
 

Copyright (2013) by the American Physical Society26  

107 
C h a p t e r  8  

STRONGLY NONLINEAR DYNAMIC REGIME: FREQUENCY BANDS OF STRONGLY 

NONLINEAR HOMOGENOUS GRANULAR SYSTSMS  

Recent numerical studies on highly nonlinear, one-dimensional granular crystals composed of 

an infinite number of identical spherical beads in Hertzian contact showed the presence of 

frequency bands [Jayaprakash, et al., Nonlinear Dynamics, 63: 359-385 (2011)]. These bands, 

denoted here as propagation and attenuation bands (PBs and ABs), are typically present in 

linear or weakly nonlinear periodic media; however their counterparts are not intuitive in 

essentially nonlinear periodic media where there is a complete lack of classical linear acoustics, 

i.e., in ‘sonic vacua’. Here, we study the effects of PBs and ABs on the forced dynamics of 

ordered, uncompressed granular systems. Through numerical and experimental techniques, we 

find that the dynamics of these systems depend critically on the frequency and amplitude of 

the applied harmonic excitation. For fixed forcing amplitude, at lower frequencies, the 

oscillations are large in amplitude and governed by strongly nonlinear and non-smooth 

dynamics, indicating PB behavior. At higher frequencies the dynamics is weakly nonlinear and 

smooth, in the form of compressed low amplitude oscillations, indicating AB behavior. At the 

boundary between the PB and the AB large-amplitude oscillations due to resonance occur, 

giving rise to collisions between beads and chaotic dynamics; this renders the forced dynamics 

sensitive to initial and forcing conditions, and hence unpredictable. Finally, we study 

asymptotically the near field standing wave dynamics occurring for high frequencies, well 

inside the AB. 

8.1 Introduction 
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This work numerically and experimentally examines the response of an uncompressed, 

harmonically driven two-bead system, similar to the one discussed in the theoretical model 

proposed by Jayaprakash et al.132. In contrast to the case of statically precompressed granular 

crystals, uncompressed granular crystals exhibit strongly nonlinear dynamic behavior. Their 

response is not linearizable and there is complete absence of classical linear acoustic response. 

Nesterenko characterized this essentially nonlinear medium as ‘sonic vacuum’35, since the 

linearized speed of sound (as defined in classical linear acoustics) is zero. Despite the fact that 

frequency bands are phenomena inherent to linear periodic systems, Jayaprakash et al.132 

demonstrated the existence of similar propagation and attenuation bands in essentially 

nonlinear uncompressed granular crystals. They predicted that a one-dimensional granular 

crystal of infinite extent exhibits either propagation or attenuation behavior dependent on both 

frequency (as is the case in coupled linear periodic oscillators) and amplitude (due to the 

nonlinearity of the system).  

The propagation band (PB) of the system is realized at lower frequencies. It is characterized by 

strongly nonlinear and non-smooth dynamics, a result of bead separations and collisions. This 

gives rise to a time-periodic train of travelling pulses, similar to solitary waves analytically 

predicted and experimentally demonstrated by Nesterenko35. At higher frequencies, the 

attenuation band (AB) is characterized by a region where spatially periodic solutions cannot 

exist. In this regime, the system exhibits low-amplitude localized oscillations bounded by 

decaying spatial envelopes, similar to evanescent waves predicted in band gaps of linear media. 

In this high frequency regime the chain is dynamically compressed and weakly nonlinear 

dynamics govern the dynamical response. Jayaprakash et al.132 predicted that these PB and AB 
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exist as well in forced granular media of arbitrary length. We set out to demonstrate this 

behavior in a harmonically forced system of 2 beads. 

8.2 Experimental results 

We test the experimental setup shown in Fig. 3.2. We excite the first bead harmonically with 

amplitudes of approximately 0.4 μm (reproduced in the numerical simulations). Small 

deviations (±0.05 μm) from this excitation value occur due to inherent nonlinear behavior of 

the actuator. We measure the force exerted on the dynamic sensor and show the existence of a 

high-amplitude strongly nonlinear state at low frequencies (the PB), and a low-amplitude 

weakly nonlinear state at high frequencies (the AB). 

 

Figure 8.1: Experimental time series of the force at the dynamic sensor at (a) f = 10 
Hz and A = 3.951x10-7 m and (b) f = 500 Hz and A = 3.775x10-7 m. 

In Fig. 8.1a and 8.1b, we show the experimental time series of the force measured at the sensor 

at driving frequencies of 10 Hz and 500 Hz, respectively. These are qualitatively similar to the 

simulations at the same frequencies. We note a series of transmitted compressive force pulses, 

similar to the dynamics observed in simulation. At 10 Hz the width of this pulse is 

approximately half the period of the drive, however at 500 Hz this pulse width decreases 

below half the drive period. This is in agreement with the numerical results predicting 
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decreasing pulse width for higher frequencies. The maximum transmitted force is higher at 

500 Hz, also in qualitative agreement with the numerical simulations. However, in the 

numerical simulations we observed resonance phenomena where the maximum force recorded 

was much higher at 1000 Hz. The experimental observation of resonances is not included in 

this manuscript due to difficulty in experimental repeatability.  

