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Abstract

This thesis studies decision making under uncertainty and how economic agents re-

spond to information. The classic model of subjective expected utility and Bayesian

updating is often at odds with empirical and experimental results; people exhibit

systematic biases in information processing and often exhibit aversion to ambigu-

ity. The aim of this work is to develop simple models that capture observed biases

and study their economic implications.

In the first chapter I present an axiomatic model of cognitive dissonance, in

which an agent’s response to information explicitly depends upon past actions. I

introduce novel behavioral axioms and derive a representation in which beliefs are

directionally updated. The agent twists the information and overweights states in

which his past actions provide a higher payoff. I then characterize two special cases

of the representation. In the first case, the agent distorts the likelihood ratio of two

states by a function of the utility values of the previous action in those states. In the

second case, the agent’s posterior beliefs are a convex combination of the Bayesian

belief and the one which maximizes the conditional value of the previous action.

Within the second case a unique parameter captures the agent’s sensitivity to dis-

sonance, and I characterize a way to compare sensitivity to dissonance between

individuals. Lastly, I develop several simple applications and show that cognitive

dissonance contributes to the equity premium and price volatility, asymmetric re-

action to news, and belief polarization.
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The second chapter characterizes a decision maker with sticky beliefs. That is,

a decision maker who does not update enough in response to information, where

enough means as a Bayesian decision maker would. This chapter provides ax-

iomatic foundations for sticky beliefs by weakening the standard axioms of dynamic

consistency and consequentialism. I derive a representation in which updated be-

liefs are a convex combination of the prior and the Bayesian posterior. A unique pa-

rameter captures the weight on the prior and is interpreted as the agent’s measure

of belief stickiness or conservatism bias. This parameter is endogenously identified

from preferences and is easily elicited from experimental data.

The third chapter deals with updating in the face of ambiguity, using the frame-

work of Gilboa and Schmeidler. There is no consensus on the correct way way to

update a set of priors. Current methods either do not allow a decision maker to

make an inference about her priors or require an extreme level of inference. In this

chapter I propose and axiomatize a general model of updating a set of priors. A de-

cision maker who updates her beliefs in accordance with the model can be thought

of as one that chooses a threshold that is used to determine whether a prior is plau-

sible, given some observation. She retains the plausible priors and applies Bayes’

rule. This model includes generalized Bayesian updating and maximum likelihood

updating as special cases.
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2.2 Two acts, f̂ and ĝ, incorporating information. . . . . . . . . . . . . . . 44

2.3 Dynamic extension of f and g . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Sets of beliefs in the simplex. . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 The set of posterior beliefs, C α
C , as α varies. . . . . . . . . . . . . . . . 65

B.1 Acts illustrating various cases, where A = {s1}. . . . . . . . . . . . . 95



1

Chapter 1

Twisting the Truth: A Model of Cognitive

Dissonance and Information

1.1 Introduction

This paper provides a theory of how an agent sensitive to cognitive dissonance in-

corporates new information into his beliefs. Cognitive dissonance refers to the psy-

chological discomfort that arises when two cognitions are in conflict. In this paper,

cognitive dissonance arises when information and a previous action are in conflict.

That is, if the agent updated his beliefs according to Bayes’ rule, his beliefs and past

actions would create dissonance. The agent assuages this cognitive dissonance by

incorporating information in a non-Bayesian manner and distorting his beliefs to

support his previous actions.

Consider an agent who chooses actions at two points in time, where these actions

may have uncertain payoffs depending on some unknown or unrealized state of the

world. Between times 1 and 2 the agent observes information about the state of

the world. The standard rational model assumes that an agent uses Bayes’ rule

to update his beliefs, but if the agent is sensitive to cognitive dissonance he has
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an inherent desire to justify past actions. This paper investigates how the agent

resolves the tension between Bayesian learning and the desire to view past actions

as optimal.

As a simple example, consider an investor deciding which company’s stock to

purchase. After the investor makes his initial purchase, he receives some infor-

mation that is relevant to the company’s valuation. The investor now must take

the new information into account and decide again which stocks to purchase (or

sell). However, our investor is sensitive to cognitive dissonance and thus experi-

ences psychic distress if the new information, combined with his original beliefs,

suggests that he originally made a poor investment decision. Hence the investor’s

original decision and new information jointly determine his updated beliefs, and

consequently his new decision.

While the concept of cognitive dissonance is well known, the psychology liter-

ature has not provided a precise notion of how it affects an agent’s future deci-

sion making, which is necessary to apply the model to economic problems. The

main contribution of this paper is to answer these questions in a way suitable for

an economist. I utilize a standard economic setup to study the effect of informa-

tion on preferences. Within this framework I introduce behavioral conditions, in

the form of axioms on preferences, that capture cognitive dissonance and then de-

rive a utility representation. Thus this paper answers the question of how cognitive

dissonance affects an agent’s response to information.

More formally, I assume the agent’s preferences over actions as a primitive,

where actions have consequences that depend on some state of the world. Time 1

preferences are both before information and before an action choice, whereas time

2 preferences are conditional on both the information received and some chosen

action, jointly referred to as a scenario. The main behavioral condition in the pa-

per is the axiom of Dynamic Cognitive Dissonance. For a simple intuition behind
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this axiom, consider an investor that invests in company X at time 1. In particular,

suppose company X may either yield a high return or a low return. Say H and L are

the events in which X provides a high or low return, respectively. Then after any

observation, at time 2 the agent prefers investments that also have high payoffs in

H. The resulting utility representation is one in which the agent’s time 2 beliefs

shift probability from states in which the time 1 action, denoted by f , is relatively

poor to states in which it is relatively good.

In addition to the general model I characterize two special cases, each of which

is derived by imposing one additional axiom. The first case I characterize is the pro-

portional distortion. Under this representation the agent distorts the relative likeli-

hood between states by the payoff of f in those states. Thus it is as if the agent views

his original action f as being informative about the relative likelihood of states of

the world. The proportional distortion is characterized by the addition of a scenario

independence property, which states that whenever two scenarios share a common

event in which each action provides the same state-wise payoff on the common

event, then the agent’s ranking of acts that vary only on the common event are the

same in each scenario. That is, the relative distortion between any two states is

independent of the payoffs in any other states.

The second case I characterize, referred to as the best-case binary distortion, is

one in which time 2 beliefs are a convex combination of the Bayesian posterior and

the posterior that maximizes the value of the time 1 action. In contrast to the pro-

portional distortion, the best-case binary model generally violates the scenario in-

dependence condition. Specifically, this is because the posterior that maximizes the

value of the time 1 action is conditional on the realized event, hence the justifying

posterior varies across scenarios. Thus one can think of the agent as compromising

between two selves—a rational Bayesian self and a self that only considers the best

possible states of the world, where best is defined relative to the original action. The
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weight that each self receives in the representation is endogenously captured by a

unique parameter,δ, which I interpret as the agent’s sensitivity to cognitive disso-

nance. An agent that is very sensitive to dissonance, or has a large δ, puts greater

weight on the justifying states.

The model produces some interesting, testable implications. First, risk free

actions induce no belief distortion and thus the agent appears Bayesian in some

situations. This is intuitive since there is no payoff variation in a risk free action

and hence there is no possible revision of beliefs that could make the action ap-

pear better. Second, the agent will exhibit an asymmetric reaction to good and bad

news, which is consistent with empirical evidence on financial analysts’ forecasts

(see Easterwood and Nutt, 1999). That is, if we consider an agent’s monetary valu-

ation of some action, the agent always overvalues the time 1 action compared to a

Bayesian agent. Thus the agent over-reacts to the good news and under-reacts to

the bad news. Neither of these implications can result from models of non-Bayesian

updating that do not also condition on an agent’s past action.

1.1.1 The Psychology of Cognitive Dissonance

The theory of cognitive dissonance, developed by Leon Festinger [22], states that

people tend to adjust beliefs to enhance the attractiveness of their past actions. In

particular, Festinger proposed that conflict or tension between beliefs and actions

creates psychological discomfort. He termed this resulting discomfort dissonance

and states that the only way to eliminate this discomfort is to eliminate the conflict

and achieve consonance. Thus after taking some action people are motivated to

change their beliefs about the desirability of that action.

For example, suppose an agent invests in company X. The action of investing

reveals beliefs that company X will provide high returns in the future. If negative

information is released about the company, then the agent now experiences the
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following conflicting thoughts, I bought X expecting high returns and this infor-

mation suggests X was a bad investment, and hence suffers the discomfort caused

by cognitive dissonance. In order to achieve consonance the agent incorporates

the new information into his original beliefs in a biased manner. This bias causes

the agent to increase the conditional likelihood of high returns and hence to view

investment in X more favorably than an outside Bayesian would.

1.1.1.1 Experimental Evidence

In an early and influential laboratory experiment, Festinger and Carlsmith [23]

asked students to perform a long and boring task and then to recruit more par-

ticipants. Some students were paid a substantial amount while others were paid

very little. Those who were paid very little reported the task as more interesting

than students who were paid a more substantial amount. This suggests that those

who were paid little manipulate their beliefs in order to justify performing the task

for very little pay. Similarly, students who gave speeches advocating an ideological

position were more likely to align their beliefs with their speech the lower their pay

(see Aronson [5] for an overview of this and other experiments).

In an investment experiment by Kuhnen and Knutson [43], subjects could ei-

ther purchase a bond or a stock. Stocks could be good or bad and could pay a high

or low dividend, with good stocks more likely to pay high dividends. Subjects were

told that good and bad stocks are equally likely and were also given objective in-

formation about the likelihood of a good (bad) stock paying a high or low dividend.

After deciding whether to purchase a stock or bond, subjects observed the dividend

payments and were then asked to provide their beliefs about the probability that

the stock was good. They found that, relative to subjects that purchased the bond,

those that purchased the stock over-estimated the probability that the stock was

good by 10%. This effect was present even after controlling for the objective proba-
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bility and for the Bayesian posterior of the subject’s reported beliefs from previous

periods. This suggests that subjects update their beliefs in a non-Bayesian manner

dependent on their actions.

1.1.1.2 Empirical Evidence

The specific role of cognitive dissonance in voter preferences was studied by Mul-

lainathan and Washington [49]. They measured the effect of voting for a candidate

on a voter’s future opinion of that candidate. To control for the selection problem,

the authors compared the opinion ratings of voting age eligible and ineligible vot-

ers two years after the 1996 presidential election. They found that eligible voters

showed 2-3 times greater polarization than ineligible voters, supporting the rele-

vance of cognitive dissonance in shaping political attitudes.

A more recent paper by Kaplan and Mukand [37] shows that political party reg-

istration seems to be excessively persistent. They also utilize a discontinuity design

based on voting age while also utilizing the 9/11/01 terrorist attacks as an exogenous

shock to party registration. Party registration is persistent even for those registered

near universities, suggesting that this persistence is not easily explained by lack of

access to information.

1.1.2 Relation to the Literature

Akerlof and Dickens [2] developed perhaps the earliest model of cognitive disso-

nance in economics. They allow for the agent to choose his beliefs while consider-

ing both the cost of making the wrong decision and a psychological cost of believ-

ing that his past choice was suboptimal.1 Their main result shows that cognitive

1That is, they implicitly assume that the agent holds the belief: “I make good decisions and would
not choose a risky career”. Because of this, any level of risk is suboptimal and the associated cost is
increasing in the perceived risk level.
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dissonance may cause workers to forgo efficient safety equipment. An application

demonstrating that this result generally holds is developed later in the paper.

Perhaps the most closely related papers are Yariv [63] and Epstein and Kopylov

[18]. Yariv considers as a primitive preferences over pairs of actions and beliefs.

She then provides axiomatic foundations for a linear representation over infinite

streams of action and beliefs pairs. However, her setup and axioms do not deliver

any specific way in which actions and beliefs interact. Additionally, it may be that

the action has no impact on the next periods belief. Epstein and Kopylov consider a

model with preferences over menus of acts and impose modifications of the Gul and

Pesendorfer [32] axioms. They derive a representation where the agent chooses a

menu ex-ante to balance his preferences under commitment—expected utility with

respect to true beliefs—with a temptation utility—where the agent minimizes (or

maximizes) the value of an action over a set of priors. While conceptually similar,

[18] is distinct in two important ways. First, the representation suggests ex-post

choice from the menu is of a max-min form while this paper imposes expected util-

ity. Second, the set of priors Q is independent of any choices the agent makes and

hence ex-post beliefs are independent of the agent’s actions, while in this paper

posterior beliefs explicitly depended upon the agent’s action.

Mayraz [46] studies a model of payoff-dependent beliefs. His paper assumes

preferences conditional on some real-valued payoff function, but does not have a

notion of ex-ante vs ex-post preferences or information and thus does make the

connection to non-Bayesian updating or weakening dynamic consistency. Addi-

tionally, he requires distortions to take a specific functional form, whereas this pa-

per studies a general model that allows for a variety of distortions.

Other axiomatic models of non-Bayesian beliefs include Epstein [16] and Ep-

stein et al. [21]. Epstein (2006) also utilizes a modification of the temptation model

of Gul and Pesendorfer [32]. In this paper Epstein focuses on modeling general
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non-Bayesian behavior (consequences of which are explored in [21]) but does not

allow for updating to depend on anything other than the information received. In

contrast I propose a single behavioral axiom, along with some regularity conditions,

and generate a representation such that updated beliefs depend explicitly upon past

choice.

Ortoleva [52] develops an axiomatic model of updating that is at the intersection

of Bayesian and non-Bayesian models. That is, he introduces the hypothesis testing

representation which holds whether or not the agent utilizes Bayes’ rule to update

beliefs. However, the Bayesian model is embedded as a special case. An agent in his

model chooses a new prior only in the case of an unexpected (low probability) event,

and may or may not use Bayes’ rule otherwise. The model presented in this paper

is distinct since the deviation from Bayes’ rule depends on the interaction of a past

choice and information, not purely on information. Thus an agent in this model can

behave as a Bayesian when responding to an unexpected event and violate Bayes’

rule for an expected event.

A closely related, non-axiomatic paper is Yariv [64]. She considers an agent

represented by an instrumental utility (a classical utility over consequences) and a

belief utility, where the belief utility captures the agent’s innate preference for be-

lief consistency. Her agent is forward looking, though the agent may incorrectly

forecast the weight placed on the belief utility. However, in each period the agent’s

choice is over beliefs, subject to the constraint that the agent will take an action con-

sistent with his beliefs and suffers a cost of changing his beliefs. This is contrasted

with my model in which the belief change is not necessarily a conscious procedure

and manipulations force beliefs to be more consistent with past actions, rather than

past beliefs. (see also Bénabou and Tirole [9], Bénabou [8]).

Other papers of relevance include Caplin and Leahy [12] and Brunnermeier and

Parker [10]. Caplin and Leahy consider a two period model in which the agent’s
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utility is defined over both prizes and psychological states. However, the model

designed to study the role of anticipatory feelings. Such an agent chooses his be-

liefs ex-ante to balance his instrumental (prize) utility and his utility from antici-

pation (anxiety). Thus their model is not well suited to study cognitive dissonance,

since cognitive dissonance is not a forward looking emotion but a retrospective one.

Brunnermeier and Parker consider a dynamic model in which the agent balances

how much he distorts his beliefs from the truth with his taste for optimistic expec-

tations about future utility. Once the initial belief is chosen however, the agent acts

as a Bayesian in all future periods. [31, see also]

A psychological concept closely related to cognitive dissonance is motivated

reasoning. An agent engaging in this behavior reasons so that he may support his

favored ideas or actions, perhaps by only acknowledging some information (see

Kruglanski [42] Kunda [44]). In a sense, motivated reasoning can be seen as a

mechanism by which cognitive dissonance is reduced. With this view, the model

of cognitive dissonance in this paper is also a model of motivated reasoning. Moti-

vated reasoning in political science has been studied by Redlawsk [57] and by Taber

and Lodge [62].

The literature on Bayesian updating is large and I do not to attempt provide

a complete survey. The Bayesian model (subjective expected utility and Bayesian

updating) is known to be equivalent to preferences satisfying the traditional sav-

age axioms plus two axioms: consequentialism and dynamic consistency (see Ghi-

rardato [25] for a review). Consequentialism is a weak rationality condition which

states that for any event, preferences conditional on that event only depend on how

acts perform within that event. That is, the agent is not concerned with impos-

sibilities. Dynamic consistency requires that preferences conditional on an event

respect unconditional rankings of acts that differ only within that event. Specif-

ically, this rules out changing one’s mind about the relative likelihoods of states
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within an event. The literature on alternatives to the Bayesian model is perhaps

larger; for a sample, see Camerer [11], Kahneman and Tversky [36], Mullainathan

et al. [50], Rabin and Schrag [55], Rabin and Vayanos [56].

1.2 Setup and Foundations

1.2.1 Formal Setup

I adopt a standard setup for studying the effect of information on preferences. There

is a finite set S of states of the world, with |S| ≥ 3.2 Events are denoted A, B, C ∈

Σ = 2S\{S,∅}3 and X denotes the set of consequences, assumed to be a convex

subset of a vector space. For example, X could be the set of monetary prizes (e.g.

X = R+) or X could be the set of lotteries over some set Y (which corresponds to

the classic Anscombe–Aumann setup [4]). Let F denote the set of all acts, which

are functions f : S → X. Following a standard abuse of notation, let x ∈ F de-

note the constant act that returns x ∈ X in every state. For any event A and acts

f , g ∈ F , let f Ag denote the act h such that h(s) = f (s) for s ∈ A and h(s) = g(s)

for s ∈ Ac.

Let ∆(S) denote the set of probability distributions over S, which is identified

with the |S| − 1 dimensional simplex in R|S|. For any µ ∈ ∆(S) and any A ∈ Σ, let

µ|A (or sometimes µ(·|A)) denote the Bayesian update of µ given A4.

Definition 1.1 (Scenario). I will refer to an information-choice pair, (A, f ), as a

scenario.

I take as a primitive a class of preference relations {≿,≿A, f }(A, f )∈Σ×F over F .

2The assumption of finite S is merely for convenience. All results are unchanged if I assume an
infinite state space and restrict attention to non-null events. What is crucial is the existence of at
least three non-null events.

3I assume that the agent’s information is in fact informative.
4 That is, for all B ∈ Σ, µ(B|A) = µ(B∩A)

µ(A)
.
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Here ≿ represents the agent’s ex-ante preferences, while ≿A, f is interpreted as his

preference after making choice f and receiving information A; his preferences in

scenario (A, f ).5

The literature offers two interpretations for conditional preferences: 1) ≿A, f

represents what the agent thinks his preferences would be if he later faced scenario

(A, f ); and 2) ≿A, f are his actual preferences when facing scenario (A, f ). For this

paper I adopt the second interpretation and assume that ≿A, f is a representation

of how the agent actually responds ex-post in scenario (A, f ).

The statement h ≿A, f g may be interpreted as follows: after having chosen f

and learning A, the agent prefers h to g. In this way preference statements may

be connected to choice data by observing choices from binary menus.6 Thus the

primitives may be interpreted as follows (i) at time 1 the experimenter elicits the

agent’s preferences, then (ii) during an interim period the agent chooses an alter-

native and then receives information, and finally (iii) at time 2 the experimenter

elicits the agent’s preferences again. The interim choice is not modeled and could

be made from some subset of acts (a menu) or possibly utilize some form of ran-

domization.7

5Alternatively, I could simplify notation by writing the above conditions only in terms of≿A, f , for

A ∈ Σ∗ = Σ∪ S, and imposing the condition that ≿S, f=≿S, f̂ , for all f , f̂ , in which case we identify ≿
with ≿S, f . This changes the interpretation of the model, in that I interpret ≿ as preferences before
both information and choice, whereas in the new formulation all preferences are conditional on
some action. However, it is reasonable to argue that even in the presence of cognitive dissonance,
if no new information is received, (i.e., the agent observes S) then the fact that a choice was made
does not immediately impact preferences. That is, I argue that dissonance requires information.
Additionally, the fact that the model implicitly assumes ≿S, f=≿S, f̂ makes for a clear distinction

between the model here and models of status-quo bias.
6It is simple to translate the framework and axioms into an inter-temporal choice setting. I utilize

preferences as a primitive for axiomatic transparency.
7The specifics of how the choice is made are not important, since I am interested in how the ex-

istence of a choice affects conditional preferences. Many of the early psychology experiments on
cognitive dissonance utilized a method of forced compliance. This suggests that it is the perfor-
mance of the action that is relevant, rather than the specifics of the choice environment, and the
belief changes are mechanical reactions.
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1.3 Axioms

1.3.1 The Standard Axioms

The first axiom, Consistent Expected Utility, is a collection of classic axioms which

are known to be equivalent to subjective expected utility maximization, plus ordinal

preference consistency, which is a regularity condition between the ex-ante and ex-

post preferences. Ordinal preference consistency is sensible in this environment,

even in the presence of cognitive dissonance. In particular, suppose X is a set of

monetary prizes, say [0, 10]. Then the condition merely imposes that if $10 is pre-

ferred to $1 before information, it is also preferred after information, regardless of

what the agent has done in the past.

Axiom 1.1 (Consistent Expected Utility). For all A ∈ Σ and g, h, f , f̂ ∈ F .

Weak Order: ≿ and ≿A, f are complete and transitive binary relations on

F .

Independence: For all α ∈ (0, 1).

