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CONTINUOUS STOCHASTIC PROCESSES

Summarz

A general review of stochastlc processes is given in the
introduction; definitions, properties and a rough classifica-
tion are presented together with the position and scope of
the author's work as it fits 1nto the general scheme.

The first section presents a brief summary of the per-
tinent analytical properties of continuous stochastic proces-
ses and thelr probability-theoretic foundations which are
used in the sequel.

The remaining two sections (II and III), comprising the
body of the work, are the author's contribution to the theory.
It turns out that a very inclusive class of continuous sto-
chastlc processes are characterized by a fundamental partial
differential equation and its adjolint (the Fokker-Planck
equations). The coefficlents appearing in these equations
assimilate, In a most concise way, all the salient properties
of the process, freed from boundary value considerations.

The wrilter's work consists in charactoriziﬁg the processes
through theso coefficients without recourse to sol&ing the
partial differential equations.

First, a class of coefflcients leading to a unique, con-
tinuous process 1ls presented, and several facts aro proven to
show why this class 1s restricted. Then, 1in terms of the co-
efficients, the unconditional statistics are deduced, these

being the mean, varlance and covarlance. The most general
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class of coefficients leadling to the Gaussian distribution is
deduced, and a coﬁplote characterization of these processes

1s presented., By specializing the coefficients, all the known
stochastic processes may be readily Studied, and some examples
of these are presented; viz. the Einsteln process, Bachelier
process, Ornstein-Uhlenbeck process, etc. The calculations
are effectively reduced down to ordinary firét order differ-
ential equations, and in addltion to glving a comprehenslive
characterization, the derivations are materlially simplified
over the solution to the original partial differential equa-
tions.

In the last gsection the propertieé of the integral process
are presented. After an expository section on the definition,
meaning, and importance of the integrel process, a particular
example 1s carried through starting from basic definition,
This 1llustrates the fundamental properties, and an inherent
'paradox. Hext the baslec coefflclents of the integral process
are studied in terms of the original coeffilcients, and the
integral process is uniquely characterized. It 1s shown that
the integral process, with a slight modification, is a con-
tinuous Markoff process.

The elementary statistics of the integral process are
deduced: means, varlances, and covariances, in toerms of the
original coefficlents. It 1s shown that an integral process
is never temporally hoﬁogenaous in a non-degenerate procéas.

Finally, in terms of the original class of admissible

coeffliclents, the statistics of the integral process are
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explicitly presented, and the integral process of all known

continuous processes are speclfiled.



CONTINUOUS STOCHASTIC PROCESSES

Introduction

The study of stochastic processes is concerned with the
statistical description of a one paramoter famlly of chance
variables WU (t). The parameter t is uauaily called the time,
and 1s always & real parameter belonging to a certain set T ;
t€T ., This set will generally be the full real line
T= (t[-=<t<+e) s For each te] the chance variable U (¢)
will, in this paper, be a one dimensional random varlable
whose probabllity measure is definoed over any Borel measur-
gble set F of the one dimensional Euclldean space, and which

is described by a dlstribution function H (¢, w)
Pa{u(-ﬂeE}Z f S Mithw)y , e,
E

The case when U may be an n-dimensional vector random
variable 1s & more or less straightforward generalization of
the one dimensional case, and all of the intrinsic features
of stochastic processes are displayed in this latter case.
For the more general case cf. Doob (2)+ and Cramer (2).

For a glven finite set of &e¢T, ¢, < ¢, ... <tx , the suite
of random variables {'LL(-(-,') A jsf,g,u-,lc} is said to form a pro-

cess. I1f, corresponding to any process, the assoclated multi-

varlate distribution

F('é'; Wil €a,Ua ;o ; ta, un) s Pa {u,(f,') £ 1.(_-,,3«1,1,..- f(f

- e e R G SR e e G e e R e R we G e e R MR AR e e S em ek e e e e

#*Underlined numbers in brackets refer to the bibliography at
the end of the paper.



is known, then the family of chance variables W) 1s saild
to determine a stochastic process. This follows the defin-
ition of Khintchine (2).

The modern viewpoint treats the succession of chance
variables UK) as points in a function space. For the pro-
cess compdned of a finlte number Kk of components as above
the process may be embedded in a K dimensional Fuclidean
space, and this condition is generalized to a countable number
of components and then to a non-denumerable number. In these
generalized stochastic processes there are a number of top-
ological difficulties that have not jyet been surmounted; for
a general exposition, see Doob (3). It turns out that probd-
ability conslderations can be bodily carried over to measure
tﬁeoretio considerations in the function space and results of
groat generality can be carried forward, No use will be made
of these notions in this paper, which contalns results of
primarily analytlcal interest. Certain statements llke
"almost all (continuous) functions Uw , a<¢ €4 , have
the property P" will appear however, It is falrly simple to
attach a meaning to this statement, for as shown by Paley
and Wiener (1), the set of contlnuous functions WUI(# can be
‘mapped onto the real axis by assoclating the Fourier coef-
ficlents of WU wiﬁh members in the dyadic expansion of a
real number X , and the usual Lesbegue measure can ba employed.

We give now a Lrilef outline of the various subdivisions
of stochastic processes and show where the present work fits

into this scheme. On the following page 1s a diagram of the



Stochastic
Processes
Markoff P. Yon Marioff P.
Discrete Discrete Totally
Time P. ' Parameter P. Discrete P,
Non Discrete P,

Continuous P. Discontinuous P.
Parametrically Temporally
Homogeneous P, Hon Homogeneous P, Homo geneous P,

\\
\
N

N
A Y
* Ornstein

N\
Einstein P, Uhlenbeck P,

Stationary P.




various processes and thelr interdependence, and we glve a
brief description of the main types.

The class of stochastic processes which most readily
vield to analysis are the so-called Markoff processes, and
indeed there has been virtually no work at all done on non-
Markoff processes owing to the extreme cormplexity of the
analysls. The Markoff processes are described as follows:
From the previoﬁa Joint distribution F 1t is clear that we
can obtain the conditional distribution for the variable
WU (ti) given the values of the preceding varilablea WU (t;)

§=1,2,3---k-1, Ve have, in fact, when ¢, < ¢. <. . ¢ t.

Ft,u; ta, Uy j - o - 3 Cmy gy tx,i-h:) - F‘(f“"";*"'“t}"') tx, ux)

Lt a5 8 00005 6, )
If 1t happens that F (€t - ) tue Uy @ te, Uk) = F ( fxor, Uims ) Ea, ux)

i.e. the conditional distribution for WU (t.) given the rest
of the variables actually only depends upon W (t«.) , the
ﬁenultimate varliable, then the process is called a lMarkoffl
proceas., Roughly speaking, the present distribution of the
variable WU (t.) 1s influenced only by the last known value
it assumed, and 1s not modifled by any earlier knowledge of
it we may have.

Thus 1t appears that a Markoff process 1s completely
detarmin;ad if we know for any S and t, (s<t) the prob-
ability that given U(s)=w we should have U () v for any
S , ¢t ,w,; and v. This conditional probabllity, which is
sometimes called a 'transitlon probability' 1s denoted by

F(s,w; ¢t,v)s Kolmogoroff, in his fundamental work (1),



was the first to give a comprehensive aurvéy of the general
Harkoff processes and to deduce results of a broad degree of
generality which covered most of the extant specilal treat-
ments. Kolmogoroff's principal contribution lay in giving
a rigorous postulational foundation for the temporally con-
tinuwus process, which before his paper was mainly heuristilc.
The earlier processes, often named after thelr dlscoverers,
were devised to describe certain physical phenomena such as
diffusion, Brownian motion, turbulence, etc. A rather com-
plete bibliography of the earlier work of the physicista 1ls
to be found in Ornstein-Uhlenbeck (1) and Doob (1).

A totally discrete Markoff process 1ls generally called
a Markoff chaln after its discoverer A, A. Markoff (1).
Here the set of times fq} 1s an enumerable set, as is the
set of values of the parameter {l*i}' Then the transition
probabilities F (¢, u; & ,‘U.J) y tc < t;, are seen to form
a finite or infinite matrix--the so-called 'stochastic mat-
ricesa!' whose properties were thoroughly investigated by
Romanovsky (1) inter alia. The larger part of the investi-
gations have been devoted to thls toples« In general, the
discorete processes can be reduced down to an urn scheme,
and some simple non-Markoff processes have been studied by
" this device (cf. Onicescu and Hihoc (1) and Hostinsky (1)).

