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Abstract

Melting temperature calculation has important applications in the theoretical

study of phase diagrams and computational materials screenings. In this thesis, we

present two new methods, i.e., the improved Widom’s particle insertion method and

the small-cell coexistence method, which we developed in order to capture melting

temperatures both accurately and quickly.

We propose a scheme that drastically improves the efficiency of Widom’s parti-

cle insertion method by efficiently sampling cavities while calculating the integrals

providing the chemical potentials of a physical system. This idea enables us to cal-

culate chemical potentials of liquids directly from first-principles without the help

of any reference system, which is necessary in the commonly used thermodynamic

integration method. As an example, we apply our scheme, combined with the density

functional formalism, to the calculation of the chemical potential of liquid copper.

The calculated chemical potential is further used to locate the melting temperature.

The calculated results closely agree with experiments.

We propose the small-cell coexistence method based on the statistical analysis of

small-size coexistence MD simulations. It eliminates the risk of a metastable super-

heated solid in the fast-heating method, while also significantly reducing the computer

cost relative to the traditional large-scale coexistence method. Using empirical po-

tentials, we validate the method and systematically study the finite-size effect on the

calculated melting points. The method converges to the exact result in the limit

of a large system size. An accuracy within 100 K in melting temperature is usu-

ally achieved when the simulation contains more than 100 atoms. DFT examples of

Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate
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the accuracy and flexibility of the method in its practical applications. The method

serves as a promising approach for large-scale automated material screening in which

the melting temperature is a design criterion.

We present in detail two examples of refractory materials. First, we demonstrate

how key material properties that provide guidance in the design of refractory materials

can be accurately determined via ab initio thermodynamic calculations in conjunc-

tion with experimental techniques based on synchrotron X-ray diffraction and ther-

mal analysis under laser-heated aerodynamic levitation. The properties considered

include melting point, heat of fusion, heat capacity, thermal expansion coefficients,

thermal stability, and sublattice disordering, as illustrated in a motivating example

of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the

known but structurally complex compound La2Zr2O7 provides good indication that

the computation methods described can be used within a computational screening

framework to identify novel refractory materials. Second, we report an extensive in-

vestigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab

initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and

tantalum carbide (TaC) are among the most refractory binary compounds known to

date. Their mixture, with a general formula TaxHf1−xCy, is known to have a melting

point of 4215 K at the composition Ta4HfC5, which has long been considered as the

highest melting temperature for any solid. Very few measurements of melting point

in tantalum and hafnium carbides have been documented, because of the obvious

experimental difficulties at extreme temperatures. The investigation lets us identify

three major chemical factors that contribute to the high melting temperatures. Based

on these three factors, we propose and explore a new class of materials, which, accord-

ing to our ab initio calculations, may possess even higher melting temperatures than

Ta-Hf-C. This example also demonstrates the feasibility of materials screening and

discovery via ab initio calculations for the optimization of “higher-level” properties

whose determination requires extensive sampling of atomic configuration space.
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Chapter 1

Introduction

Theoretical predictions of melting temperature have a long history [1], and have

been based on a wide variety of computational approaches, as well as different levels

of accuracy in the descriptions of interatomic interactions. In the last two decades,

thanks to the increased availability of computing power, density functional theory

(DFT) [2, 3, 4] has established itself as a useful simulation tool for accurate and

general modeling of materials. However, melting point predictions based on DFT

are still considered challenging because of the requirement for large simulation cells,

long simulation trajectories, and/or the dependence on auxiliary empirical potentials.

In this chapter, we first review a number of commonly used methods. Through

comparison, we summarize several key favorable features that an ideal method should

contain. These discussions lead us to develop two methods, i.e., the Widom’s test-

particle insertion method and the small-cell coexistence method, which are extensively

studied in this thesis.

1.1 A review of current methods

Over the past decades, numerous ingenious methods have been devised to capture

melting temperatures from DFT. Some of them are inspired by the natural process of

melting: the melting temperature is approached by the evolution of the solid and/or

the liquid involved in the phase transition. The atomic movements are simulated

through techniques such as molecular dynamics (MD) and Monte Carlo (MC). Some
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Figure 1.1: Traditional large-size coexistence method. This figure shows the tem-
perature evolution over time. After 3 picoseconds, the system reaches equilibrium,
and thus the stabilized temperature is the melting point. Here a Cu embedded atom
model (EAM) potential (Mendelev, 2008) [5] is employed on a 40×20×20 face-center
cubic (fcc) supercell, with 64,000 atoms.

locate melting temperatures based on thermodynamic properties, e.g., the free ener-

gies of the solid and the liquid. Here we review some of the most commonly used

methods to date.

Large-size coexistence method

In the traditional large-size coexistence method [6, 7, 8, 9, 10], people search

for stabilized solid-liquid coexistence, whose temperature is naturally the melting

point. The simulations are usually carried out in a NV E (or NPH) ensemble, i.e.,

constant number of atoms N , constant volume V , and constant internal energy E. To

understand how this technique helps the system evolve toward equilibrium, consider a

coexisting system with a phase boundary. If the system as a whole is at a temperature

slightly below the melting point, then some portion of the liquid phase will solidify,

generating the appropriate latent heat. Because the system is closed (NV E), this

heats up the system towards the melting point. Similarly, if the system is above the

melting temperature, the latent heat required to melt the solid will cool the system

down. There is no difficulty in nucleating either the liquid or solid phases, as the

interface assists the nucleation for the melting or solidification process. In the NV E

ensemble, for each chosen volume V there is a whole range of energies E for which solid
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Figure 1.2: Fast-heating method (Z-method). This figure shows the temperature-
pressure relation during the heating process. A Cu EAM potential (Mendelev, 2008)
[5] is employed with 32 atoms in the system. Here NV E ensembles are simulated
at different values of E. The melting temperature is located in the region where the
temperature drops abnormally as more energy is put in. This figure also presents
another problem of the method: Z-method melting occurs in a wide temperature
range and hence the melting temperature is indefinite.

and liquid can coexist; the average temperature and pressure along the simulation

then provide a point on the melting curve. If the energy E is above/below the range

where coexistence can be maintained, the system will completely melt/solidify, and

the simulation does not provide useful melting properties information.

The large-size coexistence is an accurate method, provided that the system size is

sufficiently large. However, DFT calculations on such large systems are prohibitively

expensive. To stabilize solid-liquid coexistence, it typically requires a cell with at least

1,000 atoms. Moreover, it usually takes at least thousands of MD steps to equilibrate

the coexistence, which renders the cost skyrocket.

Fast-heating method (Z-method)

The fast heating method [11, 12, 13, 14] attempts to resemble how melting points

are measured in common experiments. The procedure starts with a small cell of the

solid at a low temperature. Then the temperature is gradually increased, with the

atoms moving more vigorously. When the temperature becomes high enough, the
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crystal melts. It is straightforward to determine the melting temperature because the

latent heat during melting causes a temperature drop.

While the method is both simple and fast, it suffers from serious drawbacks [13,

15, 16]. Real melting in nature is usually initiated at surfaces and crystal defects. By

comparison, melting in a defect-free periodic bulk solid is by no means the same. This

so-called “homogeneous melting” has a widely acknowledged feature: superheating

and hysteresis. The solid will remain in a metastable solid phase until the temperature

is far above the true melting point. The reason for superheating is apparent. In order

to initiate the nucleation of a liquid, the defect-free crystal needs extra energy (or

temperature, correspondingly) to form a defect, the nucleation center. The amount

of extra energy determines the extent of superheating, and hence the calculation

error. Another related problem is about timescales, i.e., the kinetics of homogeneous

melting. The chance to form a nucleation center depends not only on the activation

energy, but also the amount of time elapsed. This relation leads to an annoying

requirement of the method: very long MD trajectories are needed and they are never

guaranteed long enough.

Free energy method

The free energy method [17, 18, 19, 20, 21] relies on separate calculations of the

free energies of the solid and the liquid, and determines the melting temperature by

locating the intersection of the two free energy curves. Among them, the liquid-state

free energy calculation is the most difficult component [22]. Here we describe two

typical methods.

• Thermodynamic integration method

This method first calculates the free energy based on empirical potentials (e.g.,

by Widom’s test-particle insertion method). Then in order to bridge the gap

between the empirical potentials and DFT, a general technique called “thermo-

dynamic integration” is carried out to determine the free energy correction. The

basic idea is that the free energy difference represents the reversible work done
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by isothermally switching the atomic interactions from the empirical potentials

(Hα) to DFT (Hβ).

µβ = µα +
1

N

∫ 1

0

〈
Hβ −Hα

〉
λ

dλ. (1.1)

Here α and β are the empirical potentials and DFT, respectively. µ is free

energy (chemical potential), and N is the number of particles. 〈· · · 〉λ denotes

the ensemble average of the Hamiltonian Hλ = (1− λ)Hα + λHβ.

The success or failure of the scheme depends heavily on the quality of the em-

pirical potentials, because it determines the effort needed to compute the free

energy correction µβ − µα [23]. A bad empirical potential would render the

thermodynamic integration expensive. This problem becomes even worse in a

complex multi-component system, when a huge number of high-quality poten-

tials are required (e.g., at least C2
N pairwise empirical potentials for a N -element

system). This requirement limits the application of the method. Furthermore,

the thermodynamic integration method is inherently complicated and difficult

to automate, since it requires a considerable amount of user-computer interac-

tions.

• Two-phase thermodynamics method

This method [24, 25, 26] proposes a two-phase model, which decomposes the

liquid-state phonon density of states (DoS) into a gas phase component and a

solid phase. The gas component mostly contributes in the low frequency regime

and contains all the fluidic effects, whereas the solid component, located at

higher frequencies, has no fluidicity but can possess strong quantum effects. The

liquid-state phonon DoS is easy to compute, and the free energy of a solid/gas

phase is well studied. The choice of the gas phase model is flexible, e.g., hard

spheres. However, a drawback of this method is its low accuracy, especially at

high temperatures. This method decomposes the liquid-state phonon DoS to
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Figure 1.3: Two-phase thermodynamics method. This figure shows the partitioning of
the liquid-state phonon density of states (blue, copper at 2000 K, PBE) into solid-like
(red) and gas-like (green) parts whose free energies are straightforward to compute.

fictitious solid and gas components, which is an assumption not always valid.

The liquid is not a combination of a solid and a gas in reality. In addition, the

harmonic approximation employed in free energy calculations becomes poor at

high temperatures, as anharmonic effects start to dominate.

1.2 Our goals

Although these popular methods are successful in a wide range of applications,

they are far from perfect. Our primary goal is to devise methods that deliver a

melting point estimate simply, quickly, and accurately. We summarize as follows a

list of favorable features.

• direct DFT

DFT has clear advantages over its competitors. It is robust and reliable in a very

general range of systems (though under some circumstances its performance is

limited). It is well balanced between accuracy and computational cost, provid-

ing relatively high accuracy with a modest computer demand. We believe an

ideal method should stand on direct DFT calculations. A direct DFT approach

circumvents the requirement for empirical potentials, a serious drawback of the
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thermodynamic integration method. A direct DFT method is also simpler and

easier to implement and automate.

• highly automated

A highly automated approach reduces human effort and makes possible multi-

tasking, i.e., to calculate melting points on several materials concurrently. With

the increasing availability of computer power, this feature becomes more and

more attractive when a task involves a large number of melting point calcula-

tions, such as solid-liquid phase diagram calculations and material screenings.

Direct DFT is a key element to achieve automation: it takes considerable hu-

man effort to develop or search for empirical potentials. The difficulty varies

to automate a method. For example, while the fast-heating method is straight-

forward to implement and automate, the thermodynamic integration method is

inherently complicated and it requires heavy human input.

• fast and accurate

These are essential features.

• robust and flexible

A robust method is likely to remain effective when the environment changes.

For example, the direct connection to DFT suggests general robustness in terms

of atomic interactions. Another favorable feature is the ability to achieve high

accuracy in several stages: low accuracy can be achieved at a low cost, and the

accuracy can be improved systematically when more calculations are performed.

This flexibility is ideal for material screening efforts.

In the next two chapters, we introduce two new methods: (1) an improved version

of the Widom’s particle insertion method based on high selectivity in carrying out

DFT calculations on insertion energy, and (2) the small-cell coexistence method,

which captures melting temperature from statistical analysis of duplicated small-

cell solid-liquid coexistence simulations. Both methods operate through direct DFT

calculations. The examples presented alongside demonstrates that they are efficient
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and accurate. In particular, the small-cell coexistence approach is robust and easy to

automate.
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Chapter 2

Widom’s particle insertion

Widom’s test-particle insertion scheme [27] is a popular method to directly calcu-

late the chemical potential of a liquid. Chemical potential is calculated as additional

free energy, specifically, a change of free energy after inserting one more particle.

Consequently, the chemical potential is related to the ensemble average and integra-

tion of Boltzmann’s factors exp (−β∆U), where ∆U is insertion energy, the energy

change during particle insertion. In practice, the average is evaluated by occasionally

inserting the test particle into the simulation volume, measuring ∆U , and then re-

moving it before continuing the simulation. This approach has been applied to some

simple empirical potentials [28, 29, 30, 31, 32], mostly Lennard-Jones potentials. The

major problem of the Widom method is that it is usually considered computationally

too expensive, because most insertion attempts lead to a vanishingly small value of

exp (−β∆U) (due to the high energy cost of inserting the test-particle in a small

cavity in the dense system) and the corresponding computational efforts are thus

wasted. Probably because of the prohibitive computational cost, there have appar-

ently been no attempts so far to compute first-principles chemical potential directly

with Widom’s method.