(i) f ≿ g if and only if α f + (1 − α)h ≿ αg + (1 − α)h.

(ii) f ≿A, f̂ g if and only if α f + (1 − α)h ≿A, f̂ αg + (1 − α)h.

Strict Monotonicity: If h(s) ≿ g(s) for all s, then h ≿ g. In addition, if for

some s, h(s) ≻ g(s), then h ≻ g. Similarly, if h(s) ≿A, f g(s) for all s, then

h ≿A, f g, and if in addition h(s) ≻A, f g(s) for some s, then h ≻A, f g.

Continuity: The sets {α ∈ [0, 1] : α f + (1 − α)g ≿ h},{α ∈ [0, 1] : h ≿

α f + (1 − α)g}, {α ∈ [0, 1] : α f + (1 − α)g ≿A, f̂ h} and {α ∈ [0, 1] : h ≿A, f̂

α f + (1 − α)g} are closed.

Ordinal Preference Consistency: x ≿ y if and only if x ≿A, f y.
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Non-triviality: There are x, y ∈ X such that x ≻ y.

Consequentialism is also a standard axiom, which ensures that the agent be-

lieves the information. That is, once the agent learns states outside of A are impos-

sible, he is only concerned with how actions perform within A. That is, the agent’s

posterior beliefs put probability 1 on A.

Axiom 1.2 (Consequentialism). For all A ∈ Σ and f ∈ F ,

h(s) = g(s) for all s ∈ A =⇒ h ∼A, f g.

The novel axioms will be concerned with how the agent changes his preferences

after receiving information. Before introducing them I first introduce another clas-

sic axiom.

Axiom 1.3 (Dynamic Consistency). For all h, g ∈ F and A ∈ Σ,

hAg ≿ g ⇐⇒ h ≿A, f g.

This axiom requires that the ranking of two acts, after the arrival of information

A, only depends on their variation in A and is consistent with the agent’s ex-ante

ranking between acts that only vary within A. In other words, the agent does not

adjust the relative probabilities of states in A. While the axiom has normative ap-

peal, it is too restrictive and rules out any sensitivity to cognitive dissonance. In

particular, an agent sensitive to cognitive dissonance allows yesterday’s action to

influence today’s preferences. However, dynamic consistency requires preferences

to be independent of yesterday’s action. The following example illustrates this.

Example 1.1 (Investing). Consider an example similar to the experimental setup

in [43]. An investor is deciding between a stock, s, and a bond, b. The stock can be

good or bad and the stock’s terminal value depends on its type. In the interim, the
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Figure 1.1: States and Information

stock can pay either a high or low dividend. Good stocks are more likely to pay high

dividends.

Formally, the state space is S = {(G, h), (G, l), (B, h), (B, l)} and µ is the agent’s

prior. Suppose that good and bad are equally likely but a high dividend correlates

with a good stock—µ(G, h) = µ(B, l) = 3
8 and µ(B, h) = µ(G, l) = 1

8 .8 Let H(L) be

the event that a high (low) dividend is observed.

If agents satisfy dynamic consistency, then µH,s(G) = µH,b(G). However, the

experimental evidence finds that subjects report µH,s(G) > µH,b(G). Formulated

in terms of observables, we can consider preferences between two the following two

bets:

(G, h) (B, h) (G, l) (B, l)

f $3 $0 $0 $0

g $0 $9 $0 $0

Before the dividend is observed the agent is indifferent between the two bets,

f ∼ g. Dynamic consistency requires the agent to also be indifferent after the div-

8These probabilities match those used in [43]
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idend observation— f ∼H,s g and f ∼H,b g—regardless of which asset the agent

originally choose. However after observing the dividend, the stock holder is more

optimistic than the bond holder and thus we expect f ≻H,s g, a violation of dynamic

consistency

1.3.2 Behavioral Axioms

As seen in Example 1.1, Dynamic Consistency is too strong and rules out cognitive

dissonance. This is because it requires that both those that voted for the hawk and

those that voted for the dove have the same posterior after observing A. It requires

that relative likelihoods between states are constant and independent of prior ac-

tions, whereas cognitive dissonance implies that relative likelihoods change in favor

of states that favor prior actions. The following behavioral axiom, Dynamic Cog-

nitive Dissonance, is the precise weakening of Axiom 2.2 needed for the behavior

seen in Example 1.1.

Axiom 1.4 (Dynamic Cognitive Dissonance). For all (A, f ) and B, C ⊂ A, such

that for every s ∈ B and s̃ ∈ C, f (s) ≿ f (s̃), then for any x, y, z ∈ X, where x, y ≿ z,

xBz ≿ yCz =⇒ xBz ≿A, f yCz.

Axiom 1.4 states that for any pair of events, where one event is always better ac-

cording to the previous action, the agent weakly prefers to bet on the better event.

That is, think about an agent committed to action f . This induces a preference over

what events might occur, where the agent prefers s to s̃ if f (s) ≻ f (s̃). Since cog-

nitive dissonance causes the agent to align his conditional beliefs with f , if he were

to learn that {s, s̃} has occurred he ought to prefer betting on s to s̃. In the context

of the voting example, what this axiom states is that the voter will become (weakly)

more convinced of war if he voted for the hawk and (weakly) more convinced of
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peace if he voted for the dove. Since agents are expected utility maximizers, such

a belief distortion will cause the agent to support more extreme policy positions in

future elections.

1.4 The General Representation

This section introduces the main model for cognitive dissonance. I discuss sev-

eral properties of the general model and then present a representation theorem,

showing that the model is equivalent to some standard postulates and the behav-

ioral weakening of Dynamic Consistency—Dynamic Cognitive Dissonance. I then

discuss the model’s uniqueness properties.

Definition 1.2 (Cognitive Dissonance Representation). There exists utility func-

tion u : X → R, a prior belief µ ∈ ∆(S), and for each (A, f ), an increasing distortion

function δA, f : u(X) → R+ such that

≿ is represented by:

V(g) = ∑
s∈S

u(g(s))µ(s),

≿A, f is represented by:

VA, f (g) = ∑
s∈A

u(g(s))µA, f (s),

where

µA, f (s) = δA, f (u( f (s)))µ(s|A).

This is the most general model of belief distortions, where the distortion func-

tion depends upon the scenario (A, f ) in a general way, not just through the payoff

profile of f on A and a normalizing constant. In particular, the distortion magni-
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tudes may vary considerably between scenarios, even if state-wise payoffs are iden-

tical. This scenario sensitivity may or may not be sensible in certain contexts, both

of which will be explored later. This model embeds the standard Bayesian model

as a special case, where δA, f (a) = 1 for all a ∈ u(X).

To clarify, the agent does not privilege the past choice, f , per se. Rather, he

privileges those states of the world in which, given the partition he finds himself in,

his past choice would do best. Thus the agent may in fact move away from f after

information. That is, he views f as a commitment to certain states of the world

and hence his beliefs become biased in favor of those states. Alternatively, one may

interpret this as if the agent views his action f as an additional piece of informa-

tion and uses this information to adjust the relative probabilities of states s ∈ A.

This last interpretation is reminiscent of Bénabou and Tirole [9], which considers

a model of an agent who infers their beliefs from their past actions.

Consider some scenario (A, f ) and suppose f (s) ≿ f (s̃) for some s, s̃ ∈ A. Then

the agent’s ex-post subjective relative likelihood of state s to state s̃ is given by

µA, f (s)
µA, f (s)

=
δA, f (u( f (s)))
δA, f (u( f (s̃)))

× µ(s)
µ(s)

.

Since δA, f is increasing, and f (s) ≿ f (s̃), it follows that
δA, f (u( f (s)))
δA, f (u( f (s̃))) ≥ 1, hence the

agent believes s to be relatively more likely than s̃ when compared to a Bayesian

agent.

Notice that if f (s) ∼ f (s̃), then δA, f (u( f (s))) = δA, f (u( f (s̃))) and hence
µA, f (s)
µA, f (s)

=

µ(s)
µ(s) . Thus the relative likelihood between states that provide identical payoffs under

f is undistorted. This is actually quite intuitive, since whatever feelings the agent

has toward s, since both states s and s̃ are equally good according to his action, he

should have precisely the same feelings toward s̃.

To further this intuition, consider an agent having taken a constant action x.
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Then regardless of the information he learns, there is no possible distortion of this

information that could increase the agent’s valuation of x, hence there is no distor-

tion of beliefs at all. This reasoning extends to all scenarios that are equivalent to

having taken a constant action. The following definition precisely identifies which

scenarios are equivalent to a constant action.

Definition 1.3. A scenario (A, f ) is constant if for all s, s̃ ∈ A, f (s) ∼ f (s̃).

A constant scenario is one in which the agent’s initial action does not vary, con-

ditional on event A. Thus conditional on A, there is no distortion of beliefs that can

improve the valuation of f . Let C denote the set of constant scenarios.

Observation 1.1. For all (A, f ) ∈ C, the agent’s posterior beliefs are derived via

Bayes rule, µA, f = µ|A.

1.4.1 Representation and Uniqueness

This section presents the representation theorem and the uniqueness properties

of the representation. The following theorem connects the representation to the

axioms.

Theorem 1.1 (Representation). The following are equivalent:

(i) {≿,≿A, f } satisfy Consistent Expected Utility, Consequentialism, Dynamic

Cognitive Dissonance,

(ii) The agent admits a Cognitive Dissonance Representation.

The uniqueness properties of the representation are illustrated in the following

theorem. It is standard to show that the utility index u is unique up to positive affine

transformations. The uniqueness of µ is also standard. The uniqueness of δ follows

from the uniqueness of the subjective probabilities. That is, from standard results
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we have a unique µA, f for every scenario, while uniqueness of δ follows from the

decomposition into the product δA, f ( f (s))µ(s|A).

Theorem 1.2 (Uniqueness). If (u, µ, δA. f ) and (u′, µ′, δ′A. f ) both represent {≿, {≿A, f

}} then

(i) u′ = αu + β for α > 0, β ∈ R

(ii) µ′ = µ

(iii) δ′A, f (u
′(x)) = δA, f (u(x)) for all x ∈ f (A).

1.5 Proportional Distortions

This section introduces and characterizes the first special case by introducing a sce-

nario independence property. While the general representation allows for some

arbitrariness between scenarios, it is natural to think that the distortions between

any two states should only depend on the relative payoffs between those states. To

this end I define the proportional distortion.

Definition 1.4 (Proportional distortion). The belief distortion function is a pro-

portional distortion if there exists an increasing function v : u(X) → R+ such

that

δA, f (a) :=
v(a)

∑s∈A v(u( f (s)))µ(s|A)
. (1.1)

In the case of a proportional distortion, the belief distortion only depends on

the scenario up to a normalizing constant. This becomes clear when looking at the

probability ratio of any two states. Suppose f (s) ≻ f (s̃), then after learning some

A containing both states, it is as if the agent takes (A, f ) as a signal that s has been

made more likely than s̃ by an amount proportional to v(u( f (s)))
v(u( f (s̃))) .
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Figure 1.2: Scenarios (A, f ) and (B, g).

Example 1.2. More precisely, suppose S = {s1, s2, s3, s4}, and consider the fol-

lowing two events A = {s1, s2, s3} and B = {s2, s3, s4} and the following two acts:

s1 s2 s3 s4

f $x $50 $0 $y

g $w $50 $0 $z

Figure 1.2 illustrates scenarios (A, f ) and (B, g). Suppose C = {s2, s3} = A ∩ B

(shown in blue) and consider the agent’s preferences over acts that vary only within

C. More specifically, consider an agent placing bets on a given state, say bets of

the form ($a, s2) and ($b, s3). If an agent is in scenario (A, f ), then since 50 > 0,

an agent sensitive to cognitive dissonance may distort the relative probabilities of

states s2 and s3. It is natural to think that when determining preferences over the

binary bets, the only relevance of f is through how it performs in states s2 and s3.

That is, the specific value of y is irrelevant. If this is the case, then since g(s2) =

f (s2) and g(s3) = f (s3), the agent should report the same preferences over binary

bets of the form ($a, s2) and ($b, s3) when in scenario (B, g).

The following scenario independence axiom imposes precisely the intuition from
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the previous example.

Axiom 1.5 (Scenario Independence). For all (A, f ), (B, g) and C ⊂ A∩ B, if f (s) ∼

g(s) for all s ∈ C, then for all h, j ∈ F and any z ∈ X,

hCz ≿A, f jCz ⇐⇒ hCz ≿B,g jCz.

For any two scenarios, if there is some event in which both action f and action

g are payoff equivalent, then the preference ordering between any two acts that

vary only on that event is the same in either scenario. The next theorem shows

that the addition of Scenario Independence completely characterizes proportional

distortions.

Theorem 1.3 (Representation). Suppose {≿,≿A, f } satisfy Consistent Expected

Utility, Consequentialism, Dynamic Cognitive Dissonance, then the following are

equivalent,

(i) {≿,≿A, f } satisfy Scenario Independence

(ii) δA, f is a proportional distortion

While Theorem 2 shows the uniqueness of δA, f , the same uniqueness does not

extend to the value function determining a proportional distortion. That is, v is only

identified up to the ratio of δA, f (a) and δA, f (b), as shown in the following theorem.

Theorem 1.4 (Uniqueness). Suppose {≿,≿A, f } has a cognitive dissonance rep-

resentation with a proportional distortion. Then the value function v is unique up

to a positive scalar.

So far I have not required the distortion to be continuous. However, one may

impose continuity of the distortion function through the following axiom.
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Axiom 1.6 (Commitment Continuity). For all A and all f , g, hF and any ( fn), (gn), (hn) ∈

F ∞ such that fn → f , gn → g, hn → h:

if gn ≿A, fn hn for all n, then g ≿A, f h.

As will be shown later however, there is an interesting class of distortions that

are not continuous in the sense of Axiom 1.6.

Corollary 1.1. Suppose {≿,≿A, f } satisfy Consistent Expected Utility, Consequen-

tialism, Dynamic Cognitive Dissonance, Scenario Independence, then the follow-

ing are equivalent:

(i) The value function v is continuous

(ii) {≿,≿A, f } satisfy Commitment Continuity

1.5.1 Examples

The following examples may help illustrate the distinction between continuous and

discontinuous proportional distortions.

Example 1.3 (Step Distortion). Fix a parameter θ ∈ (0, 1) and some a∗ ∈ u(X).

Then

v(a) =


1 + θ if a ≥ a∗

1 − θ if a < a∗

An agent described by a step distortion is one that divides the consequence space

into good and bad outcomes, defined relative to some threshold a∗. The agent’s rel-

ative beliefs about states that yield consequences of the same type are undistorted,

while the agent overweights good states relative to bad states. If X = R, then a

natural division is at a∗ = 0. In this case the agent will overweight the probability



23

of gains relative to losses. In this case, any scenario (A, f ) that yields only gains or

only losses will result in posterior beliefs that coincide with using Bayes’ rule. Non-

Bayesian behavior in this example would only be observed when observing mixed

scenarios - those in which (A, f ) allows for both gains and losses.

Example 1.4 (Logistic Distortion). Fix a parameter λ ∈ [0, ∞). Then v(a) = eλa

is a logistic distortion, where

δA, f (u(x)) =
eλu(x)

∑s̃∈A eλu( f (s̃))µ(s|A)

and the likelihood ratios are given by

µA, f (s)
µA, f (s̃)

=
µ(s)
µ(s̃)

eλ[u( f (s))−u( f (s̃))]

A version of the logistic distortion was studied by Mayraz [46]. The logistic dis-

tortion includes the Bayesian model as the special case λ = 0.

Example 1.5 (Distortion with Decreasing Sensitivity). Suppose u(X) = [0, ∞).

Then define v : u(X) → R by

v(a) = ln(1 + a)

.

An agent with such a distortion function will be approximately Bayesian on high

stakes events (relative beliefs between high payoff states are accurate), while he will

dramatically under-weight the probability of low payoff states.
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1.6 Binary Distortions

While continuity is often considered an attractive property, there are interesting

cases in which the distortion is not continuous. For example, the distortion may

take the form of a step function. This may be interpreted as an agent separating the

event A into good and bad states, and only overweighting the probability of good

states relative to bad states. In contrast to the proportional distortion, in which the

scenario only matters for a normalization, the class of binary distortions are often

most sensible when there is scenario dependence.

That is, the agent determines some threshold depending on (A, f ), and states

which are better than the threshold are classified as good. The following definition

introduces a special case of the binary distortion.

Definition 1.5 (Best-case Binary Distortion). The belief distortion is a Best-case

Binary Distortion9 if there exists a non-constant, affine utility function u : X → R,

a probability distribution µ ∈ ∆(S), and a function δ : Σ ×F → [0, 1] such that:

≿ is represented by:

V(g) = ∑
s∈S

u(g(s))µ(s),

≿A, f is represented by:

VA, f (g) = ∑
s∈A

u(g(s))µA, f (s)

where

µA, f (s) = (1 − δ(A, f ))µ(s|A) + δ(A, f )µ(s|D(A, f ))
9This representation fits into the general model as a binary distortion given by the pair (θ, t),

where θ : Σ ×F → [0, 1] and t : Σ ×F → X such that

δA, f (x) :=

{
1 − θ(A, f ) if x ≺ t(A, f )
1 − θ(A, f ) + θ(A, f ) µ(A)

µ({s∈A| f (s)≿t(A, f )}) if x ≿ t(A, f )
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and

D(A, f ) = {s ∈ A| f (s) ≿ f (s′) for all s′ ∈ A}.

1.6.1 Interpretations

Here V represents the ex-ante preference and VA, f represents the agent’s prefer-

ences after information A and the choice of f . Behaviorally, δ represents the agent’s

sensitivity to dissonance. Presented in this form, it looks similar to the “α-maxmin

expected utility” model of Arrow and Hurwicz [6]. In a way they are similar, as they

both allow the agent to “average” the utility of an act according to a “pessimistic (ra-

tional)” belief and an “optimistic” belief. The similarity is only superficial, however,

since in this model the agent’s preferences satisfy the subjective expected utility ax-

ioms. Hence the agent being studied has beliefs represented by a unique probability

distribution over the states, where µA, f (s) = (1 − δ)µ|A(s) + δµD(A, f )(s).

One can think of an agent that satisfies the above axioms as one who systemat-

ically mixes his beliefs with what he wishes would actually occur. That is, while he

knows the true state lies within the event A, he believes, given his previous choice

of f , that states in which f is good must be more likely than he originally supposed,

because he must have chosen f for good reason. Note that states in which f is good

is defined relative to how f performs in other states within A. Alternatively, one

could think of the agent as being composed of two selves: one of which is a realist

(and is Bayesian) and one of which is a justifier, who interprets the information to

maximize the conditional value of the action. When the agent receives information,

he must balance the desires of both selves, and δ is the weight that the justifying self

receives when making decisions. Since the preferences are represented by expecta-

tion with respect to a weighting between the Bayesian belief and a justifying belief,

the agent will generally make choices that are seen as a compromise between (i)

accepting the information and taking the correct action, and (ii) “sticking to your
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guns” by repeating the previous choice.

This representation suggests a specific “cognitive mechanism” that underlies

multi-period choice and updating. The agent considers a scenario, an information-

choice pair, and partitions the event into good and bad states. As mentioned ear-

lier, good states are states in which f performs best given the known information.

This is a rather blunt cognitive rule, since even if two states are very close in utility

space, they may be classified as “distinct states.” Hence preferences are generally

discontinuous between scenarios.

Example 1.6. In order to get a better understanding of how this bias affects pref-

erences, consider the following simple example. Say X = [w, b] ⊂ R and u(x) = x.

Suppose S = {s1, s2, s3} with prior µ = (1/3, 1/4, 5/12), and suppose A = {s1, s2}

. Consider an act f = (y, x, z), where x ≻ y ≻ z. Then the Bayesian posterior

is given by µ|A = (4/7, 3/7) and the corresponding indifference curve in utility

space, illustrated in Figure 1.3, corresponds to the solid line (δ = 0). Since x ≻ y,

then D(A, f ) = {s2} and µ|D(A, f ) = (0, 1). The horizontal dotted line denotes the

indifference curve of an agent that has taken action f with δ = 1, whereas the in-

termediate dashed line represents the corresponding indifference curve for δ = 1
2 .

For clarity, the curves all intersect at the constant utility line y = x.

1.6.2 Characterization

Before introducing the next axiom I first introduce a few definitions. The first is

comonotonicity, which is standard in the literature.

Definition 1.6. Say that h and f are strongly A-comonotonic if h(s) ≿ h(s′) if and

only if f (s) ≿ f (s′) for all s, s′ ∈ A. Denote this by h ≍A f .
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Figure 1.3: Indifference curves for ≿A, f .

Consider an agent that has taken action f and is sensitive to cognitive disso-

nance. Then one would expect the agent to express an inflated view about the value

of f . However, dissonance theory suggests more than this. That is, the agent will

seek out a consistent view of the world, and hence will similarly express an inflated

view about the value of actions that are similar to f . Thus we seek to impose a weak-

ening of dynamic consistency that takes into consideration the impact of the action

f on all similar acts. This leads to the following axiom.

