone
structed on elther the (1) loop or (2) node basis, The
electrical snalog of a single degree of freedom system ie
shown in Fig, 1.02, Using Kirehhoff's first law, the sum
of the voltage drops eround the loop 18 set squal to zero,

or
(2) L§+Ré+%=E(t)

This equetion is identicel in form with sgquation (1).
The following quentities are seen to be analogous:
induetance-~-~--mass
regsistance~=--=-damping coefficlent
elestence=--==gpring constant
charge=---=digplacement
timgwwm=wtime
voltage=~===force
The electricel networl that results when the analogy
is formulated on the nodal basis is shown in Fig. 1.03.
Setting the sum of the currents flowing away from the node
equal to zero (according to Kirchhoff's second law), the

following equation results:
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or

(3) CE+Gé +le = é.%.(t.ﬂ

In this csse the snalogous guantities are
capacitanc@==~=-mass
conductance~=-=-=-=~damping coefficient

inverse inductance-----spring constent
voltegg=====displacement
timpeew==tine

diit
X ==orce

Of course, these methods of obtaining slectrical
analogies for mechanical systems are appliecable also for
the case of systems having many degrees of freedon.
Several authors have glven an excellent treatmsnt of this
subject (1,3,4,8) and it is outsids the scope of this
thesis.

3. Nonlinear impedances

In the study of nonlinear differentisl eguations
using the loop enslogy, one is nature=lly led to look for
mothods of obtsining impedances that sre e function of
charge or its time derlvatives.

The most straightforwerd method is to find sn im-

pedance, such as a varisbor, with the proper characteristics



and incorporate it into the cireuit. This method has the
advantage of simplicity but has the disedvantege that the
nonlinesrity (Z vs 1 curve) cannot be easily chanced in shape
nor multiplied by =2 econstent. ~lso, in eertain cases the
limitetion on power dissipetion may be serious.

If a nonlinear feedback resistasnce is placed between
the output and input terminals of a negative gein amplifier
of high input impedance, the input impedance to the system
will be & nonlinesr resistance whose nagnitude can be cone
trolled by varying the amplifier gain. (See Fig. 1.04.)

£ method of obtaining an impedance with the nonlinear
characteristics of & varistor is shown in FPig, 1.05., For
further details on these methods of obtaining nonlinesr ime
pedances, see & paper by McCann, Wilts and Locanthi on the
subject.(6) This paper slso shows a network of resistors,
crystal dlodes, and betteries for obtaining a straight-
segment spproximstion to an R(i) in which the resistance is
glwveys positive snd single-valued,

These methods are quite edequete for meny csses in
which nonlinesr impedances are needed, They have the ad-
vantages of relative simplicity combined with an accurate
enough representation for meny purposes. The prinecipsl
limitations are that the impedances are positilve thraughbut
the range and the voltage scrcoss the terminals ig & single=-
valued funetion of the current. Also, the impedance 1s a
function of its current only; i.e., 1t 18 not a function of

time or of voltage, current, etc., in some other part of
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the network.

An srbitrery funection generetor of the photoformer type
hass also been used ss o two~terminsl nonlinesr impedance.,
(2,7) (See Part II for description of erbitrary function
generator.,) A circuit used for this purpose 1is shown in Pig.
1.086.

The photoformer type erbitrsry function generator hsas
the advantage of being eble to sct 2s & negative impedance.
Also, the nonlinearities are rather conveniently determined
by means of using the proper slide. However, the circuit
shown hes the disadvantage of requiring the mesk to heve an
outline somewhet different from Z(1), the desired non=-

linesrity.

4, Loop mnalogies

In this section, loop anslogies will be presented for
the ense of mechanicsl systems with one decree of freedom in
which verlous types of nonlinearities occur in either the
damping term or spring constant term. The lnertisl term
could be made nonlinear by similer methods, but for mechan-
ical systems this has little practicel applicetion, Coeffl-
cients that sre a function of time are slso considered.
These circuits meke use of an aerbitrsry function generator
and, in some ceses, a multiplier,

g, Damping a function of velocity

Suppose we wish the resistance between two points

(A snd G in Fig, 1.07) to be an erbitrary, single-vslued



function Ry(g) of the current. The input voltage to the
erbitrary function generator 1s the voltage across o smell
resistor R', It is thus Adirectly proportionsl to the cur-
rent flowing in the mein loop. Therefore, the output
voltage from the srbitrery function generator is a funetion
of the loop current, snd the voltege between & =snd G cen be

written

be Damping & funetion of time

In this case, & multiplier is used in the feedback
loop. (See Fig., 1.,08,) One multiplier input is the voltage
E;p which, as before, 1s proportional to the loop current.
The other input voltage is & function of time., The output

voltaege is given by

(s) Epg = R(t)4

c. Spring constent e function of displecement

The voltage input to the srbltrary function generator
is taken seross a capaclitor in this casse (Fig. 1.09).
Therefore, the output voltage is a function of the cherge
flowing in the main loop. The feedback voltage can be

written as

(6) Eyq = Dlqlg

d. Spring constant a function of time
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The circult for this cese ls given in Pig. 1,10, It
is similer to (b) except that the voltage E,p is teken from

across o condenser instesd of scoross = resistor,

(7) Epg = D(t)g

e. Demping a function of displascement (Fig, 1.11)

Both an arbitrary function generetor and & multiplier
are necessary in this case. The input voltage to the sarbi-
trary function generator is proportionsl to the loop charge,
and the output voltage is used as one of the inputs to the
multiplier, The other input voltage to the multiplier is
proportional to loop current. This voltage is applied to
the multiplier input thet is capsble of floating above
ground, (See discussion of multiplier in Part II,) The
voltege corresponding to the force of the nonlinesr damper

is given by

f. Spring constant a function of velocity (Fig. 1.12)
The c¢ircuit for this case is found by methods snalogous
to thoss used in the previous paragraph. The voltege corres-

ponding to the spring force is given by

(9) Ej{(}:' D(é)q

5. Hode snalogies

Consider again the equetion given previously for the
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node analogy.