Nevertheless, compared to the thermodynamic integration approach, the Widom

method holds a great advantage, since it does not require any reference system. This

property makes it possible to find a universal solution to first-principles calculations of

liquid-state chemical potentials. This is especially useful in the automated materials

screening effort, in which melting point is a design parameter, since one does not
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need to develop empirical potentials for each of the chemical system explored. In this

chapter, we revisit Widom’s particle insertion method and modify it with an efficient

cavity-sampling scheme, which achieves a drastic reduction in computational cost.

2.1 Methodology

2.1.1 Particle insertion method

We briefly reiterate the Widom particle insertion method here. By definition,

chemical potential µ is the partial derivative of free energy F with respect to number

of particles N , µi =

(
∂F

∂Ni

)
V,T,Nj 6=i

, where V is volume and T is temperature. Thus

it can be calculated by evaluating the additional free energy, namely the free energy

change after inserting one more particle.

µi = F (V, T,Ni + 1, Nj 6=i)− F (V, T,Ni, Nj 6=i) +O

(
∂2F

∂N2
i

)
. (2.1)

The higher-order derivative, which leads to finite-size correction, will be discussed

later in Section 2.2.1. Assume the system of interest contains N homogeneous atoms.

The Helmholtz free energy of such a system is (using a classical partition function)

F (V, T,N) = −kT ln

 1

Λ3NN !

∫
exp

[
−U(rN)

kT

]
drN

, (2.2)

where k is the Boltzmann constant, Λ is de Broglie wavelength, Λ =
√
h2/(2πmkT ),

and U is potential energy. Combining Eq. (2.1) and (2.2), the expression for chemical

potential can be written as

µ ' ∆FN→N+1 = µid + µex, (2.3)

µid = −kT ln

(
V

Λ3(N + 1)

)
, (2.4)

µex = −kT ln

(
1

V

∫
exp

[
−U(rN+1)/kT

]
drN+1∫

exp
[
−U(rN)/kT

]
drN

)
. (2.5)
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Notice that the approximation sign in Eq. (2.3) is due to the omission of the higher-

order derivative in Eq. (2.1), which we will discuss and correct later.

In Eq. (2.3), we separate the chemical potential into two parts, the ideal gas term

µid and the excess term µex. The chemical potential of ideal gas is trivial to calculate.

To compute the excess part µex, we further write it as an ensemble average:

µex = −kT ln

 1

V

〈∫
exp

(
−∆U

kT

)
drN+1

〉
N

, (2.6)

where ∆U is the potential energy change during insertion, ∆U(rN , rN+1) = U(rN+1 =

{rN , rN+1})−U(rN). Notice the difference between ri and rN . ri denotes the position

of the ith atom, while rN contains the coordinates of all atoms in the configuration,

which has a dimension of 3N . The notation 〈· · · 〉N means the canonical ensemble

average of a N -particle system

〈A〉N =

∫
A exp

[
−U(rN)/kT

]
drN∫

exp
[
−U(rN)/kT

]
drN

. (2.7)

In practice, the evaluation of Eq. (2.6) involves the calculation of two averages,

namely the ensemble average 〈· · · 〉N and the spatial average
1

V

∫
exp

(
−∆U/kT

)
drN+1.

The ensemble average can be achieved by picking snapshots of configurations rN ran-

domly from MD or MC trajectories, while the spatial average is calculated by thor-

oughly scanning over rN+1, the position of the additional particle, in each snapshot.

2.1.2 Selective sampling

An obvious way to calculate the spatial average would be to carry out a uniform

random sampling of the additional particle in the rN+1 space. However, this is not

a very practical approach. In practice, one can sample only a limited number of

positions, and few of them would actually fall in the low energy region of interest.

In the end, such a random sampling could turn out to be extremely expensive and



12

wasteful. Therefore an efficient sampling scheme is essential to avoid the random-

sampling catastrophe.

It is more useful to regard the average in Eq. (2.6) as a one-dimensional integral

over the insertion energy ∆U , i.e.,

µex = −kT ln

(∫ +∞

−∞
ρ(∆U) exp

(
−∆U

kT

)
d(∆U)

)
, (2.8)

where ρ(∆U) is the probability density defined as

1

V

〈∫
δ(U({rN , rN+1})− U(rN)−∆U) drN+1

〉
N

. (2.9)

Notice again that 〈· · · 〉N is the canonical ensemble average of a N -particle system,

according to Eq. (2.7).

In order to determine accurately the right-hand side of Eq. (2.8), one has to

produce good estimates of the values of ρ(∆U) for the range of ∆U over which the

product ρ(∆U) exp
(
−∆U/kT

)
takes on its large values. In other words, the sampling

should be exclusively focused on the region near the cavities that can accommodate

the additional particle at a small energy cost.

Here we give an example of liquid copper at 2000 K. (see Fig. 2.1) Since chemical

potential is determined by the area below the curve ρ(∆U) exp
(
−∆U/kT

)
, which

decays exponentially in high-∆U region, we introduce here an energy ceiling (e.g.,

∆U = 0.6 eV in the figure) to focus on the study of low-∆U region, ignoring

the rest. The energy ceiling is simply determined as a value where the product

ρ(∆U) exp
(
−∆U/kT

)
becomes negligible, thus the converged excess chemical poten-

tial µex is captured at the lowest computational cost, which is proportional to the area

below the probability density curve. (Throughout the text, we choose as reference

state (zero level in energy) the enthalpy of Cu(s) at 298 K and zero pressure, which

closely agrees with the definition employed in experiments.)
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Figure 2.1: (a) Probability density ρ(∆U) and the product ρ(∆U) exp
(
−∆U/kT

)
of liquid copper at 2000 K. (b) Volumetric display of the insertion energy ∆U for
a single snapshot in configuration rN . The colored region with low ∆U contribute
most to the chemical potential, despite of its small size and correspondingly modest
computational cost, compared to the whole cube.

2.1.3 Algorithm

We propose here an algorithm to efficiently find the cavities and calculate the

spatial average. For a N -particle configuration rN0 in a parallelepiped, the integral

can, in principle, be evaluated numerically on a uniform grid:

1

V

∫
exp

(
−∆U(rN0 , rN+1)

kT

)
drN+1 (2.10)

=
1

NaNbNc

Na,b,c∑
i,j,k=1

exp

(
−∆U(rN0 , rN+1 = rijk)

kT

)
,

where

rijk =
i

Na

a +
j

Nb

b +
k

Nc

c. (2.11)

a, b, c are the vectors defining the parallelepiped. Instead of running ab initio

calculations on all grid points, we employ the following algorithm to search for cavities

and to study the potential energy surfaces near them.

Let Fig. 2.2 be the potential energy (∆U) surface near the cavity of interest. We
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Figure 2.2: Diagrammatic illustration of the algorithm in two dimensions. Assume
the contour lines above represent the energy surface near the cavity we are interested
in. (a) Step 1: We first estimate the position of the cavity (purple, rN+1,0) based on
an approximate energy function. Step 2: Then DFT calculations are carried out and,
based on the force calculated, the position of the (N + 1)th particle (green, rN+1,i) is
optimized until the minimum grid point (red star, rN+1,min) is found. The optimiza-
tion proceeds as move attempts are accepted if U({rN0 , rN+1,i+1}) < U({rN0 , rN+1,i}).
The green arrows are accepted move attempts, while the red ones are denied. (b)
Step 3: All grid points below the energy ceiling (red circle) are studied with DFT,
by gradually climbing up the energy surface from the bottom, until all frontier points
(red solid dots) are above the energy ceiling. As a result, we need to calculate ∆U
for the colored points only. Step 4: In case the dynamic energy ceiling needs to be
increased (red dash circle), the “exploration” step restarts and demands additional
calculations on new frontier points (red open dots).
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Figure 2.3: Nearest neighbor distance analysis on 256 configurations rN of liquid
copper at 2000 K. The nearest neighbor distance rmin is calculated as the shortest
distance from the grid point rijk to the N atoms and their periodic images. Large
rmin corresponds to the center of a large cavity, which is optimal for particle insertion
at a low energy cost.

find this cavity and map out the nearby potential energy surface in four steps.

1. Locate: We first estimate the position rN+1,0 of the cavity based on an approx-

imate energy function. This function should tell us roughly where the cavity

is, but does not need to be accurate, because it is never used to calculate the

chemical potential. There are plenty of choices available to take this task. For

example, an appropriate empirical potential is definitely sufficient to predict the

position of the cavity. In practice, we find that even a function as simple as

nearest neighbor distance can help locate the cavity, as shown in Fig. 2.3. This

idea of prescreening has been successfully used before [33, 34].

2. Minimize: DFT calculation is performed at the predicted position rN+1,0. Based

on the force calculated on the (N + 1)th particle, the position is optimized

as rN+1,1. This move attempt is checked by DFT, and will be accepted if

U({rN0 , rN+1,1}) < U({rN0 , rN+1,0}). The optimization continues and generates

a series of positions {rN+1,i, i = 1, 2, · · · } until the minimum is found. This

procedure is equivalent to structure optimization under the constraint that all

atoms are fixed except the last one, which is allowed to move only on grid points.

3. Explore: We explore the cavity by gradually climbing up the potential energy
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surface. If the bottom is lower than the energy ceiling, all its neighboring grid

points will be studied. And if some of them are also below the ceiling, their

neighbors will also be further calculated. This procedure spreads the “seeds”

out, until all “seeds” hit the energy ceiling, which tells us that we have reached

the inaccessible space region and there is no need to explore any more. The

exploration will end only if all points on the frontier of the cavity are above the

energy ceiling.

4. Converge: An appropriate value for the energy ceiling is required in Step 3.

However, unlike what has been discussed in Fig. 2.1, the probability density

ρ(∆U) is never known before we calculate it, rendering the energy ceiling a

priori unknown. We circumvent this problem by introducing a dynamic, rather

than static, energy ceiling. Starting from a relatively low trial value (e.g., −0.5

eV in Fig. 2.1), we first calculate the probability density below it (by Step 3),

and then decide whether or not we should raise the energy ceiling, depending on

the up-to-date ρ(∆U) exp
(
−∆U/kT

)
. The new energy ceiling, if it happens,

may enclose some of the frontier points, thus restarting the exploration of the

cavity (returning to Step 3). After the additional calculation is finished, the

same question is asked again about whether to further increase the energy ceil-

ing. Step 3 and Step 4 are performed repeatedly, increasing the energy ceiling

gradually and mapping out Fig. 2.1 from left to right, until the energy ceil-

ing is high enough to give an excess chemical potential converged within some

prespecified tolerance.
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2.2 An application: chemical potential and melt-

ing temperature of copper

2.2.1 Chemical potential of liquid copper at 2000 K

We employ the scheme described above to calculate the chemical potential of liquid

copper from first-principles. Before we describe the detailed methodology, we would

like to first estimate the precision required in our calculation, because we want to

further apply the results to theoretical prediction of material properties, e.g., locating

a melting point. We notice that the calculation of melting properties demands very

high precision for chemical potentials. The melting temperature is determined by the

intersection of chemical potential curves of a solid and a liquid. However, in practice

these two curves usually cross at a shallow angle. Consequently, a small error in

chemical potential may translate into a relatively large error in melting temperature.

Typically, an error of 10 meV in chemical potential will result in an error of 100 K in

melting point. Therefore, we need to make sure numerical and statistical errors are

under control.

In the process of isochoric particle insertion, we use a periodic cube of edge length

11.66 Å with 108 copper atoms in it. All DFT calculations are performed using the

VASP package [35, 36], with the projector-augmented-wave (PAW) implementation

[37, 38] and the generalized gradient approximation (GGA) for exchange-correlation

energy, in the form known as Perdew-Burke-Ernzerhof (PBE) [39]. Electronic tem-

perature and its contribution to entropy are counted by imposing Fermi distribution

of the electrons on the energy level density of states. The size of the plane-wave basis

is carefully checked to reach the required accuracy. The energy cutoff (Ecutoff) is set

to 273 eV in MD runs and particle insertion attempts. When we make corrections

for pressure and energy, Ecutoff is increased to 500 eV in order to remove Pulay stress

(error in pressure within 1 kbar) and achieve convergence (error in energy within 1

meV) with respect to the basis size.

