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Abstract

This thesis seeks to explain how the retina satisifies both top-down constraints (func-
tional) and the bottom-up constraints (structural) by analyzing simple physical mod-
els of the retina and mimicking its structure and function in silicon. In particular, I
examine spatiotemporal filtering in the outer plexiform layer of the vertebrate retina,
and show how outer retina processing is augmented by further processing in the in-
ner plexiform layer, creating an efficient implementation that encodes moving stimuli
efficiently over a wide range of speeds.

My working hypothesis is that biological sensory systems seek to optimize both
functional and structural constraints. On the functional side, they must maximize
information uptake from the environment while they minimize redundancy in their
outputs. On the structural side, they must maximize resolving power in space and
time, by making the processing elements small and fast, while they minimize wiring
and energy consumption. If structure and function did indeed coevolve, as I assume,
studying how structural and functional contraints are optimized simultaneously is our
only hope of understanding why nature picks the solutions that we observe.

Addressing both structural and functional contraints requires combining science
and engineering. Scientists study an existing structure, and seek to understand how it
functions in an optimal or near-optimal fashion, based on theoretical grounds. Rarely
does a scientist ask: Will the structure be more cost effective, more reliable, or more
reproducible if a less-than-optimum function is chosen? Engineers, on the other hand,
design an optimal implementation for some desired function, based on an exisiting
set of standard primitives. Rarely does an engineer ask: Is this the most natural set
of primitives to use for this particular function? Thus, neither discipline attempts to
optimize both function and structure globally. In contrast, evolution, operating in a
purely opportuinistic fashion, continuously seeks increasingly elegant solutions that

meet these constraints.
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For these reasons, I have adopted a multidisciplinary engineering—science approach
that combines analysis with synthesis. When tailored synergestically, this approach
can shed light on questions about which neurobiologists care, while advancing the

state of the art in sensory-system design.



vi

Contents

Acknowledgements
Abstract
1 Introduction

2 Retinal Structure: Parallel Pathways
21 Cell Classes . . . . . . . . .
2.2 The Outer Plexiform Layer. . . . . . ... ... .. ... .......
2.3 'The Inner Plexiform Layer . . . . . . . . . .. .. ... ... .....
2.4 Types of Ganglion Cells . . . . . .. . .. ... ... ... ......

2.5 Summary ... ..o e

3 Retinal Function: Information Encoding
3.1 Optimal Filtering . . . . . . . ... ... . ... L
3.2 Spatiotemporal Sensitivity . . . . .. ...
3.2.1 Psychophysical Measurements . . . . . . ... .. ... ....
3.2.2 Physiological Measurements . . . . . ... ... ... .. ...
3.2.3 Theory and Experiment . . . . . . ... ... .. ... ....
3.3 Biology Versus Engineering . . . . . .. .. ... .. ... .. ....
3.3.1 Sensing: Continuous Versus Integrating . . . . . .. ... ...
3.3.2  Amplification: Local Versus Global Control . . . ... .. ..
3.3.3 Filtering: Bandpass Versus Allpass . . . . ... ... ... ..
3.3.4 Quantization: Adaptive Versus Fixed . . . . . .. ... .. ..
3.3.5 Architecture: Parallel Versus Serial . . . . . ... ... ....

3.4 Summary ... ...

iii

iv

11
15
18
20
23
28

29
30
37
38
41
43
45

46
48
49
92



vii

4 Retinal Spatiotemporal Dynamics: A Physical Model 56
4.1 Assumptions of the Model . . . . . . .. . ... . ... ... ... 57
4.2 Linear Model of the Outer Plexiform Layer . . . . . . . ... ... .. 60
4.3 Responses to Flicker and Gratings . . . . . . ... ... ... .. ... 64

4.3.1 Full-Field Flicker . . . . . . .. ... ... ... ... ..... 65
4.3.2 Stationary Gratings . . . . . . . ... ... L. 68
4.3.3 Moving Gratings . . . . .. . ... ..o oL 70
4.4 Spatiotemporal Sensitivity . . . . . . . ... 73
4.5 Responses to Moving Images . . . . . . . . .. .. ... .. 7
4.5.1 Speed-Invariant Contrast Estimation . . . .. . ... ... .. 80
4.5.2 Contrast-Invariant Speed Estimation . . . .. . ... ... .. 81
4.5.3 Space-Time Effects . . . . . . ... ... . ... ... ... .. 82
4.6 Discussion . . . . . ... 85
4.6.1 Spatiotemporal Inseparability and Local Connectivity . . . . . 86
4.6.2 Efficient Coding Versus Efficient Implementation . . . . . .. 87
4.6.3 Encoding of Contrast and Speed of Moving Images . . . . . . 88

5 Electrodiffusion: From Nerve Membranes to Transistors 90

5.1 Electrodiffusion in Membranes . . . . . . .. ... ... 91
5.1.1 The Membrane Flux . . . . ... .. ... ... .. ...... 93
5.1.2 The Membrane Potential . . . . . . . . .. ... ... ..... 96

5.2 Electrodiffusion in Transistors . . . . . . . . . .. .. .. ... .. .. 99
5.2.1 The Channel Current . . . . . . . . . . . ... ... .. .... 101
5.2.2  The Channel Charge . . . . . .. .. ... ... . ...... 105
5.2.3 The Surface Potential . . . . . . . .. ... ... ... ..... 110

5.3 Discussion . . . . ... 117
5.3.1 Ion Channels Versus Transistors . . . . . . .. .. .. .. ... 119
5.3.2 Single-Cell Model . . . . . ... .. ... ... .. ... .. 120

6 Linear Networks: By Diffusion in MOS Transistors 122

6.1 Symmetric MOS Transistor Model . . . . . . . . . ... ... ..... 123



viii
6.2 Source- and Drain-Current Components . . . . . ... ... .. ...
6.3 Conditions for Symmetric Current Decomposition . . . . .. .. . ..
6.4 The Terminal Charge . . . . . . . . . ... .. ... ... .......
6.5 Diffusors, Pseudoconductances, and Ohm’s Law . . . . . .. ... ..
6.6 The Node Charge . . . . . . . . . .. ... .. ... ... ... ...,
6.7 Diffusive Networks . . . . . . . . ...
6.8 Test Results . . . . . . . . .. .

6.9 Summary . . . ... e

Neuromorphing: From Neural Circuits to CMOS Circuits
7.1 Modeling of Excitatory and Inhibitory Chemical Synapses . . . . ..
7.2 Outer-Plexiform-Layer Circuit . . . . . . . .. .. ... ... .....
7.3 Test Results . . . . . . . . . .
7.4 Tradeoffs in Outer-Retina Design . . . . . . . . . ... .. ... ...
7.4.1 Low-Frequency Attenuation Versus Temporal Stability
7.4.2 Gain Control Versus Frequency-Tuning Invariance . . . . . . .
7.5 Discussion . . . . .. ..o
7.5.1 Horizontal-Cell Autofeedback and Temporal Stability . . . . .
7.5.2 Horizontal-Cell Autofeedback and Receptive-Field Invariance .

Adaptive Quantization: Circuit Models of Spiking Neurons
8.1 Information Encoding in Spiking Neurons . . . . . . . . . ... .. ..
8.2 Concept and Circuit . . . . . . ... ... ...
8.3 Leaky Integration with a Capacitor and a Diode . . . . . .. . .. ..
8.3.1 A General Solution . . . . .. .. ... L.
8.3.2 Response to Step Changes . . . . . ... .. ... ... ... ..
8.3.3 Response to Spike Trains . . . . . . ... .. ... ... ...
8.4 Axon-Hillock Circuit . . . . . . . . ... ... .. ... .. ......
8.5 Neuronal Latency and Synchrony . . . . . . ... ... ... .....
8.6 Calcium-Dependent Potassium Channels . . . .. ... ... .. ...

8.6.1 Effect on Steady-State Behavior . . . . . . ... ... ... ..



X

8.6.2 Effect on Time-Scaling Function . . . . . . . ... ... ... . 188

8.6.3 Effect on Latency and Synchronicity . . . ... ... ... .. 193

87 Test Results . . . . . .. .. . . o 197
8.8 Discussion . . . . . . .. 202

9 Neuromorphic VLSI: A Retina on a Chip 205
9.1 Smart-Pixel Arrays . . . . . . . . .. 206
9.2 A Retinomorphic Pixel . . . . . ... ... oL 209
9.3 Overall System Performance . . . . ... ... ... ... ... ... .. 212
9.4 Discussion . . . . . . .. e 215
9.5 Conclusions . . . . . . . . 217

Bibliography 220



List of Figures

2.1 VERTICAL SECTION THROUGH THE HUMAN RETINA . . . . . . .. 16
2.2 SCHEMATIC DIAGRAM OF A TYPICAL VERTEBRATE RETINA . . .. 18
2.3  SIMPLIFIED CIRCUIT DIAGRAM OF THE RETINA . . . . .. .. ... 24
3.1 OpTIMAL FILTER DESIGN . . . . . . . . . .. . . ... ... ..... 32
3.2 EFFECT OF OPTIMAL FILTER . . . . . . . . . . . ... ... .. ... 34
3.3 OPTIMAL SPATIOTEMPORAL FILTER . . . . . . . . . . ... .. ... 36

3.4 INTENSITY ADAPTATION AND FREQUENCY SENSITIVITY OF HUMANS 39
3.5 SPATIOTEMPORAL CONTRAST SENSITIVITY OF HumMANS . . . . .. 40

3.6 SPATIOTEMPORAL CONTRAST SENSITIVITY OF CAT GANGLION CELLS 42

3.7 INpPUT-OUTPUT TRANSFER CURVES FOR LIGHT SENSORS . . . .. 46
3.8 BANDPASS FILTERING . . . . . . . . . . o i i i e e 47
3.9 QUANTIZATION IN TIME AND AMPLITUDE . . . . . . . . . .. ... 50
4.1 PHYSICAL MODEL OF THE OQUTER RETINA . . . . . . .. . ... .. 61
4.2 SINUSOIDAL SPATIOTEMPORAL SIGNALS . . . . . . . . . . . . . ... 63
4.3 SENSITIVITY OF CONES TO FULL-FIELD FLICKER . . ... .. ... 64
4.4 SENSITIVITY OF CONES TO STATIONARY GRATINGS . . . . . . . .. 67
4.5 SENSITIVITY OF CONES TO MOVING GRATINGS . . . . . . .. ... 70
4.6 HUMAN SENSITIVITY TO MOTION . . . . . ... ... ... ..... 72
4.7 SPATIOTEMPORAL SENSITIVITY OF CONES . . . . . . . . . ... .. 74
4.8 MOTION AND SPATIOTEMPORAL SENSITIVITY OF CONES . . . . . . 78
4.9 RESPONSE OF CONE TO MOVING EDGES . . . . .. . .. ... ... 83
4.10 HARDWARE FOR SPATIOTEMPORAL FILTERS . . .. . .. ... ... 87
5.1 ELECTRODIFFUSION IN MEMBRANES AND TRANSISTORS . . . . .. 92

5.2 POTENTIAL ENERGY OF ELECTRONS IN A NMOS TRANSISTOR . . 100



2.3
2.4

5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6

xi
MOS CAPACITOR’S CHARGE VERSUS SURFACE POTENTIAL
TRANSISTOR CURRENT VERSUS GATE VOLTAGE . . . . . . ... ..
TRANSISTOR CURRENT VERSUS SOURCE VOLTAGE . . . . .. ...
SURFACE-POTENTIAL SENSITIVITY VERSUS GATE VOLTAGE . . . .

CURRENT VERSUS VOLTAGE FOR MEMBRANES AND TRANSISTORS

CIrcUIT CONVENTIONS FOR THE MOS TRANSISTOR . . . . . . ..

LOCAL AGGREGATION . . . . o o v e s,

CONCENTRATION DECAY RATES FOR DIFFUSION . . ... ... ..
CURRENT DIVIDER AND DIFFUSOR TEsT CIRCUIT . . ... .. ..
CURRENT-DIVIDER CURRENTS . . . . . . . . it i it
DirrusOrR CURRENT VERSUS CURRENT-DIFFERENCE . . . . . . . .
CURRENT-DIVIDER RATIO VERSUS VOLTAGE DIFFERENTIAL

DI1FFUSOR PERMEABILITY VERSUS GATE VOLTAGE . . . . . . . ..
DynaMiCc RANGE OF CURRENT DIVIDER CIRCUIT . . .. ... ..
LINEAR AND NONLINEAR DIFFUSOR CIRCUITS . . . . . . . .. ...

CURRENT SPREADING IN DIFFUSOR NETWORKS . . . . . . . . . ..

SINGLE-TRANSISTOR MODELS OF SYNAPSES . . . . . . . . .. ...
NEUROCIRCUITRY OF OUTER PLEXIFORM LAYER . . ... ... ..
CMOS CircuiT MODEL OF OUTER PLEXIFORM LAYER . . . . ..
IMPULSE RESPONSES OF OUTER-RETINA CMOS CIRCUIT . . . . .

INTENSITY DEPENDENCE OF OUTER-RETINA CMOS CIrcuiT. . .

Brock DIAGRAM OF ADAPTIVE NEURON CIRCUIT . . .. .. ...

ADAPTIVE NEURON CIRCUIT . . .« . o it i s,

UNDRIVEN RESPONSE OF DIODE-CAPACITOR INTEGRATOR . . . . .
MODIFIED SELF-RESETTING AXON-HIiLLock CIRCUIT .. .. . ..

MEMBRANE-VOLTAGE TRAJECTORIES . . . . « . o v v e i

118



xii

8.7 SPIKE TIMING RELATIVE TO INPUT STEP . . . . . . . . . ... .. 189

8.8 FIRING PROBABILITY DISTRIBUTION . . . . . ... .. ....... 194
8.9 PEAK SYNCHRONOUS FIRING RATE AND SYNCHRONICITY . . . .. 195
8.10 ADAPTIVE NEURON’S STEP RESPONSE 1 . . . . .. ... ... ... 198
8.11 ADAPTIVE NEURON’S STEP RESPONSE 2 . . . . ... .. ... ... 199
8.12 ADAPTIVE NEURON’S LATENCY AND SYNCHRONICITY 1 . ... .. 200
8.13 ADAPTIVE NEURON’S LATENCY AND SYNCHRONICITY 2 . . . . .. 201
9.1 SCALING OF PIXEL AREA . . . . . . . . . .. ... .. ... .... 207
9.2 RETINOMORPHIC SYSTEM CONCEPT . . . . . . . . . . . ... .... 208

9.3 DIE MICROGRAPHS OF RETINOMORPHIC FOCAL-PLANE PROCES-

SOR AND POSTPROCESSOR . . . . . . . . . . .. v i vt e 209
9.4 RETINOMORPHIC PIXEL . . . . . . . .. .. .. ... ... ...... 210
9.5 TILING HEXAGONAL GRIDS . . . . . . . . .. .. ... ... ..... 211
9.6 CCD CAMERA VERSUS RETINOMORPHIC IMAGER . . . . . . .. .. 213

9.7 VIDEO FROM POSTPROCESSOR CHIP . . . . . . . . . . . . . . ... 215



x1il

List of Tables

3.1

9.1
9.2

STANDARD VERSUS RETINAL DESIGN PRINCIPLES . . . . .. . . .. 45

MODELING PASSIVE PROPERTIES OF IOoN CHANNELS WITH TRAN-

SISTORS . . v v v o e e e e 117



Chapter 1 Introduction

The retina is an exquisitely evolved piece of biological wetware. The human retina—
as well as other vertebrate retinae—is sensitive to light intensities ranging from dim
starlight to direct sunlight: a dynamic range of at least 10 decades. This remarkable
ability to adapt to changes in intensity larger than those handled by any other known
sensory system is mediated by a variety of gain-control mechanisms that operate over
disparate spatial and temporal scales. The vertebrate retina has evolved specialized
pathways and elaborate network-control mechanisms that fine tune the degree of
pooling and the integration time of these pathways and share elements between them.
The existence of all these specialized pathways channels makes the retina a complex,
multifaceted structure.

I review the anatomy of the retina in Chapter 2, and, in particular, I describe five
specialized channels: a milliphoton-sensitivity channel for night vision, a minute-of-
arc acuity channel for luminance, a millisecond-acuity channel for motion, and two
channels for chrominance. In my review, the emphasis is placed on those facets of the
retina that shed light on how spatiotemporal signals are processed and how motion
is encoded.

Even this extremely truncated and oversimplified review of retinal neurobiology
makes it abundantly clear that the retina is much more complex than any sensory
system currently built by engineers. The retina’s parallel dedicated channels make
it akin to several specialized cameras coexisting on the same chip. Even if we try to
get around this multifaceted character by focusing on just one of these cameras, we
are still bewildered because the elements of the cameras are richly interconnected,
and the same element may serve several purposes at the same time, or it may be
coopted by different cameras at different times. This nonmodularity, which is a
defining characteristic of the retina—and of the rest of the brain—results in a efficient

implemetation but it makes it extremely difficult for us to understand how the system



2

operates by using traditional reductionist approaches.

Having studied retinal structure, I turn my attention to retinal function in Chap-
ter 3.

The spike trains produced by the retina are converted back into continuous signals
by dendritic integration of excitatory postsynaptic potentials in the lateral geniculate
nucleus of the thalamus. For human vision, contrast thresholds of less than 1%,
processing speeds of about 20 ms per stage, and temporal resolution in the millisecond
range are achieved with spike rates as low as a few hundred per second. No more
than 10 spikes, per input, are available during this time. The retina must maximize
the amount of information carried by these spikes.

For optimum performance, the retina must efficiently encode stimuli generated by
all kinds of events, over a large range of lighting conditions and stimulus velocities.
These events fall into three broad classes: static events, punctuated events, and
dynamic events. In the absence of any preprocessing, the output activity mirrors the
input directly. Changes in lighting, which influence large areas, are reflected directly
in the output of every single pixel in the region affected. Static events, such as a stable
background, generate persistent activity in a large fraction of the output cells, which
transmit the same information repeatedly. Punctuated events generate little activity
and are transmitted without any urgency. Dynamic events generate activity over
areas far out of proportion to informative features in the stimulus, when the stimulus
sweeps rapidly across a large region of the retina. Clearly, these output signals are
highly correlated, over time and space, resulting in a high degree of redundancy.
Hence, reporting the raw intensity values makes poor use of the limited throughput
of the optic nerve.

The retina has evolved sophisticated filtering and adaptation mechanisms to re-
duce redundancy and to improve coding efficiency. These mechanisms include: Local
automatic gain control at the receptors, bandpass spatiotemporal filtering in the outer
retina, highpass temporal and spatial filtering in the inner retina, half-wave rectifi-
cation, spike frequency adaptation, and a foveated architecture. As a result activity

in the ganglion cells, which convert these preprocessed signals to spikes and transmit



3
the spikes over the optic nerve, is different from the stimulus pattern. The activity
in the optic nerve is clustered in space and time (whitened spectrum): It consists of
sporadic short bursts of rapid firing, triggered by punctuated and dynamic events,
overlaid on a low, steady background firing rate driven by static events.

To unify retinal structure and function, I duplicate the retina’s spatiotemporal
dynamics with a simple physical model in Chapter 4.

My goal is to synthesize the minimal amount of machinery required to reproduce
the observed qualitative behavior, rather than to provide detailed quantitative predic-
tions of retinal responses. This approach is part of an overarching layered-complexity
strategy that I have adopted, where we reverse-engineer the retina by peeling away
one level of complexity at a time. Once we know the tradeoffs inherent in the design of
a piece of neurocircuitry, we can see how to introduce an additional layer of complex-
ity to improve its performance. Although a linear model cannot include adaptation
mechanisms, such as gain control, we can often achieve the desired result by varying
the parameters of the linear circuit, such as its gain or its time and space constants,
appropriately. Layering adaptation on top of filtering in this fashion is valid, as these
two mechanisms act on disparate spatial and temporal scales.

Models of the retina similar to the one that I study here have been proposed and
analyzed. However, none of the previous studies analyzed the effect of the model’s
spatiotemporal inseparability on motion. By studying a minimal model, and treating
space as a continuum-—using the continuous approximation—just like time, I was
able to obtain closed-form analytic solutions, and to develop a clear intuitive picture
of the spatiotemporal behavior of the retina. I show that the model’s spatiotempo-
ral inseparability has serious consequences for how information about contrast and
speed is encoded by the retina. It also results in suboptimal filtering, as the model’s
spatiotemporal behavior deviates from the optimal filter for the ensemble of natural
images.

I show how spatiotemporal inseparability goes hand in hand with local connec-
tivity. As a consequence, nature must choose between a costly spatiotemporally

separable optimal filter or a cheap spatiotemporally inseparable suboptimal filter,
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weighing coding efficiency against implementation efficiency. By unifying structural
bottom-up constraints and functional top-down constraints in this way, I provide an
explanation for two key aspects of retinal organization, which are preserved across a

large variety of species:

e The retina encodes several parallel information streams in its output that em-
phasize different aspects of a scene, such as color, edges, and movement. In
particular, it has one channel with high spatial resolution and low temporal
resolution, and another channel with low spatial resolution and high temporal

resolution.

e To a good first approximation, the retinae of all vertebrate species can be de-
scribed as a locally connected feedforward neural network with three cellular
layers that are connected by two layers of processing: the outer plexiform layer

(OPL) and the inner plexiform layer (IPL).

The unification of retinal structure and function through theoretical analysis of a
physical model concludes the first part of these thesis.

In the second part of the thesis, I switch gears and describe how to replicate neural
systems in silicon by exploiting similarities between the biophysics of nerve cells and
the physics of MOS transistors.

I begin by comparing and contrasting electrodiffusion in nerve membranes and in
MOS transistors in Chapter 5. This comparative study—which, to my surprise, has
not yet been done—shows us how best to exploit the native physics of the transis-
tor to model the biophysics of the nerve membrane. The similarities between these
two structures are most evident at the microscopic level, since the physics that gov-
erns their behavior is the same. Balancing drift and diffusion results in equilibrium
concentration profiles that decrease exponentially with potential in both devices.

At the macroscopic level, these devices are qualitatively similar. A pMOS device
reproduces the qualitative behavior of a cation channel that sees a higher concentra-
tion inside the cell, or of an anion channel that sees a higher concentration outside the

cell. And an nMOS transistor reprodces the qualitative behavior of a cation channel
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that sees a higher concentration outside the cell, or of an anion channel that sees a
higher concentration inside the cell.

However, the membrane’s current—voltage relationship has linear asymtotic behav-
ior whereas the transistor’s asymtotic behavior is exponential. This difference arises
because the concentrations of holes in the the drain-source regions of a pMOS tran-
sistor are millions of times larger than the concentration of holes in the n-type bulk.
A similar situation holds for electrons in the nMOS transistor. In contrast, the ions
that are primarily responsible for the electrical properties of the cell—namely, K* and
Nat—have concentration ratios of 1 or 2 decades. We can match the ion-channel’s
current-voltage curve quantitatively by reducing the doping of the source—drain re-
gions by four or more decades.

I show that when all the ion channels see the same voltage difference—as they
do when they are part of the same cell—the relative differences between the currents
in different ion-channel populations may be reproduced fairly well using transistors.
Thus, we can build a fairly decent single-cell model in a standard CMOS process
by using a single transistor to model each population of ion channels. In particular,
the model reproduces the behavior of the cell at equilibrium (i.e., the dependence of
the resting membrane potential on channel permeability, which is described by the
Goldman-Hodgkin-Katz equation [1, 2]).

In Chapter 6, I go beyond the single cell and present implementations for multiple-
cell networks. In particular, I propose transistor-based models for gap-junction—
coupled cell syncytia. Such syncytia are common in the retina, and they occur in
other parts of the brain as well.

I extend the device-level charge-based formulation of the MOS transistor to the
circuit level by introducing the concepts of terminal and node charges, and the equiv-
alence principle. With this formalism, we can exploit the linear current-charge rela-
tionship of the MOS transistor at the circuit level, enabling us to simulate the diffu-
sion of ions in cell syncytia, or the spread of current in resistive netorks, extremely
efficiently. When node charges stand in for membrane voltages, we may model the

linear current-voltage relationship of the gap junction with the linear current—charge
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relationship of transistors in the subthreshold regime. This analogy enables us to
simulate the spread of ions in cell syncytia extremely efficiently.

