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Abstract 

In a paper published in 1961, L. Cesari Ll1 

introduces a method which extends certain earlier 

existence theorems of Cesari and Hale ( [21 to (6]) for 

perturbation problems to strictly nonlinear problems. 

Various authors ( L1] , [7] to (_15] ) have now applied this 

method to nonlinear ordinary and partial differential 

equations. The basic idea of the method is to use the 

contraction principle to reduce an infinite-dimensional 

fixed point problem to a finite-dimensional problem 

which may be attacked using the methods of fixed point 

indexes. 

The following is my formulation of the Cesari 

fixed point method: 

Let B be a Banach space and let S be a finite­

dimensional linear subspace of B. Let P be a 

projection of B onto s, and suppose r£.B such that Pl' 

is compact and such that for every x in Pr, P- 1x n 11 is 

closed. Let W be a continuous mapping from r into B. 

The Cesari method gives sufficient conditions for the 

existence of a fixed point of w in r. 
Let I denote the identity mapping in B. Clearly 

y = Wy for some y in r if and only if both of the 
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following conditions hold: 

(i) Py = PWy. 

(ii) y = (P + (I - P)W)y. 

Definition. The Cesari fixed p~int method applies to 

Cr, W, P) if and only if the following three conditions 

are satisfied: 

(1) For each x in Pr, P + (I - P)W is a 

contraction from P-1x n r into itself. Let 

y(x) be that element (uniqueness follows from 

the contraction principle) of p-lx (\ r which 

satisfies the equation y(x) = Py(x) + 

(I - P)Wy(x). 

(2) The function y just defined is continuous from 

Pr into B. 

(3) There are no fixed points of PWy on the 

boundary of Pr, so that the (finite­

dimensional) fixed point index i(PWy, int Pr) 

is defined. 

Definition. If the Cesari fixed point method applies to 

(r, W, P) then define i(r, W, P) to be the index 

i (PWy, int Pr). 

The three theorems of this thesis can now be 

easily stated. 

Theorem ! (Cesari). If i(r, w, P) is defined and 
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i(r, w, P) I o, then there is a fixed point of w in r. 

Theorem 2. Let the Cesari fixed point method apply to 

both er, W, P1 ) and er, W, P2 ). Assume that P2P1 • 

P1P2 = P1 and assume that either of the following two 

conditions holds: 

(1) For every b in B and every z in the range of 

p2' we have that \lb - P2bl\ ~ \lb - zll. 

(2) Pi' is convex. 

Then i(r, W, P1 ) = i(r, w, P2) • 

Theorem 2· If _o_ is a bounded open set and Wis a 

compact operator defined on_n_ so that the (infinite­

dimensional) Leray-Schauder index iL8 (w,..n_) is defined, 

and if the Cesari fixed point method applies to 

(_o_, w, P), then i(SL, w, P) = iLs<,W,...rL). 

Theorems 2 and 3 are proved using mainly a 

homotopy theorem and a reduction theorem for the finite­

dimensional and the Leray-Schauder indexes. These and 

other properties of indexes will be listed before the 

theorem in which they are used. 
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It will be useful to begin with a review of some 

of the properties of finite-dimensional indexes. 

Properties of the finite-dimensional fixed point index. 

Let En be the n-dimensional euclidean space. Then for 

every bounded open set ~sEn and for every continuous 

function G: 6..--En such that Gx 1 x for every x on the 

boundary of !:::.. , there is defined an integer i ( G, 6) 

which can be positive, negative, or zero, called the 

index of the mapping G. This index has the following 

properties [9] : 

A. If i(G, !:::.. ) is defined and if i(G, ~) 1 O, then 

there is an x in ~ such that Gx = x. 

B. (Homotopy theorem) If Gt(x) is a continuous 

function on l_o,1]x 6 and if i(Gt' ~) is defined 

for every t in [0,1], then i(G0 , 6) = i(G1 , 6 ). 

C. If i(G, 6 1 ) and i(G, D.2 ) are both defined, 

where G is a continuous function defined on 

0,1 u 62, and if 6i n 6 2 = ¢, then i ( G, 6 1 U ~) = 

i ( G , 6
1

) + i ( G , D.2 ) • 

D. (Reduction theorem) Let Em be a finite­

dimensional linear subspace of En. Let 6 be a 

bounded open set in W. Let G: 6. -Em be 

continuous and suppose that i(G, 6.) is defined. 
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As stated, these properties are not sharp enough 

for the use required of them in this thesis. Since all 

finite-dimensional Banach spaces of the same dimension 

are homeomorphic, En can be replaced in the statements 

above by an arbitrary finite-dimensional Banach space F. 