In the discrete process if we pass to the limit in
elther the time or the parameter, so that these variables
tecome respectively continuoua,'we arrive at processes

envisaged by Kolmogoroff, but the most interesting case 1s



when both the parameter and the time can assume a continuous
system of values (the non-discrete process). In this case
powerful tools of analysis can be brought to vear upon the
problem, and many of the earlier results which were obtained
as asymtotic limits from the discrete processes may be
attained directly.

Under this class fall two general subdivislons--the cone-
tinuwous and the discontinuous process. By 'continuous' 1s
meant a process W(t) where the continuum of states assumed
by the random variable forms, in a sense to be specified
later, a continuous function. The discontinuoue processes
have been treated only slightly--Feller (g) has proven some
general theorems on existence and uniqueness.

The continuous processes treated by Kolmogoroff (1) are
characterized by certain partlial differential equations. The
~coefficlents appearingbln these equations give the most suc-
cinct formulation of the process imaginable.

The present work presents a more or less complete char-
acterization of the continuous proceases in terms of these
cooflfficlents. It turns out that an extensive treatment of
the unconditional (absolute) distribution of the process can
be made, and results of a quite incluslive nature deduced.
This is done solely in terms of the coefficients without
solving the differentlal equations for the transition prob-
abilities as 1s usually done.

The last section 1s devoted to & study of the integral

process, which is, as 1ts name implies, the process obtained



by integrating a glven process u(*). This process has im-
portance in certain physlical aepplications as well as in the
law of large numbers for dependent (continuous) events.
Again, a general characterization 1s available by means of

the coefficients appoaring in the differentlal equatlons
characterizing the process U,
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The Continuous Stochastic Processes

1.1 The transition probabllitiocs

In order to satisfy the general differential rela-
tions, to be given later, the transition probabilities
are presumed to satlsfy certain conditlions of anaiaticity
and regularity. These are:

1. F(s5w; ¢,v) has partial derivatives to the

fourth order dn 5 ; £ 3 . ;, ANAd V 3 S <T «
For fixed s and w these derivatives are uni-
formly bounded in 5 and w when ¢-5 >« >0 .

2. For the absolute momenta

o0

. ¢
mg“’(t,u,a) = f’\f-&l d, Fis w; s+85 v)

- 0

we have
a) m& (¢, uw, 8) EXiStS, (=242,3
b) L MY (tu a)= O, & 5

bH—>0

Se 3/
w7 (T, u a)
L—'wb = O

a=2  m* (¢ 4, a)
These conditions as enunciated by Kolmogoroff will
be collectively called conditions K , They imply that
large deviations in the parameter V occur very seldom

in small intervala, speaking loosely. More preclsely

0. f dy F(s,u,;sro,v)dv = o
MERZL ek g

for any g¢»>o « Also, on account of Liapounoff's general



1.2

inequality for the absolute moments, /&/g ;F: s condition
3 implies

(i %)
m (t,w, a)

a4—>90 m(” (%, ‘LL,A)

Since the derivative exists, we shall work hereafter

with the density function fcs;u;c,y) given by

%TFYLu;mW==f(%“iﬂV)

It is clear that for s=t the function f(su;tv) has
a discontinuity, being a Dirae function., We have, in

fact,

-

. CXV :
;&:’5 fe fsw,sea,v)ar - "

-0

from the conditions K .

The notion of continuity

The succession of sample values U (&) for ¢ varying
continuwusly generates a statistical aystem of functions
with an assoclated measure (probability) assigned in a
function space. Consequently, to arrive at a notion of
continuity we must utilize some mean value idea which
assimilates the salient neighborhood properties of U (¢).,
There are several of these avallable:

l. Continulty-in-probability

A process 1s called continuous in probabllity
(ce 1. po) at €35 1f to any two numbers J> o

and £>o there exists a K such that for any
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gk we have

'P,‘{|u(s+a)-U.¢s){>£} < 8

If this property holds for all s in the range T- (sfa¢s<é)
the proceas 1s c. 1. p. over T . Slutsky (1) presented
these ldeas and proved moreover that a funetion c. 1. p.
over T is uniformly e¢. i, pe. over T , and K can bo
chosen 1lndependently of s .,
2. Continulty in the mean
A process is called continuous in the mean at
t=5 1f to any 8> there corresponds a K such

that for any o <a <k we have

E(1Wie+a) - u(-(:)l) < 8
Again continuity in the mean is extended to the full
interval by requiring this property to hold at each
point of 1t,
3« p=continuity
A process 1s called p-continuous at ¢t-s5 1if to
any $>0 there corresponds a < such that for

O £ A <K we have

P o
E(lWeeay-ucar| )" <35

We see that whenever g<r then p-continuity implies
g-continuity. This follows from the well-known absolute
moment Iinequality (or H8lder's inequality)

.

v L
Pr;/’t* - ami
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1l

floreover, from the Bienayme-Tchebycheff inequality c. i. p.
follows from continuity in the mean. For

Ef{luee+a) = U )|}
&

P f IUe)-UW (> £} ¢

In this paper we work with continuity in mean square
(ce ms 8.) where p=2 in 2 above, In particular our pro-
cesses are c. i. p. and continuous in the mean. Khint-
chine (2) adopts the definition that the correlation co-
efficlent between W(t+a) and W) approaches 1 as A—>0';
L, R(¢++a, ) = 1 , This can be readily shown to
imply ¢. m. 8. Most other workable definitions reduce
down to ¢c. Me 3.

In a particular process (the Finstein process dis-
cussed in sectlion 2,4) Paley and Wiener (1) carried

through a delicate investigation of continuity. Thelr
main result 1s that for almest all functions U (€)

| te+0) = W)

2—>o0 AX

1s zero if A< and 1s not finite (with 1im) 1f A> Y%,
and this uniformly in € . The case A=% leads to deeper
questions involving the law of the iterated logarithm,
atc.

The important question as to whether conditions K
lead to continuity of some type will be deferred untlil
section II.

Fundamental relationshlps for the transition probabilities

A necessary and sufficlent condition that a non
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negative function f(sw;¢v) be the transitlon probabil-

ity for a continuous stochastic process 1s that for s, <s;¢ S,
(1) f f(S.,u;s“vjav:i

(2) f(sl,‘ll-} 53:\’) = [f(su‘u.‘; sa,W)Jc(Sz,WJSJ y)dwr

equation (2) being the Kolmogoroff{-Chapmen equation.
The direct solution of this integral equation is appar-
ently not feasible, and while its solution would yield
all Markoff processes, little progress has boen made in
this direction. See, e.g., Levy (2).

However it is true that 1f f(s «; t,v) satisfies
conditions K , then a sufficlent condition that
satisfies (2) is that it satisfy the ‘two partial differ-

entlal equations

Q kS
(3) Sf = - Acw 3 - Btew %‘f»
2 2% (an
(4) 2f = - F(awmE) + 25 (8 ev) £)
where =
A(5w) = ,A&._;.:; _é—f(v—’u.)f(s,u}Sf-A,v)dv
(5) 2B8%(su) = L & f (v=w)"f(su; sen,v)av

Als,w) and ®Ys«) existing everywhere, except possibly
over a non-dense set in the s,w plane, by virtue of
conditions K .

The transferonce of the problem, so to speak, to
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consliderations of partial differential equations leads
to important questions of existence and uniclty. Under
much weaker restrictions than conditions K , Feller (1)
has shown that (3) and (4) (generally called the Fokker-
Planck equations) are a consequence of the Kolmogoroff-
Chapman equation (2). Under certain restrictions on A
and 8% Feller shows that they detémine exactly one con-
tinuous stochastic process. Tﬁb conditions act, In a
superfluous way, as a boundary condition on the differ-
ential equations.