We can use these single-transistor diffusors to model the lateral spread of these
ions, as well as the loss of ions through leakage into the extracellular fluid. These
two mechanisms define a local neighborhood over which signals summate, and we can
control the size of this region by the relative strengths of the lateral coupling between
nodes in the network and the leakage path from these nodes to ground. When we use
transistors acting as diffusors, we can control the size of this region electronically, and
thereby we can actively regulate local aggregation. The extent of local aggregation
determines the extent of collective computation. Cell syncytia can regulate the extent
of local aggregation as well. The retina exploits this ability to trade off signal-to-noise
ratio for bandwidth.

In Chapter 7, I show how we can model excitatory and inhibitory chemical
synapses with single transistors. Together with the single-transistor model of gap
junctions, I use these neural analogs to morph the neurocircuitry in the outer retina
into silicon. The result is a CMOS circuit that models bandpass spatiotemporal fil-
tering in the outer retina—at the same level of abstraction as the linear electrical
circuit model that we studied in Chapter 4. In contrast to the linear physical model
in Chapter 4, the CMOS circuit includes a local gain-control mechanism. This non-
linear mechanism models the effect of shunting inhibition from the horizontal cells to
the cones.

Unlike the abstract theoretical circuit model, the actual parameters of nominally
identical circuit elements on the chip vary from location to location, due to the va-
garies of the fabrication process. Consequently, building the model in silicon helps
us to understand the effects of structural peturbations and quantum fluctuations on
performance, as well as the effects of local gain control on bandpass filtering. It
also forces us to address structural constraints, such as the energy and area costs of
communication versus computation, which I discussed briefly in the first part of this
thesis (Chapter 4).

I analyze the performance tradeoffs that must be made to get spatiotemporal
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bandpass filtering and local gain control to coexist in this minimal circuit design.
In particular, the high loop gain required to attenuate low-frequency temporal and
spatial signals in a negative-feedback circuit results in temporal instability. And con-
trolling the gain by modulating the intercone coupling conductance in proportion to
the local intensity causes the receptive field to expand alarmingly. These shortcom-
ings of the simple circuit model of the outer retina that I built forced me to review
the retina literature in search of mechanisms that decouple spatiotemporal filtering
and local gain control. I found that autofeedback in horizontal cells could provide an
elegant solution to this dilemma.

To transmit the graded signals produced by the outer plexiform circuit, I follow
the retinal model and develop an adaptive spiking neuron circuit in Chapter 8.

To impement spike frequency adaptation and membrane time-constant adapta-
tion, I introduce three simple circuit elements that model the biophysics of voltage-
and calcium-dependent potassium channels. A diode-capacitor integrator models the
accumulation and buffering of intracellular calcium. Capacitive coupling between the
membrane-voltage node and the calcium-integration node models the fast voltage de-
pendence of the potassium channels. A single transistor, with its gate tied to the
calcium-integration node, models the potassium-channel population.

I analyze the effects of these mechanisms, with emphasis on spike timing, and
compare my theoretical predictions with experimental measurements. I characterize
spike-timing precision by measuring how much time the neuron takes to respond
to a step change in its input by firing a spike. I measure the distribution of these
firing times over several trials, and define the latency as the position of the peak in
the distribution and the synchronicity as the height of the peak, normalized by the
height of the uniform distribution. For the same average steady-state firing rate, the
calcium dependence and the voltage dependence of the potassium channels improved
the adaptive neuron’s latency and synchroncity, compared with a simple integrate-
and-fire model.

These results call into question several common notions about how neurons encode

information. Neurobiologists generally believe that the mean firing rate is a valid
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measure of the eflicacy of a neuron in producing a response in its target. Furthermore,
if the target neuron listens to several neurons, they obtain the net effect by summing
their mean firing rates. For such linear summation to be valid, the postsynaptic
neuron must smooth out fluctuations in firing rates, or the presynaptic neurons must
fire at uniform rates and in an uncorrelated fashion. My measurements invalidate
both assumptions, and are in agreement with more recent physiological studies [3].

Neurons are exquisitely sensitive to small changes in their input, and can generate
a spike in response to these changes in less than 1 millisecond. Consequently, instead
of smoothing out variations in their inputs, they amplify these variations. Second,
the latencies are much shorter than the interspike interval, and so the instantaneous
firing rate that the target neuron observes when several spike trains converge in its
dendritic tree may be much higher than you would expect from simply summing the
individual rates. Neurons can use this synchronicity to amplifiy their firing rates. We
overlook this mechanism completely when we use mean firing rates and ignore spike
timing.

In the final chapter, I describe a retinomorphic vision chip that uses neurobio-
logical principles to perform all four major operations found in biological retinae:
continuous sensing for detection; local automatic gain control for amplification; spa-
tiotemporal bandpass filtering for preprocessing; and adaptive sampling for quanti-
zation. All four operations are performed right on the focal plane, at the pixel level.

The first—and only—attempt to integrate these four operations was made by Ma-
howald. The pixel that she designed, which is described in her monograph [4], used
continuous sensing for detection, logarithmic compression for amplification, temporal
highpass filtering for preprocessing, and a simple integrate-and-fire neuron for quanti-
zation. My work improves on, and extends, Mahowald’s pioneering research in three

ways:

1. By using local gain control for amplification, I extend the dynamic range without
sacrificing sensitivity; logarithmic compression, in contrast, trades sensitivity for

dynamic range.
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2. By using a spatiotemporal bandpass for preprocessing, I cut out wideband spa-
tial and temporal noise; highpass filtering, in contrast, amplifies high-frequency

signals with poor signal-to-noise ratios.

3. By using an adaptive neuron for quantization, I increase the sampling rate—
and reduce the latency—without increasing the average firing rate; a simple
integrate-and-fire neuron, in contrast, must maintain a high steady-state firing

rate to sample high-frequency signals.

Like Mahowald’s chip, my retinomorphic chip includes a random-access time-
division multiplexed communication channel that reads out asynchronous pulse trains
from a 64- x 64-pixel array in the imager chip. The communication channel transmits
these spike trains to corresponding locations on a second chip that has a 64 x 64
array of integrators. Both chips are fully functional. This VLSI chip embodies four
principles of retinal operation.

First, the imager adapts its gain locally to extend its input dynamic range without
decreasing its sensitivity and without increasing its output dynamic range. The gain
is set to be inversely proportional to the local intensity, discounting gradual changes in
intensity and producing an output that is proportional to contrast. This adaptation
is effective because lighting intensity varies by six decades from high noon to twilight,
whereas contrast varies by at most a factor of 20 [6].

Second, the imager bandpass filters the spatiotemporal visual signal to attenu-
ate low-frequency spatial and temporal signals, and to reject wideband noise. The
increase in gain with frequency, for frequencies below the peak, matches the 1/f2
decrease in power with frequency for natural image spectra, resulting in a flat output
power spectrum. This filtering improves information coding efficiency by reducing
correlations between neighboring samples in space and time. It also results in a uni-
modal distribution of pixel amplitudes which is centered on the middle of the output
range, and typically decays exponentially in either direction.

Third, the imager adapts its sampling rate locally to minimize redundant sampling

of low-frequency temporal signals. In the face of limited communication resources
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and energy, this sampling-rate adaptation has the additional benefit of freeing up the
bandwidth of the communication channel, which is dynamically reallocated to active
pixels, allowing higher peak sampling rates and shorter latencies to be achieved.

Fourth, the imager adapts its step size locally to trade resolution at high con-
trast levels, which rarely occur, for resolution at low contrast levels, which are much
more common. The proportional step size in the adaptive neuron, which results in
a logarithmic transfer function, matches an exponentially decaying amplitude prob-
ability density, making all quantization intervals equiprobable. Hence, it maximizes
the expected number of signals that can be discriminated, given their probability of
occurrence.

For independent samples, information is linearly proportional to bandwidth, and
is logarithmically proportional to the signal-to-noise ratio [8]. We increase bandwidth
by making the receptors smaller and faster, so that they can sample more frequently in
space and time. As an unavoidable consequence, they integrate over a smaller volume
of space-time, and therefore the signal-to-noise ratio degrades. There is therefore a
reciprocal relationship between bandwidth and noise power (variance) [9]. Since their
goal is to maximize information, biological sensory systems aggressively trade off
signal-to-noise ratio for bandwidth, operating at ratios close to unity [10, 9].

With this optimization principle in mind, I developed compact circuit designs
that realize local AGC, bandpass filtering, and adaptive quantization at the pixel
level. The overriding design constraints are to whiten the signal, thus making samples
independent; to minimize the pixel size, and capacitance, thus making sampling more
dense and more rapid; and to minimize power consumption, thus making it possible to
acheive very large-scale integration. Hence, all circuits use minimal-area devices and
operate in subthreshold, where the transconductance per unit current is maximum.
My work demonstrates that extremely efficient and robust information processing

systems may be realized by modeling the structure and function of neural systems.
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Chapter 2 Retinal Structure: Parallel

Pathways

The retina is an exquisitely evolved piece of biological wetware. It contains about
100 million photoreceptors. Its output—a million or so axonal fibers that make up
the optic nerve—conveys visual information to the rest of the nervous system using
an all-or-none pulse code.

The human retina—as well as other vertebrate retinae—is sensitive to light inten-
sities ranging from dim starlight to direct sunlight: a dynamic range of at least 10
decades.! This range is parceled out between the rods and the cones. Rods operate
in dim light and can sense the absorption of a single photon, but they saturate at a
100 photons per integration time [12, 13]. Cones are 70 times less sensitive than are
rods, so their range extends almost 2 decades higher [14].

To deal with the remaining 6 decades, the cones shift their 2-decade output sensi-
tivity range to match the input intensity. This remarkable ability to adapt to changes
in intensity larger than those handled by any other known sensory system is mediated
by a variety of gain-control mechanisms, ranging from adaptation by the photorecep-
tors themselves over 4 or 5 decades to adaptation at the neuronal-network level (for
reviews, see [15, 16, 17]), that operate over disparate time scales, ranging from less
than a second to several minutes.

Separate channels have evolved to handle rod and cone vision, since these photore-
ceptors operate under such drastically different conditions and have vastly different
requirements. The lower limit of light sensitivity is set by the dark light level: the
signal produced by spontaneous isomerizations of the rhodopsin molecule that medi-

ates the phototransduction process. These spurious events produce responses in the

!The energy-flux density at the earth’s surface for a dark night sky—the lower limit of scotopic
vision—is about 10714W/ cm®. At high noon—the upper limit of photopic vision—it is set by the
2
solar constant of 0.14W /cm”.
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rod that are identical to a photon response at a rate of one every 160 seconds [13]—
equivalent to a light flux of 0.003 photons per integration time per rod. By pooling
signals to detect the coincident absorption of several photons in nearby rods, the
retina achieves subthreshold sensitivity, or hypersensitivity. Thus, it is able to de-
tect the concurrent absorption of 10 photons in a pool of 5000 rods reliably [18]—a
light flux of only 0.002 photons per integration time per rod!

Cones, on the other hand, operate with flux levels of kilophotons per integration
time per receptor, so there is no need for the retina to sacrifice spatial acuity for
detectability by pooling the cone signals. The threshold of the cone is set by quantum
fluctuations in the photon flux, or shot noise: the change in mean light level must
be large enough to exceed these fluctuations. Under ideal conditions, humans can
detect an 0.5-percent change in mean intensity [19]. The absence of pooling in the
cones also explains why the highest spatial acuity is acheived for cones. Humans
can resolve 1 arc minute (1/60 degree) at the fovea, a small specialized region in the
center of the retina where the cones are extremely small and are packed densely—rods
are completely excluded from this region. |

Needless to say, the vertebrate retina has evolved elaborate network-control mech-
anisms to fine tune the degree of pooling and the integration time, and to share
elements between the rod and cone systems [20].

Our eyes and our brains are also sensitive to temporal changes in the image.
The integration time of the primate visual system—which limits the temporal acuity
of perception—is on the order of 0.1 second [21]. Thus, images flashed at rates of
50 frames per second or higher appear stable—the basis for our perceiving movies
and television as changing smoothly. Yet we can discriminate differences in timing
of much less than 0.1 second, because the retina displays temporal hyperacuity.
Psychophysicists have shown that humans can discriminate reliably the order of onset
of two small lines at the 3- to 5-msec level [22, 23]—20 to 30 times shorter than the
integration time! Temporal hyperacuity is acheived only if the spatial separation
between the two lines is in the range of 2 to 6 minutes. The lower spatial acuity

achieved for this task reveals the presence of another channel-—other than the one
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that subserves spatial acuity—specialized for temporal resolution.

The presence of two channels specialized for temporal and spatial resolution has
been confirmed both physiologically and anatomically [24, 25, 26]. Specialization is
necessary due to physical laws which dictate that the retina—and any sensory system,
for that matter—must integrate over a fixed volume of space—time to achieve a certain
signal-to-noise level. When second- and third-order neurons pool receptor signals
over a large area, they average out quantum fluctuations and can operate with a
shorter integration time without sacrificing contrast sensitivity. 2 This specialization
is carried still further in the retina; the signal space is also divided up along the
spectral dimension.

Our eyes are sensitive to the wavelength of light, due to the presence of three
different types of cone pigments, with peak absorbances at 420 nm (appears violet),
530 nm (appears yellowish green), and 560 nm (yellow). In comparison, rods are tuned
to 500 nm (blue-green). These three cone types give us the ability to discriminate
wavelengths ranging from 400 nm (violet) to 670 nm (red). In vertebrates, signals
from these three cones—incorrectly called blue (instead of violet), green (instead
of yellowish green), and red (instead of yellow)—are transmitted by two channels
that carry R — G (red minus green) and B — (R + G) (blue minus yellow). This
transformation produces a more efficient encoding since the R and G signals are
similar, and hence are largely redundant: their difference is close to 0 over most of
the retina, and their sum can be sampled less frequently.

All this specialization makes for a total of five specialized channels: one milliphoton-
sensitivity channel for night vision, one minute-acuity channel for luminance, one
millisecond-acuity channel for motion, and two nanometer-acuity channels for chromi-
nance. In addition, there are several other more specialized pathways. Among other
functions, they mediate our closed-loop optokinetic response reflex, which minimizes
image slippage on the retina; our pupillary response, which regulates the amount
of light entering the eye; our lens accommodation, which focuses the image on the

retina; the gain of our open-loop vestibular-occular reflex, which moves the eyes to

It makes no difference whether the quanta are photons, vesicles, or ion channels.
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compensate for head movements; and the rate of our biological clocks, to keep them
in phase with the day—night cycle.

Complicating matters even more, activity in each channel is encoded with two
complementary streams: one that signals increases in amplitude by increasing the
amount of neurotransmitter released and the spike-discharge rate (ON pathway),
and another that signals decreases in amplitude in a similar fashion (OFF path-
way). Thus, both polarities of change are signaled by high neurotransmitter-release
rates and high spike-discharge rates, but there is little or no activity in steady state.
Complementary signaling is used throughout the retina, except for at the very first
synapses—found in the rod and cone terminals. These sites are the only places where
the retina maintains elevated neurotransmitter-release rates to signal both increases
and decreases using a single stream.

Complementary signaling using the ON and OFF pathways compensates for the
inherent shortcomings of neural systems in three ways: (1) noise due to fluctuations
in vesicular neurotransmitter-release rates and spike rates decreases in inverse pro-
portion to the square root of the number of vesicles or spikes used to signal; (2) slow
repolarization of the synaptic membrane and removal of neurotransmitter from the
synaptic cleft does not limit transmission speed; and (3) the energy required to re-
plenish neurotransmitter supplies or to generate a spike is conserved in steady state,
when nothing is happening.

The existence of all these dedicated channels and complementary signaling makes
the retina a complex, multifaceted structure. In this review, I emphasis those facets of
the retina that shed light on how spatiotemporal signals are processed and how motion
is encoded. Retinal neurons are sensitive to spatiotemporal changes, in general, and
to the speed and the direction of motion, in particular. Nature has evolved several
different forms of eyes (e.g., compound versus camera eyes); I limit my discussion
to the literature for vertebrate eyes. Given the vagaries of experimental work and
history, the majority of the relevant work has been carried out in a few species—in
particular, in the tiger salamander, mudpuppy, catfish, skate, rabbit, and cat.

I begin this review by summarizing several salient points concerning retinal neu-
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roanatomy.

2.1 Cell Classes

Synaptic interactions in the vertebrate retina occur within two plexuses.® The more
peripheral one is called the outer plexiform layer (OPL), and the more central
one is called the inner plexiform layer (IPL). The neurons that interact in these
plexuses fall into two distinct groups: relay neurons and interneurons. A relay neu-
ron receives input in one plexus and delivers its output to another. An interneuron
remains entirely within a single plexus. The input and output neurons of the retina
are specialized relay neurons that sense incident light and that send signals to the
rest of the brain, respectively.

There is one class of interneuron for each plexiform layer in the retina, and there
are three classes of relay neurons to feed signals from the input to the OPL, from
the OPL to the IPL, and from the IPL to the rest of the brain. That makes five
topologically defined cell classes.? However, this feedforward cascade is interrupted
by the presence of a sixth class of cells; these cells pick up signals in the IPL, and
transmit these signals back to the OPL.

These six cell classes form a highly regular and densely connected topological
network, as shown in the vertical cross-section through the human retina in Figure 2.1.

The names and roles of the cell classes follow:

e Photoreceptors are the input neurons; they transduce incident light into elec-
trical signals that drive the OPL. In almost all vertebrates, they come in two
functionally and morphologically distinct types, called rods and cones due to
their shape. Their cell bodies lie in the outer nuclear layer (ONL), above the

OPL.

3The Latin plezus means braid; it is used to describe a complexly interconnected arrangement of
parts.

My convention is to use class to refer categories that are based on topology, and to use type to
refer to subcategories that are based on morphology, neurochemistry, or physiology.
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Figure 2.1: VERTICAL SECTION THROUGH THE HUMAN RETINA

The retina is a thin sheet of brain tissue, less than 0.5mm thick, that lines the inside
of the orb of the eye. The photoreceptors sit against the eyewall, and light must
travel upward, through the entire thickness of the retina, to strike them. Visual
information flows downward, passing through at least three different cell types. This
gross anatomy is preserved in all vertebrate retinae. In the region shown—which is
about 1.25mm away from the center of the fovea—the cone, rod, and ganglion cell
densisties are 15,000mm™2, 75,000mm~2, and 40,000mm ™2, respectively. Reproduced
from [27].
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e Horizontal cells are the interneurons in the OPL; they play an inhibitory
role. Their cell bodies lie in the inner nuclear layer (INL), just beneath the
OPL. In cold-blooded vertebrates, such as the turtle and the carp, there are
three different types with different color selectivities, but such is not the case in
primates. Primates have only two horizontal-cell types with no color selectivity

whatsoever.

e Bipolar cells are the relay neurons between the OPL and the IPL. Their cell
bodies lie in the middle of the INL; a single dendritic shaft emerges on the OPL
side, and an axonal one emerges on the IPL side, giving them a distinct bipolar

structure.

e Amacrine cells are the interneurons in the IPL. Amacrine cells are generally
believed to be inhibitory, but one type has been shown to use two types of
neurotransmitter, one excitatory and the other inhibitory [28]. Amacrine cells
are found in the INL, just above the IPL, and in the ganglion cell layer
(GCL), just below the IPL.

e Interplexiform cells form a second class of relay neurons that provide a feed-
back path from the IPL to the OPL. These cells are found among the amacrine
cells in the INL; indeed, certain authors consider them a subgroup of amacrine
cells. They modulate synaptic interactions in the OPL and IPL (for reviews,
see [29, 30]), and thereby reorganize the retinal microcircuitry to optimize per-
formance in sunlight, moonlight, and starlight [20]. I will not consider them

further.

e Retinal ganglion cells are the sole output channel for the retina. In primates,
about 1 million ganglion-cell axons make up the optic nerve that projects to the
brain proper. These cells communicate by sending trains of impulses down their
axons. In contrast, the majority of other retinal neurons signal using graded

changes in the membrane potential, rather than all-or-none pulses.



Figure 2.2: SCHEMATIC DIAGRAM OF A TYPICAL VERTEBRATE RETINA
The photoreceptor terminals are enlarged to show the details of the invaginations. The
retina can be described to first order as a three-layer, feedforward neural network, with
the first level of interconnections making up the outer plexiform layer (OPL), and the

second level of connections making up the inner plexiform layer (IPL). Reproduced
from [31].

2.2 The Outer Plexiform Layer

Two morphological types of horizontal cells—the interneurons of the OPL—are
readily distinguished in all vertebrate retinae: one has a short axon and spatially
segregated dendritic and axonal fields, whereas the other is axonless. In humans
and our warm-blooded relatives, the short-axon cells occur in just one variety, la-
beled HI in Figure 2.2, and their axons branch heavily and contact rods, exclusively,
whereas their dendrites branch heavily and contact cones, exclusively [32]. The axon
connecting these two fields is so long and thin that the fields do not interact elec-

trically [33]. The dendritic field of the axonless cell, labeled HIT in Figure 2.2, also
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contacts cones exclusively. In cold-blooded vertebrates, such as fish, the short-axon
cells occur in three varieties, called H1, H2, and H3 [34], that make selective contact
with cones [35]. Unlike the primate cells, these cells show color-selective physiological
responses [36], and their axons dive down through the INL and terminate among the
amacrine cells at the INL-IPL border [34]. Another difference is that the axonless
cells of cold-blooded species contact only rods [37].

At least five morphological types of bipolar cells occur in the vertebrate retina, if
we do not distinguish the color selectivity of the cones that they contact. The most
prominent distinguishing feature of bipolar cells is the sizes of their dendritic or axonal
fields. There are two distinct clusters: cells with large dendritic and axonal fields,
called diffuse, and cells with small fields, called midgets [38, 31]. If we take into
account whether they contact rods or cones, we find that there is class of large-field
cells that contacts only rods [37]. Now, paying close attention to the type of contacts
made with receptors, we find that some bipolars enter an invagination in the rod and
cone terminals, whereas others make contact at the base of the terminal [39, 32]. An
example of each type is shown in Figure 2.2. Note that basal contacts never occur
on rods; thus, rods have only one type of bipolar (diffuse and invaginating), whereas
cones have four types (midget or diffuse, and flat or invaginating).

Horizontal cells also enter the invaginations in the rod and cone terminals, forming
a synaptic complex called a triad [32]. Bipolars terminals are always the central
element in the triad, with a horizontal-cell process on either side, for a total of three
postsynaptic processes. The horizontal-cell processes reach deeper into the cone in-
vaginations and sometimes block the bipolar terminal. On top of the invagination,
there is a flattened oblong structure, called a ribbon, surrounded by small round
pellets that contain neurotransmitter, called vesicles. This arrangement is called
a ribbon synapse and is always associated with the triad (see Figure 2.2). The
exact function of this synaptic specialization is still a mystery; the ribbon could fa-
cilitate vesicular transport [40] and the invagination might influence the diffusion of
neurotransmitter, shaping the concentration profile and controlling the amount of

neurotransmitter that reaches the elements of the triad and the basal synapses [41].
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The inhibitory action of horizontal cells on cones probably occurs in these invagina-
tions.

In addition to triad synapses and basal junctions, a third type of synaptic structure
occurs in the OPL [42]. This structure, which passes ionic currents, is called a gap
junction, or sometimes an electrical synapse, and can be thought of as a low-
resistance pathway connecting the two cells. There is an extensive network of gap
Junctions between all four classes of cells in the OPL: cone to cone, rod to rod,
horizontal to horizontal, and bipolar to bipolar (see [43] for a review). In addition,
there are gap junctions between rods and cones (see Figure 2.2).

These synaptic interactions in the OPL gives rise to the antagonistic center-
surround receptive-field organization first observed by Kuffler in the early fifties,
when he recorded spike trains from retinal ganglion cells of the cat [44]. About 1
decade later, Rodieck demonstrated quantitatively that the spatial profiles of the
center and surround components of the receptive field are well fitted by Gaussians,
and he proposed the highly influential difference of Gaussians (DOG) model of
spatial filtering in the retina [45].

