
1

Part I

Optimal Data Distributions in

Machine Learning



2

Chapter 1

Introduction

A basic assumption in learning theory is that the training and test sets are drawn from the same

probability distribution. However, in many practical situations, this assumption about the training

and test distributions does not hold. To illustrate this, take, for example, a recommender system.

In this case, the system is trained with data gathered over a long period of time during which users

rate certain items. Nevertheless, the system will be used and tested not only on old items that the

user has not rated yet, but also on new items and new users. Due to changes in opinions, moods,

trends, etc., with time, there is no guarantee that the distribution of the test data will be the same

as that of the training data. Rather, a realistic assumption is to model this situation as one in which

training and test distributions may differ. Other examples where this is the case have been reported

in natural language processing [40] and speech recognition [15]. These systems are commonly trained

by gathering speech samples from only a few individuals due to resource constraints. However, the

system is tested later on the general population and hence training and test distributions are likely

to differ. In this case it is not the effect of time that makes the two distributions differ, but rather

the effect of having a biased sample. Other examples of differing distributions are commonly found in

applications that involve experimental set-ups. Some of these set-ups can involve conditions such as

lighting, temperature, etc., which vary from experiment to experiment, making the training and test

distributions differ, as in [6].

The problem described above is referred to as dataset shift, and sometimes subdivided into co-

variate shift and sample selection bias, as described in [54]. Covariate shift occurs when the training

distribution PR of the input variable x is different from the test distribution PS of the same variable

x. Sample selection bias occurs when the sample used for training, is not representative of the overall

distribution, due to some bias (intended or unintended) in the sampling process. This can be modeled

as having PR(x) 6= PS(x), but it also can be modeled with an additional random variable s called

the sample selection variable. The selection variable indicates if a sample is included or not in the



3

training or test sets. In this case, if the overall distribution from which data is sampled is P , then

PR(x) = P (x|s = 1).

There are various methods that have been devised to correct for this problem, and is part of the

ongoing work on domain adaptation and transfer learning. Although adjustments to the theory be-

come necessary, and numerous methods that will be described shortly have been devised to correct the

problem of mismatched training and test distributions, the fact that the theory requires a matched

distribution assumption to go through does not necessarily mean that matched distributions will lead

to better performance; just that they lead to theoretically more predictable performance. However,

the question of whether they do lead to better performance has not been addressed in the case of su-

pervised learning, perhaps because of an intuitive expectation that the answer would be yes. Hence, in

this part of the thesis the work is aimed to answer three fundamental questions in this learning scenario:

1. Is it better, in terms of out-of-sample performance, to have the training distribution PR equal

to the test distribution PS?

2. If so, is it advantageous to apply weights to the training points to achieve this?

3. What is the algorithmic way to achieve it?

Answering these three questions led to the results reported in this part of the thesis.

1.1 Overview

The seemingly obvious answer to the first question is much more interesting than expected and is the

topic of Chapter 2. In that chapter, we first show the simulation setup that led us to conceive the

idea that using mismatched training and test distributions could lead to better performance in the

supervised learning setting. We present both empirical and analytic results of this evidence.

We then introduce in Chapter 3 the formal notion of the dual distribution, which is the optimal

training distribution to draw samples from, for the learning algorithm. We then formulate the opti-

mization problem that allows us to find this dual distribution, and describe how to solve for it in the

general case. We also analyze various properties and parameters that affect the dual distribution.

Chapter 4 describes the various effects that come into play when weights are used to change the

original training distribution. On the one hand, training with data sampled from the dual distribution

will improve performance, and so using weights that make the training distribution look like the dual

distribution should be advantageous. On the other hand, weighting samples rather than sampling

from the desired distribution are not equivalent. The former can have a negative effect, in terms of



4

an increase in the variance of our error estimates, which can also be viewed as an effective sample

size reduction. Each learning scenario yields a different bottom line performance after adding up

these effects, so that it is sometimes beneficial to use weights while other times it is not. Hence, we

introduce an algorithm that determines when weighting is beneficial in a given practical scenario.

Chapter 5 introduces a class of algorithms that can be used to match the training distribution to

any desired distribution, for example, the dual distribution. The algorithms we introduce have the

advantage of selecting only the desired coordinates along which matching is desired. They are also

efficient so they can be used in very large datasets. The efficiency issue was a constraint that we took

into account since we conceived the method initially for recommender systems, which have very large

datasets composed of ratings for thousands or millions of items, by thousands or millions of users.