The sampling in k-space is also studied very carefully, compromising between ac-
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Table 2.1: Comparison of different k-space sampling in terms of computational cost
and error (in unit of meV/atom).

k-space sampling number error in MD error in ∆U
Γ point 1 46 106

MP 2× 2× 2 4 2 6
MP 4× 4× 4 32 < 0.1 1

8 special k-pointsa 8 < 0.1 3
4 special k-pointsb 4 0.5 19

a. The coordinates of the k-points are:
(1/8 1/8 1/8), (-3/8 1/8 1/8), (1/8 -3/8 1/8), (-1/8 -1/8 3/8),
(-1/8 3/8 3/8), (3/8 -1/8 3/8), (-3/8 -3/8 1/8), (3/8 3/8 3/8).

b. The coordinates and weights of the k-points are:
(1/8 1/8 1/8), 1/8; (3/8 1/8 1/8), 3/8; (3/8 3/8 1/8), 3/8; (3/8 3/8 3/8), 1/8

curacy and computation cost. A dense k-point gird is necessary to meet the accuracy

requirement. Indeed, we would like to use a 4 × 4 × 4 Monkhorst-Pack(MP) mesh

in the first Brillouin zone (FBZ). However, since the point-group symmetry of our

cubic supercell is broken by disorder, this would require all the 32 k-points included

in the calculation, which is computationally too demanding. Kresse et al. [18] have

addressed this problem by replacing the original 32 k-points with four special k-points

in the irreducible FBZ, as if full cubic symmetry were still applied. This reduction

can be well justified by the following argument. In the case of weak potential and

nearly free electron gas, the dominant part in electronic Hamiltonian is the kinetic

energy, which is approximately h̄2/(2me)(G + k)2 (G is a reciprocal lattice vector

and k a k-point in FBZ), a term invarient under point-group operation with respect

to the choice of k. As simple metals are close to the free electron gas model, the

same property should hold true, thus rationalizing the reduction of k-points by sym-

metry. Inspired by this idea and making a further improvement in which we seek

a relatively even distribution of k-points in FBZ (while in Kresse et al.’s calcula-

tion, the k-space sampling focuses exclusively in the first octant), we represent the

4 × 4 × 4 MP grid by eight special k-points, whose coordinates are listed in Table

2.1. To evaluate the accuracy, different k-space sampling methods are tested on ten

randomly chosen MD configurations (calculated as U(rN)/N) and insertion attempts
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Table 2.2: Calculation of Helmholtz free energy change ∆FN→N+1 by particle inser-
tion.(Cu, 2000 K, N = 108, a = 11.66Å, in eV)

µex 0.748± 0.011
µid −2.021

∆FN→N+1 −1.273± 0.011

(calculated as ∆U = U(rN+1)−U(rN)). As Table 2.1 shows, sampling with the eight

special k -points is comparable to the 4×4×4 MP grid, while the computational cost

is significantly reduced by a factor of four.

The ensemble average is computed numerically by running ab initio MD simu-

lations within a canonical (NVT ) ensemble with the Nosé-Hoover chain thermostat

[40, 41, 42, 43]. The MD simulation proceeds with a time step of 3 femtoseconds and

lasts for 1280 steps. Forces acting on atoms are accurately calculated, as the conver-

gency threshold for electronic structure optimization is set to 1× 10−8 eV/atom. We

capture snapshots every 5 ionic steps from the MD trajectory, thus generating 256

snapshots in total, from which the ensemble average is evaluated. The configuration

rN in each snapshot is then studied by making particle insertion attempts in order to

compute the spatial average over rN+1. The spatial average is calculated numerically

on a uniform 40× 40× 40 grid, according to Eq. (10). Only on selected grid points

are ab initio insertion energies ∆U calculated, following the efficient scheme we pro-

posed in Section 2.1.3. Finally, we compute the chemical potential by combining the

ensemble and spatial averages.

As shown in Table 2.2, we “measured” the chemical potential of liquid copper at

2000K five times, based on five independent MD trajectories. The Helmholtz free

energy change during particle insertion ∆FN→N+1 is −1.273± 0.011 eV.

The selective calculation scheme helps us reduce the computational cost drasti-

cally. Instead of running ab initio calculations on all 1.6×107 grid points, the scheme

demands calculations on only 5×103 grid points, reducing the computational cost by

a factor of 3× 103 and thus making the computation possible.

Now we make correction for the finite-size effect, which was alluded to earlier in

Eq. (2.1) and (2.3). Several analytical expressions have been proposed [44, 45] for
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particle insertion

isochoric

µ(V, T, N ) = ∆FN→N+1 − (p2 − p1) · V/(2N )

N + 1, T, p2, V

Figure 2.4: Finite-size correction to the calculation of chemical potential by isochoric
particle insertion method.

this type of correction. Despite the differences, they all share the same leading term,

− 1

2N

(
∂p

∂ρ

)
, where ρ is the density of particles. Here we would like to account for

the finite-size effect in the following way. The flaw of isochoric particle insertion lies

in the fact that the next higher-order derivative may be significant and has to be

included, which can be seen from the following Taylor expansion:

∆FN→N+1 = F (V, T,N + 1)− F (V, T,N)

.
= µ(V, T,N) +

1

2

∂µ(V, T, n)

∂n

∣∣∣∣
n=N

, (2.12)

where ∆FN→N+1 is the free energy change computed from particle insertion, µ(V, T,N)

is the exact chemical potential, and (∂µ/∂n) is the leading correction term. Notice

that this term is large for condensed phase materials, i.e., when n increases, µ will

change significantly, as a result of the large increase in pressure. Simplifying the

expression, we have the finite-size correction

∂µ(V, T, n)

∂n
=
∂µ(p, T )

∂p
· ∂p(V, T, n)

∂n
=
V

N
(p2 − p1), (2.13)

µ(V, T,N) = ∆FN→N+1 −
V

2N
(p2 − p1), (2.14)

where p1 and p2 are the pressure before and after particle insertion, as shown in Fig.

2.4.

It is straightforward to show that this correction is equivalent to − 1

2N

(
∂p

∂ρ

)
, the

leading term in the corrections proposed by Smit [44] and Siepmann [45].

− V

2N
(p2 − p1) = − V

2N

∂p(V, T, n)

∂n
= − 1

2N

∂p(V, T, n)

∂ρ
. (2.15)
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Table 2.3: Theoretical chemical potential of liquid copper at 2000 K.(in eV, N =
108, a = 11.66Å, p1 = 5.5 kbar, p2 = 10.6 kbar)

∆FN→N+1 −1.273± 0.011
−(p2 − p1)V/(2N) −0.023

−p1V/N −0.050
µ(p◦, 2000K) −1.347± 0.011

µ(p◦, 2000K, exp.) −1.342

Another type of finite-size effect can be understood as the following. Compared

to an infinite system, the test particle inserted in a small box will interact with its

periodic images. In the case of charged atoms, the image charge interaction can be

very large due to the long-range Coulomb interaction. In our small periodic model,

image interactions must be examined to make sure that they are small enough to be

neglected. To estimate this effect, we perform particle insertion tests on a 864-atom

system (eight times larger than our original model) and make comparisons with the

original results. The calculated insertion energies ∆U differ only by less than 3 meV.

Thus it is safe to neglect the weak image interactions in our model.

We have now calculated µ(p1, 2000K). We further convert µ(p1, T ) to µ(p◦ =

1 bar ' 0 kbar, T ), the chemical potential at standard atmospheric pressure, to sim-

plify the comparison of our theoretical results with experiments.

µp1→p◦ = µ(p◦, T )− µ(p1, T ) ' −p1V

N
. (2.16)

The chemical potential is finally computed by combining Widom’s particle inser-

tion method and the corrections for finite-size effect and non-zero pressure.

µ(p◦, T ) = ∆FN→N+1 −
V

2N
(p2 − p1)− p1V

N
. (2.17)

As shown in Table 2.3, the theoretical chemical potential is predicted to be −1.347±
0.011 eV, which agrees very well with the experimental value −1.342 eV.
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Table 2.4: Enthalpies and chemical potentials of liquid copper. (in eV/atom)

T H Hexp µ µexp

2000 - - −1.347± 0.011 -1.342
1950 0.642 0.645 −1.297± 0.011 -1.292
1850 0.609 0.611 −1.198± 0.010 -1.194
1750 0.575 0.577 −1.102± 0.010 -1.097
1650 0.540 0.543 −1.007± 0.009 -1.002
1550 0.505 0.509 −0.914± 0.009 -0.910
1450 0.470 0.475 −0.824± 0.008 -0.819
1350 0.434 0.441 −0.736± 0.008 -0.731

2.2.2 Chemical potential at various temperatures

The Gibbs free energies G at different temperatures and pressures are connected

by the following thermodynamic relations:

[
∂(G/T )

∂(1/T )

]
p

= H,

[
∂G

∂p

]
T

= V. (2.18)

Since enthalpy H and volume V can be obtained directly from MD simulation, free

energy changes among different (p, T ) conditions can be readily computed by the

thermodynamic integration method.

We start from the calculated µ(p◦, 2000 K) and map out the chemical potential

curve in region T ∈ [1300, 2000] K and zero pressure. To compute enthalpy H in Eq.

(2.18), ab initio canonical (NV T ) MD simulation is performed at various tempera-

tures in the region. Detailed settings in DFT calculations and MD thermostat have

been described in Section 2.2.1. Enthalpy is calculated as the average of energies over

MD trajectory at each temperature. Volume search is conducted to make sure p ' 0

kbar. As shown in Table 2.4, the calculated enthalpy and chemical potential agree

very well with experiments.

2.2.3 Calculation of melting temperature

The chemical potential of liquid copper is further used to calculate the theoretical

melting temperature, which is determined by the intersection of chemical potential
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Figure 2.5: Determine melting temperature from where solid and liquid chemical
potential curves intersect on a µ-T plot. Tm from experiments is 1360 K. According
to the liquid chemical potential we calculated by Widom’s method, the theoretical Tm

is 1320 or 1460 K, depending on whether we use experimental or theoretical results
for the chemical potential of solid.

curves of the solid and of the liquid. The chemical potential of solid is computed

within the quasiharmonic approximation [46] and is further corrected by thermo-

dynamic integration (to account for anharmonicity at high temperatures). Phonon

density of states, vibrational free energies, and thermal expansion are calculated us-

ing the “supercell” method as implemented in the Alloy Theoretic Automated Toolkit

(ATAT). [47, 48] Anharmonicity effect is included as further correction through the

thermodynamic integration method, in which MD simulation is carried out with an

effective Hamiltonian

Hλ = (1− λ)Hα + λHβ (2.19)

that gradually switches from the Hamiltonian Hα of a harmonic potential surface to

the real Hamiltonian Hβ. The chemical potential difference is calculated as

µβ = µα +
1

N

∫ 1

0

〈
Hβ −Hα

〉
λ

dλ, (2.20)

where 〈A〉λ is the average of observable A in MD simulation with Hamiltonian Hλ.

The chemical potentials of solid and liquid copper, from both theory and exper-

iment, are shown in Fig. 2.5. Compared with experiments, the errors of liquid and
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Figure 2.6: This two-dimensional energy surface illustrates why our four-step al-
gorithm works more efficiently than pre-screening. While traditional pre-screening
labels all colored (both red and black) points as “important” based on the approxi-
mate energy model, the “locate” step in our algorithm outputs only the approximate
minimum (a single grid point at the black star). Then the cavity is studied by the
“minimize” and “explore” steps relying on ab initio calculations. As a result, our
scheme calculates only the red points, and significantly cuts the unnecessary cost (all
the surrounding black points).

solid are -5 and -11 meV, respectively, in the melting region. The calculated melting

temperature is 1440 K, about 80 K higher than the experimental value. This error is

translated from both solid and liquid chemical potentials, as a combined effect. Since

we focus mostly on the calculation of liquid chemical potentials in this article, we are

more concerned about the impact purely from the liquid part, which is more accurate

than the solid part and thus should lead to a smaller error. Indeed, the errors in

melting point caused by solid and by liquid are 120 and -40 K, respectively, as shown

in Fig. 2.5.
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2.3 Discussions

2.3.1 Difference with pre-screening

Although the “locate” step in our algorithm appears to be similar to pre-screening,

it is different in many aspects. Working in ab initio context, which is computationally

much more expensive than empirical potentials, we need to design an algorithm highly

selective about what should be calculated by DFT. In traditional pre-screening, the

approximate energy model is used to find an approximate cavity that must completely

enclose the true cavity, so the pre-screening criterion must necessarily be conserva-

tive and the more accurate/expensive energy model is invoked too often. The key

distinction in our scheme is that the approximate energy model is only used to find

a trial point at or near a cavity. The shape of the cavity is instead determined in the

“explore” step, relying on ab initio calculations, and the only “wasted” calculations

are those immediately at the boundary of the cavity. In traditional pre-screening

the set of “wasted” calculation points is three-dimensional, while in our scheme it is

two-dimensional. An example is shown in Fig. 2.6. We save costs on several layers

of black points that are labeled as “important” by pre-screening but proven to be

unnecessary by our algorithm.

One may argue that near the boundary of the cavity there could exist multiple

minima, which could be ignored by mistake in our algorithm. Although it is true

theoretically, this is very unlikely to happen in reality. First of all, if the multiple

minima are connected by a path lying below the energy ceiling, we will not miss them

in the “explore” step. In the case of multiple minima not connecting, we will miss

them only if the “locate” step provides a single starting point when there should

have been more than two. This is not only very rare but also insignificant, because

only small-size shallow cavities can escape from the examination of the “locate” step.

Furthermore, the multiple minima issue is more a numerical convergence aspect than a

fundamental limitation. As the ceiling is dynamically increased up to convergence, all

minima that were previously missed will eventually be connected to existing cavities

by a path below the energy ceiling.
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2.3.2 DFT error

Although the absolute error in DFT energies is likely larger than our target accu-

racy of 10 meV/atom, we benefit from the fact that our results (the melting point and

chemical potentials relative to a reference state) are actually functions of energy dif-

ferences between states of similar atomic densities and average coordination number,

so that considerable error cancellation is to be expected.

