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Chapter 2

A Model of Salient Region
Detection

2.1 Introduction

Attention as a selective gating mechanism is often compared to a spotlight (Posner 1980; Treisman

and Gelade 1980), enhancing visual processing in the attended (“illuminated”) region of a few degrees

of visual angle (Sagi and Julesz 1986). In a modification to the spotlight metaphor, the size of the

attended region can be adjusted depending on the task, making attention similar to a zoom lens

(Eriksen and St. James 1986; Shulman and Wilson 1987). Neither of these theories considers the

shape and extent of the attended object for determining the attended area. This may seem natural,

since commonly attention is believed to act before objects are recognized. However, experimental

evidence suggests that attention can be tied to objects, object parts, or groups of objects (Duncan

1984; Roelfsema et al. 1998). How can we attend to objects before we recognize them?

Several computational models of visual attention have been suggested. Tsotsos et al. (1995)

use local winner-take-all networks and top-down mechanisms to selectively tune model neurons at

the attended location. Deco and Schürmann (2000) modulate the spatial resolution of the image

based on a top-down attentional control signal. Itti et al. (1998) introduced a model for bottom-

up selective attention based on serially scanning a saliency map, which is computed from local

feature contrasts, for salient locations in the order of decreasing saliency. Presented with a manually

preprocessed input image, their model replicates human viewing behavior for artificial and natural

scenes. Making extensive use of feedback and long-range cortical connections, Hamker (2005b,a)

models the interactions of several brain areas involved in processing visual attention, which enables

him to fit both physiological and behavioral data in the literature. Closely following and extending

Duncan’s Integrated Competition Hypothesis (Duncan 1997), Sun and Fisher (2003) developed

and implemented a common framework for object-based and location-based visual attention using

“groupings”.
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Figure 2.1: Architecture of the model of saliency-based visual attention, adapted from Itti et al.
(1998).

However, none of these models provides a satisfactory solution to the problem of attending to ob-

jects even before they are recognized. To solve this chicken-and-egg problem in first approximation,

we have developed a model for estimating the extent of salient objects in a bottom-up fashion solely

based on low-level image features. In chapters 3, 5, and 6 we demonstrate the use of the model as

an initial step for object detection.

Our attention system is based on the Itti et al. (1998) implementation of the saliency-based

model of bottom-up attention by Koch and Ullman (1985). For a color input image, the model

computes a saliency map from maps for color, luminance, and orientation contrasts at different

scales (figure 2.1). A winner-take-all (WTA) neural network scans the saliency map for the most

salient location and returns the location’s coordinates. Finally, inhibition of return (IOR) is applied

to a disc-shaped region of fixed radius around the attended location in the saliency map, and further

iterations of the WTA network lead to successive direction of attention to several locations in order

of decreasing saliency. The model has been verified in human psychophysical experiments (Peters

et al. 2005; Itti 2005), and it has been applied to object recognition (Miau et al. 2001; Walther et al.

2002a, 2005a) and robot navigation (Chung et al. 2002).

We briefly review the details of the model in section 2.2 in order to explain our extensions in the

same formal framework. In section 2.3 we describe our method of selecting salient regions instead

of just salient locations by using feedback connections in the existing processing hierarchy of the

original saliency model.
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2.2 Saliency-based Bottom-up Attention

The input image I is sub-sampled into a dyadic Gaussian pyramid by convolution with a linearly

separable Gaussian filter and decimation by a factor of two (see appendix A.1 for details). This

process is repeated to obtain the next levels σ = [0, .., 8] of the pyramid (Burt and Adelson 1983).

Resolution of level σ is 1/2σ times the original image resolution, i.e., the 8th level has a resolution

of 1/256th of the input image’s I and (1/256)2 of the total number of pixels.

If r, g, and b are the red, green, and blue values of the color image, then the intensity map is

computed as

MI =
r + g + b

3
. (2.1)

This operation is repeated for each level of the input pyramid to obtain an intensity pyramid with

levels MI(σ).

Each level of the image pyramid is furthermore decomposed into maps for red-green (RG) and

blue-yellow (BY ) opponencies:

MRG =
r − g

max (r, g, b)
(2.2a)

MBY =
b−min (r, g)
max (r, g, b)

. (2.2b)

To avoid large fluctuations of the color opponency values at low luminance, MRG and MBY are

set to zero at locations with max(r, g, b) < 1/10, assuming a dynamic range of [0, 1]. Note that the

definitions in eq. 2.2 deviate from the original model by Itti et al. (1998). For a discussion of the

definition of color opponencies see appendix A.2.