Thus the Fokker-Planck equation (3) togother with
the boundary condition

3&_-,:: f f(s-a,w; 5,v) dv =0 , S>30
Iv-wl>§

and the fact that f is a density distribution on the
variable V are sufficient to ensure the existence and
unicity of a process having prescribed coefficients
A(s,w) and B"(5%) subject to the above-mentioned re-
strictions, It is not even neceasary to suppose that
¥ has derivatives or momentes of any order, as demanded
by conditions K,

Since the results of this paper are of a more
formal nature, it will do little harm to suppose con-
ditions K are satisfied., The results will generally be

true for a wider class of processes.
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(6)

(7)

14

Interpretation of the differential coefficients

The two functions A(s,w) and R*(s,u) are seen to
play a central role 1in the theory of continuous sto-
chastic processes., Their intrinsic meaning is as follows:
A(s,w) 1s the mean velocity of variation of the variable
U at the displacement w , and during the time interval
S to s+4s , R3*(s,w) is the mean square veloclity under
the same conditions, or the 'differential dilspersion' of
the process, to use Kolmogoroff's terminology.

The functiona A and A" are condltional expectatlions,

and we may write

o Uls+A) - WU(s)

sy = «L)

where E (4]E) means the conditional expectatlon of the
random variable Y knowing the contingency ¥ .
Similarly for RA*(s w)

. = (U(s+o) - wes))™ | _
ZB‘-(SI'U,.) = f‘:e ‘: ( o ' UCs) = u..)

From equation (7) we shall later deduce a condition
that U(+) shall be c, ms 8. From (7) it is apparent that

“for W(H=w given

E( (Utsea) = wesy) | Wes) = w) = Ota) B (s w)
this Lvips.ohitz condition immedlately implies that for
@'>0 the process W(t) does not have a derivative. Thus,
if we concelve of a particular succession of values of
WU(s) out of the multiplicity availlable these will form

a continuous function which has a derlvative almost
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nowhere.

There are two tvpes of processes of special impor-
tance: the temporally homogeneous and the parametrically
homogeneous. A prc;cess is called temporally homogeneous

if the functions A(sw) and B%sw) actually only depend on «w

Alsw) = A(w)

BY(s.w) = B(w)

In this case the transition probabilit:,l' f(s,w; ¢,v) mani-
featly only depends on w, Vv, and ¢t-s, A process 1s
called parametrically homogeneous when A and 8 depend

only on S

A(s,%) @, (s)

B*(s,«)

"

Yo ()

and in -this case f(s,w; ¢tv) depends only on s, <,
and v-w,

The temporally homogencous case ls practically the
most important, for the general physical phenomena studied

have a temporally constant causative mechanism.
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{8)

(9)

(20)

16

II

Characterization of Continuous Processes

The class of adfnisgible coefficlents

The purpose _of this study is to characterize con-
tinuous processes by the functions A(sw) and B (sw),
The first step is then to find the class of functions
leadling to continuous processes. Thls 1is as yel an un-
solved problem, but varlous sufficient conditions are
known (ef. Feller (1) and Fortet (1)).

We first introduce the unconditional probabilities.
If at a time S, we lknow the unconditional density dis-
tribution for WU(s.) , say A (s.,u), then the unconditional

distribution at a later time s is glven by

o

Ch(s,w) = fh(so,w)f(s., w; s w)dw

-0

and this distribution evidently satiafies the equation

Bhisw) 2 (Als,x) hs,)) (B (5,%) h (5,%))
g it + -
2u 2w

obtained from (4)., It 1s the unconditional distribution
which 1s of the most practical importance and whose
properties are studied here.

Now from (7) we obtain by multiplying by h(s,w) and

integrating on w

o0
E((‘ucsm\ - Ucs))
o

Liaan
H—>o
~op

o0 - *
2 I B*(s,w) his,w) dw ‘u(s) 714-) his,w) dw

£ ( (wces+a) - ucs))")

a
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1f the interchange of limit and integral is pormissible,
In this case the existence of the left-hand slde of (10)
will inmply Lin, E(('utsm)-um)‘)"’ and the process will
be Cce M. 8. In any event, the slze of B%sw for large
w will be of critical importance, and we study this in
more detall.

The funoction QB%(s,w) 18 non-negative from (5), and if
1t is zero we obtain a degenerate process which is anal-
yzed in detall in seoction 3.3, Hence let us require that
R*(s,u) >0 ,

Now define ¢(su) as follows

al
Sy b dh
el Sl .[ @ (5, k)
Then ¢(sw) is monotoné increasing for each flxed s and
u increasing, and we are avle to prove the following

proposition: For continulty of the process it 1s neces-

sary that we have

(11) LM' 9(5,‘\4.’ = 4 oo y M ?("u_) » = e

U= + 0 U~ =0

We first show that the random variable Y(s) defined

oy W(s)

2 i e W ()
Y(S) z ﬁ'[ e = @ (s, (1)

has, for the functions A,s,4) and B'(sy) associlated with
1t,

A (s w)

A (s, 4)=
i V2 B(sw)

PPt US M) e A



(12)

(13)

W(s+a).

For
V(5+8) -Yis) = _* &b,
a Az A(s k)
UAS)
i - 5
= & (UG- uW) =———rs

where U(sta) > h > U(s) , by the mean value theorem.
Taking the expectation of both sides under the assumptioh
that UW(s)+*w , and noting that 4 = 9(%) has a unique

Inverse,

Y(s+a) - Y(s) ' WU (s+o) - WUs) L
E ( R Ym'g) “* a " k) u“”“) 3

On letting a=o we obtain

Al w)

A B R
vAS2Y VX B(s,w)

Similarly for 8,(s.y);

. - g
-AL ( Y‘S*'Q)’V“,) =3 ( U(S*")-'U.U)) m

8 {50 = 1.

How we conslder a process wherein .4(s5, W =0. Then
the differential equation asgsociated with the new random
variable Y(s? introduced above 1s

2f.¢(sx;¢,9) . Fi(s.x; t4)
Qs Ddx*

from the Fokker-Planck equation (3). The only non nega-
tive solution to this equation, satisfylng conditlons
is

fe-x)"

f.(s,‘x.;t,g) = zd"-‘if_.s e_ 4 (¢-5)




and this moreover satisfles (1) and (2). Reverting back
to the initial variable W , the transition probability

for the process Ult) 1s

(Pt - $is,u))

: .
. = 4‘{--5)
R ey Bt ‘

Suppose now that L P(s8,w) = Y(3) which 1s

finite for some s . Then

(¢ 4v) — Yis))*
= 4(¢-73) S0

&
j‘-(s,ao_',t,v).: zms.v)
and for all these § the probabllity of an Infinite saltus
in the process is finite durlng any time interval., Thus
the process 1s not ¢, m. 8. or e, i, p.

Peller (1) showed, by a particular example, that
conditions (11) were indispensable in order that the
general boundary value problem for the parabolic differ-
ential equations should have & unique solutlion, However
the more stringent requirement that Aw) and #A™(s.w)
should be bounded themselves was used 1n order to carry
through a complete proof of existence and unlcity.

Fortet (1) was forced to require that A(s,«) and %&-
be bounded, as well as a. two dimenasional Lipschitz con-
dition on g-e_ s in order for him to carry through an
extensive treatment of the continuity properties for the

process. ‘He remarks that 'if A(t,u) were infinitely large



-

with w the nature of _u () could be profoundly modified.' -
Some remarks of Bernsteln (1) seem to support this, but
the whole matter is far from being precise. In point of
fact, processes for which A(¢s, ») = O (x) do exist and
are well behaved.

Fortet's elegant result, with the condition on A(sw)
ecited above and with B*>(s, w) = 4 , is that U« is
almost surely continuous., HMore precilsely, lfor any fixed

¢>4, and for no fixed ¢ <41 we almost always have

A
= | Fakr VA #ga

provided o <a < x <1 where K is independent of t , and
U) is supposed fixed. In parpicular, this specifiles
the critlical case of the Einstein process analyzed by
Paley and Wlener for which the transition probability
satisfies (13): 4 %

a5 B*
It does, indeed, seem difficult to exactly specify

the interdependence between .4(s5«) and the existence,

uniquenoas and continuity of the process, From the pre-

ceding argument it 1s clear that B8%s w) - O™ from

conditions (11l). If we consider the Y(s) process above

for which #:1 , and use Fortet's result that A, (v y)

in.this process must be boundéd, formula (12) shows that

A(s, w) = O (%) for large . In this case formula

(10) ah_ows that the proceass 1s c¢. m, s. whenever h(5w)

has a finite variance. Since by conditions K, f (5«; €v)

has moments of order 3 and hence likewise for A(s ),

/



(14)

(15)

2.2

the processes discussed here are always c. m. S. Again
considering the Y(s) process for which ®'= 1 and 4, is
bounded, Feller's analysis shows the process exists and
is unique, and hence the same is true for the Ue) process
in which we have A(s, w) = O (w) and B s, w)= Ou*

We confine our attention to this class of coefflcl-
ents for which there is definite assurance of exlstence,
uniqueness and c¢ontinuity of the process., We shall, as
a matter of fact, be able to conclude these properties
for the filrst few moments of the distribution of the
process so that in particular for a process whose uncon-
ditional distributlon 1s speciflied by them (e.g. the
normal distribution, Poisson distribution, etc.) we shall
be able to conclude unlicity anew,

As a flnal additional condltlon we sometimes restrict

the class of coefficients to polynomials In w, so that

A (s, w)

]

L.Po (s) =+ y, (s) 2

B* (5. w) Yo(s) + Y5 w + Yos) u*

where the functions ¥ appearing in B" are supposed to be
such that 1t 1s positive definite. Thia class of coef-
ficlents will include as special cases all the known
processes.