After making this substitution, property A continues to 

hold as stated. Property B does not allow for the 

variation of the set ~. Applying properties B and D 

(with only the substitution of F for En) to the space 

F x E1 , the following strengthened form of property B is 

obtained: 

B'. (Strengthened homotopy theorem) Let L be an 

open subset of F x E1 where F is a finite-
- 1 dimensional Banach space. Let G: L.-F x E in 

such a way that i(G, 2-) and i(G \ L: I\ (F x1_t}), 

~n(Fxlt1 )) are defined for every tin l_o,11. 

Then i(Gl L.n(Fx{O} ), L.n (Fx{O} )) = 

i(Gj2.n(F x).1} ) , 2- n (F >< 1_1})). 

This property will not be proved here since the anal­

ogous property for infinite-dimensiona l F is proved in 

the proof of theorem 3. The following sharpened form 

of property C will be used [l6] : 

C'. If i(G, bj) is defined for j = 1, ••• , k, and 
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if b.2.61 UD.2 u ••• 6k' 6= .61 u.62 U ••• \Jbk' 

and~. n 6,. = ¢ for i I j' then i(G,6) = 
k l. J 

L_ i(G, G.). 
j=l J 

In property D substitute. F for En and E for Em, where E 

is a linear subspace of F. 

Now we are ready to present the Cesari fixed point 

method. 

The Cesari fixed point method. Let B be a Banach space 

and let S be a finite-dimensional linear subspace of B. 

Let P be a projection of B onto s , and suppose \'c;.B such 

that Pr is compact and such that for every x in Pr, 

p-lx (\ l' is closed. Let W be a continuous mapping from 

\into B. The Cesari method gives sufficient conditions 

for the existence of a fixed point of w in r. 
Let I denote the identity mapping in B. Clearly 

y = Wy for some y in \ if and only if both of the 

following conditions hold: 

(i) Py = PWy. 

(ii) y = (P + (I - P) W)y. 

Definition. The Cesari fixed point method applies to 

(r, W, P) if and only if the following three conditions 

are satisfied: 

(1) For each x in Pr, P + (I - P)W is a 

contraction from P-lx (l \ into i tsel.f. Let 
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y(x) be that element (uniqueness follows from 

the contraction principle) of P-1x () r which 

satisfies the equation y(x) = Py(x) + 

(I - P) Wy(x). 

(2) The function y just defined is continuous from 

Pr into B. 

(3) There are no fixed points of PWy on the 

boundary of Pr, so that the (finite­

dimensional) fixed point index i(PWy, int Pr) 

is defined. 

Definition. If the Cesari fixed point method applies to 

(\, W, P) then define i(r, w, P) to be the index 

i (PWy' int Pr). 

Remark 1. A sufficient condition for condition (2) 

above to hold is that (I - P) W is a contraction mapping 

from r into B \:.l] • 

Remark 2. Often it is not feasible to find the function 

y exactly, given as it is by a family of contraction 

mappings. However, the fixed point index is insensitive 

to small enough changes in the values of the mapping 

PWy, and thus y need be known only approximately. 

Estimating the closeness of the approximation consumes a 

significant portion of Cesari's time in the example he 

gives in [1]. 
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Theorem 1. (Cesari) If i(r', W, P) is defined and 

i(r, w, P) I o, then there is a fixed point of w in r. 
Proof. i(PWy, int Pr) = i(r, w, P) I o, so there is an 

x in int Pr such that x = PWy(x). But since x = Py(x), 

we have that Py(x) = PWy(x), and thus y(x) satisfies 

conditions (i) and (ii) above (page 3) and hence is a 

fixed point of W. Notice that any fixed point of W is 

in the range of y, for only points in the range of y 

satisfy condition (ii). 

Theorem 2. Let the Cesari fixed point method apply to 

both (I, w, P1 ) and (11, W, P2 ). Assume that P2P1 = 

P1P2 = P1 and assume that either of the following 

conditions holds: 

(1) For every b in B and every z in the range 

of P2 , we have that l\b - P2b\\~ \\b - z\\. 