2.3 The Inner Plexiform Layer

The IPL is over five times thicker than the OPL (see Figure 2.1), and its anatomy
and physiology are much less well understood. A plethora of amacrine cell types—the
interneurons of the IPL—has been described. So far, 29 types have been identified
in the turtle [46, 47], and several dozen have been found in the roach [48, 49]; re-
searchers estimate that there are over 40 types in the mammalian retina [50]. But
the purpose of all this diversity remains a mystery, since it is not reflected in the
responses that electrophysiologists have recorded from the amacrine cells [46]. Either
the physiologists are using stimuli that are too simplistic to discriminate among the
morphologically defined amacrine-cell classes, or the anatomists are assigning undue
significance to morphological differences that are of little or no consequence. The

same situation holds for ganglion cells [51, 52, 53]. There is no doubt, however, that
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amacrine cells play a critical role in detecting the speed and direction of motion, since
antagonists of known amacrine-cell neurotransmitters abolish direction selectivity and
other complex properties of rabbit ganglion cells [54].

Over the past decade, however, researchers using immunohistological markers and
improved intracellular recording techiniques have begun to demonstrate a bewildering
diversity in functional properties that is correlated with the structural diversity. These
findings have forced neurobiologists to reaccess the century-old work of Ramén y
Cajal, the preemminent neuroanatomist of his time. Cajal advocated a five-tiered
stratification of the IPL—a structural abstraction that has stood the test of time [37].
Each sublayer is demarcated by levels of dendritic arborization. Cajal referred to these
levels as simply the first through fifth strata, starting at the most peripheral one;
they are denoted S1 through S5. Strata are prominent in birds and reptiles, but are
difficult to distinguish in fishes and mammals [37, 55], because the latter’s amacrine
cells have more diffuse arborizations. For this reason, anatomists sometimes simply
divide the IPL into five sublayers of equal thickness [56].

Functional correlates underlying the stratification of the IPL have been found
recently [49]. Monostratified amacrine cells ramifying exclusively in S1 have sus-
tained OFF responses; that is, lightoff elicits an increase in membrane potential that
is maintained for the duration of the stimulus. Similarly, amacrines with arboriza-
tions in S4 and S5 have sustained ON responses. Amacrines with small, bistratified,
tristratified, or diffuse dendritic fields spanning S2, S3, and S4 have slow-decaying
transient ON-OFF responses; that is, both lightoff and lighton initially elicit an
increase in membrane potential. Monostratified amacrine cells with large dendritic
fields in S2 and S3, most often located close to the S2-S3 border, have fast-decaying,
transient ON-OFF responses; the wide-field amacrine cell shown in Figure 2.2 is an
example of this type.

Although this elegant organization of structure and function in the IPL—which
was first described in fishes—has yet to be demonstrated in mammals, it has been
shown that cat ganglion cells with processes confined to S1 and S2 have OFF center

responses, whereas those with processes confined to S3, S4, and S5 have ON center
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responses [57, 58]; the same is true in fish [59]. This observation is the basis for
coarser subdivision of the IPL into just two sublaminae, originally named a and b,
but now commonly called the OFF sublamina and the ON sublamina, respectively.

Cone and rod bipolar cells fit neatly into this picture, as shown in Figure 2.2.
Bipolars that make invaginating contacts with cones terminate in S3 and S4 (ON
sublamina), whereas those making flat contacts with cones terminate in S1 and S2
(OFF sublamina) [31]. Rod bipolars, which are of only the invaginating kind, termi-
nate in the ON sublamina, but their processes, which are found in S5, are segregated
from those of the invaginating cone bipolars, which are in S3 and S4. Since cones
and rods both have an OFF light response, the difference in bipolar cell response
polarities implies that the basal and invaginating synaptic contacts act differently.

Both photoreceptors use glutamate, a neurotransmitter that opens sodium chan-
nels, causing current to flow into the postsynaptic cell, and thus depolarizing the
cell. However, glutamate can also act through a second messenger pathway that
closes sodium channels, reducing the current flowing into the postsynaptic cell, and
thus hyperpolarizing the cell. The photoreceptors release glutamate when they are
depolarized (lightoff), so the former synaptic action is sign preserving (excitatory),
and the latter action is sign reversing (inhibitory). The net effect is sodium channels
are opened at the invaginating contacts when light increases (ON pathway) and are
opened at basal contacts when light decreases (OFF pathway). With a few exceptions
(see [60]), this correlation between structure and function is generally true.

Complementary signaling arises in the rod pathway at the IPL, where a narrow-
field, bistratified amacrine cell, labeled AII in Figure 2.2, relays the rod signal to the
same set of ganglion cells that carry cone signals. Rod bipolars make contact with AII
in S5. AIl makes a gap junction onto cone bipolar terminals in the ON sublamina,
and makes an inhibitory synapse directly onto ganglion cells in the OFF sublamina.
This microcircuit has been identified in the cat [61, 62] and the rabbit [63].

Bipolar cells form a synaptic complex in the IPL that is similar to the triad
formed by rods and cones, except that there is no invagination present and only two

postsynaptic processes occur; hence, it is called a dyad [64]. At least one of the
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processes always belongs to an amacrine cell; the other may arise from an amacrine
cell or a ganglion cell. Usually, one of the postsynaptic processes makes a synapse
back onto the bipolar process in close vicinity to the dyad; this process invariably
belongs to an amacrine cell [62]. That way, the amacrine cell can inhibit the bipolar-
cell terminal, and can terminate the release of neurotransmitter. This presynaptic
inhibition results in a transient response in the postsynaptic cells, although the
bipolar cell receives sustained inputs in the OPL [65, 66].

Another common synaptic structure consists of a chain of two or three conventional
synapses, called serial synapses [67]. The first synapse is made by an amacrine
cell onto another amacrine-cell process, which in turn makes a second synapse onto
a nearby ganglion-cell dendrite, onto a bipolar-cell terminal, or onto yet another
amacrine-cell process. This arrangement could achieve a net excitatory effect in the

third-order cell via two inhibitory synapses.

2.4 Types of Ganglion Cells

The existence of several classes of ganglion cells gives rise to parallel visual path-
ways [68]. These pathways originate in the OPL, starting with the five types of
bipolar cells. The processes of these bipolars segregate into five strata in the IPL,
and they drive five types of ganglion cells; the processes of these ganglion cells cos-
tratify with the bipolar arborizations. The five types of ganglion cells are called: ON-
and OFF-center midgets, ON- and OFF-center parasols, and rod-system ganglion
cells. Needless to say, midget ganglion cells talk to midget bipolars in S1 and S4;
parasol ganglion cells talk to diffuse bipolars in S2 and S3; and rod ganglion cells
talk to rod bipolars in S5 (Figure 2.2). The stylized circuit diagram in Figure 2.3
shows the major synaptic interactions involved in these pathways.

Several different classifications of ganglion cells are in common usage. There is the
beta (f), alpha (o), gamma () classification [25] preferred by retinal anatomists;
it is based on the cell morphology. Thus, (-cells have medium-sized cell bodies

and small dendritic trees, and are synonymous with the aforementioned midgets; -
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Figure 2.3: SIMPLIFIED CIRCUIT DIAGRAM OF THE RETINA

Three modules subserving motion («), spatial color vision (), and nocturnal vision
() are shown. The dark-shaded cells are turned off by light (OFF stream), whereas
the unshaded cells are turned on by light (ON stream). The light-shaded cells turn on
transiently at both lighton and lightoff. The rods and cones (R/C) are turned off by
light; they make an inhibitory synapse onto ON bipolar cells (BC), and an excitatory
synapse onto OFF bipolars in the outer plexiform layer (OPL). The horizontal cells
(HC) are excited by the receptors, and inhibit the receptors and the OFF bipolars.
Rods are coupled by electrical junctions, and cones are coupled as well; there are
also gap junctions between rods and cones. The inner plexiform layer (IPL) has
five sublayers (S1-S5). S1 and S4 serve the OFF and ON streams of the /3 circuit,
respectively; S2 and S3 serve the OFF and ON streams of the « circuit, respectively;
and S5 serves the rod circuit that has only an ON stream. Rod signals are carried by
the v ganglion cells and are also relayed to the 3 (and «) circuit(s) by a bistratified
amacrine cell (type AII) that makes an inhibitory synapse onto the OFF ganglion cell
in S1 and a gap junction onto the ON bipolar terminal in S4. The rod bipolar excites
another set of amacrine cells (types A13 and A17) that makes inhibitory reciprocal
synapses back onto it. The § ganglion cells are driven mainly by bipolars, whereas the
as are driven mainly by amacrines. There are complex interactions with amacrines
in the « circuit: The bipolars excite both wide-field (type A19) and narrow-field
amacrines (type A2-A3). These amacrine cells make reciprocal synapses onto the
bipolars and also feed forward onto the ganglion cells. In addition, the narrow-field
amacrine cell inhibits the wide-field cell.
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cells have huge cell bodies and large dendritic trees, and are synonymous with the
aforementioned parasols; and 7y-cells generally have tiny cell bodies and large dendritic
trees, and form a functionally heterogenous group that includes the aforementioned
rod ganglion cell. The 1 percent of cat ganglion cells that are direction selective fall
into this category [52].

There is also the magno—parvo classification favored by cortical primate physi-
ologists and anatomists [26]; it is based on the morphology of the target cells in the
lateral geniculate nucleus (LGN), where most ganglion-cell axons terminate:® Cell
bodies in the LGN are arranged in six layers, called laminae. Four of these laminae
contain small cell bodies, and the remaining two contain large cell bodies—hence,
the magnocellular-parvocellular terminology. Naturally, the « cells terminate in the
magnocellular layer, whereas the 4 cells terminate in the parvocellular layer. The ~y
cells are not included in this classification, since they generally project to the supe-
rior colliculus and to the brainstem. The magno—parvo pathways primarily apply to
the primate visual system, where they have been traced from the retina deep into
cortex [69].

There is yet another classification—X, Y, W—favored by retinal physiologists,
and originally elaborated in the cat [24, 70]. This scheme is based on whether a
cell responds to spatiotemporal patterns linearly (X) or nonlinearly (Y). To test for
linearity, Enroth-Cugell and Robson used an odd symmetric pattern and modulated
the luminance of one half with a square wave and the luminance of the other half
with the inverse of the square wave [24]. Thus, while the luminance in one half
increased, the luminace in the other half decreased at the same rate, keeping the
total luminance constant. They demonstrated that some cells did not respond at
all when this stimulus was centered perfectly on the receptive field, showing a null
response, whereas others responded strongly to each transition in the square wave,
showing frequency doubling. They named these cell types X and Y, respectively.

Obviously, this linearity test is generally applicable to only those cells with circularly

5The LGN is part of the thalamus, a region in the forebrain that serves as a relay station for
sensory information bound for cortex.
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symmetric receptive fields—hence, the need for a third category (W) to account for
the nonconcentric cells.

It later became clear that the X and Y classes, as defined by the linearity test,
are not homogeneous [71]. Each category has at least two subgroups characterized by
significant differences in axonal conduction velocities. This subspecialization is taken
into account by the brisk (high- or medium-velocity) and sluggish (low-velocity)
classification proposed later by Cleland and Levick [51]. All brisk Y cells have high
conduction velocity, and all brisk X cells have medium conduction velocity, and all
W cells—defined here to be synonymous with the nonconcentric units—have low
conduction velocity [71]. Since conduction velocity is correlated with cell-body size,
it was not surprising to find that brisk Y cells are synonymous with « cells, and that
brisk X cells are synonymous with § cells, whereas sluggish X, sluggish Y, and W
cells fall in to the heterogeneuos v class [53, 51].

All three classifications were developed in mammals (mainly the cat and the mon-
key) and have not been applied successfully to lower species (e.g., the mudpuppy,
salamander, and the frog), since little is known about central structures in these
species and their ganglion cells show much richer specializations [72].

Of course, these classification schemes are nonexclusive; actually, they are redun-
dant. In other words, looking at the same cell, an anatomist will identify it as a 3 cell,
a cortex expert will say it is in the parvo pathway, and a retinal physiologist will find
that it shows X-type behavior. However, the geniculate-based classification is limited
to cells that project there, and hence it can account only for the retinally-labeled o
and § cells, which are the predominant input (but see [68, 73]). And the physiological
classifications are notorious for lumping different cell types into the same group, be-
cause tests for linearity, ON-OFF behavior, or sustained-transient behavior, alone,
are too simplistic to discriminate the cells’ specializations. For these reasons, I shall
use the o, (3, v classification in this dissertation, except where history precludes my
doing so.

Physiologically, § cells always respond steadily and have small receptive fields,

whereas « cells always respond more transiently and have larger receptive fields.
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There is a continuum of receptive-field sizes and temporal characteristics within each
class, ranging from small and sustained in the fovea to large and transient in the
periphery [51]. Nevertheless, « cells are always two to three times larger and respond
more transiently than § cells at the same eccentricity [51]. The anatomy of these
cells is well correlated with the physiology. In one study where ON cells in the area
centralis of the cat retina were reconstructed from electron-microscope pictures, 3 cells
received 72 percent of their inputs from bipolar cells [74], whereas « cells received
85 percent of their inputs from amacrine cells [75]. This distribution fits well with
the notion that bipolar cells have a sustained response, whereas amacrine cells are
responsible for generating a transient response. Another study looked at OFF cells
from the periphery of the cat retina, and found that 3 cells received 38 percent of their
synapses from bipolar cells, whereas o cells received only 20 percent of their synapses
from bipolar cells [76]. Again, the cell with the more sustained response receives more
bipolar input, although these peripherally located cells are predominantly amacrine
driven. The dendritic-field sizes of these ganglion cells are also well correlated with
the receptive-field sizes.

In terms of actual numbers and sampling densities, there are about 150,000
to 200,000 ganglion cells in the cat retina [77], versus 1.5 to 1.8 million in the
macaque [78]. The « and § cells constitute 50 percent of the cat cells and 90 percent
of the monkey cells, and there is about a 9:1 ratio of 3 cells to « cells in both cases.
The sparsity of o cells reflects that nine times fewer « cells are required to tile the
retina, since the o dendritic fields are three times larger [68], compared to the 3 cells.
The remaining 50 percent of the cells in the cat, and the remaining 10 percent of
the cells in the macaque (these percentages work out to the same absolute amount
of about 100,000 in each retina) fall into the heterogeneous v class. In both species,
3 cells project to the forebrain. In the cat, a cells project to the forebrain and the
midbrain—in particular, to the superior colliculus and the pretectum—whereas «
cells in the primate project to only the LGN [79, 68]. Finally, v cells, which carry
more specialized information (e.g., they encode the direction of motion) project pre-

dominantly to the midbrain [79].
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2.5 Summary

Even this extremely truncated and oversimplified review of retinal neurobiology makes
it abundantly clear that the retina is, indeed, much more complex than is any sensory
system currently built by engineers. The retina’s parallel dedicated channels make it
akin to several specialized cameras coexisting on the same chip. Even if we try to get
around this multifaceted character by focusing on just one of these cameras, we are
still bewildered because the elements of the cameras are richly interconnected, and
the same element may serve several purposes at the same time, or it may be coopted
by different cameras at different times.

This nonmodularity, which is a defining characteristic of the retina—and of the
rest of the brain—makes it extremely difficult for us to understand how the system
operates by using traditional reductionist approaches. It is the goal of this thesis to
provide a unifying framework that accounts for the following key aspects of retinal

organization, which are preserved across a large variety of species:

e The retina encodes several parallel information streams in its output that em-

phasize different aspects of a scene, such as color, edges, and movement.

e To a good first approximation, the retina in all vertebrate species can be de-
scribed as a locally connected feedforward neural network with three cellular
layers that are connected by two layers of processing: the outer plexiform layer

(OPL) and the inner plexiform layer (IPL).
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Chapter 3 Retinal Function: Information

Encoding

The retina converts continuous spatiotemporal patterns of incident light into spike
trains. Transmitted over the optic nerve, these discrete spikes are converted back into
continuous signals by dendritic integration of excitatory postsynaptic potentials in the
lateral geniculate nucleus of the thalamus. For human vision, contrast thresholds of
less than 1%, processing speeds of about 20 ms per stage, and temporal resolution in
the submillisecond range are achieved, with spike rates as low as a few hundred per
second. No more than 10 spikes, per input, are available during this time. The retina
must maximize the amount of information carried by these spikes.

For optimum performance, the retina must efficiently encode stimuli generated by
all kinds of events, over a large range of lighting conditions and stimulus velocities.

These events fall into three broad classes, listed in order of decreasing probability

of occurrence:

e Static events: Generate stable, long-lived stimuli; examples are buildings or

trees in the backdrop

e Punctuated events: Generate brief, short-lived stimuli; examples are a door

opening, a light turning on, or a saccade

e Dynamic events: Generate time-varying, ongoing stimuli; examples are a

wheel spinning, grass vibrating in the wind, or eyes panning the scene

In the absence of any preprocessing, the output activity mirrors the input directly.
Changes in lighting, which influence large areas, are reflected directly in the output of
every single pixel in the region affected. Static events, such as a stable background,

generate persistent activity in a large fraction of the output cells, which transmit
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the same information repeatedly. Punctuated events generate little activity and are
transmitted without any urgency. Dynamic events generate activity over areas far
out of proportion to informative features in the stimulus, when the stimulus sweeps
rapidly across a large region of the retina. Clearly, these output signals are highly
correlated, over time and space, resulting in a high degree of redundancy. Hence,
reporting the raw intensity values makes poor use of the limited throughput of the

optic nerve.

3.1 Optimal Filtering

Barlow observed over 30 years ago that it would be most efficient for the retina
to use the fewest spikes to transmit the most commmonly occuring patterns [80].
Since then, vision researchers have succeeded in formalizing this efficient-encoding
hypothesis, and have made quantitative predictions that are in good agreement with
selected experimental observations [81, 82, 83]. In this section, I adopt this formalism
and derive optimal filters for the retina, using results from communication theory.

First, I present abbreviated derivations of results that we shall need from infor-
mation theory. My main goals are to define terms and to point out the assumptions
that underpin these results, rather than to achieve mathematical rigor.

The amount of information transmitted by a communication channel is defined
as the amount by which that channel’s output, Y, reduces our uncertainity about its
input, X :

I(X;Y)= HX)- HX|Y),

where H(X) is the entropy of X and H(X|Y) is the entropy of X given Y[8]. The
quantity I(X;Y) defined above is also known as the mutual information between
X and Y. In the special case where the channel simply adds noise, NV, the information

transmitted is simply

[(X;Y)= HY) - HWN). (3.1)

The capacity of a channel is defined as the maximum rate at which that channel
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can transmit information. Equation 3.1 shows that the rate is maximized when the
entropy of the transmitted signal is maximized. If the transmitted signal is subject
to an average power constraint, P, then the ensemble with maximum entropy is the
Gaussian distribution with variance o2 = P + N, when the noise also is assumed to
be Gaussian, with variance N. If the signal is bandlimited to W, it can produce only
2W nonredundant symbols per second. This conclusion follows from Nyquist’s (and

Shannon’s) sampling theorem. And the information carried by each symbol is
1 1 1 P
Lsymp = 3 log,(2me(P + N)) — 5 log,(2meN) = 5 log, (1 + N) ;

as a Gaussian distribution with variance o2 has entropy log,(2meo?)/2. Hence, the

channel capacity is

P
— Wlog, (1
¢ °g2< +N>’

in bits per second (baud), a result that was first obtained by Shannon [8]. Notice that
the information rate is linearly proportional to the bandwidth, since every sample is
independent, but is only logarithmic in the signal-to-noise ratio (SNR), since it takes
only b bits to specify one of 2° possibilities.

We can extend this result easily to obtain the information transmitted through a
channel; given the expected power spectra of the transmitted signal and the noise.
We chop up the frequency spectrum into small bands, assign the right amount of
signal and noise power to each band, and assume that the amplitude distribution in

each band is Gaussian. This procedure yields

I= /OW log, (1 + f\;;((?)) df, (3.2)

where So(f) and Ny(f) are the expected power spectral densities of the signal and
the noise, respectively. In general, the frequency f is a vector in three-dimensional
space-time, (i.e., f = (fs, fy, ft)). For concreteness, we can think of f as spatial
frequency, without loss of generality.

I now address the efficient-encoding problem. Following a strategy similar to that
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Figure 3.1: OpTIMAL FILTER DESIGN

A filter cascade consisting of a noise-suppression filter, Fi(f), and a whitening filter,
F5(f), is used. The noise added by the input and output channels, and by the
intermediate channel between the filters, also is included in this model.

of Attick and Redlich [81], I design a filter cascade to transmit the photoreceptor
signal optimally; it consists of two filters, as shown in Figure 3.1.

The first filter’s job is to ensure that as much as possible of the channel capacity
is used by the signal, and that as little as possible is used by the input noise. To
acheive these goals, I amplify or attenuate each frequency band in accordance with
the SNR and with the absolute noise level in that band. The filter should attenuate
bands where the noise is larger than the signal; it is wasteful to transmit these bands
because the noise takes up most of the channel capacity. As information is logarithmic
in SNR, bands with vastly different SNRs contribute similar amounts of information—
as long as the SNR is greater than unity. So we should not pick the band with the
best SNR and reject the others, as we would do if we wanted to maximize the SNR.
Instead, we should amplify bands where the noise is smaller than the channel noise,
so as to preserve the SNR—but only if the SNR exceeds unity.

Once we have suppressed the noise, our next optimization is to redistribute the
energy of the signal across frequency bands to make the most efficient use of the
limited power of the transmitted signal. The second filter achieves this goal by trading
SNR for bandwidth. The large signals required to obtain a high SNR contribute
linearly to power, but contribute only logaritmically to information rate. Spreading
out the energy of the transmitted signal in frequency increases the information rate

linearly, because each frequency band provides independent information. Therefore,
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if it is about information that we care, we are better off transmitting signals that
have a low SNR but a high bandwidth.

By design, the whitening filter does not discriminate between signal and noise; it
transmits information about all its inputs equally well. The noise-suppresion filter
and the whitening filter exhibit an interesting complementarity: The former makes
the signal less noisy, and the latter makes the signal more noiselike.

The compound effect of the noise-suppression filter and the whitening filter is
illustrated in Figure 3.2 for a signal with a 1/f? power spectrum. This distribution
of spectral energy is typical of both the spatial and temporal frequency composition
of natural scenes.

To find the optimal noise-suppression filter, we maximize the functional

EI[FIUC)} = (1+B)/Ooolog2 (1.*.;(1;{])\5___(%) df

-K%&G+Mﬁ%$+%0% (3.3)

where Fi(f) is the power gain of the filter, and So(f), No, and N; are the power
spectral densities of the input signal, the noise in the input signal, and the noise
added by the channel that transmits Fi’s output signal (See Figure 3.1). The first
term measures how much information is carried in the output signal; the second term
measures how much capacity is required to transmit the signal as well as the noise.
I have included a relative cost factor, B : the excess capacity that we are willing to
use to transmit 1 baud of information about the signal. B is dimensionless because
it is the ratio.

Taking the functional derivative and equating it to zero, we find that

Em~MBWﬂ_M

 No Solf)+ Ny (3-4)

When BSy(f) > N, (high SNR), the second factor becomes unity, and filter’s gain is
set to amplify the input noise up to the noise level of the output channel; this boost

prevents channel noise from degrading the SNR. For Sy(f) < Ny/B (SNR less than
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Figure 3.2: EFFECT OF OPTIMAL FILTER

Filtering 1/f signals plus white noise (left column) using allpass or bandpass filters
(middle column) prior to transmission of output signals (right column) down a com-
munication channel that adds white noise (light grey line). Top Row: Transmitting
the raw image signal allocates too much power to low frequencies, which do not carry
any more information than do the other frequencies, and too much power to broad-
band noise, which dominates at high frequencies. Bottom Row: Bandpass filtering
optimizes the use of power by attenuating low frequencies and rejecting wideband
noise.

1/B), the power gain becomes negative. In this regime, more than B bits of noise
are transmitted for each bit of signal, and the only way that we can satisfy the cost
constraint is by making the power negative. Obviously, such values are not physically
possible; the best that we can do is to set the gain to zero in these frequency bands.

