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CONTIHUOUS STOCHASTIO PROCl':SSES 

Summary 

A general reviow of stochastic proccsaeo is given in the 

introduction; definitions, properties and a rough olnasifica­

tion a.re presonted toGether with tho pos1 t1on and scopo of 

the author's work a.n it fits into the general achene. 

The first section presents a brief summary of tho per-

tinont nnnlyticnl properties of co.nt1nuoua stochastic procos­

ses and their probability-theoretic foundations which are 

usod in the oequol. 

The remaining two sections (II and III), conprising the 

body of the worlc, are the author's contribution to the theory. 

It turns out that a very inclusive class of continuous oto­

chastio processes nro characterized by a fundamental partial 

differential equation nnd 1 ts adjoint (the Folckcr-Plan clc 

equations). The coefficients appearing in those equations 

assimilate, in a most conciso way, all the salient properties 

of the process, freed from boundary value considerations. 

The wri tor' a v10rk consio ts in charac tori zing the processes 
I 

throu3h theso coefficients wl thout rocourse to solving the 

partia.l differential equatlona. 

First, n class of coeffioionts leading to u uniquo, con­

tinuous process is presented, and several facts aro proven to 

show why this class is restrictocl. Then, in terms of the co-

efficients, tho unconditional statistics are deduced, these 

being tho mean, variance and covariance. Tho most general 
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class of coefficients leading to the Gaussian diotribut1on is 

deduced, and a oomplote characterization of these processes 

is presented. By specializing tho coefficients, all the known 

stochastic processea may be readily studied, and oome examples 

of these are presented; viz. the Einstein process, Bachelier 

process, Ornste1n-Uhlonbeck process, ·atco The calaulntions 

are effeotivoly reduced down to ordinary first order differ­

ential equations, and in addition to giving a comprehensive 

characterization, tho derivations are tuateria.lly simplified 

ovor the solution to the original partial differential equa­

tions. 

In the last section tho properties of the integral process 

are presented. After an expository section on the definition, 

meaning, s.nu importance of the integral process, a particular 

example is oarr1od through otarting from basic def1n1t1on. 

This illustrates the fundo.montal proportiea, and an inherent 

paradox. Next. tho basic coefficients of the integral process 

are studied in terms of tho original ooeff1o1enta, and the 

integral process ia uniquely characterized. It is shown that 

the 1ntegrnl process, with a slight modification, is u con­

tinuous Markoff prooeas. 

Tho e1ernentnry statistica or the integral process are 

doducod: means, var1nncos, and covarian~cs, in terms of the 

original coeffieionta. It is shown that an intogral proceas 

is never temporally homogenoous in a. non-degenerate process. 

Pinally, in terms of the original class of ndr.llssible 

ooeff1cienta, the statiatics of the integral process are 
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explicitly presented, and the integral process of all known 

continuous processes aro specified. 
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CO?:TINUOU8 STOCHASTIC PROCESSES 

Introduction 

Tho study of stochastic processes la concornad with the 

atatist1cal description of a ono parameter family of chance 

variables U Lt"). The parameter t. 1s usually called tho til~a, 

and is always a real parameter belonging to a certain not "T; 

-t 6 T . This sot will generally be tho full real lino 

I= (-t /--s-t ~ .... ..,) . For each -tET tho chance variable UL-t) 

will, in this paper, be a one dimensional random variable 

·whoso probab111 ty measure ls defino·d over any Borel moasur­

uble sot F of the one dimensional Euclidean space, and which 

is described by o. distribution function H (t, u) 

'Plf. f Ul-t) e E] = f ct~ H (-i, 1.t..) , 
f 

The case when Uc-tl may bo an n-dimensional vector random 

variable is a more or leas straightforward generalization of 

the one dimensional case, and all or the 1ntr1naic foatures 

of atooha.stic .processes are displayed 1n this latter caao. 

For the more eeneral case cf. Doob (2) ~:- and Cramer (2). - -
For a given finito set of tjET, t, < f). ··· ..(-i:J< , tho suite 

Of l"andom Variables { U. (-i"j ) J .J ~ I, 1-,· · •, < f is SO.id to .form 0. pro­

C088 e If, corresponding to any process, the associated multi-

variate distribution 

*Underlined numbers in brackets rofer to the bibliography at 
the end or the paper. 



is known, then tho fn.m.1.ly of chance vurio.bles 'U l+> is said 

to determine a stochastio prooeos. This follows the defin­

ition of Kh1ntch1ne (~). 

The modern viewpoint treats tho succession of chance 

variables 1,Htl as points in a .function apo,co. For the pro­

oess composed of a finite numbor ~ of components as above 
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the process nay bo embedded in a K dimensional Euclideun 

space, and thio condition is generali3ed to a countable number 

of components and then to a non-denumerable number. In thooe 

generalized stochastic procossea thoro aro n number of top­

ological difficulties that have not ye t been surmounted; for 

a general exposition, see Doob (~). It turns out that prob­

ability considerations can be bodily carried over to measure 

theorot1c considerations in tho runot1on apace and results of 

groat goneral1ty can bo carriod forward. No use uill be made 

of thoso notions in this paper, which oontnins results of 

primarily analytical interest. Certain statements like 

"almost all (continuous) functions UttJ , a.5-t ~ h , have 

tho property P" will appoa.r however. It is fairly simple to 

attach a meaning to this atate~ent, for aa shown by Paley 

and Wienor (.!), the set of continuous functions Ul-+J oan be 

·mappod onto tho real axis by associating the Fourier coef-

ficients of Utt-> \'1th members in the dyadic expansion of a 

raal number ~ , and tho usual Losbegue measure can bo emplo7ed. 

We give now a brief outline of tho various subdivisions 

of stochaatio prooosaes and show where the present work fits 

into this scheme . On the following page lo a diagram of the 
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various processes and their interdependence, and we give a 

br1or description of the main types. 

The class of stoohnat1c prooosses which most readily 

yield_ to analysis aro the so-called Markoff procesaes, and 

indoed there has been virtually no work at all done on non­

Markoff processes owing to the extreme complexity of the 

analysis . The Markoff processes arc described ns 1'ollows: 

From the previous joint dintribut1on F 1t is clear that we 

can obtain the conditional distribution ·ror the variable 

1.(C~~> given the values of the preceding var1abloa Llltj} 

~f: 1, ~ , 3 · · · 1<-1 • Via ho.ve, in fact , when t, < t ... < ... 4 r ,< 
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F (t,,u, ~ t,_ ,u..J· • .•. -"- ,,, . t •• ) F . (t-,,u.,; t, , L(.~,· ... ;, t-1e , u...,) 
~ J I. K-1 I "'-I< •1 • /( J Wll( ::. 

F { ~. I IL, i ~' , IA. J. ; •.. ~ 't..: I 00 ) 

If it happens tha.t F ( t ,}·'-1 ; · · · ; t1e-,, u,..., : -t., u<) ::. F { t-..,._, J u,._, -. t- ,., "'"') 

1 . e. the contl1t1onal distribution for U<'t',.J given tho rest 

or the variables actually only depends upon U l't1<-1) , tho 

penultimate variable, then the process is called a Markoff 

process . Roughl7 speaking, tho preaent distribution of the 

va~iabl& Ult"') is influenced only by the laat known. value 

it assumed, and la not modified by any oarlier knowledge of 

it wo may have. 

Thus it appears th.at a Markorf process is completely 

determinod if we lmow for any s and r, ( s <-t-) the prob­

ab111 ty that given 1,,(,(s) "'"" we should have U.Lt) ~11 for any 

5 , t , 11- , and v • This conditional probab111 ty, which is 

somat1rnea called a 'transition probability' is denoted by 

F (s, u.; t: J v) • Kolmogoroff, 1n his fundamontnl work (!), 



wna the first to r,ive n comprehonaive aurvcy of the general 

Markoff proceaaea and to deduce results of a broad dogree of 

gonorality which covered most of the oxta.nt special treat­

ments . Kolmogoroff's principal contribution lay 1n giving 
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a rigorous pontulational foundation for the tonporally con­

tinuous process . which before his paper was malnly hour1stic. 

Tho oarlier prooosses, often namod after thoir d iscoverers, 

were tlevised to describe certain physical phonomona such as 

diffusion, Brownian motion, turbulence, etc. A rather com-

plete bibliography of the earlier worlc of tho phys1c1s ts is 

to be found in Ornsteln-Uhlenbech. q) o.nd Do ob ( 1). 

A totallJ discrete Markoff proceso ia eenerally called 

a Markoff cha.in after its d1soovoror A. A. Markoff OJ . 
P..ero the set of times [ti} is an enumerablo set. aa ia the 

set or values of the parameter { uJ} • Then the transition 

pro babil1 ties F (-e,·, U.i ~ -t'.i, U,j) , t:, < -t:i , are seen to form 

u finite or infinite matrix--thc ao-called 1 atochastic mut-

rices' whose properties were thoroughl:r invostigated b y 

Romanovsky OJ inter alia.. Tho large·r part of t h e 1nvos ti-

gations have baen devoted to this topic. I n general~ the 

discrete procesnes ca."'l l> e roduood down to an urn scheme, 

nnd some simple non-Mo.rkof'f prooeases havo been studied by 

·this dovlce (cf. On1005cu and Mihoc (1) and Rostinskv (1)). - . -
In the .discrete process if we pasa to the. lini t in 

either the time or the parameter, so that these variables 

bocorie rospoctlvoly continuous, we arrive at prooesaoa 

e~1visaged b y Kolmogoroff, but the most interesting co.so is 



when both tho parameter and tho time can assume a continuous 

system or values (tho non-diacroto process). In this case 

poworful tools of anal1sie can bo brought to bear upon the 

problem, and many of tho earlier results which were obtained 

as aaymtotio limi ta from tho diaarete processes may be 

nttained diroctly. 