(2) P2 r is convex. 

Then i(r, W, P1 ) = i(I', w, P2) • 

Proof. For i = 1, 2, let Si be the finite-dimensional 

subspace which is the r ange of Pi. The assumption 

P1P2 = P2P1 = P1 implies that s1c s2 • For i = 1, 2, the 

condition y.(x) = P.y.(x) +(I - P.)Wy.(x) is equivalent 
1. 1 1 i i 

to the condition Wyi.(x) - yi.(x) = P.( Wy.(x) - y.(x)). 
1. i 1. 

Thus for x in Pir' yi (x) is the only point of Pi1x n I' 
whose displacement Wyi(x) - yi(x) belongs to Si. Let 
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x: P1r---P2r be defined by x(x) = P2y1 (x). Then for 

every x in P1r we have that y2 (x(x)) = y1 (x), for 

Wy1 (x) - y1 (x) is in s1~ s2 • xis the composition of 

two continuous maps and hence is continuous. 

We now define an isotopy which moves the graph of 

x into s1• For every t in L_o,1] define ut:s2 f\ Pi1CP1r) 

--s2 by the formula ut(z) = z - t(I - P1 )x(P1z). Each 
-1 ut is one-to-one and each ut is continuous, for 

z = ut(z) + t(I - P1 )x(P1ut(z)). Each ut is an open 

mapping taking interior points of P2r into interior 

points of ut(P2r) and boundary points of P2r into 

boundary points of ut(P2r). 
For every t in l_o,1], let Tt :ut(P2r)--s2 be 

defined by Tt(z) = z + (P2wy2ut1 (z) - ut1 (z)). This 

one-parameter family of mappings preserves the 

displacement P2Wy2 (r) - r of points r in P2 \7 as the 

graph of xis carried into s1 • Thus no fixed points of 

Tt are introduced on the boundary of ut(P2r) during the 

homotopy , for if Tt(z) = z for some z on the boundary of 

ut(P2r), then P2wy2ut1 (z) = ut1 (z) where ut1 (z) is on 

the boundary of P2r, contradicting the assumption that 

i(r, w, PJ is defined. 

Let 8. = int P. r for i = 1, 2. It may easily be 
J_ J_ 

verified that the conditions of property B' (strength-
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ened homotopy theorem, page 2) are satisfied, taking L 

to be 

f u0 Ce2 )x(-1,0J} U l U Lut(82 )x{,t}]J U lu1 Ce2 ))(ll,2)J 
Ltc.t_o,11_ 

and taking (for (z, t) in L, z in 8 2 , t in [-1,2~) 

G(z,t) = T0(z)xlo} fort in \_-1,oj, 

G(z,t) = Tt(z)x{tl fort in lO,l], and 

G(z,t) = T1 (z)x\.l} fort in l_1,2]. 

Thus i(P2Wy2 , 8 2 ) = i(T0 , u0 (82 )) = i(T1 , u1 (82 )). 

Now for every tin [1,2], let Tt:u1 CP2r)--82 be 

defined by 

(1) Tt(z) = (1 - (t-l))T1(z) + (t-l)P1T1 (z). 

If no fixed points are introduced on the boundary by 

this homotopy (this question will be investigated 

later), then by property B (homotopy theorem, page 1) 

wa have that i(P2wy2 , 6 2 ) = i(T1 , u1 (62 )) = 

i(T2 , u1 Ce2 )). Since the values of T2 are all in s1 , 

property C (reduction theorem, page 1) gives that 

i(T2 , u1 C62 )) = i(T2 ju1 Ce2 )n81 , u1 Ce2 )n s1 ). If xis 

in u1 Ce2 )n s1 , then u11 Cx) = x(x) for u1 is one-to-one 

and u1 (x(x)) = x. For i = 1, 2, and for any z in Fir, 

Wyi(z) - yi(z) = PiWyi(z) - Piyi(z) as seen before. 

But P.Wy.(z) - P.y.(z) is equal to P.Wy.(z) - z. We 
l l l l l l 

have already proved that for x in u1 Ce2 )n 81 we have 

that ul1 (x) = x(x). In this case, we have that T1 (x) = 
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x + (P2Wy2x(x) - x(x)) = x + (Wy2x(x) - y2x(x)) = 

x + (Wy1 (x) - y1 (x)) = x + (P1 Wy1 (x) - x) = P1Wy1 (x). 