(10) 05+06 + o = 44{t)

Recell that in the loop equaetions, a voltege propor-
tional to q or é was taken from the loop, opereted upon,
and reintroduced ss voltage Eﬁg. In the node anslogy =
voltege e or s voltage proportionel to évis taken from the
circuit, opersted upon and used =»s the input to a current
generator which, in turh, draws the required current from
the node. |

Suppose, for exsmple, that an inverse inductance [14(e)
is required. ﬁig. 1.13 shows the node anslogy for the com-
plete single degree of freedom mechanical system with a
nonlinear spring. The input voltage to the arbitrary
function generator is the node-psir voltage e. The output
from the erbitrery function generator is Pl(e) and the cur-
rent drswn from node B by the current generstor can be

written

(11) ig = [(e)e

On the other hand, if we wish the demping to be a
funection of displecement, = more compliceted type of nodal
analogy is required. (See Fig. 1.14;) The input to the
arbitrery function generstor consists of the node-pair
voltage e, as before. However, a voltage proportional to

e is required as one input to the multiplier., This
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voltege esn be obtsined from resistor R! for the case where
the impedance of C' 1is mueh lerger than R', The eurrent

0D

drewn from node B in this crse is

(12) ig = @(e)e

Using similey methods, node analogies could be developed
for verious types of nonlineer mechanicel systems, as was

done for the cese of loop analogles.,

6. 4 comparison of loop snd node snalogies

i1
e

In representing the nonlinesvrities considered thus far,
the input voltage to the arbitrery function generator has
been proportional to elther the displescement or velocity. By
way of review, we shall list again the methods by which these
voltages were obtained,

Loop anelogy

g--~==geries condenser in loop
é--w--serles resistor

Node snalogy

g=-w==obteined directly
@~-===voltage across resistor of series
condenseor=-resistor combination

It is seen that it is somewhat essier to obtain the re-
quired voltages from the circuit sceurately in the csse of
the loop snalogy. Particularly in the case of & voltage
proportional to e, inmsccuracies in phase would occur due to

the effsct of the resistor RY,
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Doth metheods of cbtaining circult voltazes would gseem
to have a disturbing offcct on the main eircult itself.

In :aét 1T & method is shown wherely these voltazes ¢an be
obtained without appreclably affecting the elprcuit,

Another factor favoring the loop analopy is the fact
that a2 voltage scource of proper characteristics is more
easily cbtainable than the correspondling current socurce ro-
gulired for the node analogy.

Por these reascns, the experimental investlgatlions
considered in this thosies have Leen cerried on usging the

loop enalegy.

7. Stabllity of the leop analogy

Hext, let us consider the stability of the loop system
shown in Pig. 1.156. Zl reprascnts the inmpefence of the
main locp at the freguency of the sinusoldal voltage source
3(t). The four-terminal networl represents the feedbaek
loop. Agaume that the input Impedance to this nebworik is
very smell and that the phase relationships are defined such

that

>

L % - &5
(13) © Zp
The current flowing In the loop is also given by

(13.1) =

colving for e end 1 there reaults



[t
e

(14) o= S(E)Zp
u1+ <

(15) 1= %@z;.

Therefore, Instabllity will cecur at a particular frequency
L

(16) Zqt Ep= 0

Writing the loop btransfer impedance in the form ZT = Ceﬁi"iB,

the conditions on phase B that couse instability are:

Zy B
inductive -900
resistive 1800
capacitive 900

The amplitude and phase characteristics of the feedback
loop, with and without the filter, are shown In IMigs. 3.03
and 3.04. It is seen that oscillations are more likely to
occcur at a frequency above the main loop resonance where 4y
is induetive and the feedback loop has greater phase shift.

The phase shift characteristics of the feodback loop
were plotted on the basis of using the 1coplaa 8 dampey
(i.e., coupling to the main loop by meaﬁa 6f a resistor).

If the e¢oupling is by means of a condenser, an additional

900 lag must be introduced.
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PART XX
DESCRIPIION OF BQUIREWT

1. ZThe analopg compuber

The equipmont usoed in the collection of data for this
thesis consists of the Californis Institube of Technology
Analog Computer. (See Plg. 2.01.) A general deseription
of the computer hasg beén givén in several refereonces {2,6,8)
so the description given here will inelude only that equip-
ment actunlly used in porforming these experiments.

Since only single degree of freedom systems arc con-
sldered, just & small fraction of the compubter impedances
were used., In those cases where a foreing function was reo-
quired, a signal generator was used to drive an amplifier
of low output impedance (2 ohms) which was connected across
appropriate busses,

The usual computer metering circuits were used.
Sinusoidal voltages were measured with a Ballantine volte
meter while voltages of non-sinusoidal shape were measurocd
with an oscilloscope, being cereful to keep tho amplitude

within the linear range of the scope.

D« Amplifilers

Two positive gain amplifiers were used in most of the
analogies, Thege DC amplifiors have a one ohm oubput

impedanee and a continucusly variable pain up to 100. Thoy
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cen be operated above ground and cen be easily adjusted to
give sero DC output veolbage. The current avallable at 200
volts peak to peck is 50 ma.

Cne amplifier wag uscd for lsclation bstwesn the arbi-
trary function generator and tho main circuit. Usually a
Pilter was used cn the input Ho this emplifier, and thus the
amplifier also served to lsolate the fllter from the im-
pedance olements of the main ciyreult.

The other amplifier wez used for the purpose of en-
abling one to take from the mein loop volbages correcsponding
to disprlacement, veloclty, otc. without having these voltw
azes influence the operaticn of the loop itself. This was
aceomplished by usging the eireuit shown in Fig., 2.02. The
gain of the amplifier 1g set to 1. In this case the outpub
is equal to the input in phase and amplitude, and there is
zeré voltage between LA and B. Therefore, the amplificr looks
like a zero impedance to the loop. However, the locp currvent
must follow the path AFD in flowing from A to 5, and a volte
age avpears across AP which may be used as an input to other

apparatus such as an arbitrary function generstor.

5. HMultiplier

The multiplier is a deviece whose output is the instan-
taniecus product of two input veltages. The two inputs have
impedances of 350 ohms end 500,000 ohms. The low impedance
input iz isolated from the system ground. The input signals
to the multiplier have been limited to about 0,5 volts.
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The smplitude response is uniform within 0.1 db from
zoro to 10,000 ¢ps, end the phase shift 1s linear within
this range and is 1.8° per kileocyele. The accuracy of tho
multiplier is such that the ervor i1s less than 1% of the
maximm product {(l.c., for case of maxzirum inputs).

The dfift in the multiplier proved to be negligible.
However, balance controls are provided to insure that the
oubput is gerc i1f either input is shorted.

A more completo description of the mulbipller may be

foundd in roference (3).