6 

Undor this class fall two genoral suodiv1slonn--the con­

tinuous and the dlscontinuous process. By 'continuous' is 

meant a proaoss U HJ whore the continuum of states assumed 

by the random variablo forms, in a oenae to bo apeoif1cd 

lator, a continuous function. The uiscontlnuoua processes 

have been treated only aliehtly--Fellor (g) haa proven somo 

general thoorems on existence and uniquoneas. 

The continuous processes treated by KolmoGoroff (1) are 

cha.raoter1eed by certain partial differential equations. The 

\ coefficients appearing in those oquations give the moat suc­

cinct formulation of the p~ooess imaginable. 

The prosont work presents a more or less co~pleto char­

acterization of tho continuous procoasos in terms of these 

coofrioients. It turns out that o.n extensive treatment of 

the unconditional (absolute} distribution of tho procoss can 

be made, and results o~ a quite inclusive naturo deduced. 

Thie is done solely in terms of the coefficients without 

aolv1nG the differential equations for tho transition prob­

ab111 t1os ao .is usually done. 

The last section is devoted to a study of the integral. 

process, which 1s, as its name 1mpl1oa, the process olitainod 



by integrating a given process 11<t). Thia prooeas has im­

portance in o~rtain phyoioal nppllcationa as well as 1n the 

law of large numbers for dependent (continuous) events. 

Again, a general churaoter1zatlon is availablo by rneann of 

the cooffiaienta apponring in the d1fferont1al equations 

characterizing the process tl{~). 

7 



8 

I 

~ Continuous Stochastic Procesaos 

1.1 ~transition probab111t1os 

In order to satisfy tho ecnoral differential .rela­

tions, to be given later, the transition probabilities 

are p~osumed to satisfy certain oond1t1ons of analnticity 

and regularity. These are: 

1 . Fts,u ; t , v) has partial derivatives to tho 

fourth order in s , 1: , z,t, , and v , s < t: • 

For fixed s and u.. those der1vat1vos are uni-

formly bounded in s and u. when -c- s ~ K. > o • 

2. For the absolute moments 
oO 

~<i1 {t,u., 4 ) = f lv-u.1' cl.,,. F<s,u.~ s~~.1 v) 

we have 

a} 

b) 

3 . 
~ 
6--0 

- cO 

ex 1s-ts, l= '.i 'J. , 3 

~ ..-m (i) {t; U , .:l} : 0 I 

.I) - 0 

">t"(CJ) ( t:, u , 4) 

,.,..,,,, (1/ ( -t, U.1 l.l) 
= 0 

' =- /., :l., 3 

These conditions as enunciated by Kolmogoroff will 

be collectivoly called conditions I< • They irnpl.y that 

large deviations in the parameter V occur very seldom 

in small intervals , speaking loosoly. More precisely 

f cl ., F ( S, U.; S t- A ..1 V) cJ. v = CJ 

,., ...... .,. e 
i'or anJ E > o • Also, on account of Liapounoff's general 
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inequality for tho absolute moments, l1f3 ~f: , condition 

3 implies 

.~ 

('J.) 

"Wt (-f:, IA,~) 

'wt Cd ( i, u., 6) 
o. 

A-'"0 

Since the derivative exists, we shall work hereafter 

with the density function f cs, 1.1.. ~ t, _v) given by 

; " F ( s, u; t 1 v J = f r s, 'U.. _; t, 11 J 

It is clear that for s =-t the function f ( s, -u.; -t, v) has 

a discontinuity, being a Dirac function. We have, in 

fact, 

,· x. "1 ,· x u... 
(s, u.. .i s+-c.., v) d.11 = e 

from the aond1t1ons K • 

1.2 The notion Q,f continuitz 

The succession of sample values U <t> for t varying 

continuously generates a statistical system of fUnctlona 

with an associated measure (probability} assigned in a 

function space. Consequently, to arrive at a notion of 

continuity we must utilize some mean value idea which 

assimilates the salient neighborhood properties of' Ult). 

There are several of those available: 

1. Continuity-in-probability 

A process is callod continuous in probability 

(c. i. p.) o.t t=s if to any two numbers $ > o 

and E >o there exists a K such that ror any 
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If this property holds for all s in the range T 3 (s/4~s$') 

the process is c. 1. P• over T • Slutsky (!_) proaonted 

these ideas and proved ~reover that a function c. 1. P • 

over T is uniformly c. 1. p. over T , and K can be 

chosen indeponden tly of s • 

2. Continuity in the mean 

A process 1s oallod continuous in the mean at 

i="' s if to any S >o thero corrosponda a K such 

the t for any o ~ ~ < /<. we have 

E ( I U. Lt+ 6) - u (-t) I) < s 
~eain continuity in tho maan is extond~d to the full 

interval by requiring this property to hold at oaoh 

point or it. 
3. p-oont1nu1ty 

A process is called p-continuous at ~=s 1r to 

a..riy E»o there corresponds a "'- such that for 

o ~ ~ <:: •<. we have 

,., ...L 
E" (IU.(t.-~) - 'U.(t>f ) ,. < s 

We see that whenever ~<p then p-oontinuity 1m~lies 

q-continuity. This follows from th& well-known absolute 

moment inequality (or H8lder' s inequal.1 ty) 

) 
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i.loreover, from the Biena~e-Tchob7choff inequo.11 ty c. i. p. 

follows from con tinuity in the moan. For 

E { l u Lt+~) - ult) 11 
c 

In this paper we work with continuity in mean square 

(c. m. s.) where p~~ in 2 above . In particular our pro-

ceases are c. 1. p. and continuous 1n the mean. Khlnt-

chine (2) adopts the definition that the correlation co­

efficiont between U ( t+t.) and '\A.l"*) .approaohos 1 as · A- o+; 

~ R l~+o., t l =- :L • This can be reo.dily uhown to 
e:..- o• 

1~ply c. m. So Most other workable definitions roduce 

down to Co n. So 

In a particular process (the Einstein process dis­

cussed in section 2.4) Paley and Wiener (1) carried 

through a delicate investigation of continuity. Their 

ma.in result is that for almost all functions U (-t} 

~· IU (i:+6)- Utt>I 
.c.-o A" 

is zero if ).. <'Ii. and is not finite (with llm) if X> 'h., 

and this uniformly in t • The case :>.. = 1: leads to deeper 

quostions involving the law of tho iterated logarithm, 

ate. 

The important question as to whother conditions K 

lead to continuity of some t j'"PS will be derarrod until 

section II. 

1.3 Fundamental relationships for ~ transition Erobnbilitiea 

A necessary and sufficient condition that a non 
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nege.t1 ve function f u, 1-1. ~ t , 11) be tho transl t1on proba.bil-

1 ty for a continuous stochastic process 1a that for s, <S.,<s3 

c.o 

(1) f I ( s,, u.. ~ s~.J v J a. v = 1. --
-0 

(2) f(s,Jv... ; S3Jv)-= f f<s,.Ju.;s:.. _, w)f(s,.,w;s, v}dw 

(3) 

( 4) 

(5) 

--
equation (2) being the Kolrnogoroff-Chapman equation. 

The direct solution of this integral equation is appar­

ently not feasible, and while its solution would yield 

all Markoff procosaes, little progreaa has boen made in 

this direction. See, e.g., Levy (g). 

However 1 t ia true that if f < s, u..; -t.J v) satisfies 

conditions K , thon a suf~1c1ent condition that f 
satisfies (2) is that it satisfy the two partial differ-

ential equations 

where 00 

Acs,1.1..)= ~ 
£!>-o 

+ f ( V - 'L<.) f ( S, 'W ~ S +-A, v) d. II --
i. 13 '.I. ( 5, u.) ~ ~~ ~ f ...,( v - 1.(,) ... f ( .s; u. _; s ... 0 J "' ) d " j 

- ""' 

Ats, u.) and ~"'(s, u.) exia ting ever]Whera, except posuibly 

over a non-dense set in the S,\.I. plane, by virtue of 

condi t1ons K. • 

The tranareronce of the problem, ao to apoak, to 
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conoiderat1ons of partinl <11fferent1o.l equations leads 

to important questions or oxiat-Onca and 1~~iclt7. Under 

much weaker restr1ct1ona than conditions K , Feller (l} 

has shown that· (3) and (4) (generally called the Fokker-

Planck equations) are a consequence of the Kolmogoroff­

Chapman equation (2). Under certain restrictions on A 

and 6 ~ Feller shows that they determine exactly one con-

tinuous stochastic process . The conditions act, in a 

aup~rfluous way, as a boundary condition on the tli~fcr­

ential equations. 

Thus the Fokker-Planck equation (3) together with 

the boundary condition 

~ 
6-0 

f f ( S - A , 'U. ; . S
1 

V ) (j. \I : O 

1 lf-'\41 > s 
s > 0 

and tho fnot that f is a density dintribution on the 

variable v are sufficient to ensure the existence and 

un1c1ty of a process having prescribed coefficients 

Al 5, 'IA.) and ~ .... , s,"") subject to the above-mentioned re­

strictions. It is not even necessary to ouppose thnt 

f has derivatives or moments of o.ny order, as demanded 

by cond1 tions •< • 

Since tho rosults of this paper are or a nnre 

!'ormal nnture , it will do little harm to suppose con­

ditions ~ are satisfied. Tho results will generally be 

true for a wider class of prooosses. 
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1 . 4 Interpretation of the differential coefficients 

(6) 

(7) 

The two functions A {s,u.> and 8 .. <~, u.) are seen to 

play a oontral role 1n the thoory of continuous sto­

chastic processes. Their intrinsic meaning is as follmvs: 

A p , u.) is the mean veloc1 ty of va.ria. tion of the variable 

U.4s) o.t the dlsplaoement u., and during the time interval 

4i to s • .;(.~ • B~(~, ~> ls the mean square velocity under 

the same conditions, or the 'differential dispersion' of 

the process, to use Kolmogorof.f' s terminology. 