Thus also T2 (x) = P1 Wy1 (x), and' we have i(P2wy2 ,e 2 ) = 

i(T2 , u1 Ce2 )) = i(T2 lu1 C62)n s 1 , u1 Ce2 )n s 1 ) = 

i(P1Wy1\ u1 (82 ) n s1 , u1 (92 ) n s1 ). 

To obtain i(r, w, P1 ) = i(I, W, P2 ) it must be 

shown that i(P1wy1\ u1 (62 ) n s 1 , u1 Ce2 ) n s 1 ) = 

i(P1Wy1 , 9 1 ). Let us apply property C' (page 2) with 

k = 2, D.1 = u1 (62 )ns 1 , and b.2 = 6 1 ---u1 (62 ) n s 1 • ( Note 

that u1 ce2 ) n s 1 c e1 , for u1 ce2 ) n s1 is an open subset 

of s 1 which is also a subset of P1r.) If x is in ~2 , 

then xis not a point of u1 Ce2 ), so ui1 Cx) = x(x) is a 

boundary point of P2r. P1Wy1 (x) - x = P2W y2x(x) - x(x) 

f. 0. Thus i(P1 Wy1 , 6.2 ) is defined, and by property A 

( page 1), i(P1Wy1 , 6 2 ) = O. Thus i(P2Wy2 , 9 2 ) = 

i(P1WY1\u1CB2)n sl, u1C82)n Sl) = i(P1WY1l61, 6.1) = 

i(P1Wy1 , 81 ), as re quired. 

Now that the reason for t he study ha s been made 

clear, it is time to complete the proof of theorem 2 by 

showing that either of conditions (1) and (2) (page 5) 

implies that the homotopy Tt for t in [1,21 (see 

e quation (1), page 7, for the e quation giving Tt) 

introduces no fixed points on the boundary of u1 CP2r). 
If for some t in [1,2] and for some z in the 
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boundary of u1 (P2r), 

z = Tt(z) = (1 - (t-l))T1 (z) + (t-l)P1T1 (z), 

then z is on the line segment joining T1(z) and P1T1 (z), 

and P1z = P1T1 (z). Since z is a boundary point of 

u1 (P2r), ui1 Cz) is a boundary point of P2~. Since 

P1z = P1T1 (z) = P1 (P1T1(z)), and since u1 is linear on 

Pi1 CP1z)n s2 , ul1 (z) is on the line segment joining 

ul1 (T1 (z)) and ul1 (P1T1 (z)). But ul1 (T1 (z)) = 

T1 (z) +(I - P1 )x(P1T1 (z)) = z + P2Wy2ul 1 (z) - ul1 (z) + 

(I - P1 )x(P1(z)) = P2wy2ui1 Cz) since ui1 Cz) - z = 

x(P1(z)) - P1x(P1 (z)). But we also have that 

ul1 (P1T1 (z)) = P1T1 (z) + (I - P1 )x(P1P1T1 (z)) = 

P1z + (I - P1 )x(P1z) = x( P1z) . Thus to prove the 

theorem it is only necessary to show that each of 

conditions (1) and (2) implies that there is no point 

r on the boundary of P2 I which is on the line segment 

joining P2wy2 (r) and x(P1r), where each of these three 

points has the same P1- projection. Notice that r I-

x(P1r), for if r = x( P1r), then P1r = P1P2wy2 (r) = 

P1Wy2xCP1r) = p 1Wy1 ( p 1 r) ' and thus P2wy2r - r = 

P2Wy2xCP1r) - x( P1r) = P1Wy1 (P1r) - P1r = 0 with r on 

the boundary of P2r, contradicting the assumption that 

i(r, w, P2 ) is defined. 

To show that condition (1) gives the theorem. Suppose 



10 

that condition (1) holds, and assume that the forbidden 

r exists. Let x = P1r. Because P1 + (I - P1 )w is a 

contraction mapping on Pl1x n r1, with fixed point y1 (x) = 

y2 (x(x)), and since y2 (r) ~ y2 (x(x)), 

A1 = P1y2 (r) + (I - P1 )Wy2 (r) 

is closer to 

than is 

A
3 

= y2 (r) = r + (I - P2 )Wy2 (r). 