4. Arbitrayy function generator

The arbltrary function generator 1s a device whose cubw
pubt voltasze is an arbitrary function (normally singlew
valued) of the input voltaze. It operates on the photo-
former principle. The particulay model used in these experi-
mentas is an improved voersilon of those that heve been in use
for soveral yearsj however, the basiec prineiple of operation
resains unchanged. (7)

i schoematie dlegram of the arbitrary function geneorator
is shown in Plg. 2,03. /In opaque mesgk with the outline
v = £{x) is placed as a slide in front of the 3-inch cathode
ray tube. If the fecdbock loop were open, the spot would
rest near the top of the sereen, IHowever, when feedback
loop is closed, the light from. the spot falling on the photo-
tube causcs a voltage to be applied to the vertical plates,

moving the spot downward. The sain is such that equilibrium



20

Figo 2002

~X

CATHODE RAY TUBE=Y _,

i

AMPLIFIER
K

MULTIPLIER
PHOTOTUBE
=

l
N

Fige 2.03

12.5 mh

22.5 mh

s

0.029 pf

P

£22 han

= 0.035 ,n‘

Figc 2.04



21

oecurs when the spot is partially obscured. Vhen the besm
is deflected by & voltage applied to the horizontal plates,
the spot follows the edge of the mask, Therefore, if &
voltage proportional to x is applied to the herﬁzontal
plates, the voltage applied to the vertieal plates will be
proportional to £{x). This voltage applied to the vertical
plates is passed through an isolating amplifier and consti-
tutes the output of tho arbitrary function generator. In
order to obbain increased accursey, the gain of the feed~
back amplifier is quite hizh when the beam 1s near the
center of the sereen. Iowever, the vertical deflection
voltage 1s clipped at a level such that the apot_will not
leave theo screen entirely and begone "invisible” to the
phototubes The usual working area of the cathode ray tube
screen 18 a pertion about 1 ineh (vertical) by 2 inches
{(horizontal), and the scale of the mask ism chosen to use
this ares ss fully as possible.

The arbitrary function generator 1s equipped with an
input potentiometer and cutput attenuator so that the mask
can be used to best advantage without losing control of
the overall gain.

The input impedance of the arbitrary funetion generator
is B0OK; and the output impedance is 1 ohm. The phase shift
oceurs primarily in the input potentiometer and thus is af-
fected considerably by the potentiometer settings With the
input potentiometer at its maximum aething, the phase shift
is negligible up to 2000 c¢cpss Iven at lower sebtings the
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phase shift is not over 1° at 2000 eps, providing the arbi-

trary function generator is properly adjfusted.

5. Filter

Por meny of the measwrements a low-pass fllter was used
between the arbitrary fumetion generator and the amplifier.
The purpose of the filter is to permit the use of higher
gains in the feedback loop without omeillation. (See Seetion
7, Part I.«) The frequeney range of the foreing functions was
2002000 ops. Oince the phase shift of the feedback loop
without a filter increases tec 1807 at about 30 ke, there is a
tendency for oseillation at about this frequency. (See Pig.
5+04.) A considerably higher loop gain can be used with a
filters Tor example, it was found that the maximum damping
without oscillation (using linear slide) was 5 = 7.8 with
the filter as compared to %= 1.7 without the filter. A
comparison of amplitude and phase characteristics of the
feedbaek loop with and without the filter iz shown in Plgs.
35,08 and 3404. The filter used with the amplifier i1s shown
in Flgs 2404« It was chosen as the best compromise bLetween
the sharp cubtoff characteristic of the m~derived filter and
high attenurtion throughout the cutoff renge characteristic
of the consbant k type. Alpo, the phase ghift of a constant
k filter would be too great. A cuboff frequency of sboubt
7 ke was chosen so that the amplitude and phase charactere
iastics would be satisfactory below 2 ke, and yet the cutoff
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frequency would be low enough to cause high attemuation in

the hicher phese shift regions.
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PART IIX
ACCURACY OF BQUIPMENT

1. BEffect of inductor shunt capsciby

& leayre number of measuroments were made fopr the purpose
of checking the accuracy of the computer when 1t is commected
as a lineayr systen. .Figs. D.01 and 3.02 show the comparison
df theoretical and expervimental response curves, using an RIC
series cirecult. The magnltude of the series resistor was de~
ereased with Inereasing frequency in order to compensate for
the inecressing inductor resistances This correction was 
always made whenever response eurves were cbtained, elther
for linear or nonlinecar systems.

it ié geen that the thﬁératieal and experimental vaslues
apree quite elosely oxcept that the amplitude seoms to be
consistently & little low at high frequencilcs. This 1s
probably due to the fact that the inductor used in this case
is selfercaonant at A= 3.5 due tc ite shamt capacity. Ebw,
the effective inductance of an IC parallel cirecult (7ige
310) is

(17) B

f
-
5

(18) =
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whore

£ = .
2 mJIC
In other words, the effective Inductance increases asg the
self~resonant Ifrequency is aﬁprcached from below., This ine
ereoased induetance will shift the system response curve to
the left and thus decrease the amplitude at frequencles
near the induotor self-resonance polint.

The amplitude (voltage) measurements were made with a
Fallantine voltmeter, and the fregquency measurements were
made by means of Lissajous figures using a 60-cycle sowree

ag reforentco.

2. Charecteristics of feedback loop

Ideally, the feedback ioop should have constant zain
and gerc phase shilt for all frequencless Iowever, all
nessurenents for this thesis are made st freguencies below
2 ke. Therefore, for our purposes, it ls more profitable
to abttempt Yo approach thls ideal as closely az posaible in
the preglen up to 2 ke. At higher freguengies, the gain and
rhage shift should be such as to provide the grestest
atability consistent with the required loop gain.

Pigse 3.05 and 5.04 show the feedback loop chavacter-
istics, both with and without the filter. It is geen that
the geln characteristics for frequencies less than 2000 cps

are approximately the same in each ease, but that the phose
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shift 1s much greater with the filtor.

The effect of a larger paln is that either the damping
coefficient or spring constant is inereased, depending upon
whether the input veltage to the feedback circuit is taken
from a resistor or condenser. In any event, inereassed gain
merely increases the voltage applied to the system at AG.
(See Pig. 3.13.)

Since the spring, damping and inertisl forces are in
phase with xz, X and X, respectively, the phasc relatlonships
of these forcos for steady~state forced linear vibrations
are as ghown in Plge 3.11. With this figure the offoet of

phase shift in the feedback loop is more clearly seen.

3. The AFG used gs & linear spring

Far.%he coae whore the feedback loop i1z used as &
linear spring (Fige 3+12), the volbage AG will correspond
to the apring force. Thase shift will ceuse the spring
force to lag the daﬁping force by more than 909 and thus
will have a component corresponding to negabive Gamping.