To find the optimal whitening filter, we maximize the functional

E[Fy(f)] = (P +No) /O‘”logQ <1+F2(f>(51(f)+N1(f))> o

N,
= [T RS + M), (3.5)

where F,(f) is the power gain of the filter, and Si(f) = Fi(f)So(f) and Ny(f) =
Fi(f)Ny + N; are the signal and noise power at the input. The first term is the
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information rate for the filtered signal, plus that signal’s noise, given the channel
noise Ny; the second term is the power of the transmitted signal. I have included a
relative cost factor, P, + Ny : the amount of power, per unit frequency, that we are
willing to expend, for signal plus noise, for each baud (bits/sec) of information. Note
that P, and NV, are given in units of energy, just like Si(f), Ni(f), and Ny.

Taking the derivative of this functional and equating it to zero, we obtain

— P2
CSU(f) + Nu(f)

(f) (3.6)

With this filter, the transmitted signal, F5(f)(S1(f) + N1(f)), is white, with uniform
power spectral density of P,. This signal level is expected, given the cost that we
assigned to information, because the optimization procedure equalizes the marginal
costs of information and energy. Substituting the expressions for S;(f) and Ny(f),
and using the result for Fi(f), we find that the whitening filter is related to Sy(f) by

simply
.ZVO PQ

~ BNI So(/)
When Sp(f) < No/B and Fi(f) is set to zero, there is no signal and Fy(f) = P»/Ny.

() : (3.7)

Measurements of the expected power spectral density of natural scenes yield
So(f) =~ K/f? where K has units of power times frequency[84, 85].! Noise due
to quantum fluctuations—in the photon flux from the light source, or in the ionic
flux through the photoreceptor membranes, or in vesicular neurotransmitter supply
to the synaptic cleft—is white.

Given these ensemble statistics, the optimum noise-suppression filter is

Py~ DB U/

=N IE T (3.8)

where f; = /(K /Np). This filter is lowpass, with corner frequency at the point where

1The finite-power constraint requires that this spectral density flatten out at very low frequencies.
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Figure 3.3: OPTIMAL SPATIOTEMPORAL FILTER
Surface (a) and contour (b) plots of optimal spatiotemporal filter for natural scenes
which have power spectra of the form S(f,, f;) = (1//2)(1/f?). The filter is optimized
to equalize the energy at all frequencies and to reject bands with signal-to-noise ratio
less than unity.
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the SNR becomes 1/B. The optimal whitening filter is

K(f) = B}jih (}f:) : (3.9)

It is highpass. Hence the overall cascade is bandpass. The optimal spatiotemporal
filter for signals with expected power spectrum of the form So(f,, i) = (1/f3)(1/f?),
is plotted in Figure 3.3. The filter has low gain at low frequencies and its gain
peaks along the diagonal line (on log-log coordinates) f,f; = constant. I compare
and contrast the optimal filter with the retinal filter in Section 3.2.3, after I present
psychophisical and physiological measurements of the visual system in Sections 3.2.1

and 3.2.2.

3.2 Spatiotemporal Sensitivity

I now review measurements of the spatiotemporal-frequency sensitivity of the retina;
these measurements reveal which parts of the visual signal are transmitted down the
optic nerve and which parts are filtered out. We will consider the overall perfor-
mance of the entire visual system, as assessed by behavioral experiments, and the
performance of the retina itself, as assessed by spike-train recordings from individual
ganglion cells. The engineering-style measurements I review here reveal a great deal
about the microarchitecture of the retina, and about the mechanisms that the retina
uses to process spatiotemporal visual signals.

Physiologists and psychophysicists have measured the spatiotemporal sensitivity
of the retina using a frequency-domain approach, and have proposed fairly detailed
biophysical models to account for the data. In contrast with the flashing spots and an-
nulli much loved by physiologists for stimulating cells, this engineering-style approach
uses moving (or flickering) sinusoidal gratings. In theory, these two approaches should
vield the same information; in practice, the frequency-domain measurements are more
robust and more sensitive. The down side of frequency-domain methods is that we

must invoke linearity, space invariance, and time invariance to predict responses to
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more complex stimuli. These ideal properties hold for only low contrast levels, for a
fixed eccentricity, and for a fixed background-intensity level-—conditions under which
ON-OFF rectification, variations in sampling density, and light adaptation in the

retina are insignificant.

3.2.1 Psychophysical Measurements

Over a period of 20 years, Kelly, and other psychophysicists, obtained a complete
quantitative description of the spatiotemporal threshold surface of human vision [88,
92]. By compensating for the subject’s eye movements [91], Kelly was able to measure
responses to moving gratings. These measurements do not invoke any nonlinearities,
because the signals used are at the threshold of perception. The experiment is re-
peated at different levels of background intensity, spanning several decades, to charac-
terize nonlinear light-adaptation effects. These psychophysical experiments provide
an input-output description of the entire visual system—including the optics, vit-
reous humour, spatial sampling, and all the parallel pathways—up to the observer,
which is somewhere deep inside the cortex at an unknown location! Therefore, they
provide only a lower bound for the performance of the individual stages. Also, only
the magnitude of the response is measurable; the phase of the response cannot be
obtained with these methods. In the absence of more powerful noninvasive measure-
ment techniques, these data are all that are currently available for humans. Two sets
of these psychophysical data are shown in Figure 3.4 and in Figure 3.5.

The first data set characterizes the dependence of temporal- and spatial-frequency
selectivity on ambient light level, over 6 decades of intensity (Figure 3.4). Both
spatial and temporal responses are bandpass under brightly lit conditions, but the
sensitivity to high frequencies decreases as the lights dim, and the peak shifts to lower
frequencies. At the lowest intensity levels, the response becomes lowpass. Notice that
the transition occurs 1.5 decades earlier for the temporal response, at 3.75td versus
0.09td for the spatial response.

The second data set reveals the dependence of spatial filtering on temporal fre-
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Figure 3.4: INTENSITY ADAPTATION AND FREQUENCY SENSITIVITY OF HUMANS

In these psychophysical experiments, researchers choose a background intensity level
and modulate its amplitude sinusoidally, either in space or in time. Then they mea-
sure the modulation level, expressed as a fraction of the background intensity, required
just to exceed the perceptual threshold of the subject. The contrast sensitivity, which
is defined as the reciprocal of the threshold modulation, is plotted here. (a) Flicker
contrast sensitivity versus temporal frequency for six different background-intensity
levels: 0.375, 1, 3.75, 10, 37.5, 100, 1000, 10,000 td (from lowest curve to highest
curve). The response changes from lowpass to bandpass and shifts to higher frequen-
cies as intensity increases. (b) Grating contrast sensitivity versus spatial frequency
for seven different background intensity levels: 0.0009 to 900td, increasing in steps
of 1 decade (from lowest curve to highest curve). For intensities above 900td, the
curves are identical to the one for 900td. Again, the response changes from lowpass
to bandpass and shifts to higher frequencies as intensity increases. We can convert
the troland units (td) used for intensity to photons absorbed per second per cone by
multiplying by 10, or to photons absorbed per second per rod by multiplying by 4.
Reproduced from [86]. Original sources: a [87];b [88].

100
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Figure 3.5: SPATIOTEMPORAL CONTRAST SENSITIVITY OF HUMANS

Sinusoidal gratings, superimposed on a mean background level, were used and their
amplitudes were modulated sinusoidally in time to produce a contrast-reversing pat-
tern.(a) Contrast sensitivity versus spatial frequency at four different temporal fre-
quencies (in units of cps). The spatial-frequency response is bandpass at low temporal
frequencies, but becomes lowpass at high temporal frequencies. (b) Three-dimensional
plot of spatiotemporal contrast-sensitivity function. The mean intensity was 1000 td.
The curves in (a) correspond to cross-sections of this surface taken parallel to the
spatial frequency axis, at different points on the temporal frequency axis. Plotting
the measurements in three-dimensions makes it evident that the temporal frequency
sensitivity also is bandpass at low spatial frequencies and becomes lowpass at high
spatial frequencies. Reproduced from [86]. Original sources: a [89]; b [90, 91, 92].
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quency, and vice versa, at high intensity levels (Figure 3.5). Although the spatial-
frequency response is bandpass at low temporal frequencies, it does not remain so
as temporal frequency increases. Sensitivity to low spatial frequencies increases with
temporal frequency, and the spatial filter transitions gradually from bandpass to low-
pass. Sensitivity to low spatial frequencies does not increase indefinitely; it starts
decreasing for temporal frequencies above 6¢ps. Similarly, the temporal-frequency
response is bandpass at low spatial frequencies, and becomes lowpass at high spatial
frequencies.

The dependence of filtering on the frequency in the other dimension is uncannily
similar to the dependence on intensity. There is an important quantitative difference,
however. As the frequency in the other space—time dimension increases, the filter
changes from bandpass to lowpass, but the cutoff point does not shift to lower fre-
quencies as it does with decreasing intensity-—all the curves approach the same point

at high frequencies.

3.2.2 Physiological Measurements

In a remarkable series of physiological experiments, Enroth-Cugell and her cowork-
ers characterized the spatiotemporal properties of X and Y retinal ganglion cells in
the cat [94, 95, 93]. Unlike psychophysicists, physiologists usually use high-contrast
stimuli that maximally excite the cell, and, no doubt, drive it into the nonlinear
regime. Enroth-Cugell and coworkers were careful to collect data for spike rates be-
low 10 spikes/sec, because their measurements indicated that nonlinearities became
significant outside this range (this spike rate corresponds to 10 percent or lower con-
trast) [94, 93]. They also characterized the nonlinear spatial interactions in the Y
cell’s receptive field [95]; the data are shown in Figure 3.6. Most physiological stud-
ies to date provide data at only one level of adaptation (but see [93, 96]), whereas
psychophysical studies may span up to 6 decades of light intensity.

Despite species differences and measurement techniques, the physiological re-

sponses of the X cell parallel the psychophysical ones: The temporal filter is bandpass
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Figure 3.6: SPATIOTEMPORAL CONTRAST SENSITIVITY OF CAT GANGLION CELLS

In these physiological experiments, researchers use sinusoidal spatiotemporal
patterns—which they generate either by moving a grating or by modulating the light
intensity with time—to stimulate the cell; they then record the cell’s spike train. To
obtain a measure of the linear component of the response, they compute the magni-
tude and phase of the Fourier component of the average spike rate at the temporal
frequency of the stimulus. The responsitivity, which is defined as the ratio between
the amplitude of this Fourier component and the contrast of the stimulus, is plotted
here. (a) Grating-contrast responsitivity versus spatial frequency for an X cell. For
the high intensities used, the response is bandpass and is well fitted by the difference-
of-Gaussians (DOG) model. (The solid curve is obtained from the difference of the
two dashed Gaussian curves.) The experimenter measured the temporal-frequency
responses shown in the other panels at three carefully chosen spatial frequencies, la-
beled diffuse (low frequency), peak (frequency at which spatial bandpass peaks), and
center (bandwidth of center Gaussian used in DOG model). (b) Contrast sensitivity
versus temporal frequency for a X cell (diffuse = 0.01 cycles per degree, (cpd), peak
= 1.4 cpd, and center = 2.4 cpd). A bandpass response is obtained at low spa-
tial frequencies, but the response becomes lowpass at high spatial frequencies. (c).
Contrast sensitivity versus temporal frequency for a Y cell (diffuse = 0.01 cpd, peak
= 0.2 cpd, and center = 0.42 cpd). The response is always bandpass, although the
peak becomes broader at the peak spatial frequency. The phase measurements, which
have been omitted for brevity, show that, at low frequencies, the Y cells lead the X
cells by almost 90°; at higher frequencies, however, the phase changes linearly with
frequency for both cells—a characteristic of a pure delay element. The corresponding
delay—that is, the delay between the peaks in the input sinusoid and in the cell’s
firing rate—was 24 msec for X cells, and 20 msec for Y cells. Reproduced from [93].
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at low spatial frequencies, and becomes lowpass at high spatial frequencies, but the
high-frequency cutoff remains the unchanged. The same description applies to spatial
filtering vis-a-vis temporal frequency. However, the Y cell’s responses are strikingly
different; they are bandpass for all spatial frequencies.

This difference between X and Y cells is interesting as the primary difference
between these pathways is in the amount of processing that occurs in the IPL. Y
(cv) cells receive a lot of input from amacrine cells, whereas X (3) receive little input
from amacrines. Hence, the amacrine cells are probably responsible for removing the
low spatial frequencies present in the X cells’ responses at high temporal frequencies,
and the low temporal frequencies present in the X cells’ responses at high spatial

frequencies.

3.2.3 Theory and Experiment

The theory of optimal filtering qualitatively accounts for the bandpass spatial filtering
and the bandpass temporal filtering, since the power spectrum of natural scenes is
given by f~2 for both temporal and spatial frequency. However, it does not account
for the effect of temporal frequency on spatial filtering, or vice versa.

The full spatiotemporal frequency power spectrum of natural scenes is given by
f72f,72 [84, 85); it can be factored into a spatial-frequency component and a temporal-
frequency component. Therefore, increasing the frequency in the other dimension
should have the same effect as reducing the overall signal level. Hence, we would
expect the behavior to be the same as that we saw for intensity. And we do indeed
observe the same qualitative behavior. However, the high-frequency cutoff does not
shift to lower frequencies as the frequency in the other dimension increases, as we
expect from the theory (Compare Figure 3.3 and Figure 3.5b).

Bandpass behavior is optimal at high light levels, where the SNR. is high. However,
we do not expect it to be optimal when the SNR is low, simply because there is little

point in redistributing the signal energy over the spectrum when the noise is dominant

everywhere.
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SNR will decrease with intensity because the variance of the noise decreases lin-
early as the mean number of quanta integrated over a given volume of space-time
decreases. Indeed, the variance is equal to the mean for a Possion-like point process;
hence, the SNR is simply /I/I, when the light intensity is expressed as quanta per
space-time volume. Therefore, the SNR decreases as 1/1/1.

This dependence of SNR on intensity explains the shift of the cut-off frequency,
and the peak frequency, to lower frequencies. The response becomes lowpass when
the unity-SNR frequency approaches 0. The fact that the transition occurs first in
the temporal-frequency response may indicate that the pathway that carries temporal
information integrates over a smaller volume of space-time than does the pathway
that carries spatial information.

A very striking aspect of the psychophysical measurements is that the contrast
thresholds all fall within less than 2 decades, although the signals that are producing
this contrast change by 6 decades. That is, the visual system acts as though the light
has changed by only 1.5 decades, when in fact it has changed a millionfold! We know
from recording from retinal ganglion cells that this intensity normalization happens in
the retina. The retina cares less about absolute intensity, and more about how much
signals change relative to the ambient intensity level. Hence, we see the importance
of contrast in characterizing the behavior of the visual system.

The dependence of visual sensitivity on light intensity is characterized by Weber’s
law, which states that the threshold is proportional to the mean intensity level.
Weber’s law works fantastically well at high intensities, as is evident the asymtotic
behavior of the curves in Figure 3.4. However, it breaks down at low light levels, as
the curves move apart with decreasing intensity.

In the low-intensity region, the dependence of visual sensitivity on light intensity
is characterized by the de Vries—Rose law, which states that the threshold is pro-
portional to the square root of the mean intensity level. Since the noise dominates
in this regime, and the noise level is given by the square root of the intensity, the
visual system sets its gain inversely to the input level in both cases. As a result, the

output-signal falls in a limited range.
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Operation Standard Retinal

Detection Integrating Continuous
Gain control  Global Local
Filtering Allpass Bandpass
Quantization Fixed Adaptive
Architecture  Serial Parallel

Table 3.1: STANDARD VERSUS RETINAL DESIGN PRINCIPLES
3.3 Biology Versus Engineering

The functional and structural organization of the retina is radically different from that
of standard human-engineered imagers. The design principles employed by standard
imager technology are outlined in Table 3.1; the design principles of the retina are also
listed for comparison. These principles are compared and contrasted in Section 3.3.1

through Section 3.3.5.

3.3.1 Sensing: Continuous Versus Integrating

Integrating detectors (e.g., charge-coupled devices (CCDs) [97] and photogates [98])
suffer from blooming at high intensity levels and require a destructive readout (reset)
operation. Continuous-sensing detectors (e.g., photodiodes or phototransistors) do
not bloom, and can therefore operate over a much larger dynamic range [99]. In
addition, redundant readout operations can be eliminated, with considerable power
savings, because charge does not accumulate.

Continuous-sensing detectors have been shunned, however, because they suffer
from gain and offset mismatches that give rise to salt-and-pepper noise in the image.
However, Buhman and colleagues have shown that the powerful learning capabilities
of image-recognition systems can compensate easily for this fixed pattern noise [100].

The real benefit of using continuous sensors lies in the latter’s ability to perform
analog preprocessing before quantizing the signal. A signal that takes on a discrete
set of values at a discrete set of times (quantized in amplitude and time) carries

less information than does a signal that takes on the full continuous spectrum of
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Figure 3.7: INPUT-OUTPUT TRANSFER CURVES FOR LIGHT SENSORS

(a) As larger and larger input ranges are spanned, the slope decreases, and finer reso-
lution is required to detect the same percentage change in the input signal. (b) Using
transfer curves that can be centered at the local intensity level decouples dynamic
range and resolution. Each curve spans only a 20-fold input range, since local vari-
ations in intensity are due primarily to changes in reflectivity: A black sheet has a
reflectivity of 0.05, and a white sheet has a reflectivity of 0.95. These transfer curves
were measured for the cat retina, and were reproduced from [101].

amplitudes and times. For instance, graded potentials in the nervous system can
transmit information at the rate of 1650 bits per second—over four times the highest
rate measured for spike trains [10].

The analog operations described in and Section 3.3.2 Section 3.3.3 reshape the
spectral and amplitude distribution of the analog signal, to transmit information

efficiently through this bottleneck.

3.3.2 Amplification: Local Versus Global Control

Imagers that use global automatic gain control (AGC) can operate under only uniform
lighting because the 1000-fold variation of intensity in a scene with shadows exceeds
their 8-bit dynamic range.? A charge-coupled device or photogate can achieve 12

bits (almost 4 decades) [98], and a photodiode or phototransistor can achieve 20 bits

%I am assuming a linear encoding—a practice that is the standard. This assumption limits the
dynamic range to 2° for a b-bit encoding.
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Figure 3.8: BANDPASS FILTERING

The top row shows the original 512x479x8-bit image (a), that image’s autocorrelation
(b), and its amplitude histogram (¢). The bottom row shows the bandpass-filtered
image (d), that image’s autocorrelation (e), and its amplitude histogram (f). In the
original image, pixels are highly correlated, and the correlation falls off slowly with
distance. Whereas, the correlation is a lot less in the bandpass filtered image, and
falls off rapidly. The distribution of amplitudes in the original image is broad and
bimodal, due to the relatively bright overcast sky and the dark foreground objects.
In contrast, the amplitude distribution for the filtered image is clustered around 0
(119), and decays rapidly.
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(6 decades) [99, 102]—but the phototransistor’s performance in the lowest 2 decades
is plagued by slow temporal response. The dynamic range of the system’s output,
however, is limited by the cost of precision analog read-out electronics and A/D
converters, and by video standards.

When AGC acts globally, the input dynamic range matches the output dynamic
range, and the only way to extend the input range is to extend the output dynamic
range. In practice, we must reduce the noise floor to improve resolution.

As shown in Figure 3.7, local AGC decouples dynamic range and resolution, ex-
tending the input dynamic range by mapping different parts of the input range to the
limited output range, depending on the local intensity level. This solution is benefi-
cial if the resolution required to discriminate various shades of gray (1 in 100 for the
human visual system) is poorer than the resolution required to span the range of all

possible input levels (at least 1 in 100,000 for the photopic range of human vision).

3.3.3 Filtering: Bandpass Versus Allpass

On average, natural images have a 1/ f2 power spectrum for both spatial and temporal
frequency [103, 85], whereas noise, due to quantum fluctuations, has a flat spectrum.
Consequently, imagers that transmit the full range of frequencies present pass on
mainly noise at high frequencies, where the signal-to-noise is poor, and pass on re-
dundant information at low frequencies, where the signal-to-noise is good. Bandpass
spatiotemporal filtering rejects the wideband noise, and attenuates the redundant
low-frequency signals; this strategy is the optimal one for removing redundancy in
the presence of white noise [81, 83, 82].

Figure 3.8b and d illustrate the redundancy reduction that I achieved using band-
pass filtering, by computing the correlation between pixel values.? The correlation is

over 40% for pixels that are 60 pixels apart in the raw image. In the filtered image,

31 performed bandpass filtering by convolving the input image with the Laplacian of a Gaussian
with ¢ = 2.5 pixels. I calculated the autocorrelation of the images by subtracting out the mean,
shifting a copy of the image up or right by 1 to 75 pixels, multiplying corresponding pixels, and
summing; I normalized the results to yield a maximum of unity. Rightward shifts are plotted on the
positive axis (0 to 75), and upward shifts are plotted on the negative axis (0 to —75).
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pixels tha are more than 10 pixels apart have less than 5% correlation. Comparison
of the amplitude histograms before and after filtering (Figure 3.8¢,f) demonstrates
that bandpass filtering has two additional benefits.

First, bandpass filtering results in a sparse output representation. For our sample
image, 24.4% of the pixels fall within £0.39% of the full-scale range (i.e., £1LSB at
8-bit resolution); 77.5% of them fall within +5% (i.e., 13 at —127 to +127 amplitude
range). Hence, if we choose to ignore amplitudes smaller than 5%, we need to transmit
only 22.5% of the pixels. In practice, the degree of sparseness will depend on the cut-
off frequency of the bandpass filter. Although rejection of high frequencies introduces
some redundancy, this rejection is necessary to protect the signal from noise that is
introduced by the signal source or by the circuit elements.

And second, bandpass filtering results in a unimodal amplitude distribution that
falls off exponentially. For our sample image, the distribution is fit by a sum of two
exponentials that change by a factor of e = 2.72 whenever the amplitude changes
by 2.5 and by 14.0, on a 128 scale; the rapidly decaying exponential starts out 4.5
times larger. Empirical observations confirm that this simple model holds for a wide
range of images.

In contrast, the distribution of raw intensity values is difficult to predict, because
gross variations occur from scene to scene, due to variations in illumination, image-
formation geometry (surface and light-source orientation), and shadows [6]. These
slowly changing components of the image are removed by local AGC and bandpass
filtering. When the bandpass characteristics are fixed and the intensity is normalized,
the parameters of the amplitude distribution are determined mainly by reflectivity
and therefore vary much less; the quantizer can exploit this invariance to distribute

its codes more effectively.

3.3.4 Quantization: Adaptive Versus Fixed

The quantization intervals of traditional A/D converters are set to match the maxi-

mum rate of change and the smallest amplitude, as shown in Figure 3.9. This uniform



90

1 _ Raﬁgé(V} o s _ AP 1
av= 2b AV = Shrav " b

Figure 3.9: QUANTIZATION IN TIME AND AMPLITUDE

Top row: Time intervals (AT) are set to match the maximum rate of change (left
column). The signal is sampled repeatedly, even when dV/dt ~ 0—that is, when
the change is insignificant (oversampling). Instead of fixing the time step, it is more
efficient to fix the voltage step (AV'), and to adapt the time intervals dynamically
to achieve this change in voltage, as shown on the right. Bottom row: Amplitude
intervals (AV') are also uniformly distributed. The signal is sampled repeatedly, even
though dP/dV =~ 0—that is, although the probability that the input amplitude falls
in this interval is negligible. Instead of fixing the voltage step, it is more efficient
to target a certain change in the cumulative probability (AP = 27 where b is the
number of bits per sample), and to choose voltage intervals statistically to achieve
this change in probability, as shown on the right.
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quantization is optimum only when high frequencies dominate and all amplitudes are
equally likely. As we have seen, neither case applies to natural scenes: the power spec-
trum decays with frequency, as in 1/f2, and the amplitude probability density decays
exponentially—after local gain control and bandpass filtering remove variations in
illumination. Therefore, uniform quantizers produce numerous redundant samples,
because changes in the signal are relatively rare [85], and underutilize their large
amplitude codes, because these signal amplitudes occur rarely in natural scenes [6].