Now let 

Al = All + Al2 + Al3 

A2 = A21 + A22 + A23 

A3 = A31 + A32 + A33 

where Pl Ai = Ail' (P2 - Pl)Ai = Ai2' and A.-P2.A. = 
]. ]. Ai3 

for i = 1, 2, 3. Clearly A11 = A21 = A31 = x, A13 = 

A
33 

=(I - P2 )wy2 (r), and ll A1 - A2!1< j/A3 - A2!1. We wish 

to show that r = A31 + A32 is not on the line segment 

joining P2Wy2 (r) = A11 + A12 and x(P1r) = A21 + A22 , 

or equivalently, we wish to show that A32 is not on the 

line segment joining A12 and A22 • 

Assume that A32 = r-.0A12 + (l-i\0 )A22 with O ~ r.0 ~ 1. 

Then J!.A1 - A2 li < llA3 - A2 \1 implies that 

\I A12 + Al3 - A22 - A23 ll < \\AoA12 + (l-}.O)A22 + A33 - A22 
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- ~3 II = l/>..0 CA12 - A22 ) + A13 - A231\. Let q be a real 

number between these two norms. Then consider S = 

t b t.B; \\b - (.A23 - A13 ) \\ < q_}. This set contains A12- A22 

in s2 and hence it must also contain P2 (A23 - A
13

) = O, 

by condition (1) of this theorem. Clearly S is convex, 

so S must contain A.(A12 - A22 ) for 0 ~ 'A.~ 1. However 

A0 (A12 - A22 ) is not in s since \\A0 (A12 - A22 ) -

(.A.23 - A13 )/I > q. This contradiction proves theorem 2 

assuming condition (1). 

To show that condition (g) gives the theorem. It has 

been shown that i(P1wy1 , int P1f') = i(P2wy2 , int P2r) 

if there is no point r on the boundary of P2\which 

lies on the line segment joining P2Wy2 (r) and x(P1r) 

where all three have the same P1-projection. In case 

hypothesis (2) is satisfied, it is possible to define 

a homotopy Ft of P2Wy2 to a function F which has the 

following three properties: 

(i) There is no point r on the boundary of P2f' 

which lies on the line segment joining F(r) 

and x(P1r), all having the same P1-projection. 

(ii) Ft(x(P1z)) - x(P1z) is a positive multiple 

of P1Wy1 (P1z) - P1z throughout the homotopy, 

for every z in I'. 

(iii) Ft introduces no fixed points on the boundary 
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of P21 during the homotopy. 

This then will prove that i(P2wy2 , int P2r) = 

i(F, int P21) = i(P1Wy1 , int P11). 

Let M > sup.t\P1wy2 (z) - P1 z\ ; z~P2r1}, and let 

0 < m <inf {IP1 Wy1 (P1 z) - P1 z\; z £P21' and x(P1 z) is a 

boundary point of P2 r}. Then for zE.P2 1 and tE [o,ij, 

define 

Clearly Ft is a homotopy. To prove (iii), assume that 

for some z on the boundary of P2\ and for some t in 

[0,1] we have 

z = Ft(z) 

so P2Wy2 (z) - z 

z = x(P1z). Therefore P2Wy2(z) - z = P1Wy1 (P1z) - P1 z, 

and thus 
M 

p 2 Wy 2 ( z) - z = - m t ( p 1 Wy1 ( p 1 z ) - p 1 ( z ) ) ' 

whic h is a contradiction unle s s P2Wy2 (z) = z, and this 

is i mpossible since z is on t he boundary of P21' and 

i(r, w, P2 ) is defined. 

To prove (ii), we note that 

Ft(x(P1z)) - x( P1z) = P2Wy2 (x(P1z)) - P2y2 (x(P1z)) 

M + m t(P1Wy1 (P1 z) - P1 (z)) 

= P1Wy1 (P1z) - P1 (z) 
M 

+ rn t ( p 1Wy1 ( p 1 z ) - p 1 ( z ) ) • 
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To prove (i), consider any boundary point r of 

P2r for which (i) is false. If x(P1r) is a boundary 

point of P21, then 0 = P1F(r) - P1(r) = 
M P1Wy2 (r) + m (P1Wy1 (P1r) - P1r) - P1 (r). But 

