
7

Chapter 2

Is it better to have PR = PS?

While great effort has been spent in the literature trying to match the training and test distributions,

a thorough analysis of the need for matching has not been carried out. In particular, the first fun-

damental question we asked in Chapter 1 has not been answered: is it better to have training and

test distributions matched, in terms of out-of-sample performance? As we will show shortly, the main

contribution in this chapter is to show that mismatched distributions can in fact outperform matched

distributions in the supervised learning setting, regardless of the specific target function. We first

published the results of this chapter in [36].

This statement is not very surprising if we are under the active learning paradigm. Under such

paradigm, training data is selected sequentially or in batches, making use of feedback obtained from

the target function. The goal is to select the least amount of training data that will lead to the

best performance. Therefore, the choice of such data may be tilted towards regions that best pin

down the target function further, irrespective of the test distribution. Some methods belonging to the

active learning paradigm exploit this idea by finding a ‘design’ distribution, from which the training

data should be sampled. The idea is that training the algorithm with data sampled from the design

distribution would result in better performance. Examples of these techniques are found in [70], [43],

[63], [66], [62], and [58], among others. Hence, it is clear that the active learning paradigm makes use

of unmatched distributions to improve performance.

In the supervised learning paradigm, however, the location of the training data is chosen without

any feedback from the target function. Therefore, it is more surprising in this case that a data

distribution that is mismatched to the test distribution would perform better. Recognizing that the

system may perform better under a scenario of mismatched distributions can influence the need for,

and the extent of, matching techniques, as well as the quantitative objective of matching algorithms.

In our analysis, we show that a mismatched distribution can be better than a matched distribution

in two different directions in the supervised learning paradigm:

8

• For a given training distribution PR, the best test distribution PS can be different from PR.

• For a given test distribution PS , the best training distribution PR can be different from PS .

The justifications for these two directions, as well as their implications, are quite different. In a

practical setting, the test distribution is usually fixed, so the second direction reflects the practical

learning problem about what to do with the training data if it is drawn from a different distribution

than that of the test environment. One of the ramifications of this direction is the new notion of a dual

distribution. This is a training distribution PR that is optimal to use when the test distribution is PS ,

regardless of the specific target function. A dual distribution serves as a new objective for matching

algorithms. Instead of matching the training distribution to the test distribution, it is matched to a

dual of the test distribution, for optimal performance.

We cover both classification and regression settings in the sections that follow. The classification

setting is analyzed through empirical results obtained via Monte Carlo simulations. We then present

both empirical and analytic results in the regression setting.

2.1 Empirical results in the classification setting

Consider the learning scenario where the data set R used for training by the learning algorithm is

drawn from probability distribution PR, while the data set S that the algorithm will be tested on is

drawn from distribution PS . We show here that the performance of the learning algorithm in terms

of the out-of-sample error can be better when PS 6= PR, averaging over target functions and data set

realizations. The empirical evidence, which is statistically significant, is based on an elaborate Monte

Carlo simulation that involves various target functions and probability distributions. The details of

that simulation follow, and the results are illustrated in Figures 2.1 and 2.3.

We consider the input space X = [−1, 1]. There is no loss of generality by limiting our domain as

in any practical situation, the data has a finite domain and can be rescaled to the desired interval. We

pick a one-dimensional space to have a better understanding in this simpler case, before generalizing

to multiple dimensions. We run the learning algorithm for different target functions and different

training and test distributions. We then average the out-of-sample error over a large number of data

sets generated by those distributions and over target functions. Finally we compare the results for

matched and mismatched distributions.

Distributions. We use 31 different probability distributions to generate R and S including a

uniform distribution U(−1, 1), ten truncated Gaussian distributions N ∗(0, σ2) where σ is increased

in steps of 0.3, ten truncated exponential distributions Exp∗(τ) where τ is increased also in steps of 0.3,

and ten truncated mixture of Gaussian distributions, such thatMG∗(σ) = 1
2

(
N ∗(−0.5, σ2) +N ∗(0.5, σ2)

)
,

9

with σ increased in steps of 0.25. By truncating the distributions we mean that we zero-out the proba-

bility distributions outside X and renormalize the densities accordingly. That is, if X has a truncated

Gaussian distribution such that X ∼ N ∗(0, σ2) and X̃ has a Gaussian distribution with X̃ ∼ N (0, σ2),

then

P (X ≤ x) =


0 x ≤ −1

1
ZP (X̃ ≤ x) −1 ≤ x ≤ 1

1 x ≥ 1

(2.1)

where Z = P (−1 ≤ X̃ ≤ 1). Similarly, this applies for the truncated Exponential and Mixture of

Gaussian distributions.