The unconditlonal statistics

In this section we deduce expressions for the uncon-

ditional moan, variance and covarliance for a process with



any coefficlents A, B ,

The random variable U(s) 1s specified LY an uncon-
ditional distributlon H(s w) = Pa {u‘-s) £ “'} . This
distribution will have, like the transition probvabllity
F(s,w,€tv) derivatives up to the fourth order, and for

convenience we work with the denslity function
)
his,u) = Fa H(S,'u.).

This function then satisfies the two fundamental rela-
tionships (8) and (9).
The unconditional mean and variance are glven re-

spectively by

o

M) = fu_h(s,u.) A
(18) o

<
~*s) = f wrh (s, w) dw ~/u.‘*(s)

and since {- has moments up to the third by conditions
K , these two quantities will exist., In addition we
study the covariance (s, ¢) = E(u(sl utt)) in order
to specify the correlation properties of the process.

We have -

s, €)= j[ u.vh(s,u)f(s,u‘,-t,v)dud.v,

-0 _ o0

In equation (16) we differentiate bLoth sides with

respoct to s . The equation

ducsr _ f LT
ds @s

- O



will be true, under conditions K , for those values of
S for which the integral on the right converges uni-
formly.

-

We substitute for 3% the right hand side of (9)

o0

d sy i (k Als u.))+ 2 (his,w) B*G u.))} A u
_Aﬁs—— = u" e 2w (slu) . 2uU* ' v

- o

and integrate by parts. If the integrated parts vanish

at the limlits of integration, the second term is gero,
and finally

d

401%2’ 2 fA(s,u)k(s,m)Au.
S

— 0

The conditions that the integrated parts vanlsh are

) ks AGw | = o ()
(i 47 ‘ Sk
‘%I.(M‘,u) b“(s,u.)| = o ()

The first of these 1s surely met 1f we restrict A(s.w)

to the class of functions (1l4), since h(sw) 1ia supposed

to have moments of order three.

In an exactly similar manner we deduce that

od -
A&r‘(si ¥ I B%(s, W) his,w) du + 2| w A6 1) his w)dw- z/uts)[ms w) hes, ) d
35

-l <0

-0

-,;,a;ﬂ"ﬂ’f fu-h-fszu)A(e,v)f(s,u; t,v) dw dv
provided that

26 | his, ) Acs, ) | = o ()

2
|2 (R Brsw]| = o (%)



(19)

24

The valldity of these conditions imply the former ones
(17).

It is important to note that these équationa can
be deduced without appealing to the rather atrong con=-
ditions (18). PFrom equation (6) we have

wnu -
f Als,u) his,u)dw = f&” o um'umw)kmﬂ A

and the quantity under the expectation 1s supposed

continuous at 68=0 , helng A(sw) for that value; hence

the whole integrand on the right 1s essentially dominated
by lA(‘S,u.)| h(s,»x) , and if this is integrable we may
Interchange the integration and the limiting operations
in (19), giving

o0
IA(Sfu)hcs,u)Au. = Ll E(u“*:)—uu))

a—=o

o, oBaikike A(s+a) — ucs)
a

a—>o0

Apucs)
as

under the sole restriction that the integral on tho\left
converges absolutely. The same argument shows that Mcs)
is continuous and differentiable for values of S where
the convergence 1s absolute. Thus with the claas of
coefflcilents A(s,u) which we are atudyihg, and under the
conditions K it appesars that the uncondlitional mean

always exists and has a derivative,
A T¥s)
as

In a manner analogous to that above



-

.33? € (5 ¢) are shown to oxlst under weaker conditions,

and collecting the results we conclude

d
(20) —d'_—/;&‘ = I A(s,w) h(s, ) duw
(21) % = f B*(5u) his, ) dw "'2-[“'4“4“-—2/4.[,4#; S

0
(22) %—eczt) = r’fu his,w) A(€v) Fes,w; t,v)duw dv
these formulas being valid whenever the integrals in
question converge absolutely, or conditions (18) are
satisfied. _
If we substitute for A and B the class of coef=
ficlents givan by (14) we obtain the followlng set of
simultaneous differential equations to determlne 4t ,

o* . and 25 t)

(23) LUl . g, 50+ @, (5)pis)

(24) = d’:;(ﬂ = Yo (5) + Y (5) uis) + Yo (s) C(s8) + P (5) aXs)
2

(25) 3¢ C5E) = @ €) us) + 9, () esE).

A boundary condition on the last equatlion is plainly
e(s,s) = ¥s) + u™(s) , and as soon as we know the initlal
distribution h(3.,%) everything is determined. It 1s,
as a matter of fact, possible to solve the above sgystem
completely in quadratures,

2.3 The Gausslan distribution

In this sectlion we deduce the class of functions 4



(26)

(27)

o

and B" leading to the Gaussian distribution and show it
is included in the class we have under discussion. Spe-
cifically we show that a necessary and sufficient condi-
tion that h(suw) be normally distributed 1s

A(s,w) = @a(s) + @ (s)w

A (s, ) = Y, (s)
The proof 1s by characteristic functions.

Suppose that hew) is normally distributed., A neces-

sary and sufficlent condition for this is that its char-
actoristic function §£(s,y) is

oo . T i 9
; iwp- TP
§sp) = fe R e TR

- D
S o= uls) 4 TF e T™s)

On aceount of the exponential structure of h(sx) we

can surely differentlate under the integral sign,

o0

28 (s, p) R AL G L
__g_s__.r__ = Je a‘s_‘h(s,u.)du.sf(‘/(,r_%-r).

Now replace g—%‘

by the right hand side of (9) and inte-
grate by parts, following the same device used previously.
If A and 8" do not increase faster than any power of W,

the integrated parts will vanish. This gives

2E _ ‘e -9 g
3 fe [- 5% (k) + Zo (0] Ao

~o 2

p f e “Pahdu - r‘je"“”e‘k dw .

- o0

Under conditions K , A and 8" can be expanded in



a few terms of a Taylor's series
AGs,e) = @(s)+ fislu + fHs)u* +---
(28)
B W) = Y (3) 4 Y s)u + Yu(s) U+
and we note that for the derivatives of & with respect

to P we obtain

qu' - _5_ 1
5 = e #}llu i 6/“7, =3 f
9 ob
,;f = L f we Phdu= g-(é/,_-q--»’,)
a‘; * * cu > 'Y : 2 x
ef"z ( ]uc rhd‘l‘-=£(-/u-d'-2t/sd‘f+ r*f)

O eE ee de Eae  aE we em R e e e e e e e

On substituting the expressions (28) into (27) we get
for %gs_ » by virtue of the preceding derivatives,

A YRR B ¥ A0 e i N

P E PP E (G ) o E G age e o Hpt)
Now squate this to the preceding expression for
T
eliminating the factor £ ;
Cp (Pt hpns s, (/,,‘*+r')+---)— Pt Y. f-zip,/ur‘- Y, + i pte )
TP At P, 029w e ) e = (P - %:’ P~

Equating powers of P it is plain that we must have



{9’1 AR o
1’4 b 1/"1 = 2 _
/u.' = ?o + p‘/u..
(20) ,
‘—:‘E = “)La G i yl .r‘-
and that
Als u) = $o (5) + ¢, (s) w
(30) B (s W) = Y, (s)

Moreover the differentlal equations (29) agree with -
those previously found, (23) and (24), when A and B
are as above,

"For the spocial case of a stable distribution L ks )
depends only on ) this theorem was effectively proved
by Doob (1) who considered only the case %.=o , ¢, “=p s
Yo~ B8, 0> , p>o « For the case of the transition
probabllities an analogous result was proved by Feldheinm
(1)

2.4 3Some Special Processes

Ey speclalizing the coefficlients in (14) and (158)
we can study the unconditional propertiea of all the
known processes,

(a) The Bacheller process. Bachelier (1) (2) in
his studies on insurance and 1n§aatmanta was led to

consider the general parametrically homogeneous process,



Hore we have A=¢,(s) , B*= Y (s) and hes u) satlsfies

2 %
-glgl = — ‘f.(s,é"%_ -+ ‘%ocsjau:.