Potential DFT errors aside, we are very careful about controlling the errors both

from numerical and statistical origins. The errors in the ab initio calculations are

mainly due to electronic structure calculations implementation details, e.g., the use

of PAW method, the size of basis set and k-space sampling. These problems have

been carefully handled and discussed either in the above paragraph or in Section

2.2.1. The errors in statistical methods are caused by detailed physical approaches to

calculate the chemical potentials of the solid and of the liquid, i.e., quasi-harmonic

approximation, thermodynamic integration, and Widom’s particle insertion method.

Because the chemical potentials of the two phases are calculated with different statis-

tical mechanics methods, we have to make sure that the calculations achieve absolute

convergence with respect to the methods, since there is no chance that errors of the

two phases will cancel.

2.3.3 Finite-size error

Due to computational cost issues of DFT calculations, our chemical potential cal-

culations can be performed only on a small system with around 100 atoms. The error

caused by the small system size is studied systematically, as we gradually increase

the system size and check the convergence. We first note that this error is inherent

in the physical method of particle insertion itself and is irrelevant to the DFT for-

malism. Therefore, it is better to work with empirical potentials, as it is a practical

way to test our method on large system size without losing the accurate description

of interatomic interactions. We implement the particle insertion method into the

large-scale atomic/molecular massively parallel simulator package (LAMMPS) [49]
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Figure 2.7: Finite size error of chemical potential calculations, tested on two empirical
potentials. The errors are 17 and 11 meV for Cu (108 atoms) and Ta (128 atoms),
respectively.

to automate and accelerate the calculations. Two embedded atom model (EAM)

potentials, namely copper (Mendelev, 2008) [5] and tantalum (Y.-H. Li, 2003) [50],

are tested on system size up to 2,000 atoms. The results are shown in Fig. 2.7. We

find the chemical potential finally converges after we increase the system size beyond

1,000 atoms. With system size of approximately 100 atoms, the finite size error is

10-20 meV. Considering the huge computation cost we have to pay to work on larger

systems from first principles, this amount of error is still acceptable.

2.3.4 Dependence on numerical grid

The convergence with respect to grid resolution is studied with the same empirical

potentials. We have tested different grid resolutions up to eight times denser than

the grid in our reported DFT calculations. We analyze the results in two levels,

namely the integral I (or spatial average mentioned before in Eq. (10)) in each

individual snapshot and the chemical potential µ according to Eq. (6), which is

related to the ensemble average of the above-mentioned integrals I, µ = −kT ln 〈I〉N .

Errors of spatial average in individual snapshots are plotted in Fig. 2.8 (blue cross).

Although for a single snapshot it requires a very fine grid to achieve convergence, the

error mostly cancels out in the ensemble average, therefore the chemical potential

calculated from them converges quickly with respect to the grid resolution, as shown
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Figure 2.8: Convergence tests carried out on different grids. Results from the densest
grid (80 × 80 × 80) are chosen as benchmarks. The error of each single snapshot
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)
. Chemical potentials converge

quickly with respect to grid resolution.

in Fig. 2.8 (red circle). We find that the results have already converged with a

40× 40× 40 grid, which is employed in our DFT calculations.

2.3.5 Multi-component system

The method is easily generalizable to multi-component system, since one can com-

pute the chemical potential of each species separately and exploit their partial molar

property to obtain the Gibbs free energy of the phase from
∑

i niµi. The only ex-

ception to this simple approach occurs when there are large electrostatic interactions

that give rise to sharply varying free energies as a function of deviations from perfect

stoichiometry, so that finite size effects are highly non-negligible. In this case, one

way to avoid this issue is to insert multiple particles simultaneously to preserve stoi-

chiometry, in which case the method would directly provide the Gibbs free energy of

the phase at the expense of higher computational requirements, because the integrals

become 3×∑m
i=1 ni dimensional (for An1Bn2 · · ·Mnm).
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Figure 2.9: Correlation between insertion energy and size of cavity. While the study
of liquid copper shows a clear correlation, it is absent in La2Zr2O7, leading to the
failure of the algorithm.

2.3.6 Disadvantage: locating the right cavities

The success or failure of the particle insertion scheme depends heavily on whether

sufficiently many large cavities are sampled and explored. Therefore higher tempera-

tures are preferable, since rare events occur more frequently (configurations with large

cavities usually locate in high-energy region of phase space and are rarely visited). We

find that it is much easier to measure the chemical potential at 2000 K than at 1500

K. At the latter temperature, the chemical potential is significantly overestimated by

a few tens of meV due to the lack of large cavities explored during the limited time

of MD simulation.

2.3.7 Failure: the larger the cavity, the better?

The locate-minimize-explore-converge algorithm relies on (1) the energy function

(in the “locate” step) to roughly tell the location of the cavity and (2) the general prin-

ciple that a larger cavity is more likely to accommodate an inserted atom. While these

assumptions work well in a dense liquid such as copper (Fig. 2.9(a)), its validity is

undermined in certain circumstances. For instance, lanthanum zirconate (La2Zr2O7)

is a spacious liquid, meaning there are many large holes in it. The insertion energy

does not correlate with the size of the cavity (Fig. 2.9(b)). This phenomenon is

understandable: rather than hanging at the center of the cavity (which is too far
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from the other atoms), the additional atom prefers staying at the edge in order to

form effective bonds. This scenario is very hard for the algorithm to handle. Because

of the large number of cavities, the large volume of cavity space, and the lack of

correlation between insertion energy and cavity size, the algorithm fails to maintain

high selectivity when DFT calculations are carried out, and indeed a large portion of

calculations are wasted. As a result, the computational cost starts to skyrocket.

2.4 Conclusions

We demonstrate that it is computationally practical to calculate the chemical

potential of a liquid directly from first principles using a modification of Widom’s

particle insertion method. This, to the authors’ knowledge, is the first attempt to

evaluate the chemical potential of a liquid without the help of any high-quality empir-

ical potentials, which are available only for a limited number and type of materials.

This distinct advantage is crucial when such empirical potentials are difficult to ob-

tain, e.g., for multi-component materials. An algorithm is proposed to efficiently find

and study cavities. It reduces the computational cost drastically, e.g., by more than

three orders of magnitude for the example we study, relative to Widom’s original

method. After finite-size correction, the calculated chemical potential of liquid cop-

per at 2000 K is -1.347 eV, only 5 meV lower than the corresponding experimental

value. This result is used to further map out the chemical potential curve of liquid-

state copper as a function of temperature at zero pressure by the thermodynamic

integration method. Finally, a melting point is predicted by locating the intersection

of the calculated chemical potential curves of the solid and of the liquid. The error

in calculated melting temperature is 80 K.
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Chapter 3

Small-cell solid-liquid coexistence

We develop the small-cell solid-liquid coexistence method as a simple and quick

approach to deliver a melting point estimate whose accuracy can be systematically

improved if more calculations are performed. This capability is ideal for material

screening efforts and solid-liquid phase diagram calculations.

The idea derives from both the traditional coexistence and fast-heating methods

(see Chapter 1.1). Despite their disadvantages, we find that these two methods are

complementary to each other, and they shed light on the search for an automated

melting temperature predictor. For example, while the coexistence method demands a

large system size that skyrockets the computer cost, the fast-heating method requires

only a small size. Also, while the fast-heating method suffers from hysteresis due to

the high energy barrier between the solid and liquid phases, the solid-liquid interface

in the coexistence method creates a channel between the two phases so they are free

to exchange, and the hysteresis is removed. These observations naturally suggest the

possibility of combining these two methods.

Let us imagine the case of small-cell solid-liquid coexistence and compare it with

the traditional large-size approach. We expect to gain a significant speed boost as

the system size is significantly reduced. At the same time, we will certainly face

another problem: the interface is not stable in small systems. In isothermal-isobaric

(constant NPT ) simulations, the system will quickly turn into a pure state, either

solid or liquid, and never go back again to the coexisting state during the short MD

time scale (∼ 10 ps) we can reach.
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We resolve this problem by employing statistical analysis on the MD trajectories.

We find that the small-size coexistence simulation contains plenty of thermodynamic

information, though it fails to maintain two stable phases. When two phases coexist

at the beginning, the system evolves following thermodynamic rules which govern

the transition between the two phases and affect the probability distribution of the

final pure states. By running many parallel small-size coexistence simulations and

analyzing this probability distribution, we can obtain the relative stability of the two

competing phases.

3.1 Methodology

3.1.1 Computational techniques

A schematic illustration of the idea is shown in Fig. 3.1. Solid-liquid coexisting

systems are prepared by heating and melting half of the solid, while the other half

is fixed frozen. Starting from a set of different coexistence configurations, isothermo-

isobaric (NPT ) MD simulations are carried out to trace the evolution. After several

picoseconds, the two interfaces annihilate with each other and all simulations end

with homogeneous phases, either solid or liquid. For instance, Fig. 3.2(a) shows the

evolution of the 50 MD trajectories of bcc Tantalum and its liquid at 3325 K. A

distribution of finally states, either solid or liquid, is evident. We can sample MD

duplicates over a number of temperatures and fit a melting temperature based on the

statistical distribution, as shown in Fig. 3.2(b).

3.1.2 Theory: probability distribution

We attempt to extract information regarding the melting temperature from the

ratio Nliquid/Nsolid, where Nliquid and Nsolid are, respectively, the number of simulations

that terminate in a completely liquid or completely solid state starting from an initial

half-half solid-liquid coexistence. To calculate this ratio, we view the interface position

x (defined by the atomic fraction of liquid phase) as obeying a random walk with a
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Figure 3.1: Schematic illustration of how the small-size coexistence method is exe-
cuted in practice. Starting from the n×n× l supercell with atoms in their ideal solid
positions, we heat and melt the right half to obtain solid-liquid coexistence configura-
tions. Then many parallel NPT MD simulations (here a total of N = Nsolid +Nliquid)
are performed in order to measure the probability distribution.
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Figure 3.2: (a) Enthalpy H versus time t shows the evolution of 50 independent MD
systems (6 × 6 × 12 supercell, 864 atoms) at 3325 K. In terms of enthalpy, lower
enthalpy corresponds to a solid, while higher enthalpy a liquid. It is clear that each
trajectory finally ends in a pure phase, either solid or liquid, after a certain amount of
time. (b) The melting properties fitted according to Eqs. (3.7) to (3.10). The average
enthalpies are shown in green dots. The solid and liquid parts (two red lines) are first
fitted separately to obtain enthalpies and heat capacities, according to Eqs. (3.8) and
(3.9). Then we combine the two phases and fit to Eq. (3.10) to compute melting
temperature. The predicted melting temperature agrees with the benchmarks (the
pink vertical bin).
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drift related to the free energy difference between the liquid and the solid phases, as

shown in Fig. 3.3. The initial state is x = 0.5 and we track the system until it reaches

either x = 0 or x = 1, which are considered completely “absorbing” states because

the formation free energy of the interface is so large that, once it has disappeared, it

would not reappear in a time frame reachable by our simulations. In between those

two absorbing states, the free energy of the system is given by G (x) = Gs + Gl−sx,

with Gl−s ≡ Gl − Gs and where Gl and Gs respectively denote the free energies of

the whole system if it were entirely liquid or entirely solid.

In a time step ∆t, the system can jump from x to x + ∆x or to x −∆x or stay

in place at x, as in Fig. 3.4. The system jump with an attempt frequency ν (which

can be assumed constant, without loss of generality, since the activation entropy can

absorb any change in ν). When jumping from x to x + ∆x, the system faces a free

energy barrier GB+Gl−s∆x/2, where GB is a barrier measured relative to the average

free energy of the initial and final states. The probability of jumping from x to x+∆x

in a time interval ∆t is thus:

px→x+∆x = ν exp

(
−β
(
GB +Gl−s∆x/2

))
∆t, (3.1)

where β = (kBT )−1 and kB is Boltzmann’s constant. Similarly, the probability of

jumping from x to x−∆x is:

px→x−∆x = ν exp

(
−β
(
GB −Gl−s∆x/2

))
∆t. (3.2)

To avoid carrying through unnecessary quantities, it is convenient to work with jump

probabilities conditional on a jump (by either +∆x or −∆x) taking place, given by,

p̃x→x+∆x ≡
px→x+∆x

px→x+∆x + px→x−∆x

, (3.3)

p̃x→x−∆x ≡
px→x−∆x

px→x+∆x + px→x−∆x

. (3.4)

As the system undergoes a random walk, the interface position, goes through a se-
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quence of values xi. A useful observation is that, for any sequence xi converging to

1 there exists a corresponding sequence x̄i ≡ 1 − xi converging to 0. In general, the

two sequences don’t necessarily have the same probability. Indeed, the ratio of their

probabilities can be derived as follows: let r and l be the number of times xi jumps

towards +∆x and towards −∆x, respectively. Note that

∏l+r
i=1 p̃xi→xi+1∏l+r
i=1 p̃x̄i→x̄i+1

=
l+r∏
i=1

p̃xi→xi+1

p̃(1−xi)→(1−xi+1)
=

l+r∏
i=1

pxi→xi+1

p(1−xi)→(1−xi+1)

=

(
exp

(
−βGl−s∆x/2

))r (
exp

(
βGl−s∆x/2

))l
(

exp
(
βGl−s∆x/2

))r (
exp

(
−βGl−s∆x/2

))l
= exp

(
−βGl−s∆x (r − l)

)
= exp

(
−βGl−s/2

)
, (3.5)

since if xi goes from 1/2 to 1, then ∆x (r − l) = 1/2. Now, if we consider every

possible path xi (of any length) going to 1, the ratio of the total probabilities is:

Nliquid

Nsolid

=

∑
{xi}
∏

i p̃xi→xi+1∑
{xi}
∏

i p̃(1−xi)→(1−xi+1)

=

∑
{xi} exp

(
−βGl−s/2

)∏
i p̃(1−xi)→(1−xi+1)∑

{xi}
∏

i p̃(1−xi)→(1−xi+1)

= exp
(
−βGl−s/2

) ∑{xi}∏i p̃(1−xi)→(1−xi+1)∑
{xi}
∏

i p̃(1−xi)→(1−xi+1)

= exp
(
−βGl−s/2

)
. (3.6)

The factor 1/2 in this Boltzmann-like expression arises because our probabilities are

conditional on the system starting in specific state (half liquid, half solid) and ending

in one of the two specific states (entirely liquid or solid). If the system were started in

a randomly chosen state and were left to evolve indefinitely (repeatedly melting and

solidifying at random), then the ratio of the probabilities of the simulation cell being
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all liquid and all solid would yield, asymptotically, the usual Boltzmann expression

exp
(
−βGl−s), without the 1/2 factor.