Axiom 1.7 (Best-Case Dominance). For all A, and all h, g ≍A f :

hAg ≿ g

h(s) ≿ g(s′), for some s ∈ A and all s′ ∈ A

 =⇒ h ≿A, f g

This is a three part weakening of dynamic consistency. First, I only apply a single

direction. That is, I only seek to regulate when an ex-ante preference is sufficient

to make an ex-post comparison. Second, in addition to the classic conditioning

requirement, I require the additional property stated. To understand this require-

ment, consider an agent originally choosing action f over action g, where f Ag ∼ g

held ex-ante. That is, before the agent took an action, if he knew he would learn A,
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he would say he was indifferent between taking either action. However, after taking

an action and having observed A, the agent feels the need to justify having taken

f as opposed to g. Thus we come to the second condition — if the best possible

payoff of action f is better than the best possible payoff of action g, then the agent

can use that as a justification to declare a preference for f over g. Third, I extend

this logic to all actions that are strongly A-comonotonic with f . That is, imagine

an agent who is contractually obligated to some action f . Then this commitment

to f induces a preference over states of the world. However, an action h that is

strongly A-comonotonic with f induces the same preference over states, and hence

in a sense they are equivalent. That is, they induce the same desires about how the

world turns out and thus if commitment to f induces a dynamic inconsistency, any

arguments or justifications used for f also apply to h.

Theorem 1.5 (Representation). The following are equivalent:

(i) {≿,≿A, f } satisfy Consistent Expected Utility, Consequentialism, Dynamic

Cognitive Dissonance, and Best-Case Dominance.

(ii) The agent has a Best-case Binary Distortion representation.

Theorem 1.6 (Uniqueness). Moreover, if (u, µ, δ) and (u′, µ′, δ′) represent the

same preferences, then there is some α > 0, β ∈ R, such that u′ = αu + β, µ = µ′,

and δ(A, f ) = δ′(A, f ) for all (A, f ).

To gain some additional intuition for Axiom 1.7, consider an agent who displays

an extreme level of dissonance. That is, such an agent maintains a preference for

f over g if there exists a possibility of f being better than anything g might return.

One may think of the agent reasoning as follows: I must have chosen f for good

reason, and if state s is the true state, the f is better than g. Hence it must be that

state s will be realized. This is formalized in the following axiom:
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Axiom 1.8 (Extreme Dissonance). For all f , g ∈ F , if there is some s ∈ A such

that f (s) ≿ g(s′) for all s′ ∈ A, then

f ≿A, f g

Extreme Dissonance is essentially the second condition of Best-Case Dominance.

Thus one can think of Best-Case Dominance as softening Extreme Dissonance and

asserting that whenever both a Bayesian agent and an agent that is maximally sen-

sitive to dissonance prefers f to g, then an agent of any sensitivity to dissonance also

prefers f to g. The following theorem shows that Extreme Dissonance indeed does

characterize a maximally sensitive agent, while the Bayesian agent is the opposite

extreme.

Theorem 1.7. Suppose {≿,≿A, f } satisfies Axiom 1.1, Axiom 3.2, then

(i) {≿,≿A, f } satisfy Axiom 2.2 if and only if for all (A, f ), δ(A, f ) = 0.

(ii) {≿,≿A, f } satisfy Axiom 1.4, Axiom 1.8 if and only if for all (A, f ), δ(A, f ) =

1.

1.7 Connecting the Two Cases

So far I have presented two special cases of the general model, which each require

a single additional axiom. Both the proportional and best-case binary distortions

have intuitive appeal. The proportional distortion allows for belief distortions to

be somewhat independent of the previous action and allows for beliefs to vary in

a continuous sense. The best-case binary model is suggestive of a simple cognitive

mechanism in which the agent simply thinks of good or bad states and gives greater

weight to the good states.



30

However, it remains to see how the proportional distortion and the best-case

binary distortion relate to each other. That is, this section asks what model of be-

havior is consistent with both Scenario Independence (Axiom 1.5) and Best-Case

Dominance (Axiom 1.7) holding. It turns out that both special cases are distinct in

a very strong sense - an agent may satisfy both conditions only if the agent is in fact

a Bayesian.

Theorem 1.8. Suppose {≿,≿A, f } satisfy Axiom 1.1, Axiom 3.2, Axiom 1.4. Then

the following are equivalent

(i) {≿,≿A, f } satisfy Scenario Independence and Best-Case Dominance

(ii) {≿,≿A, f } satisfy Dynamic Consistency

This theorem therefore shows that there is a trade-off between scenario inde-

pendence and continuity and cognitive simplicity. Further, continuity of the agent’s

beliefs is not a purely technical assumption because it is violated by the best-case

binary model. Finally, that fact that there is a sharp distinction between the two

models allows us to design experimental procedures to distinguish between the two

cases and gain a much deeper understanding of the mechanism through which be-

liefs are distorted.

Despite this strong distinction, they also almost coincide in the extreme case.

That is, the Best-case Binary distortion with δ(A, f ) = 1 is the limit of a propor-

tional representation as sensitivity to dissonance increases without bound. This

result is illustrated by the following corollary.

Corollary 1.2. Let µλ
A, f denote logistic distorted beliefs with sensitivity parame-

ter λ. Then

lim
λ→∞

µλ
A, f = µ|D(A, f )

Thus it makes sense to consider δ(A, f ) as a measure of dissonance, since as the

parameter increases behavior approaches the most extreme version of dissonance.
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1.8 Comparative Dissonance

This section considers comparing individuals’ sensitivity to cognitive dissonance.

That is, this section asks when can an experimenter conclude that one agent is

more sensitive to dissonance than another. Consider two agents that satisfy the

conditions of Theorem 1. For i = 1, 2, let {≿i,≿i
(A, f )} denote i’s preferences. The

following definition is similar in spirit to definitions of more ambiguity averse or

more status-quo biased.

Definition 1.7. Given two agents, with preferences {≿1,≿1
A, f } and {≿2,≿2

A, f },

agent 2 is more sensitive to dissonance than agent 1 if ≿2=≿1 and for all (A, f ),

f ≿1
A, f x ⇒ f ≿2

A, f x

The following result relates the preference based definition of more sensitive to

dissonance to model parameters.

Theorem 1.9. Suppose agents 1 and 2 have cognitive dissonance representations

and agent 2 is more sensitive to dissonance than agent 1. Then

(i) If both agents have best-case binary distortions, δ2(A, f ) ≥ δ1(A, f ) for all

(A, f ).

The theory of cognitive dissonance has previously lacked a method for measur-

ing dissonance within individuals and comparing between individuals. The frame-

work presented here, in which information is observable to the experimenter, pro-

vides a precise way to do both while the above theorem demonstrates that the com-

parative measure in fact corresponds to a sensible, preference characterization of

more sensitive to dissonance.
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1.9 Applications

1.9.1 A Simple Asset Pricing Problem

For simplicity, uncertainty is represented by four states, S = {uh, ul, dh, dl}, and

interim information is given by: {{uh, ul}, {dh, dl}} = {U, D}. That is, the agent

will receive news of the form the asset will go up or the asset will go down. There

is a single risk-free asset, b, which pays b at time 3. There is single unit of risky

asset in each period f : S → R such that f (dl) < f (dh) ≤ f (ul) < f (uh). There is

no discounting and no short selling, so that the agent may buy a single unit of the

risky asset at each of time 1 or 2. Assume the initial prior µ ∈ int(∆(S)) and for

simplicity, that µ(U) = µ(D).

1.9.1.1 Asset Pricing Without Dissonance: Rational Benchmark

As a benchmark, first consider prices when an agent is a standard Bayesian. In this

case the bond and stock must both offer the same expected return to be traded in

equilibrium. Hence

b − Pb = Eµ( f )− P1
f

For simplicity, normalize the bond return to zero (Pb = b), hence P1
f = Eµ( f ).

The conditional prices at time 2 are found similarly, and thus equal to the condi-

tional expected payoff under Bayesian updating. The priced are illustrated in Fig-

ure 1.4

1.9.1.2 Prices with Cognitive Dissonance and a Naive Agent

Now I consider an agent that is sensitive to cognitive dissonance but at time 1 does

not anticipate how his beliefs will be biased at time 2. Hence if agent is naive, the
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time t = 1 valuation is equal to the rational price: P1
f = Eµ( f ). Now, consider what

happens if the agent purchase the risky asset. At time 2, after the news is released

but before the final states are revealed, price must again equal the agent’s expected

valuation, P1δ
f (U) = VU, f . However, under dissonance the agent’s valuation is as

follows:

VU, f ( f ) = δU, f ( f (uh))
µ(uh)

µ(U)
f (uh) + δU, f ( f (ul))

µ(ul)

µ(U)
f (ul).

For simplicity, we can define δ by 1 − δ = δU, f ( f (ul)) and simple algebra yields

the following pricing equation:

P2δ
f (U) =

[
(1 − δ)

µ(uh)

µ(U)
+ δ

]
f (uh) +

[
(1 − δ)

µ(ul)

µ(U)

]
f (ul). (1.2)

When δ = 0 the agent is a Bayesian. As δ increases towards one (the agent is

more sensitive to dissonance) then VU, f ( f ) increases towards f (uh), and hence the

market price increases.

1.9.1.3 Prices with Cognitive Dissonance and Sophisticated Agent

In this case I consider an agent that anticipates the belief distortion after informa-

tion and hence knows that by buying at t = 1, he will overpay at t = 2. In this case

the agent will price the asset via backwards induction. Since the time 2 prices are

given from above, all that remains is to determine a price at time 1 such that the

agent is willing to buy the risky asset. Thus the agent takes time 2 prices as given

and sets total expected return equal to purchasing the bond today.

b − Pb = Eµ( f )− P1δ
f +

1
2

[
Eµ( f |U)− P2δ

f (U)
]
+

1
2

[
Eµ( f |D)− P2δ

f (D)
]

. (1.3)
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Some algebra provides

P1δ
f = Eµ( f ) + δ

(
Eµ( f )− [µ(U) f (uh) + µ(D) f (dh)]

)
. (1.4)

When δ = 0 the time 1 price corresponds to the rational (and naive) price. As

δ increases Pδ
f decreases, since Eµ( f ) − [µ(U) f (uh) + µ(D) f (dl)] < 0. Thus the

equity premium at time 1 is given by

− δ(Pf − [µ(U) f (uh) + µ(D) f (dh)]), (1.5)

which is positive and increasing in δ. In this simple model a positive equity

premium arises, even with risk neutrality. The cause of the premium is not simply

due to a behavioral trait, but due to sophisticated agent trying to protect himself

from future mistakes. That is, the sophisticated agent demands the premium today

as a buffer for his inevitable bias tomorrow. Thus Cognitive Dissonance potentially

contributes toward explaining the equity premium puzzle, Mehra and Prescott [47].
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1.9.2 Response to Information

This section considers an agent satisfying the conditions of the best-case binary dis-

tortion and studies his response to information. I find that such an agent deviates

from a Bayesian in a rather systematic way. Posterior beliefs are influenced by the

agent’s time 1 choice and are such that the agent always believes his time 1 choice

is better than a Bayesian would. It is in this way that the agent exhibits an asym-

metric reaction to news. By generally over-valuing his original action it is as if he

over-reacts to news that is good for f , while under-reacting to news that is bad for

f .

Research by Easterwood and Nutt [13] suggests that this behavior in fact occurs

in financial markets. They study analysts’ forecasts and find that analysts system-

atically under-react to negative information and overreact to positive information.

Since analysts exhibit both under and overreaction (depending on information),

this cannot be due to generic over(under)-reaction to information. For example, a

model in which people systematically overreact to information predicts that, after

bad news, they should have beliefs more negative than the information warrants,

whereas the opposite is observed. This phenomena, however, is consistent with the

model presented in this paper, under the presumption that an analyst’s decision to

cover a stock is seen as an implicit endorsement of the stock.

Definition 1.8. Say that A is good news for f if f Ax ≻ x for some constant act

satisfying x ∼ f . Similarly, A is bad news for f if x ≻ f Ax.

By fixing a choice f , one can compare how an agent sensitive to cognitive dis-

sonance reacts to various events. For any event A, if the agent has chosen f then

he always believes that f provides greater ex-post expected utility than it would if

the agent had used Bayes’ rule. Since the best-case binary distortion is a special

case of the general cognitive dissonance representation, the agent’s posterior sat-
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isfies Bayes’ rule for all constant scenarios. Let N denote the set of non-constant

scenarios.10

Theorem 1.10. If (A, f ) ∈ N , then EµA, f (u( f )) > Eµ|A(u( f )).

Thus an agent that originally chose f will overreact to good news (for f ) and

under-react to bad news (for f ). That is, whenever A is good news for f and f is

non-constant on A, the agent overvalues f (relative to a Bayesian). Hence he is

willing to pay more for act f , i.e., EµA, f (u( f )) > Eµ|A(u( f )). Similarly, when A

is bad news the agent still overvalues f , and hence under-reacts to the negative

information in A.

Additionally, Agrawal and Chen [1] provide evidence that analysts are more op-

timistic about firms that have relationships with their employer. This suggests that

reference points may have an effect on how people interpret information. The dif-

ferential treatment of affiliated and non-affiliated firms is not consistent with any

type of non-Bayesian model without reference points, while it is consistent with the

model presented here.11

1.9.3 Polarization

While the previous two applications are concerned with the implications of cogni-

tive dissonance for a single individual, this section studies the effect of cognitive

dissonance on the distribution of beliefs within a population. In particular, this

section shows that whenever two agent take different actions, then even when they

observe the same information and have identical prior beliefs they will have differ-

ent posterior beliefs.

10N = {(A, f )| f (s) ≻ f (s̃) for some s, s̃ ∈ A}
11It should be acknowledged that both of these explanations require the joint assumption of belief

narrow framing, where information is incorporated into an asset specific belief on a case-by-case
basis. Narrow framing for risks has been argued for by Barberis et al. [7].
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The seminal experiment on polarization comes from the psychology literature.

Lord et al. [45] recruited subjects based on their differing views on the death penalty

and presented them with identical essays. Afterwards their views were further

apart, even though Bayesian updating predicts they should move closer together.

For other explanations of polarization, see [55], [3].

Theorem 1.11. Suppose ≿1=≿2 and for all A ∈ Σ and f ∈ F , ≿1
A, f=≿2

A, f , and

v is strictly increasing. For all A ∈ Σ and f , g ∈ F , if (A, f ) and (A, g) are such

that for some s, s′ ∈ A, f (s) ≁ g(s) and f (s′) ∼ g(s′), then ≿1
A, f ̸=≿2

A,g, hence

µ1
A, f ̸= µ2

A,g.

That is, consider two individuals, 1 and 2, and suppose they begin with the same

initial beliefs µ. For simplicity, I suppose both agents satisfy the conditions of the

proportional distortion for some strictly increasing v. Then whenever the two in-

dividuals are in different, non-constant scenarios they will have different posterior

beliefs.

Example 1.7. Consider the setup from Example 1.6 and two acts, f = (y, x, z) and

g = (x, y, z) where x ≻ y ≻ z. The corresponding indifference curves for ≿1
A, f

and ≿2
A,g, in utility space, are illustrated in Figure 1.5. The solid purple line purple

corresponds to the Bayesian posterior (δ = 0). The horizontal (vertical) dotted line

denotes the indifference curve of an agent that has taken action f (g) with δ = 1,

whereas the intermediate dashed lines represents the corresponding indifference

curve for δ = 1
2 . For clarity, the curves all intersect at the constant utility line y = x.

Thus two agents that are identical in their prior beliefs and how they update

their beliefs conditional on a given scenario can observe the same information and

will typically have differing posterior beliefs when they have taken different actions.

One point to note is that if both agents are in constant scenarios then their posterior

beliefs should be identical. In the context of voting, this suggests that those who
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Figure 1.5: Indifference curves for ≿1
A, f and ≿2

A,g.

abstain from voting or have not taken an initial stance on an issue will not exhibit

polarization, while partisans will exhibit polarization.

However, polarization of beliefs is not simply restricted to the case when agents

take different actions. If two agents have differing distortion functions then they

may exhibit polarization even after both take the same initial action and observe

the same information. Given the abundance of experimental evidence suggesting

that an agent’s actions influence how they update their beliefs, the phenomenon of

belief polarization should be observed more often than not.

1.9.4 Purchase of Safety Equipment

The model of Akerlof and Dickens (1982) [2] showed that workers subject to cogni-

tive dissonance may forgo the purchase of efficient safety equipment. The key vari-

able in their model was the cost of fear, which was determined by the true probabil-

ity of an accident and the agent’s chosen perception. I now show that their model

can be adapted into my framework and that the adapted model yields similar con-

clusions.

Consider two industries, one safe and one hazardous. However, the true risk
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of the hazardous industry is not known to the agent. This could be because the

industry is relatively new or due to societal mis-perception. The state space is S =

{s, m, h}, where a state corresponds to the true nature (risk level) of the hazardous

industry. Here, s means that the industry is actually safe, m means it is moderately

risky, and h means it is highly risky. Further, suppose that once the job is accepted,

the agent learns whether or not the true state is h, so that in period 2 he knows

either {h} or {s, m} ≡ A. Let qj denote the probability of accident in state j, and

suppose that qs = 0 < qm < qh.

Following Akerlof and Dickens, in period 1 the agent chooses an industry and in

period 2 he is given the option to purchase safety equipment. The cost of an accident

is ca and the cost of the safety equipment is cs. The agent has a prior over the states,

denoted µ, and suppose that µ(m|A)qmca > cs, so that the safety equipment is

efficient.

Suppose the worker originally chose the hazardous industry and learns {s, m}.

Then the agent’s beliefs on {s, m} are µA(s) = (1 − δ)µ(s|A) + δ and µA(m) =

(1 − δ)µ(m|A). Hence the agent purchases safety equipment if and only if (1 −

δ)µ(m|A)qmca ≥ cs, or equivalently, δ ≤ 1 − cs
µ(m|A)qmca

. Behaviorally, this means

that if agent is not too sensitive to dissonance (or only engages in a small amount

of wishful thinking) he will make the correct decision, otherwise he forgoes the

purchase of safety equipment.

However, if the true state were h, then the agent would correctly evaluate the

risk as qh and purchase safety equipment, regardless of his sensitivity to dissonance.

That is, the agent’s behavior only deviates from rationality when there is a plausible

alternative state, s, that can justify past choice.
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1.10 Conclusion

In this paper I developed, axiomatically, a model of an agent who is systemically

biased in favor of a past choice. He behaves as if his subjective beliefs consistently

increase the likelihood of states in which f yields better outcomes. This model con-

nects models of non-Bayesian updating with cognitive dissonance and shows how

data about previous actions may be necessary to understand and predict future be-

havior. This paper also serves as a first step toward developing a fully dynamic

model of cognitive dissonance, which would allow us to understand the implica-

tions of cognitive dissonance in more complex environments, such as financial mar-

kets.

There are many possible extensions for this paper, two of which are outlined

below. First, one could consider an extended version of this model in which so-

phistication is explicitly assumed. This would clarify how the anticipation of dis-

sonance affects initial choice, which could sharpen our ability to identify disso-

nance sensitivity in choice data. Lastly, the model here can be seen as a specific

type of reference-dependent updating. It may be fruitful to consider other types of

reference-dependent behavior and consider how they might impact updating.
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Chapter 2

Sticky Beliefs: A Characterization of

Conservative Updating

2.1 Introduction

There has been much empirical and experimental work demonstrating biases in

belief updating (see see Camerer [11], Kahneman and Tversky [36], El-Gamal and

Grether [14]). In particular, many papers using models of non-Bayesian updating

specifically model beliefs as conservative, in that they only partially incorporate the

new information. That is, the agent puts too much weight on his prior beliefs. For

example, Palfrey and Wang [53] consider agents that subjectively update and may

under (or over) weight the informativeness of signals, referring to those that under-

react as skeptical types.

Mobius et al. [48] find in a laboratory experiment that when interpreting infor-

mation about one’s own abilities agents tend to exhibit two regular biases—asymmetric

updating bias and conservative updating bias. The asymmetric updating bias oc-

curs when agents overweight positive signals relative to negative signals. Kovach

[41] characterizes belief updating when an agent experiences cognitive dissonance
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and shows that such an agent’s beliefs exhibit asymmetric updating. While it is pos-

sible to incorporate conservative bias into the model of cognitive dissonance, this

paper studies conservative bias in isolation.

In notation, if prior beliefs are given by a probability distribution P, then the

agent’s posterior beliefs are

QA = δP + (1 − δ)BU(P; A) (2.1)

for some δ ∈ [0, 1], where BU(P, A) denotes the Bayesian update of P given A.1 In

this case beliefs are sticky in the sense that the agent is reluctant to move away from

his initial beliefs. The parameter δ can be interpreted as a measure of the agent’s

conservatism or skepticism about information, or rather (1 − δ) is a measure of

his confidence in the new information. Using a framework of preferences over acts

(Savage [60], Anscombe and Aumann [4]), this paper provide preference axioms

for an agent who displays conservative updating.

In the context of preferences over menus, an axiomatization of non-Bayesian

updating was provided in a three period model by Epstein [16] and extended to an

infinite horizon model by Epstein et al. [21]. Further, each paper studies the specific

instance of prior-bias as defined in this paper, referred to as positive prior-bias.

Both [16, 21] utilize a setup of preferences over menus as in [32]. Implicit in this

model setup is the assumption that the agent is aware of his non-Bayesian updating.