Bachelier actually discovered this equation by intuitive
reasoning from heat conductlon analogles.

By the results of the preceding section the Bachelier
process ls always Gausslan and wlll thus be specifled by
its first two moments whigh we now calculate.

Equations (23), (24), and (25) become

éf_g‘_ﬂ = P (3)

d TXs) (s)
(L
S As 1/'0

Hn

% C (€)= uls) Fais)

C(s,5) = rMs)p(s)

and thelr solution is
S

MA(s) = [‘P.‘ﬁ)dc{-r + MCS,)
50
s

cXs) = 2 f Yo (Y) 4;/ 4= ¢*(s,)

S,

Cls. €)= mis)ule + TXs) " €25
whilch give the complete properties of the process

(U= mis))™
h(s, u) — _1 e - 1"'(5)
2Vw @ (s)




It is supposed, of course, that the distribution 1is
known at the initial time s. , but_aa a matter of fact
1t 1s sufficlent to merely know the flrst two moments
of hiso,u) , 1,0, ucs.) and rXs) , 1n order to specify
the process. _

In applications, particularly in the study of time
serles, harmonlc analysis, etc., the correlation between
U (9 and Us) is important. This is easily computed from

the above quantities, and we have, by definition

R(s t_’ = C(S,f')'”‘_/u(slﬂfé‘} .
X r(s) r(€)

Substituting the calculated values into this expression

we obtain

8y g (s) ! %
Reesx (e S

. p .
([ #waws o)
o (/1
2 ( A 8
([ #ots + rs)

and the correlation is always positive. It is remarkable

that this 13 independent of ¢ (t).

It 1s seen that the only case in which, for s—e,
we get a limiting dilstribution is when [?}. (9) 44 cone
verges, for otherwise we should have a no;'mal distribution
with infinite variance. Put in this case tho limiting
distribution is not independent of the initial distribu-

= I
tion, for 1if [’V,l‘g){g = K » we have R (s,, o) = -r-;:>a.



This case stands in dlstinction to those processes where
h(s,w) —= A(u) for s—w= and h(w) 1is a distribution
function independent of the variable WU(s.). Such a
1imiting distribution is called a stable (or stationary)
process.
A special case of the PBacheller process is the

Einstein (1) process, which 1s both temporally and para=-
~metrica11y homogeneous. In this case 4 and 87 are
constants which we take to be O‘nnd 1 respectively.

We also put «(s.)-o and rs.)=0 g0 that A(s.,«) 18 the
singular distribution; l.e. W (s.)=o with probabllity

1. Then from the above

k)

w
Aid ol el & #(3-%)
V%7 (s-5) y 8§ >8%a
f %
R (5,¢) Ly T

This process, which 1s the earliest known example,
is supposed to describe the Brownlan motlon of a particle
in the absence of friction and inertia, and we return to
1t-1n sectlion III.

(b) The Ornstein-Uhlenbeck progcess. Ornstein and

Unlenbeck (1) discussed the process which bears their
name, after Doob (l). The process appears, however, to
go back to Smoluchowskl (1) who consldered it in connec-

tion with problems in diffusion. The process is the most



general Gaussian process, and the coefficlents are given
by (30). The above writers, however, treated only the

stable distribution. PFor the general process the equa-

tion of the statlistics are

) T
o % i | Yo ($) + @ (s) o™
(32) iy ool '
Belse) Po (£) pls) + @, (¢) C(S,E)
(33) 2t = r

using (23), (24), and (26). These equations.are easily

solved s :
[ pimau v _f f
) = e ,aCs.,)-ff%f'de % dx
So
s X
sz:nd,-s ? _zf 9. C9) dy
A e = 2 r*(s.) + U dx)
Ss
-t- »
fﬂ‘ﬁ)"’j : . 3 f‘f,(g)d-:,
e(st)=¢ * ¢(s55) v«(s)[ﬂme s ,,Lx)

s

where (C(s,s) = ,wws)+/“w3) as before. Since this is a
Gausslan distribution, h(sw) is completely determined by
these quantities. It also might be mentioned, in passing,
that the transition probability fhx,ud + v) 1s also
unigquely determined since 1t 1s a bivarlate conditlonal

normal distridbution, and we know the correlation from
C(s, ) &

When ¢, , ¥ #2 , and yh>o are constants, we arrive



at the temporally homogeneous (Gausslan process discussed
at length by Doob (1) and (g). This 1s supposed to repre-
sent the velocity distributioh of a particle under l
Brownian motlion and under the influence of dissipative
Doppler forces. Its (transitional) properties wore de-
duced by Ornstein and Uhlenbeck (1) starting from a sto-
chastlic differential equation governing the motlon, known
' as the Langevin equation, All of the salient properties
may be deduoéd from the above equations very ecasily.
It 1is customary to roquire that the wvariance *(s)
be a constant =", and we put ¢, =0 , ¢, = -p . Then

(31), (32), and (33) give

Lp

s -
(34) o] = /V’o = ﬁ =
%ccs‘ﬂ : - e(s,€)

and since B*:= 1Y, >0 we must have ﬁ>a from (34). Solving

these equations we get

MU5) = aulss) e fl3=%)

r*s) e

PR S
c(s, t)= ¢ A )(0':.'“-1-/“‘(5)) 3 S
and for the correlation

_ A (€=~-5) - J
r (%" + «*(5) ~ ucs)ete))

a:'l-

R,(S,*t'): e

o e—/é (€=5)



54

As t—=~ , 5 and % fixed, R(s#)~o, u(s)— © and

¥s) = ¢~ , and hence the limiting distribution does exlst,

S

w
i, hisw) = i e 2%

s> 00 fz7 0

corresponding to the Maxwellian equipartition law for
molecular motion. This. 1s an example of a statlonary
process.

(¢) A third example. As & final example we con-

slder the temporally homogeneous process in which

. b BT R
Yo=Y = @ 3 Yo' = X
so that
Al u) = pu

B, w) = Au*

Then the unconditlonal mean, variance, and covariance

are given by
d
Ls ° £
+ 4% - & ( r%s) +/u‘(s))

2 e (s€) = ﬂ e, ‘f‘)

of which the solution 1s

A (5) = uis) e/s(s-s.)

» (3-5.) ap(3-5,)
LrXs) = @ 3X(s-52) | AA%) & b )
2 o, )T T “-__—‘ﬂ (6 e . ﬁ#"(
e.zo((.f-f.} e (
= r 5. d * -3 "50
( (5.) + X p5.) (5 )) , RS



A (t-5)

Cis, ¢) = €(55)¢€
RiE &) L s ar

o (€]

and 1f, in particular —ﬂ =&X>a , ri(s) becomes

2X(5-5,)

(5.
Lris) = e s+ T

% by 2x (5-5.) .

Now suppose 1initlally that /a,'(s.) + T¥s5.) #£ O .
Then for ¢-- 0 , r’(¥—> =2 and Ris¢)=~ © with s fixed.
Hence a stable dlstribution (having a finite. variance
and thus satisfying conditions K ) does not exist. In
view of the two preceding examples 1t appcars that
may or may not have a limiting value of zero when the
1limiting distribution falils to exist, and its behavior
gilves no information as to the exlstence of limiting
distributions. However, 1in certaln processes 1t may do
80, as shown by Itd (l_];).

A remarkable feature of this process is that 1f
M(5.) and r'(s) are both zZero; 1.e. U (s5)<0 with probabllity
1, then us) and rs) remain zero for all s --that 1s,
WU(s)=0 with probabillity 1 ev}aryvhore. This state of
affalrs thus shows that 1f the process once 1in 1lts
" history attalned the value zero, it would remain at this
value thereafter, How 1 the process does not start off
at u=e its limiting variance is infinite, and we conclude

that the probabllity of the variable U«¢) having a zero in



any finite € interval is zero.