Data Sets. For each pair of probability distributions, we carry out the simulation generating 1,000

different target functions, running the learning algorithm, comparing the out-of-sample performance,

and then averaging over 100 different data set realizations. That is, each point in Figures 2.1 and 2.3

is an average over 100,000 runs with the same pair of distributions but with different combinations

of target functions and training and test sets. The sizes of the data sets are NR = 100 and 300, and

NS = 10, 000, where NR and NS are the number of points in the training and test sets R and S.

Target Functions. The target functions f : [−1, 1] → [−1, 1] were generated by taking the sign

of a polynomial in the desired interval. The polynomials were formed by choosing at random one to

five roots in the interval [-1,1]. This choice of target functions allows the decision boundaries to vary

both in number and location in each realization. Hence, the results presented do not depend on a

particular target function, so that the distributions cannot favor the regions around the boundaries,

as these are changing in each realization.

Learning model The learning algorithm minimized a squared loss function. For the hypothesis

set H we used linear functions of a non-linear transformation of the input space. The non-linear

transformation used powers of the input variable up to the number of roots of the polynomial that

describes the target function, plus a sinusoidal feature, which allows the model to learn a function

that is close to, but not identical to, the target. That is, for every h ∈ H

h(x; θ) = θTφM (x), (2.2)

with φM : X → RM , and θ ∈ RM , where

φM (x) = [1 x x2 · · · xM−2 sin(πx)]T . (2.3)

Out-of-sample error. The expected out-of-sample error Eout in this classification task is esti-

mated using the test set generated according to each of the PS with NS = 10, 000. The error at a

10

P
S

P
R

E
R,R’

[I[E
x,f

[Eout(x,R)] < E
x,f

[Eout(x,R’)]]] (25.8% cases where this is majority)

Uniform Gaussians Exponentials 2−MG

Uniform

Gaussians

Exp.

2−MG

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.1: Summary of Monte Carlo Simulation. Plot indicates, for each combination of probability
distributions ER∼PR,R′∼PS [I[Ex∼PS ,f [Eout(x,R, f)] < Ef,x∼PS [Eout(x,R

′, f)]]].

point x ∈ X depends not only on the point itself, but also on the training data set R used for learning

which in turn affects the learned hypothesis g ∈ H, and also depends on the target function f . We

compute Eout using the misclassification 0-1 loss, that is

Ex,R[Eout(x,R, f)] = Ex,R[I[f(x) 6= g(x)]], (2.4)

where I[a] denotes the indicator function of expression a, x ∼ PS , and R is generated according to

PR.

2.1.1 Fixing the training distribution

Figure 2.1 summarizes the result of the simulation to answer the question in the first direction: for a

given training distribution, is the best test distribution different? Each entry in the matrix corresponds

to a pair of distributions PR and PS . We fix PR, and evaluate the percentage of runs where using

PS 6= PR yields better out-of-sample performance than if PS = PR. That is, each entry corresponds

to

ER∼PR,R′∼PS [I[Ef,x∼PS [Eout(x,R, f)] < Ef,x∼PS [Eout(x,R
′, f)]]]. (2.5)

These results correspond to the case where NR = 100.

The matrix is organized placing families of distributions together, with increasing order of standard

deviation/time constant. The result that immediately stands out is that there is a significant number

11

of entries where more than 50% of the runs have better performance when mismatched distributions are

used, as indicated by the yellow, orange, and red regions, which constitute 25.8% of all combinations

of the probability distributions used.

A number of interesting patterns are worth noting in this plot. The first row, which corresponds

to PR = U(−1, 1), falls under the category of better performance for mismatched distributions for

almost any other PS used. There is also a block structure in the plot, which is no accident due to the

way the families of distributions are grouped. Among these blocks, the lower triangular part of the

blocks in the diagonal corresponds to cases where the distributions are mismatched but out-of-sample

performance is better. We also note that the blocks in the upper-right and lower-left corner show the

same pattern in the lower triangular part of the blocks.

Perhaps it is already clear to the reader why this direction of our result is not particularly surpris-

ing, and in fact it is not all that significant in practice either. In the setup depicted in this part of the

simulation, if we are able to choose a test distribution, then we might as well choose a distribution

that concentrates on the region that the system learned best. Such regions are likely to correspond

to areas where large concentrations of training data are available. This can be expressed in terms

of lower-entropy test distributions, which are over-concentrated around the areas of higher density of

training points. Such concentration results in a better average out-of-sample performance than that

of PS = PR.