Iset us consider more carefully the ecase where the
phage shift varles linearly with frequeney. The damping
coefficient is proportional to the damping force per unit
velocity or, in this case, the éamping coefficient is
rroportionel to the damping voltage per wnit current. low,
for a glven eurrent, the voltage across the condenser 1s
inversely proportional to frequency. Therefore, the nega-
tive damping coeffieient due to phase ahift is independent



31

of Irequency. This fact makes 1t possible to correct for
the phasge shift directly by inereasing slightly the value
of the Gemping resistor.

Pigss 3.05 and 3.06 show the eomparison of ezxperimental
data and tho thooretical curves for the case where the fesde
baek loop was used t0 revresent a lineay spring. It is seeén
that the experimental data foym qulte amooth curves. The
main souree of disagreement between experimental and theo=
rotlcal values seoms to be In the difficulty setting the
various paremeters exactly on their assigned values. (In
‘this case the damping was slightly low for several curves.)
On the other hand, the experimental curves are surprisingly
ageurate in thelr shapo.

The transient response to & step funetion Inpubt is
shown in Flg. 8.14 for three values of damping, The sinusg-
oidal timing curves indicate the undamped natural Trequency.
In Pige 5,14 (a) & slight irregularity can be noted in the
trace. This 1s noticeable only for low damping (where the
spring foree is relatively large) and is due to & superime
posed parasitic oscillation of higher frequency.

4. The AFG used as g linear damper

The feedbscl loop was set up as in Pig. 3.13 with a
linear sllde in the arblirary function generator.

Looking at Fig. 3.11 it is seen that, when the feed-
back loop is used to give linear damping, a phase shift
will give the effeet of increasing the spring constant.
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Infortunately, if pheose shift varies linecarly with fre-
quency, the increase in the spring force will also vary
lineerly with frequency as opposed %o the usual inverse
variation. (Thies assumes constant ecurrent or veloelty.)
Therefore, in this case, one cannot wake a correction for
vhase shift thet will be good for a range of fregquencies,
The response curves for the case of linear damping are
showm 1n Pigss 3.07, 5.08 and 3.09,

The comparison of exzperimental and theorotical results
in thiec case shows good agréement ot low values of damping
with or without filter and also for higher dampiﬁg with no
filter. Tlote that the excessive falling off of amplitude
at higher frequencies that appeared iﬁ proevious cases {(due
to indugtor shunt capacity) is not apperent here. In fact,
tha amplitude is somewhat too large at high frequencies foé
the case where tho fillter 1s used: This effect l1ls due to
phase shift in the feedback loop, ceusing an increased ef-
fective spring constant with the consequent hicher resonant
frequency. This increase of the apparent resonant frequeney
tends to make the amplitude larger for freguencies above
Pesonance.

Fig. 3,15 shows the transient response to a step
funetion Inputs The case of zero damping ls obtained by ade
Justing the gain of the amplifier between A and B, Fig.
5.13, so that tho total resistance of the main loop is zero.
The damped high frequency osgeillation thet is g&pparent for
the case L = 1,0 is parasitic. TMote that it accompanies the
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highly damped transiont in this case ol the arbitrary
funetion generator belng used g & linear damper. This is
in contrast bto the previous section where the parasitie
oselllation accompanied the low demplng case. Iowever, in
either case, the perasitic ocseillation aprears when there
is a relmtively large output voltage from the feedbaeck loop

applied between busses A and G.

5. The agourscy of the arbitrary function generator

The aceuracy of the experimental solutiong of nonlinear
differential equations naturally depends quite significantly
upon the ability of the arbitrary function generator to pro-
duce accurately an output voltage that is the required
function of the iInput veltage: The only nonlinear slide
used in this experimental work was one of the curve y = xO.
It was procduced by photogravhing & ‘mask® drawn accuratoly
on & pisce of carcdhoard with 1 ft. x 2 £t. dimensions.

The types of errors that are inherent in an arbliprary
function generatoy cf this type are discussed at length in
a thesis by Buchholsz. (7). Therefore, the troatment of
errors that 1g given here will be somewhat abbreviated. The
most important types are:

a« Ffarallax

Since the mask 1s not in contact with the phosphor
surface of the oscilloseope bube, the sctual beam position
will be affected by parallax. If the screen were flat, the
effect of parallax would be, for the most part, just a
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change of scale. However, the cupvature of the screen
causes an increased parallax effect, particularly near its
clrcunference.

In order to minimize errors due to parallax, the work-
ing area i1s restricted to the central portion (1" x 2%) of
the sereen. A 30GP1BA tube is used.

b. Cathode ray tube distortion

The oubput voltage will be ineccurate if the defleetion
gsensitivity 1s not a constant throughout the working area of
the screen, This resulits from the faet that the culpub
volbage ig direetly picportional to the deflectlon voltage.
c. Maximum spot velocity, ¥

This effect limits the Irequensy response of the
generator and, thewefore, is most noticeable for éither high
sweep retes or for mask patteyrns with steep slopes. The
main ecause of the limited spot veloeity, ¥, is the time con-
stant of the phototube circult. Also, the maximum spot
veloelty going in the direction of increasing y is approxis-
motely twice as fast as the meximmm veloeity going in the
opposite direetions The offect of & limited apot veloeity
is similar to the asttenuation and phase ghift of a 1éw pass
filter. For the slides ﬁsed in this work (linear and cubie),
the limited spot velocity esused no trouble sinée the drive
ing frequencies were guite low.

d. Halo effect

If the mask hos shayp "peaks” or "walleys”, the spot

will tend to avoild them. This is due to the finlte spot



dimensions. For example, 1f equilibrium cecurs with half
the spot exposed, the genter of the spot willl follow a
straizht edpge of the nasgk. However, the center will lie
below the top of a "peak" when half the spot is exposed.
Similarly, the centey of the spot will lie above the bot-
tom of & "walley”.
¢. Oteady state error

There is an error that is proportional to the distance
y from the center of the pattern and inversely proportional
to the loop gain. Oince this model of the arbitrary
function generator uses a voltage elipper to keep the spot
from leaving the sereen, a higher loop sein can bhe used
and the agcuracy is thereby improved.
f. Dead spots

If a point on the screen underioes cantigueé bombard-
mont by the elegtron beam, it will eventually fatipue and
its output of lisght will decrease. This ls most likely to
oceur at B point corrosponding to the center of the pattern,
i.e., the point at which the beam rests when there is no
input to the arbitrery function generator. Due to the de-
ereased light inbensity coming from this point, tho beanm
will tend to avoid 1it, and the output voltage willl act as
though the pattern has a "bump"” on it. If a dead spot ap-
pears on the screen, it can usually be avolded by moving
the slide slightly.
&8s Idrors of~adjuatment

Cf ecourse, sorious crrors can occur in the AFG oubputb
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due to lack of proper adjustment. Por example, the blas
voltage on the horizontal deflection plates must be suech
that the spot rests at = = 0 for no input voltage. The de
level of the output must be sueh that there is no output
voltage when the spot is at y = 0. Alsc, the spot foocus

and intensity should be acdjusted to give optimum perforrence.