\ P1 Wy2 (r) - P1 (r)\ <: M and \~ (P1Wy1 (P1 (r))\ :;- M, 

contradiction. Now consider the remaining case that 

x(P1r) is not a boundary point of P2\, and assume as 

before that r is a point on the boundary of P2r which 

lies on the line segment joining F(r) and x(P1r), all 

three points having the same P1-projection. Define 
M s =m (P1wy1 (P1r) - P1 (r)). Noti ce that F(r) = 

P2wy2 (r) + s and that scS1 • Then P1y2 (r) = P1r = 

P1F(r) = P1Wy2 (r) + s, and P2 (P1y2 (r) + (I-P1 )wy2 (r)) = 

P1y2 (r) + (P2-P1 )wy2 (r) = (P1y2 (r) - P1wy2 (r)) + 

P2wy2 (r) = s + P2wy2 (r) = F(r). By the assumption that 

P1 +(I - P1 )w is a map of P11 CP1r) nl into itself 

(Notice that the proof for condition (1) uses only the 

contraction assumption and not the onto assumption. 

Here the situation is reversed.), P2 (P1y2 (r) + 

(I P1 ) wy2(r)) = F(r) must be in P21. But x(P1r) is 

an interior point of the convex set P2r, F(r) is in 

P2r, r is on the line segment joining them, and 

r ~ F(r). Thus r is an interior point of P2 r1, 

contradiction. 
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Before beginning theorem 3, it will be useful 

to review certain properties of the (infinite­

dimensional) Leray-Schauder fixed point index. 

Properties of the Leray-Schauder fixed point index. Let 

N be a normed linear space, and let _£')_ be a bounded open 

subset of N. Let W:_J'L--N be completely continuous (or 

compact, to use another terminology), that is, let W be 

continuous and suppose that W( ...n_) is compact. Suppose 

that W has no fixed points on the boundary of _n_. Then 

the Leray-Schauder fixed point index iL8 (w,..n.) is 

defined. Like the finite-dimensional fixed point index, 

it is an integer, positive, negative , or zero. In 

addition , it has the following properties L9]: 
A. If iLS( W, n_) is defined and if iLS(W, .sL) rj 

O, then there is an x£SL such that Wx = x. 

B. (Homotopy theorem) If Wt(x) is a continuous 

function on [0,1] xSL, continuous in t 

uniformly for a ll x in _o_, and if iL8 ( wt,il) 

is defined for every t in lo, l] , then 

iLS (WO' _n_) = iLS (Wl' _[)_)" 

C. I.f iLS(W, _n_1 ) and iLS(W, n 2 ) are both 

defined, where W is a completely continuous 

function defined on JL.l u n2' and if 

_n_l II Sl..2 = <fa' then iLS(W' _o_l U -°-2) = 
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iLS ( W, SL l) + iLS (W, SL 2 ) • 

D. (Analogue of the reduction theorem) Suppose 

that iLS(W,_()._) is defined. Then it is true 

that r =inf{ \lWy - y\\; y is on the boundary 

of _n_ S ~ 0, and if Wr 12 is a continuous 

function of _o_ into a finite-dimensional 

linear subspace F of N such that 

\\ W(x) - Wr;2 Cx)\\ < r/2 for every x in _n_, then 

i(Wr;2 \_o_nF, __o_<IF) is defined in F, and 

iLS(W,_fL) = i(Wr;2\n\\F, SLnF). 

These properties are strong enough as stated for the 

use required of them in theorem 3. 

Theorem 2· Let both the Leray- Schauder fixed point 

index iL8 (W,SL) and i(..D.., W, P), the number associated 

with the Cesari fixed point method, be defined. Then 

iL8 (W,SL) = i(.fL, W, P) . 

Proof. Let S be the finite dimensional linear subspace 

which is the range of P. For every tin L-1,21, define 

ut:P-1 (PiL) into itself by 

ut(z) = z - t(I-P)y(Pz). 

ut moves the graph of y into S. Notice that for each t, 

ut is one-to-one and ut1 is continuous, for 

ut1 (z) = z + t(I-P)y(Pz). 

Thus each ut(.SL) is open in B, and ut(SL) = ut(..o..). 
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For each tin L-1,21, define Wt:ut(_n_)--B by 

Wt(z) = z + ( Wut1 (z) - ut1 (z)). 

Wt preserves the displacement Wr - r of points r of SL as 

they are moved so as to carry the graph of y into s. 