Assuming that temporal changes are due primarily to motion, we can estimate
the amount of redundancy from the spatial-frequency power spectrum and from the
velocity distribution. The velocity distribution, measured for movies and amateur
videos, is dominated by low velocities and falls off with a power law of 3.7 [85]. High
velocities will be even more drastically attenuated in an active vision system that
compensates for global motion, and that tracks objects [84]. After bandpass filtering,
signals that change gradually over space are eliminated and rapid changes occur only
rarely and over much more restricted areas.

Due to the absence of high speeds and of nonlocal intensity variations, the imager’s
output signals rarely change rapidly. Consequently, adapting the sampling rate to
the rate of change of the signal greatly reduces the number of samples produced.
Alternatively, this adaptation allows higher temporal bandwidths to be achieved for
a given mean sampling rate.

Using the amplitude distribution of our bandpass-filtered sample image, we can
calculate the probability of failing to discriminate between a pair of samples drawn
from that distribution: It is 0.0384 when the 2® quantization levels are uniformly
distributed-—an order of magnitude bigger than the minimum confusion rate of 1/256 =
0.0039, which occurs when we choose the quantization levels to make it equally likely
that we will draw a sample from each interval. In fact, the confusion rate of 0.0384
can be achieved with just log,(1/0.0384) = 4.7 bits per sample if the quantization
levels are optimally distributed.

A quantizer that assigns its codes to probable amplitudes, rather than to improb-

able ones, maximizes the probability of discriminating between any two amplitude
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levels drawn from the input distribution; thus, information is maximized when all

codes are equiprobable [8].

3.3.5 Architecture: Parallel Versus Serial

In addition to differing in the aforementioned design principles, biological and human-
made vision systems also use radically different architectures. The retina performs the
four operations listed in Table 3.1 in a pixel-parallel fashion, whereas most synthetic
imagers perform only detection in the pixel. The few synthetic imagers that also
amplify and quantize the signal, perform these operations pixel serially, and set the
gain, sampling rate, and step size to be the same for all pixels [98, 104, 105]. In sharp
contrast to human-engineered imagers, the retina adapts its gain, sampling rate, and
step size locally, to minimize redundancy; the retina also whitens the signal in space
and time, to make its output samples independent.

Since the work on television in the fifties, engineers have known that images, and
other naturally occuring signals such as speech, are highly redundant. They realized
that sending the raw intensity values is not the most efficient way to transmit infor-
mation about these signals; the data can be encoded much more efficiently. Indeed,
they perform such encoding routinely, after acquiring and quantizing the image, using
digital computer. However, we are now learning that the retina knows about efficient
encoding, as well, and the lesson that it teaches us is that we can make major gains
by performing these operations right up front in the pixel.

There is, however, a stiff price to pay to get pixel-parallel operation. We must add
several transistors to the pixel to perform the computations, and these transistors take
up room, increasing the size of the pixel. The wires needed to communicate between
pixels take up even more room than that alloted to the transistors! Since silicon-
based VLSI technology is two-dimensional, the pixel area must increase, and we end
up sacrificing the sampling density.

Similar structural constraints are faced by neurobiology: It can fit into a given

volume a limited number of synapses and a limited length of dendrites and axons.
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Neurites used for communication also take up much more room than do the synapses
that do the computation. These contraints are less severe for biology, but not by
much. Judging from the number of cell layers, gray matter is thick enough to stack
only two to five layers of processing. Also, the dimensions of wires and transistors
are now in the submicron range, approaching the sizes of the finests dendrites and
the smallest synapses. Thus, silicon-based VLSI is encroaching on the territory of
carbon-based VLSI.

Matching the level of integration is a necessary first step. The real challenge,
however, is figuring out how to use wires and energy efficiently, so that we can har-
ness the awesome computational power available from gigantic numbers of synapses
or transistors. Together with optimizing the functional contraints discussed in this
chapter, the retina optimizes these structural constraints as well. As we shall see
in Chapter 3, this global optimization explains the descrepancy between the optimal

theoretical spatiotemporal filter we derived and the retinal filter.

3.4 Summary

The retina has evolved sophisticated filtering and adaptation mechanisms to reduce

redundancy and to improve coding efficiency. Six such mechanisms follow:

1. Local automatic gain control at the receptor level eliminates the dependence
on lighting intensity—the receptors respond to only contrast—extending the

sensor’s dynamic range.

2. Bandpass spatiotemporal filtering in the first stage of the retina (OPL) attenu-
ates signals that do not occur at a fine spatial or temporal scale, ameliorating
redundant transmission of low-frequency signals and eliminating noisy high-

frequency signals.

3. Highpass temporal and spatial filtering in the second stage of the retina (IPL)
attenuates signals that do not occur at a fine spatial scale and temporal scale,

eliminating the redundant signals passed by the OPL, which responds strongly
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to low temporal frequencies that occur at high spatial frequencies (sustained
response to static edge) or to low spatial frequencies that occur at high temporal

frequencies (blurring of rapidly moving edge).

4. Half-wave rectification, together with dual-channel encoding (ON and OFF
output cell types), in the relay cells between the OPL and the IPL (bipolar
cells), and between the retina and the rest of the brain (ganglion cells), elim-
inates the elevated quiescent neurotransmitter release rates and the elevated
firing rates required to signal both positive and negative excursions using a

single channel.

5. Phasic transient—sustained response in the ganglion cells avoids temporal alias-
ing by transmitting rapid changes in the signal using a brief, high-frequency
burst of spikes, and, at the same time, avoids redundant sampling by trans-
mitting slow changes in the signal using modulation of a low, sustained firing

rate.

6. Foveated architecture, with active directing of the gaze, eliminates the need to
sample all points in the scene at the highest spatial and temporal resolution,
while providing the illusion of doing so everywhere. The cells’ spatiotemporal
receptive fields are optimized: smaller and more sustained at the fovea (parvo-
cellular or X-cell type), where the image is stabilized by tracking, and larger and
more transient in the periphery (magnocellular or Y-cell type), where motion

occurs.

The resulting activity in the ganglion cells, which convert these preprocessed signals
to spikes and transmit the spikes over the optic nerve, is different from the stimulus
pattern.

For relatively long periods, the scene captured by the retina is stable. These static
events produce sparse activity in the OPL’s output, since the OPL does not respond
to low spatial frequencies, and produce virtually no activity in the IPL’s output,

since the IPL is selective for temporal frequency as well as for spatial frequency. The
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OPL’s sustained responses drive the 50,000 or so ganglion cells in the fovea, allowing
the fine details of an object stabilized by tracking to be analyzed. The vast majority
of the ganglion cells—about 1 million in all—is driven predominantly by the IPL,
and fires at extremely low quiescent rates of 10 spikes per second, or less, in response
to the static event.

When a localized punctuated event—Ilike a small light flash—occurs, the OPL
and the IPL respond strongly, since both high temporal frequencies and high spatial
frequencies are present. Thus, a minute subpopulation of OPL- and IPL-driven
ganglion cells raises its firing rates to a few hundred spikes per second. On the
other hand, if the punctuated event lights up a large area, the OPL-driven ganglion
cells still respond strongly, for a short time, due to the presence of high temporal
frequencies, whereas the response of the IPL-driven ganglion cells is attenuated, due
to the presence of low spatial frequencies. Consequently, the number of ganglion cells
that respond is miniscule.

A dynamic event—such as a spinning windmill or panning the eyes—produces
puntuated events at adjacent locations in rapid succesion. In the limit, a dynamic
event is equivalent to a punctuated event that lights up a large area. Thus, a dynamic
event can activate a large number of OP L-driven ganglion cells. However, IPL-driven
ganglion cells, which cover most of the retina, are not activated, because the low
spatial frequencies produced in the OPL’s output by dynamic stimuli are suppressed
by amacrine cells, attenuating the IPL’s response.

In effect, the activity in the optic nerve is clustered in space and time (whitened
spectrum): It consists of sporadic short bursts of rapid firing, triggered by punctuated
and dynamic events, overlaid on a low, steady background firing rate driven by static

events.
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Chapter 4 Retinal Spatiotemporal
Dynamics: A Physical Model

To discover how the retina implements bandpass spatiotemporal filtering, and to un-
derstand the tradeoffs that it makes in the face of severe wiring limitations, I analyze
the spatiotemporal behavior of a simple dynamic model of the retina. This model is
a physical one: It is built out of resistors, capacitors, and transconductances. It is
based on the neurocircuitry of the vertebrate retina; it includes several major synaptic
interactions in the outer plexiform layer (OPL). My goal is synthesize the minimal
amount of machinery required to reproduce the observed qualitative behavior, rather
than to provide detailed quantitative predictions of retinal responses.

In particular, I seek the simplest linear physical model that reproduces the salient
features of retinal spatiotemporal dynamics, and I employ circuit theory and Fourier
methods to obtain closed-form analytical descriptions of its behavior. These analytical
expressions are indispensable to understanding the tradeoffs inherent in this simplified
retina model. To the extent that these tradeoffs arise from fundamental physical
limitations—such as the inseparability of spatial and temporal processing—they carry
over to the real retina, or at least to those parts of the retinal structure that the model
includes.

This approach is part of an overarching layered-complexity strategy that I have
adopted, where we reverse-engineer the retina by peeling away one level of complexity
at a time. Once we know the tradeoffs inherent in the design of a piece of neurocir-
cuitry, we can see how to introduce an additional layer of complexity to improve its
performance. Although a linear model cannot include adaptation mechanisms, such
as gain control, we can often achieve the desired result by varying the parameters of
the linear circuit, such as its gain or its time and space constants, appropriately.

Adaptation matches the gain of the filter to the mean signal level, and matches
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the tuning of the filter to the signal-to-noise ratio. Since the linear filter’s tradeoffs
are stated in terms of these very same parameters, studying the linear case helps us
understand how adaptation affects system performance. By relating these parameters
to the values of resistors, capacitors, and transconductances in the model, the linear
analysis can guide the design of these adaptation mechanisms.

Layering adaptation on top of filtering in this fashion is valid, since these two
mechanisms act on disparate spatial and temporal scales. Filtering occurs over tens
of milliseconds of time and tens of minutes of visual angle, whereas adaptation occurs

over hundreds of milliseconds of time and degrees of visual angle.

4.1 Assumptions of the Model

I construct linear electrical-circuit models of the retinal neurocircuitry by simplifying

the latter’s biophysical elements in three ways:

1. Gap-junction—coupled cell syncytia are isotropic resistive grids. 1 abstract the
fine physical structure of these cells into a characteristic lateral resistance
and a characteristic vertical conductance. The former models the gap
junctions, and the latter models the parallel combination of synaptic and leakage
conductances; voltage dependencies, calcium dependencies, and nonlinearities

of the membrane channels are ignored.

2. Synaptic inputs are variable current sources. 1 treat chemical synapses, which
are usually modeled by conductance changes, as variable current sources. These
model synapses are characterized by a transconductance: the additional cur-
rent injected across the postsynaptic membrane per unit change in the presy-

naptic voltage.

3. Synaptic transmission is instantaneous. I ignore the time dependencies of neu-

rotransmitter release and diffusion, and those of the channel-gating mechanisms.

!Synapse models based on conductance changes are characterized by a conductance per unit
voltage. Multiplication of this parameter by the voltage across the channel gives the equivalent
transconductance.
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Hence, the model’s temporal dynamics arise solely from the membrane capaci-

tances, and are characterized by the time constants of the cells.

Ignoring the fine details of cell morphologies an treating syncitia as isotropic re-
sistive networks is justified by virtue of the dense, strong, local electrical connectivity
in these cell syncytia. As the receptive fields are larger than the extent of the cells’
dendritic arbors, the relay of signals from cell to cell across gap junctions appears to
play a dominant role in shaping the cells’ receptive fields—not the fine details of the
dendritic arbor.

Ignoring voltage and calcium dependencies, and other nonlinearities, and treat-
ing synapses as current sources, is justified because the retina responds linearly for
contrasts less than 10% [94]. Given that the threshold is 0.5% contrast, the retina
is linear over a 20-fold range. For these small signal changes, the nonlinear voltage—
current relationships of the ion channels, and of the gap junctions, can be replaced
by their slope conductances, and the conductance changes due to activating more ion
channels are negligible compared to the conductance of the cell.

Ignoring the time-course of synaptic transmission is justified because synaptic
transmission occurs much faster than the cell responds, due to the large capacitance
of the cell membrane.

Several researchers have used resistive networks to model gap-junction-coupled
syncytia, going back to the work of Torre and Owen on rod coupling [106]. Chemical
synapses have also been modeled previously as transconductances by Yagi and his
colleagues [107]. Yagi and colleagues included time dependencies in their synapse
model by using complex transadmittances, instead of real transconductances [107].

The model that they obtained by making these simplifications is discrete in space,
but continuous in time; it is described by a difference equation in space and a differ-
ential equation in time. We can analyze such discrete-continuous systems by taking
the Laplace transform in time, and obtaining a solution to the difference equation in
space in terms of geometrically weighted Laplace transforms terms, as Yagi and his
colleagues did [107]. Another approach is to work with discrete spatial frequencies

and continous temporal frequencies, using the z-transform and the Fourier transform,
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respectively, as Beaudot has shown [108]. Both of these approaches work, but they
produce unweildly solutions that are difficult to grasp intuitively.
To obtain simple and intuitive results, I analyze the model in the continuum limit,
where second-order spatial differences become second-order spatial derivatives. As
2V 1 ,d¥W
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is the Nyquist limit. It is negligible for spatial frequencies f? < (12/x?)f%,,. We
can use this expression to calculate the total error, if we know the power spectrum
of the input signal. When most of the signal energy is at low frequencies—as it is
for a step edge—the error is small. Hence, we do not lose much precision by taking
the continuous approximation, and we gain much clarity by treating space and time
uniformly.

Another concern that we have to address when we simulate a discrete network with
a continuous one is the frequency limitations imposed by Nyquist’s sampling theorem.
To prevent aliasing, the discrete network is prohibited from seeing any frequencies
higher than the Nyquist limit (fxyq). The continuous network, on the other hand,
has no such restriction, and may produce frequencies higher than the Nyquist limit.
We must filter out these frequencies before we can make valid predictions about the
discrete network that we are simulating.

The continuous-space approximation has been used previously by Chen and Free-
man [109]. They drew the analogy between gap-junction—coupled syncytia and a
cable; this insight enabled them to apply results obtained for cables by Jack and oth-

ers [110] to analyze the spatiotemporal dynamics of their retina model [109]. However,

*I obtained this result by using the Taylor series expansion for V(z) at = = €i to obtain expressions
for Vi—l and ‘/i—%-l
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their analysis focused on the overall spatiotemporal behavior of the retina, from the
cornea to the ganglion cells. My analysis is restricted to the outer retina, and re-
veals more about the contribution of the cone-horizontal-cell circuit to the retina’s

response to spatiotemporal signals.

4.2 Linear Model of the Outer Plexiform Layer

The OPL circuit model is shown in Figure 4.1. Models more or less identical
to this one have been proposed previously by Chen and Freeman, and by Yagi and
colleagues [107]. As stated in Section 4.1, I use an analytical approach that is similar
to that of Chen and Freeman by taking the continuous approximation, whereas Yagi
analyzed the discrete case.

In the continuum limit, we have

Io ~+ VQX/C/TCC - ch‘/c + CCO‘I/C + gctha (41)

9neVe + VVi/ran = gnoVi + choVi, (4.2)

where current per unit area, sheet resistance, conductance per unit area, and capac-
itance per unit area are used. The voltages V. and V}, are continuous functions of
space, (z,y), and time, ¢; V*f is the spatial Laplacian of f (i.e. 8%f/0x% + 0% f /0y?),
and f is the temporal derivative of f (i.e. Of/0t).

Assuming infinite spatial extent and homogeneous initial conditions, we can take
Fourier transforms in space and time. Transforming the equations and solving, we

obtain the following transfer functions between inputs and outputs.

z V. 1 0 +imw + e
Hc 5 = ‘~—c P — . h . ’ 43
(p w) I, Geh (52,02 + 1Tw + ec)(ﬁin + iTw + eh) +1 ( )
3 ‘7h 1 1
H , W = = — . : 7 44
o) =T S B e ) B i T en) + 1 (44)

where f(p,w) denotes the Fourier transform of f(z,y,t); p =/ (p2+p2) is the magni-

tude of the spatial frequency, and w is temporal frequency (both are in radians). Here,
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Figure 4.1: PHYSICAL MODEL OF THE OUTER RETINA

The two resistive networks model the cone and horizontal-cell syncytia. The voltages
Ve and V), represent the membrane potentials, and the current I, represents inputs
from the cone outer segment. The diamonds are symbols for current sources controlled
by voltages in another part of the circuit; they model chemical synapses. The direction
of current flow, indicated by the arrow, is into the network for an excitatory synapse.
The membrane capacitances of the cells are included to model dynamic behavior.
The parameter ¢ is a measure of cell sizes; it links the modeled quantities that are in
current per unit area, sheet resistance, conductance per unit area, and capacitance
per unit area to the physiological ones.
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1/2 and

Te = €0/ Gen and T, = ¢po/gne are the time constants of the cells; £, = (reegen)™
£y = (Thngne) "Y? are the space constants of the decoupled syncytia, with transcon-
ductances replaced by conductances to ground; and €. = g.o/gen; and €, = gno/gne are
the ratios of membrane-leakage conductance to synaptic transconductance. The re-
ciprocal of €. is equal to the change in voltage that occurs in the cone for a unit change
in voltage in the horizontal cell. I call this ratio the voltage gain from the horizontal
cell to the cone; the voltage gain from cone to horizontal is defined similarly.

The inputs to the model are currents per unit area, and the responses of the cell are
voltages, so the transfer functions have units of resistance times area, or the reciprocal
of transcondutance per unit area. To obtain a dimensionless measure of frequency
sensitivity, I shall multiply the transfer function by g¢.,. I define this dimensionless
measure as the gain: fl(p,w) = gchf//fo. That is, the gain is the ratio between the
voltage response and the input current when the transconductance g, is 1 unit.

The transfer functions H,(p,w) and Hy(p,w) give the responses of the cones and
the horizontal cells to sinusoidal spatiotemporal patterns, like the one shown in Fig-
ure 4.2. The voltage response of the model is given by H(p,w)Isin(p,z + pyy + wt);
it is simply a scaled and shifted version of the signal. The scaling is given by the
magnitude of A, and the phase shift is given by the argument of H. Since these
quantities do not depend on the orientation of the grating, the model does not have
orientation or direction selectivity.

Any moving image can be expressed as a sum of sinusoidal spatiotemporal pat-
terns. Hence, by using the frequency-response function H to shift and scale each
frequency component, we can obtain the model’s response to motion. This is our
primary motivation for studying the model’s spatiotemporal-frequency response.

For illustrative purposes, we use the following set of parameters: ¢, = 0.05°; ¢, =
0.2°; 7, = 30ms; 7, = 200ms; e, = 0.3;¢, = 0.1; 9., = 0.2pA/mV. Unless otherwise
stated, all model responses shown were obtained with these parameters.

In presenting the results from the model, I shall use typographical conventions to
distinguish between model and reality. For example, a cone is a node in the circuit

model; whereas a cone is a biological photoreceptor. The cone’s response is given by
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Figure 4.2: SINUSOIDAL SPATIOTEMPORAL SIGNALS

The values of this signal change over time and space according to the expression
Isin(p,x + pyy + wt), where I is the peak amplitude. When time is frozen, the
signal is just a sinusoidal grating, like the one shown here. The grating’s orientation,
6, is given by the direction of the spatial-frequency vector: 6 = tan™'(p,/p.). The
grating’s wavelength, A, is given by the magnitude of the spatial-frequency vector:
A = 2n/\/(p; + p}). When time is running, we can track a particular point, with
intensity /,, and find that it appears to move with speed v = w/\/(p} + p2), in a
direction opposite to the spatial frequency vector, due to the constraint that p,x +
pyy +wt = sin~}(I,/I). Because this contraint applies to all points, the whole grating
moves with the same velocity. Actually, the motion of such a pattern is ambiguous;
for example, moving the grating in the = direction at a higher speed w/p, will produce
the same spatiotemporal pattern. The model’s response to such patterns is derived
in the text.
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(a) (b)

Figure 4.3: SENSITIVITY OF CONES TO FULL-FIELD FLICKER

Amplitude (a) and phase (b) of cone responses to temporal frequency from OPL
circuit model. For the parameters values chosen, the cone’s response peaks at 10cps,
and levels off below 0.33cps.

the voltage of that node, and is the analog of the membrane potential of the cone. I
will also plot frequency responses on a logarithmic scale, in dB3; spatial frequency in
is units of cpd (cycles per degree), and temporal frequency is in units of cps (cycles

per second).

4.3 Responses to Flicker and Gratings

Full-field flicker and stationary sinusoidal gratings are used by physiologists and psy-
chophysicists to characterize the temporal and spatial responses of the visual system.
In the same vein, I present analytical expressions that describe the model’s response
to these classic stimuli. I describe the salient features of these responses, and relate
them, quantitatively, to the model’s parameters. I validate the model by comparing

1ts responses to biological measurements.

320dB is equivalent to a tenfold increase in amplitude.

160



4.3.1 Full-Field Flicker

If the spatial frequency is sufficiently low (i.e. p < \/e./%c, v/€r/lh,) we can drop the

spatial-frequency terms and obtain

~ 1 iThu) -+ €p
Hc(07 w) - . 2 . 3
Gen TeTh(1w)? + (enTe + €73 )iw + €6, + 1
~ 1 1
Hh(07 (,U) =

Gen TeTh(1w)? + (€nTe + €.7h)iw + €6, + 17

These expressions give the sensitivity of cones and horizontal cells to full-field flicker;
the magnitude and phase of H,(0,w) are plotted in Figure 4.3.

The cones have a bandpass temporal-frequency response with a distinct peak at
& =~ 1/,/7c7y; the response rolls off at 20dB per decade beyond this point. Surpris-
ingly, the peak frequency of the cone is determined not by the cone’s individual time
constant alone, but rather by the geometric mean of the time constants of the cone

and the horizontal cell. The gain reaches a maximum value of \/(7,/7.)@; at the

-1
T T,

Qt ~ (66 '“}‘L“ -+ €n _C) .
V Te V Th

These expressions for the peak frequencies and the peak gain are based on the ap-

peak, where

proximation €.6;, < 1. The cone’s response levels off for frequencies below €, /7.
Decreasing €, which increases the voltage gain from the cone to the horizontal cell,
moves this point to lower frequencies, attenuating the low spatial frequencies further.

The phase is initially 0, rises gradually as the temporal frequency increases, reaches
a maximum, and then decreases rapidly around the peak temporal frequency. The
phase passes through 0 at the peak frequency @, becomes negative, and approaches
-90°.

Compare the flicker response of the model to the flicker-sensitivity curves of hu-
mans and cats, obtained from psychophysical and physiological measurements, shown
in Figure 3.4a and Figure 3.6b,c, respectively. The model shows the same bandpass
characteristic observed for high intensities and diffuse patterns in the human mea-

surements and in the X-cell and Y-cell cat measurements.



66

The main differences between the model and the biology is that the model repro-
duces neither the steepness of the high-frequency cutoff, nor the rapid phase changes
that occur there—cat X cells go out to 600° [93]. Kelly fitted this steep cutoff with a
model of the long thin process that carries signals from the outer segment of the cone
to the cone terminal; he used a continuous, passive, lossy cable model that produced
an exponential rolloff [111]. Chen and Freeman fitted the sharp cutoff in Frishman’s
X-cell data with a model of the phototransduction process that consisted of a cascade
of eight first-order reactions [109]. These high-order cascades produced a steep cutoff
and introduced a large delay, which resulted in rapid phase changes. In fact, Frishman
and her colleagues showed that their phase measurements were approximated quite
well with a pure delay of 24ms for the X cell and 20ms for the Y cell.