Care schould be taken to insure that the x and y axes
of the slide are parallel to the corresponding axes of the
cathode ray tube. A& small angular dlsplacement of the slide
reletive to the tube will have the effect of adding a linear
term to the function represented on the slide.

Acturlly, none of the above possibilities for error
proved to be serious. PFigs 3.16 shows that the oubtpulb
veltage was remarkebly accurate (for the case of a cubie
slide) wntil the input wes roduced to the noise level (0,08
volta rms input). The noise ls due partly to pickup and
partly to slizht imperfecticns in the sereen in the neighw
borhwod of the orlgin,
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PART IV
SYSTENS WITH A HONLINEAR RESTORING FORCE

1. Duffing's equation

The differential equation describing the forced
cscillationa of & system with one degree of freedom and
in which the restoring forece is a nonlinesr funétion of

position is es follows:
(19) mE +ex+£{x) = P cos wk

In the case of a simple mechanical system the nonlinearx.
term corresponds to a spring force.

For the parbticular case where £{x) is of the form
(20) £(x) = «x+8x°

the equation is lmown as Duffing's equation, Duffing's
equation a8 applied to an electrical sories circullt takes

the form

{21) 14+ Rg + -34- AG® = T cos wk
Dividing through by L wse obtain

(22) 'ci+§é+r%+%q5 - % cos wh
Haking the substitution

(25) T =

ar
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and denoting .g% by gqt, g_f.g by q", ete. equation (22) becomes

%1-5%«3'4—1%4-%95 = % coswJiL T

or
(24) Q"+Rfiﬂ'+q+ACq5 = BC coswJIC T
[of
How let
(25) u=
(26) ~ B
=
(27) Y= w23
(28) B = w/Jit
and equation (24) becomes
(29) u'+ 28 ul+ u(l+ Y ul)= cosgT

This is Duffing's equation in dimensionless form.

2. Ileetrical circult with nonlinear ‘regtoring force

The electrical cireuit wsed in analyzing Duffing's
equation is shown in Flg. 4.01%1.
The computer signal generator 1s connected betwoen

busses B and C. The voltage BC is about 2 volts rms.
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The linear term in u is represented by the 0.1 ,41‘ gapacitor.
The voltage corresponding tc the cuble bterm appears across
AG. A cubie slide (y = 2°) is placed in the arbitrary
function generator. The input voltaege AP is taken from
agross a 2.4/\41* capacitor. (The 4/.4;6, 8/41‘ geries arrangee
ment was used beecause the minimum gain of the amplifier
botween A and B is greoater than wnity. Using the voltag
divider, the gain of the amplifier is edjusted to give
minimum voltage across AB.)

The desired value of Y is obtained by adjusting the
ioop gain, elther by varying the gain of the amplifier
between & and G or adjustling the Input or oubput attenuvators

of the arbibmm function generator. low

(30) o ; § peak yoltage screoss nonlinesy capacitor
= uwe___ peak volbage across linear capacitor

=
Wimx DG
where
__C._nm: v
(31) um T - v%g (peak voltaces)

52 _ 1  Vag
et SR~
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The resistor R ls set to give the correct value of
dampings Allowence is made for changes of inductor re-
sistance with froquency.

In taking thle data, a filter is used on the input to
the amplifier between A and G. The actual resonant fro-

quency. for the case IL=0, r=0 is 719 eps.
Se Besul‘& 8

The response curves for Y= 0.40 are shown in [Pigs.
4,02 and 4.03. These curves apre plotas of thoe steady state
amplitude G vs. the frequency £ for Duffing's equation in
dimengionleags form.% Iy comparing these curves with those
for the linear cese, 1t may bes seen that the resronse curves
ere "oent® to the right, csusing the maximum amplitude to
occur at a higher frequency. The most astriking effect for
low values of damping 1s that discontinuities or "jumps”
cceur in the amplitude characteristie. An additional re-
sult of the nonlinearity is that the jumps in each directlon
do not occeur at the same frequeney, thereby giving the
curves 8 form resembling a hysteresis loop. In the low
energy range, the aystém aeté quite linearly, both in ampli-
tuds and waveforms. Hbéever, the cubice term becomes im~

portant at high energles and the voltage AG (corresponding

3 The "amplitude" of the periodic response of a nonlinear
gystem 1s the peesk amplitude. Since the nonlinearities are
symmetrical about the system equilibrium, the peak amplitudes
in positive and negative directions will be equal.



50

te the forece of the cublc spring) is of the same order of
meenitude as the voltage DG (lineayr spring forvece). For
exenple, 1f Y = 0.4, the forces of the linear and cubie
springs are egual for energles eorresponding to G = 1.6.
Iven for valueé of ¥ where no Jump occurs, there is a
noticeable shift In the frequency at which theo maxismum vi-
bration amplitude occurs,

For the case of negative ¥ (See Pigs. 4.04 and 4.08.)
the response curves are bent to the left, Similay jump
phonomensa cecur. Nogative values of Y cause one new chape
acteristic of the oscillation} n&mely, e tendency toward
instability. Unless Y is kept quite small, the force of
the cubic spring will become larger than the restoring
forece of the lineay spring and the dlsplacement u will go
off to infinity. This tendency 1s most pronounced Ior low
values of ¥ and for values of fe giving layge G, As an
example, if Y= «0,02, instabllity will occur for CG>7.

It would seem that, theoretically, instability would
ogeur only for the case where the curves bend to the left
fapr enough to intersect the 4 = 0 axils. Ixperimental re-
sults indieate that instability oecurs at highor fre-
quencies, however.: Dlerhaps the difference is due to the
destebilizing infiuences of nolse, ripple, etc.

Pig. 4.06 (&) shows the steady state response for the
case Y=0.4, 5 = 0.8, The oscillation is approximately
sinusoidal, Thus, the nonlinearity seems to affect the

rosponse eurves primaprily rather than the waveform. The
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transient response to a square pulse {enplitude = 2.1) is
shown in Fig. 4.06 (b). Tote that the escillation frequency
1s higher'during the pulse. This is because the spring con-
stant is larger due to th@ inereased influence of the cubic
term at large displacements, The oseillatlions aboub equilibe-
rlum are of low eénough amplitude that the derarture from
linecarity is not marked.