Since Wt(z) - z = Wut1 (z) - ut1 (z), no fixed points are 

introduced on the boundary of ut(_o_) by the homotopy. 

Is ea ch Wt a compact transformation? Fix t, then Wt(_o_) 

~ W(SL) - t(I-P)y(P_n_). Both W(_n_) and t(I-P)y(P_n_) are 

clearly compact, so their difference is also. Therefore 

Wt(n) is compact and iL8 ( wt, ut(_o_)) is defined for all 

t in LO, lJ • Is this index constant t hroughout the 

homotopy? Answering this question is analogous to 

proving property B' (page 2) for finite-dimensiona l 

fixed point indexes. Consider BxE1 (where E1 denotes 

the real numbers) which has for bt.B and r E. E1 the norm 

\\(b,r)l\ = \\b\\ + lrl. With this norm, BxE1 is a Banach 

space. Let 

~ = l(b,t)EBx(-1,2); b£ut(SL.)}, 

an open set. For every t in l._0,11, let Pt:B'1-E1-Bxtt} 

be the obvious projection. For t in [0,11 define 

Zt: 'f-Bx1t} by Zt(b,r) = ( Wtb,t). There are no fixed 

points of Zt on the boundary of'+', and Zt('f) is compact, 

since (b,r)tZt(f) implies that b~ W (ll.) - {t(I-P)y(P..n...); 

t i s in t_o,1J}, and since {t(I-P)y(P...n..); t is in Io,11~ 
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is the continuous image of the compact set p_n_x1"9,i1 and 

hence is compact. Thus each Leray-Schauder fixed point 

index iLS (Zt,'f) is defined, and this index is constant 

for t in (o,1] by property B (homotopy theorem, page 14) 

of the Leray-Schauder fixed. point index. But then by 

property D (analogue of the reduction theorem, page 15) 

of the Leray-Schauder fixed point index, iL8 (w0 ,SL) = 

iL8 (z0 ,~) = iL8 Cz1 ,~) = iL8 (w1 , u1 (Sl.)). Thus the index 

is invariant throughout the homotopy. 

Now fort in Ll,2J define Wt:u1 (.n.)--B (redefining 

wt on [1,2] ) by 

Wt ( x) = ( 1 - ( t-1) ) W l ( x) + ( t-1) PW l ( x) • 

This is a homotopy of compact transformations, uniformly 

. continuous in t. Moreover , it introduces no fixed 

points on the boundary of u1 (1i), because if for some t 

in ll,2] and some x in the boundary of u1 (ii.) we had 

Wt(x) = x, then we would have that Px = PW1 (x) and x 

is on the line segment joining w1 (x) and PW1 (x). Thus 

z = ul1 (x) is a boundary point of non the line segment 

joining W(z) and y(Pz), and PWz = Pz. Now z I y(Pz), 

because if z = y(Pz), then Pz + (I - P)Wz = z and 

PWz = Pz, so z is a fixed point of W on the boundary of 

_n_, contradicting the assumption that iL8 ( w,_o_) is 

defined. But z I y(Pz) implies that Pz + (I - P) Wz = 
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Wz is closer to y(Pz) than is z, since y(Pz) is the 

fixed point of the contraction mapping P + (I P)W 

on p-1 (Pz)n.n._, contradiction. Thus iL8 (w,n) = 

iL8 Cw1 , u1 (D.)) = iL8 Cw2 , u1 GD-)). But the range of w2 
is a subset of the finite-dimensional linear space S . 

Thus by property D (analogue of the reduction theorem, 

page 15), iL8 (w2 , u1 (.o..)) = i( W2\snu1 (.0..), snu1 (..0.)). 

But for x in S nu1 ( ), ul1 (x) = y(x) and w2 (x) = PWy(x). 

Moreover , if x is in Pfi ---s n u1 (..0..) (S \t u1(o_)s; P il), 

then xis not in u1 (...o..) and hence ui1 Cx) = y(x) is a 

boundary point of S2.... Thus for x in P _o_ ~s n u1 (..n..), 

PWy(x) ~ x , and therefore property C' for finite­

dimensional fixed point indexes (page 2) gives us that 

iLS(w,..o...) = iL8 cw2 , u1 (_o_)) = i(w2 \snu1 (n.), snu1 (n)) = 

i(Pwy\snu1 (n..), snu1 (.o..)) = i(PWy, P.D) = i~, w, P). 
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