This paper does not require preferences over menus nor make any assumptions

about the agent’s level of sophistication. Instead this paper assumes as a primitive

preferences over acts conditional on the agent’s information. That, I assume the

agent’s information is observable to the analyst and both the agent’s preferences

before and after information are known.

1BU(P; A)(B) = P(B∩A)
P(A)
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Figure 2.1: Two acts, f and g.

The characterization is achieved by weakening both dynamic consistency and

consequentialism. The weak version of dynamic consistency, which I term dynamic

dominance, has similarity to the dominance axiom of Saito [59]. The axiom states

that for any two acts f and g and information A, if the agent prefers f to g ex-ante

and a Bayesian analyst would prefer f to g conditional on A, then certainly the agent

prefers f to g ex-post (after observing A).

Consider an urn with colored balls, red, blue, and yellow. An experimenter will

draw a ball from the urn and the agent’s payoff depends on the realization of the

draw. Suppose the agent has the choice between the following two acts, f and g:

and the agent prefers g to f . Consider now an alternative experiment, the ex-

periment may also give the agent information about the draw. Suppose the exper-

imenter tells the agent that after drawing the ball, he will observe the draw and

notify the agent if the draw is yellow or not. Dynamic consistency asserts that if g is

preferred to f , then conditional on observing A (being told not yellow), the agent

prefers ĝ to f̂ .

However, if an agent is uncertain about the quality of information, or is con-

cerned about being deceived or tricked, then concern for unrealized alternatives

seems quite plausible. Consequently, the agent reporting a preference of f̂ over

ĝ is reasonable. While consequentialism has a strong normative appeal, the ap-
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Figure 2.2: Two acts, f̂ and ĝ, incorporating information.

peal is due to the assumption that the agent perceives the information correctly

and believes it to be perfectly reliable. Without this assumption the violation of

consequentialism above is sensible. The axiom of weak consequentialism that I im-

pose then does not rule out the agent’s concern for unrealized alternatives, but only

imposes consistency of his evaluation of unrealized alternatives between different

observations.

Another interpretation of violations of consequentialism is that while the infor-

mation may seem objective and precise to an observer or econometrician, the agent

subjectively evaluates the information quality and views it as noisy. Under this view

we can think of an alternative situation where we believe the agent is Bayesian but

with a subjective evaluation of the accuracy of information, where δ measures the

agent’s perception of accuracy. Under this interpretation an δ of 1 corresponds to

the agent believing the information is pure nonsense. In line with this interpre-

tation, Hilbert [34] has proposed that imperfect information processing attributes

to conservatism bias, so that objective evidence (observations) appears noisy upon

recollection.
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2.2 Model

2.2.1 Setup

There is a (finite) set Ω of states of the world, an algebra Σ2 of subsets of Ω, and a set

of consequences, X. Let F denote the set of finite-valued Σ-measurable functions

f : Ω → X. Each function is referred to as a simple act. Following a standard

abuse of notation, for any x ∈ X, I mean by x ∈ F the constant act that returns x

in every state. Lastly, for any f , g ∈ F and for any A ∈ Σ, let f Ag denote the act

that returns f (ω) when ω ∈ A and returns g(ω) when ω ∈ Ac ≡ Ω\A.

Following the literature, I assume that X is a convex subset of a vector space3.

Thus, mixed acts can be defined point-wise, so that for every f , g ∈ F and λ ∈ [0, 1],

by λ f + (1 − λ)g I mean the act that returns λ f (ω) + (1 − λ)g(ω) for each ω ∈ Ω.

I assume that the agent has preferences over F conditional on the agent’s infor-

mation. That is, the agent has a collection of preference relations, {≿A}A∈Σ over

the acts in F , where ≿A are the agent’s preferences after observing A. Let ≻A and

∼A represent the asymmetric and symmetric parts of ≿A. The case when the agent

has no information is represented by ≿Ω, or simply ≿.

For a given (S, Σ), a probability charge is a finitely additive set-function µ : Σ →

[0, 1]. When Σ is a σ-algebra and µ is σ-additive, then µ is a probability measure.

When S is finite the set of probability charges and probability measures coincide.

Say that a probability charge is convex ranged if for any A ∈ Σ and every α ∈

[0, µ(A)], there exists some B ⊂ A such that µ(B) = α. For any probability charge µ

and event A ∈ Σ, define the Bayesian update of µ given A by BU(µ, A)(B) = µ(B∩A)
µ(A)

for B ∈ Σ.
2This need not be a sigma algebra, since I do not require countable additivity to hold.
3X may be an interval of monetary prizes or a set of lotteries of some set of prizes
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2.2.2 Axioms

The first axiom is a collection of standard conditions. Collectively they are neces-

sary and sufficient for an expected utility representation after the agent observes

A, a result which is well-established in the literature.

Axiom 2.1 (Conditional Expected Utility). For each A ∈ Σ, the following hold:

Weak order For all f , g, h ∈ F : (i) either f ≿A g or g ≿A f and (ii) if f ≿A g

and g ≿A h, then f ≿A h.

Independence: For all f , g, h ∈ F , and λ ∈ (0, 1], f ≿A g ⇔ λ f + (1 −

λ)h ≿A λg + (1 − λ)h.

Continuity: For all f , g, h ∈ F , if f ≻A g and g ≻A h, then there exist

weights λ, γ ∈ (0, 1) such that λ f + (1 − λ)h ≻A g and g ≻A γ f + (1 − γ)h

Monotonicity: If f , g ∈ F and f (ω) ≿ g(ω) for all ω ∈ Ω, then f ≿A g.

Nondegeneracy: There are x, y ∈ X such that x ≻ y.

Notice that non-degeneracy is only required of the unconditional preference re-

lation. Before introducing the new axioms, for comparison I state classic axioms of

dynamic consistency and consequentialism.

Axiom 2.2 (Dynamic Consistency). For any A ∈ Σ and for all f , g ∈ F

f Ag ≿ g ⇐⇒ f ≿A g

Dynamic consistency states that if f is preferred to g when they are identical

outside of A, then after learning A, f is preferred to g.

Axiom 2.3 (Consequentialism). For any A ∈ Σ and for all f , g ∈ F ,

f (ω) = g(ω) for all ω ∈ A =⇒ f ∼A g
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Figure 2.3: Dynamic extension of f and g

Consequentialism states that whenever two acts are identical within A, then af-

ter A the agent is indifferent. To gain some intuition as to why an agent may violate

the above axioms, consider the following example.

Example 2.1. Consider an urn of red, blue, and yellow balls, Ω = {R, B, Y}. An

act is a bet on the color of the ball drawn from the urn. Suppose the experimenter

informs the agent that a ball will be drawn and the agent will be informed whether

the draw was yellow or not. If not, the agent may change his choice of acts. Consider

the following two acts:

R B Y

f $100 $0 $100

g $100 $0 $0

Ex-ante the agent strictly prefers f to g. Incorporating the information structure

results in the following trees:

Consequentialism requires that after A = {R, B}, the agent is indifferent be-

tween the two acts. However, an agent may still assert a strict preference for f (the

left tree) even conditional upon being told they are at A. For example, this could

be due to concern with being tricked by the experimenter or concern that the infor-

mation source is unreliable—the experimenter misperceives the color.
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2.2.3 Novel Axioms

The first novel axiom is a weak version of dynamic consistency.

Axiom 2.4 (Dynamic Dominance). For any A ∈ Σ and for all f , g ∈ F

(i) f ≿ g

(ii) f Ag ≿ g

 =⇒ f ≿A g

Further, if both (i) and (ii) are strict, then f ≻A g.

First, while Dynamic Consistency is an if and only if condition, Dynamic Dom-

inance is only an if-then condition. Second, while dynamic consistency requires

that if f Ag then f ≿A g, I generally allow for violations except when the agent also

prefers f to g in the ex-ante preference—before any information. For intuition, con-

sider an agent that is uncertain about the quality of his information. If the agent

weakly prefers f to g both (i) in A and also (ii) before any information, then re-

gardless of the quality of information he should prefer f to g, hence f ≿A g holds.

This axiom is satisfied by example 1. The next axiom is the relevant weakening of

consequentialism, which regulates preference across information sets.

Axiom 2.5 (Weak Consequentialism). For any A, B, C ∈ Σ with C ∩ (A ∪ B) = ∅

and for all f , g, h ∈ F ,

f Ch ∼A gCh ⇔ f Ch ∼B gCh

To see how this is a weak form of consequentialism, suppose C ∩ (A ∪ B) =

∅ and consequentialism holds. Then for any pair f , g, consider acts of the form

f Ch and gCh. Then since for all s ∈ A ∪ B, f Ch(s) = gCh(s), it follows that both

f Ch ∼A gCh and f Ch ∼B gCh. Thus while consequentialism imposes that the acts

are always indifferent, weak consequentialism only states that if they are indifferent
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after A, then they are also indifferent after B, while allowing for the possibility of a

strict ranking.

2.3 Main Results

In this section I state the main results of the paper.

Theorem 2.1 (Representation). The following are equivalent

(i) {≿A}A∈Σ satisfy Conditional Expected Utility, Dynamic Dominance, and

Weak Continuity;

(ii) There is a non-constant utility function u : X → R, a probability charge µ,

and a unique δ ∈ [0, 1] such that:

f ≿A g ⇐⇒
∫

Ω
u( f (ω))µA(dω) ≥

∫
Ω

u( f (ω))µA(dω)

and

µA(B) = δµ(B) + (1 − δ)BU(µ, A)(B)

Theorem 1 shows the equivalence of the axioms with the general phenomenon

of prior-bias. The general result holds regardless of the specific assumptions on

the state space or the specific properties of the probability distribution, i.e., convex

range or countable additivity (see Ghirardato [25], Kopylov [40] for additional ax-

ioms). Theorem 2 shows the uniqueness properties. The uniqueness of u and µ is

standard and uniqueness of δ comes from the uniqueness of µ

Theorem 2.2 (Uniqueness). If (u, µ, δ) and (u′, µ′, δ′) represent {≿A}A∈Σ, then

(i) u′ is a positive affine transformation of u.

(ii) µ′ = µ.



50

(iii) δ′ = δ.

Next, I introduce one final axiom. This axiom is a strengthening of the mono-

tonicity condition, such that whenever f is point-wise better than g for each ω ∈ A,

then f is preferred to g after A.

Axiom 2.6 (A-Monotonicity). For any A ∈ Σ and for all f , g ∈ F ,

f (ω) ≿A g(ω) for all ω ∈ A =⇒ f ≿A g

It turns out that this strengthening of monotonicity, in the presence of the other

axioms, is equivalent to both dynamic consistency and consequentialism.

Theorem 2.3. Assume Axiom 2.1, Axiom 2.4, Axiom A.4. The following are equiv-

alent

(i) {≿A}A∈Σ satisfy Dynamic Consistency.

(ii) {≿A}A∈Σ satisfy Consequentialism.

(iii) {≿A}A∈Σ satisfy A-Monotonicity.

(iv) δ = 0

While generally dynamic consistency and consequentialism do not imply one

another, in the presence of Axiom 2.4, Axiom A.4 they are equivalent. Theorem 3

may be understood as follows: if we require that the agent maintain constant rel-

ative probabilities between states within A after being told A and that the agent

be minimally responsive to information, then consequentialism and dynamic con-

sistency are equivalent and imply Bayesian beliefs. A-Monotonicity is equivalent

in this context because it has a flavor on consequentialism. That is, it strengthens
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monotonicity in a way that implicitly requires that only states within A are rele-

vant to the agent. Of course, the requirement that only states in A are relevant is

precisely the spirit of consequentialism.

2.4 Conclusion

I have provided a preference-based characterization of sticky beliefs using prefer-

ences conditional on an information set as a primitive. The main innovation is a

dual weakening of dynamic consistency and consequentialism and to that, when

information is represented as an event tree, imposing the full version of one im-

plies the other. In this way the paper illustrates a connection between the two con-

ditions that has not previously been discussed. This representation can capture

certain results in the experimental literature. Further, can potentially be combined

with other models, such as the one from chapter 1, to jointly capture under-reaction

and directional incorporation.
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Chapter 3

Partial Bayesian Updating Under Ambiguity

3.1 Introduction

Suppose Mary is trying to save for her retirement. However, she is concerned that

she may not know all the risks involved in the economy; hence she decides to con-

sult a panel of economists. Each economist gives her a different picture of the econ-

omy, which is represented by a probability distribution over the possible states of

the world, or a prior. Mary’s world is in fact quite simple; the economy can grow,

shrink, or remain constant. Therefore, the states of the world are {G, S, C}, and

each economist has provided Mary with a probability distribution over these three

states.1 For simplicity, assume Mary solicits advice from three economists. Her set

of priors is {π1, π2, π3}, where π1 = ( 7
12 , 1

12 , 1
3), π2 = (1

3 , 1
3 , 1

3) and π3 = ( 1
12 , 7

12 , 1
3).

Suppose Mary learns that there has been an increase in unemployment2. How

should Mary incorporate this new information into her beliefs? Mary’s problem

is the topic of this paper.

1Ambiguity models explicitly assume the decision maker (DM) does not reduce all the priors into
a single prior. Otherwise the DM would be indistinguishable from a standard Bayesian.

2Assume that the unemployment rate can fluctuate regardless of the state of the aggregate econ-
omy, but that increases in unemployment are much more likely if the economy is shrinking than if
the economy is growing.
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Since Ellsberg’s seminal paper [15] on the distinction between ambiguity and

risk,3 numerous models of ambiguity sensitive agents have been proposed. The ear-

liest and most well known are Schmeidler’s Choqeut expected utility (CEU) model

[61] and Gilboa and Schmeidler’s ”maxmin expected utility with non-unique prior”

[29]. Both of these models are linked in the sense that agent’s beliefs cannot be

expressed as a single probability. In the first model beliefs are represented by a

non-additive probability, or capacity; in the second model beliefs are represented

by a convex set of probabilities, or multiple priors. This paper focuses on modeling

beliefs of the second form.

In order for models of ambiguous beliefs to be useful in many areas of economics

however, these models must be extended to an inter-temporal framework. Previous

work on updating, when beliefs are represented by a set of priors, has focused on

two procedures. For the first procedure, known as generalized Bayesian updating

(GBU) or full Bayesian updating [28], the agent applies Bayes’ rule to each prior.

The second procedure, known as maximum likelihood updating (MLU) [28], rec-

ommends that the agent only retain priors that assigned the greatest probability to

the observed event. In the case of Mary, if she practices GBU she believes that π1

is just as good as π3, even after observing the increase in unemployment. If she

practices MLU, then she only retains π3.

Both methods of updating beliefs are unsatisfactory. The problem with gener-

alized Bayesian updating is that the DM treats all priors as equally good and is not

able to use the new information to make inference about which priors to believe.

Maximum likelihood updating does not suffer from this problem, but it seems to

throw out too many priors. Returning to Mary’s problem, under GBU she treats ex-

perts who were good predictors the same as those who were very bad, while under

maximum likelihood updating she only believes those experts that gave the highest

3A distinction also noted by Knight [39] and Keynes [38].
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probability to the outcome observed. That is, π1 is clearly less likely to be true than

π3, but it is not clear that π2 should be rejected.

My paper proposes an alternative updating procedure that is simultaneously

more general than and a compromise between the above two procedures. I provide

axioms on preferences that are equivalent to an agent engaging in my proposed up-

dating procedure. Returning to my initial example, if Mary satisfies my axioms,

then there is a unique parameter α ∈ [0, 1] that describes her willingness to infer.4

Mary uses this parameter to determine a threshold value for each event. After she

observes a given event, she retains only those priors that perform well relative to

this threshold value and then applies Bayes’ rule to the retained priors. This pro-

cedure is a generalization of the other two, since a parameter value of zero or one

corresponds to the agent performing generalized Bayesian updating or maximum

likelihood updating, respectively. It can also be viewed as a compromise between

the two, since Mary is only retaining “good” priors, but she is concerned about re-

jecting too many. That is, I allow for Mary to retain π2 and π3.

3.1.1 Dynamic Consistency and Conditional Preferences

My model is not truly inter-temporal, as I do not model time. Instead I model an

agent with a collection of preference relations, where each relation is conditional

on some event A. When the only information the agent has is the entire state space

(i.e., the agent has no information), I refer to this relation as the unconditional

preference relation. The interpretation is that after observing some event A, the

agent updates her preferences from ≿=≿Ω to ≿A. Imposing conditions on how

preferences can change after receiving information allows us to understand how

the agent updates her beliefs. This framework is not purely for convenience, as it

4By this I mean the agent’s willingness to discard priors, or equivalently the magnitude of her
threshold.
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allows for the conditions on preferences that generate a specific type of updating to

be clearly understood. The functional representation of the behavior modeled in

this paper can be adapted to a dynamic framework.

A concept closely linked to updating beliefs is dynamic consistency (DC). DC

links unconditional and conditional preferences by requiring that an act f is pre-

ferred to g with the unconditional relation and f and g are the same outside of some

event A, if and only if f is preferred to g conditional on A occurring. A famous result

of Epstein and Breton [17] is that preferences are dynamically consistent if and only

if the agent behaves as a Bayesian with beliefs represented by a single probability.

That is, the agent satisfies the axioms of Savage [60].

Sacrificing dynamic consistency is something many economists are not willing

to do. Indeed, DC has a very strong normative appeal; so strong that many consider

it a property of rationality. However, it is not so clear that it is necessary for ratio-

nal behavior. The willingness to revise one’s beliefs, especially if they were formed

without compelling evidence or copious data, in the face of new information seems

much more in line with rational belief evolution. DC only allows for revision after

zero-probability events, which is actually quite restrictive. Ortoleva [52] axioma-

tizes a model where a decision maker performs Bayesian updating if, according to

prior beliefs, the observed event has a probability above some threshold. Otherwise

the agent revises beliefs by updating a prior over priors and choosing a new prior

according to a maximum likelihood rule.

Ghirardato et al. [27](GMM) impose DC on their derived relation of unambigu-

ous preference. In their notation, f is unambiguously preferred to g ( f ≿∗ g) if

and only if for any act h and any λ ∈ [0, 1], λ f + (1 − λ)h ≿ λg + (1 − λ)h. That is,

f and g are such that hedging is not useful because f is always better than g. They

find that dynamic consistency of ≿∗ is equivalent to GBU. This derived relation is

also essential to the analysis in this paper.
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I impose a weakened version of DC on ≿∗ because there are simple scenarios

where it makes sense to violate DC (in a regulated fashion). First note that ≿∗ ad-

mits a representation à la Bewley, where

f ≿∗ g if and only if
∫

Ω
u( f (ω))dπ(ω) ≥

∫
Ω

u(g(ω))dπ(ω) for all π ∈ C (3.1)

Suppose there are two acts that are not comparable with ≿∗, but act f is usually

better than g (in A) 5, and the agent is told that event A has occurred. An agent uses

the information that A occurred in two ways. First, the agent determines which

priors are likely to be true, given that A happened, and discards the rest as too

implausible6. Second, the agent updates her beliefs using Bayes’ rule. Since her

posterior set is strictly smaller than the set obtained throughout GBU with C , the

agent might find that f and g are now comparable, with f ≿∗
A g. This cannot occur

when DC is imposed, but that does not mean that this is unreasonable behavior; I

find it more reasonable than trying to satisfy DC in this context.

3.2 Related Literature

How people should update their beliefs in the presence of ambiguity has been stud-

ied for some time, though no clear solution has been discovered. Gilboa and Schmei-

dler [30] axiomatized MLU, which is shown to be equivalent to Dempster-Shafer

updating when the set of priors is determined by a convex capacity. Generalized

Bayesian updating, sometimes called full Bayesian updating, was first proposed by

Jaffray [35], and was axiomatized by Pires [54]. It was later shown by Ghirardato

et al. [27] that GBU is equivalent to imposing dynamic consistency only on a derived

relation, ≿∗, called the agent’s unambiguous preference.

5By this I mean Eπ [u(g)] > Eπ [u( f )] only when π(A) is small.
6That is, the agent perceives less ambiguity by ignoring priors that assigned low probability to A.
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The relationship between GBU, MLU and dynamic consistency has been stud-

ied by [19]. They propose an axiom that imposes a condition of rectangularity on

the set C of priors. Such set of priors can be formed as if the agent constructs suc-

cessively larger sets of priors via backward induction along an event tree. Under

rectangularity, GBU and MLU are equivalent, and they show that rectangularity

allows for behavior to remain dynamically consistent. While dynamic consistency

may be normatively desirable, the condition of rectangularity seems unnatural in

many environments for two reasons. First, while it is motivated by appealing to

backwards induction there is experimental evidence suggesting that people are not

very good at backward induction [24]. Second, in experimental settings when the

decision maker is given an objective set of priors that does not conform to rectangu-

larity, it is sensible to assume the agent uses the set of priors rather than transform

them to satisfy rectangularity.

Epstein and Schneider [20] utilize a similar functional representation to study

long-run learning under ambiguity and apply the model to dynamic portfolio choice.

However, they do no introduce axioms that identify α as their focus is on studying

when ambiguity is resolved over time. In contrast, this paper instead focuses on

what preferences are consistent with the updating procedure under consideration

and how α can be identified from preference data.