Hote elso that the damping appears to be larger fop
vibrations about equilibrium, i.e., the amplitude of the
oscilletions seems to diminish more rapldly. Considered on

n energy basis, howover, this is seen not to be the case.
The rate of energy dissipation is astually larger during the
pulse {(for a given penl to peak amplitude of cscillation)
because of the larger averagse veloceclty. The cubie term in
the gpring force expression esuses the potential energy to
nave a term proportional to the fourth pewer of the disnlace-
ment. Therefore, relatlivoly large enersy changes may ocour
without & merked chanze in the amplitude of oscillation.

This gives a "hapd” spring the effect of 1limiting oscillae
tion ampllitudes.

Pige 4.06 (e¢) shows a Lissajous figure of displacement
vs. Griving force for the case of a "soft" spring ( Yy =
«0.0228)with 5= 0,1, Tho ellipticel form shows that in
this case also the bscillation is apbroximately sinusoidal,

Fige 406 (d) shows the response to a pulse of empli-
tude 2.1 for the case = ~0,022. In this case, the fro-

quency is lower duyring the pulse, while the apparent Camping



is larger. This is in contrast to the casc of posgitive Y
and can be explained by reversing the effects mentionedvin
that discussione.

The spring force is shomm as a function of time in
Pig. 4.06 (e). The froquency in this case is g=1.0, and

the amplitude of the spring foree is 2.85.

4. OApproximate solution

In order to got some idea of the accuracy of the aenalcg
computer In the analysis of nonlinear systems of this sort,
we will check the case V= -0,022, ? = 0.l against an ap-
proximate solution. Ve will follow the method used by
urfing (9), applying it to the case where damping is prog-
ent

There will be & difference in phase between the driving
force and the displacement. Therefore, let us put the dif-

ferential eguation in the form
(33)  u"+28u' +u(l+vYud) = cos(B7+¢ )
=cos@ cosgT - sing sing7”
and assume a gero order approximation
(34) uy= 4 cosgT

Then ¢ can be obtained as well as an equation for deter-
mining tB ag a function of A,

Substituting equation (34) inte equation (33) and noting
that
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cos?’}a?‘ = fcosgT'+icos3aT
we obbain
0., NS 729
(35) (Ae AB=+% ya )coa(g‘r - 25,8&8111,@7#- ?&03357’
= coag cospr - sin¢ sin 8T

How we 11%1@0% the term (Tcossfsr) and get the coefficlents

of cosRT and sin AT equal, There results

(36) A~ABR+ZYA% = cos B
(57) -28pA = sing
but

s:}.n2¢+— c032¢ - 4
or

(38) g% + (467 - 5/2r2% - 2)8% +(9/16v%0% + 5 /2727 + 1- E%) =

giving §2 as a function of A.
ey 2 AE 32(32 B Y4 1Y+ 1 £
(o@)p:-(! SYAR-1) £k 2742, 1) 7

The plot of the amplitude vs. frequency calculated from
equation (39) for the case ¥ = 0.1 is ghown in Fig. 4.04.
The agresenent of expoerimental and caleculated values 1s guite
zcood excent near the pealk where there is a wider spread in

the valucs of /3 for a ziven Gy
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There seems b0 Do some roeson for believing that the
experimental values are actually more sccurate than the
first order calculations for large amplitudes. The neglected
berm in tho caleulations, namexy,z%§éco&3£7', is proportional
to the cube of the amplitude and thus the error would boe ex-

pected to be rueh larger neay the peak of the curve.
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PART? V

SYSTENS WITH UONLINEAR DAMPING PORCE

In this consideration of nonlinear demping forces we
shall treat Loth forced and free oscillatlionsz. In the
latter case the specific system will be that covered by

van der Pol's equation.

1., Forced Oseillastions

a, ZSguation for cuble damping term
The mechanicel equation for foreed oscillations with

nenlinear damping 1s

{40) mx +g{x) + kx = Feos wt

We shall consider the particular cese whore
(41) g(%) = ex+oz°

giving the mechanical equation

(42) % + ek + %% + kx = Feos wb
Its electrical analog is

{43) Iﬁ+§i&+h§3+% = EBeos ot
The dimensionless form of this equatlon is

(44) u+ 2 gu! +/4u'3+u 1303/87"'
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whore
(45) u= 3_%

3 ) . P
(48) T T
(47) R

L ==

2lt

(¢8) = i
M (,ﬁ%

bs Eleetpical eircult

The eleetrical cireunit used to represent this equation
is Pig. 5,01, ¥ 1is set to the correct value by adjusting R.
The term /411'3 appears as the voltage AG. A cuble slide is
used in the arbitrery funotion generator.

The coceffielent /u is set to the desired value by using

the equation

1 Vag
o /47 38 Vo
where
1 VDH(eorregted)
(50) ut= 25 VBC

The corrected volitage is obtained by mmltiplying the actual
voltage Vo by the ratio tobel oystonm resistence . ioto that

the actual value of the resistor betwoen D and H is asmaller
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than 2§ '% since the other elements, notably the inductor,
have a resistive component which cannct be nepglected.
c. Hesgults

The response curves for the case /AA=1 are showm in
Pigg, B.02 and 5.03. Comparing thoese cwrves with the cor-
responding linear dawping curves (Pigs. 3.01 and 3.02)
several differeﬁces way be noted.

Pirst, the cubic damping causes lower vibration ampli-
tudes. Thls effect 1s most noticeable for small £ . for
exarnple, the meximum amplitude of the response curve for
gubie damping with ¥ = 0 is roughly equal to that for
linear demping with 7B = 0.4.

Ancther effect of the cubic_damping is the lowering of
the fyequengy corresponding to maximum amplitude. Top
example, with % =0, the maximum amplitude occurs at
B = 0.66 compared with A= 1,0 for the linear case. Thus,
qualitatively speakingz, the ecuble damping term prescnts a
strongz blas agelnst large velocities. low since the veloe-
ity, for a given amplituec; is directly proportional to the
froequency ,8 s tho cubic damping term eauses the maximm
amplitude to occur at a somewhat lower frequency.

For negative‘/A the peak amplitudes are hisher, pare-
ticularly for small ¥ . (3ee Fig. 5.04.) In fact,‘/4 rust
be kept small in order that the system remain steble with
& finite. For the case /L=f-0.02, the peak amplitudes in
the response curve occcur at slightly higher frequencies and

it 18 assumed that this offect would be more proncunced for
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more necative values of/.c .