Since Gl−s equals zero at melting temperature, one could locate melting temper-

ature at where Nliquid equals Nsolid. However, it is not an efficient way to proceed

because it usually takes several iterations to approach melting temperature while all

the trial calculations (away from the melting temperature) are wasted. To avoid this,

we propose the following fitting method which not only takes advantages of all avail-

able calculations, but also yields more melting properties in addition to the melting

temperature.

We compute the ratios f(T ) = Nliquid/(Nsolid +Nliquid) on a set of different temper-

atures. As T increases, Gl−s turns gradually from positive to negative, so f changes

smoothly from 0 to 1. Thus we can obtain melting temperature throught fitting the

expression. In practice, in order to calculate more melting properties, we combine

this relation with enthalpy, since it can be easily calculated as an average over an MD

trajectory:

H(T ) = Hs(T ) +H l−s(T )
exp [−βGl−s(T )/2]

1 + exp [−βGl−s(T )/2]
, (3.7)

where

Hs(T ) = Hs(Tm) + Cs
p(T − Tm), (3.8)

H l−s(T ) = H l−s(Tm) + C l−s
p (T − Tm), (3.9)

Gl−s(T ) =
Tm − T
Tm

H l−s(Tm)− C l−s
p

(T − Tm)2

Tm
. (3.10)

By fitting H(T ) to T , we obtain melting properties, e.g., melting temperature Tm,

solid and liquid enthalpies Hs/l(Tm) at Tm, and heat capacities C
s/l
p . We derive Eq.

(3.10) as follows:

Ss/l(T ) = Ss/l(Tm) + Cs/l
p ln

T

Tm
, (3.11)
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Gl−s(T ) = Gl(T )−Gs(T )

= H l−s(T )− TSl−s(T )

= H l−s(Tm) + C l−s
p (T − Tm)− TSl−s(Tm)− TC l−s

p ln
T

Tm

= (Tm − T )Sl−s(Tm) + C l−s
p

[
T − Tm − T ln

T

Tm

]
= (Tm − T )Sl−s(Tm)− C l−s

p

(T − Tm)2

Tm

=
(Tm − T )

Tm
H l−s(Tm)− C l−s

p

(T − Tm)2

Tm
. (3.12)

3.2 Validation and finite-size effect

In this section, we extensively study the method on empirical potentials. Although

our method is primarily intended to be used with DFT calculations, empirical poten-

tials enable us to extensively test and study our method using an accurate benchmark

(a large cell coexistence simulation). The validation of the method is first demon-

strated. Then size effect is studied by gradually reducing the system size to around

100 atoms, which is suitable for DFT calculations.

3.2.1 Validation

We test our method on a relatively large system (6×6×12 supercell containing 864

atoms) and a Tantalum embedded atom method (EAM) potential [50]. The melting

temperature predicted is compared with the benchmarks, which we obtain by both

large-size solid-liquid coexistence method and the free energy method. The excellent

agreement demonstrates that our method is valid and that it is capable of computing

melting temperature accurately.

To generate starting configurations (xliq = 0.5) for MD simulations, we melt the

right half of the bcc Ta lattice by heating it to a very high temperature (about four

times the estimated melting temperature), while the left half is fixed at its ideal bcc

position. After the right half melts completely, we continue the MD simulation for

several thousand steps, and capture different coexisting configurations uniformly from
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Table 3.1: Melting properties and comparison with benchmarks.
this method free energy coexistence

method method
Tm / K 3325 3370 3340

∆s−lH(Tm) / eV 0.348 0.353
Cp,s / ×10−4 eV · K−1 3.49 3.24
Cp,l / ×10−4 eV · K−1 3.88 3.98

the MD trajectory. Each snapshot, a half-and-half combination of frozen solid and

superhot fluid, serves as a starting point for one MD simulation.

NPT MD simulations are carried out to trace the evolution of coexisting systems,

as is commonly done (see, e.g., Ref. [6]). Here the thermostat is conducted under the

Nosé-Hoover chain formalism [40, 41, 42, 43]. The barostat is realized by adjusting

volume every 200 steps according to average pressure. (Although this does not for-

mally generates an isobaric ensemble, we find it effective to change volume smoothly

and to avoid the unphysical large oscillation caused by commonly used barostats.)

During the first hundred femto-seconds, the temperature difference between the solid

and the liquid is eliminated through fast heat transfer. The thermostat quickly turns

the whole system to the designed temperatures, while the solid and liquid composi-

tions are still approximately 0.5, as the time scale is too short for any phase transition

to occur.

Each MD simulation undergoes either freezing or melting to a pure state. Meth-

ods including bond order parameter [51, 52] and atomic displacements are used to

distinguish between solid and liquid, and to determine whether a system has com-

pletely frozen or melted. We show in Fig. 3.2(a) the evolution of 50 independent

MD trajectories at 3325 K, from which we can clearly see phase transitions, as they

all end at either a higher (liquid) or lower (solid) enthalpy. The final enthalpy is

collected from each trajectory, shown as green dots in Fig. 3.2(b). Enthalpies and

heat capacities are fitted for the solid and the liquid state separately, according to

Eqs. (3.8) and (3.9). At each temperature, the combined enthalpy of solid and liquid

together and its standard error is computed based on binomial distribution, shown

as blue bars. Finally, melting temperature is obtained through fitting the relation
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between enthalpy and temperature according to Eq. (3.10). As shown in both Table

3.1 and Fig. 3.2(b), the close agreement between the results and the benchmarks

strongly suggests that our method is valid.

There is another interesting phenomenon we should note in Fig. 3.2(a). Although

we have assumed that a simulation will never go back to coexistence only after it

reaches a pure phase, this condition is too strong. Even when the fraction of a certain

phase is nonzero but small enough, the two interfaces on its boundaries interact so

strongly that they intend to annihilate with each other. According to Fig. 3.2(a), the

ultimate fate of an MD simulation (fully liquid or fully solid) is only “undetermined”

if its composition is within a certain region, e.g., between −7.0 to −6.9 in Fig. 3.2(a).

As soon as it steps outside the region, i.e., the composition of one phase is large

enough, this advantage is so large that it will never be overruled. This implies that

the range [xmin, xmax] of liquid fraction x where the system truly evolves as a random

walk is smaller than [0, 1]. To account for this, we introduce one more parameter into

Eq. (3.6) when fitting to reflect the a priori unknown length lx = xmax − xmin. It is

straightforward that we can rewrite Eq. (3.6) as follows, provided that [xmin, xmax] is

symmetric, i.e., xmin + xmax = 1.

Nliquid

Nsolid

= exp
(
−βGl−slx/2

)
. (3.13)

Observing that the interaction of two interfaces is determined dominantly by the

distance d between them, we expect lx to approach 1 asymptotically as we elongate

the cell along the direction perpendicular to the interface, which renders d negligible

compared the total length of the cell. We calculate the value of lx for different length

l in cell size n × n × l. When the length l increases, we find lx approaches 1 as we

expected, shown in Fig. 3.5. This predicted property serves as further proof of the

validity of our theory.

We note that although our theory is perfect (i.e., Tm is exact and lx = 1) only

when the system size is large enough, the accurate calculation of melting temperature

does not necessarily require such large size. Take the study in Fig. 3.5 as an example.
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Figure 3.5: lx as a function of cell length l in supercell size 9× 9× l. We calculate lx
on l = 18, 24, 32, and 48. The value of lx approaches 1 asymptotically as l increases.
The curve, which is a function of l−1, is fitted to show the asymptote. In the inserted
small plot, the data points are fitted to a line lx = 1− d/l.

Tm is calculated as 3306 K for both l = 18 and 48, though lx is as different as 0.52

and 0.73, respectively. Melting temperature calculations are accurate even on small

system sizes, as we will show in the next section.

3.2.2 Finite-size effect

After we demonstrate that our method is valid in the large system limit, we grad-

ually reduce the system size down to around 100 atoms, a size suitable for DFT

calculations. The size effect is studied systematically in this section. The three di-

mensional space is catalogued into two groups, i.e., the two dimensions in parallel to

the interface and the last dimension perpendicular to the interface. The contribution

of these two factors are treated separately. We find that the error of melting tem-

perature is still within 100 K even if the supercell size is reduced to 3 × 3 × 6 (108

atoms), which is appropriate for DFT MD calculations.

We first study the directions parallel to the interface plane. As the box size

becomes smaller in these two directions, the periodic constraints exert more impact

on both phases, especially on the liquid, since the correlation length is truncated by

the box vectors. Therefore the calculated melting temperature starts to deviate from
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Figure 3.6: Finite-size effect caused by system size n in n×n×l. Melting temperatures
are calculated on n×n×12 supercells with n ranging from 2 to 6, following the same
scheme described in Sec. 3.2.1. We find that melting temperature calculations are
still correct for n down to 3.
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Figure 3.7: Finite-size effect caused by system size l in n×n×l. Melting temperatures
are calculated on 3× 3× l supercells with l from 12 down to 4, We find that melting
temperature is still accurate even for a system size as small as 3× 3× 6.

the true value. We decrease supercell sizes (n × n × 12) from n = 6 down to 2,

and calculate melting temperature for each size, following the same recipe. The size

dependence of melting temperature is shown and compared in Fig. 3.6. We find that

even for a system size as small as n = 3, the finite size effect is still negligible.

We then study the size effect along the direction perpendicular to the interface. As

we reduce the vector along this direction, the interaction among interfaces becomes

stronger, either attracting or repelling each other and thus biasing the result. We

gradually decrease l from 12 to 4. n is set to 3, because it is small enough and it still

leads to the correct melting temperature, according to the analysis in the previous
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Figure 3.8: Various tests on different materials to study the finite-size effect on melting
temperature calculations. Tests are conducted on bcc tantalum, niobium, fcc copper,
and ionic sodium chloride. These tests suggests that if we perform calculations with
around 100-200 atoms, we are likely to achieve an accuracy of 100 K in melting
temperature.

paragraph. We find that the error is still small even for 3 × 3 × 6, as shown in Fig.

3.7.

3.2.3 More tests

Employing empirical potentials, we test the method on different materials, in-

cluding bcc Niobium[53], fcc copper [5], and ionic material sodium chloride [32].

For each material, we study the finite-size effect caused by system size n × n × l.

The melting temperatures calculated are presented in Fig. 3.8. For super-cells with

n : n : l = 1 : 1 : 2 (so the box size is approximately a × a × 2a), we summarize the

finite-size error in Fig. 3.9. When the system size is large, the excellent agreement

with the benchmarks serves as strong evidence of the reliability of our method. In

order to achieve the accuracy within 100 K in melting temperature calculation, we

find that it is usually sufficient if the system size is larger than 10 Å and if it contains
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Figure 3.9: The impact from box size a× a× 2a on the error of melting temperature
calculation. When the size is larger than 10 Å, an accuracy of 100 K in Tm is usually
guaranteed, though for ionic materials it is relatively less accurate due probably to
the long-distance Coulomb interaction.

more than 100 atoms. This property strongly supports our claim that this method

can be applied to DFT calculations.

3.3 Applications

3.3.1 Tantalum at ambient pressure

As a simple example, we first apply our method to the melting temperature cal-

culation of Ta at ambient pressure.

The simulations are performed on a 3× 3× 6 bcc supercell containing 108 atoms.

All electronic structures are calculated by the Vienna Ab-initio Simulation Package

(VASP) [35, 36, 54], with the projector-augmented-wave (PAW) [37] implementation

and the generalized gradient approximation (GGA) for exchange-correlation energy,

in the form known as Perdew-Burke-Ernzerhof (PBE) [39]. Both the valence 6s,

5d and inner core 5p electrons (denoted as PBE-core) are included. The electronic

temperature is accounted for by imposing Fermi distribution of the electrons on the

energy level density of states so it is consistent with the ionic temperature. The

plane wave energy cutoff is set to 224 eV and further increased to 500 eV for pressure
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Figure 3.10: The melting properties fitted according to Eqs. (3.7) to (3.10). All
calculations are based on PBE-core pseudo-potential.