My paper takes a complementary approach to Epstein and Schneider, while

building on the unambiguous preference studied in GMM. Rather than impose full

dynamic consistency, I impose a weakened form only on≿∗. Thus I allow for a more

natural approach to updating. I say that the approach is more natural in the sense

that I believe it is closer to how a reasonable person would behave. Returning to

my earlier example, Mary choosing to only retain π2 and π3 is a rational decision.
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3.3 Preliminaries and Notation

There is a finite set Ω of states of the world7, an algebra Σ of subsets of Ω, and a set

of consequences, X. Let F denote the set of finite-valued Σ-measurable functions

f : Ω → X. Each function is referred to as a simple act. Following a standard

abuse of notation, for any x ∈ X, I mean by x ∈ F the constant act that returns x

in every state. Lastly, for any f , g ∈ F and for any A ∈ Σ, let f Ag denote the act

that returns f (ω) when ω ∈ A and returns g(ω) when ω ∈ Ac ≡ Ω\A.

Following the literature, I assume that X is a convex subset of a vector space.

Thus, mixed acts can be defined point-wise, so that for every f , g ∈ F and λ ∈ [0, 1],

by λ f + (1 − λ)g I mean the act that returns λ f (ω) + (1 − λ)g(ω) for each ω ∈ Ω.

I assume that the agent has preferences over F conditional on the agent’s infor-

mation. That is, the agent has a collection of preference relations, {≿A}A∈Σ over

the acts in F . For each A ∈ Σ, ≻A and ∼A represent the asymmetric and symmet-

ric parts of ≿A. The case when the agent has no information is represented by ≿Ω,

or simply ≿.

Let BU(C , A) denote the set of prior-by-prior Bayesian updates conditional on

A and let BU(π, A) denote the Bayesian update of π conditional on A.

3.3.1 The Unambiguously Preferred Relation

The derived unambiguously preferred relation is essential to the analysis in this

paper. The following definition is due to Ghirardato, Maccheroni, and Marinacci

[26]:

Definition 3.1. Say that f is unambiguously preferred to g, denoted f ≿∗ g, if

and only if for any act h and any λ ∈ [0, 1], λ f + (1 − λ)h ≿ λg + (1 − λ)h.

7Finiteness is assumed for notational convenience. All results are unchanged if the axioms are
applied to non-null events.
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It is clear that ≿∗ is complete only when the agent admits a subjective expected

utility representation. Let ▷◁∗ represent the incomplete part of ≿∗. The ≿∗ relation

admits a representation à la Bewley, as shown in Equation 3.1, for some closed, con-

vex set C . The cases where ≿ satisfies independence, ≿∗=≿, and C is a singleton

set are all equivalent.

3.4 Model

This section presents the basic model of preferences used in the paper.

Axiom 3.1 ( Conditional MMEU). For each A ∈ Σ, the preference relation ≿A

satisfies the Gilboa-Schmeidler axioms:

Weak order: For all f , g, h ∈ F : (i) either f ≿A g or g ≿A f and (ii) if

f ≿A g and g ≿A h, then f ≿A h.

Certainty independence: For all f , g ∈ F , x ∈ X, and λ ∈ (0, 1], f ≿A

g ⇔ λ f + (1 − λ)x ≿A λg + (1 − λ)x.

Continuity: For all f , g, h ∈ F , if f ≻A g and g ≻A h, then there exist

weights λ, γ ∈ (0, 1) such that λ f + (1 − λ)h ≻A g and g ≻A γ f + (1 − γ)h

Strict Monotonicity: If f , g ∈ F and f (ω) ≿A g(ω) for all ω ∈ Ω, then

f ≿A g. If in addition there is some ω ∈ A such that f (ω) ≻A g(ω), then

f ≻A g.

Ambiguity Aversion: For all f , g ∈ F , if f ∼A g then for all λ ∈ [0, 1],

λ f + (1 − λ)g ≿A f .

Non-degeneracy: There are f , g ∈ F such that f ≻A g.
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Ordinal Preference Consistency: For all x, y ∈ F , x ≿ y if and only if

x ≿A y.

Axiom 3.1 is comprised of standard conditions known to be equivalent to the

MMEU representation ([29]), plus ordinal preference consistency (OPC). OPC is

the requirement that tastes remain unchanged after information, requiring that

preference changes are due to the agent’s response to information. The conditions

are applied to each preference relation in the collection {≿A} so that ex-ante and

ex-post preferences both have the same structure ([33]).

Axiom 3.2 (Consequentialism). For each A ∈ Σ and for all f , g ∈ F ,

if f (ω) = g(ω) for all ω ∈ A, then f ∼A g.

Axiom 3.2 is a classic condition stating that preferences conditional on A only

depend on how acts perform within A.

Axiom 3.3 (Weak Unambiguous Dynamic Consistency). For each A ∈ Σ and for

all f , g ∈ F ,

if f Ag ≿∗ g, then f ≿∗
A g.

Axiom 3.3 is a weakening of the Unambiguous Dynamic Consistency condition

from Ghirardato et al. [27]. To motivate Axiom 3.3, consider the following example.

Example 3.1. There are three states of the world, Ω = {R, B, Y}, and the agent

believes that the true distribution over the states of the the world belongs to C =

{(1
3 , β, 2

3 − β)|β ∈ [ 1
12 , 7

12 ]}. Consider the following acts,

R B Y

f $90 $100 $50

g $100 70$ $50
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.

Figure 3.1: Sets of beliefs in the simplex.

Given the set C , the agent prefers g to f because there is a lot of uncertainty about

the true probability of sate B. However, there are distributions such that the agent

prefers f to g, hence f ▷◁∗ g. Suppose the agent learns that Y was not realized. That

is, the state is in A = {R, B}. Since f Ag = f , f Ag ▷◁∗ g. The agent conceives two

explanations for A’s occurrence. One is that that Y occurs with high probability but

A occurred as a low probability event. The other is that A is a high probability event.

Given that A did occur, it is reasonable to believe that it is more likely that A was

a high probability event than not, hence the true probability of B is in fact not that

small. Suppose the agent then uses this information (that A occurred) to adjust her

ex ante beliefs to C ′ = {(( 1
3 , β, 2

3 − β)|β ∈ [ 3
24 , 7

12 ]}. After making this inference,

she proceeds to apply Bayes’ rule to all priors, yielding C ′
A = { 1/3

1/3+β , β
1/3+β |β ∈

[ 3
24 , 7

12 ]}. Now, it can be easily verified that for all π ∈ C ′
A, Eπ( f ) ≥ Eπ(g). But this

is equivalent to f ≿∗
A g. Hence the agent violates dynamic consistency of ≿∗, but

she does so because it is the most reasonable way to behave ex post. In the following

figure, C is given by the blue line, C ′
A is given by the red line, and BU(C , A) is given

by the the union of the green and red lines.

Definition 3.2. Say that an agent performs α-Bayesian Updating (α-BU) if there

exists an α ∈ [0, 1] so that for each A ∈ Σ, A ̸= S,

CA = {BU(π, A)|π ∈ C , π(A) ≥ α max
π′∈C

π′(A)}. (3.2)
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It is clear that in the case α = 0, the agent applies Bayes’ rule to every prior in

C , and in the case α = 1, the agent updates only those priors that gave the greatest

likelihood to A. Thus, this representation encompasses both generalized Bayesian

updating and maximum likelihood updating as special cases. We can think of this

agent as one who simultaneously engages in Bayesian learning and makes infer-

ences about which priors are most likely to be true. So while this model is more

general, it perhaps more naturally describes the type of thinking a sophisticated

agent performs. We can interpret the α parameter as the agent’s willingness to

infer.

3.4.1 Objective Randomizations

While Axiom 3.3 ensures that the agent’s posterior beliefs are a subset of the GBU

set of beliefs, it imposes no restrictions on which priors are updated or regularity

across events. In order to characterize the right restriction I utilize the notion of an

objective randomization. Suppose the agent were offered the opportunity to apply

an objective randomization to an act. That is, the agent is given the opportunity to

reduce an act to a lottery with specified odds.

Definition 3.3. Let ρ ∈ ∆(Ω) denote an objective randomization. Then for each

f and each ρ ∈ ∆(Ω), we denote by f ρ a lottery on X that returns f (ω) with prob-

ability ρ(ω) for each state ω ∈ Ω;

f ρ :=

(
∑
ω

ρ(ω) f (ω)

)
1Ω.

A similar notion of reducing subjective uncertainty to objective uncertainty via

mixing was use in Ok et al. [51] to study incomplete preferences under uncertainty.

Then for any objective randomization ρ, and any event A ∈ Σ, let ρ(A) =

∑ω∈A ρ(ω). This is thus the objective probability given to A under the objective
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randomization. Given any objective randomization and event A, we can then de-

fine the derived conditional randomization that only gives weight to states in A.

Definition 3.4. For every A ∈ Σ and ρ ∈ ∆(Ω), let ρA denote the objective ran-

domization such that ρA(ω) = ρ(ω)
ρ(A)

for ω ∈ A and 0 otherwise.

I also introduce a further restriction on the types of objective randomizations I

will consider. Given some A ∈ Σ, it will be technically convenient to consider the

collection of A-maximal randomization such that the agent always prefers to reduce

subjective uncertainty to objective uncertainty. That is, given some distribution

over A, we consider the objective randomization that is identical within A and puts

maximal likelihood on A.

Definition 3.5. For every A ∈ Σ, say that ρ ∈ ∆(Ω) is A-maximal if f ρ ≿ f for

all f ∈ F and for any other ρ′ such that ρA = ρ′A and f ρ′ ≿ f for all f ∈ F ,

ρ(A) ≥ ρ′(A).

It should be noted that the definition does not preclude the existence of two

A-maximal randomizations such that ρ(A) > ρ′(A). This is possible so long as

ρA ̸= ρ′A. Before stating the final axiom, I require one more definition.

Definition 3.6. For every A ∈ Σ for some x, y ∈ X, with x ≻ y, define m̄A ∈ [0, 1]

by the equation m̄Ay + (1 − m̄A)x ∼ yAx.

The value m̄A captures the agent’s most subjective, maximal probability of A.

With all these concepts established, I now introduce the fourth and final axiom.

Axiom 3.4 (Dynamic Reduction Consistency). For all A, B ∈ Σ, consider any

ρ, ρ′ ∈ ∆(Ω) such that they are A and B-maximal, respectively. If ρ(A)
m̄A

≥ ρ′(B)
m̄B

and f ρ′B ≿B f for all f ∈ F , then f ρA ≿A f for all f ∈ F .
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Axiom 4 states that if an agent prefers to reduce an act to a lottery when given

ρ′ (ρ′B), before (after) learning some event B and also prefers to reduce acts to lot-

teries via ρ, then if ρ puts objectively higher weight on A than ρ′ does on B (when

normalized by m̄) then the agent prefers reduction by ρA after A. This axiom pro-

vides both within event restrictions on updating behavior (if A = B) and between

event regularity (when A ̸= B). I now state the main result of the paper.

Theorem 3.1. The following are equivalent:

(i) The collection of preferences {≿A}A∈Σ satisfy axioms 1-4.

(ii) The agent performs α-Bayesian Updating.

The next theorem characterizes the uniqueness properties of the representation.

Theorem 3.2. Suppose that (u, C , α) and (u′, C ′, α′) both represent the same

preferences. Then u = u′, C = C ′, and

(i) if ≿∗
A satisfies dynamic consistency for every A ∈ Σ, then

α, α′ ∈ [0, min
A∈Σ

(
π(A)

maxµ∈C µ(A)
)].

(ii) if ≿∗
A violates dynamic consistency at some A ∈ Σ, then

α = α′.

To gain a better intuition behind the result, consider the following example.

3.4.2 Example 2

Let Ω = {1, 2, 3, 4}, A = {1, 2}, B = {3, 4}, C = {1, 2, 3} and suppose C = {(1
4 , γ, β, 3

4 −

γ − β)|γ, β ≥ 1
24 , γ + β ≤ 17

24}. Then m̄A = 11
12 , m̄B = 17

24 , and m̄C = 23
24 . Let α = 2

5 .

The GBU sets of posterior beliefs are:
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..

α= 2
5

.
(0,1,0)

.
(0,0,1)

.

(1,0,0)

Figure 3.2: The set of posterior beliefs, C α
C , as α varies.

(i) BU(C , A) = co
{
(6

7 , 1
7 , 0, 0), ( 3

11 , 8
11 , 0, 0)

}
,

(ii) BU(C , B) = co
{
(0, 0 1

17 , 16
17), (0, 0, 16

17 , 1
17)
}

,

(iii) BU(C , C) = co
{
(3

4 , 1
8 , 1

8 , 0), ( 6
23 , 16

23 , 1
23 , 0), ( 6

23 , 1
23 , 16

23 , 0)
}

.

Under the 2
5-Bayesian representation, the agents posterior sets are:

(i) C
2
5

A = co
{
(15

22 , 7
22 , 0, 0), ( 3

11 , 8
11 , 0, 0)

}
,

(ii) C
2
5

B = BU(C , B),

(iii) C
2
5

C =
{(

12
46 +

18
46 β, 34

46 −
18
46 β − γ, γ

)
: β ∈ [0, 1], γ ∈

[
2
46 +

3
46 γ, 32

46 −
21
46 β
]}

.

Figure 3.2 illustrates how her set of posterior beliefs change as α changes. The

outer triangle is ∆(C) and the inner, blue triangle represents BU(C , C), while the

portion below the dashed, red line shows C
α= 2

5
C . As α increases towards 1, the red

line falls to the bottom line of the blue triangle.

It is worth noting that for any α ∈ [0, 1], C γ
B = BU(C , B). This has the nice

interpretation that, due to the high degree of uncertainty about the states in B, the

agent is unwilling to reject any priors since she is unable to make a “reasonable”

inference.
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3.5 Additional Properties of α-BU

In this section I consider an additional structural property linking an agent’s be-

lief sets. I then establish an method for comparing changes in belief sets between

individuals and show that inference has a sharp relation to completeness.

3.5.1 Informational Path Independence

An interesting and desirable property in Example 1 is that

(
C

2
5

C

) 2
5

A
= C

2
5

A . In the

example, the posterior belief set is independent of the sequence of information and

only depends on the final information; the agent’s beliefs are informationally path

independent. Even though the environment does not consider multiple rounds of

information revelation, a notion of informational path independence can be for-

malized as follows:

Definition 3.7 (Informational Path Independence). For any B ⊂ A ∈ Σ,

(C α
A)

α
B = C α

B

This property will often not be satisfied by the representation. It clearly holds

whenever ≿∗ is dynamically consistent. It also trivially holds when |ω| = 3, since

we would arrive at full information revelation. There may be a general result char-

acterizing the compatibility of path independence and α-partial Bayesian updating

rules in which ≿∗ violates dynamic consistency for at least some event, but this is

left for future work.

3.5.2 Comparative Inference and Completeness

Also, we might want to compare agents’ willingness to infer. That is, the case when

there are two agents such that α1 ≥ α2 is worth studying. This type of comparison
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is partially confounded by the fact that we could initially have C2,Ω ⊂ C1,Ω, so we

might observe that C α2
2,A ⊂ C α1

1,A. However, whenever C2,Ω = C1,Ω, it follows that

C α1
1,A ⊂ C α2

2,A if α1 ≥ α2.

An agent that makes more inferences (has a larger α) will typically reveal less

ambiguity ex-post since he eliminates more priors before updating. Thus such an

agent should be able to make more unambiguous comparisons. It turns out that this

intuition characterizes being more willing to infer. First, I introduce a definition

of one binary relation being more complete than another.

Definition 3.8. Say that ≿1 is more complete than ≿2 if for all f , g ∈ F ,

f ≿2 g ⇒ f ≿1 g or g ≿1 f .

That is, whenever agent 2 is able to make a comparison, then so is agent 1. The

following theorem then shows that, under certain regularity conditions, being more

complete characterizes a greater willingness to infer.

Theorem 3.3. Consider two agents that satisfy axioms 1 − 4 such that ≿1=≿2

and for some A ∈ Σ, ≿1∗
A and ≿1∗

A violates dynamic consistency. Then the follow-

ing are equivalent,

(i) For every A ∈ Σ, ≿1∗
A is more complete than ≿2∗

A

(ii) α1 ≥ α2.

This result also suggests an alternative axiomatization for the updating proce-

dure presented that does not make use of reduction to objective lotteries. Since the

agent’s posterior set is typically smaller than the one obtained via updating all priors

according to Bayes’ rule, the agents conditional, unambiguous preference, ≿∗
A, will

typically be more complete. Thus a condition that regulates increased complete-

ness across events A and B could potentially be developed to replace Axiom 3.4.



68

3.6 Conclusion

This paper axiomatizes a model of updating in multiple priors models that general-

izes both GBU and MLU. Upon receiving information, the agent makes an inference

about her priors and applies Bayes’ rule to the good priors. Whenever the agent’s

unambiguous preference violates dynamic consistency, her willingness to infer is

captured by a single parameter, α ∈ [0, 1]. I also characterize a way to compare

willingness to infer between individuals that can be elicited from preference data.

This model is flexible enough to capture a variety of phenomena. Since a prior

updating procedure functionally similar to the one proposed in this paper has been

utilized by Epstein and Schneider [20], it is know that this model can capture shrink-

ing ambiguity and, in the financial markets, increased stock market participation.

This model may also capture apparent overreaction to news. Before information,

and agent evaluates an uncertain prospect according to the worst-case prior. After

information, however, the agent’s posterior set may be a strict subset of the one

obtained by applying Bayes’ rule to every prior. Hence the agent’s posterior evalu-

ation may never be less than and can be strictly larger than the evaluation obtained

be keeping every prior. Thus while it may seem that decision makers are overreact-

ing, they may be rationally using the information to distinguish between possible

priors.

Finally, the model provides a rationalization for violations of dynamic consis-

tency under ambiguity. In this framework violations of dynamic consistency arise

because the agent uses the information to distinguish between priors, rather than

treating all priors as equal. Thus type of inferential behavior requires belief revi-

sion, which creates dynamic preference reversals that a decision maker may ratio-

nally defend.
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Appendix A

Appendix to Chapter 1

A.1 Best-Case Binary Distortion: δ(A, f ) Comparative Statics

This section further examines the binary distortion from section 7 and provides

comparative statics for the level of dissonance between scenarios. First I introduce

two independence type axioms.

Axiom A.1 (Reference C-Independence). For all f g, h ∈ F , x ∈ X, and α ∈ (0, 1]

g ≿A, f h ⇔ g ≿A,α f+(1−α)x h

Axiom A.2 (Reference A-Comonotonic Independence). For all f ≍A f ′, and all

g, h ∈ F , and α ∈ (0, 1]

g ≿A, f h ⇔ g ≿A,α f+(1−α) f ′ h

The first axiom states that mixing the initially chosen action and a constant ac-

tion does not change the evaluation of other actions. The second requires this prop-

erty to hold when mixing between A-comonotonic actions. It turns out that both

axioms are equivalent, as is shown in the following theorem.
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Theorem A.1. Suppose {≿,≿A, f } satisfy Axiom 1.1, Axiom 3.2, Axiom 1.4, Ax-

iom 1.7 . Then the following are equivalent:

(i) ≿A, f satisfies Axiom A.1

(ii) ≿A, f satisfies Axiom A.2

(iii) f ≍A f ′ =⇒ δ(A, f ) = δ(A, f ′). That is, δ(A, f ) is constant on ≍A equiva-

lence classes.

That is, whenever two scenarios are ordinally equivalent, the agent has the same

beliefs within each scenario. This eliminates any sensitivity of the distortion mag-

nitude to payoff variation within a scenario. However, it may seem natural to think

that scenarios in which there is a large difference between the best and worst pos-

sible payoffs induce more intense feelings of dissonance. The following definition

captures one notion of what it means for one act to have greater payoff variance.

Definition A.1. An act f is at least as dispersed as g , denoted f ⋉ g, if there is

some constant act x and an α ∈ [0, 1] such that g = α f + (1 − α)x

The next axiom imposes precisely the intuition discussed above, that scenarios

with greater payoff variance create more intense feelings of dissonance and hence

result in a greater need for justification. That is, scenarios that are more dispersed

induce a greater level of dissonance.

Axiom A.3 (Increasing Sensitivity to Dissonance). For all (A, f ) and (A, g), if f ⋉

g, then for all h ≍A f ,

h ≿A,g x =⇒ h ≿A, f x

While the binary distortions are not continuous, this is primarily due to the fact

that small variation within an act may result in scenario with a dramatically dif-

ferent classification of good or bad states. However, by considering a sequence of
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strongly A-comonotone acts this problem is eliminated. This leads to the following

weak continuity property.

Axiom A.4 ( Weak Continuity). For fn → f such that fn ≍A fm for all n, m, and

any g, h ∈ F ,

if g ≿A, f n h for all n, then g ≿A, f h

Before stating the next theorem, I require a bit more notation. Let max≿,A( f )

denote the preference maximal consequence under f for states in A. The notation

is similar for preference minimal consequences.

Theorem A.2. Suppose the collection of preferences, {≿,≿A, f } satisfy Axiom 1.1,

Axiom 3.2, Axiom 1.4, Axiom 1.7, then preferences satisfy Axiom A.3 and Axiom A.4

if and only if there exists a monotone, continuous ΓA, f : X × X → [0, 1], with

ΓA, f (x, x) = 0, such that

δ(A, f ) := ΓA, f

(
max
≿,A

( f ), min
≿,A

( f )
)

.