We can deduce the distributlon of thls process
quite easlly, for makling the transformation given pre-
viously, 1t 1s seen that the variable Y(s)= -'%—;_‘ Loy Ucs)
i1s a Bachellier process whose distribution we have

already deduced., We get then

(7o Loy —ues)”
2 .

- 4 T *s)
hiis u) V7 T(s) zx w &

whereln the anomalies of the process at «=¢ are mani-
fest. The origin of this singular behavior goes back,
of course, to the fact that B*G,w)= © when %=0 ,

The usual way of discussing the properties of a
process is to actually solve the originalAFokker-Planck
equations for the transitional probabilities, use these
to find the means, correlations, etc. The ideas out-
lined in this seotlon are seen to give the characteris-

tics directly, however.



3.1

IIX

The Integral Process

The integral of a random process

In the theory of discrete random variables an im-
portant question is whether the law of large numbers is
satisfled; 1.e. whether the mean value of the sum of a
large number of wvariables approaches the sum o the mean
values in a probability sense, In the case of independent
variebles thia question has been completecly soclved (see
Cramer (l1)); and in the theory of Markoff chains certain
results are known,

Since we have seen that the stochastic processes
considered here are (almost always) continuous, we should
be able to arrive at an analogue to the ordinary Rlenan-
nian integral, and the corresponding questions about the
law of large numbers should have a counterpart for the
integrals. Alao in certaln physical conslderations the
idea 1s important--thus the temporally homogencous Gaus-
slan process is supposed to represent the velocity dis-
tribution of Brownlan particles, and the integral process
will then give the distribution of dlsplacements of the
particles.

Suppose we are given a random variable U(¢) which
forms a continuous Markoff process in a ¢ ¢t < $ , We
subdivide the interval into m parts a=t¢. <€ < .- ¢¢,=6
and choose a point 2 in the (™ interval at random (e.g.

with a rectangular law of distribution) and form the sum



(38)

"

o WeEntei-e,)

L=

S

Then S is a random variable depending not only on the
mode of subdivislon and the points 7. chosen, but upon
the random variable U®) 1tself, If there exists a random
variable J such that for any given §>0, £€>0 , an 4

can be found for which iy i it-t,, | <7 will imply
Bl 5=l s et g

then the random variable J is called the 'integral in
probability' of U), and we write
)
J = f U t¢) dt
a

The process U (t) is then called 'intograble in
probability,' and it 1s clear how we should define
integrable in the mean (or in the mean square). The
expression (35) would be simply £ ([S-.J 1)45 (or
E((S‘J)1)7’< $ )« As before, these will imply inte-
grability in probability.

The principal result proven by Slutsky (2) is that
a process continuous in the mean is integrable In prob-
ability (over a finite range). See Fan (1) for a

detalled mccount.



D.2

o

In this section we consider the integral
. s E
X(s) - X(s.) = f?,(c'g)dj
so

where U(}} is a Markoff process considered in the pre-
ceding section. We study the propertios of X(¢) ,
showing it 1s again a Markoff process, and characterize
it by the functions Asw) and B'(sw) associated with the
process U(s). In order to attain a non-trivlial process
X(¢) an important modification must be made in the inte-
gral. This 1s almost a priori evident, for as previously
shown, the goneral Markoff process U(f) has a derivative
almost nowhere, whoreas X(t), belng an integral process,
presumably has a derivative,
Example of an lntegral process

Before embarking on the general theory, the inte=-
gral of a special process is analyzed by the finlte
Darboux sum limit. This will illustrate some of the
mathematical properties and the attendant physical im-
plications more clearly than a purely analytical approach.
This will also clearly exemplify the nature of the neces-
sary modification mentioned in the preceding paragraph.

Suppose we have glven a set of random variables U (¢!
defined for all t>0 , mutually independent gnd identically
distr.ibut.ad. For convenlience we let their common mean
and varilance be o and r*< e regpectively.  Also, let

their dlstributlon function be Fiw) and characteristic



function be (s)

Fiu) = P {Zl(-t) su}

o

P(s) = fe‘“'"aé/:m)

-— D

Now Ut+s) and U (#) are supposed independent, and
hence the process X (¢ will present a totally discontin-
uous function of ¢ ., lNevertheless, in a formal way, we

try to find the 'integral' of U #). To this end we put

.

tJ'zJ.h’ J j’—' °,1, 2

h = Acm't. >0

and consider the random variable X (¢.)
"

(38) Xits) = jZ_.,—’Zé(fj)k + Xt(o)
Now the process X (t.) 1s a discrete time Markoff process,
for X(€.)= X(te) + Ulter)h , and thus the proper=
tles of X(¢.,) » 1f we are given values of X(¢J, X{ﬁc—,}
etc. depend only on X(¢«) plus an uncorrelated increment
2 (€xei) b + Thus tho possibility of attaining a con-
tinuous iarkoff process, by allowing A—o, presents
1tself. :

Let &§(t,.s) be the characteristic function for the

variable X(t.). By the additlon theorem for independent

random varlatbtles



(37)

(38)

41

$ (tu,s) = (?(Sk))ni("l s)

and for convenlence we put Pa { X (o) =0} = 4 so that
$(o,s) = 4 + By hypotheals U(¢) has zero mean and

finite variance ¢*, hence ¢ (¢} can be expanded in a few

terms In a power series, glving

e g ™

- 1.1‘1-
§(tm\,5) = (1 -_— r: e o(s'l-“l.’)

To arrive at a continuous process we allow h—o
and -+ in such a way that nh=¢,— ¢ , a continuous

variable. Then we get
| Ly 'E.*
$(t,5) = _a,...h- v (- __——"‘: L a(J"/t'))
.

S

uniformly in (sisR<= , Thon Pr{Xt)=0o}=4 for all ¢
so that the variable X(¢) has no variatlion, being always
equal to its initial value zero., This stands 1n complete
accordance with the law of large numbers, for we have
essentially found the mean velue of an unlimited number
of random variables each having mean zero.

Howsver instead of defining X(t.)as in (36) let us

put
n

Xita) * 2y Bittdih + Kisf

J=r



(39)

(40)

42

then the above expression (38) for §(¢s) becomes

K
Crigh il 8 h
bt s) = sk (r- = *°(5“~’)
— O
s g
— T

and hence the density distribution for X(¢) is

a‘_‘;sx._.s_t_c-_.:—t
f(f‘.1)=z"‘1;—'[e & ds
-'T—w
xt
- i e- 2Tt

which is the fundamental Einsteln process.
This procedure clearly exemplifies why the process
has no derivative, and in the ordinary sense is not the

integral of a random process. 7The equation (39) 1s

‘simply defined as the continuous stochastic process con=

nected with the uncorrelated impulse process W (¥),
without reference to its mode of origin as the above
pseudo integral. ,

We see that the variable X(¢) satisfies a Lipschitz

condition
X(t+h) = X(¢) = O(/k)

in agreement with the result of Paley and Wiener (1)
noted before. This fact on the order of X (¢#+k)- Xi¢t) has

received much attention from various authors in the past.



Doob (2) calls 1t 'either an imperfection in nature or
in the mathematics,' depending on one's viewpoint, while
Khintchine (2) terms 1t a 'continuous idealization' of
the natural phenomenon, In any event, no matter how the
rationalization 1s attompted, the non existance of the
derivative must be regarded as a serious defect in the
statistical description of continuous random phenomena,

The derivation of the elementary stochastlc process
by the various writers is not dome by the above method.
Instead an artifice 1s employed which effectively masks
the true physical picture. This 1s done as follows:

It is noted that €y = o + 5 , and from (37) we have

Q(tmg-m,S) Q(t.\,s) i(fm,S)

: § (tattin ) s)

 (4u,5) & (tm, s)

for all m and » ., Now replace the discrete variable
t» by a continuous variable T, and require the same

functional equation to hold for it:
(2. +2,5) = Fir,s) (.,
The solution of this equation 1is
'rgocs)

d(r,s) = ¢

and 1t remains only to find 9¢s). It is shown by
Kolmogoroff (2) and others that

s*q
2

2~ fm—y
e, ey (5)

?(5) = i



(41)

where

(s x Y
—, (5) = / € o M L e e, PR

() (x) being bounded, monotone, and continuous at X=o0,.
If the process 1s to be continuous, however, = (s5s)=o0
and the two derivatlons for § (£s) agree--see Cramer (1).
Also the case when the 1nitlal distribution F(x) may have
an infinite variance is treated slightly by Levy (1l).
The general integral process is shown, in the fol-
lowing‘ section, to have the sams properties as the inte-
gral in the above process, l.e. it -will have zero vari-
ance., In order to arrlve at a non trivial result we
shall effectively have to employ the pseudo Integral
which has an incroment YA instead of h itself. This is
exemplified by actually finding the integral of the
Elnsteln processa X(¢) above. IHow X(t) 1s continuous, but by
(40) not of bounded variation in any + interval. Paley
and Wiener have shown, nevertheless, that its (Stieltjes)
Integral does exlst.