Figure 2.2 illustrates the entropy of different distributions. We plot H(XR) versus H(XS), where

H(·) is the entropy of the discretized probability distributions and XR ∼ PS and XS ∼ PS , marking

the cases where using PS 6= PR resulted in better out-of-sample performance of the algorithm. As it

is clear from the plot, these cases occur when H(XS) < H(XR).

A simple way to think of the problem is to see that if we could freely choose a test distribution,

and our learning algorithm outputs θ∗ as the learned parameters that minimizes some loss function

l(x, y, θ) on a training data set R = {(xi, yi)}, then to minimize the out-of-sample error we would

choose PS(x) = δ(x−x?), where δ is the delta-dirac function and x? = arg min
R

(l(x, y, θ∗))), the point

in the input space where the minimum out-of-sample error occurs.

Similar results as those shown in Figure 2.1 are found when NR = 300.

2.1.2 Fixing the test distribution

Figure 2.3 shows the result of the simulation in the other direction. Each entry in the matrix again

corresponds to a pair of distributions PR and PS . However, this time we fix PS and evaluate the

percentage of runs where using PR 6= PS yields better out-of-sample performance than if PR = PS .

More precisely, once again each entry computes the quantity in Equation 2.5.

12

2 2.5 3 3.5
2

2.5

3

3.5

H(X
R

) vs H(X
S
)

H(X
S
), X

S
∼ P

S

H
(X

R
),

 X
R

 ∼
 P

R

P
R
 = P

S
 better

P
R
 ≠ P

S
 better

Figure 2.2: H(XR) vs H(XS): Characterization of why out-of-sample performance is better if there
is a mismatch in distributions when PR is fixed, using entropy.

This is the case that occurs in practice, where the distribution the system will be tested on is

fixed by the problem statement. However, the training set might have been generated with a different

distribution, and we would like to determine if training with a data set coming from PS would have

resulted in better out-of-sample performance. If the answer is yes, then one can consider the matching

algorithms that we mentioned to transform the training set into what would have been generated using

the alternate distribution.

The simulation result is quite surprising, as once again there is a significant number of entries where

more than 50% of the runs have better performance when mismatched distributions are used. For 14%

of the entries, a mismatch between PR and PS results in lower out-of-sample error, as indicated by

the light green, yellow, orange, and red entries in the matrix.

In this case, although the block structure is still present, there is no longer a clear pattern relating

the entropies of the training and test distributions that allows explaining the result easily as in the

previous simulation. Notice that there are cases where the mismatch is better if we choose PR of both

lower and higher entropy than the given PS . This is clear in the plot since the indicated regions in

the block structure are no longer lower-triangular but occupy both sides of the diagonal. We look at

this result further in the following section, when we analyze the other learning setting: regression.

13

P
S

P
R

E
R,R’

[I[E
x,f

[Eout(x,R)] < E
x,f

[Eout(x,R’)]]] (14.0% cases where this is majority)

Uniform Gaussians Exponentials 2−MG

Uniform

Gaussians

Exp.

2−MG

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.3: Summary of Monte Carlo Simulation. Plot indicates, for each combination of probability
distributions, ER∼PR,R′∼PS [I[Ef,x∼PS [Eout(x,R, f)] < Ef,x∼PS [Eout(x,R

′, f)]]].

2.2 Empirical and analytic results in the regression setting

We have shown empirical evidence that a mismatch in distributions can lead to better out-of-sample

performance in the classification setting, and now we focus on the regression setting to cover the other

major class of learning problems. In this section, we use the expressions for the expected out-of-sample

error as a function of x, a general test point in the input space X , and R, the training set, averaging

over target functions and noise realizations. These expressions are derived in detail in Appendix A, for

the case where we use a squared loss function and a linear model with non-linear transformations for

the hypothesis set. This correspond to the choice of linear model and loss function of the simulations

shown in the previous section.

The difference now is that although we choose again X = [−1, 1], in the regression setting Y = R.

To analyze the most general regression case, we also introduce both “stochastic” and “deterministic”

noise [2]. We take yi = f(xi)+εi, where εi represents the stochastic noise, and where f is more complex

than the elements of H, so f /∈ H, hence the deterministic noise. We make the usual assumption about

the stochastic noise, which is that it has zero mean and is iid. That is, E[ε] = 0, and E[εεT] = σ2
NI,

where I is the identity matrix and σN is the standard deviation of the noise. We also make the

assumption that the coefficients of the target function that are not included in the model, θC , have

covariance matrix E[θCθ
T
C] = σ2

CI.