Local orientation maps Mθ are obtained by applying steerable filters to the intensity pyramid

levels MI(σ) (Simoncelli and Freeman 1995; Manduchi et al. 1998). In subsection 6.3.2 we show

how lateral inhibition between units with different θ can aid in detecting faint elongated objects.

Motion is another highly salient feature. In appendix A.3 we describe our implementation of a

set of motion detectors for saliency due to motion.

Center-surround receptive fields are simulated by across-scale subtraction 	 between two maps

at the center (c) and the surround (s) levels in these pyramids, yielding “feature maps”:

Fl,c,s = N (|Ml(c)	Ml(s)|) ∀l ∈ L = LI ∪ LC ∪ LO (2.3)

with

LI = {I} , LC = {RG, BY } , LO = {0◦, 45◦, 90◦, 135◦} . (2.4)

N (·) is an iterative, nonlinear normalization operator, simulating local competition between neigh-
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boring salient locations (Itti and Koch 2001b). Each iteration step consists of self-excitation and

neighbor-induced inhibition, implemented by convolution with a “difference of Gaussians” filter,

followed by rectification. For the simulations in this thesis, between one and five iterations are used.

For more details see Itti (2000) and Itti and Koch (2001b).

The feature maps are summed over the center-surround combinations using across-scale addition

⊕, and the sums are normalized again:

F̄l = N

(
4⊕

c=2

c+4⊕
s=c+3

Fl,c,s

)
∀l ∈ L. (2.5)

For the general features color and orientation, the contributions of the sub-features are summed and

normalized once more to yield “conspicuity maps.” For intensity, the conspicuity map is the same

as F̄I obtained in eq. 2.5:

CI = F̄I , CC = N

(∑
l∈LC

F̄l

)
, CO = N

(∑
l∈LO

F̄l

)
. (2.6)

All conspicuity maps are combined into one saliency map:

S =
1
3

∑
k∈{I,C,O}

Ck. (2.7)

The locations in the saliency map compete for the highest saliency value by means of a winner-take-

all (WTA) network of integrate-and-fire neurons. The parameters of the model neurons are chosen

such that they are physiologically realistic, and such that the ensuing time course of the competition

for saliency results in shifts of attention in approximately 30–70 ms simulated time (Saarinen and

Julesz 1991).

The winning location (xw, yw) of this process is attended to, and the saliency map is inhibited

within a given radius of (xw, yw). Continuing WTA competition produces the second most salient

location, which is attended to subsequently and then inhibited, thus allowing the model to simulate

a scan path over the image in the order of decreasing saliency of the attended locations.

In the next section we demonstrate a mechanism for extracting an image region around the focus

of attention (FOA) that corresponds to the approximate extent of an object at that location. Aside

from its use to facilitate further visual processing of the attended object, this enables object-based

inhibition of return (IOR), thereby eliminating the need for a fixed-radius disc as an IOR template.
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Figure 2.2: Illustration of the processing steps for obtaining the attended region. The input image
is processed for low-level features at multiple scales, and center-surround differences are computed
(eq. 2.3). The resulting feature maps are combined into conspicuity maps (eq. 2.6) and, finally, into
a saliency map (eq. 2.7). A winner-take-all neural network determines the most salient location,
which is then traced back through the various maps to identify the feature map that contributes
most to the saliency of that location (eqs. 2.8 and 2.9). After segmentation around the most salient
location (eqs. 2.10 and 2.11), this winning feature map is used for obtaining a smooth object mask
at image resolution and for object-based inhibition of return.
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2.3 Attending Proto-object Regions

While Itti et al.’s model successfully identifies the most salient location in the image, it has no

notion of the extent of the attended object or object part at this location. We introduce a method

of estimating this region based on the maps and salient locations computed so far, using feedback

connections in the saliency computation hierarchy (figure 2.2). Looking back at the conspicuity

maps, we find the one map that contributes the most to the activity at the most salient location:

kw = argmax
k∈{I,C,O}

Ck(xw, yw). (2.8)

The argmax function, which is critical to this step, could be implemented in a neural network of

linear threshold units (LTUs), as shown in figure 2.3. For practical applications we use a more

efficient generic argmax function because of its higher efficiency.