The funot1.ona A and ~,. are condi tionnl expeotntions, 

and we may write 

A ' s, u.) - /J· £ (- t(.(S+.0.} - t(.(.s) I"' ) - ..um <Al s l -:- v.-
~ ... " 6. 

whore c<~I~) means tho oonditional expectation or the 

random variable ~ knowing the contingency 5 • 
S1m1larl:r for ~ ~ < s, u.) 

From equation (7) we shall later deduce a. condition 

that UHl shall be o . m. s . From (7) it ia apparent that 

· · for ·ucsl = u. g1 ven 

f°( ('1Hs~~>- U.<.'i))~, 1..U.sl = u.) ~ 0 (~) \\"{~. t.c..) 

th1a Lipschitz oond1t1on immediately implies that ror 

~~>o the prooess Utt) does n o t have a derivative. Thus, 

if we ·conceive of a particular suocession of values or 
Uts) out of the multiplicity available these will .form 

a continuous function which has a derivative almost 
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noTlhere. 

Thero aro two t ypes or processes of special impor-

tnnoo: the temporally homogeneous and the parametrically 

homogeneous. A process ie called temporally homogoneous 

if the fUnctiona A (S, 14) and /31.(s, u.) actually only depend on u. 

I 

In this case the transition probability f (s,u. ~ t,v) mo.ni-

fcstly only depends on u., v, and t-s. A process is 

called parametrically homogonooua when A and G~ depend 

only on s 

and in ·this case f < s,"'" j t , v J de ponds onl j" on s , -t", 

and V-1,t.. • 

Tho temporally homogenoous oaae ls practically the 

most important, for the general physical phenomena studied 

have a temporally constant causative mochanlsm • 

• 
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II 

Characterization Q.[ Continuous ?roceseea 

2.1 The class of admis@1ble cooff1c1ants 

(8) 

(9) 

{10) 

The purpooe of this study 1~ to characterize con­

tinuous processes by tho functions A(~,~> and B~< s,"'-) • 

The first step 1s then to find the alass of funotions 

leading to continuous processes. This is as yet an un­

solved problem, but various sufficient conditions are 

known {of. Feller (1) and Fortet (!)). 

We first introduce the unconditional probabilities. 

If nt a time so we lmow the unconditional density dis­

tribution for U.<so) , say J,. (So, u.), then the unconditional 

distribution at a later time s is given by 

ao 

k(~, u.} : r h.(So.1w)f(SoJ w; S, 1.(.) J.w 
-oO 

and this distribution evidently satisfies the equation 

'O k. ls, u.J 
'd s = 

')""( ~"(-s, u.) h (S,1.<.l) 

'Ou."" 

obta.1ned .from (4). It is the unconditional distribution 

which la of the moat practical importance and whose 

properties are studied here. 

Now from (7) we obtain by multiplying by h.cs, u.) and 

integrating on 'M.. 

oO • 

2. f B"(S, '14) ~(S, tc.) d~ 
-.o _.,,. 
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if the interchange of limit and integral is pormiss1ble. 

In this case the oxisteneo of the lof.t-hand aide of (10} 

will imply ~ E (( U.(s+A)-l(cs>)~) = o and the process will 

be c. m. a. In any event, tho a1ze of G'H, u) for large 

u.. will be of critical i1::ipo:rtanoe, and we study this in 

more detail. 

The tunotton ~~(s,'"-) is non-negative from (5), and if 

1 t 1s zero wo ohta1n a degenerate process \7hioh is anal-

yzed in detail in section 3. 3. Hence let us require that 

P,i\. ( S, 1")) 0 • 

Now define 'f'(S, u) as follows 

'f(S, u..) :: I 
("£ 

Then '/(-s,v..) is monotone increasing for each fixed s and 

1.(. increasing, o.nd we are able to prove tho following 

proposition: For continuity of the process it is nocoa­

sary that we have 

~ 
'tA.- - oO 

\Vo first show that the random variable y(s) defined 

by 
'\,l(.) 

Y ( S) : I r J..k 
Vi ~ 

has, :for the functions A,Ls, ~) and S
1
"'(s,1;1J associated with 

1 t, 

A, ( S, ~) : 
A ( S, U.) 1 

.8, (S,~)-: 1. . J 



(12) 

(13) 

For 
~(~+6)-Y<s> 

~ 

, by tho mean value theorem. 

Taking the expectation of both ·s1dea under the assumption 

tho.t U.(s).-i.4., and noting that ~:. 'fV"•) ha.a o. unique 

inveroe, 

E ( v_ 's ... ~~ - y ( s) I Y<sJ .. '.f) : E (u __ <s+_c:._) -_'U._Ci) i. I ) 
- C"" A ·r;..~u. ~) 1..(<..s) =u.. • 

On lotting -~- o we obtain 

A, < s, ::f) : 

Similarly for 6~(s,~ ); 

,.., :1. ( ~1. i. _!... ( y, s+ o. )-y(sl) = - Uu+o)-1.(<.s) · ---
~ 6 z n ... ( 5, "') 

Uow we cona1dor a process wherein A< s, 'U..)-:::.o. Then 

the differential equation associated with the new random 

variable ycsl 1ntroduoed above ls 

'a f. (:s, J( ~ t, ;;t) 

0s = a"&. f- I ( 5 J J( j -t-, ~) 
0 "~ 

from the Fokker-Planck equation (3). The only non nega­

tive solution to this equation, satiofy1tig conditions 

is 

f• ( S, ~; 't ~ ~) = 
1. 

--:::=:---;:::::==- e 
llfif o/t--~ 



and this moreover satia£1oa (1) and (2). Reverting back 

to the initial variablo u, , the transition probability 

for tho process U (t) is 

i. f (S,U.jt,v) : 

Suppose now that J,,;-.. 
'M.- .. 

fin1 te for some s ~ Then 

f ( i, oO j ~) v ) = i. 

%. {;r (t-s) 

!/('5, 'U..) 

e 
B<f,v) 

( 'I ( t-1 v I - 'I < s, u. 1) ..,_ 
4- (-I;- s-) 

: 
"" ( f.) \vhich is 

( 'J 1+1 v) - ytsJ} 1 

+li-s) >o 

and for all the3e s the probability of an infinite snl tus 

in tho process is .finite during any time interval. Thus 

the process 1s not c. m. s. or c. 1. p. 

Feller (1) showod, by a particular example, that 

conditions (11) wore indispensable in oruer that the 

gonaral bounc.lary value problem for tha parabolic cliffer-

ontial equations should have a unlquo solution. However 

the more st.rincont requirement that A<s, i.q v.nd ""-( s,u..) 

should be bounded themaolves was usod in oruor to carry 

through a complete proof of existence a.nu unicity. 

Fortot (_l) was forced to require that A (s,u.) and ~ 
'a1it. 

be bounded, as vroll as a two dlmonsional Lipschitz con-

dition on ~ 1 in order for him to carry through an 
'3 \L 

extensive treatment or the continuity propertios for the 

process . ·He remarks that 'if A£t,v.) were 1n.f1ni tely large 



w1 th 1.<. the nature of Ult) could be profoundly modified. ' 

Some remarks or Bernstein OJ seem to support this, but 

the whole matter is far from being precise. In point of 

fact, prooessea !'or which A (.s, u. J = 0 (u.) do exist and 

aro well behaved. 

Fortet1s elegant rea~t, with the condition on Als. ~) 

el ted above and wl th a-a. < c;, u.1 -= i , is that U l-t:J 1s 

almost surely continuous. More precisely, for any fixed 

c > i , and for no fixed e ~ ~ we almost always have 

U£-t+A) - U(f) 

~4 

provided o ~ o. ~ I(. ..:: :1. where t< is independent of -t , and 

Ul~) 1s supposed fixed. In particular, this speoifiea 

the or1t1oal case of the Einstein process analyzed by 

Paley and Wiener for which the transition probability 

satisfies (13): A= 0 I a2.: 1.. 

It does, indeed, seem difficult to exactly specify 

the interdependence between A (s,u) and the exiatonce~ 

uniquenoas and continuity of the process. Prom· the pre­

ceding argument it is clear that 8~(S", U) = 0(1{'-) from 

conditions (11). If we consider the Y<s) process above 

1'or which ~> i , and use Fortet' s result that A, < ~. :f J 

in this process must be bounded, formula (12) shows that 

A ( 5, u.) : 0 < 'l4) for large 1L. - In this case formula 

( 10) shows that the probe as ls o. m. s. whenever h ( ~. u.) 

has a finite variance . 'Since by oonditions 1<., f {S,u..~ -( ..,) 

has rnomonts or order 3 and hence 11kew1se for /t(s, u.), 



(14) 

(15) 

the processes discussed here are always c. m. s. Again 

considering tho y(-s) process for which and A, 1.s 

boun<lod, Foller 1s analysis shows the process exi3ts and 

is unique, and hence the saroo is true for tho U.ts) process 

in which we have A cs, "1.1..) = O (u.) and 8"1.(~ , u.) ~ Q(u'')• 

Wo confine our attention to this class of coeffic1-

ents for which there is definite assurance of oxiatenoe, 

uniqueness nnd continul ty of the process. ~'ie shall, a.s 

a matter of fact, be nble to conclude theso properties 

for the first few momenta of tho tlistrlbution of the 

process so that in particular for a proceos Y1hose uncon-

d1tional d1atribut1on is specified by them (o.g. the 

normal distribution, Poiason distribution, etc.) we sha.11 

be able to conclude un1city unew. 