The simple model that I analyzed includes neither the phototransduction process
nor the cable properties of the cone. Such a simple model cannot be expected to repro-
duce the biological responses exactly. My goal is to capture the bandpass character of
the biological responses, and the model meets that goal. When the contribution of the
phototransduction cascade to the cutoff and the phase is removed, the residual gain
and phase shift look much like those of this simple model (see plots of contributions
of individual stages in Chen and Freeman’s more elaborate model [109]).

The model reproduces the rise in sensitivity before the peak, as do the models pro-
posed by Kelly and by Chen and colleagues. These models produce this behavior by
placing lowpass filters in negative-feedback loops around lowpass feedforward stages
(the feedback filters must have a frequency cutoff that is lower than that of the feed-
forward filters), just like this model does. Alternatively, the rise in sensitivity before
the peak may be obtained by introducing a parallel pathway with a lower-frequency
cutoff and subtracting that pathway’s output from the main feedforward pathway.
These two architectures are called feedback and feedforward, respectively.

Kelly used two to four feedback loops to fit the data in the region where the gain
is increasing; the number of loops needed increased with intensity [111]. On the other
hand, Chen and Freeman tried to fit both the feedforward and the feedback models
to the cat X-cell data, and found that the latter provided a much closer fit [109].
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Figure 4.4: SENSITIVITY OF CONES TO STATIONARY GRATINGS

Amplitude (a) and phase (b) responses of cones to spatial frequency from OPL circuit
model. For the parameter values chosen, the cone’s response peaks at 10cpd, and
levels off below 1.6¢pd.

Only the feedback configuration could produce the sharp resonant peak evident in
the full-field flicker responses; the gain at the peak is five or six times higher than a
feedforward scheme predicts. However, physiological measurements in monkeys [96],
and psychophysical measurements in humans [111], do not show such high resonances
and are fitted by feedforward models well. The feedback model was also the only one
of eight configurations studied by Chen and Freeman that satisfied the restrictions
placed on the relative strengths and the relative delays between the center and the
surround by the experimental measurements [109)].

In summary, a simple linear two-layer feedback model:

¢ Accounts for the bandpass responses to temporal frequency observed for high

intensities and diffuse patterns in human psychophysics and cat physiology.

e But it does not reproduce the steepness of the high-frequency cutoff, nor does

it reproduce the large phase accumulation.

o This shortcoming is, most likely, because the model does not include the cable
properties of the photoreceptor neurites, nor does it include the cascade of

chemical reactions involved in phototransduction.
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4.3.2 Stationary Gratings

If the temporal frequency is sufficiently low (i.e. w < €./7¢, €,/m), we can drop the

temporal frequency terms and obtain

T G PR T (el + nlD) P + eeen + 1
- 1 1
Hy(p,0) =

_g:,:(?gfip‘* + (€02 + € £2)p? + € + 17

These expressions give the sensitivities to stationary gratings; the magnitude and
phase of ﬁc(p, 0) are plotted in Figure 4.4.

The spatial-frequency responses parallel the temporal ones; the cones also have
a bandpass spatial response. However, the amplitude of the spatial responses rises
twice as fast as does the temporal response, on a log-log plot, and rolls off twice as
fast as well. Another difference is that the phase of the spatial response never deviates
from 0.

The cone’s response peaks at p ~ /(1 — e€x€./ln)\/(£clr), attaining a maximum

gain of (£,/¢.)Q,, where

AN
Qx:<2+ecé- ) :

.

Again, I made the approximation €., < 1. In close analogy to the temporal behavior,
the peak frequency is determined by the geometric mean of the space constants of
the decoupled syncytia. The cone response levels off for frequencies below m

Compare the grating response of the model to the grating-sensitivity curves of hu-
mans and cats, obtained from psychophysical and physiological measurements, shown
in Figure 3.4b and Figure 3.6a, respectively. The OPL model shows the same band-
pass characteristic observed for high intensities and low temporal modulation in the
human measurements and the cat X-cell measurements.

Again, the main difference between the biological responses and the model’s are

the model’s inability to produce steep rolloff. Kelly and other researchers used an
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exponentially weighted function of the form p?e™” to fit the steep rolloff found in
psychophysical measurements [112, 113, 114]. This choice is consistent with Rodieck’s
difference-of-Gaussians (DOG) model for the receptive field center and surround,
which also results in an exponential rolloff with frequency. The DoG model fits
Frishman’s cat ganglion-cell measurements perfectly. More detailed models, based on
retinal anatomy, have shown that the gaussian-like spatial profile of the receptive-
field center arises from spatial summation by the bipolar-cell dendrites [115]. Smith
showed that the gaussian-like spatial profile of the receptive-field surround arises from
the presence of two types of horizontal cells [115].

The simple model that I analyzed does not include bipolar convergence, and it
has only one type of horizontal cell. Nevertheless, the model captures the bandpass
character of the biological responses, and reproduces the increase in sensitivity before
the peak, much like the other models.

For the spatial behavior, Kelly found that a feedforward model with a single stage
in the parallel inhibitory pathway could account for increasing gain; the contribution
from the inhibitory pathway falls off as intensity decreases [112]. At extremely low
intensity levels, the response becomes lowpass and can be fitted with the exponential
cut-off function over the entire frequency range [113, 114]. Thus, the trends for
spatial and temporal frequencies are identical: The sensitivity to higher frequencies,
and the peak contrast gain, both increase with intensity. On the other hand, Chen
and Freeman used a single feedback stage to fit the spatial responses of cat X cells
measured at high intensity, just as this model does.

In summary, a simple linear two-layer feedback model:

e Accounts for the bandpass responses to spatial frequency observed for high in-
tensities and slow temporal modulation in human psychophysics and cat phys-

iology.
e But it does not reproduce the steepness of the high-frequency cutoff,

e This shortcming is, most likely, because the model does not include spatial

summation in the bipolar cell dendrites, nor does it include a second horizontal
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Figure 4.5: SENSITIVITY OF CONES TO MOVING GRATINGS

Response to gratings moving at various speeds, plotted versus (a) temporal frequency
or (b) spatial frequency. The low-speed temporal-frequency response in (a) looks
like the stationary-grating frequency response, and the high-speed spatial-frequency
response in (b) looks like the flicker-frequency response. At speeds below &/p = 1dps,
the peak in the temporal-frequency response tracks the speed; at speeds below 1dps,
the peak in the spatial-frequency response tracks the speed. As the curves shift, their
shape remain the same.

cell network.

4.3.3 Moving Gratings

A grating with spatial frequency p produces the temporal frequency w = vp when it
moves with velocity v in the direction of its orientation. Therefore, it is easy to predict
the response to such a stimulus. We simply substitute vp for w, and evaluate H (p,vp);
or, we substitute w/v for p, and evaluate H(w/v,w). The resulting expression tells
us how spatial filtering and temporal filtering, respectively, depend on speed. In fact,
we can draw salient conclusions without doing any algebra.

For slow speeds, the temporal frequencies, vp, produced by the motion are low.
Hence, the temporal terms drop out, and the response is identical to that for sta-
tionary gratings, ﬁc(p, 0), and does not depend on speed. However, if we plot the
response versus temporal frequency (i.e., H.(w/v,0)), we find that the response has

the same shape as the grating-sensitivity curve, but shifts to higher temporal frequen-
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cies as the speed increases. In particular, at each speed, v, the peak response occurs
at the temporal frequency vp.

On the other hand, for fast speeds, the spatial frequencies, w/v, produced by the
motion are small. Hence, the spatial terms drop out, and the response has the same
shape as the flicker curve, f[c(O, w), and does not depend on speed. However, if we plot
the response versus spatial frequency (i.e. H.(0, pv)), we find that the response has
the same shape as the flicker sensitivity curve, but shifts to lower spatial frequencies
as the speed increases. In particular, at each speed, v, the peak response occurs at
the spatial frequency & /v.

This behavior holds for a whole class of the spatiotemporal filters, since my ar-
gument does not depend on the detailed form of the transfer function I—L(p, w). The
argument works whenever the spatial- and temporal-frequency terms become negli-
gible at low frequencies. Consequently, for all spatiotemporal filters that satisfy this

requirement, we can state the following general results:

e Asspeed decreases, the shape of the temporal frequency sensitivity curve asymp-
totically approaches that for spatial frequency, but it shifts to proportionately

lower temporal frequencies.

o As speed increases, the shape of the spatial frequency sensitivity curve asymp-
totically approaches that for temporal frequency, but it shifts to proportionately

lower spatial frequencies.

We confirm these conclusions by computing and plotting the spatial- and temporal-
frequency responses for gratings moving at various speeds, as shown in Figure 4.5.
Compare these moving-grating responses to the psychophysical measurements
from humans shown in Figure 4.6a. The model reproduces the dependence of the
peak frequency on speed. Kelly fitted the horizontal displacement of the peak with
speed, over the range from 0.15dps to 32dps, using the expression p = 7.3/(v + 2).
This quantitative relation reveals that the peak spatial frequency is indeed inversely
proportional to speed for high speeds, as predicted by the model. This OPL circuit

model does not account for the dependence of the peak height on speed; additional
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Figure 4.6: HUMAN SENSITIVITY TO MOTION

(a) Response to sinusoidal gratings, moving at six different speeds, versus spatial
frequency. The relative amplitude of the modulation of the baseline intensity (i.e.,
threshold contrast) is plotted; the baseline intensity was 300td. The subject’s eye
movements where tracked and compensated for in these experiments. The response
was always bandpass, and its peak remained at about 5 cpd for speeds below 2 dps.
At higher speeds, the peak position shifted to lower spatial frequencies. The peak
amplitude also changed, rising rapidly initially, and then falling slowly above 2 dps.
Reproduced from [92]. (b) Contour plot of spatiotemporal-contrast-threshold surface
(same as in Figure 3.5b). Sensitivity doubles from one contour to the next. The heavy
line represents the maximum sensitivity at each velocity; a velocity axis is included
on the upper right. The surface is roughly symmetric about the line v = 2dps.
Reproduced from [92].



73

spatial and temporal filtering in the inner retina could account for the dependence of
the height of the peak on speed.

The model also predicts that the peak temporal frequency is proportional to speed
for low speeds. This behavior is also evident in the psychophysical data (Figure 4.6),
although Kelly did not plot his data versus temporal frequency. The curves for 0dps,
0.012dps, and 0.15dps peak at about 6¢cpd, 4cpd, and 3cpd, respectively. We obtain
the temporal frequencies produced by these moving gratings by multiplying spatial
frequency by speed, which gives Ocps, 0.048cps, and 0.45¢ps, respectively. Hence, the
peak temporal frequency is roughly proportional to speed.

In summary, a simple linear two-layer feedback model:

o Accounts for the dependence of the peak spatial and temporal frequencies on

speed observed for high and low speeds, respectively, in human psychophysics.
e But it does not reproduce the dependence of the peak height on speed.

o This shortcoming is, most likely, because the model does not include highpass

temporal and spatial filtering in the inner retina.

This description of the locus of the peak position completes my discussion of the
model’s sensitivity to stimuli used in classic psychophysical and physiological experi-
ments. To understand exactly how these responses arise, and to extend the descrip-
tion to arbitrary dynamic patterns, we must turn to the complete three-dimensional

spatiotemporal transfer function.

4.4 Spatiotemporal Sensitivity

Plots of the magnitude and phase of the cone’s spatiotemporal-frequency transfer
function, ~Fglc(p, w), are shown in Figure 4.7. The function is more or less symmet-
ric about the 45° degree axis, because interchanging p? and iw in Equations 4.3
and 4.4 produces homomorphic equations. Consequently, everything that we say

about spatial frequency with respect to temporal frequency is still true when the two
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Figure 4.7: SPATIOTEMPORAL SENSITIVITY OF CONES

Three-dimensional plots showing (a) magnitude and (b) phase of cone responses from
OPL circuit model versus spatial and temporal frequency. At higher spatial frequen-
cies, the low-frequency temporal sensitivity increases, and vice versa. The phase
is positive for low temporal frequencies, negative for high temporal frequencies and
tends to 0 at high spatial frequencies.

are interchanged. Bear in mind this duality as we discuss the salient features of the
spatiotemporal frequency responses.

I begin the discussion by taking the cross-sections of these surfaces that correspond
to the flicker and grating curves presented in Figure 4.3a,b and Figure 4.4a.b. The
flicker and grating curves are defined by the intersections of the spatiotemporal surface
with the p = 0 and w = 0 planes, respectively. As expected, the amplitude response
(Figure 4.7a) is bandpass at these planes.

As we move the spatial-frequency plane away from the p = 0 plane, to higher spa-
tial frequencies, we observe increasingly strong responses to low temporal frequencies.
Similarly, as we move the temporal-frequency plane away from the w = 0 plane, to
higher temporal frequencies, we observe increasingly strong responses to low spatial
frequencies. Thus, the filters for temporal frequency and for spatial frequency are
letting through more low-frequency energy—they are becoming less bandpasslike and

more lowpasslike. When the planes reach the peak temporal frequency, @, and the
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peak spatial frequency, p, the transition is complete, and the filters become purely
lowpass, without any peak whatsoever. Both filters remain lowpass as the planes
move beyond the peak frequencies.

The model’s spatiotemporal frequency sensitivity mirrors that for humans, shown
as a family of curves in Figure 3.5a, as a three-dimensional plot in Figure 3.5b, and
as a contour plot in Figure 4.6b; and mirrors that of cats, shown as a family of curves
in Figure 3.6b. In particular, this simple linear two-layer feedback model shares four

salient features with human psychophysics and cat physiology:

1. Spatial filtering is bandpass at low temporal frequencies, and is tuned to a

particular spatial frequency p.

2. Temporal filtering is bandpass at low spatial frequencies, and is tuned to a

particular temporal frequency w.

3. Spatial filtering becomes lowpass at high temporal frequencies, and tuning dis-

appears completely when the temporal frequency exceeds w.

4. Temporal filtering becomes lowpass at high spatial frequencies, and tuning dis-

appears completely when the spatial frequency exceeds p

So far, we have discussed how the model’s transfer function modulates the am-
plitude of the input spatiotemporal sinusoid. Let us now consider the phase shift
introduced by the transfer function.

As usual, the flicker and grating curves are defined by the intersections of the
spatiotemporal surface with the p = 0 and w = 0 planes, respectively (see Figure 4.7).
At the p = 0 plane, the response leads for frequencies below the peak temporal
frequency, ; it lags for frequencies above @; and the phase decreases rapidly around
w, passing through 0 at w. The behavior at the w = 0 plane also is as expected, with
a phase shift of zero.

As we move the spatial-frequency plane away from the p = 0 plane, to higher
spatial frequencies, the phase lead decreases across the entire w < @ region, going

towards 0—and even changes to a small phase lag over a small subregion near (p, )
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The phase lag also decreases across the entire w > @ region, going towards 0. Both
transitions appear progressively, occuring at different spatial frequencies for different
temporal frequencies—the point at which the leads and lags disappear is roughly
proportional to the temporal frequency.

Rapid changes in phase occur roughly along a horizontal line defined by w = @, and
along a diagonal line defined w = (&/p)p. (The contour plot in Figure 4.8b shows this
clearly.) Taken together, these lines divide the phase plot into three distinct regions.
For frequencies below the diagonal line, the phase is close to 0. For frequencies above
the diagonal line and below the horizontal line, there is a large phase lead. And for
frequencies above both lines, there is a large phase lag.

In summary, the model’s transfer function, with respect to phase shift, has three

salient features:

1. There is no phase shift when the spatial frequency is above (w/@)p or the

temporal frequency is below (p/p)®.

2. A large phase lead occurs when the temporal frequency is below & and the

spatial frequency is below (w/®)p.

3. A large phase lag occurs when the temporal frequency is above & and the spatial

frequency is below (w/w)p.

Unfortunately, the detailed phase characteristics are not available for the biological
systems, so we cannot make a comparison.

A theme that unifies the amplitude and phase characteristics is the dependence of
spatial filtering on temporal frequency, and vice versa. In this model, spatial filtering
cannot be separated from temporal filtering: H,(p,w) # H,(p)H,(w). That is, we
cannot realize the filtering performed by the model by cascading a spatial filter,
H,(p), with a temporal filter, H;(w). This spatiotemporal inseparability arises
because the same elements in the circuit are used to perform both spatial filtering
and temporal filtering. A purely spatial filter cannot have any time dependencies in

its wires; a purely temporal filter cannot have any crosstalk with its neighbors. The
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OPL model adheres to neither of these edicts: Signals are spread out in time as they
are spread out in space—and vice versa—as they are passed from place to place by
the internode conductances and as they are passed from time to time by the node

capacitances.

4.5 Responses to Moving Images

To understand how the OPL model responds to motion, we will find it most in-
structive to display the three-dimensional spatiotemporal-frequency transfer function
as a contour plot, and to superimpose the input spectrum ont this plot. The transfer
function is replotted in this fashion in Figure 4.8; observe the simliarity between this
plot and the contour plot of human spatiotemporal contrast sensitivity in Figure 4.6b.

The speed © = @/p, given by the ratio between the peak temporal frequency
and the peak spatial frequency, plays a decisive role in the model. I call this speed
the pivotal speed, because it demarcates the border between the low-speed region,
where motion produces higher temporal frequencies, and the high-speed region, where
motion produces lower spatial frequencies. These two distinct behaviors arise because
the line w = p0 bisects the L-shaped ridge of the amplitude plot into two arms, one
running horizontally and the other running vertically; the ridges takes the corner
right at the pivotal speed line, w = po.

At speeds below ¢, the spectrum intersects the vertical arm, and the locus of
the peak remains at the same spatial frequency p, but it moves to higher temporal
frequencies pv with increasing speed, v. At speeds above 0, the spectrum intersects
the horizontal arm, and the locus of the peak remains at the same temporal frequency
w, but it moves to lower spatial frequencies &/v with increasing speed, v. This picture
explains the responses obtained for moving gratings plotted in Figure 4.5a,b.

We can derive the locus of the peak by differentiating |H.(p, pv)| with respect to p

and setting the derivative to 0 to find the maximum. However, a simple approximate
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Figure 4.8: MOTION AND SPATIOTEMPORAL SENSITIVITY OF CONES

Color-coded contour plots showing amplitude (a) and phase (b) of the cone responses
from the OPL circuit model. A cyclic color encoding was used, starting with red at
the bottom end of the scale, and coming back to red at the top. (a) The amplitude
plot looks like a mountain range with a sharp bend in it; the L-shaped ridge that
runs along the top is shown. (b) The phase plot looks like a plain in the area below
the w = pov line, where ¥ is the ratio between the peak temporal frequency, @, and
the peak spatial frequency, p. The area above this line is shared by a mountain and a
valley, with the w = @ line demarcating the border between them. Each diagonal bar
in these plots is the support of the input image’s spectrum, for uniform translation
at a different speeds. The support is defined by the line w = pv, where v is the
speed. On log(w)-log(p) scales, this line is always at an angle of 45°; it shifts to
higher temporal frequencies as speed increases. The three speeds shown are 0.10,
U, and 100. The intersection of these diagonal lines with the spatiotemporal surface
gives the sensitivity of the model to moving gratings, and produces the curves plotted
in Figure 4.5a,b, when projected onto the temporal-frequency axis or onto the spatial-
frequency axis, respectively.
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expression describes the locus of the peak, (p(v), ©(v)), quite well.

), 20

(0) ~ @(o0)

>

™

where p(0) = p is the peak spatial frequency for the stationary-grating sensitivity
curve, and @(0co) = O is the peak temporal frequency for the full-field-flicker sensitiv-
ity curve. This expression accounts for the peak position in both the high-speed and
the low-speed regions. To locate the peak on the temporal-frequency axis, we replace
p(v) with @(v)/v; to locate the peak on the spatial-frequency axis, we replace &(v)

with p(v)v. Making these substitutions gives

60 = o)
p) = ——p(0),

where 0 = ©(00)/p(0) is the speed at which the behavior crosses over from the low-
speed regime to the high-speed regime.

With the aid of these contour plots, it is easy to see how the model’s spatiotem-
poral inseparability shapes the model’s response to moving gratings. The amplitude
of the response to a grating changes when that grating flickers or moves, because the
gain of the spatial filter depends on temporal frequency. For temporal frequencies
below the peak temporal frequency, @, this dependence makes the response increase
with flicker rate or with speed—except when the spatial frequency of the grating is
equal to the peak spatial frequency, p. For this exceptional situation, where the spa-
tial filter is tuned to the spatial frequency of the grating, the response becomes speed
invariant for temporal frequencies below & (i.e., speeds below ©). In general, however,
the response of the OPL model is not speed invariant.

The phase of the grating response also changes drastically with increasing speed,
and the change is nonmonotonic. The phase starts increasing after the speed exceeds
the pivotal speed, U, reaches a maximum, and then starts to decrease, reaching 0 when

the speed is equal to @/p, where p is the spatial frequency of the grating. However,
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when the spatial frequency of the grating is equal to the peak spatial frequency, p = p,
the phase does not change with speed—except for a small range around 0, where a

small lag occurs.

4.5.1 Speed-Invariant Contrast Estimation

The model predicts that the amplitude and phase of the outer retina’s response de-
pends on the speed of the moving grating. Speed-dependent responses give rise to
the question: Can a speed-invariant estimate of contrast be obtained from the outer
retina’s output signals?

If the input pattern has a broad spatial-frequency spectrum (e.g. an impulse, an
edge, or a random-dot pattern), we can get a flicker- or speed-invariant estimate of
contrast by measuring the energy at the spatial frequency to which the spatial filter
is tuned. Since the response phase does not change much at this spatial frequency, we
can get away with just measuring the peak amplitude. However, this strategy works
in only the low-speed regime, where the temporal frequencies generated are below the
cutoff point. In the high-speed region, we can obtain a speed invariant estimate of
contrast by taking the dual approach.

Due to the dual relationship between spatial filtering and temporal filtering, the
response is also speed-invariant when the temporal filter is tuned to the temporal
frequency of the spatiotemporal sinusoid, and the spatial frequency is below 5 (i.e.,
speeds above ©)). Thus, for a broadband signal, we can get a flicker- or speed-
invariant estimate of contrast in the high-speed region, v > ¢, by measuring the
energy at the temporal frequency, @. Again, since the response phase does not change
at this temporal frequency, we can get away with just measuring the peak amplitude.

We should be aware that the circuit generates the energy we are measuring by
amplifying energy at the spatial frequency p = &/v. Therefore, we extract energy
from lower spatial frequencies as speed increases, so the response is speed invariant
only when the input energy is distributed uniformly across the spectrum.

In summary, we can obtain a speed-invariant estimate of contrast from the cone’s
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output by proceeding as follows:
e For low speeds, v < 0, measure the energy at the spatial frequency, p.
o For high speeds, v >> 0, measure the energy at the temporal frequency, @.

This strategy assumes that the input energy is distributed uniformly across spatial
frequency. Since natural images, and edges, have a 1/p? power spectrum, it will be
smarter to tailor the algorithm to such a colored spectrum. Additional filtering in
the inner retina could achieve this optimization.

To achieve speed-invariance in the transition region between the low-speed regime
and the high-speed regime, we must match the peak flicker sensitivity, ﬁc(07dj) =
\/ZTh/TC)Qt, to the peak grating sensitivity, H,(5,0) = (£4/£.)Q,. Equating these two

expressions, and neglecting the term ¢, (€./{;)?, we find that

Ec €n Te
—_—= = 4.5
Zh 2 Th ( )
As we want ¢, to be small, to attenuate low frequencies, we must make the space

constants of the cone and horizontal cell syncytia disparate, and the time constants

of the cone and horizontal cell similar, to satisfy this constraint.

4.5.2 Contrast-Invariant Speed Estimation

I now turn to the question of how to estimate the speed of the motion from the outer-
retina’s response. This computation is relatively straightforward when the input
energy is distributed uniformly across frequency. In this case, the distribution of
energy in the output is determined entirely by the intersection of the support of the
input spectrum with the model’s spatiotemporal-sensitivity surface. Hence, it is easy
to see how the motion of such a broadband stimulus is encoded by the model.