Table 3.2: Melting properties and comparison with benchmarks.
this method experiment

Tm / K 3200 3258
∆s−lH(Tm) / eV 0.274 0.379

Cp,s / ×10−4 eV · K−1 2.57 4.34
Cp,l / ×10−4 eV · K−1 2.52 4.57

correction. A special k-point (0.00 0.25 0.25) is used throughout the calculations.

To estimate the error of using this single k-point, we compute its difference to fully

converged value on randomly chosen configurations including both solid and liquid.

The root mean square error is less than 1 meV/atom.

As shown in Fig. 3.10 and Table 3.2, the melting temperature calculated is 3200

K, only ∼60 K lower than the experiment. This magnitude of error is consistent

with our previous size-effect study in Sec. 3.2.2. It is interesting that, in contrast,

the calculated heat of fusion and heat capacity (as shown in Table 3.2) differ more

significantly from the experiment. These observations are not contradictory. First,

finite size effects could introduce a similar bias in the free energies of both the solid and

the liquid phases, so that such bias would manifest itself in phase-specific quantities

but would only have a second-order effect on the melting point. Second, although the

argument of error cancellation between phases is not applicable to the heat of fusion,

another possible error cancellation mechanism is between entropy and enthalpy, as
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Figure 3.11: Comparison of PBE-core, PBE-valence, and PW91-core, from bottom
to top. The latter two are shifted vertically for clarity.

these two quantities tend to change in concert but affect the free energy in opposite

ways. Periodic boundary conditions cause the long-range pair-correlation of the liquid

to exhibit some solid-like character. This could lead to a larger reduction in both the

entropy and the enthalpy of the liquid phase relative to the solid phase. Further study

on finite-size effects would be useful to confirm this and could suggest approaches to

include finite-size corrections to the current method.

We evaluate the importance of the core 5p electrons by freezing them in elec-

tronic structure calculations (denoted as PBE-valence). As shown in Table 3.3 and

Fig. 3.11, the new PBE valence-only pseudo-potential reduces the calculated melting

temperature and worsens the results. This necessity of 5p core electrons is consistent

with previous findings [55].

We also test the effect of exchange-correlation functionals by changing it to the

Perdew-Wang 1991 (PW91) form [56] (denoted as PW91-core). As summarized in

Table 3.3 and Fig. 3.11, it also reduces the calculated melting temperature and

worsens the results. This small discrepancy is not strange, since there has been

evidence showing the differences between PBE and PW91, although they are regarded

as almost identical GGA functionals most of the time. Our results indicate that

PBE is a better exchange-correlation functional than PW91 in the case of Tantalum
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Table 3.3: Comparison of PBE-core, PW91-core and PBE-valence.
PBE PBE PW91 experiment
core valence core

Tm / K 3200 2990 3070 3258
∆µβ −∆µα (λ = 0, 1) / meV - −2.5,−6.4 −6.8,−7.3 -

melting.

The impact of PW91-core and PBE-valence can be quantified in the following

way. At the melting temperature, the free energy difference is zero, i.e.,

∆µ = µliquid − µsolid = 0. (3.14)

We employ the thermodynamic integration method to estimate the impact PW91-core

and PBE-valence have on the free energy difference ∆µ:

µβ = µα +
1

N

∫ 1

0

〈
Hβ −Hα

〉
Hλ

dλ, (3.15)

where β is PW91-core or PBE-valence, α is PBE-core and

Hλ = (1− λ)Hα + λHβ. (3.16)

The integral is evaluated only at λ = 0 (PBE-core) and 1 (PW91-core or PBE-

valence). Snapshots of pure solid and liquid are chosen randomly from MD trajectories

of λ = 0 and 1, and the energy differences Hβ − Hα are calculated on them. As

summarized in Table 3.3, PW91-core and PBE-valence stabilize liquid phase by 7 and

4 meV, respectively. Over-stabilized liquid results in a lower melting temperature,

and thus qualitatively explains the melting temperature trend predicted.

Similar to the procedure we have employed in Fig. 3.8, the traditional coexistence

method could serve as a benchmark to judge the quality of our calculation. However,

such large-scale first-principles MD is computationally prohibitive. Here we perform

such a check only on the relatively “less expensive” PBE-valence pseudo-potential. A

6× 6× 12 supercell (864 atoms) containing solid and liquid coexistence is employed
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Figure 3.12: NV E MD simulation of solid-liquid coexistence with 864 Ta atoms.

in NV E MD. As shown in Fig. 3.12, the melting temperature is around 2900 K, in

close agreement with the corresponding small-size coexistence calculation (2990 K),

thus further confirming the reliability of our method.

3.3.2 Sodium phase diagram under high pressure

A prototypical simple metal at ambient conditions, sodium exhibits unexpected

complexity under high pressure. One typical example is the so-called “reentrant”

behavior, i.e., the melting curve of sodium reaches a maximum around 1000 K at ∼30

GPa followed by a pressure-induced drop, which extends to nearly room temperature

at ∼120 GPa and over the stability regions of three solid phases [57]. There have

been computational evidences supporting the experimental observation. Raty et al.

[11] employed the fast-heating method and obtained a melting curve close to the

experiments. Eshet et al. [58] used a neural-network method based on DFT and

calculated a melting curve through the free energy method. Despite their successful

capture of the reentrant behavior, the detailed melting points in these two articles

are nevertheless quite different. The possible reason could be either the overheating

problem in the former method, or the inaccuracy brought in by the neural-network

method of the latter. Our small-size coexistence method provides an independent

way to corroborate either one of these results.
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Figure 3.13: The melting temperatures of bcc and fcc Na up to 120 GPa fitted
according to Eqs. (3.7) to (3.10).

Table 3.4: Melting temperature and volume change upon melting at different pres-
sures.

P / GPa 15 26 40 55
Tm / K 657±8 750±16 742±17 716±12

∆V l−s / Å3 0.048 0.029 -0.005 -0.023
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Figure 3.14: Comparison of our results with other theoretical and experimental stud-
ies. Our melting temperatures at 20-50 GPa are presented as red dots. Green dia-
monds are experimental results from Ref. [57]. Purple triangles are melting temper-
atures by fast-heating method in Ref. [11]. Blue squares are melting temperatures
by empirical potential in Ref. [58].

The simulations are performed on 3 × 3 × 6 bcc supercell containing 108 atoms

and 3 × 3 × 5 fcc supercell containing 180 atoms. All electronic structures are cal-

culated by the Vienna Ab-initio Simulation Package (VASP) [35, 36, 54], with the

projector-augmented-wave (PAW) [37] implementation and the generalized gradient

approximation (GGA) for exchange-correlation energy, in the form known as Perdew-

Burke-Ernzerhof (PBE) [39]. Both the valence 3s and inner core 2p electrons are in-

cluded. The electronic temperature is accounted for by imposing Fermi distribution

of the electrons on the energy level density of states so it is consistent with the ionic

temperature. The plane wave energy cutoff is set to 260 eV and it is further increased

to 500 eV for pressure correction. A special k-point (0.00 0.25 0.25) is used through-

out the calculations. To estimate the error of using this single k-point, we compute

its difference to fully converged value on randomly chosen configurations including

both solid and liquid. The root mean square error is less than 1 meV/atom.

The calculated melting temperatures under various pressures are shown in Fig.

3.13 and Table 3.4. In the bcc region, we successfully capture the reentrant point
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near (750 K, 40 GPa). Beyond this point, Tm starts to drop, and the specific volume

change of melting, ∆V l−s ∝ dTm/ dP , turns from positive to negative, in agreement

with the decrease of Tm. In the fcc region, the melting temperature keeps dropping

as the pressure increases. The phase transition between the two solids, bcc and

fcc, are calculated using the free energy method. We employ the quasi-harmonic

approximation and thermodynamic integration methods to calculate the free energies

of the two phases. The phase transition point is located as the intersection of the two

free energy curves.

Our calculations agree very well with the result reported in Ref. [58], while the

melting temperatures are still significantly lower than results from the fast heating

method [11], as summarized in Fig. 3.14. Our results suggest that the neural net-

work method in Ref. [58] successfully mimics the interactions as comparable to DFT

accuracy, while the over-heating issue, though relatively small, is still limiting the

accuracy of the fast heating method employed in Ref. [11]. To further verify our

statement, we perform benchmarking through very expensive large-size coexistence

simulation (with 864 Na atoms). As Fig. 3.15 demonstrates, the melting temperature

is around 750 K at 26 GPa, thus corroborating the reliability of our calculations. Al-

though the melting temperatures we compute, along with Ref. [58], are significantly

lower than experiments, the good agreement with large-size coexistence calculations

points to DFT errors, rather than a flaw of our method.

Our method’s capability of obtaining melting temperature directly from DFT

exhibits its potential to predict phase diagrams. Our melting curve in the bcc solid

region, to the best of our knowledge, serves as the first directly first-principles and

hysteresis-free computational evidence for the reentrant point of sodium.

3.3.3 NaCl at ambient pressure

After giving two examples on metals, we choose sodium chloride, an ionic mate-

rial, as our last example. For a long time, melting temperature calculations of ionic

crystals were limited to only empirical potentials, probably due to the high expense
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Figure 3.15: Traditional large scale coexistence method (NV E) at different E. Sys-
tems with different E are shown in different color. We plot in this figure the tem-
perature evolution over time. Broken lines are time averages so they are more stable
and clearer. Atomic configurations are included to help understand the results. The
solid part has clear ordered patterns while the liquid part does not. All starting from
solid-liquid coexisting configurations (black), only the system with proper E (green)
remains in stabilized coexistence. A system with too high E will completely melt
(red) and vice versa (blue). These tests suggest the melting temperature is around
750 K.
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Figure 3.16: The melting properties of NaCl fitted according to Eqs. (3.7) to (3.10).
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for DFT correction by thermodynamic integration, as the corresponding high-quality

empirical potentials are difficult to find. Recent development of computer power has

made possible progress on direct large-scale coexistence simulations of Magnesium

Oxide [10] and Lithium Hydride. [9]. However, these calculations are “extremely

computationally intensive”. Employing the “Z-method”, Belonoshko et al. have also

successfully calculated melting temperature for Magnesium Oxide [13].

The simulation techniques are similar to those described in previous sections. We

use a 2 × 2 × 4 supercell containing 64 Na and 64 Cl atoms. Electronic structure

calculations are performed by VASP PAW-PBE. Only valence electrons are included,

i.e., the 3s electron for Sodium and 3s, 3p electrons for Chlorine. Electronic temper-

ature is accounted for by a Fermi distribution. The energy cutoff is 280 eV and only

Γ-point is used throughout the calculation. The error caused by using only Γ-point

is less than 0.6 meV/atom.

As shown in Fig. 3.16, the melting temperature is 1016 K, which agrees well with

the experimental value, 1074 K.

3.4 Discussions

3.4.1 Advantages: robustness, accuracy, speed, etc.

• Robustness and accuracy

The method we developed is based on formal theoretical grounds, derived in

Sec. 3.1, and its reliability is further strengthened by the excellent agreement

with benchmarks, shown in Fig. 3.8, especially when the system size is large.

Various tests show that finite size effects are usually small and acceptable when

the system size is larger than 10 Å and when it contains more than 100 atoms,

a size manageable by DFT calculations. Our DFT examples demonstrate that

our method is robust, efficient, and applicable to a wide class of materials.

• Speed

To calculate a melting temperature, we usually need 30-60 MD simulations,
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Table 3.5: Computational costs of our method and traditional coexistence approach.
(Unit: ×103 cpu hours on the Stampede cluster at TACC.)

traditional coexistence our method
single trajectory total total

Ta, PBE-valence 150a ∼ 500 30b

Na, P=26 GPa 42, 48 and 35c 125 26d

a shown in Fig. 3.12.
b shown in Fig. 3.11 and Table 3.3.
c shown in Fig. 3.15, colored in blue, green, and red, respectively.
d shown in Fig. 3.13 and Table 3.4.

each with an average length of 10-20 ps. Overall, our method saves significant

computational costs compared to the traditional large-scale coexistence method.

We list and compare in Table 3.5 the timings of several DFT examples we

present in this article. In terms of total costs, our method is less expensive by

approximately one order of magnitude. In addition, our method is inherently

parallelizable, as we can run the whole set of MD simulations simultaneously.

Therefore it takes us the time of running only one single MD trajectory to finish

a melting temperature calculation, if we have plenty of computer resources. In

contrast, one usually needs to perform, step by step, a long-time (usually more

than 10 ps) MD simulation on a large-size system in traditional coexistence

method, which usually takes several months.

• flexibility

A distinguishing feature of this method is its ability to systematically improve

melting point estimate if more calculations are performed. This is an inherent

property of the statistical method. When more computational resources become

available, the method can afford more statistical sampling, which helps reduce

sampling error and increase accuracy. Meanwhile, the finite size error can also

be systematically reduced if a larger cell size is employed.