Piea. 5.06 {a), (b) and (¢) show the steady state dis=-

placexent, velocity and ncceleration for the case of /4.':-1.0,

5 =0.d, g=1.0. It can be seen that there are sipnifi-
cant changes from the sinuscidal waveforms thet would occcur
for pM=0.

Fige. 5.05 (d) and (e} show the displasement and
veloecity due to a step function of masmitude 0.7. lNote that
the cuble demping diseriminates against high velocities.
This can be seen by the very high damping on the first oscil-
lation of the veloecity curve.

M™Megs, B.05 {£), (g) and (h) show the steady state dis-
placement, veloeity and aceeloration for the case whore all
the damping is cuble, 146, £ = 0. They are seen to be
guite similar to the corpresponding ease of % = 0.1 oxcept

hat the departure from a sinusoidal waveform is oven greater.

Pige. 5.05 (1) shows the Adisplacement for the case of
negative cuble damplng. In this case the waveform is esson-
tially sinusoidal. Creater deviations eould be obtained
with slightly more .negative values of /@. However, as was
pointed out previcusly, the system becomes unstable (the
displacement goes to infinity) for much more negative P
d. Analytic approach

Congider the equation
(81) u"+23% u'i—-/xn's{-u = cos(/s‘r’+;zf )

where the phase angls ¢ has been added to the foreing
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function in order that the gero order approximation need
not include a phase ancle.

How essume the gpvroxzimate solubion
u, = Acos 77

Substituting into equation (B1) and expanding the richt side

we obiain
(62) -4 BBcosAT - 2 4B singT - m A3p Se1n®@ T +Aeos AT =
cosg cos BT - si.nys sin,BT
flow
sin®87 = - SEAT 4+ fo1n @7

If we neglect the term conteining sin3g7T, equation (52)

becones
(53) A(.l-pg)eea'g?' -~ (Ez‘,’Ap +—2-/1A5,35)sin/87‘:
cos ¢ coap?‘ - sinf sﬁnp?“

Dquating the coefflcients of coa{a?‘ and algo of sin (37‘ on
either side of the equation we obtain the equations

(54) Al1- g 2) = cos ¢
(55) 2548 +§~/4A5,83= sin ¢
from whieh, by noting that

8in® g + cos2¢ = 3
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Lade

we can wrlte the following equation

(56)6° (0/16 uZa%) + 841+ g4%) + A2 (4 £8-2)+ (- )= 0

It ig the real roots of the cubie equation in ,52 which
are of the most intersst to us. Scme Informetion concerning
the response curve can be obtained by use of Descartea! rule
of signs. Pirst, we noto that the coefficient of #° is
alwaye positivos, For A>1 there are either two or zero
changes of sicn giving the possibility of two or zero real
positive roots {values of ,62). For A< 1, there are elther
one or three changes of sign. Three changes of slgn are
rogslible only for ﬁCg&tiV@Ich This would seen to indicate
the pessibility of three rootas Ffor some values of A< 1, bub
this was not observed experimentally.

The epproxinate sclution was caleulated for the case
fe==0.02, 5 = 0,20, The roots of the cuble egquation 1
162 were evaluated for veriocus amplitudes by using Newtonls
method. The experimental values were used as an ald in
making a first guess. The results are plotted in Mig. 5.,04.

As in the previcus case of a cuble spring, tho analytic
and experimental results do not agree very well for large A,
This may be due to the fact that the neglected toyrm is pro-

portional to A5.

2. Van der Tol's equatlon

Self-excited oscillatione can be obtained with = aystem

having negative linear damping and also a cubic damping term
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with a2 positive coefficlient.
FPor example, consider tie electrical eircult deseribed

by the equatien

Ig-Rg+xg®+F =0

or

(57) i-Fat30+rd =0
How let

(58) 7= -}%

(69) %= Q(I%g)%
(60)

& = >
J3

Denoting é%,by a prime, there results
(63-) xﬁw e(x'upx.’s).'.xv:o

a. Computer cireuit

The computer circult used to study equation (61) is
ghown in Pig. 5.086.

The negative linoar reosistance is obbtalined by using a
gein greatey then unity in emplifier 1., R' 1s used to damp
the osecillations upon opéning the switoch.
be [esults

In order to obtaln o wide variation in €, changes
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were made in the values of L, C and the gain of the AFG-
amplifier 2 combinetion. € was set to the desired value
by choesging convenient values for I and C and then sebting

amplifier 1 to give the correct negative registance,

v
(62) R= 6-6#2% ohne

where peak to perk voltages are used. The coefficient re-
sults from the faet that resistance Rjp = 66 ohms.

The oseillations for smell values of € are approxie
ratoly sinusoidal as shown in Fig. 5,07 (a) for the case
€ = 0,10, Pig. B5.07 (b) shows the buildup process which
results upon clbsing switch BCe The phase diagram is shown
in Pige B.07 ()« (Velocity is the vertieal coordinate and
displacement is horizontal coordinate.) Iote that the
limlt pycle is appwoz:ﬁ.mtely eimulaz'; indicating a sinusw
cidal oseillation.

Pigs. 5.07 (d), (o) and {f) are for the case - € = 1.0.
Hore the departure from a sinusoldal waveform is quite
noticeable. Iigs. 5.07 (@) anad (e) aho%r the displacement
on buildup and steady state. Fig. 5.07 (£) 1s the phase
diagram for this case.

Figs. B.07 (g), (h) and (1) are for the case € = 6.0.
Pige B.07 (g) is & plot of displacement vs. time. lote
the fast bulldup in bhis case, giving full amplitude on the
first oseillation. Voloeity va. time is shown in, Pig.

5.07 {(n). This curve has the square characteristie usually
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agsociated with relaxation oscillations. The phase diagram

is showm in Fig}‘. S.0% (i)o
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PART VI

THE MATHIFU EQUATION

1. The infinitesimal stabllity of sclutions to Tuffingsls
equation

It has been shown in the section on Dulfing's equation
that the amplitude of the steady state vibratlon nay sud-
denly echange by a large eamount even for a very small change
of driving freguency. These jwaps indicate a region of in-
stability in the G 8 plane. The boundary of the unstable
region is shown by the dotted line of Fig. 6.01l. THote that
this bowndary prasses through points on the response curves
having infinite slope. The above curves are drvawn fop
variations in the parameter ¥ while 7 retalns a constant
small value.

How, following the method of Stoker (9) we shall study
the stability properties by means of & variational equation,
defining "stability" in tiw infinitesimnl sense, In other
words, if we insert (x+ % x) for x in the differential
equation and negleet higher powers of % X we obtain a linear
varistional equatian; If 811 solutions % x of this équation
are bounded, then x(t) 1s said to be sbable. Otherwise, it
is unztable.