Again proceedlng formally, define Z(&.) by

L}

N - E vl

K=o

Z' Z Ut)h + Z(0o)

Kro j:o

Z(t=)



then £(#.) is a discrete time non-Markoff process, for
Eltnes) = R Bltn) = Bltm-t) + U (tu+t) k- and
the dependence goes back to the two preceding observa-
tions. Let @,(tws)be the characteristic function for
Z(t«) and choose €(o,5)= 1L as before. Then

i <
$,(tu,s) = Il I g(sh)
K=o

JIO

m(avrr)

= (gsh)) 2

L)

*rrht "'-:_t_"'ﬂ
= (i- s: +o(s‘A')) :

Again let hao, #a= , and mh=t, >t , giving

and this has for a distribution function

1 o _L__
. € ot g
J(({-'x) s *tr

In terms of the 'integrated' varlable X(t) the Z(¢)

process is agaln seen to have no derivative

Z(t+h) - Z(t) = X(t+k) O (V%)



3.3

(42)

(43)

In equation (41)'11: was necessary to have the time
tncrement Yh agaln instead of h , for we should have
again obtained a variable with zero varlance--hence the
X(¢t) process has no true non-trivial integral. An inter-
esting question arises as to whether the variable Z(¢),
being a limit of a discrete non-Markoff process, 1s a
continuous non-Markoff process. This question is
answered negatively in the next section.

The integral formulas

Starting with the fundamental formula

s

X (5) = Kisa) = [Z{(ﬂdt
3

which was developed in section 3.1, we study the proceass
X(s), and attempt to characterize it by the properties of
U(¢), which we presume to be a continuous stochastic pro-
cess associated with the functions A(sw and Bs«w),

VWie firat show the Xis) process is a Markoff proceas.
Suppose that we know X(s):x, , X(sx)=%, and that s <s,<s,
and let us calculats E(X(5.;)]X(5-)= X, ,X(s,) = X,), From (42)

53

X5y} = f U ) 4t + X (5.)

Sa.
and we can calculate the oxpectation under the integration

sign by Fubini's theorem

E (X)) | XG0 =x,, Xs2) = %,)
=y

= Xt | E(UBK() K, K(5.) = £2) dt

>



Now U(¢) 13 a Markoff process and hence

E (U X5.) %, Xis)) e %2) = E(UD | X(5.) = %2)

Thus the left hand side of (43) is independent of the

fact that X(5.)=- X, , and the X(s) process is accordingly

a HMarkoff process.

Since U#) has been proven c. ms 8., it is inte-

grable in probabllity, at least, by Slutsky's thsorem.

We have

S+ao

(43) X(s+2)—Xlﬂ. & _%_ J.Zi(tldf
s

and we use this formula in finding the functions A, (s, x)

and B'(sx) assoclated with the process X(s) . Taking
the expectation of both sides of (43) under the con-

dition that X(s)=X we find

X(s+a) - X(s)

s+a
(2 =X iy x) - [ E (o | X - x) at
5

and we obtain, on passing to the 1limit,

vt o il =X - x)

Likewlse
S+ 5L

(X(s+a) - x(20)~ |
: e f U ® Uy dtdy

s s

(45) ¢ ( Cisrn) - Kist ) /x(s;=x)

va)

348 cta

= & I[E(uumg)[xtshx)dﬂﬁ
- R



and on passing to the limit

B (s, x) =2 o.

Thus the differential dispersion of the integral
process vanishes, and we study the consequences of this.

Assume that for a process Xts) we have B*(s.x)=o.
Choose any bounded, single valued, non-constant function

Y(s, x) satisfying the equation

DV (5, %) 2 Y(s, x)
i s paalin.g ALS R —=

This is manifestly possible, since if ¥ 1s a solution,
ey

go 1is ¢, e . We assume A#¢ , and 1f, for instance

A= a (s)a,(x) -we could choose

=

X
dw
Yis, x) = fa,(s)dz +f e

X, ”<q

Consider the random variable Y¢) defined by

Yis) = Wis X(s)).

We now show that the coefficilents connected with the
process Y(s) vanish identically: A,(s,g)-so ’ 8,1(5,(5()50.

Following a device used previously

Y(s+a)- Yis) 'lp(s+o)xts+4)) - Y (35, X(3))

s a
2 L2y
a W+ (risra)-x) 3E + &5
= a
= » o
a (X(st8)— X(3)) g—;}; + (X(sto) -X(S)) R
A

+o(1)



Y(s+ A) - Y¢s)

5
<

X(s+a)- X(s) 2V

|

_‘-

¥

o
1]

a 2x

e
FRcs e —wesr) e OTY o Bid)

A 2x*

Now take the expectation of both sides under the assump-

tion that Y(s) = 4 = ¥(s,x) = Y(s, X(s)); x= X(s)

Y x(s A)—ks) |

the remaining terms belng small since B'(s x)=o0,

Letting a—o¢ we finally have
2¥ ¥
A (s 8= == P .A(s,x)gi—

F— e o B

In an exactly similar manner

(Y(s+0)~vy(s)) _ _(X(ste) - X))t (2 1/) T
a a

the order of the remalning terms being at greatest

(X(s+a) - X(s)) or A , both of which go to zero.

Taking the expectation of both sides under the same con-

ditions as previously, and letting 4a—o

B (s,4) = B* (sx)(;,x)

= o

which proves the assertlon.

For this process, equations (20), (21), and (22)
show that



A(s) = Cowak.

r>(s) = Cowal .
C(S,t) = Conak.
and moreover »h(S,u)‘= h(w) by équation (2). These

conditions hold no matter what initlal distribution we
choose. Thus, choose the initlal distributlon u(s)=0,
TH5.) =0 5 leee Pr {Y(s) = O§ =41 , and we have

Pa {‘/(s) = o} = 4 for all s . Hence the process

has no variation.

Now we return to the.original variable X(s) for
which we have assumed B™(s,x)zo0. Lither 4(5,.,4-50 o H
which case the variable X)) has no variation, or as above
we can find a random variable Y (s5) = ”¢(5,xm) so that
it has no variétiou. Hence the wvariable XG) is such %Hhat
WLk (SJ) = O for almost all functions X¢). Thus,
in the s,x plane an equation ¥(s x)=0 determines a
curve X=X(s) which 1s almost surely followed by the
process X¢), Thus for each s , X(s) is a random vari-
able with zero dispersion, and 1t takes on 1ts mean

value with probability 1. We conclude that for salmost

all functions
s

X(s) = f/“ff)df + & (s.)
So
This result is in complete harmony with the Einstein
process dlscussed in the preceding section, for which we

deduced that the varlable almost surely retained its



initlal value. As in the discussion of that process,

however, we can make a modification and establish a new
process., This modification consists of the same scale
transformation--namely, instead of defining B (sx) as in

(45) we divide by &' to obtain

S+0 s+A

Bi(s. x) = Line —AL;-J"[E (u(f)u(w), X(s): x) dédw
S

n

A—>o©O
S

E (Z(‘(s)/ X(s) = x)

This exprossion, in connection with formula (44),
enables us to deduce a process X(s) which has no deriva-
tive, and yet in the sense given previously 1s an inte-
gral process.