1.2 Literature overview

As discussed, the problem of dataset shift has led to a substantial amount of work aimed at correcting

the problem. All of the work assumes that the answer to the first question we pose is affirmative, and

hence try to make PR = PS . The numerous methods can be roughly divided into four types [48].

The first type is referred to as instance weighting for covariate shift, in which weights are given

to points in the training set, such that the two distributions become effectively matched. Some of

these methods include discriminative approaches as in [13, 14]. To do this, these methods train a

classifier that can distinguish between samples coming from the training distribution and samples

coming from the test distributions. Other methods make assumptions regarding the source of the

bias and explicitly model a selection bias variable [71]. Others try to match the two distributions in

some Reproducing Kernel Hilbert Space as Kernel Mean Matching [38], while others use parametric

models for the ratio of test to train densities, using the Kullback-Liebler divergence as in KLIEP

(Kullback-Liebler importance estimation procedure) [67], or least squares deviation as in LSIF (least

squares importance fitting) [42], among others. Additional approaches are given in [57, 27, 55, 64].

A detailed description of these methods is given in Chapter 5. All these methods rely on finding

weights, which is not trivial as the actual distributions are not known. Furthermore, the addition of

weights reduces the effective sample size of the training set, hurting the out-of-sample performance

[61]. Another issue that comes up regards cross-validation, as it becomes necessary to match the

distribution of the validation set to the test set. As some of the methods find weights that are only

meaningful with respect to the rest of the sample, aggregating weights for different sets in K-fold type

validation methods is no longer trivial. This issue is addressed in methods like importance weighting

cross-validation [67]. On the theoretical side, learning bounds for the instance weighting setting are

shown in [25, 72]. Further theoretical results in a more general setting of learning from different



5

domains are given in [10].

The second type of methods use self-labeling or co-training techniques so that samples from the test

set, which are unlabeled, are introduced in the training set in order to match the distributions, and are

labeled using the labeled data. A final model is then re-estimated with these new points. Some of these

methods are described in [18, 46, 32]. A third approach is to change the feature representation, so that

features are selected, discarded, or transformed in an effort to make training and test distributions

similar. This idea is explored in various methods, including [16, 15, 11, 52], among many others.

Finally, cluster based methods rely on the assumption that the decision boundaries have low density

probabilities [34], and hence try to label new data in regions that are under-represented in the training

set through clustering, as proposed in [17, 51]. For a more detailed review on these and other methods,

refer to [48] and [64].

1.3 The learning setup

Before we answer the questions presented, we introduce the notation that will be used throughout the

thesis and that describes the learning problem. Let R = {xi, yi}Ni=1 be the training set, with xi ∈ X ,

and yi ∈ Y. X is known as the input space, and Y as the output space. We assume xi are iid ∼ PR,

where PR is the training distribution. The objective of the learning algorithm is to find a hypothesis

h ∈ H that is closest to the target function f , where f : X → Y. H is known as the hypothesis set,

where each h ∈ H is h : X → Y. The notion of closeness to the target function is determined by a

chosen loss function ` : Y ×Y → R. The returned hypothesis by the learning algorithm is denoted by

g. Finally, it is conventional to model the noisy data using a stochastic noise process ε, where εi is

the corresponding realization for xi, so that yi = f(xi) + εi. In this framework, learning consists of

solving the following optimization problem:

g = arg min
h

1

N

N∑
i=1

`(h(xi), yi). (1.1)

In parametric learning, as the name suggests, the hypothesis set H is parametrized by θ ∈ ZM , where

ZM is the M -dimensional space where the parameters live. That is H = {h(·; θ)|θ ∈ ZM}. The

learning algorithm outputs an optimal parameter θ? ∈ ZM given by

θ? = arg min
θ

1

N

N∑
i=1

`(h(xi; θ), yi), (1.2)

and

g(x) = h(x; θ?). (1.3)



6

Now, let x ∼ PS where PS denotes the test distribution. In the usual learning setting PR = PS , but

here, we consider precisely the scenario where PR 6= PS . Finally, for a point x ∼ PS , the out-of-sample

error Eout is given by

Eout(x,R, f, ε) = `(g(x), y). (1.4)

The out-of-ample error Eout at x, depends not only on the point itself, but also on the dataset R,

which in turn determines which g ∈ H is returned. Finally, the target function f and the noise process

ε also affect this error (y depends on f and ε). The overall out-of-sample error is the expected value

of the pointwise error,

Eout = Ex[Eout(x,R, f, ε)]. (1.5)

Here Ex[·] denotes the expected value of the expression with respect to variable x.