The next axiom imposes even more structure between different scenarios. In

particular, it regulates the agent’s reaction across information and between differ-

ent actions by imposing a type of consistency between two scenarios having a com-

mon non-justifying state.

Axiom A.5 (Consistent Sensitivity to Dissonance). For any (A, f ) and (B, g) and

C ⊂ A ∩ B, if there exists s ∈ A, s′ ∈ B such that for all s̃ ∈ C, f (s) ≻ f (s̃), and

g(s′) ≻ g(s̃), then for all x, y, z, w ∈ X such that yBz ∼ xAz,

yCz ≿A, f w ⇔ xCz ≿B,g w

Theorem A.3. Suppose the collection of preferences, {≿,≿A, f } satisfy Axiom 1.1,

Axiom 3.2, Axiom 1.7, Axiom 1.4, then preferences satisfy Axiom A.5 if and only if
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there exists a real number δ ∈ [0, 1] such that for all (A, f ),

δ(A, f ) = δ

A.2 Preliminary Results

Before proving the main theorems I establish some notation and lemmas. For any

u : X → R, and f ∈ F , then let u( f ) denote the vector in R|S| given by u( f )(s) :=

u( f (s)). For any A ⊂ S, let ∆(A) := {µ ∈ R|A||∑s∈A µ(s) = 1, µ(s) ≥ 0}, the set

of probability distributions on A. There is a natural bijection between {µ ∈ ∆(S) :

∑s∈A µ(s) = 1} and ∆(A).

Say two linear U, V are functionals on F are normalized by u if for all x ∈ F ,

V(x) = U(x) = u(x). If V is a linear functional on F , then there exists some affine

u : X → R and unique µ ∈ ∆(S) such that V( f ) = ∑s∈S u( f )µ(s).

Lemma A.1. If V, U, W are normalized linear functionals and there exist f , g ∈ F

such that V( f ) > V(g), then for any δ ∈ [0, 1] the following are equivalent:

• V = (1 − δ)U + δW

• µV = (1 − δ)µU + δµW

Proof.

V( f ) = (1 − δ)U( f ) + δW( f ) ⇔

∑
s∈S

u( f )µV(s) = (1 − δ) ∑
s∈S

u( f )µU(s) + δ ∑
s∈S

u( f )µW(s) ⇔

∑
s∈S

u( f )µV(s) = ∑
s∈S

u( f )(1 − δ)µU(s) + ∑
s∈S

u( f )δµW(s) ⇔

∑
s∈S

u( f )µV(s) = ∑
s∈S

u( f )[(1 − δ)µU(s) + δµW(s)] ⇔

µV(s) = (1 − δ)µU(s) + δµW(s) ⇔
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where the last line follows since µV is unique, f is arbitrary and the equation must

hold for any f . The non-degeneracy assumption is required to give uniqueness of

µV .

Let C = {(A, f ) ∈ Σ × F | f (s) ∼ f (s′) for all s, s′ ∈ A}. We refer to a scenario

(A, f ) ∈ C as a constant scenario, since the action f returns constant payoff within

A, and hence is now equivalent to a constant action. Let N = Cc denote the set of

non-constant scenarios.

Lemma A.2. There exists a non-constant, affine utility function u : X → R and a

collection of probability distributions {µ, µA, f |(A, f ) ∈ Σ×F} such that≿ (≿A, f )

has an expected utility representation. Additionally, µ(s) > 0 for every s ∈ S, and

for each (A, f ), µA, f (s) > 0 for all s ∈ A.

Proof. By Axiom 1 it is standard to show the existence of (u, µ) and (uA, f , µA, f ) that

represent≿ and≿A, f , respectively. By ordinal preference consistency we know that

u(x) ≥ u(y) if and only if uA, f (x) ≥ uA, f (y), hence it follows that uA, f is a positive

affine transformation of u, so we simply apply the normalization that uA, f := u.

It also follows from monotonicity that µ(s) > 0 for all s and µA, f (s) > 0 for all

s ∈ A.

Let V, VA, f denote the linear functionals generated by (u, µ), (u, µA, f ), that rep-

resent ≿,≿A, f , respectively. Further, let VA and VD(A, f ) denote the linear function-

als determined by (u, µ|A) and (u, µ|D(A, f )), respectively. Note that these function-

als are normalized by u so that V(x) = VA, f (x) = VA(x) = VD(A, f )(x) = u(x).

Lemma A.3. The relation of strong A-comonotonicity (≍A) is an equivalence

relation. Further, the set CA( f ) = {h ∈ F |h ≍A f } is convex.

Proof. Reflexivity and symmetry are trivial. For transitivity, say that h ≍A g and

g ≍A f . Then h(s) ≿ h(s′) ⇔ g(s) ≿ g(s′) ⇔ f (s) ≿ f (s′), hence h ≍A f .
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To prove convexity of CA( f ), suppose h, g ∈ CA( f ), and let α ∈ (0, 1). Fix any

s, s′ ∈ A and suppose f (s) ≿ f (s′). Then by h(s) ≿ h(s′) and g(s) ≿ g(s′)), and the

fact that u represents ≿, u(h(s)) ≥ u(h(s′)) and u(g(s)) ≥ u(g(s′)). By the affin-

ity of u it follows that αu(h(s)) + (1 − α)u(g(s)) ≥ αu(h(s′)) + (1 − α)u(g(s′)) ⇔

u(αh(s) + (1 − α)g(s)) ≥ u(αh(s′) + (1 − α)g(s′)) ⇔ (αh + (1 − α)g)(s) ≿ (αh +

(1 − α)g)(s′). If we replace f (s) ≿ f (s′) with f (s) ≻ f (s′), all inequalities be-

come strict. To see the other direction, suppose for contradiction that (αh + (1 −

α)g)(s) ≿ (αh + (1 − α)g)(s′) but f (s′) ≻ f (s). But from the above argument, if

f (s′) ≻ f (s), then (αh+ (1− α)g)(s′) ≻ (αh+ (1− α)g)(s), a contradiction. Hence

it must be f (s) ≿ f (s′). Since s, s′ were arbitrary, αh + (1 − α)g ∈ CA( f ).

Let cl denote the closure operator and let KA( f ) = {h ∈ F | f (s) ∼ f (s′) =⇒

h(s) ∼ h(s′) and f (s) ≻ f (s′) =⇒ h(s) ≿ h(s′) for all s, s′ ∈ A}. Notice that

CA( f ) ⊂ KA( f ) and that KA( f ) contains all constant acts. Notice that if (A, f ) ∈ C,

then CA( f ) = KA( f ).

Lemma A.4. Then cl(CA( f )) = KA( f ).

Proof. First we show K( f ) ⊂ cl(CA( f )). Fix any h ∈ K( f ), then for each n ∈

N, let fn = 1
n f + (1 − 1

n )h. Clearly fn → h. For every s, s′ and any n, f (s) ∼

f (s′) =⇒ h(s) ∼ h(s′), hence u( f (s)) = u( f (s′)) ⇔ 1
n u( f (s)) + (1 − 1

n )u(h(s)) =

1
n u( f (s′))+ (1− 1

n )u(h(s
′)) ⇔ u( 1

n f (s)+ (1− 1
n )h(s)) = u( 1

n f (s′)+ (1− 1
n )h(s

′)) ⇔

fn(s) ∼ fn(s′). Similarly, if f (s) ≻ f (s′), then h(s) ≿ h(s′) and thus 1
n u( f (s))+ (1−

1
n )u(h(s)) >

1
n u( f (s′)) + (1 − 1

n )u(h(s
′)) ⇔ u( 1

n f (s) + (1 − 1
n )h(s)) > u( 1

n f (s′) +

(1 − 1
n )h(s

′)) ⇔ fn(s) ≻ fn(s′). Hence fn ∈ CA( f ) for all n, and h ∈ cl(CA( f )).

Next we must show that cl(CA( f )) ⊂ KA( f ). Towards a contradiction, suppose

g ∈ cl(CA( f )) but g /∈ KA( f ). If g /∈ KA( f ), then it must be that there is some

pair of states s, s′ such that f (s) ∼ f (s′) and g(s) ≁ g(s′) or f (s) ≻ f (s′) and

g(s′) ≻ g(s). In the first case, without loss suppose g(s) ≻ g(s′), and fn → g for
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some sequence { fn} ⊂ CA( f ). Then there is some n∗ such that for any n ≥ n∗,

fn(s) ≻ fn(s′). But for all h ∈ CA( f ), f (s) ∼ f (s′) ⇔ h(s) ∼ h(s′). Hence for

any sequence fn ∈ CA( f ), fn(s) ∼ fn(s′) for all n, contradiction. In the second

case, again suppose for contradiction that f (s) ≻ f (s′), g(s′) ≻ g(s), and fn → g

for some sequence { fn} ⊂ CA( f ). Then there is some n∗ such that for any n ≥ n∗,

fn(s′) ≻ fn(s), but fn ∈ CA( f ) implies fn(s) ≻ fn(s′), a contradiction.

Corollary A.1. Since the closure of a convex set is convex, if follows that KA( f )

is convex.

Lemma A.5. For all (A, f ) ∈ N , (i) D(A, f ) ⊂ A is non-empty, (ii) f (s) ∼ f (s′)

for all s, s′ ∈ D(A, f ), (iii) if s ∈ D(A, f ) and s′ /∈ D(A, f ), then f (s) ≻ f (s′), (iv)

if h ≍A f , then D(A, h) = D(A, f ).

Proof. These follow directly from the definition.

A.3 Proofs

A.3.1 Proof of Theorem 1.1

Lemma A.6. If the collection of preferences {≿,≿A, f } satisfy axioms Axiom 1.1,

Axiom 3.2, Axiom 1.4, then for all (A, f ) and B ⊂ A with f (s) ∼ f (s̃) for all s, s̃ ∈ B,

then for any h, g, z ∈ F ,

hBz ≿ gBz ⇔ hBz ≿A, f gBz.

Proof. Fix any s, s̃ such that f (s) ∼ f (s̃). Then fix x, y, z such that x, y ≻ z and

x{s}z ∼ y{s̃}z. Since f (s) ≿ f (s̃) and x{s}z ≿ y{s̃}z, then by Axiom 1.4 it follows

that x{s}z ≿A, f y{s̃}z. However, by symmetry it also follows from Axiom 1.4 that

y{s̃}z ≿A, f x{s}z and hence x{s}z ∼A, f y{s̃}z. From this it follows that u(x)µ(s)+
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u(z)(1− µ(s)) = u(y)µ(s̃) + u(z)(1− µ(s̃)) and u(x)µA, f (s) + u(z)(1− µA, f (s)) =

u(y)µA, f (s̃) + u(z)(1 − µA, f (s̃)). After algebra we conclude that µ(s)
µ(s̃) =

µA, f (s)
µA, f (s̃)

.

Now fix B ⊂ A such that f (s) ∼ f (s̃) for all s, s̃ ∈ B. Since the above holds for

all s, s̃ ∈ B, we have

µA, f (s̃)µ(s) = µA, f (s)µ(s̃) ⇔

∑̃
s∈B

µA, f (s̃)µ(s) = ∑̃
s∈B

µA, f (s)µ(s̃) ⇔

µA, f (B)µ(s) = µA, f (s)µ(B) ⇔

µA, f (s) = µ(s)
µA, f (B)

µ(B)

Now for any h, g, z ∈ F ,

hBz ≿ gBz ⇔

∑
s∈B

u(h(s))µ(s) + (1 − µ(B))u(z) ≥ ∑
s∈B

u(g(s))µ(s) + (1 − µ(B))u(z) ⇔

∑
s∈B

u(h(s))µ(s) ≥ ∑
s∈B

u(g(s))µ(s) ⇔(
µA, f (B)

µ(B)

)
∑
s∈B

u(h(s))µ(s) ≥
(

µA, f (B)
µ(B)

)
∑
s∈B

u(g(s))µ(s) ⇔

∑
s∈B

u(h(s))µA, f (s) ≥ ∑
s∈B

u(g(s))µA, f (s) ⇔

∑
s∈B

u(h(s))µA, f (s) + (1 − µA, f (B))u(z) ≥ ∑
s∈B

u(g(s))µA, f (s) + (1 − µA, f (B))u(z) ⇔

hBz ≿A, f gBz

Since B was arbitrary, the result holds.

Lemma A.7. For every (A, f ) ∈ C, µA, f = µ|A.

Proof. First, by Axiom 3.2 it follows that µA, f (A) = 1, or equivalently, h ∼A, f hAz
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and g ∼A, f gAz. The proof of this is standard. Next, since f (s) ∼ f (s′) for all

s, s′ ∈ A, then from Lemma A.6 and taking B = A

hAz ≿A, f gAz ⇔ ⇔

hAz ≿ gAz ⇔

∑
s∈A

u(h(s))µ(s) + (1 − µ(A))u(z) ≥ ∑
s∈A

u(g(s))µ(s) + (1 − µ(A))u(z) ⇔

1
µ(A) ∑

s∈A
u(h(s))µ(s) ≥ 1

µ(A) ∑
s∈A

u(g(s))µ(s) ⇔

∑
s∈A

u(h(s))µ|A(s) ≥ ∑
s∈A

u(g(s))µ|A(s)

Since µA, f is unique, it follows that for any (A, f ) ∈ C, µA, f (s) = µ|A(s). Since for

all x ∈ X, (A, x) ∈ C, µA,x = µ|A.

For all (A, f ), define ψ(A, f , s) :=
µA, f (s)
µA,x(s)

for some x. By Lemma A.7 µA,x = µA,y

for all x, y, hence the function is well defined, and
µA, f (s)
µA,x(s)

=
µA, f (s)

µ(s) µ(A) > 0. By

definition it is clear that

∑
s∈A

u(g(s))ψ(A, f , s)µ(s|A) = ∑
s∈A

u(g(s))

(
µA, f (s)

µ(s)
µ(A)

)
µ(s)
µ(A)

= ∑
s∈A

u(h(s))µA, f (s)

Suppose that f (s) ∼ f (s̃). Then let B = {s, s̃}, and let h = x{s}z, g = y{s̃}z. Then

by Lemma A.6, hBz ≿ gBz ⇔ hBz ≿A, f gBz. Without loss choose x, y ≻ z such

that h ∼ g, hence it follows that

µA, f (s)
µA, f (s̃)

=
µ(s)
µ(s̃)

=⇒

ψ(A, f , s)
µ(A)

=
µA, f (s)

µ(s)
=

µA, f (s̃)
µ(s̃

=
ψ(A, f , s̃)

µ(A)
=⇒

ψ(A, f , s) = ψ(A, f , s̃)

Let {E1, . . . , En} be a partition of A such that for all s, s̃ ∈ Ei, f (s) ∼ f (s̃) and for
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i < j and any s ∈ Ei and s̃ ∈ Ej, f (s) ≻ f (s̃). Then define ψA, f (Ei) = ψ(A, f , s)

for some s ∈ Ei. By the result above this is well defined. Next, Ek, Ek+1 satisfy the

conditions of Axiom 1.4. Thus let x, y, z satisfy xEkz ∼ yEk+1z with x, y ≻ z. Then it

follows that xEkz ≿A, f yEk+1z and u(x)µ(Ek) + u(z)(1 − µ(Ek)) = u(y)µ(Ek+1) +

u(z)(1 − µ(Ek+1)), hence (u(x)− u(z))µ(Ek) = (u(y)− u(z))µ(Ek+1).

xEkz ≿A, f yEk+1z ⇔

u(x)
µ(Ek)

µ(A)
ψA, f (Ek) + u(z)[1 − µ(Ek)

µ(A)
ψA, f (Ek)] ≥

u(y)
µ(Ek+1)

µ(A)
ψA, f (Ek+1) + u(z)[1 − µ(Ek+1)

µ(A)
ψA, f (Ek+1)] ⇔

(u(x)− u(z))µ(Ek)ψA, f (Ek) ≥

(u(y)− u(z))µ(Ek+1)ψA, f (Ek+1) ⇔

ψA, f (Ek) ≥ ψA, f (Ek+1)

Next, define δA, f : X → (0, ∞) by δA, f ( f (s)) = ψ(A, f , s) if x = f (s). We can

define δA, f outside of f (A) so that it is non-decreasing, by making it constant for

x ≺ inf{ f (s)|s ∈ A} and x ≻ sup{ f (s)|s ∈ A}, and extending it piecewise linearly

otherwise. ■

A.3.2 Proof of Theorem 1.2

The uniqueness properties are simple to show. The uniqueness properties of u, µ,

and µA, f all follow from standard results. Given µ, µA, f , there is a unique value for

δ(A, f , f (s)) given by δ(A, f , f (s)) =
µA, f (s)

µ(s) µ(A). We can define δ(A, f , x) arbitrar-

ily outside of f (A).
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A.3.3 Proof of Theorem 1.3

The proof proceeds by constructing a value function v such that δA, f is a propor-

tional distortion relative to v.

Lemma A.8. For all (A, f ), (B, g) and any s1, s2 ∈ A, s3, s4 ∈ B, if f (s1) ∼ g(s3)

and f (s2) ∼ g(s4), then ψ(A, f ,s1)
ψ(A, f ,s2)

= ψ(B,g,s3)
ψ(B,g,s4)

.

Proof. Case 1: Suppose s1 = s3 = s and s2 = s4 = s̃, then for C = {s, s̃}, f (s) ∼

g(s) for all s ∈ C. For all h, j, z

hCz ≿A, f jCz ⇔

u(h(s))µA, f (s) + u(h(s̃))µA, f (s̃) + u(z)(1 − µA, f (C)) ≥

u(j(s))µA, f (s) + u(j(s̃))µA, f (s̃) + u(z)(1 − µA, f (C)) ⇔

[u(h(s))− u(j(s))]µA, f (s) ≥ [u(j(s̃))− u(h(s̃))]µA, f (s̃)

Suppose h, j are such that h(s) ≻ j(s) and j(s̃) ≻ h(s̃). Then by Axiom 1.5, hCz ∼A, f

jCz ⇔ hCz ∼B,g jCz, and hence

µA, f (s)
µA, f (s̃)

=
u(j(s̃))− u(h(s̃))
u(h(s))− u(j(s))

=
µB,g(s)
µB,g(s̃)

.

Since ψ(A, f , s) :=
µA, f (s)
µA,x(s)

, it follows that

ψ(A, f , s)
ψ(A, f , s̃)

=
µA, f (s)
µA,x(s)

/
µA, f (s̃)
µA,x(s̃)

=
µA, f (s)
µA, f (s̃)

× µ(s̃)
µ(s)

=
µB,g(s)
µB,g(s̃)

× µ(s̃)
µ(s)

=
ψ(B, g, s)
ψ(B, g, s̃)

.

Case 2: C ≡ {s1, s2, s3, s4} ⊂ A ∩ B. Then define h such that h(s1) = h(s3) and

h(s2) = h(s4). Then

ψ(A, f , s1)

ψ(A, f , s2)
=

ψ(B, h, s1)

ψ(B, h, s2)
=

ψ(B, h, s3)

ψ(B, h, s4)
=

ψ(B, g, s3)

ψ(B, g, s4)
.
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Where the first and third equalities follows by case 1, while the second equality

holds since from Theorem 1, h(s1) ∼ h(s3) =⇒ ψ(B, h, s1) = ψ(B, h, s3) and

h(s2) ∼ h(s4) =⇒ ψ(B, h, s2) = ψ(B, h, s4)

Case 3: Suppose {s3, s4}∩ A = ∅ or {s1, s2}∩B = ∅ 1. Then let D = {s1, s2, s3, s4}.

As before, define h such that h(s1) = h(s3) and h(s2) = h(s4). It then follows that

ψ(A, f , s1)

ψ(A, f , s2)
=

ψ(D, h, s1)

ψ(D, h, s2)
=

ψ(D, h, s3)

ψ(D, h, s4)
=

ψ(B, g, s3)

ψ(B, g, s4)

Where the equalities follow by repeated applications of case 1 or case 2.

Define the function ϕ : X × X → R+ by

ϕ(x, y) :=
ψ(A, f , s)
ψ(A, f , s̃)

(A.1)

for some (A, f ) where f (s) = x and f (s̃) = y. By the previous lemma, for all (A, f )

and (B, g) such that f (s1) = x = g(s3) and f (s2) = y = g(s4),
ψ(A, f ,s1)
ψ(A, f ,s2)

= ψ(B,g,s3)
ψ(B,g,s4)

,

hence ϕ is well defined.

Lemma A.9. ϕ satisfies the following properties: (i) x ≿ y =⇒ ϕ(x, y) ≥ 1, (ii)

ϕ(x, y)ϕ(y, z) = ϕ(x, z), (iii) 1
ϕ(x,y) = ϕ(y, x), and (iv) ϕ(x, x) = 1

Proof. (i) Fix s, s̃ such that f (s) = x ≿ y = f (s̃). By the previous theorem ψ(A, f , s) ≥

ψ(A, f s̃), hence ϕ(x, y) = ψ(A, f ,s)
ψ(A, f ,s̃) ≥ 1. (ii) Fix three states sx, sy, sz, where f (si) = i,

i ∈ {x, y, z}. Then ϕ(x, y)ϕ(y, z) = ψ(A, f ,sx)
ψ(A, f ,sy)

ψ(A, f ,sy)

ψ(A, f ,sz)
= ϕ(x, z). (iii) For any s, s̃ with

f (s) = x, f (s̃) = y, 1
ϕ(x,y) = 1

ψ(A, f ,s)
ψ(A, f ,s̃)

= ψ(A, f ,s̃)
ψ(A, f ,s) = ϕ(y, x). (iv) It follows from (iii)

ϕ(x, x) = 1
ϕ(x,x) , hence ϕ(x, x)ϕ(x, x) = ϕ(x, x) = 1.