As a final additional condition we sometimes roatrict 

the class of coefficients to polynomials in u., so that 

A ( S, '1.L.) -= 'fo ( S) + 'f, (.s) -u.._ 

" \Vhere the functions 1f appearing in B are supponod to bo 

such that it is positive der1nito . This class · or cocr-

ficienta will include as spoc1al ca.sos all the known 

prooosseo. 

2.2 ~unconditional atatiatica 

In this aeotion we deduce expressions ror tho uncon­

ditional moan, variance and covarlunco for a process with 



(16) 

A J 
'il.. ~ 

any coeffic ients ~ • 

The rnndom variable Ucs) is specified .in uncon-

d.1 tiono.l d1stri1mtion H (s, u.) -a 'Pl\. {U(s) ~ u.~ • This 

d1atr1but1on will havo, liko tho transition probability 

1=°(5, u.~~1 v) Jorivativos up to tho fourth ordor, and for 

cor.von1onee we work w1 th the dons 1 ty funo tlon 

h,(s, -u.) : 

This func t ion then satlsfioa tho two fundrunontnl roln-

t1onships (8) and (9). 

'l'ho unconditional rnoo.n and variance nro given re -

opoct1vo l y by -
,f'-(S) : f_ Uh,(5 1 1,.(..) Gt.U.. -­.., 
<1"".,.(s) : J -u..i. k. ( s, v..) o(.1.L. - /'" ... , s) --

nnd since f has momenta up to the third by conditions 

~ , these two quantities will oxint . In addition we 

study tho covarianco C ( s, t: J = E (U (sl U Le>) in order 

to specify tho corrolntion properties of the procoaa . 

We have 
oO 00 

C.(s,t) ~ f J UV h(s, u..)f<s,uj "t,v) d-ud.v . 

-oO --

In equation (16 ) we d1f!'ere ntiato both s1c.los with 

respoct to s • T'no equation 

°"' 

I 
-Oii 

~k(S,U.) 
u tJ s 



(17) 

(18 ) 

will be true , under conditions K , for those values of 

S for which the integral on tha rit;ht convorgoa uni-

formly . 

ah. Wo substitute for a'!> tho right hand side of (9) 

"'° 
J..j!;," l ~ f u. { - : "- ( '",,. .. ,A< > .... l) ,_ ~:. ( "-< '· "' e.'<• .... >)} .I."-

- oO 

and·intograte by part3. If the integrated parts vanish 

at the limits of integration, the second torm is zero , 

and finall7 
""' 

J..µ,sl = J A(s,u> k.cs, tL) d.u.. . 
cJ....s 

-oO 

The conditions that tho integrated parts vanish are 

)h.(s,1k)A£<j, u..)I = o(:._) 

\ ~~ ( k< S, \I..) ~ ... ( s, 14) I = 0 ( ~) 

The first of these 1a surely met if vie · rea trict A ( -s , -u..) 

to the class of rune tions ( 14) , s inoe h<s,\I..) is supposed 

to have nomenta of order three . 

In an exactly similar mnru1er we deduce that 

- oO -

d..:.~s\ .,, z f ~.,_('5.1 -u.) h.c:i ,u..) cl~ -t- i.f u,A(.:s, u.) h(s,11..)tJ.v...- i;;"'sf A<~"-Jltcs,uJdu... 
_,,. -00 - aD 

oO ... 

1-t ets,t) = [ J u.,h,(s ,u.)/{lt,vJf<s, u.; t-, v) du., d.11 
-oo --

provided that 

I h ( 5 , u.) A ( 5, 1.A..] I =. 0 ( -!i_,..) 

\ :u. ( k(5, ~) l';} ... ('S,u.)' : 0 ( ~ .. ) 



24 

The validity of these conditions imply the formor onoa 

( 17). 

It is inportar1t to note that ' these oquations oa.'1. 

be deduced without appealing to the rather strong oon­

d1 t1ona (.18) • I<"'rom equation ( 6) we have 

( 19 l J-A ( s, 1.<) h<s,,...) & u. • f ~~ € { ""::' - "-"' IU."1, ~) /.u,~1 d.v.. 

-~ -~ 

and the quantity under the expectation is supposed 

continuous at 6= o , being Acj, 'il) for that value; hence 

the whole integrand on the right is essentially dominated 

by \A<-s, u.)\ h,(s,u.) , and if this is integrablo we may 

1ntarohange tho integration an~ the limiting operations 

in (19) , giving 
oO f A ( s, u.) h. (S, u} .J'U- = --

= ~ _,,l{(s+o.) - ,C'.CS) 
6-o A 

\... 

under the sole restriction that the integral on tho left 

converges absolutely. · The same argument shows. that ;«'~) 

is continuous and di.fferentiabla for values of s whore 

the convergence is absolute . Thus with tho clao3 or 
coaff1o1enta .AC'5, u..) which we a.re studying, and under the 

contlitions K it appears that the unconditional mean 

always exists and has a derivative . 

In a manner analoeous to that above and 



(20} 

(21) 

. (22) 

(23) 

(24) 

(25) 

:t: e < s, -t) are shown to exist under weaker condl tions; 

and oollect1ng the results wo conclude 
oO f A(S, u.) /,,,(S , 1.A-) d.u.... -- oO -

~~.,, = f-B>-<~. 1'-) h.<~ , u.) d..1..(. -+ .z ! uAh dv.... - ::l.j"-1 Ah. d.1L 
-.0 -oo -oO 

"" oO :-r C<sJt) = r f u lt£s,u.) A ( i:-1 11) f < s, u. .; t , t1) du dv 
-oO _,.. 

thoso formulas boing valid whenever the integrals in 

queation converge nbsolutoly, or conditions (18) are 

satisfied. 

If .we substitute for A and a~ the class of coef-

fioients given by (14) we obtain the following set of 

simultaneous differential oquat1ons to dotermlno /"-• 

<r ~ , and c < s, ·t) 

j_ d.. q-'( $) -- 1/, , ,,1, .,/, } a. 6.s ro (s + Tt (SJ_,,A.(S) + p.<sJ C(s,, s) + :fi (-s) q-Ys 

'4:1 
3-f e<.s,t) - 'fo (-t) !"-''' + r.;, <+ J e (s,,;) . 

A boundary condition on the last equation is plainly 

e.<.s,s) = cr:a.<s) + ,µ .. ,~) , and a.s soon ua we know the 1ni t1al 

distribution hcso,~) everything is determined. It is, 

as a matter of ~act, possible to solve the above system 

completely in quadratures . 

2.3 ~ Gaussian d1ntribution 

In this section we deduce tho clasn or functions .A 



( 26) 

( 27) 

0 

and 0~ leading to the Gauaslan distribution and show 1t 

1s included in the clasa we havo under discussion. Spo­

cif'ically we show that a necessary and sufficient condi­

tion that h. ( 1,~) be normally d1utributod is 

A (5,lA.) "''fo <.'S) + 'f, (S) 1.1.. 

~)..( s, 1.1..) =- Vo < s) 

The proof ia by oha.ructoristic funotionu. 

Suppose that h.cs,1.1..) is normally dis tributod. A neces-

sary und sufficient condition for this ia that ita char­

actoriat1c !'unction F<s,1') is 

t(S, f'): f~t'.u..1'k(S,u.}d.u.. = 
-dO 

, 
On aooount of the exponential structure of ho,1'-) we 

can aurely differentiato undor the integral sign, 

--
'C)k 

Now replace iS by the right hand side of (9) and inte-

grate by parts, followine the snrde device uaod previously. 

rr A and e~ do not increase faster than o.ny power of u, 

the inte3rated parts will vanish. This elves 

!~ ,·1k1'(- 2._ (Ah)+ £ (t?,,_t..)J du_ 
3u. au~ --

: i t_[-e ;,IL1' A k du. - ;' J~ iu. t' e'I.. ,,i "'- . --
Under con11 tions K , A and 8 '- can bo expanded in 



(28) 

27 

a few torms of a Taylor's series 

A<s,u.)-= <jJ0 (s)+ ff,<slu + '/,.<sJu ... + ··· 

13"(~, v.) -= 1f'., [sJ + ?f,(sJ u 1 + 7f:..rsJ u.J + ··· 

and wo note that for the derivativos of f with rospeot 

to 1' Yte ob ta in 

j " {e ·~~h. ""- = 
-oc 

-oO 

On substituting tho expressions (28) 1nto (27) we get 

for ~ , by virtue of tho praced1ne derivatives , -as-

!f = ,·1''1°f + J''f,}<tj-t.-v-"rJ -'. t<f1 s</"" ... _~ ... --i..~r'"f+cr'f'° ... )+· .. 