It is noted that in the formula for A« x) and B*(s.x)
we obtain expressions Involving the conditlonal expecta-
tlon of WU(s) , U¥s) under the assumption X(s)= x , and we
must have at least this knowledge of the joint distribu-
tion of L and X in order to specify the coefficlents A4
and B," « Consequently the procesa Xs) 1s not uniquely
determined by that of Uws). However, if UG)is independent

of Xt) we shall have

A, 08, %9 E(Ucs))

1"
1

/u(s)

B (s, x) E(UNs)) = oxs) + wis)

and since « and * have been deduced in terms of A4(35 w)

and B"(s,w) , the new coefficients are determined in terms



of the original ones. It 1s seen that here A, (s x) and
8,*(s, x) depend only on S , and hence we have a Bachelier
process, and ipso facto a Gaussian process. This siltua-
tion will occur, for instance, 1f the veloc¢lty of the
variable is independent of 1lts displacement, as in the
case of Brownlan motion, ete.

The difficulty in representing Jointly the velocity
W and the dispiaccment X , where both are supposed to
be Markoff processes, and the former the derivative of
the latter, is in view of the discussion above an inher-
ent one, and in fact represents a serious fault in the
structure of the stochastic process. Bass (1) and (2)
has studlied the joint distribution of X&) and WU«t) by
considering them jointly as a two dimensional vector
variabie, which should satisfy an extension of the Fokker-
Planck equaﬁion. He discovers effoctively the paradox
with the & increments above, and concludes a satisflactory
physical scheme cannot be so represented,

The integral statistics

Despite the fact that the coefficlente A, (s x) and

Br(s,x) are not determined from the Us) process, the

,élementary statistics can be found. We denote, 1n inte-

gral process, the mean, variance, and covariance by «cs),

0 *(s) and €, (s t):

/u, lS’

= (5]

E(K(s))

E (X'(s2) - 4 (s)
Ciis, t) =E (X1 X)),

W



In addition, the mixed covariance (,. (S,t)=t:_(ns)ulﬂ)
will be needed.

By using the formula

P
(46) Xi{s) = Xis,) * [’a(ﬂd{'
sﬂ

we can deduce these quantities. Taking the expectation

of both sides of (46) .
1
E(Xts1) = E(xts0) + [ El(ur)a¢
5o .

1

(47) A (S8) = M (s.) + f/« (t) &t

3,

and we get a differential expresslon for .« (s)

(48) % = uis)

and using (20)

Cod

7 [/Hs,u) his,w) dac .
As™ =

For the varlance we obtain, by squaring (46)

s g5
(49) (X(ﬂ)l = (X(s.J)"+2 fX(S.JZ((WMWvP ffu(wn((g)dwdﬂ
5

S.

and taking the expectations

s

aris) + yis) = Gr(5.)+ u7(s.) + 2 fc’,,(s.,,w} dw
sﬂ

A



& r2(s) & L ulris)

s
(50) as =0T s+ 2 j,_c‘w'g”“"

Tor the covariance €,(s5t) we use the expression

t ¢
(X(f)-X(S)) = ffﬂ(w) Zé(j)dwd-:{
=

€ 4
E((xu) - x(s))) : [ [E(z:m uu)) dw J;{
=~ ; i 5 3
E (x0)™= 2 F (xce) X(5) + f(xe)" = [ [ C(w, 4) dw dy

& -t
(51) & (5E) = ") + 4 (t) + ¢ (s) +,4,(s) _.[f(,'(w,gjdwdg
: e

28, (5,¢) d 7’ ¢) d u>(¢) 3
(58] . e At N TRt e —zf RS
-
¢, (s,¢)
——— - Q(S,t)-
D5 0¢

In order to atudy the mixed covariances we pro-

ceed as follows
v

X(€) - X(5,) = fzuw; dw

5.
3
X(t1UR) - X(5.) Ulr) = [ Uw) Uir) dw
s,

and hence taking oexpectatlons

: ¢
(55) c'(u_ (t,/l) = exu.. [54J /l) e f e (W, /E) dw

o



The only undetermined quantity in the above for-
mulas are the expressions (,, (5 ,2) , and in order to
determine this we must know the initlal joint distribu-
tion of Uis) ond X(5) 5 1.,e. h(S.; X, %) . It 1s only
in this case that we have the complete initial conditlions
specified, If f(s,,u;t,v) 1s the transition probabllity
for the process U(s) we irmmedlately get

a0 &0 a0

Cxu (%, n) = []/ux/m{s,;x,v)fw,, v n,w) dudvd x

- ol -ad

For the expression (yyu £t 5.) we get a slmpler expression

from (53)
+

Can (£5) = Cou (5,5)+ [ €ws.) aw

5.

in which we know

Coie l5n 0y = [f XU /u(fa;x,u.)dxdu ;
For the special case when _u(s) s M, (5) = © some of
these expresslons for the covarlance were presented,
without proof, by Loave (). At least one of Lodve's
results 1s incorrect--it is said that a necessary and
sufficlent condition that Uts) and X¢) be independent
(Le0e Couw (t,5) = 4 ¢/ ucs) ) is that C(s,¢) should be a
function of st alone, say D@¢/. Assuming they are

independent, we get from (853)

4
/u{/z](/u,[f)—/d-f(sl) = j e (w, 1) dw
s

o



and on using (47)

, 7 £
./“(,;J f,a/w}dw = f C(w, n) dw
5.

Jo

Differentiating both sides with respect to ¢ we obtain
¢ (t,2) = wit) m(n) , and substituting this in (51) we
obtain

A e (5,¢) =« Grrels AL ¥ R, (5) M, (<€)

which 1s not a function of ¥5 alone for an arbitrary
process X(s). We have proved, however, that if X¢) and
Ut) are independent, then Uis) and U(Y are 1independent,
which 15. prima facle a credible result.

Vie now prove that the integral process X(s) of a
temporally homogeneous proceas (s)is temporally homo-
geneous only if the U(s) process 1s degenerate, i.e.
Acs,u) = e, , BXsw)=0 , PoflUss-af-1 .
For 1f the process Xts) i1s temporally homogeneous then the
expressions E ( (X(s) - X(fa))( ) for kK:94 .. - mus t

be functions of s5-s5. only:

Fu(s5.) = E ((XCs)-X(5.))")

and we must have, slnce f‘ is a function of s-s. only,

(S}
e a
x
V)
-+
A

o

n

Q
w
°



For =1

s
£ ;;:f U (w) dw
5,

5 T 7, =/u(s)—/u(s,)

and hence u(s) = ¢owl = _i(s,) . Then [feis,s,)- uis,)(s-5.)
1rres§ective of the cholce of u(s).: In an identical
manner we show that o?(s) = r*(s.) = ¢mef. for any initial
distribution, Hence choose ¢*s,)=o ; then osr¥%s)=o0

for all s , ¥We have already characterized this phenom-
enon in section 3.3, and slnce AL S) :/1(5,) we must have
A(s )= tmat. 5, B (5 ) = 0 as asserted.

3.5 Speclal coefficients 1in the integral process

It 18 possible to deduce the unconditional statis-

tics ) 5 @' (5) 5 C(s,t) and Cxu(s¢) specifically for the
class of coefficients Asw and 8°5«) given by (14) and
(186). We obtain, on substituting these coefficients in
(48), (49), and (50)
L ) 21 dus, (€
d‘f" i % e % (fj —7?—
2—%‘ Cxuls,+) = Cxu (S,/—t) + .Zjﬂ, c-c-}/u., (s)
Aﬁ a2 2 9 c 2 1
75 (026 (€)) = 2 7€ Cxw (5.,€) + 2 (r(e) +_u*(e)

2 ¢,(n,¢) 4 d 4
o A 3 GrE) + 24, —;ﬁ’- -2 fe(w,f) dwdt

2



Qo

and these expressions in conjunction with tho differential
equations (24), (25), and (26) specifying the functlons
aTi(¢) ,/a/{—) , and ¢¢s,¢), enable one to find the statistics
for the integral process.

We note also that the integral of a Gaussian pro-
cess 1s agaln Gausslan (ef. Doob (1)), so that in partic-
ular if the coefflcients are of the form (30) the above
moments will complotely determine the probability dis-
tribution k,(s,z) for the 1lntegral process .

Finally, we can obtaln by purely algebralcal oper-
ations with the above statistics, a useful relationship
between the correlation coefficients of a process and
its integral process. We obtaln, by elementary calcu-

lations,
t ¢

2(1-R (£,0)) 6 (8) Gin) = (TGoe)- Gia)) - ff rwl rig) Riw,y) dw dy
n A

an expression which is free of the mean values.
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