Tet us apply this procedure to the case of Duffing's
equation without damping.

(63) u+u(l + Yul) = Goaﬁ’/"



7
The variational equation we cbtain is
{64) Su”+ Su{l+32u®) =0

How if we assume that sufficlient accuraecy can be obtained
by using the sero approzimetion u, = Acosg7, the variaw-

iomal equation takes the form
(65) su+ su(l+a2 3/2 Y[1+cos2pT] ) =0

This equation may also Le written in the form

(66) %-{»(Sd—é&oaz) (511)’—'-0
where
(67) z=887
68 = i 5)’33
s =158 5 T
_ 3 yYA°
s €= 5%

This equation ig lmown as the Hathieu equation, and it
will have reglons of stabllity and instability corresponding
to similapy regions in the solution of Duffing's egquation,

Thus it may be seen that, although the lathieu eguation
is linear, it is useful iIn the study of the infinitesimel
stability of sclutions to a nonlinear eguation.

This method of analyzing the infinitesimal stability of
the first approximations of the periodic solutions 1is
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applicable te a wide varilety of nonlinear equations. The
variational equation will have variable coefficients but

will not necessarily be reodueible to lathileul's eguation.

2. Uathleu's equation -- electrical circult

The compubter elreult that is used in the analysis of
Hathieu's equation is shown In Pig. 6.02.- A linear slide is
uged in the arbitrary function generator. In this case,
then, the arbitrary function generator is being used es an
amplifier. A minusoidal voltage 1s aprlied to one multiplier
input while the other input is é voltage proportional to the
charge on condenser A’ Therefore, the voltage AG is pro-
porticnal to the e¢harge multiplied by coswte Tho gain of
amplifier 1 is get to make veoltage AD a minimmm.

The loop equation for the charge flowing In ADBDGA 1s

(70) L§+Rﬁ+(%+saoswt)q =0

The demping term has been included since the actual cireuld

has & spmall resistances. Ieob

and designate %%,by q', ete. Then equation (70) becomes

e R ; ; _
(72) q“-:——mq'wh(mi-%-)q— 0

or
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(73) q"+22qt+(S+€cosT)lg= 0

where

(74) 2 =goy

(75) SR S (2.9.)2
é w “I0 w

(76) €

"

B _ ‘*’o>3
WY, CB(W

Stablility tests were run with the electrical circuit.
It wes desired to be able to vary the parameters § and €
independently. § was controlled by changing the freguency
of the voltage sourece conneebed between busses A and J.

The ratio .%. was read from the dial of the input
potentiometeyr (Helipot) on the arbitrary function generator.
The diel was first sobt to 1.00 and amplifier cainsg elzo~-
where in the feedback loop were adjusted to give % = 1.
This was accomplished by opening the feedback loop and come
paring the maximue voltage amplitude acrcoss DG with the
oubput AE of amplifier 2 when the main loop is driven by s
voltagse bebween B and C and the voltage AJ is set to its
standerd value (0.3¢ volts)s, (See Fig. 6.03.) In this case,
the voltages BC and AJ were equal in frequency and phase.
7ith proper callibpation the ratio J%'ean thus be read
directly from the setting af the Input potentlometer of the
arbitrary function generator. A ten-toeonso veltage atten=

uator incorporated in amplifier 2 was used to change the
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scale of the lelipot readings.

e

5. IDzxperimental results

Data was taken to determine ezperimentally the resions
of stability in the $€ plane, This was obtained by taking
liniting velues of -%- for various driving frequencles.

The results are shown in Pig. 6.04. The boundaries of th
resions of stabllity determined by this means have approxi-
mately the same shape ag fhe theoretical boundaries. Iow=
ever, the scale of the € coordinate should be wmultiplied by
about 3/2. There was a amell "hysteresis® effect noted in
the experimental determinations; l.0., instability occurs at
a higher value of ..g.. than that et which the system returns
to stability.

4. ILffect of damping

As has been stated previously, the experimental
stabllity determinations were made on a clrcult represented
by a lathieu equatlon modified by the additlon of a Camping
term 24 ¢q's If the substitution

(77) q=nue’T
is made in equation (73), the result is

(78) u“+[(5~f2)+ Geos’r’ju:O

To obtain some indication of the effect of damping, let us
¢ e B We) _ ,
caleulate the value of %= zoT, for (—-u-;—) = 1 (720 ecycles).
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Therefore

Ginece I is reughly proportional to frequency over much of
the frequengy range used in these experiments, ¥ 1s inde-
pendent of frequoeney cver all except low values of w where
i 1s nearly independent of frequency. 7The correctlon torm
is 522 and therefore, the offect of demping is nezligible
excopt for small §. l*’oi" the case of large § , it may be
scen that the effect of damping is to shirft the operating
point to the left in the $€ plane. Thus one misht think
the demping might tend to eause instabllity, since a shift
to the left generally has a destabilizing effeet. Illowever,
we are nct interested in the amplitude of u bubt rather of

-57, Tms u ray inerease exponentially and be

g = ue
fanstable’ while the amplitude of ¢ remains bounded. It is
shown by Idnorsky (10) that camping eauses ;reater stability

as one night expect from cnergy considerations.

5., TIarametric exeimticn

It might be noted that when lnstability occurs, the
arbltrary function generator saturates due to the driving
of the spot to the edge of the slide. Thus the oscillations

are limited in amplitude to a reazsconable value. Thotorranhs
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wore taken of the response in the unstable vresion of the
plane.

As the frequency of the excitatlion was varied, a variety
of types of oscillations oeccurred. {See Mig. 6.05.) Ixamples
of subharmcuica, ultraharmonies and ultrasubharmonics are
8LOWN.

Pizse. 6405 (a) and (b) show exanples of subharmonic
oscillatlions. The period of the response (upper trace) is
equal to the period of the free oscillation, but the period
of the excitation is smaller by a factor % where n is an
integer. (Examples of n= 2, 3 are shown.)

An example of ultraharmonie oseilllation is shown in Fige.
6,06 (e¢). 1In this case the response and excitation both have
the same period, bub this pericd is an integral multiple, i,
{in this case m = 8) of the natural period.

Ixamples of ultrasubharmonile oscillations are shown in
Figss 64058 (d= 1)¢ In this type of osciliation, the period
of the respeonse is m times the natural period and n times
that of the excitation.

Although the experimental work was done for the specifie
case of lathlieu's equation, studies could be made of systoms

in which the demping coefficlent is also a periodic function
of timee.
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