It is interesting to compare our approach to the two-phase thermodynamics method,

which calculates the entropies and free energies of liquids by partitioning the density

of states (DOS) into two parts, i.e., the solid-like Debye-model DOS and the gas-
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like hard-sphere DOS. This approach has been successfully applied to a wide variety

of substances, including water [26] and many organic compounds [25]. Indeed, this

method is surprisingly fast, since it only requires a MD simulation of ∼ 20 ps. How-

ever, the methods should be compared, not only in terms of computational costs,

but also in terms of accuracy and their ability to converge to the correct answer as

computational effort is increased. The two-phase thermodynamics approach relies on

the assumption that the partitioning of DOS into two phases is always valid, which

is not necessarily true. In addition, the harmonic approximation used for entropy

calculations would be problematic at high temperatures, when anharmonic effect

becomes significant. Due to these approximations, the two-phase thermodynamics

method tends to underestimate the excess entropy by 5% [26]. Although small, this

error is detrimental to melting temperature calculations. For instance, we estimate

the error to be 40-60 meV in free energy and ∼ 500 K in melting temperature if

the two-phase thermodynamics method is applied to the case of liquid-state copper,

which we have studied extensively and achieved an accuracy of 100 K in melting

temperature by DFT and particle insertion method. Therefore, we conclude that our

approach nicely fills the gap between the two phase thermodynamics method (at one

extreme of the accuracy/cost trade-off) and methods based on large-scale coexistence

(at the other extreme of the accuracy/cost trade-off). Our small-cell coexistence ap-

proach is immune to such problems. Its uncertainties only arise from finite size effects

and statistical sampling, both of which can be systematically reduced by increasing

computational resources. In contrast, the two-phase thermodynamic approach is not

systematically improvable, because the partitioning and harmonic approximations are

central to its convenient implementation.

3.4.2 Disadvantages: finite-size error, slow kinetics, and con-

figurational entropy

• Finite-size error

As discussed in Secs. 3.2.2 and 3.2.3, this method is subject to finite-size errors,
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i.e., about 100 K in melting temperature for a system size of 100-200 atoms.

Although this seems to be a major disadvantage of our method compared to oth-

ers, we note that the finite-size effect is a universal problem persisting in almost

all melting temperature prediction methods. (The large coexistence method is

an exception, but it is nearly infeasible due to its high cost.) For example, the

fast-heating method and Z-method usually use a comparable system size, so

they suffer from similar size effect as well, in addition to the hysteresis problem.

As another example, let us consider the free energy method based on empir-

ical reference potentials followed by DFT corrections. One might argue that

the finite-size error can be completely eliminated if convergence is achieved on

empirical potentials with respect to system size. But this is not exactly true.

As DFT corrections are usually performed on small-size systems, the final free

energy calculated by this method is, strictly speaking, a DFT free energy on a

small system plus a finite-size correction by the empirical potential. One can

never guarantee that the finite size effect from an empirical potential will be

the same (or even similar) to that of DFT. Therefore the free energy method is

also subject to finite-size errors.

We can approximately correct the finite-size errors by extrapolating the con-

vergence behavior of both phases. The quasi-harmonic approximation provides

a quick approach to estimate the correction in the solid phase, while radial

distribution function [61] gives insight into the entropy of the liquid phase. Pre-

liminary study shows promising results and sheds light on the improvement of

the current method, making it more accurate and efficient, as we can further

reduce the system size.

Another problem of finite size effect is that the system could be stabilized in

a wrong phase, for either solid or liquid. This problem occurs when there is a

competing alternative near the desired phase in the phase diagram. In reality,

this competing phase is relatively less stable, but the finite-size effect could

revert the stability relation of them, so that the simulation ends in a wrong
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structure. Therefore, we recommend that one should check the final structure

of a MD trajectory to make sure that it is in the desired solid or liquid phase.

• Slow kinetics

Although the method is robust in melting temperature prediction, it also inher-

its the disadvantage of MD simulations, unfortunately. For example, it suffers

from the well-known rare event problem. This renders it problematic for the

following circumstances:

1. If the crystal structure of the solid is complex, the liquid half may fail to

find the right crystal structure when solidifying, and it may form defected

solid structures. Fortunately, this possibility is readily detectable in the

simulations.

2. If there is more than one solid configuration and the stability is based on

certain distribution in phase space, e.g., for some alloys, MD will fail to

explore all configurations in limited computer time and find kinetically-

favored metastable structure.

3. If the elemental concentrations of the solid and the liquid are different

at the equilibrium, MD is not capable of redistributing different atoms

in each phase sufficiently fast. In systems where this occurs, the method

can still be used to find melting points at compositions where congruent

melting occurs. Free energy integration (on fairly small simulation cells)

can be used to find the solidus and liquidus at other compositions, using

congruent melting points as free energy references.

However, we note here that these problems are also common to other methods,

e.g., in the traditional large scale coexistence method.

• Configurational entropy

For a solid, a particular arrangement of atoms on lattice sites is called a con-

figuration. Configurational entropy is common in materials. For example, in
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Figure 3.17: Difference between (a) pure-solid and (b) solid-liquid coexistence SQS’s.
A good SQS representation generated in a periodic solid is no longer valid in solid-
liquid coexistence.

a multicomponent system (e.g., metal alloy), the number of accessible config-

urations can be enormous as different kinds of atoms sit on different types of

lattice sites. The probability of visiting each configuration is proportional to

the Boltzmann weight of its free energy.

The solid portion in a coexisting cell needs to represent this overall distribution

on the accessible configurations. At high temperatures, the special quasirandom

structure (SQS), which provides a efficient representation of a completely dis-

ordered state, is an effective approach. This strategy is heavily employed in the

study presented in Chapter 5, and the melting temperatures calculated are in

good agreement with experiments. Despite its success, we note another minor

problem, as illustrated in Fig. 3.4.2: a SQS representation in a periodic solid

(which is easy to generate) is not equivalent to a SQS in solid-liquid coexistence

(which is difficult to generate), due to the broken symmetry and the presence

of the interface. The latter SQS (low symmetry, too many types of lattice sites

and clusters) requires a large system size, hence (1) the SQS is difficult to gen-

erate and (2) the system size is too large to apply in small-cell coexistence. In

practice, we use the former SQS to represent the latter. We plan to further

investigate into this problem.
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3.4.3 Pulay stress

The Pulay stress is an error that occurs in the stress tensor when using density

functional theory. It occurs when trying to relax the volume of a crystal using a

constant basis set, or equivalently when trying to calculate the pressure. In VASP,

the Pulay stress arises from the fact that the planewave basis set is not complete

with respect to changes of the volume. The volume always tends to contract, in order

to achieve a denser (close to complete) basis set. Thus, unless absolute convergence

with respect to the basis set has been achieved, the diagonal components of the stress

tensor are incorrect.

“Absolute convergence” is usually achieved by setting the precision tag to high

(PREC=high, or using a large planewave energy cutoff), which will significantly in-

crease the computer cost and is usually not affordable in MD. The normal precision

usually has negligible impact on the description of atomic interactions. The missing

bases mostly contribute to the spikes near the nuclei, and thus barely affect the inter-

atomic bonding region, where wavefunctions are smooth enough to be described by

the low-frequency planewaves. With precision set to normal, the Pulay stress is up

to 30 kbar, especially for non-metal elements such as nitrogen, oxygen, and carbon.

Small-cell coexistence MD is usually carried out with the normal precision. The

Pulay stress associated with this setting can result in the wrong pressure and hence

wrong volume. This error may translate into a considerable amount of error in the

calculation of melting temperature. According to the Clausius-Clapeyron relation,

dTm
dP

=
Tm∆V

∆H
, (3.17)

where ∆V is volume change upon melting, and ∆H is heat of fusion. Assuming

Tm = 2000 K, ∆V = 0.1× Vs = 1 Å3 [62], ∆H = 0.2 eV, ∆P = 30 kbar, we have

∆Tm = 190 K.

We therefore emphasize the importance of including Pulay stress in pressure calcula-
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tion. Furthermore, we note that the Pulay stress varies as the composition changes

in multicomponent systems, and hence an updated Pulay stress is necessary when

working on a new composition.

3.5 Code development

We are in the process of fully automating the process of small-cell coexistence

melting point calculation and implementing it into a computer code which will be

capable to predict melting point from input of (i) solid structure and (ii) estimated

melting point (optional). The code consists of the following steps.

1. Find lattice parameter of solid near estimated melting point. Find density

of liquid (and corresponding “lattice parameter”). Build a supercell with a

properly chosen lattice parameter (usually the average of solid and liquid, to

minimize mismatch).

2. Generate solid-liquid coexistence by melting half of the solid supercell.

3. Choose best approach to sample solid-liquid distributions at various T , based

on current knowledge of melting temperature.

4. Starting from coexistence, run NPT molecular dynamics to determine the final

phase. (This part is already automated.)

5. Fit a melting point. Determine whether or not more sampling is needed. If yes,

go to step 3.

We plan to distribute the code “Solid and Liquid in Ultra Small Coexistence with

Hovering Interfaces (SLUSCHI)” in December 2014.

3.6 Conclusions

To summarize, we have proposed an efficient and accurate method of calculating

the melting temperature of materials. This method is based on the statistical anal-
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ysis of small-size coexistence MD simulations, so it circumvents both the hysteresis

overheating problem in small system size and the prohibitive computer cost in tra-

ditional coexistence method. Using empirical potentials, we present the validation

of the method and systematically study the finite-size effect on the melting temper-

atures calculated. Through the DFT examples, we demonstrate the capability and

flexibility of the method in its practical applications.
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Chapter 4

Melting properties of lanthanum
zirconate (La2Zr2O7)

Lanthanum zirconate is being investigated for a wide range of applications, in-

cluding solid oxide fuel cell electrodes [63, 64], fluorescence screens [65, 66], catalysts

[67, 68], and high-temperature superconducting coated conductors [69, 70]. In par-

ticular, La2Zr2O7 is proposed as a promising thermal-barrier coating (TBC) material

[71, 72, 73, 74, 75, 76, 77, 78, 79, 80] to replace the most-commonly used yttria-

stabilized zirconia (YSZ) for the following reasons: (i) La2Zr2O7 coating has high

phase stability against thermal treatment, and thus it is capable of functioning under

higher temperatures, far beyond the limited operation temperature (1200 ◦C) of YSZ

[81]; (ii) La2Zr2O7 has a lower thermal conductivity, which provides better thermal

insulation for the components from large and prolonged heat loads; (iii) La2Zr2O7

has a lower oxygen ion diffusivity (less oxygen-transparent), so it protects the body

coat from oxidation. The major drawback of La2Zr2O7 as a TBC coating is its small

thermal expansion coefficient, which does not match that of the superalloy in the

body coat.

The assessment of novel refractory materials, such as lanthanum zirconate, de-

mands the determination of a number of physical, chemical, and mechanical prop-

erties. We demonstrate how ab initio calculations can be used in conjunction with

advanced experimental techniques (synchrotron X-ray diffraction on laser heated aero-

dynamically levitated samples and thermal analysis above 2000 ◦C) to provide a more
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complete and accurate picture of thermal properties. Our combined computational

and experimental investigation determines key material properties, ranging from en-

thalpy of fusion and melting temperature to thermal expansion and heat capacity.

We also investigate the possibility of high-temperature sublattice disordering.

Some properties are more directly obtained via computational means. For in-

stance, the heat of fusion, the heat capacity, and the thermal expansion are straight-

forward to calculate, but clearly benefit from an experimental verification to ascertain

the validity of the modeling assumptions (e.g., stable structure, sources of entropy,

and the reliance on density functional theory). These measurements, while simple at

low temperature, become challenging above 1500 ◦C, as considered in this work, be-

cause they necessitate development of new experimental techniques and calibration

standards. In contrast, other properties are more easily accessible experimentally.

The most striking example is the melting point, where computational efforts via

ab initio methods demand advanced techniques to reduce the computational bur-

den [9, 10, 17, 19, 82, 83, 84, 85]. In this work, the recently proposed small-cell

coexistence method makes it feasible to calculate the melting point of a compound

with a substantially more complex crystal structure than considered in prior ab ini-

tio computational studies. Given the challenges associated with these calculations,

experimental validation is particularly important. Another important example of

computational-experimental complementarity is the determination of the presence of

sublattice disordering. While it is difficult to assess the state of order of the oxygen

sublattice via X-ray diffraction (due to its small scattering factor), our computa-

tions can rather clearly establish the possibility of such a disordering transition, since

oxygen diffusion is visible in our simulations. Conversely, disordering on the cation

sublattice is not as easily accessible in our simulations but would have been detected

experimentally if it were present.

Overall, our results show very good agreement between experimental measure-

ments and their computational counterparts, even in cases reaching the limit of to-

day’s computational or experimental methods. This situation supports the validity

of our thermodynamic description.
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4.1 Methodology

Pyrochlore La2Zr2O7 structure has the space group of Fd3̄m that is derived from

the fluorite-like arrangement of atoms. The cubic pyrochlore structure of La2Zr2O7

has been discussed in detail. [86, 87, 88, 89]. As shown in Fig. 4.1, the La3+ ions

occupy the special site 16d (1/2, 1/2, 1/2) and the Zr4+ ions occupy the special site 16c

(0, 0, 0). The oxygen atoms are located at sites 48f (x, 1/8, 1/8) and 8b (3/8, 3/8, 3/8),

and the oxygen vacancies at 8a (1/8, 1/8, 1/8). Table 1 lists the lattice parameter and

the value of x from both calculation and experiment. The primitive unit of La2Zr2O7

consists of 4 La, 4 Zr, and 14 O atoms. There are 88 atoms in a face-centered cubic

(fcc) conventional unit cell. La2Zr2O7 is also reported in the defect fluorite (Fm3̄m)

structure as transitory during radiation damage and from low temperature synthesis.