1If only a single state is missing from A, the steps are similar
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Fix some x∗ ∈ X2 and define v : X → R+ by

v(x) := ϕ(x, x∗). (A.2)

Then for any (A, f ) such that x = f (s) and y = f (s̃) for some s, s̃ ∈ A,

v(x)
v(y)

=
ϕ(x, x∗)
ϕ(y, x∗)

= ϕ(x, y) =
ψ(A, f , s)
ψ(A, f , s̃)

=
µA, f (s)
µA, f (s̃)

µ(s̃)
µ(s)

⇔

v(x)
v(y)

µ(s|A)

µ(s̃|A)
=

µA, f (s)
µA, f (s̃)

⇔ (A.3)

µA, f (s̃) =
µA, f (s)

v( f (s))µ(s|A)
v( f (s̃))µ(s̃|A)

Thus, summing over s̃ yields

1 = ∑̃
s

µA, f (s̃) =

(
∑̃

s
v( f (s̃))µ(s̃|A)

)
µA, f (s)

v( f (s))µ(s|A)
,

hence

µA, f (s) =
v( f (s))

∑s̃ v( f (s̃))µ(s̃|A)
µ(s|A). (A.4)

Lemma A.10. v is ≿-increasing.

Proof. Suppose x ≿ y. Then v(x)
v(y) =

ϕ(x,x∗)
ϕ(y,x∗)

= ϕ(x, x∗)ϕ(x∗, y) = ϕ(x, y) ≥ 1, hence

v(x) ≥ v(y).

2For example, suppose X = ∆(Y) for a finite prize set Y as in Anscombe and Aumann [4]. Then
a natural choice for x∗ is the ≿-worst prize in Y. Alternatively, If X is some interval of R containing
0, then we might take x∗ = 0.
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A.3.4 Proof of Theorem 1.4

The representation is given by the triple (u, v, µ). Given the standard uniqueness

for µ and µA, f , then v′ and v represent the same preferences if and only if for all

x, y, v′(x)
v′(y)

µ(s)
µ(s) =

v(x)
v(y)

µ(s)
µ(s) , if and only if for some k > 0, v′(x) = kv(x). ■

A.3.5 Proof of Theorem 1.5

Since for all (A, f ) ∈ C, D(A, f ) = A, hence for all δ ∈ [0, 1],

µA, f = µ|A = (1 − δ)µ|A + δµ|D(A, f ).

For the remainder of the proof, suppose (A, f ) ∈ N . Let H(A, f ) := CA( f ) ∪

X, where X is understood to mean the set of constant acts. Note that H(A, f ) ⊂

cl(CA( f )).

Step 2: There exists a function δ : N → [0, 1] such that for all h, g ∈ cl(CA( f )),

h ≿A, f g ⇔

(1 − δ(A, f ))VA(h) + δ(A, f ))VD(A, f )(h) ≥

(1 − δ(A, f ))VA(g) + δ(A, f )VD(A, f )(g)

Proof. Fix some (A, f ) ∈ N . Define the relation ⩾A by:

h ⩾A g if and only if hAg ≿ g,

and let ≫A and ∼=A denote the strict and symmetric parts of ⩾A. It is simple to
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show that hAg ≿ g if and only if hAg′ ≿ gAg′ for all g′ ∈ F . Then for any h, g,

h ⩾A g ⇔

hAg ≿ g ⇔

∑
s∈A

u(h(s))µ(s) + ∑
s∈Ac

u(g(s))µ(s) ≥ ∑
s∈A

u(g(s))µ(s) + ∑
s∈Ac

u(g(s))µ(s) ⇔

1
µ(A) ∑

s∈A
u(h(s))µ(s) ≥ 1

µ(A) ∑
s∈A

u(g(s))µ(s) ⇔

∑
s∈A

u(h(s))µ|A(s) ≥ ∑
s∈A

u(g(s))µ|A(s)

Hence h ⩾A g has a subjective expected utility representation (u, µ|A).

Next, define ⊵A by h ⊵A g if and only if for some s ∈ A, h(s) ≿ g(s′) for all

s′ ∈ A. let ▷A and ≈A denote the strict and symmetric parts of ⊵A. Further, ⊵A

is represented by MA(h) = max{u(h(s))|s ∈ A}. Suppose h ⊵A g. Then for some

ŝ ∈ A, h(ŝ) ≿ g(s′) for all s′ ∈ A. Hence max{u(h(s))|s ∈ A} ≥ u(h(ŝ)) ≥

max{u(g(s))|s ∈ A}. Next, suppose max{u(h(s))|s ∈ A} ≥ max{u(g(s))|s ∈ A}.

Then let s∗ solve u(h(s∗)) = max{u(h(s))|s ∈ A}. Then clearly h(s∗) ≿ g(s) for all

s ∈ A.

If h, g ∈ CA( f ), it follows that D(A, h) = D(A, g) = D(A, f ), hence h ⊵A g is

equivalent to h(s) ≿ g(s) for all s ∈ D(A, f ). By the previous lemma, for h, g ∈

CA( f ) there is some xh, xg such that h(s) ∼ xh and g(s) ∼ xg for all s ∈ D(A, f ).

It is then clear that h ⊵A g ⇔ xh ≿ xg for h, g ∈ CA( f ), or equivalently, u(xh) =

max{u(h(s))|s ∈ A}. Then for any ρ ∈ ∆(S) satisfying ρ(D(A, f )) = 1,

∑
s∈D(A, f )

u(h(s))ρ(s) = u(xh) = MA(h).
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Further, for any x ∈ F ,

∑
s∈D(A, f )

u(x(s))ρ(s) = u(x) = MA(x),

hence

Uρ(h) := ∑
s∈D(A, f )

u(h(s))ρ(s)

represents ⊵A on H(A, f ), and Uρ is a normalized linear functional on F .

For ρ ∈ ∆(S) such that ρ(D(A, f )) = 1, define the set

Uρ := {(Uρ(h), VA(h)) ∈ R2|h ∈ H(A, f )}.

For (v1, v2), (v′1, v′2) ∈ U , define ≿∗ by

(v1, v2) ≿∗ (v′1, v′2) ⇔ h ≿A, f g

for some h, g ∈ H(A, f ) such that (Uρ(h), VA(h)) = (v1, v2) and (Uρ(g), VA(g)) =

(v′1, v′2). This relation is well defined, since (Uρ(h), VA(h)) = (Uρ(g), VA(g)) im-

plies h ≈A g and h ∼=A g, hence h ∼A, f g. Further, for all h ∈ H(A, f ), Uρ(h) ≥

VA(h), hence v1 ≥ v2 for all (v1, v2) ∈ U . This holds because Uρ coincides with

the maximal payoff of h in A. Further, it is obvious that ≿∗ is complete, transi-

tive, monotonic, and satisfies independence and continuity. Let s̄ ∈ D(A, f ) and

s ∈ arg min{u( f (s))|s ∈ A}. Then since (A, f ) ∈ N , the constant acts f (s̄) and

f (s) satisfy f (s̄) ≻ f (s). Further, for α ∈ (0, 1), h := α f + (1 − α) f (s̄) satisfies

u( f (s̄)) > Uρ(h) > VA(h) > u( f (s)), hence there are (v∗1 , v∗2), (v̄, v̄), (v, v) ∈ U

such that v∗1 > v∗2 and v̄ > v∗1 > v, where this follows due to the convexity of

H(A, f ) and the fact that Uρ and VA are normalized. Hence by lemma 2 of Saito
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[58], there exists some δ ∈ [0, 1] such that

δUρ(h)+ (1− δ)VA(h) ≥ δUρ(g)+ (1− δ)VA(g) ⇔ δv1 +(1− δ)v2 ≥ δv′1 +(1− δ)v′2

⇔ (v1, v2) ≿∗ (v′1, v′2) ⇔ h ≿A, f g.

By lemma 2, for every ρ, Wρ := (1 − δ)VA(h) + δUρ(h) is a normalized linear

functional given by µW = (1− δ)µ|A + δρ. Then by continuity of Wρ we extend it to

cl(CA( f )). If D(A, f ) is a singleton then ρ is uniquely given. Suppose then without

loss that |D(A, f )| ≥ 2 and fix s, s′ ∈ D(A, f ). Consider x, y, z such that x, y ≻ z

and x{s}z ∼ y{s′}z. Then define h := x{s}z, g := y{s′}z and B := {s, s′}. Then by

hBz ∼ gBz, and by Lemma A.6, hBz ∼A, f gBz ⇔ x{s}z ∼A, f y{s′}z. Wρ satisfies

the equation Wρ(x{s}z) = Wρ(y{s′}z) if and only if

µW(s)u(x) + (1 − µW(s))u(z) = µW(s′)u(y) + (1 − µW(s′))u(z) ⇔

[u(x)− u(z)]µW(s) = [u(y)− u(z)]µW(s′) ⇔
µW(s)
µW(s′)

=
u(y)− u(z)
u(x)− u(z)

However, from x{s}z ∼ y{s′}z we also know that µ(s)
µ(s′) =

u(y)−u(z)
u(x)−u(z) , hence

(1 − δ)µ|A(s) + δρ(s)
(1 − δ)µ|A(s′) + δρ(s′)

=
µW(s)
µW(s′)

=
µ(s)
µ(s′)

.

Algebra yields ρ(s)
ρ(s′) =

µ(s)
µ(s′) , which when combined with ρ(D(A, f )) = 1, implies ρ =

µ|D(A, f ) is the unique ρ such that Wρ represents ≿A, f on cl(CA( f ), hence WµD(A, f ) =

(1 − δ)VA(h) + δVD(A, f )(h).

Since for each (A, f ) δ(A, f ) is unique, we simply define the function δ : N →

[0, 1] by δ(A, f ) = δ(A, f ).
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Step 3: For all h, g ∈ F ,

h ≿A, f g ⇔ (1− δ(A, f ))VA(h)+ δ(A, f )VD(A, f )(h) ≥ (1− δ(A, f ))VA(g)+ δ(A, f )VD(A, f )(g).

Proof. Again by lemma 2, linearity of (1 − δ(A, f ))VA + δ(A, f )VD(A, f ) implies we

can extend it to all of F by the equation

(1− δ(A, f ))VA(h)+ δ(A, f )VD(A, f )(h) = ∑
s∈A

u(h(s))[(1− δ(A, f ))µ|A + δ(A, f )µ|D(A, f )].

That is, we can define a linear functional on F by

UA, f (h) = ∑
s∈A

u(h(s))[(1 − δ(A, f ))µ|A + δ(A, f )µ|D(A, f )].

Then UA, f and VA, f are both normalized linear functionals that agree on cl(CA( f )),

and hence by uniqueness of subjective probabilities, it follows that µA, f = (1 −

δ(A, f ))µ|A + δ(A, f )µ|D(A, f ).

That is, I claim that agreement on cl(CA( f )) is sufficient for uniqueness, or in

other words, cl(CA( f )) is large enough to identify beliefs uniquely. Consider any

two states s, s′ ∈ A. Then without loss f (s) ≻ f (s′) or f (s) ∼ f (s′). Suppose the

first case holds, and for convenience, ignore the dependence of δ on (A, f ). Then

for any x ≻ y, x{s}y ∈ cl(CA( f )). Say for some w ∈ X, x{s}y ∼A, f w, then it

follows that UA, f (x{s}y) = u(w) = VA, f (x{s}y), hence

u(x)µA, f (s)+u(y)(1−µA, f (s)) = u(x)[(1− δ)µA + δµ|D(A, f )](s)+u(y)(1− [(1− δ)µA + δµ|D(A, f )](s)).

Since u(x) > u(y), it immediately follows that µA, f (s) = [(1− δ)µA + δµ|D(A, f )](s)
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Next, it is immediately apparent that for f (s) ∼ f (s′),

µA, f (s)
µA, f (s′)

=
[(1 − δ)µA + δµ|D(A, f )](s)
[(1 − δ)µA + δµ|D(A, f )](s′)

,

since either {s, s′} ⊆ D(A, f ) or {s, s′} ⊈ D(A, f ). Hence in any case, for any

s, s′ ∈ A

µA, f (s)
µA, f (s′)

=
[(1 − δ)µA + δµ|D(A, f )](s)
[(1 − δ)µA + δµ|D(A, f )](s′)

=⇒

µA, f (s)[(1 − δ)µA + δµ|D(A, f )](s
′) = µA, f (s′)[(1 − δ)µA + δµ|D(A, f )](s) =⇒

∑
s′∈A

µA, f (s)[(1 − δ)µA + δµ|D(A, f )](s
′) = ∑

s′∈A
µA, f (s′)[(1 − δ)µA + δµ|D(A, f )](s) =⇒

µA, f (s) = [(1 − δ)µA + δµ|D(A, f )](s)

The previous steps conclude the proof of Theorem 4. The following step proves

Theorem 8, the case where δ(A, f ) is a constant function.

Step 4: For all (A, f ), (B, g) ∈ N , δ(A, f ) = δ(B, g).

Proof. (A) First, note that s̃ ∈ A∩B and s ∈ A, s′ ∈ B such that f (s) ≻ f (s̃), g(s′) ≻

g(s̃) is equivalent to s̃ ∈ (A\D(A, f ))∩ (B\D(B, g)). Consider some s ∈ (A\D(A, f ))∩

(B\D(B, g)). Choose x, y, z ∈ X and so that yAz ∼ xBz, and without loss suppose

u(z) = 0. By Axiom A.5, this is equivalent to [w ∼A, f x{s}z ⇔ w ∼B,g y{s}z],

whence, VA, f (x{s}z) = u(x)(1− δ(A, f ))µ(s|A) = u(w) = u(y)(1− δ(B, g))µ(s|B) =

VB,g(y{s}z). From yAz ∼ xBz it follows that u(y)µ(A) = u(x)µ(B) ⇔ u(y)
u(x) =

µ(B)
µ(A)

,

which when combined with u(x)(1 − δ(A, f )) µ(s)
µ(A)

= u(y)(1 − δ(B, g)) µ(s)
µ(B) , imme-

diately implies that δ(A, f ) = δ(B, g).
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(B) Now suppose (A\D(A, f ) ∩ (B\D(B, g)) = ∅.

There are two mutually exclusive possibilities:

(I) D(A, f ) ∪D(B, g) = S

(II) There is some state s ∈ S\(D(A, f ) ∪D(B, g))

Case (I): Let s f ∈ D(A, f )\D(B, g) and let sh ∈ D(B, g)\D(A, f ). Such states

must exist because D(A, f ) ⊊ A, D(B, g) ⊊ B, and D(A, f ) ∪ D(B, g) = S. Then

for x ≻ y, consider the act x{s f , sh}y. Then it plainly follows that (A\D(A, f )) ∩

(A\D(A, x{s f , sh}y)) ̸= ∅ and that (B\D(B, g)) ∩ (B\D(B, x{s f , sh}y)) ̸= ∅. Ad-

ditionally, consider the event C = {s f , sh, s, s′} where s ∈ A\D(A, f ) and s′ ∈

B\D(B, g). Then it is also the case that (C\D(C, x{s f , sh}y))∩ (B\D(B, x{s f , sh}y)) ̸=

∅ ̸= (C\D(C, x{s f , sh}y)) ∩ (A\D(A, x{s f , sh}y)). But by the conditions estab-

lished we can apply the same argument in (A) and conclude that δ(A, f ) = δ(A, x{s f , sh}y) =

δ(C, x{s f , sh}y) = δ(B, x{s f , sh}y) = δ(B, g).

Case (II): Suppose |A| = |S| − 1 = |B|. Choose any s̃ ∈ (A\D(A, f )), and de-

fine the act g′ by g′(s) = g(s) for s ∈ B\{s̃} and g′(s̃) = z for some z ≺ g(s), for s ∈

D(B, g). Then (A\D(A, f )) ∩ (B\D(B, g′)) ̸= ∅ ̸= (B\D(B, g′)) ∩ (B\D(B, g′)).

Hence by the argument in (A), δ(A, f ) = δ(B, g′) = δ(B, g).

If |A| < |S| − 1 = |B|, pick some s′ ∈ B\D(B, g) and let Â = A ∪ {s′}. Let

f̂ (s) = f (s) for all s ̸= s′, and let f̂ (s′) = z, where z ≺ f (s) for some s ∈ A. Now it

follows that (A\D(E, f )) ∩ (Â\D(Â, f̂ )) and (Â\D(Â, f̂ )) ∩ (B\D(B, g)) are both

non-empty, hence δ(A, f ) = δ(Â, f̂ ) = δ(B, h). The case when |B| < |S| − 1 = |A|

is nearly identical.

Lastly, suppose |A| ≤ |S|− 2 and |B| ≤ |S|− 2. By the assumption that (A, f ), (B, g) ∈

N , there is some z ∈ X so that for s ∈ D(A, f ), f (s) ≻ z, and for s ∈ D(B, g),

h(s) ≻ z. Next, define f̂ so that for all s ∈ A, f̂ (s) = f (s) and for all s /∈ A,
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f̂ (s) = z. Similarly, define ĝ so that for all s ∈ B, ĝ(s) = g(s), and for all s /∈ B,

ĝ(s) = z. Pick some ŝ ∈ S\(D(A, f ) ∪ D(B, g)), which exists by assumption. De-

fine Â = A ∪ {ŝ} and B̂ = B ∪ {ŝ}. By construction, (A\DA, f ) ∩ (B̂\D(Ê, f̂ )),

(Â\D(Â, f̂ ))∩ (B̂\D(B̂, ĝ), and (B̂\D(B̂, ĥ))∩ (B\D(A, f )) are non-empty. Hence

we conclude that δ(A, f ) = δ(Â, f̂ ) = δ(B̂, ĝ) = δ(B, g).

Thus we have shown that for arbitrary (A, f ), (B, g) ∈ N , δ(A, f ) = δ(B, g) and

the proof of claim 4 is complete.

A.3.6 Proof of Theorem 1.7

Proof. It is clear from classic results that that δ(A, f ) = 0 if and only if dynamic

consistency holds. Otherwise δ ∈ (0, 1] and is unique.

Lemma A.11. If Axiom 1.8 holds, then for every (A, f ), µA, f (D(A, f )) = 1.

Proof. First, consider the case when (A, f ) is constant. That is, f (s) ∼ f (s′) for

every s, s′ ∈ A. Thus by Consequentialism it follows that µA, f (A) = 1. Since A =

D(A, f ) the result holds. Suppose next that f is non-constant on A. Thus there

exists some s, s′ ∈ A such that f (s) ≻ f (s′). Hence D(A, f ) is a strict, non-empty

subset of A. Suppose µA, f (D(A, f )) < 1. Then choose x̄ ∈ f (D(A, f )) and some

x ∈ f (A\D(A, f )), and define gϵ by gϵ(s) = (1 − ϵ)x̄ + ϵx for all s ∈ A. Thus for

every ϵ > 0 and every s ∈ A, x̄ ≻ gϵ(s), and hence by axiom 3, f ≻A, f gϵ. Since

µA, f (D(A, f )) < 1 it follows that u(x̄) > VA, f ( f ). By continuity there is some ϵ̂ > 0

such that u(x̄) > VA, f (gϵ̂) > VA, f ( f ), a contradiction. Hence µA, f (D(A, f )) =

1.

Now, from it follows that for every s, s′ ∈ D(A, f ), µ(s)
µ(s′) =

µA, f (s)
µA, f (s′)

, hence µA, f (s) =

µ(s|D(A, f )) for all s ∈ D(A, f ) and the proof is complete.
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A.3.7 Proof of Theorem 1.9

Case 2: (Best-case Binary Distortion)

Proof. Since ≿1=≿2, it follows that u1 = u2 = u and µ1 = µ2 = µ. Suppose for

all (A, f ), f ≿1
A, f x ⇒ f ≿2

A, f x, but δ2 < δ1. Let (A, f ) ∈ N and pick x̄ ∼1
A, f f .

Hence (1 − δ1)∑s∈A u( f (s))µ|A(s) + δ1 ∑s∈A u( f (s))µ|DA, f
(s) = u(x̄). Since δ2 <

δ1 and ∑s∈A u( f (s))µ|DA, f
(s) > ∑s∈A u( f (s))µ|A(s), it follows that u(x̄) > (1 −

δ2)∑s∈A u( f (s))µ|A(s) + δ2 ∑s∈A u( f (s))µ|DA, f
(s). But this contradicts f ≿2

A, f x̄,

thus δ2(A, f ) ≥ δ1(A, f ) for all (A, f ).
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Appendix B

Appendix to Chapter 2

Before proving Theorem 1 I state and prove some basic results.

Lemma B.1. If {≿A}A∈Σ satisfy Axiom 2.1, Axiom 2.4, Axiom A.4, then for all

A ∈ Σ such that A is non-null, and any x, y ∈ X,

x ≿ y ⇐⇒ x ≿A y

Proof. First suppose x ≿ y. By monotonicity of ≿ this is equivalent to xAy ≿ y for

all A, then by Axiom 2, x ≿A y. Suppose that x ≿A y but y ≻ x. Then it follows

from monotonicity and the fact that A is non-null that yAx ≻ x, but then again by

axiom 2 y ≻A x, which is a contradiction. Hence x ≿ y.