The strongest spatial- and temporal-frequency components in the output are se-
lected by the bandpass filtering performed by the model. For low speeds, v < 0, a
particular spatial frequency, p, is selected, and the energy shifts to higher temporal

frequencies, w = puv, with increasing speed. For high speeds, v > 0, a particular
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temporal frequency, @, is selected, and the energy shifts to lower spatial frequencies,
p = w/v, with increasing speed.
In summary, the model predicts that we can obtain a contrast-invariant estimate

of speed from the outer retina’s response by proceeding as follows:

e For low speeds, v < U, determine which temporal frequency, wmax, has the most

energy, and compute v = wyay/p.

e For high speeds, v > 0, determine which spatial frequency, ppnax, has the most

energy, and compute v = @/ prax-

The most economical way to implement this algorithm would be to use just two
broadly-tuned bandpass filters, one tuned to the low end of the range and the other
tuned to the high end, and interpolate between these two filters to determine the
frequency of the input signal. This two channels may correspond to the magno and
parvo pathways [116].

This algorithm for computing speed will not work for an image with a 1/p? power
spectrum because the bandpass filter is intentionally designed to whiten such a spec-
trum, and it equalizes the energy for all frequencies in its passband. To make the
spatial or temporal frequency tuned in by the outer retina’s spatiotemporal bandpass
stand out, we may use a highpass temporal filter or a highpass spatial filter to flat-
ten such natural spectra. This strategy may be used by retina, since both of these

highpass filtering operations occur in the inner retina.

4.5.3 Space—Time Effects

I bring my discussion about the outer-retina’s motion responses to a close by leaving
the frequency domain to take a look at the response to a moving edge in space-time.
The pertinent question is: How does the simple intuitive picture that we have painted
in frequency coordinates translate into space—time coordinates?

The response of the model to a moving edge is shown in Figure 4.9, for five different

speeds—quarter, half, once, twice, and four times the pivotal speed. I obtained
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Figure 4.9: RESPONSE OF CONE TO MOVING EDGES

Each panel shows the responses of cones (bold line) to step edges (thin line) moving
at three different speeds, obtained from the outer-retina circuit model: (a) Speeds
equal to 0.250, 0.50, and ©. (b) Speeds equal to ¢, 20, and 4. The input goes from
1 (white) to 0 (black) as the black region invades the white region. In each row, the
edge’s speed doubles from one graph to the next, going from left to right. In each
panel, the top row shows responses plotted versus space, at a particular point in time,
and the bottom row shows responses plotted versus time, at a particular location in
space. In space coordinates, the edge moves to the right, and in time coordinates,
the edge moves to the left.
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analytical expressions for these responses by taking the inverse-Fourier transform of
the model’s frequency-transfer functions. I evaluated and plotted these expressions
for a particular choice of parameter values. No antialiasing was performed, so these
responses contain energy at all frequencies, out to infinity.

As the speed increases, the response transforms from the spatial response to a
static edge, which consists of an overshoot and an undershoot on either side of the
edge, to the temporal response to a step input, which consists of an exponentially
damped sinusoid that starts after the step occurs. By the time the speed changes by a
factor of eight, a complete transformation has occured, and the response changes from
a perfectly symmetric spatial response to a completely assymetric temporal response.

Due to causality, the temporal component of the response always trails the edge,
occuring to the right of the edge in temporal coordinates, or to the left of the edge in
spatial coordinates. Only the spatial component of the response can preceed the edge;
this effect occurs via long range transmission through the tightly-coupled horizontal-
cell network. As the horizontal-cell network produces inhibition, the spatial signal
gives rise to the overshoot to the right of the edge in space coordinates, or to the left
of the edge in time coordinates. It takes time for signals to propagate through the
network, and these inhibitory signals may be overtaken by excitatory signals from the
short-range cone network if the edge moves fast enough.

Excitation overtakes inhibition when the speed exceeds the pivotal speed. At the
pivotal speed, the time it takes for the edge to transverse the receptive filed equals
the time it takes for the cone-horizontal-cell feedback loop to settle. Therefore, for
speeds below the pivotal speed, the system settles, and the response looks like that to
a static edge—there is no evidence of temporal behavior. Whereas, for speeds above
the pivotal speed the system starts to respond after the edge has passed by, and the
response looks like that to a full-field flash—there is no evidence of spatial behavior.

Consequently, two distinct behaviors are observed above and below the pivotal
speed. Below the pivotal speed, the response is invariant with speed, when plotted
versus position, whereas it is increasingly compressed when plotted versus time (See

Figure 4.9a). Hence, the frequency responses look like the stationary grating re-
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sponse, and the energy shifts to higher temporal frequencies with increasing speed, as
shown in Figure 4.5a. Above the pivotal speed, the response is invariant with speed,
when plotted versus time, whereas it is increasingly drawn out, when plotted versus
space (See Figure 4.9b). Hence, the frequency responses look like the full-field flicker
response, and the energy shifts to lower spatial frequencies with increasing speed, as

shown in Figure 4.5b.

4.6 Discussion

A simple physical model, consisting of two reciprocally-connected diffusive (signal-
spreading) layers, captures the qualitative aspects of spatiotemporal filtering in the
retina. The model reproduces the dependence of spatial filtering on temporal fre-
quency and the dependence of temporal filtering on spatial frequency. In particular,
spatial filtering is bandpass at low temporal frequencies, but becomes lowpass at
high temporal frequencies. Conversely, temporal filtering is bandpass at low spatial
frequencies, but becomes lowpass at high spatial frequencies.

Models of the retina similar to the one that I study here have been proposed and
analyzed. However, none of the previous studies analyzed the effect of the model’s
spatiotemporal inseparability on motion. By studying a minimal model, and treating
space as a continuum-——using the continuous approximation—just like time, I was
able to obtain closed-form analytic solutions, and to develop a clear intuitive picture
of the spatiotemporal behavior of the retina.

I showed that the model’s spatiotemporal inseparability has serious consequences
for how information about contrast and speed is encoded by the retina. It also results
in suboptimal filtering, as the model’s spatiotemporal behavior deviates from the
optimal filter for the ensemble of natural images.

In following subsections, I show how spatiotemporal inseparability goes hand in
hand with local connectivity. As a consequence, nature must choose between a costly
spatiotemporally separable optimal filter or a cheap spatiotemporally inseparable sub-

optimal filter, weighing coding efficiency against implementation efficiency. I also
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provide a summary of the procedures that I proposed to extract of information about

contrast and speed from the outer retina’s outputs.

4.6.1 Spatiotemporal Inseparability and Local Connectivity

The interdependence of spatial filtering and temporal filtering is a direct consequence
of the locally connected character of the signal-spreading networks. Signals diffuse in
space as they are relayed from node to node by the internode conductances. Signals
also diffuse in time as they accumulate on the node capacitances. Consequently, the
temporal scale on which signals are processed is intimately connected with the spatial
scale at which they occur, and vice versa.

Simultaneous spatial and temporal diffusion places a constraint on the sum of
the spatial frequency and the temporal frequency. The current spreading through the
internode conductances is proportional to the second spatial derivative of the voltage,
and the current charging the node capacitance is proportional to the first temporal
derivative. Consequently, the sum of the rates at which the signal changes in space and
in time is constrained by the input current. This constraint translates into a constraint
on the sum of the spatial frequency and the temporal frequency. Therefore, all the
terms that appear in the transfer function of a locally-connected network involve sums
of spatial frequency and temporal frequency, instead of products.

Spatiotemporal separability requires a multiplicative interaction between spatial
frequency and temporal frequency, not a subtractive one. To obtain a multiplica-
tive interaction, we must put a constraint on the product of spatial frequency and
temporal frequency. Such a constraint produces frequency-sensitivity plots with con-
tours running diagonally (for log-log coordinates), as shown in the frequency-response
plot for the optimal filter (Figure 3.3b). In contrast, a sum constraint produces L-
shaped contours (for log-log coordinates), as shown in the frequency-response plot
of the model (Figures 4.7 and 4.8), and in the frequency response plot for humans

(Figure 4.6b).
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Figure 4.10: HARDWARE FOR SPATIOTEMPORAL FILTERS

Each node has the ability to form a weighted sum of its inputs and to provide a
delayed version of the sum to its output; wires communicate signals instantaneously
and do not attenuate or amplify them. Left: Separable spatiotemporal filter built
from a spatial array and a tapped delay line. This configuration can realize any
desired spatiotemporally separable filter. The number of nodes, and the number of
wires, required per output is O(n, +n;), where n, is the order of the spatial filter and
n: is the order of the temporal filter. Right: Inseparable spatiotemporal filter built
from a nearest-neighbor—connected spatial array. This configuration can realize only
those inseparable filters whose spatiotemporal impulse response falls off smoothly.
The number of nodes, and the number of wires, required per input is O(1).

4.6.2 Efficient Coding Versus Efficient Implementation

A spatiotemporally inseparable filter cannot match the spectrum of the ensemble
of natural images, which is more or less separable, over the entire range of spatial
and temporal frequencies. It is possible to match the model’s inseparable response
to the separable response of the optimal filter, but in only certain restricted regions
of the spatiotemporal frequency spectrum. We can acheive optimal spatial filtering
at low temporal frequency and optimal temporal filtering at low spatial frequency.
However, when matched to the optimal filter in these regions, the model does not filter
out signals with poor SNR that occur at high spatial frequencies and high temporal
frequencies. This mismatch between the model and the optimal filter predicts that
the outer retina devotes more of its channel capacity to noise than is optimal.
Suboptimal outer-retina performance is a small price to pay for efficient imple-
mentation. The amount of hardware required to implement these two classes of
filters—one separable and the other inseparable—is shown in Figure 4.10. By using

nearest-neighbor connections, the inseparable network can share wires and nodes,
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and thus can use the hardware efficiently. A factor of n = n, + n;, where n, (n;) is
the order of the spatial (temporal) filter, reduction in hardware translates to a sim-
ilar reduction in pixel size and to a similar reduction in power consumption. These
improvements in efficiency allow smaller and faster pixels to be used, increasing the
spatiotemporal bandwidth of the retina.

Additional spatiotemporal filtering in the inner retina may compensate for sub-
optimal behavior of the outer retina, such that excessive noise in the latter’s output
is not passed on to the optic nerve and transmitted all the way to the brain. Pos-
sibly, this result is achieved by the presence of two channels, with one tuned to low
temporal frequencies and high temporal frequencies (parvo pathway), and the other
is tuned to high temporal frequencies and low spatial frequencies (magno pathway);
neither one is tuned to the noisy signals that occur at high temporal freqencies and

high spatial frequencies.

4.6.3 Encoding of Contrast and Speed of Moving Images

Understanding how the outer retina responds to motion led me to develop a natural
set of procedures for obtaining a speed-invariant estimate of contrast and a contrast-
invariant estimate of speed from the outer-retina’s output signals.

In particular, there is a pivotal speed that demarcates the border between two
distinct regimes. An edge moving at the pivotal speed sweeps across the receptive
field in exactly the time it takes for the system to settle. Below the pivotal speed,
the response is dominated by energy at the spatial frequency to which the spatial
bandpass is tuned, and this energy moves to higher temporal frequencies as the speed
increases. Above the pivotal speed, the response is dominated by energy at the
temporal frequency to which the temporal bandpass is tuned, and this energy moves
to lower spatial frequencies as the speed increases.

We can estimate contrast by measuring the amplitude of the response at the
frequencies to which the bandpass spatial filter and the bandpass temporal filter are

tuned, and taking the larger value. To see why this strategy works, we recall that
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the response is invariant when the sum of the temporal frequency and the spatial
frequency is constant. So, by guaranteeing that the spatial frequency is high and
the temporal frequency is low, we ensure that changing the temporal frequency has
a negligible effect, making the response insensitive to speed. Making the temporal
frequency high and the spatial frequency low also works, for the same reason.

We can estimate speed by finding the dominant spectral component, and taking
the ratio between that component’s temporal and spatial frequencies. In the low-speed
regime, the dominant component occurs at the frequency where the spatial bandpass
peaks. Hence, we already know the spatial frequency, and we need to determine only
the temporal frequency. This strategy is analogous to using the spatial extent of the
receptive field as a reference, and measuring the time it takes for the stimulus to cross
the receptive field. In the high-speed regime, the strongest spectral component occurs
at the temporal frequency where the temporal bandpass peaks. Hence, we already
know the temporal frequency, and we need to determine only the spatial frequency.
This strategy is analogous to using the temporal extent of the receptive field as a
reference, and measuring how far the stimulus travels during that time.

The advantage of this biomorphic motion algorithm is that it uses signals that
occur at either the same location or at the same time—unlike other motion algorithms,
which try to match up signals that occur at different locations at different times [117,
118, 119]. In general, this correspondence problem is difficult to solve, since
there are many candidate matches and the correct one can be found only if the
features within the field of view are sufficiently distinct to disambiguate. Note that
the algorithm proposed here computes only speed—unlike these more general motion
algorithms, which compute direction as well. We can use information about speed,
however, to eliminate candidate matches, making the correspondence problem more

tractable.
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Chapter 5 Electrodiffusion: From Nerve

Membranes to Transistors

In this chapter, I compare the nerve membrane with the MOS transistor. The nerve
membrane is a liquid-state device, with ionic species diffusing in water, whereas the
transistor is a solid-state device, with electrons and holes diffusing in a crystal. On a
microscopic scale, however, the movement of these charge carriers are the identical.
Their motion is driven by the same forces, which are either of thermal or electrical
origin. At the macroscopic scale, these forces give rise to diffusion and to drift,
respectively. Hence, the transport mechanisms found in cells and in transistors are
identical.

There are three important differences between these two devices, though.

First, the effectiveness of the transport mechanisms are drastically different. Dif-
fusion coeflicients and mobilities are six orders of magnitude smaller for ions in water,
compared to electrons and holes in crystalline silicon. But the ions travel much shorter
distances: A lipid bilayer is only 6nm thick, whereas the channel length of a typical
transistor is around 1um. Because decreasing the distance increases the driving force,
this 2-decade reduction in length reduces the transit time by 4 decades.

Second, the nerve membrane is strictly a two-dimensional structure, with the
same population of charges responsible for its electrostatics and for its electrodiffu-
sion. In contrast, a transistor is fundamentally a three-dimensional structure, with
two distinct populations of charges responsible for its electrostatics and for its elec-
trodiffusion. The transistor’s electrostatics involves primarily immobile charges on
the gate, which is placed on top of the bulk crystal to control the potential at the
surface of the crystal. And the transistor’s electrodiffusion involves mobile charges at
the surface of the bulk crystal that are totally isolated from the charge on the gate.

Third, several ionic species serve to transport charge across the nerve memebrane,
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and selective transmembrane ion channels control the permeability of the membrane
to each ion species independently. In contrast, a transistor uses a single charged
species, and its gate potential controls the flux of this species through the channel. To
capture the function of a variety of ion channels, you have to use a separate transistor
for each channel type, and control the flux through each transistor independently
using that transistor’s gate voltage. You also have to copy the currents passed by
each transistor onto a separate capacitor if you want to keep track of the concentration
of each ionic species.

I will review electrodiffusion in nerve cells and in transistors by deriving expres-
sions for the ionic fluxes and electric currents in these devices from first principles.
The derivations are similar because the basic electrostatic and transport mechanisms
present in these two devices are identical. The nonlinear partial differential equations
that govern electrostatics and electrodiffusion cannot be solved analytically for these
devices. To obtain explicit, closed-form solutions, we must make some simplifying
assumptions. As the assumptions that hold in one case do not hold in the other case,
and vise versa, we end up with different forms of solutions for the membrane and
for the transistor. This comparative study—which, to my surprise, has not yet been
done—will help us figure out how best to exploit the native physics of the transistor

to model the biophysics of the nerve membrane.

5.1 Electrodiffusion in Membranes

The general outline of my review of electrodiffusion in nerve membranes is as follows.
I begin by studying the Nernst-Planck equation, which relates the flux to the ion
concentrations and the potential at each point within the membrane. The potential
is related to the net charge concentration by Poisson’s equation. This equation couples
together the fluxes of all the ion species present, making it difficult to solve for the flux
of each species. Assuming that the electric field in the membrane is constant allows
us to obtain the potential profile across the membrane without solving Poisson’s

equation.
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Figure 5.1: ELECTRODIFFUSION IN MEMBRANES AND TRANSISTORS

(a) Cross-section of a bilipid membrane with profiles of the ion concentration of the
nth ion species, ¢,(x), and of the potential, ¥(z). Ions diffuse down the concentra-
tion gradient and drift down the potential gradient; ¢ is the net flux through the
membrane. By definition, positive flux flows out of the cell; the z axis also points
in this direction. And, by definition, the membrane potential is the potential on the
inside minus the potential on the outside. Hence, positive current flows from inside to
outside; current and flux are in the same direction for positively charged ions. When
the ion species diffusing across the membrane are distributed such that they main-
tain charge neutrality, the electric field is constant, and the potential changes linearly.
The membrane’s behavior under this contant—electric-field assumption is derived in
the text. (b) Structure of an n-type MOS transistor, with profiles of the mobile-
charge concentration, Q)(z), and the potential gradient, 1 (z), along the surface of its
channel. Just like in the cell membrane, the gradients in the charge concentration and
in the potential make free electrons diffuse and drift across the channel; I is the net
current through the channel. By definition, charge carriers flow from source to drain;
the z axis also points in this direction. As an n-type MOS transitor uses negative
charge carriers, its current is negative. The potential along the channel surface is
determined by charges on the gate, which attract oppositely charged mobile charges
to the surface of the channel, and repel similarly charged mobile charges away from
the surface. When the charges repelled are much farther away than those attracted to
the surface, we can ignore the effect of the former. In that case, we are left with the
mobile charge at the surface and the charge on the gate, which form a parallel-plate
capacitor. The transistor’s behavior under this parallel-plate capacitor assumption is
derived in the text.
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The constant field model was proposed by Goldman over fifty years ago [1],
in a study of biological membranes. Hodgkin and Katz latter applied this model to
the giant axon of the squid [2]. This simple model treats the ions as though they
diffuse freely: In fact, they travel through a pore that confines them to one degree
of freedom, making independent movement unlikely. And it assumes that the pore
excludes all the other ionic species: In fact, real pores do not have perfect selectivity.
Nevertheless, in additon to being instructive, the Goldman model turns out to be

quite robust and useful in practice.

5.1.1 The Membrane Flux

The derivation of the ion flux across the membrane starts with the Nernst—Planck
equation, which governs the transport of ions in a solvent.! The Nernst-Planck
equation is an application of Fick’s Law, which governs diffusion, and of Ohm’s law,
which governs drift. The Nernst-Planck equation relates the molar flux, ¢,, of the
nth ion species to concentration gradient of that species, dc, /0z, and to the electrical

potential gradient, 0y /0x :

dep ()
ox

— UpzZp Fen(2) 8@(/;5:) : (5.1)

an(x) = _Dn

where D, is the diffusion coefficient of the nth ion species, u, is the molar mechanical
mobility, z, is the valence, and F'is the Faraday charge.

I am abiding by conventions used in biology and chemistry, where the charge
quantum is 1 mole—6.022 x 10%* particles! To compute the diffusion component, you
multiply the concentration gradient (in units of mol/m?®/m) by the diffusion coefficient
(m?/s), which gives you the flux (mol/m?/s). To compute the drift component, you
multiply the molar concentration (in units of mol/m?) by the Faraday charge (C/mol),
and by the valence of the nth ion (dimensionless), to obtain the charge concentration

(C/m?®). Multiplying this charge concentration by the electric field (N/C)—expressed

!The derivation of the membrane equations follows closely the treatment in Weiss’ thorough,
two-volume monograph, Cellular Biophysics [120].
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as the potential gradient—gives you the force on a unit volume of ions (N/m3).
Multiplying this force by the molar mechanical mobility (mol- m/s/N) gives you the
flux (mol/m?/s).

We can rewrite the Nernst-Planck equation in the form

(5.2)

bul2) = ~tnza FVi, (5%@) | (o) 8w<x>)

ox VT or

n

by using the chemist’s version of the Einstein relation, D, = u, RT, to express the
diffusion coefficient in terms of the molar mechanical mobility, where R is the molar
gas constant (units of J/mol/K) and T is the temperature (K). I have defined a
more appropriate unit of voltage Vr, = (RT)/(z,F), which corresponds to thermal
potential of the nth ion (units of J/C).

The Nernst-Planck equation, and its device-physics counterpart, the drift—diffusion
equation, make clear the balance of forces between drift and diffusion. At equilib-
rium, drift and diffusion cancel out each other, and the flux is 0.

We can solve the Nernst—Planck equation for the concentration profile of the nth
ion at equlibrium, ¢, (¢), by using the chain rule to express the concentration gradient

0c,/0z as dc, /O - Oy /Dx. Making this substitution gives us

(6Cg°f) “*_Cn{;iw)) Btg;x) = 0

= Cuo () = g (0)e™¥/VTn (5.3)

At equilibrium, the concentration of the nth ion e-folds every time that the potential
decreases by the thermal potential V —assuming it is positively charged. The expo-
nential form arises because, once the dependence on the potential gradient is factored
out, drift is proportional to the concentration, whereas diffusion is proportional to the
rate at which the concentration changes with potential. Therefore, we must equalize
the concentration and the derivative of the concentration to counterbalance drift with
diffusion. The exponential is the only function whose derivative is proportional to

itself.
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Factoring out the potential gradient also makes evident the relative strengths of
diffusion and drift away from equilibrium. The ratio between the fluxes caused by
diffusion and by drift is equal to the ratio between the rate at which the concentration
changes with potential and the concentration itself.

We can compute the ratio between the diffusion and drift components by taking
the derivative of the logarithm of the concentration, because the derivative of the
logarithm of a function gives the ratio between the derivative of the function and the
function itself. Making use of this observation allows us to rewrite the Nernst-Planck

equation in a simpler form:

(r/)n(l") = _unanVTnCn<x) (Z,:Ei; - EZOEZ;> aqg(;t)
= _unanVTncn(:(;)%log (Cij((“?)> : (5.4)

where f'(u) is the derivative of f with respect to u. Notice that, by taking advantage
of the equilibrium condition ¢}, (v)/cp,(¥) +1/Vp, = 0, we can express the thermal
voltage in terms of the exponential equilibrium distribution and its derivative. This
substitution makes the deviation from equlibrium explicit.

Equation 5.4 has the same form as the drift term in the electrodiffusion equation
(Equation 5.1): The flux is given by the product of the concentration and the spa-
tial derivative of a potential function. Therefore, I call Equation 5.4 the driftlike
formulation of electrodiffusion. When the effects of both drift and diffusion are
included in the potential function, it has the form of the logarithm of the ratio of the
concentration profile and the concentration profile at equilibrium, with the potential
expressed in units of the thermal potential.

The driftlike formulation provides an appealing intuitive interpretation of the
behavior away from equilibrium. The average velocity of the particles—which is equal
to the ratio between the flux and the concentration—is proportional to the rate at
which the ratio between the concentration profile and the equilibrium concentration

profile changes with position. Therefore, when the concentration decreases less than
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the equilibrium concentration (in percentages) as we move up the potential gradient,
the velocity points down the potential gradient (i.e., drift dominates). On the other
hand, when the concentration decreases faster than the equilibrium concentration
as we move up the potential gradient (in percentages), the velocity points up the
potential gradient (i.e., diffusion dominates). Thus, both drift and diffusion tend to
redistribute the particles so as to approach the equilibrium distribution, and hence
the equilibrium distribution is stable.

We can express the electrodiffusion equation in yet another simple form by dividing
Equation 5.4 by ¢,,(z). Doing the division gives us the derivative of a quotient, and

therefore the result simplifies to

(5.5)

Equation 5.5 has the same form as the diffusion term in the electrodiffusion equa-
tion (Equation 5.1): The flux is proportional to the spatial derivative of a function
of the concentration—and does not depend on the concentration itself. Therefore, I
call Equation 5.4 the diffusionlike formulation of electrodiffusion. When the
effects of both drift and diffusion are included in the concentration function, it has
the form of the ratio of the concentration profile and the equilibrium concentration

profile, with the concentration expressed in units of the equilibrium concentration.