14

As introduced in Appendix A, for simplicity we let

z = φ(x). (2.6)

We reorganize the features in z and elements of θ as

zT = [zTM zTC], θT = [θTM θTC] (2.7)

so that the first M features of z correspond to the features in the linear transformation that H can

express. The matrix Z is the “transformed data matrix”, with

Z = [ZM ZC]T . (2.8)

These matrices are precisely defined in Appendix A.

Taking the expected value with respect to the noise, the out-of-sample error at a point x ∈ X is

given by

Ef,ε[Eout(x,R, f, ε)] = σ2
C‖zTC − zTMZ

†
MZC‖

2 + σ2
Nz

T
M (ZTMZM)−1zM + σ2

N (2.9)

Notice that the above expression is independent of θ (i.e., the target function), as well as of the

noise. The only remaining randomness in the expression comes from generating R, and from z, the

point chosen to test the error, making the analysis very general.

Now, we are interested in minimizing the expected out-of-sample error. Let R denote a training

data set generated according to PR, while R′ a data set generated according to PS . Can we find

PR 6= PS such that

ER,x,θC ,ε[Eout(x,R, f, ε)] < ER′,x,θC [Eout(x,R
′, f, ε)]? (2.10)

The simulation shown in Section 2.1.2, although in a classification setting, suggests that this is the

case. We run the same Monte Carlo simulation in this regression setting. The advantage is that the

closed-form expression in Equation 2.9 already averages over target functions and noise, allowing us to

run in a shorter time more combinations of PR and PS . This expression only requires running Monte

Carlo simulations for the matrix Z and hence the two terms involving it, Z†MZC an (ZTMZM)−1. The

expectation over x ∼ PS can be done using numerical integration, which is faster than the Monte Carlo

simulation in this one-dimensional setting. In this case, we consider the same families of distributions,

but we vary the standard deviation of the distribution in smaller steps to obtain a finer grid.

Figure 2.4 indicates that the question posed in Equation 2.10 has an affirmative answer in 21% of

the PR 6= PS combinations that we considered. This particular simulation used the Fourier harmonics

15

P
S

P
R

E
R,R’

[I[E
x,θ

c
,ε
[Eout(x,R)] < E

x,θ
c
,ε
[Eout(x,R’)], for σ

N
 = σ

C
 = 0.2, M = 11, C = 21

Uniform Gaussians Exponentials 2−MG

Uniform

Gaussians

Exp.

2−MG

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.4: Monte Carlo simulation for ER∼PR,R′∼PS [I[(Ex,θC ,ε[Eout(x,R, θ, ε)] < Ex,θC ,ε[Eout(x,R
′, θ, ε)]]],

M = 11, C = 21, N = 500, and σN = σC = 0.2.

for the non-linear transformation up to order 5, so that M = 11. That is,

φM (x) = [1 cos(πx) sin(πx) · · · cos(5πx) sin(5πx)]T . (2.11)

On the other hand, the target functions were generated using harmonics up to order 10, so that

C = 21, with random Fourier coefficients. Both σC = σN = 0.2, and N = 500. Each entry in the

matrix computes

ER∼PR,R′∼PS [I[(Ex,θ,ε[Eout(x,R, θ, ε)] < Ex,θ,ε[Eout(x,R
′, θ, ε)]]] , (2.12)

which is the same quantity as that of Equation 2.5, except that now f is determined by θ.

Notice that, as shown in Figure 2.3, the cases where mismatched distributions outperform matched

ones cannot be explained using an entropy argument, as was the case in Section 2.1.1. Notice also that

there are now combinations for PR and PS where almost 100% of the simulations returned lower out-

of-sample error for mismatched distributions. In particular, this happened when PS was a truncated

Gaussian with small standard deviation (σ = 0.2), and when PS was a mixture of two Gaussians

with σ = 0.2. In addition, we note the similarity between this simulation and the one shown for the

classification setting in Figure 2.3.

We varied the size of N in order to see the effect of the sample size. We see very little variation

in the results. Holding the other parameters constant, we obtain a very similar result. For N = 1000

and for N = 3000, we obtain an affirmative answer to the question posed in Equation 2.10 in 21% and

20% of the cases where PR 6= PS respectively, so the result does not change from what we obtained in

16

the N = 500 case. For N = 100, the percentage is even higher, at 30%. Hence, there is clear evidence

that although the number of combinations of distributions for which a mismatch between training

and test distributions is larger for smaller N , the result still holds as N grows. Notice that in the

simulations, the target function has 21 parameters. Hence, roughly for N = 100 there are effectively 5

samples per parameter, while for N = 3000 there are 150 samples per parameter. This covers a wide

range, from small to large sample sizes, given the complexity of the target function.