Now equate this to the proceding expr"'as1on for 

~ f ~ ( · I <r"' ~) 
05 ~ s '~ 1 - 2 f 

eliminating the factor ~ ; 

' 3 ( 'f ) . I 11"""
1 

.._ +'-f 'f.,.r +'f,rJ"--~Yz.)"'-q-...... +· ·· = '1'/" - T f 

Equating powers of 1' it is plain that wo must have 



(29) 

(30} 

and 

{ If 1. = <P 3 
~ ... = 0 

i11 y.,_ = -:. 0 

{~' -
'f o + <p,~ 

o-;' -= 'tfo + '/, r.,_ 

that 

{ 

A(s, u.) = 'Ja(S) + 'f'1 lsl -u_ 

~'-( S, U...) :: 1{;0 (S) 

Moreover the differential equations (29) agree w1th · 

those previously found, (23) and (24), when A and 13 ..... 

are as above. 
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For the spocial case or a stable distribution"( Ids,«- ) 

depends only on u.) this theorem was effectively proved 

by Doob (JJ who considered only tho case '/o = o , '/, = -13 , 
1fc-=-f%_r. ... , [;>o. For the oa.so of the tro.heition 

probnb1l1t1eo an analogous result was proved by Feldhe1ra 

(l). -
2.4 ~ Special Proceasos 

By specializing the eoe.ff1o1ents in (14) and (15) 

wo can study the unoond1t1onal propertien of all the 

known processes. 

(a) The Baohelier process. Baohalier (l) (g.) in 

his studies on insuranoo and investments was led to 

consider the gonernl parar.ietrically homogeneous proceas. 
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Hor e vie have A: 'f.<s), f3~s 'i, ( sJ a.nd h.(s, u.) satisfies 

':I L 'O k_ () l..k_ 
~ = _ 'f• ( s } i"U. + "fo ( s) ~2. 

Bachelier a ctually discoverod this equation by intuitive 

roason1ng from heat conduction analogiaa. 

By the results of the proooding section the Baohelier 

process is always Gaussian und \rlll thus be 3peoif1od by 

its first two momonts which we now caloulata. 

Equations (23), (24), and (25} become 

and thoir solution is 
s 

_/'(S) ~ f 'f. (~}"ti + /'- <S,) 

s~ 

s 

0-~(~l :: ~ [ ~- lf:J} d.;J +- r"1-( s 0 ) 

s. 

<! ( s , t: J : ~ c s '/'< { i:l + r .... ( s J 

which give the complete propert ies of the procoas 

1. 
e 



It i s supposed, o f course , that tho distribution is 

knoTm at the 1n1t1al tlmo So , but ao a matter of fact 

it 1s sufficient to mcrel7 lmow the first two moments 

of' h.{sa.1 u.~, 1 . e . f'CSo) and r~s.), in order to specify 

the process . 

In applicntions , particularly in the study of time 

series , harmonic analyaia , otc ., tho correlation between 

U W and U<t) is important . Thia is easily computed from 

the above quantitioo , and we have , by definition 

R,(s, -t) = (! {5, f:)-,cU.(S/_A{i-} 

r(sJ tr{i:J 

Substituting the calculated values into this oxproosion 

wo obtain 

R. ( 5 , -t-) -= 
<r (.s J 

r (t:J 

and the cor rolation 1s al~ays positivo . It ia remarkable 

that t his is indopendont of ~ ( -t). 

I t ia seen that the only case in which, for 5_.. "'°, 
we get a li.rn1 t i ng dla tribut ion is whon /"; .. t;t) ":t con-

so 

verges , for otherwise we should have a normal distribution 

with 1nf'1nite var iance . But in this case tho limiting 

distribution is not independent o~ tho initial distribu-
"° 

tion , for if J -y,, C;J) ~ ,,, I( , we have I(, ( s,,.1 ao).:: /:[ )o. 

SD 



This case stands in ~1stinct1on to those processes whore 

h.(s, u..) - h<v.J for s-co and h.c-u.) is a distribution 

.function independent of the variable U <s.) . Such o. 

11m1t1ng dintr1bution is called a atable (or stationary} 

procoas . 

A special case of the !3nchel1er proceas is the 

Einstein (~) process, which is both temporally and para­

metrically homogeneous. In this case A and 8 ... a.re 

constants which we take to bo 0 and l respectively. 

We also put _,M<S.J:o and rl.(s.) -:. o so that hls., 1.(_) in the 

singular distribution; 1. e. U (So)= o with probability 

1 . '!'hen .from the above 

u ... 

h, ( s, u.) 1. e #- ( S-So} : 

z ~ii (S-S0 ) J S >So 

R. ( S, -t) 
) 

-t- ~ S > So . 

This process . which is tho earliest known example , 

1s supposed to deooribe the Brownian motion of a particle 

in the absence of friction. and inertia, and wo return to 

it 1n section III . 

(b) ~ Ornotoin-Uhlonbeck process. Ornstein and 

Uhlenueck (1) discussed the process whioh bears their 

name, after Doob (1). The process appears , however, to 

go back to Smoluchowak1 {l) who considorod it in connec­

tion with probloms in dif~usion. The proces~ is the most 



(31) 

(32) 

(33) 

general Gaus sian proeoss , and the coefficients are given 

by (30) . The above writers , however , trontod only the 

stable distribution. For the general process the equa­

tion of tho statistics are 

&.p.c sl 
t<. s 

:. 'f o ( s ) + cp,cs))"-

..!... J., r ... , 1J y o ( $) + 'f, ( s) a-"\., 
~ d.'S = 

'aC(S,'t'l 'fo ( f:) ,)'-{S) .+ 'f, (t} C( s, ·t) = ~-t: 

using (23) , (21}, and (25) . Theso equations . are oas1ly 

solved s • 

i <p , <~)~ ( f s - f 'f, <!J} ~ ) 
:=. e So (_A ( 50 ) + </o ( X) e S ,, cl'J( 

So 

,;<.!. ( 5 J 

S K 

1.f 'f', (,)~ ( ( s - 1. [ "'(!f} "-:1 ) 
= e 'o q-i.(50) + L 1fo (x.) e So dx 

So 

t-

[ 'f, ':JJJ.:i( f-t r"' 'f. (!I, a..., ) 
~(.S1t)=e s C(S, 5)-t-~ls) '/o<"-Je- s clx 

s 

where c (S, 5) = r-i..cs) +_,,(.(i.(s) ns before . Since thia is a 

Gaussian distribution, h(s, u..) is completely determi~od by 

those quantities . It also might be mentioned , in passing, 

that tho transi t ion probability f<s , u..; -t-, vJ is also 

uniquel y detarninod since lt is n bivariate conditional 

normal dist~ibution, and we know the correlation from 

c.cs,-t} • 

When 'f0 • Cf. '=I" 1 and "fo> 0 are constants , wo arrive 



(34) 

at the tomporally ho:moganeous nauasia.n process discussed 

nt length by Doob (!) and (2). This is suppoootl to rcpro-

sent tho velocity distribution of o. particle under 

Brownian motion and under the influence of dissipative 

Doppler forces. Its (transitional) proportles wore de­

duced b7 Ornstein and Uhlenbock (1) starting from a sto-

9haatic differential equation governing tho motion, known 

as tho Langevin equation. All of the aaliont properties 

may bo deducod from tho above equationo very easily. 

It is customary to require that the variance ~~(s) 

be a constant = r. ... , and we put 'fo = o , <f, ~ -13 • Then 

(31), (32), and (33) give 

0 

and since ~1.= 'tf0 > o wo must have I >o from (34). Solving 

these equations we get 

_µ ( 5) = /-' (So) e - ~ ( $ - S 0 
) 

q--S-(5) = v;.l.. 

ec.s,t) = e-(3 (-t--'5) ( Uc."l.. + ?.,_(s)) + > s 

and for tho correlation 

= e - t r-c - s J 
+ ~ s. 
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As ~- ,ce , s and So fixod , f( <s,-cJ-. c , ~(sJ - o and 

O"""~(,) -= o;:a.. , and henoo the 11mit1ng distribution doos exist, 

u ... 

/'I. (s, u..) = i. e - ~o:;:a.. s--
corrooponding to the Me.xwollian equipartition law for 

coleoular motion . This . is an examplo of a stationary 

process . 

(o) ~ ~bird example. As a f ino.l example we con-

sider the ter.1porally homogeneous process i n which 

so that 

.J 

A {s, u. J ~ 13u..- · 
8 .. (S, u..) '.:. o( U.~ 

Than the unoondi tionul moan , variance, and covo.riance 

are elven by 

of ;vhich the solution is 

;< ( s-s.) 
~ ( s) = /( ( s.) e r 



R.(s , -t) = 

13 { -f:-s) 
e (~ sJ e 

<r( S) (Jf i--s} 
- • e rr r-c-J 

and 1.f, in particular -13 = o< "> o , <r'L(s ) becomes 

?fow suppose ·initially that /"- 3
( S.) + irYso )-:/: o • 

Then for -c- oo , ~'1f~J- 00 and f?.{s,t) ..... o w1 th s- fixed . 
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Hance a stable distribution (having a finite variance 

and thus satiofying conditions K ) does not exist . In 

view of' the two precoding oxe.mples it appears that 

may or may not have a limiting value of zero when the 

limiting d1str1b<lt1on fails to ~xist , and its behavior 

gives no information as to the eJtistence of limiting 

distributions . However, in certain processeo ~t may do 

so , as shown by I to (1) . 

A romarkablo feature of this process is that if 

µ c5o) and r•( sa) aro both zero; 1 . e . U<s .. } :: o with probability 

1 , then ;usJ and ,-1(s) remain zero for o.11 s -- that 1s , 

'U ( s)=o with probability 1 everywhore . This state of 

affairs thus shows that 1£ the process onoo in its 

history attained the value zer o , 1t would remain at this 

value theraa!'ter. .Now if tha process does not start off 

at u=o its ~1mlt1ne variance is inf1n1to , and wo conclude 

that the probability of tho variable U~J having a zero in 



any fin1 te -t interval 13 zero. 