5.1.2 The Membrane Potential

Proceeding with the derivation of the membrane current, if there are N species of
ions, we have to solve /V transport equations,
dcn () O (z)

On(z) = =Dy, e — Upzn Fen(x) pe

(either Equation 5.4 or Equation 5.5 will do too) to obtain their fluxes; N continuity

equations,
0Jy(z,t)
ox

dc (z, 1)

- - nF )
‘ ot
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to obtain their concentration profiles; and one electrostatic equation,

P(x,t) __ pla,1)

0z? €

to obtain the potential profile.

The physical significance of the last two equations is as follows: The continuity
equation relates the net flux into a region to the rate at which the particle population
there increases, ensuring that each ionic species is conserved. These currents, which
add or remove particles from a given region, are called displacement currents. In
contrast, the flux moves particles through the boundaries of that region.

The electrostatic equation, which is called Poisson’s Equation, relates the po-
tential to the net charge distribution, p(z,t), produced by all N ion species; e is
the permittivity of the membrane. The second spatial derivative of the potential is
proportional to the charge density, because you integrate the charge to obtain the
electric field (applying Gauss’s law), and then integrate the electric field to obtain
the potential.

Needless to say, it is extremely difficult to solve these coupled partial differen-
tial equations in closed form; therefore, we must find reasonable assumptions that
decouple them.

The first assumption that we make is that the membrane is in the steady state.
That is, the displacement currents are zero and the ion concentrations do not change
with timea. Hence, the fluxes do no change with position. The steady-state assump-
tion allows us to solve either Equation 5.4 or Equation 5.5 simply by integrating both
sides with respect to z, if we know the concentration profile or the potential profile,
respectively. The second assumption that we make is that the electric field is con-
stant. That is, the potential, ¢(z) — (0) = —(z/d)V},, where V,,, = ¢(0) — ¥(d) is
the voltage across the membrane, and d is its thickness.

Knowing the potential profile, we can use Equation 5.3 to obtain the equilibrium

concentration profile:

Vi
6o (&) = ens (0) exp (VT d) |
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Knowing the equilibrium concentration profile, we can integrate Equation 5.4 to ob-
tain the flux, and convert the flux to current density .J, (in units of C/m?/s) by

multiplying by the molar charge for the nth ion species, z,F:

Jn = —unZ,QLFQVT Cn(d)/Cng(d) — C"(O)/Cno(o)
" f() 1/Cno($)dx

Vin (en(d)/cny(d) — n(0)/cn, (0)

d ( 1/ ¢y (d) — 1/cny (0) ) - (5.7)

(5.6)

= u,z2F?

Substituting the expression for ¢,,(z) into Equation 5.7, and converting the molar
mechanical mobility to electrical mobility, 4 = |z,|Fu,—a quantity commonly used
by device physicists—gives us

2 Vin ¢n(d) — ¢, (0)e¥m/Vrn
d 1 — eVm/Vrn '

To(Vin) = |zn| FE

It is easier to interprete our final expression for the membrane current intuitively when
we use electrical mobility rather than mechanical mobility. Notice that, swapping
cn(0) and c,(d) is exactly equivalent to swapping the sign of Vi, ; therefore, an anion
channel that sees a higher concentration outside the cell behaves just like an cation
channel that sees a higher concentration inside the cell.

Due to the constant-field assumption, the current is proportional to the product
of the drift velocity of the ions (u,V;,/d) and the charge carried by a mole of these
ions (|z,|F'). The proportionality constant is determined by the concentration of
charge carriers; it changes with the direction of the current because of the difference
in concentrations on either side of the membrane. When the membrane voltage is
large and positive, the current is equal to the drift velocity times the concentration
at the membrane’s inner boundary. In a similar vein, when the membrane voltage is
large and negative, the current is equal to the drift velocity times the concentration
at the membrane’s outer boundary. For small membrane voltages, V,, < V., the

exponential is close to 1, and 1 — exp(V,,/Vr,) = V},,/Vr,. Therefore, we have

5o (V) = 2Ly prn @ = al0)
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Thus, the membrane passes current by diffusion when the membrane voltage is
small, and there is current flow even when the voltage is O—except in the degen-
erate case where the concentrations on either side are equal. The current goes to 0
when the the drift and diffusion components cancel each other, which happens when
Vin = log(c,(d)/cn(0)), as we would expect from the equilibrium concentration profile
(Equation 5.3).

We can express the current in terms of the ion concentrations inside and outside
the cell, ¢}, and ¢, if we know the partition coefficient k, = ¢,(0)/c, = ¢,(d) /2. We
can also make the equilibrium condition obvious by defining E,, = —Vr, log(c!,/c?);
E,, is called the reversal potential for the nth ion, because the current carried by
this ion changes sign when V,, = E,,. Making these substitutions, and referencing the
potentials inside (1}) and outside (V;) the cell to a third potential, instead of to each

other, gives us

(5.8)

Vi—V, [eVimEn)/Vr, _ oVo/Vr,
Jo(Vip) = |20 | F Poc® <8 c ) ,
Vr,

e‘/;/VTn _— eVO/VTn

where P, = k, D, /d is the permeability of the membrane to ion n.

When several ionic species are present, the current due to each species is given by
Equation 5.8, with the appropriate values of electrical mobility u,, valence z,, and
thermal voltage V. In this case, equilibrium occurs when the sum of all the currents

1s 0.

5.2 Electrodiffusion in Transistors

The general outline of my review of electrodiffusion in the MOS transistor is as follows.
I begin by solving the classical drift-diffusion equation, which relates the current to
the charges. Approximating the gate and the channel to a parallel-plate capacitor
gives us a simple, physically intuitive, closed-form description of the current in terms
of the charge concentrations at the channel boundaries. Our next task, then, is to

solve for the charge concentration in terms of the potential at the surface of the
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Figure 5.2: POTENTIAL ENERGY OF ELECTRONS IN A NMOS TRANSISTOR

Potential profile along the length (0 < z < L) and the depth (0 < y) of the channel;
the potential is assumed to be uniform along the channel width (0 < z < W). Elec-
trons enter the channel at the source end (potential Vs), where they must overcome
an energy barrier (¢(0,y) — Vs). The barrier height is lower near the surface of the
channel surface (y = 0), as positive charges on the gate (potential Vi) attract the
electrons. Thus, all the mobile charge in the channel is in close proximity to the
channel surface, dying off exponentially as the potential increases with depth. The
electrons leave the channel at the drain end, where they drop down a higher potential
barrier that excludes entry from that end.
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channel, and of the potentials at the source and at the drain. Finally, we must relate
the surface potential to the gate potential, to obtain an expression for the current that
includes only the voltages applied to the transistor’s four terminals. The structure
of a transistor, and the profiles of charge density and potential along its channel, is
shown in Figure 5.1b.

Maher and Mead proposed the parallel-plate capacitor approximation to
solve the transport problem [121, 122]. And they used the charge sheet approxi-
mation, which assumes that all the mobile charge is right at the channel surface, to
solve the electrostatic problem. My derivation of the current—charge relationship from
the transport equations follows their treatment. But my derivation of the charge-
voltage relationship from the electrostatic equations extends their derivation to take
into account the distribution of mobile charge down the depth of the channel. This
refinement is especially important at the onset of weak inversion, where the charge-

sheet approximation breaks down.

5.2.1 The Channel Current

The derivation of the channel current of a MOS transistor begins with the drift-
diffusion equation, which governs charge transport in semiconductors.? The drift-
diffusion equation relates the current density, J, to the electrical potential gradient,

O /0x, and to the charge concentration gradient, 9Q/dx :

0Q(z,y)
ox

OY(z,y)

J($7y) = —Dn —MHQ(SC7y>—-8I—a

where D, is the electron’s diffusion coefficient and p, is its electrical mobility. The
current density is assumed to be uniform along the width of the channel (2 dimension),
but it may vary along both the length (z dimension) and the depth (y dimension).
By design, the direction of the current is strictly along the length of the channel; the

components along the width and along the depth are 0.

2The derivation of the current equations closely follows the treatment in Maher’s appendix to
Mead’s book, Analog VLSI and Neural Systems [122].
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I have switched to the conventions used in physics and engineering, where the
charge quantum is one electron—as it is in reality! To compute the diffusion com-
ponent, you multiply the charge concentration gradient (in units of fC/um3/um) by
the diffusion coefficient (1m?®/ns), and that gives you the current density (uA/um?).
To compute the drift component, you multiply the charge concentration (fC/um?) by
the electric field (V/pum)—expressed as the potential gradient—and that gives you
the force on a unit volume of electrons (fC-V/um/um3). Multiplying this force by
the electrical mobility (m?/V/ns) gives you the current density (uA/pm?).

Unlike the potential profile across the membrane, which is determined entirely by
the ion flux through the membrane, the potential profile across the transistor’s channel
is controlled by charges on the gate, and by mirror charges on ionized dopant atoms
in the bulk, as well as by the electron flux. Charge separation between the channel
and the gate violates charge neutrality. Consequently, the constant-field assumption
is not applicable to the transistor.

The potential energy of electrons traveling along the channel is shown in Fig-
ure 5.2. A good first-order approximation is to assume that the mobile charge
changes with the channel potential at the same rate everywhere along the channel—
the parallel-plate—capacitor assumption [122]. When surface potential increases,
more mobile electrons enter the channel, and this charge draws more positive charges
onto the gate and screens them from the negatively-charged dopant atoms down in
the bulk. Thus, the structure is analagous to two capacitors connected in parallel—
one between the surface and the gate and the other between the surface and the edge
of the depletion layer. This analogy is perfect if, for each of these capacitors, the
charges remain at the same distance from the surface as we move along the length of
the channel. In that case, the derivative of the mobile charge with respect to potential
is the same everywhere along the channel.

At first glance, you would not expect the parallel-plate—capacitor assumption to
hold when the mobile charge concentration may change along the channel length, be-
cause more dopant atoms are ionized where the concentration is lower. Consequently,

the incremental charge comes from dopant atoms further away, as the depeletion
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layer extends down into the bulk. This process is self-limiting, however, because the
mobile charge at the surface and the fixed charge in the bulk compete to cover the
gate charge. As the depletion layer grows, the charge contributed by the depletion
layer reduces, and the charge contributed by the mobile charge increases. In other
words, the parallel-plate-capacitor assumption holds as long as the depletion-layer
capacitance is smaller than the gate-oxide capacitance. For a typical 2um process,
with a 40nm-thick gate oxide and a dopant concentration of 2.1 x 10*/um?, the gate-
oxide capacitance exceeds the depletion-layer capacitance when the surface potential
exceeds 0.23V.

Proceeding with the derivation of the current, I define the channel capacitance at

a perticular depth Y as
CY) = 0Q/0Y|,_y,

and make the substitution

v _woQ 1 0

dr ~ 0Q 9z  Cly) o

into the drift-diffusion equation. The result is

(5.9)

T(w,y) = Vi <1 . @"’f’y)) 0Q(w,y)

Qr(y) Ox

Thus, the parallel-plate capacitor assumption makes the drift term look like a diffusion
term, with diffusion coefficient proportional to the charge concentration. Compare
this equation with Equation 5.5, the diffusionlike formulation for the cell membrane.
I used Einstein’s relation between diffusivity and mobility, D = pkT/q., where k
is Boltzman’s constant, 7' is temperature, and g. is magnitude of the charge on an
electron. T also introduced appropriate units for voltage and for charge: the thermal
voltage, Vi = kT'/q., and the thermal charge, Qr(y) = C(y)Vy.

Before integrating this drift-diffusion equation along the channel (z dimension) to

get the current, let us convert the charge to units of the thermal charge, Q7 (y). The



104

result is
) = V(1 + (o, ) LY,
x
where the symbols in lowercase letters represent quantities in units of the thermal
charge. Performing the integration gives us the current density at a particular depth,

y, in terms of the charge concentrations at the channel boundaries:

_#r % %
7 <D+2 =5
1% +
= —% (1+qD2qs)(QD—QS)a (5.10)

where gs(y) = ¢(0,y) and ¢n(y) = ¢(L, y) are the charge concentrations at the source
and drain ends of the channel. For clarity, I do not explicitly show the dependence of
the current and the charges on the channel depth, y. To obtain the total current in the
channel, you integrate Equation 5.10 along the depth of the channel (y dimension),
as shown in Section 5.2.2, where integrals for the charge terms are computed.

The effects of diffusion and drift are evident in Equation 5.10. Both diffusion and
drift are proportional to the charge difference, ¢n — ¢g, because the concentration
gradient is proportional to the charge difference, and the potential gradient also is
proportional to the charge difference (assuming capacitance is constant). Hence,
we can factor out the charge difference, leaving the average charge density, (gp +
gs)/2, and a constant—because the drift component is proportional to the number
of carriers, whereas the diffusion component is not. Consequently, drift dominates
when the mobile charge is large—compared with the thermal charge—and diffusion
dominates when the mobile charge is small.

The drift component and the diffusion component are equal when the mobile
charge is equal to the thermal charge, or, more precisely, when (Qp + Qs)/2 = Qr.
This point is defined as the threshold by Maher and Mead [122]. In the subthresh-
old regime, charge is transported primarily by diffusion; in the above-threshold

regime, charge is transported primarily by drift. Hence, we can obtain the current
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Figure 5.3: MOS CAPACITOR’S CHARGE VERSUS SURFACE POTENTIAL

The positions of the conduction band E., valence band E,, Fermi level Eg, and
the intrinsic Fermi level E; also are shown. We compute this plot from a closed-form
expression for the total charge given in [123], which was obtained by solving Poisson’s
equation in the y dimension. The temperature is 300K, and the acceptor-dopant
concentration is 2.1 x 10*/pum3—a typical value for a 40nm-gate-oxide process. Notice
that the charge concentration grows at one-half of the rate you would expect, taking
two thermal voltages to e-fold; this discrepancy is due to space-charge limitation
effects in the MOS capacitor structure. The situation would be different in the channel
of a transistor, because the heavily doped n-type drain and source regions would
supply electrons to the channel.

either above threshold or below threshold using the following approximations:

J(Qs,Qp) =~ “ZTQSQTQD, Qs, Qp < Qr, (5.11)
J(Qs, Qo) = ”LVTQSQQTQD, Q5. Qp > Qr. (5.12)

5.2.2 The Channel Charge

The current into the bulk (y direction) is practically 0, so we can express the electron

and hole concentrations in terms of the potential using the exponential relation be-
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tween charge concentration and potential at equilibrium. The problem of finding the
charge profile thus reduces to one of finding how the potential changes with depth,

so we solve Poisson’s equation in the y dimension:

Pip(z,y) p(z,y)

392 €si

N
3

where the net charge density is given by

,0(-73, y) = Q<p($ y) - TL(I, y) - */VA);
n(z,y) = noew(xyy)/VT7
p(z,y) = poe—w(z,y)/VT_
N, is the acceptor-dopant atom density, and ny and py are the concentrations of free
electrons and holes deep down in the p-type bulk material, where the potential is
defined to be 0, and the material is charge neutral.

It is easier to compare the relative sizes of the electron and hole populations if we

rewrite n(z,y) and p(z,y) in the following form:

p(z,y) = pe @Ev-er)/Vr), (5.14)
- 1 Ny _

where n; = p; are the electron and hole concentrations in intrinsic (undoped) silicon.
The electron and hole concentrations in the p-doped bulk material are equal to the
intrinsic concentration—and are equal to each other—when ¢ = ¢p. Therefore, ¢p
is also the potential difference between the p-doped bulk and the undoped silicon
when these two semiconductor crystals are in equilibrium. Because doping levels are
typically millions of times larger than the intrinsic concentration (n; = 0.0145/um?
at 300K), ¢r is about 0.4V—close to one-half of the bandgap of silicon.

We have to be careful not to apply Equations 5.13 and 5.14 in close proximity
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to the source and drain regions. These heavily doped regions are a rich source of
electrons, and perturb the electron and hole concentration at the ends of the channel.
Assuming quasi-static behavior, we can approximate the carrier distribution along
the channel in the vicinity of the source and drain regions with the exponential
equilibrium profile. In that case, replacing ¢ by ¢ — Vg gives the distribution at
the source end of the channel; a similar calculation gives us the distribution at the
drain end. To see why, we observe that the built-in potential makes the electron and
hole concentrations on the channel side equal to those in the bulk when the potential
difference between the bulk and the source is 0.

As we increase the surface potential, we observe three distinct regions, with one
of the three charged species in the majority in each region, as shown in Figure 5.3.
When the surface potential is negative, holes are drawn to the surface and accumulate
there, increasing exponentially as the surface potential decreases. When the surface
potential is positive, holes are repelled from the surface, and a depletion layer with
negatively charged dopant atoms develops. Electrons are drawn to the surface when
the surface potential is positive, and increase exponentially, whereas the depletion
charge increases as the square root of the surface potential. Hence, the electrons take
over when the surface potential becomes large.

The terms weak inversion and strong inversion are used to describe the size of
the invading electron population relative to the native hole population. The channel
is said to be inverted when the electrons, which are normally the minority carriers in
the p-type substrate, become the majority carriers. Inversion starts when the electron
and hole concentrations become equal; that is, when 3 equals ¢r. The channel is
said to be strongly inverted when the electron concentration exceeds the original
hole concentration—that is, when ¢ exceeds 2¢p.

The transistor has three distinct regimes of operation, depending on whether the
holes, the dopant atoms, or the electrons are the dominant charges. The first region is
known as the accumulation region (¢s — V5 < 0), and the other two correspond to
the subthreshold regime (0 < ¢s — V5 < 2¢p) and the above-threshold regime
(2¢r < 1bs — Vi), which were distinguished in Section 5.2.1 by the mode of charge
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transport.

Unfortunately, general solutions for the concentration-versus-depth profiles of elec-
trons, holes, and dopant ions cannot be obtained in closed-form. Therefore, I use a
first-order Taylor expansion at ¢ = v to obtain an approximation for the effective
densities of states:

/ i F)e?Vedup w2 (F(ths) — ViF' (1s) ) Vipe?s/V7 . (5.16)

— 00

This approximations To use this result, we perform a change of variables from y to

(5
s ~¢r—dc)/Vr d
ws Gl 6("/) ¢F ¢c /VT> O(w)VT
= d
_ 1 L nw—er—sa/vr g
- VT( > EWCwr T "

Q

Vf(

(¥s) n C () E(Ys)C ()Y
(5.17)

) ( EWy) , (n=1Vr ') | 1) (s~ pr—c) Vi
n &

where s = 1(z,0) is the potential at the surface. The reference voltage for the
surface potential, ¢., is equal to V5 at the source end of the channel, is equal to
and Vp at the drain end, and is 0 in parts of the channel that are isolated from the
source-drain regions. £(1) is the electric field in the direction normal to the surface,
pointing away from the bulk.

We can compute the electric field at the surface, £(1)s), by applying Gauss’ law,
if we know the amount of charge between the surface and the reference point deep
down in the bulk where the field is 0. We can ignore the mobile charge both above
and below threshold when we compute the charge, because in the former case the
mobile charge is confined to a thin sheet right at the surface, and in the latter case
the mobile charge is negligible compared to the fixed charge in the depletion layer.

Ignoring the mobile charge as well as the holes, which are both negligible compared
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to the depletion-layer charge in the subthreshold region, we have £(1s) &~ —Quep/€si,

Qaep = —/ 2¢e€si Naths; (5.18)

€si is the permitivity of silicon and ¢, is the electronic charge. We obtain this ex-

where

pression by assuming that the dopant atom density, Ny, is uniform from the surface
down into the depth, and that the boundary of the depletion layer is defined sharply,
with the charge density dropping abruptly from N, to zero.

Using Equation 5.18 and Gauss’ law, we obtain the function £(vs), and we sub-
stitute this result into the expression for @™ (z) in Equation 5.17 above, with n = 1,

to obtain the mobile-charge per unit area underneath the gate:

Vir Ge€sin Vo br—b )V
Q T — ( + 1) e(ws ¢r—dc)/ T7
( ) 27‘/}8 V 2(]e€SijVAws

= <VT 4 1) /Mﬁﬁﬂ@e(ws—w—m/w
22/)8 7/)5 2]\[A ’

for 1 > Vi, where
0 1 QQESiJVA _
Cdep(@/%) = 82/1 (_Qdep) = '2“ T, (0.20)
s s

is the depletion-layer capacitance. As the surface potential increases, the depletion-

layer capacitance decreases like the square root, because the depth of the depletion

layer increases like the square-root of the surface potential. We can use Equation 5.19

to calculate the charge terms in the subthreshold current-charge relation (Equation 5.11).
The dependence of the subthreshold charge expression (Equation 5.19) on the de-

pletion capacitance results in an inverse-square-root dependence in the pre-exponential

factor. This dependence comes from integrating all the mobile charge from the sur-

face down into the bulk. On one hand, when the potential at the surface is close

to that in the bulk, the mobile charge spreads deep into the bulk. Hence, the inte-

gral is large, and it decreases rapidly as the surface potential deviates from the bulk
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potential. Therefore, we must take into account the inverse-square-root dependence
on ¥ to predict low-level currents accurately. On the other hand, when the surface
potential becomes large, the mobile charge concentration dies off rapidly away from
the surface. Hence, the integral is small, and does not change dramatically with 1.

Therefore, the square-root dependence on 1) can be ignored at high-level currents.

5.2.3 The Surface Potential

Summing all the voltage drops that we encounter as we go from the bulk to the gate,
we find that
Vap = s + Vox + dus,

where Vi is the voltage across the gate-oxide capacitor, C,y, and ¢y is the contact
potential between the gate material and the bulk material. The voltage drop across
the gate-oxide Vox = —(Qiot + Qo) /Cox; Wwhere Qo is the total charge in the bulk, and
Qo is the charge due to electrons trapped at the oxide interface and ions implanted
at the channel surface. We introduce the flat-band voltage Vig = dys — Qo/Cox to
account for the constant voltage offset due to these fixed charges and to the contact

potential. Hence,

VGB = VFB + ws - Qtot(ww ¢c)/cox- (521)

When Vi = Vip, the surface potential is 0, and the semiconductor is charge neutral.
By substituting an expression for the total charge, Qyo, which is given by the sum
of the mobile charge (Equation 5.19) and the depletion charge (Equation 5.18), into
Equation 5.21, we can obtain a relation between the gate voltage and the surface
potential.

Equation 5.21 tells us that the amount by which the surface potential changes
when we change the gate voltage depends on the amount by which the total chan-
nel charge changes. The dependence of the total charge on the surface potential
changes radically when we cross threshold. The total channel charge increases as

the square root of the surface potential when the channel is weakly inverted, and
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increases exponentially with the surface potential when the channel is strongly in-
verted. Consequently, when we are below threshold, the surface potential follows
closely changes in the gate potential because the dependence of the total charge on
the surface potential is weak. In contrast, when we are above threshold, the surface
potential stays more or less constant because the dependence of the total charge on
the surface potential is strong. The dependence transitions between these two ex-
tremes in the region 2¢p < 15 — ¢, < 2¢p + 5kT"/q., where neither the mobile charge
nor the depletion charge dominates.

In subthreshold, the total charge is approximately equal to the depletion charge.
Substituting the expression for the depletion charge from Equation 5.18 into Equation 5.21
yields

Vep = Vip + ¥s + 7/ ¥ss (5.22)

where the constant v is defined as follows. Observe that the voltage drop across the
oxide capacitor, v/, equals the surface potential, 15, when the surface potential is

equal to 2. Hence, using the expression for Qg in Equation 5.18,

V2qesiNa

. (5.23)

v =

Solving Equation 5.22 for s gives us

W (2 12\ 2
1/)5 o= <——~—21 -+ (’{4— + Vag — VFB) ) . (524)

Equation 5.24 is approximated well by a linear relation throughout the subthreshold

region. Thus, we have

ws(VGB) P (15¢F + gbc) -+ /C(VGB - VSB)? (525)

where £ is the slope at V{ip. We choose Vi such that the surface potential is in the
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Figure 5.4: TRANSISTOR CURRENT VERSUS GATE VOLTAGE

Experimental and theoretical curves confirming the exponential relationship between
the current and the gate voltage in the subthreshold region.

midpoint of the range; that is, 1;(Vig) = (1.5¢F + ¢.). From Equation 5.22,

-~ OVgs Von=Vsn = T+v/@2vis(=Végr))

(5.26)

The physical significance of « is apparent if we expres