Examining the feature maps that gave rise to the conspicuity map Ckw
, we find the one that

contributes most to its activity at the winning location:

(lw, cw, sw) = argmax
l∈Lkw ,c∈{2,3,4},s∈{c+3,c+4}

Fl,c,s(xw, yw), (2.9)

with Lkw
as defined in eqs. 2.4. The “winning” feature map Flw,cw,sw

(figure 2.2) is segmented

around (xw, yw). For this operation, a binary version of the map (B) is obtained by thesholding

Flw,cw,sw with 1/10 of its value at the attended location:

B(x, y) =

1 if Flw,cw,sw(x, y) ≥ 0.1 · Flw,cw,sw(xw, yw)

0 otherwise
. (2.10)

The 4-connected neighborhood of active pixels in B is used as the template to estimate the spatial

extent of the attended object:

F̂w = label (B, (xw, yw)) . (2.11)

For the label function, we use the classical algorithm by Rosenfeld and Pfaltz (1966) as implemented

in the Matlab bwlabel function. After a first pass over the binary map for assigning temporary

labels, the algorithm resolves equivalence classes and replaces the temporary labels with equivalence

class labels in a second pass. In figure 2.4 we show an implementation of the segmentation operation

with a network of LTUs to demonstrate feasibility of our procedure in a neural network. The

segmented feature map F̂w is used as a template to trigger object-based inhibition of return (IOR)

in the WTA network and to deploy spatial attention to subsequent processing stages such as object

detection.

We have implemented our model of salient region selection as part of the SaliencyToolbox for
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Figure 2.3: A network of linear threshold units (LTUs) for computing the argmax function in eq. 2.8
for one image location. Feed-forward (blue) units fCol, fInt, and fOri compute conspicuity maps for
color, intensity, and orientation by pooling activity from the respective sets of feature maps as
described in eqs. 2.5 and 2.6, omitting the normalization step N here for clarity. The saliency map
is computed in a similar fashion in fSM (eq. 2.7), and fSM participates in the spatial WTA competition
for the most salient location. The feed-back (red) unit bSM receives a signal from the WTA only
when this location is attended to, and it relays the signal to the b units in the conspicuity maps.
Competition units (c) together with a pool of inhibitory interneurons (black) form an across-feature
WTA network with input from the f units of the respective conspicuity maps. Only the most active
c unit will remain active due to WTA dynamics, allowing it to unblock the respective b unit. As
a result, the activity pattern of the b units represents the result of the argmax function in eq. 2.8.
This signal is relayed further to the constituent feature maps, where a similar network selects the
feature map with the largest contribution to the saliency of this location (eq. 2.9).
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Figure 2.4: An LTU network implementation of the segmentation operation in eqs. 2.10 and 2.11.
Each pixel consists of two excitatory neurons and an inhibitory interneuron. The thresholding oper-
ation in eq. 2.10 is performed by the inhibitory interneuron, which only unblocks the segmentation
unit S if input from the winning feature map Flw,cw,sw

(blue) exceeds its firing threshold. S can be
excited by a select signal (red) or by input from the pooling unit P. Originating from the feedback
units b in figure 2.3, the select signal is only active at the winning location (xw, yw). Pooling the
signals from the S unit in its 4-connected neighborhood, P excites its own S unit when it receives at
least one input. Correspondingly, the S unit projects to the P units of the pixels in the 4-connected
neighborhood. In their combination, the reciprocal connections between the S and P units form a
localized implementation of the labeling algorithm (Rosenfeld and Pfaltz 1966). Spreading of acti-
vation to adjacent pixels stops where the inbound map activity is not large enough to unblock the
S unit. The activity pattern of the S units (green) represents the segmented feature map F̂w.

Matlab, described in appendix B, and as part of the iLab Neuromorphic Vision (iNVT) C++

toolkit. In the Matlab toolbox we provide both versions of the segmentation operation, the fast

image processing implementation, and the LTU network version. They are functionally equivalent,

but the LTU network simulation runs much slower than the fast image processing version.

Figure 2.5 shows examples of applying region selection to three natural images as well as an

artificial display of bent paper clips as used for the simulations in chapter 3. These examples and

the results in chapters 3 and 5 were obtained using iNVT toolkit; for chapter 6 we used a modified

version that was derived from the iNVT toolkit; and for chapter 4 we used the SaliencyToolbox.