We cnn deduce the dintrilmt1on of this procoas 

quite eas i ly, f or makine tho transformation given pre-

viously, 1 t 13 seen that the variablo y ts J -:: 1 .IJ,'j U (s) 
(~OI. 

is a Bacholier process whose distribution we have 

already ueduced . Wo GOt then 

h t s, uJ = 

wherein tho anomal1os of the prooeas nt tl=o are mani-

fest . The orif~in of this singular boha.vior goos back, 

or course , to the fact that f3 1
(s,u.J::. o when u = o • 

'£he usual way of discussing the properties or a 

process is to actually solve the orleinal Fokker- Planck 

equations for tho transitional probabilities , use those 

to find the means , corrola.tione , otc . The ideas out-

linod in this section aro soon to g1vo the characteris­

tics directly, however . 
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III 

!h2_ Integral Procoss 

3.1 The intosral of ~ random procoss 

In the theory of discrete random variables an im­

portant question la v1hether tho law of' large numbers is 

satisfied; i . e . whether tho moan value of tho sum of n 

large nw::i.bor of variables approachos the sum of tho mean 

values in a probability sense . In the· case of inJopendent 

variables this question has been completely solved (see 

Craner (l)); and in the theory of Murkoi'f' cha.ins certain 

results are lcnown. 

Since we havo seen that the stocha!ltic processos 

considered hare are {almost always) continuous, we should 

be able to arrive nt an analoeuo to the ordinary lUer.ian-

nian integral, and the corresponding questions a.bout tho 

law of large numbers ahould have a counterpart for the 

integrals. Aloo in certain physical consldoratlons tho 

idea ls important--thus the temporally hor.iogencoua Gaus-

sian procesD is supposed to represent the velocity dis ­

tribution of Brownian particlos, and tho integral process 

will then give the distribution of displacemento of the 

pnrticlea. 

Suppose we are given a random variable U (t") which 

forms o. continuous Ma1--koff process in a.. ~ t ~ 6 • Wo 

a ubdi v1de tho intorval into 11. po.rts a. :: to < -t, < · · · <:: -t.., = b 

h 1 h · ti.. ( o.nJ c oose a po nt '?'.: in t a ' interval at rar..dom o.g. 

v11th u roctangular law of distribution) and form tho sum 



(35) 

s = 
"" 

2._
1

1 u. ( 't' ~ ) ( t- ~ - t 1-' - I ) 

i~t 

Thon S is a random variable deponuing not only on tho 

modo of subdivision and the pointo 't.: chosen, but upon 

the rnndor.i vnriable l.{(-t) 1 tsalf. If there exists a random 

variable J such that for an:r Elvon S > o, £ > o , an rr; 
can be found for which ~ \ -t . - t . I <. '>7 

( i) ' "-· ( 
will imply 

t>~ f \ s -JI ~ E ~ < $ 

then tho random variable J is called the 'integral in 

probo.b111 ty' o.f U Ct) , and wo wri to 

b 

J ~ I u Lt-) d.-t: 
CL 

The process U {t) is then onllod 'intograblo 1n 

probability,' anJ. it is olonr how wo should define 

integrable ln the moan (or in thA nean square). The 

exprossion { 35) would bo simply E (IS-JI)< 0 (or 

E ( ( 5 -Jt)'/1 

< S ) • As before, those will imply inte­

grab111 ty in probnbility. 

The principal result proven by Slutsky Cg) is that 

a process continuous in the mean 1a intograble :1.n prob­

ab111 ty (over a !'1ni te range) • Soe fr'an ( !) .for a 

detailed aocount . 



In this section we consider the integral 

s 

X ( S ) - X ( <o) = f 'U ( ;J ) d. )j 

so 

where U <~J 1s a Ma.rkoft process considored. in the pro .. 

ceding sootion. We study the propertios of )(et> , 

showing it 1s ago.1n a Markoff process, and characterize 

it by the !'unctions A£s,1'.J and B1
<s,u.) associated with the 

process U (S ). In order to attain a non-trivial process 

X (t > an important ri\ouifioation must be made 1n the into-

Bl'"al. Thin is almost a priori ovidont, for as previously 

shown, tha 3oneral Markoff process U<f) has a derivative 

almost nowhere, whoroas x~>, be1ne an integral process, 

presumably has a derivative. 

3.2 Ex!iffiI?le 9.£ ,!!!_ in!#egral process 

Before embarking on 'tho 6,0noral theory, the inte­

gral of a opec1al process is analyzed by the finite 

Darboux sum limit. This will illustrate some of the 

mathematical properties and· the attondant physical im­

plications more oloarly ·than a purely analytical approach. 

This will also clearly exemplify the nature of tho nocon-

sary modification mentioned in tho preceding paragraph. 

Suppose we have given a. oet of rando1:i varia.blos U (+J 

definod for all t ?- o , mutually independent ~nd identically 

distributed. For convenience we let their common mean 

and variance bo o and ,... ... .t:. o0 respectively. Also, let 

their <l1atrlbut1on function be F<u) and ohnracteristio 
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function be 'f< s) 

FruJ = p,,,_ { u {-t-J 1i u.} 

-
'f ( s, '::' 

J .,~ e d F r-u.J 

- oO 

. low Z/..«t-+ ~J and U (cJ are supponcd inclepondent, and 

hence the proceos U tr) will present n totally discontin-

uous function of t; • :iovortholess , in a formal way, \70 

try to find tho· 'integral' of U ft). To this end we put 

-f,J -:= j h_, J j :::. OJ 1,, 2,, ... 

h-:: c~-t. >o 

and consider the random varj,a.ble X { t-..... ) 
?t 
-I 

x ( t,,. } : ~ u (-t-j ) h + x { 0 J 
J~o 

Now tho process X (t"J is a discrcto time i·.~arkoff process, 

for X (t-"'--t-1) = X (f.+:.) + U {t~+ 1) '1, , and thus the proper-

ties of X ff" -1 1) , if wo arc ~1 von values of X (t..J, X (fr.: -r) 

otc . depoml onl;[ on X (ft<.) plus a.n uncorrelated increl":'lent 

• Thus tho possibility of attaining a con-

tinuous Markoff process, by allowing '1-o, presents 

itself. 

Let ~l't.,.,s) be tho characteristic function !'or the 

variable X ( t..,.). By the ad<li tion theorem for independont 

random variables 



(37) 

(38) 
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and for convenience we put 'f /1. { X l 0 ) = o ~ -= i co that 

~ ( o, s) = 1. • By hypo thoo is U <t-J has zero mean a.nd 

finite variance honca 'f NJ can be expanded in a fe'fl 

terms in a power aerios , siv1ng 

To arrivo o.t a continuous process we nllow h- o 

and ,,.,_ - 1n such a way thnt' ?th-= t"" - -t , a continuous 

variable. Then we get 

j_(t,s) =- ~(1.-
h ..... 0 

:::: :i 

uniformly in Is I ~ R < oa • '.rhon f'"" { X l-tJ = 0 } = i f'or all t 

so that tho variable Xlt) has no variation, bo1ng always 

oqual to its initial value zero . This stands ln complote 

a.ccordanco U'ith the law of lare;e numbers, for we havo 

osoentlall] found tho moan valuo of on un11m1tou number 

of random vn.riablea each havlnr:; mean zero. 

However ins toad of defining X (t-,..) as in ( 36) let us 

put 



(30) 

( 40) 
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then the above expression (38) for ~(f,"5) becomos 

4i<t ,s ) = ~ 
k-o 

( 1- -

= e 

and hence the density distribution for X(-t-) is 

f t f,x) = f 
oo . s ... rr- .. t' 

-<.s')C;-e z c1.. s 

-oo 

= 

which is the fundamental Einstein process. 

This prooeduro cloarly exompllfies why the process 

has no derivative, and in tho ordinary sense is not the 

1nte~ral of a random process . 'l'he oquation ( 39) is 

' simply <lof1ned as the continuous stochastic process con­

m~cted with tho uncorrolatod impulse process U ( t-) , 

without reference to its r10 .le of orir.;in o.s the above 

pseudo integral. 

We seo that the vaPiablo X(-t) satisfies 11 Lipschi t.z. 

condition 

x ( t-+ h.) - x { t-) ::: 0 ( (h) 

in agreer.lent with the reault of Paley and Wiener O:.> 
noted before . 'rhis !'act on the order of Xff+h.) - Xtt) haa 

received much attontion from various authors 1n the past . 



,. 

Doob Cg) calls it 'either an imperfection in naturo or 

in tho mathematics,' dapendine on one's viewpoint• ~hile 

Khintchine {!) terms it a 'continuous idealization' of 

tho natural phenomanon. In any event, no matter how the 

rationalization is attempted, tho non existance of the 

dE:>ri vati ve must be regarded as a serious do feet in the 

statistical description of continuous random phenomena. 

The derivation of the olementury atochaatio process 

by tho various writers is not dona by the above method. 

Instead an artifice is omployed wh1ch effeotivoly masks 

the true phya1cal picture. This 1s dono a& follows: 

It is no tod that t-n+?rt = t-""' + t-~ , and from ( 37) we hnvo 

for all n and '>'tt, • Now replace the discrete variable 

t'K hy a continuous variable -i:- , e.nu require the sar:ie 

:functional equation to hold for it: 

The solution of this equation is 

and 1 t remains only to find 'J.-"s) . It is shown by 

Kolr.10goroff Cg) and others that 

ic s ) =-
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whore 

"° 

f tJt..SA' - i - l. S,t fl 
= cJ. Pd x._ 

- t>O 

Q [ K) being bOUlldOd1 r:lOnOtono, and ContinUOUS at )( =. 0 • 

If the process is to be co:-itinuoua, however, ;I:/ { s J = o 

and tho trlO derivations for ~ <"tis) agr0e--aeo Cr!lr.l.or (1). 