Going back to the derived expressions, a closed-form solution for the expected out-of-sample error

is given by

E[Eout(x,R, θ, ε)] = ER
∫ ∞
−∞

σ2
C‖zTC − zTMZ

†
MZC‖

2PS(x)dx+

∫ ∞
−∞

σ2
Nz

T
M (ZTMZM)−1zMPS(x)dx+σ2

N .

(2.13)

It cannot be further reduced analytically due to the inverse matrix terms. Yet, if we assume C = M

so that only stochastic noise is present, the expression reduces to

Eε,R,x,θ[Eout(x,R, θ, ε)] = σ2
N + ER

∫ ∞
−∞

σ2
Nz

T (ZTZ)−1zPS(x)dx

≥ σ2
N

(
1 +

∫ ∞
−∞

zT (ER[ZTZ])−1zPS(x)dx

)
, (2.14)

where we use the result in [37] for the expected value of the inverse of a matrix. With this expression,

we can find a specific example of a mismatched training distribution that leads to better out-of-

sample results. Again, without loss of generality, we pick the linear transformation consisting of

Fourier harmonics, namely

z = [1 cos(πx) sin(πx) · · · cos(mπx) sin(mπx)]T (2.15)

as this allows a vast representation of target functions. Here, M = 2m + 1. A few examples of the

variety of the target functions that can be achieved with this model are shown in Figure 2.5.

If PR is a Uniform distribution over X , or a Gaussian distribution truncated to this interval, then

ER[ZTZ] = ER
N∑
i=1

ziz
T
i

= Ndiag(1, 0.5, 0.5, . . . , 0.5) (2.16)

The above result is trivial for the uniform distribution case, and can be easily evaluated with numerical

17

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

f(
x)

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x

f(
x)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

x

f(
x)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

x

f(
x)

Figure 2.5: Sample realizations of targets generated with a truncated Fourier Series of 10 harmonics.

integration for the truncated Gaussians. This implies that

Eε,R,x,θ[Eout(x,R, θ, ε)] ≥ σ2
N

(
1 + Ex

[
2m+ 1

N

])
= σ2

N

(
1 +

M

N

)
(2.17)

Now instead, pick R to be distributed according to Uniform[−a, a]. In this case,

ER[ZTZ]ij =



sinc(ja) if i = 1, j is even

sinc(ia) if j = 1, i is even

1/2
(
1 + (−1)i sinc(ia)

)
if i = j 6= 1

1/2 (sinc((i+ j)a) + if i 6= j, and

sinc((i− j)a) i and j odd

1/2(sinc ((i+ j)a) − if i 6= j, and

sinc((i− j)a) i and j even

0 else

(2.18)

Figure 2.6 shows the closed-form bound for various choices of a and M = 10, choosing PS to be

a truncated Gaussian with σ = 0.4. The dotted line shows the bound for the case PR = PS . As it

is clear from the plot, there are various choices for a so that equation 2.10 is satisfied in terms of the

bound.

Since this is only a lower bound on the error, we verify that the minimum suggested by the

bound does correspond to a superior mismatched distribution. We Monte-Carlo the value for both

18

0.9 0.95 1 1.05 1.1 1.15
0.04

0.045

0.05

0.055

a, where P
R

 = Uniform[−a,a]

Lo
w

er
 B

ou
nd

 fo
r

E
D

,x
,ε[E

out
]/σ

n2

P
R
=U[−a,a],P

S
 = N*(0, 0.42)

P
R
=P

S
=N*(0, 0.42)

Figure 2.6: Bound for ER,x,ε[Eout(x,R)]− σ2
N when R is generated with PR = PS = N ∗(0, 0.42) and

for PR 6= PS with PR = Uniform[−a, a].

cases considered: we choose PS = N ∗(0, 0.42) and generate R′ according to PS , while R is generated

according to U [−0.97, 0.97]. Notice that we use a = 0.97 as this choice results in the lowest error

bound from Figure 2.6. Using m = 10, N = 500 and averaging over 108 realizations of R and R′ we

obtain

ER,x,θ,ε[Eout(x,R, θ, ε)] = 1.0429σ2
N < ER′,x,θ,ε[Eout(x,R

′, θ, ε)] = 1.0440σ2
N (2.19)

Hence, we have a concrete example of a distribution PR that is different from PS (Figure 2.7) that

leads to better out-of-sample performance, averaging over noise realizations and target functions. The

existence of such distributions leads to the concept of a dual distribution which we examine in the

next chapter.

19

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

x

D
en

si
ty

P
S

P
R

Figure 2.7: Pair of distributions PR 6= PS such that expected out-of-sample error is lower when R
is generated according to PR rather than according to PS for a regression problem in the domain
X = [−1, 1].