Lemma B.2. If {≿A}A∈Σ satisfy Axiom 2.1, Axiom 2.4, Axiom A.4, then for all

A ∈ Σ such that A is non-null, ≿A satisfies monotonicity. I.e., f (ω) ≿A g(ω) for

all ω ∈ Ω implies f ≿A g.

Proof. Suppose f (ω) ≿A g(ω) for all ω ∈ Ω. By lemma 1 we know that f (ω) ≿

g(ω) for all ω ∈ Ω. Then from monotonicity of ≿ it follows that f Ag ≿ g, and

hence by Axiom 2 it follows that f ≿A g.
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Lemma B.3. For each A ∈ Σ, A non-null, it follows from Axiom 1 that there is a

utility index uA : X → R and probability µA such that

f ≿A g ⇐⇒
∫

Ω
u( f (ω))µA(dω) ≥

∫
Ω

u( f (ω))µA(dω).

Proof. This follows from standard results.

Lemma B.4. For each A ∈ Σ, A non-null, and all f , g ∈ F ,

f Ag ≿ g ⇐⇒ f Ah ≿ gAh for all h ∈ F .

Proof.

f Ag ≿ g ⇔
∫

A
u( f (ω))µ(dω) +

∫
Ω\A

u(g(ω))µ(dω) ≥∫
A

u(g(ω))µ(dω) +
∫

Ω\A
u(g(ω))µ(dω)

⇔
∫

A
u( f (ω))µ(dω) ≥

∫
A

u(g(ω))µ(dω)

⇔
∫

A
u( f (ω))µ(dω) +

∫
Ω\A

u(h(ω))µ(dω) ≥
∫

A
u(g(ω))µ(dω) +

∫
Ω\A

u(h(ω))µ(dω)

⇔ f Ah ≿ gAh

B.1 Proof of Theorem 2.1

I now prove Theorem 1. The proof does not rely on assumptions about finiteness of

Ω, and hence holds for rather general state spaces. Through the addition of stan-

dard axioms we could impose countable additivity of beliefs or convex range of be-

liefs, though neither of which are needed for the proof. What is essential is the

convex structure of X and the existence of at least three non-null events.
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Proof. From lemma 1 we know that for every non-null A, uA is a positive affine

transformation of uΩ ≡ u. Without loss normalize all the utility functions to u.

Since X is convex it follows that u(X) is a convex subset of R, so again without loss

suppose [−1, 1] ⊂ u(X).

Step 1: Let µ ≡ µΩ and for any A such that µ(A) > 0, let BU(µ, A) denote

the Bayesian update of µ conditional on A: BU(µ, A)(B) = µ(A∩B)
µ(A)

. Fix some non-

null A and define the relation ⊵A on F by f ⊵A g if and only if f Ag ≿ g. Let ▷A

and ≈A be the strict and symmetric parts of ⊵A. We then establish that ⊵A has an

expected utility representation (vA, πA) where vA = u and πA = BU(µ, A)1. Let

VB(A) denote the functional that represents ⊵A and let VA denote the functional

that represents ≿A, with V ≡ VΩ.2 It follows from Axiom 2 that

VA( f ) ∈ [min{V( f ), VB(A)( f )}, max{V( f ), VB(A)( f )}] (B.1)

It is worth noting that unlike in Saito [59], here we do not have a convenient order-

ing between V and VB(A). Suppose there exists some δ ∈ [0, 1] such that VA( f ) =

δV( f ) + (1 − δ)VB(A)( f ) for every f . Since every f is finite-valued it is simple to

show that since VA represents ≿A and u = uA :

∫
Ω

u( f (ω))µA(dω) = δ
∫

Ω
u( f (ω))µ(dω) + (1 − δ)

∫
Ω

u( f (ω))BU(µ, A)(dω) =

∫
Ω

u( f (ω))(δµ + (1 − δ)BU(µ, A))(dω).

Thus ≿A is represented by (u, δµ + (1 − δ)BU(µ, A)). In the following steps we

construct such a δ.

Step 2:

1See proof of Theorem 4, Kovach [41]
2In every instance the functionals are normalized by the utility index u. This ensures that

VA(x) = V(x) = VB(A)(x) = u(x) for all x ∈ X.
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Note that if V( f ) = VB(A)( f ) then by (1), VA( f ) = γV( f )+ (1−γ)VB(A)( f ) for

every γ. Further, if≿A is identically≿ for A non-null then we may take γ = 1, while

if ≿A is identically ⊵A (i.e., dynamic consistency holds) then we may take δ = 0.

Suppose there is some non-null A and acts f , g such that f ≿A g and g ≻ f Ag,

or f ≻A g and g ≿ f Ag.3 Let K≿ denote the set of all events at which the agent

violates dynamic consistency. Also, by (1) we can restrict attention to f such that

V( f ) ̸= VB(A)( f ). For any A ∈ K≿, let

F (A) = { f ∈ F |V( f ) ̸= VB(A)( f )} = { f ∈ F |zA f ∼ f and z ≁ f or, z ∼ f and zA f ≁ f }

Since we have normalized u across representations, if VA( f ) ̸= VB(A)( f ) then

f ∈ F (A).

Step 3:

Define the function δA : F (A) → [0, 1] by δA( f ) =
VA( f )−VB(A)( f )
V( f )−VB(A)( f ) . Note that

since VA( f ) is always between V( f ) and VB(A)( f ) the numerator and denominator

always have the same sign, hence the ratio is always (weakly) positive. Further,

from step 1 it follows that |VA( f )−VB(A)( f )| ≤ |V( f )−VB(A)( f )|, hence the ratio

is always less than 1. Since there is some act f such that VA( f ) ̸= VB(A)( f ), it

follows that for some f , δA( f ) > 0.

In the following steps, fix f , g ∈ F (A)

Step 4:

Suppose f ∼ g and f Ag ∼ g. From dominance it follows that f ∼A g and thus

V( f ) = V(g) and VA( f ) = VA(g). Further f Ag ∼ g implies f ≈A g and thus

VB(A)( f ) = VB(A)(g). It follows directly that δA( f ) = δA(g).

Step 5:

For any γ ∈ (0, 1], g ∈ F (A) and x ∈ X, it follows immediately from the

3Note that this implies that for some f , VA( f ) ̸= VB(A)( f ).
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Figure B.1: Acts illustrating various cases, where A = {s1}.

definition of δA and the linearity of the functionals V, VA and VB(A) that δA(g) =

δA(γg + (1 − γ)x)

Step 6:

Suppose f ≻ g and f Ag ∼ g. Let w ∈ X satisfy wA f ∼ f . From lemma 4

f Ag ∼ g is equivalent to f Ah ∼ gAh for any h, so we can take h = f and hence

f ∼ gA f , hence wA f ∼ f ∼ gA f . Again by lemma 4 it follows that wAg ∼ g.

Suppose w ≻ f ≻ g. By continuity we can take α ∈ (0, 1) such that αw + (1 −

α)g ∼ f . Since wA f ∼ f ∼ gA f it follows that [αw + (1 − α)g]A f ∼ f , and hence

by step 4 and step 5, we conclude that δA( f ) = δA(αw + (1 − α)g) = δA(g). If

f ≻ g ≻ w the same argument holds by replacing f and g in the previous steps.

Suppose f ≻ w ≻ g. Then it must follow that there is some ω ∈ Ac such that

f (ω) = z f ≻ w, otherwise we violate monotonicity. Then define h = wAz f . It

then follows that h ≻ w ≻ f ≻ g, and since wAh ∼ h by construction, the previous

arguments apply, and hence δA( f ) = δA(h) = δA(g).

Step 7:

Suppose f ∼ g and f Ag ≻ g. Such a case is illustrated by f , g in Figure B.1. We
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will use a technique similar to the one in step 6. Let w satisfy wA f ∼ f and let ŵ

satisfy ŵAg ∼ g. From f ∼ g it follows that there is some zg such that gAzg ∼ g

and zg ≻ w. We can then define ĝ = ŵAzg and f̂ = wAzg. Clearly zg ≻ f̂ ≻ ĝ.

By the argument in step 6 we can conclude that δA(ĝ) = δA( f̂ ). From f̂ ≻ f and

f̂ A f ∼ f , it also follows from 6 that δA( f̂ ) = δA( f ), and hence δA(g) = δA( f ).

Step 8:

Suppose f ≻ g and f Ag ≻ g. Let w ∈ X satisfy w ∼ f Aw, it then follows

that wAg ∼ f Ag. Without loss suppose there is some z such that z ≻ f Az.4 Then

by continuity there is some α ∈ (0, 1) such that ĝ = αg + (1 − α)z ∼ f . Now, by

completeness either ĝA f ≻ f , f Aĝ ≻ ĝ, or ĝA f ∼ f . In either the first or second

case, this is now equivalent to step 7, whereas in the third case we are in step 4, and

hence δA(g) = δA(ĝ) = δA( f ).

Step 9:

Suppose f ≻ g and f Ag ≺ g. In this case, as before, it is without loss to suppose

there is some z ∈ X such that z ≻ f . Hence by continuity we have ĝ = αg + (1 −

α)z ∼ f for some α ∈ (0, 1). Hence by the same argument from step 8, δA(g) =

δA( f ).

Step 10:

Suppose f ≺ g and f Ag ≻ g. This case is identical to step 9, by simply relabeling

the acts.

By combining all the above steps, and since f and g were arbitrary, we conclude

that for all f , g ∈ F (A), δA( f ) = δA(g) = δA > 0. Also, if for all f , g f ∼ g =⇒

f ∼A g, then it must be that δA = 1. Otherwise δA ∈ (0, 1). Now while we have

only shown that there is some A at which δA ∈ (0, 1). The next steps show that

for any other non-null information set B ∈ Σ, that δB = δA, and hence if the agent

violates dynamic consistency at some information set, he must violate it at every

4Suppose not, then by non-degeneracy there is some y such that f Ay ≻ y. Then we can take
f̂ = α f + (1 − α)y, and by step 5 we may without loss proceed with f̂ in place of f .
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information set.

Step 11:

Case 1: A ∪ B ̸= Ω

For any C ∩ (A ∪ B) = ∅ choose x, y, z such that xCy ∼A z. By axiom 3 it

follows that xCy ∼B z. Hence µA(C)u(x) + (1 − µA(C))u(y) = δAµ(C)u(x) +

(1 − µA(C))u(y) = u(z) = δBµ(C)u(x) + (1 − µB(C))u(y) = µB(C)u(x) + (1 −

µB(C))u(y), from which it follows that

(δA − δB)µ(C)u(x) = (δA − δB)µ(C)u(y).

Since x, y are arbitrary, it is without loss to suppose that u(x) > u(y), hence equality

is true if an only if δA = δB.

Case 2: A ∪ B = Ω

The argument is not that different. We simply find A′ ⊂ A and B′ ⊂ B such that

A′ and B′ fall under case 1.5 We then show that as long as µ(A) < 1 and µ(B) < 1,

then A, A′ and B, B′ also fall under case 1. Hence δA = δA′
= δB′

= δB. For further

details when S is finite, see the proof of theorem 8 in Kovach [41].

B.2 Proof of Theorem 2.2

Proof. It is standard that u is unique up to positive affine transformations and µ

is unique. Given uniqueness of µ and µA, it is trivial that there is a unique δ that

satisfies µA = δµ + (1 − δ)BU(µ, A).
5That we can do this is trivial if µ has convex range. see [25].
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B.3 Proof of Theorem 2.3

Proof. (i) ⇐⇒ (iv): It is well know that (i) and (iv) are equivalent.

(iv) ⇐⇒ (ii): By non-degeneracy pick three constant acts x ≻ y ≻ z and some

event A with µ(A) ∈ (0, 1). Normalize u(x) = 1, u(y) = 0, u(z) = −1. Define

f = yAz and g = yAx. Since f (ω) = y = g(ω) for all ω ∈ A, consequen-

tialism holds if and only if f ∼A g. Since µ(Ac) > 0, if δ > 0 it follows that

VA(g) = δµ(Ac) > 0 > −δµ(Ac) = VA( f ). Hence consequentialism holds if

and only if δ = 0.

(iv) ⇐⇒ (iii): This proof is similar to the previous one. Let x ≻ y ≻ z and suppose

u(x) = 1 and u(z) = 0. Then define f = xAz and g = y. Then by Axiom 2.6 it

must be that f ≿A g for any y. However, VA( f ) = δµ(A) + (1 − δ) < 1 for all

δ > 0. Since VA(g) = u(y), we can choose y such that u(y) > δµ(A)+ (1− δ),

hence g ≻A f , a contradiction for δ > 0.
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Appendix C

Appendix to Chapter 3

C.1 Proof of Theorem 3.1

Proof. Necessity is obvious, so only sufficiency is proved. For any u : X → R, let

K = u(X) ⊂ R. For any a ∈ K|Ω| ⊂ R|Ω|, it is clear that there exists some f ∈ F

such that (u ◦ f )(ω) = a(ω).

Step 1: Axiom 3.1 implies for each A ∈ Σ, there exists a closed, convex set of pri-

ors CA and a non-constant affine function uA : X → R so that f ≿A g if and only if

minπ∈CA ∑Ω uA( f (ω))dπ(ω) ≥ ∑π∈CA

∫
Ω uA(g(ω))dπ(ω). By ordinal preference

consistency, we can suppose without loss that for all A, uA = uΩ. Further, by strict

monotonicity it follows that for all A ∈ Σ and for all π ∈ CA, π(ω) > 0 for all

ω ∈ A.

If ≿∗ satisfies dynamic consistency then the representation holds for α = 0.

In what follows suppose ≿∗ violates dynamic consistency at some event. Then let

K≿∗ = {A ∈ Σ| f ≿∗
A g and g ≻∗ f Ag, or f ≻∗

A g and g ≿∗ f Ag} denote the set of

events at which ≿∗ violates dynamic consistency. Further, it is clear from [27] that

Axiom 3.3 implies that for any A ∈ Σ, CA ⊂ BU(C , A). Hence for every µ ∈ CA

there is some π ∈ C such that BU(π, A) = µ
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Step 2: For any objective randomization ρ ∈ ∆(Ω), if f ρA ≿A f for all f ∈ F ,

then there is some π ∈ CA such that π = ρA. To see this, suppose ρA ̸= π for all

π ∈ CA. Then since CA is closed and convex, by the separating hyperplane theorem

there is some a ∈ R|Ω| such that ∑ω∈A a(ω)ρ(ω) < minπ∈CA ∑ω∈A a(ω)π(ω).

By certainty independence we can without loss assume that a ∈ K|Ω|, hence there

exists f ∈ F so that u ◦ f = a, hence ∑ω∈A u( f (ω))ρ(ω) = u(∑ω∈A f (ω)ρ(ω)) <

minπ∈CA ∑ω∈A u( f (ω))π(ω) ⇔ f ρA ≺A f . Further, it is clear that if π ∈ CA, then

for any randomization such that ρA(ω) = π(ω) for all ω ∈ A, f ρA ≿A f for all

f ∈ F .

Step 3: For every A ∈ K≿∗ , there is some ϵA so that if π ∈ C and π(A) ≥ ϵA,

then BU(π, A) ∈ CA. Let ϵA = sup{π(A)|π ∈ C and BU(π, A) /∈ CA}. Since

A ∈ K≿∗ , it follows that

min
π∈C

π(A) < ϵA ≤ m̄A.

This does not rule out some π so that π(A) < ϵA and BU(π, A) ∈ C . However,

if this is the case then it must the that there is some π′ so that π(A) > ϵA and

BU(π′, A) = BU(π, A). To see this, suppose to the contrary. Then there is some

µ ∈ CA so that for every π ∈ C such that BU(π, A) = µ, and π(A) < ϵA. Then

consider two A-maximal objective randomizations ρ, ρ′ such that ρ(A) ≥ ρ′(A),

ρ′A = µ and for every f ∈ F , the following hold: f ρ ≿ f , f ρ′ ≿ f , f ρ′A ≿A f . By

hypothesis, if ρ′A = µ, ρ(A) < ϵA. Since m̄A > 0, ρ(A) ≥ ρ′(A) is equivalent to

ρ(A)
m̄A

≥ ρ′(A)
m̄A

. Thus the requirements of Axiom 3.4, with A = B, are satisfied and

f ρA ≿ f , for every f . Hence from step 2, there is some π ∈ CA and µ ∈ C such that

ρA = π = BU(µ, A) and ρ = µ. But then ϵA ≤ ρ′(A), a contradiction.

Step 4: We know that for each A ∈ K≿∗ there is an ϵA so that π(A) ≥ ϵA

implies BU(π, A) ∈ CA. Consider any two A, B ∈ K≿∗ . The we have both

min
π∈C

π(A) < ϵA ≤ m̄A
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and

min
π∈C

π(B) < ϵB ≤ m̄B.

Now, let ρ be A-maximal and ρ′ be B-maximal and f ρ′B ≿B f for every f . Then

by Axiom 3.4, if ρ(A) ≥ ρ′(B) m̄A
m̄B

, then there is some π ∈ C such that π = ρ and

BU(π, A) ∈ CA, hence

ϵA ≥ ρ′(B)
m̄A

m̄B

for all ρ′ whereby ρ′B = µ for some µ ∈ CB and ρ′ is B-maximal. Then this must

when ρ′(B) = ϵB, and hence
ϵA

m̄A
≥ ϵB

m̄B
.

Then symmetry implies ϵA
m̄A

= ϵB
m̄B

for all A, B ∈ K≿∗ , hence we may define

α :=
ϵA

m̄A
.

Step 5: Now, for any A ∈ Σ let

C α
A = {BU(π, A)|π ∈ C and π(A) ≥ αm̄A}.

The final step is to show that if A ∈ Σ\K≿∗ , then CA = C α
A. Since A ∈ Σ\K≿∗ ,

it follows that CA = BU(C , A), and clearly C α
A ⊂ BU(C , A). Suppose for contra-

diction that there is some µ ∈ BU(C , A) such that µ /∈ C α
A. Then let π ∈ C satisfy

BU(π, A) = µ. Next, let ρ be an A-maximal randomization so that ρA(ω) = µ(ω)

for all ω ∈ A. It then follows that ρ(A) < αm̄A. Next, consider any B ∈ K≿∗ . There

there is some B-maximal ρ̂ so that ρ̂(B) < αm̄B. Since C is closed and convex, we

can without loss take ρ̂ so that

|ρ̂(B)− m̄B| <
m̄A − ρ(A)

m̄A
m̄B.
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However after some algebra it follows that ρ̂(B)
m̄B

> ρ(A)
m̄A

. But, by assumption f ρ ≿ f

and f ρA ≿ f for every f ∈ F , and therefore by Axiom 3.4 we require f ρ̂B ≿ f for

every f , which implies that there is some µ̂ ∈ CB with ρ̂B(ω) = µ̂(ω) for ω ∈ B. But,

since ρ̂ is B-maximal and B ∈ K≿∗ , it follows that ρ̂(B) ≥ αm̄B. This contradicts our

assumption that there is some µ ∈ BU(C , A) such that µ /∈ C α
A. Hence CA = C α

A.

Thus we have shown that for every A ∈ Σ,

C α
A = {BU(π, A)|π ∈ C and π(A) ≥ αm̄A} = CA,

and the proof is complete.

C.2 Proof of Theorem 3.3

Proof. Since both agents satisfy the representation and ≿1=≿2, we can conclude

that (u1, C1) = (u2, C2) = (u, C ).

Step 1 (ii) ⇒ (i) : First, it is trivial that if α1 ≥ α2, then C α1
A ⊂ C α2

A for any A ∈

Σ. Then suppose f≿2∗
Ag. It follows that for every π ∈ C α2

A , ∑ω∈A u( f (ω))π(ω) ≥

∑ω∈A u( f (ω))π(ω). Since C α1
A ⊂ C α2

A , it follows that

∑
ω∈A

u( f (ω))π(ω) ≥ ∑
ω∈A

u( f (ω))π(ω)

for every π ∈ C α1
A , hence f≿1∗

Ag.

Step 2 (i) ⇒ (ii) : Since both agents violate ≿i∗
A - dynamic consistency at some

A, αi is unique. Let A be an event at which the both violate DC and suppose that

α1 < α2. Then by the above result C α2
A ⊂ C α1

A , and the relation is strict. Choose µ ∈

C α1
A \C α2

A . Then since C α2
A is closed and convex, we can use a separating hyperplane
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argument to show there is some f for which

min
π∈C

α1
A

∑
ω∈A

u( f (ω))π(ω) ≤ ∑
ω∈A

u( f (ω))µ(ω) < min
π∈C

α2
A

∑
ω∈A

u( f (ω))π(ω).

Then, since X is convex we can choose x ∈ F such that

min
π∈C

α1
A

∑
ω∈A

u( f (ω))π(ω) < u(x) < min
π∈C

α2
A

∑
ω∈A

u( f (ω))π(ω),

from which it follows that

f≿2∗x but f ▷◁1∗x,

hence ≿1∗
A is not more complete than ≿2∗

A. Therefore if α1 ≥ α2 it follows that ≿1∗
A

is more complete than ≿2∗
A.
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