Also the case when the inl tial distribution F(v..} may have 

an infinite variance is treated slightly by Lovy (1). 

The general integral procosa is shown, i n the fol-

lowing section, to have the same proportios as the 1nte-

grnl in the above process, i.e . it -will have zero vari-

anco . In order to arrivo at a non trivial result we 

shall effectively havo to employ tho pseudo lntegrul 

which has an incromont ...fr ins toad of h, its elf. '£his is 

exeopl1f'1od by actually .f lnd1ng the intocrul of the 

Einstein process X <t> abovo . now Xtt> ia continuous, but b y 

( 40) not of bounded variation in any -t interval. ?nley 

and ;11ener have ahO\m, nevertholcss , that 1 tn {Stiel tjes) 

integral docs ox1st . 

Again proceeding .formally, define l(t,..) by 

')-(, 

Z { -f '"-) = 2/ X { -f K) Y ft, + z ( 0) 
l(= c 
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then Z ff,...) is. a dis ere to timo non-Markoff process, for 

tho depenuence goes back to tho two precedinc; obsorvn­

tions. Let f 1 (t ... ,s) be the cho.racteriotic fu.""lction for 

l.{t ... ) and choose I ( o, s) =- i. as beforo. Then 
I 

1'\. I( 

~. (-t-.~> = -,, IT 'f(sk.J 
K, :o J:o 

m ( "'1 f- I) 

:: ( 'f ( s Jr.) ) :l 

Again let h-+o, 'H-""'°, and ?th-=t""_,, -t;, giving 

~ (t-, s)-= .1.,;.__ ( 1-
, h---. 0 

and this has for a distribution function 

f (-f, x.) = 
i 

;,, t- r 
e 

In torms of the 'integratod' variable Xl-t) tho Zt+} 

process is again seen to have no derivative 

~ ( -f+ '1.) - i! (t) = x (++Ii.} 0 ( yk) 



In equation ( 41) it v;aa necessary to have tho tirn.e 

1ncrornent fJ; again instead of' k , for wo sho ..tl ,l have 

ap,ain obto.ined. a varinble with zero vo.riunco--he n co the 

X(t) process has no true non-trivial integral. An inter­

e:Jting question a.rises n.s to vthothor the variable ;lt t) , 

being a limit of a discroto non-Markoff process, is a 

continuous non- Markoff process. This q uestion · is 

ans\Tercd noga ti vely in tho next oection . 

3.3 The integral formulas 

( 42) 

Starting with the fundamental formula 

which was developed in section 3.1, we study tho process 

X<s), and attempt to characterize it by tho properties of 

U<tJ, which we presur:te to be a continuous stochastic pro­

cess associated with tho function.a Ars, u.J nntl 8' .. ls, u). 

Wo first show the Xls) process is a Mo.r;roff process. 

Suppose that we know X<s,) ~ )'.., , X<sd = '): l. an d. that 5, < s .. < '5 3 

a.nu let us calculate E ( X ( 5.J) J Xls,) = 'X, ) X ls,.) = X' .. ) • From ( 42) 

S3 

Xls,J = f ZUt1dt + Xts.J 
s._ 

and WC CO.Il cnlculo.te the O.Xpectat1on under the integration 

sign by Fub1ni 1 s theorem 

(43) E(X(s3)}X(5,)=X.,
1 

X'(s .. )=~.z.) 

= x, t- ["E{U(f)/XIU • ,t.,, XI>.) ·.Z,)dt-
r,. 
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(44) 

( 45) 
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Now UH> is a Markoff process and hence 

Thus the left hand side of (43) is independent of the 

fa.ct that X lS,) = .X, • and the X(sJ process is accordingly 

a Markoff process. 

Since UffJ has been proven c. m. s., it is inte-

grable in probnbility, at least, by Slutsky'o theorem. 

We have 

X(s+11)-X<s2 
A = I 

6 

SrO. 

J u (-t) d-t 
s 

and we use this formula in finding the functions A 1 ( sJ x) 

and r.,;(s,k) associated vlith the process X<s). Taking 

the expectation of both sitles of (43) under tho con-

dition that X{s}=X we find 

S+4 

{ 
X(S-t-~) - )(£s}/ ) I f ) 

E A X<sJ~x =T E(U.u-J/XlsJ=:X. dt 
s 

and we obtain, on passinB to tho limit, 

Likewise 

s s 

E ( ( J({Sf:}-X(s)f Ix (5). )<) 
S-+6 f+.O. 

= ~ f [ E {UltJZitjJ/ X<sJ=,t.) Jfd,!J 

' ' 



and on passing to the limit 

"t>, 1 ( s J "X ) = 0 • 

Thus the differontlal disperBion of' the integral 

process vanishes , and we study the consequences of this . 

Assur.ie that for a process Xts) we hava 8'-('S, X.) = o . 

Chooso any bounded, single valueu , non-constant function 

~(s, t) satisfying the equation 

'O "f> ( s, X.) 
+ Acs, .x.) 

0 x. 

This is manifestly possible , since if ry is a solution, 
C,. "'f We assume A :f. o , and if, for instance so ls c,e . 

A= a., (s) t.ll. { X) we could choose 

s " 
1jrs/ x) i a, uJ dl L dw 

= + -W.J.. { W) 
K, 

Consider tho random variable Y(s) dofinod by 

We no\7 show that the coefficients connocted with the 

process Y<sJ vanish identically: A, {S, :J):: 0 , a,"L ( S/ !f) = 0 • 

Following a device used previously 

::. 
if(s+oJxls+tl)} - 1{-{s, Xls>) 

A 
a 1f ... 'C> '" '¥' A~+ (x{s+llJ- xcsJ} ~ + L1 ~ .. 

6 
~ '). '7'&.1/1 

A { X(St-A)- XisJ} ~s'#?' + { X {Sfb ) - J(lsJ) ~ ... 

A 

+ 0 ( i) 
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Y<~+11> - Y£5) 'O"" J( < s ? c.) - )( c sJ 'd 1/1 = -t 
A 0 s 6 -ax. 

( X (s+c.) - X {S)) ...._ 2 1.1/1 
O( i) + J x>- + 

fl. 

Now take the expectation of both sides under tho assump­

tion that Y<~> = ;J -= '7f t s / x) :- if ( _s / Xts)}; % = X (s} 

E ( y(s+ ... llJ-Y<sJ /y t~J = 4 )= IJ1/- E{ ~fst-1!1.)-x<s)/ )af, ) 
Q ., ~/ as + 6 X.lsl-=')C J X + o(1. 

the r omaining terms boing small since 73 i.(s, JC)= o • 

Letting 6- o wa finally have 

A I ( s, ;J) :: 

::: 0. 

In a.n exactl1 similar manner 

(ye S+A) - Y<sJ),_ 
= A 

the order of the remaining terms being at Broatest 

{Xlst-e.} - XtsJ) or .6, bo t h of whi ch go to zero . 

Taking the expec tation of both s i des under the arune con­

ditions as previously, and lotting 6- o 

~ 0 

which proves the asserti on. 

For this process, equations (20) , (21) , and (22) 

show that 
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r< s) = ~. 

r.,_ (':I) = ~-
c ( 5 , t) = ~-

and moreover Jt. ( s, -u.) ~ h {v..) by aqua tion ( 9). These 

conditions hold no mattor what initial distribution we 

choose . Thus, choose the initial distribution ,/-<(54 )-== o, 
<:r~(so):. o , 1.e. 'P.11. [ 'f<-:,) = o l = i. , and we have 

P.1t. { Y<s) =- o 1 -= :l .for all s • Renee the process 

has no variation. 

Now we return to tho original variable X<s) for 

which we have assumed P.l "(s, ~) = o • El ther A (s ,_x.) = o , in 

which co.se the variable X<s) has no variation, or aa above 

we ca.n find a random variable Y ( :s) =- 1f ( s/ XO)) so that 

it has no variation. Hence the variable Xu) is suoh that 

1/1 ( 51 X ( s) ) = O for alrnos t all .functions X(5) • Thus , 

in the s,>' plane an equation 1/C s,, x) == o doterm1nos a 

curve ")::= "X (s) which is almoa t surely follo\1od by tho 

process X<sl • Thus for each 5 , X(s) is a random var1-

able with zero dispersion, nnd it takes on its mean 

value with probab.ility 1. We conclude that for almost 

all functions 
s 

X (s) -:: r /'<(-t-} d.f -t- /< {50 ) 

So 

Thie result is in complete harmony with tho Einstein 

process discussed in the preceding section, ror which we 

deduced that the variable a1most surely retained its 
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initial value. Aa in the tliscusaion of that process, 

however , wo can ma.ke o. mollification and establish a new 

process . Thia nodifioation consists of tho srune sen.lo 

transformation--namely, inotoad of' definine B, ... <s-. ):) as in 

( 45) wo di vi do by c.,. to o btuin 

s+6 s+r.. :, J ff {W•>U<wl/ XM~ ~) dtd.,1 
5 s 

This oxprossion, in connection ~1th fornula (44), 

enables us to deduce n proceso i£s) which has no dorlvo.-

tivo , o.nd yet in tho sonso given previously is an inte-

gral process. 

