
Biological activity of Pyrrole-

Imidazole polyamides in vivo. 

 

 

Thesis by 

Jerzy O. Szablowski 

 

In Partial Fulfillment of the Requirements for the 

degree of 

Doctor of Philosophy 

 

 

 

 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

2015 

(Defended May 1st, 2015)



 ii
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2015 

Jerzy O. Szablowski 

All Rights Reserved



 iii
ACKNOWLEDGEMENTS 

I would like to thank my advisor, Peter Dervan, for the enthusiasm and support of the 

research projects during my time in his lab. Peter challenged me to stay focused on my 

projects while thinking broadly about the impact of my work on science and medicine. I 

am also particularly grateful for his guidance in learning how to communicate ideas, 

present my work, and seek advice when needed. Lastly, I am very grateful for the freedom 

I was given to pursue research projects, which was challenging, but also essential aspect of 

my training that I deeply appreciate. 

I would also like to thank my committee chair, Frances Arnold, for advice and support, 

both during my graduate studies and when I had an invaluable opportunity to work in her 

laboratory during my undergraduate studies. The summer of 2007 was one of the highlights 

of my undergraduate studies and the problem solving skills I learned are still extremely 

useful, many years afterwards. 

I am also thankful to Rob Phillips and Steve Mayo for serving on my thesis committee 

and for their advice during my first year of graduate school. 

I am grateful to postdocs in our lab, Jevgenij Raskatov and Nick Nichols, with whom I 

worked on several projects. Jevgenij has given me a brilliant advice on science, but also 

taught me a lot about communication with other scientists. Nick has been an invaluable 

help during my studies and his efficiency, focus, and critical thinking have all been very 

helpful in my own development as a scientist. Work in this thesis would not have been 

possible without their help. I would also like to thank the staff of Caltech OLAR, and in 

particular Karen Lencioni and Gwen Williams, for their advice and help in our in vivo 

experiments. 



 iv
I have had a privilege to interact with many great students, postdocs, Dervan group 

alums, and collaborators. I would like to extend my gratitude for intellectually stimulating 

discussions and advice from Thomas Martinez, Jim Puckett, Amanda Hargrove, Alissa 

Hare, JenJoo Kang, Tim Welch, Fei Yang, John Phillips, Amanda Silberstein, Dave 

Montgomery, Ben Li, Alexis Kurmis, Jamie Wang, Sam Weisbrod, Jordan Meier, Patrick 

Frost, and Bogdan Olenyuk.  

Many other scientists have been an inspiration before my graduate studies and I am very 

grateful for their help. During my high school studies in Poland, I was lucky to take part in 

an internship in Zylicz lab at IIMCB, with then a doctoral student Dawid Walerych, who 

helped me with my first foray into science. During my undergraduate studies, I have 

received more support from professors Alan Jasanoff and Bob Langer than I could have 

possibly hoped for. I am particularly grateful for working with and learning from their 

graduate student Mikhail Shapiro. Sharing enthusiasm for science, working long hours, 

and engaging in creative discussions with him were the highlights of my time at MIT. I am 

also grateful for work done with Ed Boyden in Synthetic Neurobiology group, which was 

my first attempt at performing an independent project, which was as rewarding as it was 

challenging. Many of my fellow students and postdocs at MIT were an inspiration, 

including Brian Chow, Gil Westmeyer, Saad Zaheer, and my then neighbours in my 

dormitory. 

Lastly, I am sincerely grateful for the support of my family – my parents, siblings and 

my wife Ji. The journey that lead to this Ph.D. has been a long one and they have been on 

it with me for longer than anyone else. My parents have supported me in what must have 

looked impossible to any reasonable adult – attending a top research university in the US 



 v
after a Polish high school. I deeply appreciate that they allowed me to dream big despite 

the low odds of success. I have been lucky to meet Ji years ago. Throughout my Ph.D. 

studies her love and support were the reasons to come home every day, while her 

knowledge of medicine and advice helped me to stay focused on real-world implications 

of my work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi
 



 vii
ABSTRACT 

This thesis focuses on biological activity of pyrrole-imidazole polyamides in vivo. The 

work presented includes experiments underlining sequence selectivity of these compounds 

in living cells and potential methods to improve it. A large fraction of this thesis is devoted 

to activity of Py-Im in murine models of cancer. We investigated the pharmacokinetics and 

biodistribution of two compounds – targeted to 5’-WGGWCW-3’ and 5’-WTWCGW-3’ 

sequences – and characterized their activity by measuring their effects on tumor growth, 

gene expression in vivo and in tissue culture, and their effects on physiology of tumors. 

The initial theoretical studies suggested that a large fraction of genomic sites are bound by 

Py-Im polyamides non-specifically and experimental data shows that the programmed 

binding sequence is not a sole determinant of the patterns of gene regulation. Despite the 

likely presence of non-specific effects of Py-Im polyamides in living cells, in vivo 

administration of Py-Im polyamides resulted in tolerable host toxicity and anti-tumor 

activity. Py-Im polyamide targeted to Estrogen Receptor Response Element showed 

downregulation of ER-driven gene expression in tumor cells, while the compound targeted 

to hypoxia response element reduced vascularization of tumors and their growth rate, 

induced apoptosis of cells in hypoxic areas and reduced expression of proangiogenic and 

prometastatic factors. Further studies, showed that polyamides distributed to many of the 

tested tissues and their FITC-conjugates showed nuclear uptake. The gene expression 

effects were also present in murine tissues, such as liver and kidneys, indicating a potential 

for use for Py-Im polyamides in non-cancerous diseases. 
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