A number of experimental uncertainties, such as misalignment, surface roughness, and bead 

rotations, become important and difficult to avoid as the displacement amplitudes increases at 

resonance. In addition, we performed an extensive series of numerical simulations of 

harmonically forced ordered granular systems close to the boundary between their PB and AB 

where nonlinear resonances are excited and the granular media execute large-amplitude 

oscillations. In these regions, there occur strong collisions between beads, which are well 

known to give rise to chaotic dynamic134. Due to the existence of such chaotic (non-smooth) 

motions the forced dynamics of the forced granular systems exhibit sensitive dependence to 

initial and forcing conditions and become, in essence, unpredictable. This was verified in the 

experiments where in the resonance region (i.e., for frequencies close to the boundary between 

the PB and the AB) different experimental runs that were performed under identical forcing 

and initial conditions yielded completely different results. Hence, it appears that close to the 

boundary between the PB and AB the inherent chaotic dynamics of the harmonically forced 

system prevent the accurate measurement of the dynamic response and the resulting chaotic 

dynamics becomes unpredictable. We therefore omit these experimental results from further 

discussion herein until current research by the authors provides a better understanding and 

characterization of the dynamics in this regime.  
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Figure 8.2: Experimental time series of the force at the dynamic sensor at (a) f = 
3000 Hz and A = 3.408x10-7 m and (b) f = 5000 Hz and A = 3. 75x10-7 m.  

By increasing the frequency of the excitation the dynamics become again regular and fully 

predictable (and reproducible). Indeed, a weakly nonlinear regime is found at higher 

frequencies (3000 Hz – Fig. 8.2a and 5000 Hz – Fig. 8.2b), with the nonzero mean force 

indicating a state of sustained compression. The small-amplitude oscillations of the measured 

force about this mean value indicates weakly nonlinear interactions in the dynamics. Moreover, 

increasing the frequency decreases the transmitted force amplitude for these oscillations. A 

comparison of the Fourier spectrum, calculated using a discrete Fast Fourier Transform, of the 

dynamics in the PB (Fig. 8.3a) with those in the AB (Fig. 8.3b) underlines that fewer 

harmonics are excited in the weakly nonlinear phase, as is in agreement with the simulations. It 

should be noted that, although the experimental results do not match the numerical results 

quantitatively, we have good qualitative agreement between the two responses. The mismatch 

can be attributed to the dry friction, material damping, and other uncertainties present in the 

experimental setup.  
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Figure 8.3: Experimental Power Spectral Densities of the force time series of (a) Fig. 
8.1b: f = 500 Hz, and (b) Fig. 8.2a: f = 3000 Hz. 

It should be emphasized that the reported experimental results are only for a system of two 

interacting beads. These experimental results show qualitative agreement with the numerical 

results for two beads. We believe this validates the modeling and suggests that the numerical 

results for longer chains hold true. At small initial compressions the experiment demonstrates 

similar dynamics to that predicted by our analysis for longer chains. We analytically examine 

the differences in dynamics for chains of arbitrary length below.  

8.3 Conclusion 

This paper explores in detail the presence of frequency bands in harmonically forced 

essentially nonlinear granular crystals. For fixed amplitude of excitation, the low-frequency 

dynamics is found to be strongly nonlinear, involving bead separations and collisions, and 

resulting in periodic trains of travelling solitary pulses. This represents the dynamics in a 

propagation band (PB) of the system. As we increase the drive frequency, the system enters 
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into a state of permanent compression which results in weakly nonlinear and smooth 

dynamics. In this regime the response is localized close to the actuator’s excitation and rapidly 

decays away from it. Hence, in contrast to the propagatory dynamics realized in the PB, the 

higher frequency dynamics is in the form of spatially decaying (and, hence, spatially localized) 

standing wave oscillations. This represents the attenuation band (AB) of the system. Between 

these two regimes, nonlinear resonance phenomena occur, where the dynamics become 

chaotic due to strong collisions between beads, and the dynamics exhibit sensitive dependence 

on initial and forcing conditions and, hence, become unpredictable. This regime was not 

considered in this work and is the focus of current research by the authors. 

Finally, when the dynamics is realized in the AB, we employed an asymptotic technique based 

on static/dynamic partitions of the bead responses, and analytically deduced that the sustained 

state of compression realized in the granular crystal becomes independent of the excitation 

frequency. However, an increase in the size of the granular crystal does increase the permanent 

compression, which reduces the amount of energy transferred to the crystal. These results can 

contribute to designing of granular-based acoustic metamaterials as acoustic filters and 

attenuators of externally applied periodic or transient disturbances. 

8.4 Author contributions 

The results from this chapter are from “Frequency Bands of Strongly Nonlinear 

Homogeneous Granular Systems”. Joseph Lydon performed the experiments. The analytics 

and numeric are done by K.R. Jayaprakash (see Appendix).  Joseph Lydon, K.R. Jayaprakash, 

and Chiara Daraio all contributed to the writing of the manuscript.  
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