2.4 Discussion

As part of their selective tuning model of visual attention, Tsotsos et al. (1995) introduced a mecha-

nism for tracing back activations through a hierarchical network of WTA circuits to identify contigu-

ous image regions with similarly high saliency values within a given feature domain. Our method is
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Figure 2.5: Four examples for salient region extraction as described in section 2.3. For each example
the following steps are shown (from left to right): the original image I; the saliency map S; the
original image contrast-modulated with a cumulative superposition of F̂w for the locations attended
to during the first 700 ms of simulated time of the WTA network, with the scan path overlayed; and
the inverse of this cumulative mask, covering all salient parts of the image. It is apparent from this
figure that our salient region extraction approach does indeed cover the salient parts of the images,
leaving the non-salient parts unattended.

similar in spirit but extends across feature domains. By tracing back the activity from the attended

location in the saliency map through the hierarchy of conspicuity and feature maps, we identify

the feature that contributes most to the activity of the currently fixated location. We identify a

contiguous region around this location with high activity in the feature map that codes for this most

active feature. This procedure is motivated by the observation that between-object variability of

visual information is significantly higher than within-object variability (Ruderman 1997). Hence,

even if two salient objects are close to each other or occluding each other, it is not very likely that

they are salient for the same reason. This means that they can be distinguished in the feature maps

that code for their respective most active features.

Note, however, that attended regions may not necessarily have a one-to-one correspondence to

objects. Groups of similar objects, e.g., a bowl of fruits, may be segmented as one region, as may

object parts that are dissimilar from the rest of the object, e.g., a skin-colored hand appearing

to terminate at a dark shirt sleeve. We call these regions “proto-objects” because they can lead
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to the detection of the actual objects in further iterative interactions between the attention and

recognition systems. See the work by Rybak et al. (1998), for instance, for a model that uses the

vector of saccades to code for the spatial relations between object parts.

The additional computational cost for region selection is minimal because the feature and con-

spicuity maps have already been computed during the processing for saliency. Note that although

ultimately only the winning feature map is used to segment the attended image region, the inter-

action of WTA and IOR operating on the saliency map provides the mechanism for sequentially

attending several salient locations.

There is no guarantee that the region selection algorithm will find objects. It is purely bottom-

up, stimulus driven and has no prior notion of what constitutes an object. Also note that we are

not attempting an exhaustive segmentation of the image, such as done by Shi and Malik (2000) or

Martin et al. (2004). Our algorithm provides us with a first rough guess of the extent of a salient

region. As we will see in the remainder of this thesis, in particular in chapter 5, it works well for

localizing objects in cluttered environments.

In some respects, our method of extracting the approximate extent of an object bridges spatial

attention with object-based attention. Egly et al. (1994), for instance, report spreading of attention

over an object. In their experiments, subjects detected invalidly cued targets faster if they appeared

on the same object than if they appeared on a different object than the cue, although the distance

between cue and target was the same in both cases. In our method, attention spreads over the

extent of a proto-object as well, guided by the feature with the largest contribution to saliency at

the attended location. Finding this most active feature is somewhat similar to the idea of flipping

through an “object file”, a metaphor for a collection of properties that comprise an object (Kahneman

and Treisman 1984). However, while Kahneman and Treisman (1984) consider spatial location of an

object as another entry in the object file, in our implementation spatial location has a central role

as an index for binding together the features belonging to a proto-object. Our method should be

seen as an initial step toward a location invariant object representation, providing initial detection

of proto-object that allow for subsequent tracking or recognition operations. In fact, in chapter 6,

we demonstrate the suitability of our approach as a detection step for multi-target tracking in a

machine vision application.

2.5 Outlook

In this chapter we have introduced our model of bottom-up salient region selection based on the

model of saliency-based bottom-up attention by Itti et al. (1998). The attended region, which is

given by the segmented feature map F̂w from eq. 2.11, serves as a means of deploying selective visual

attention for:
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(i) modulation of neural activity at specific levels of the visual processing hierarchy (chapter 3);

(ii) preferential processing of image regions for learning and recognizing objects (chapter 5);

(iii) initiating object tracking and simplifying the assignment problem in multi-target tracking

(chapter 6).
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