It io notod that in the formula for A,,'S',~ ) o.nd B1
1

(~ . ~J 

we obtain ~xprossions involving tho conditional expecta-

tion o!' Uls), U 1
(s) under the assunption )((sJ = )'. , and we 

must have at least this knowledge of the joint distribu­

tion of: U and X in order to specify the coefficients A 
l. 

and 8 1 • Consequently the process X'~) is not uniquely 

determined by that of Utt}. However , if U<s) is .independent 

of ,((sl we shall have 

A, (S, ~) ~ £ {UlsJ) -= /"'-(s} 

and since /" and a-~ have been docluced in terms of A (~/ u) 

and 8 .... (5, -u.) , tho now cooff1c1ents o.ro detorminod in terms 



of the original ones. It 1s seen that here A. (5, ;t.) a..".ld 

~ 11 ( s , ~) depend only on s , and hence we havo a Bacho lier 

process, and ipso facto u Gaussian process. This situa­

tion will occur, for instance, if the velocity of the 

variable is independent of its displacement, as in the 

case of Brownian motion, ate. 

'fhe difficulty in representing jointly the velocity 

U and tho displacement X , where both are supposed to 

be Jllo.rkoff processes, a.nd the forme1" the derivative of 

the lo.ttor, is in view of the discussion nbovo an inher-

ant one, and in fact represonts a serious fault in the 

structure of the stochastic process. Bass (J.J and (g) 

has studied tho joint distribution of X(s) and Utt) by 

considering them jointly as a two dimensional vector 

variable, which should satisfy an extension of the Fo.V..ker­

Planck equation. He discovers effactively the paradox 

with tho A increments above, and concludes a satisfactory 

physical schome cannot bo so represented, 

3.4 The integral statistics 

Despite the fo.ct that the coefficient::; A,(s,~) and 

B,i.(S, x:) a.re not detor:r.iined from tho U<s) process, the 

elementary statistics can be found . \fo <lenoto, in inte-

gral process, ·the mean, variance, and covarianco by ,/"/s), 

<r, 1 
( 'l ) and C ; ( s. -t ) : 

/'1 { s ' = E ( x(5>) 
r.).. 

I 
( s, = f ( X'(sJ} - /,'(s) 

CI ( 51 "t) = £ ( X£sJXl+J). 
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( 47) 

(48) 

In addition , tho mixed covario.nco C ,.v.. ( 5, -t) = E ( XlsJ U lt-1) 

will be needed. 

By using tha formula 
5 

X{s) :" x (So)+ r 'U.(-t) d-t 
so 

we cnn deduce these quantities . Taking tha expectation 

of both sidea of (46) 
. s 

E ( X < s J) = f ( x ( f"J) + f £ ( U t +J) d-t 
so . 

,,U1 (S) + 

and we get a difforantial expression for _/<i(s) 

and using (20) 

"° f A (s, uJ h. u, u..J du. . 
- oO 

For tho variance we obtain t by squaring (46) 
S" s s 

(49) (XlsJ)
1 

= ( x{s.J)"'+ ~ r X(s,,JU.twJdw +ff UtwJUl:J)dwd;J 

s- ~ ~ 

and taking the expectations 

s 
<r, 1 (S} + fi,1(s) = ~ 1 (So) + /A/(s,,) + 2. f Cx 11 (s0 .1 w) Jw 

.s s 

+ f f ~ ( w, ~) d w ~ 
so so 
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s 

~ e'xu.(S.,Js) + ~ J C(W,S )J.w. 
so 

Ji'or tho covarinnco ~,(S, t) wo use the expression 

t t 

( X l+l - XW r, f f lUwJ U<:tJ dw d.:J 
j j 

E (lxi+J - Xis))} ~ rrE (U(w} U<:<J) dw d,:J 
s s 

t -t 

E(xw)'L-2[(.X<t>X<sJ) +£(X<sJ) ... = [ J e (w,):J)dw~ 
s .s 

t t 
( 51) 2 c, u ,t) ~ r. 'It) + __ ,,, .. It I + r,'(s) +_,A,'{s I - f f c (W, , l d w oi, 

(52) 

(53) 

8 <!, (S, -t-) 

a-t- + 

s s 

-= e (s,--t). 

In order to stu<ly the mixod covariances wo pro-

ceed as follows 
T: 

X ( +) - X ( So ) = f 21. { w) d'. W 
s .. 

t 
x ( i) u ( /l) - x (5 .. ) u {If,) -= [ u { w J u ( /L ) d 1111 

5 ., 

and hence tak1ns oxpectations 

t 
~)(U.. {t, /l,) = e..-u.. (>oj .11.) + r c ( w, /l ) d w 

.f., 
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The only undotormined quantl ty in tho above for­

mulas aro the expressions C,~ (~,~) , and in oruer to 

determine this wo must know the initial joint distribu­

tion of.U.tsJ and X<s) ; 1 . e . h.(s • .J· Xi u.). It is only 

in this cnse that we hnvo the comp lo te initial cornli tiona 

specified. If ft~ 1~;t1 v) is the transition probability 

for the process lJ. (s) we immediately ect 

- °" 00 

(!," ( s., "') ~ f f f u K h. { s.; ~,II ) f { s., "; A , ,,., ) du d II d ,x: 
- .0 -oD -.o 

For the expression ~xu.. (~ 50 ) wo got a. slrnpler expression 

from ( 53) 
t: 

e X"- ( f.J 5.,) = exu ( 5,. ,J 5.,) f f <! {W, 5.,) cfw' 

s .. 

in which vie kr10T1 

00 f f _, _( 'U,. h ( ~o ; XI 1-{,) dx d 'l{_ = 
-oO - oO 

For the upocial case when ,,µ.<s) -:/"1 <s ) """ o sone of 

these expressions for the covariance were presented, 

without proof, by Loeve (1). At leasu one of Loove's 

resul.to is 1ncorroct--it ls said that a necessary and 

sufficient condition that U<s) and. X<t) be in<.lependent 

(i.e. C.-u.. (t, sJ = / 1 f't;/_A(5) ) is that C!; ff1 i:) should bo a 

function of st- alone, say D<~t). Assuming they are 

independont, we get .from (53) 

f -t IJ 

_/A- ( .IZ ) ( .)A-- 1 ( t ) - /A-1 ( S ) ) = \.:. { vtl.J /() d W 
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and on using ( 47) 

-t 

· /"-( ~) [fa f w) d w :: 
So 

t I c ( W.1 /t.) d w 
$0 

Diff'erentiati ng both sides wi t h respect to t we obtain 

l (f , A) :: /<-t-t),/-" tn.) , a.nd aubat1tut 1ng this in (51} vro 

obtain 

which ls not a fu.'lct1on of -ts alone for an arbi tra.ry 

process X (s). «ie have proved, however , that 1f XtsJ and 

U ((;} are in<lopornlont , then UtsJ and U tt-J are indopondont, 

which lo pr1r.ia facie a credible result . 

We now provo that the intogral proceso XJs) of a 

tenporally homogeneous pro cess UtsJ is temporally homo­

geneous only if the Uts) process la degenerate , 1 . o . 

.A ( 5, u J -= ~. 
' 

J3 .,_(S_, U.) = O , P.-i. { u. {S) = IC}"' -i • 

For if the proce s s X<s) is temporally homoe;eneous thon the 

expressions E { { X(sJ - x (5~J )K) for le= ".1 1._, .. ··· must 

be funct ions o f s- 5,. only: 

fx: {S, So) ::: £ { ( .((5) - X(s.,)) I<) 

and we :ous t have , since f1e. is o. func tion of s- s. only, 

-+- = 0 



57 

F'or "= 1 

= 

and honce ;" t sJ = e.tn14 t-. -= ./tus,, J • Then f.t:; ts, s.J .. _,,1-lfS-., J rs---.;.,,) 

1rrespeet1 ve of the cho 1co of )A ts .. ) . · ln an iclentical 

mo.nnor wo show that cr"(sJ = rr,.(5'o) = ~~. for any initial 

distribution. Honce choose cr.,_(s.,J=o ; then rrL(sJ = o 

for all S • We have already charactorized this phenom­

onon in section 3.3, and since ,,)'-(5) ~t-s,,) we must have 

A ( ~ -u.) =- ~. , 8 '1 t S_, u) == o as asserted. 

3 . 5 Special coefficients in ~ integral process 

It is possible to deduce tho unconditional statis­

tics _)1-ilS) J O"'; ... (S) 1 (!.
1
($, "t-) O.Ild e.Jot.(5,-t) specifically for the 

claso of coefficients Ar~CA.) and 8,.(5;1') c;iven by (14) and 

(15). We obtain, on substituting theso coefficients in 

( 48 } , ( 49 ) , and ( 50 ) 

to,, {f) +- tO ff} d.,,U1 (-f) 
7• T1 cf.-t 

= J_ ( ~ J-t-cJ,.f r,~-eJ r ;./', d-t: -.i e(w,,,-t-Jdwd.-t 
.It. 



and those exproeaiono in conjunction vii th tho d1fforent1o.l 

equations (24) , ( 25}, and (26) specifying tho functions 

<r'l-( t J , )L f+J , and e<s,,-t), enablo ono to find tho atatiatics 

for the integral process . 

We note o.lso that the integral or a Gaussian pro­

cess ia again Gaussian (cf . Doob (~)), so that in partic­

ular if the coeffloionts aro of tho form (30) the above 

moments will complotely dotermino the probability dia-

tri bution J,. 1 (s, x) for tho lntogral pro coos • 

Finally, we can obtain by purely algebraical oper-

nt1ons with the o.bovo statistics, a usoful relationship 

botwoen the corrolatlon cooff iciants of a process and 

its intee;rnl process . We obtain, by elementary calcu­

lations, 
c i 

i. ( 1- R, (-f,Jt,)) u; f -t) ~f/l) = ( l; r-tJ - tr, r'l.J)-..._ ff i-twJ r (j:i) Rc...v,y) d wJ.::t 
,. /\ 

~n expression which is froo of the mean values. 
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