The defect fluorite structure can be derived from pyrochlore by disordering on both

cation and anion sublattices.

4.1.1 Computation

We employ first-principles density functional theory [2, 3, 4] to model La2Zr2O7.

All electronic structures are calculated by the Vienna Ab-initio Simulation Package

y

16c

48f

8b

8a

16d

z

a

2

x

Figure 4.1: Pyrochlore structure of La2Zr2O7.
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(VASP) [35, 36, 54], with the projector-augmented-wave (PAW) [37] implementation

and the generalized gradient approximation (GGA) for exchange-correlation energy,

in the form known as Perdew-Burke-Ernzerhof (PBE) [39]. For Lanthanum, the inner

core 5s and 5p electrons are relaxed for electronic structure optimization. The elec-

tronic temperature is accounted for by imposing a Fermi distribution of the electrons

on the energy level density of states, so it is consistent with the ionic temperature.

First-principles molecular dynamics (MD) techniques are utilized to simulate atomic

movements and trajectories of La2Zr2O7 in order to compute various properties.

Specifically, MD simulations are carried out under a constant number of atoms, pres-

sure, and temperature condition (NPT , isothermal-isobaric ensemble). Here the

thermostat is conducted under the Nose-Hoover chain formalism [40, 41, 42, 43]. The

barostat is realized by adjusting volume every 200 steps according to average pres-

sure. Although this does not formally generate an isobaric ensemble, this approach

has been shown to provide an effective way to change volume smoothly and to avoid

the unphysical large oscillation caused by commonly used barostats. The La2Zr2O7

pyrochlore structure is taken as a starting point for all MD simulations of the solid

phase.

4.1.2 Experiment

Laser melting of La2Zr2O7 for diffraction and thermal analysis experiments causes

some loss of La, resulting in La1.96Zr2.03O7 stoichiometry, as determined by microprobe

analysis. Thermal analysis is performed in sealed tungsten crucibles in Setaram Setsys

2400 instrument modified to enable sample temperature monitoring with spectropy-

rometer [90, 91]. High temperature X-ray diffraction experiments are performed on an

aerodynamic levitator at beamline 11-ID-C at the Advanced Photon Source, Argonne

Table 4.1: Experimental and calculated structures of La2Zr2O7.

method Expt. PBE HSE HF

a(Å) 10.805 10.880 10.833 10.728
x 0.4200 0.4172 0.4171 0.4170
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Figure 4.2: Melting and crystallization of La1.96Zr2.03O7 in thermal analyzer at 10
◦C/min heating/cooling rate. 150 ◦C undercooling is evident. Integration of peaks in
heat flow (blue trace) on melting and crystallization gives similar values, indicating
direct crystallization of pyrochlore phase.

National Laboratory. A detailed description of experimental setups is published else-

where [92]. Processing of diffraction data is performed with GSAS-II software [93].

Splat quenching of lanthanum zirconate melt is performed at UC Davis using a custom

built splittable nozzle aerodynamic levitator with CO2 laser heating.

4.2 Melting and thermal properties

4.2.1 Fusion enthalpy

Fusion enthalpy is calculated as the enthalpy difference between the solid and the

liquid at 2500 K. We perform NPT MD simulation to generate a trajectory for each

phase. The enthalpy is evaluated as an average over time during the MD trajectory.

We use a supercell containing 88 atoms (8 La2Zr2O7) for the pyrochlore phase.

Modeling liquid phase on a periodic cell is subject to a relatively stronger finite-size

effect, since the liquid is imposed by the unrealistic periodic boundary condition. So

we choose a larger cell with 176 atoms to describe the liquid phase more accurately.

We perform further correction on the data from PBE to a more accurate hybrid

functional of Heyd-Scuseria-Ernzerhof (HSE) [94]. For both the pyrochlore and liquid



67

phases, we compute energy differences between PBE and HSE on randomly chosen

snapshots from MD trajectories, and then combine them as a correction on the fusion

enthalpy.

The fusion enthalpy is calculated to be 0.26 eV/atom (270 kJ/mol). After HSE

correction, it is 0.28 eV/atom (300 kJ/mol). The major error is considered to be the

finite-size effect from the liquid phase. Based on a study on different system size (88

atoms versus 176 atoms), the error is estimated to be 0.02 eV/atom (20 kJ/mol).

The first experimental measurement of fusion enthalpy for La2Zr2O7 pyrochlore

was reported by Radha [79]. The new set of measurements (Fig. 4.2) is performed

on laser melted La1.96Zr2.03O7 in sealed tungsten crucibles to prevent carbon contam-

ination from furnace. Uncertainty in experimental measurements of fusion enthalpy

by thermal analysis is difficult to evaluate due to the absence of enthalpy calibration

standard above Al2O3 melting temperature (2054 ◦C). The value 300 ± 50 kJ/mol

can be taken as a conservative evaluation of both sets of experimental measurements.

The close agreement between computation and experiment strongly supports the

validity of the results. We find the computational approach relatively easier than its

experimental counterpart in determining heat of fusion, when temperature reaches far

beyond the Al2O3 melting temperature (2054 ◦C). The enthalpy calibration standard

for higher temperature, e.g., Y2O3 (2430 ◦C), would increase the accuracy of fusion

enthalpy measurements by commercially available thermal analyzers. We plan to work

on it in the next step, using a combined experimental and computational approach.

4.2.2 Melting temperature

We employ our small-size coexistence method to calculate the melting tempera-

tures. The result is shown in Fig. 4.3. The details of this method have been described

previously in Section 3.1. The simulations on La2Zr2O7 are performed on a 1× 1× 2

fcc supercell, which contains 176 atoms and measures approximately 11×11×22 Å3.

The plane wave energy cutoff is set to 400 eV and is further increased to 500 eV for

pressure correction. NPT MD simulations are carried out to trace the evolution of
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Table 4.2: HSE correction on melting temperature.

TPBE
m 2420 K

∆µs -2.634 eV
∆µl -2.610 eV
∆H l−s 0.28 eV
∆Tm 210 K
THSE
m 2630 K

coexisting systems. Only Γ-point is used throughout the calculations. To estimate

the error of using this single k-point, we compare it with the fully converged k-point

grid and compute the energy difference on randomly chosen configurations from both

solid and liquid. The root mean square error is less than 1 meV/atom.

The melting temperature Tm is calculated to be 2420±28 K, as shown in Fig. 4.3.

We apply a correction based on the more accurate hybrid functional of HSE. First,

free energy correction is made on each phase following the thermodynamic integration

method:

µβ = µα +
1

N

∫ 1

0

〈
Hβ −Hα

〉
Hλ

dλ, (4.1)

where β is HSE and α is PBE. Due to the high computational cost of HSE, only
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Figure 4.3: The melting temperature of La2Zr2O7 fitted according to Eqs. (3.7) to
(3.10).
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Table 4.3: Comparison with experimental melting temperature.

T (◦C) Reference
2150 this work, PBE
2360 this work, HSE
2260 this work, expt.
2295 Radha (2009) [79]
2340 Lakiza (2005) [95]
2230 Zoz (1978) [96]
2160 Portnoi (1972) [97]
2280 Rouanet (1971) [98]
2250 Lin (1964) [99]

λ = 0 is used for integration. Then melting temperature correction is evaluated as

∆Tm = (∆µl −∆µs) · Tm
∆H l−s , (4.2)

where ∆µl/s are the corrections in free energies for the liquid and the solid, ∆H l−s is

heat of fusion, and ∆Tm is melting temperature correction. Detailed data of the HSE

correction on melting temperature are listed in Table 4.2. The melting temperature

after HSE correction is 2630 K.

The experiment measures the melting temperature as 2260 ◦C (2530 K), which lies

in the middle of the two theoretical predictions. Our results are in close agreement

with others in the literature, as shown in Table 4.3.

Our calculations enable us to identify the factors that contribute to a high melting

point in La2Zr2O7. It has a large fusion enthalpy of 0.28 eV/atom, which is a major

contributor to the high melting point. Pyrochlore phase La2Zr2O7 is further stabi-

lized by its high entropy in the following two respects. An interesting behavior of the

pyrochlore structure is the formation of soft vibrational modes upon thermal expan-

sion. As shown in Fig. 4.4, thermal expansion not only softens certain zone-center

phonon modes, but also creates a new wide double-well feature, which significantly

increases the accessible phase space. The high entropy of the solid phase also comes

from diffusion of oxygen atoms. As discussed in Section 4.2.3.1, the corresponding

barrier is relatively low, so oxygen atoms visit their neighboring vacancies frequently.
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Figure 4.4: Potential energy upon perturbation along a zone-center soft phonon mode
predominantly involving La motion along 〈123〉 and 〈110〉 directions (blue: 0 K; red:
2% thermal expansion). The potential well not only softens, but also forms double-
wells (the curvature at the center turns negative after the thermal expansion). This
feature significantly increases the accessible phase space, which increases entropy as
a result.

The likelihood of forming an oxygen-disordered sublattice greatly increases the con-

figurational entropy, which further stabilizes the solid phase.

4.2.3 Disordering

The susceptibility of the pyrochlore structure to disordering is related to the re-

sistance of these materials to radiation damage. Irradiation effects in zirconate py-

rochlores have been studied by both experimental [100, 101, 102, 103] and theoretical

[104, 105] studies. These studies explored the possibility of these materials as radionu-

clide hosts in ceramic waste forms and the likelihood of their formation caused by

the reaction between the zircalloy cladding and the fission products of severe nuclear

reactor accident scenarios [100]. Gd2Zr2O7 undergoes an order-disorder structural

transformation at 1550 ◦C. This disordered defect fluorite structure shows strong

resistence to radiation damage, even at extremely high doses. Upon irradiation,

La2Zr2O7 first undergoes initial disordering of the oxygen sublattice with random

occupation of the oxygen vacancies and then random distributions of cations and

anions, leading to formation of the disordered fluorite phase [101, 106]. However, this

ion-irradiation-induced disordered state is transient and amorphization takes place

on further irradiation [107, 101]. Fluorite is also observed to form on crystallization
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of amorphous lanthanum zirconate in a wide range of compositions [108]. However,

the fluorite phase has never been quenched from high temperature, and it is not clear

whether it is stable in bulk at any temperature.

Disordering has a strong impact on thermal performance of TBC materials. The

disordering of TBC leads to volume change and hence mismatch between body coat

and topcoat, which results in cracking in TBC, a common mode of materials failure.

Also, oxygen sublattice disorder determines whether a material is oxygen-transparent.

If oxygen atoms can diffuse readily in TBC, the underlying body coat is exposed to

the oxygen environment in the heat flux, which rapidly oxidizes the body coat and

forms thermally grown oxide (TGO). Irregularly grown TGO exaggerates the strain

in the coating, which is a major mechanism of thermal failure.

In our simulations, we find strong evidence that the system undergoes a sublattice

disordering transition (on the oxygen sublattice) just before melting. Our results

also indicate that disordering of the cation sublattice is unlikely. Synchrotron X-ray

diffraction confirms cation ordering in pyrochlore up to complete melting.

The energy scale of the oxygen-sublattice disordering transition is found to be very

small, hence the precise nature of the ordering in the solid phase turns out to have

little impact on the calculated melting point. We find that disordering on the oxygen

sublattice fortunately occurs only close to the melting point, so it will not affect the

prospective use of La2Zr2O7 as a thermal barrier coating since service temperatures

normally do not exceed 2/3 of melting temperature of the material.

4.2.3.1 Oxygen sublattice

We observe oxygen diffusion in MD simulation of pyrochlore lanthanum zirconate,

as shown in Fig. 4.5(a), which implies disordering on the oxygen sublattice. Transi-

tion state analysis also supports this finding. For oxygen moving to a nearby vacancy,

the transition barrier is 0.5 eV (48 kJ), and the energy penalty for the final state after

diffusion is only 0.4 eV (39 kJ), as shown in Fig. 4.5(b). At 2500 K, this corresponds

to a Boltzmann distribution factor of 0.16, which is further increased to ∼1, since

each vacancy has six degenerate neighboring oxygen atoms. These two observations
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Figure 4.5: (a) Distance to ideal pyrochlore position during MD simulation of the
solid phase at 2500 K. (blue: O; green: Zr; yellow: La.) Distance is normalized
so that the nearest neighbor distance between two oxygen atoms is 1. Diffusion is
observed on two oxygen atoms near 35 ps. (b) Potential energy diagram based on
nudged elastic band (NEB) method [109, 110]. For an oxygen atom moving to its
neighboring vacancy, the activation energy is 0.5 eV (48 kJ). The energy of the final
state is 0.4 eV (39 kJ) higher than pyrochlore.

strongly suggest disordering on the oxygen sublattice.

A rigorous evaluation of the phase stability requires a cluster expansion [111, 112]

in order to capture all important configurational states that contribute to the disor-

dered phase. This would be very difficult to carry out for a complex ionic substance

such as La2Zr2O7, especially given that the anharmonic effects are likely to be large.

Instead, we employ the special quasirandom structure (SQS) approach [113] imple-

mented in the “mcsqs” [114] code in ATAT [115] to estimate the phase stability. At

first, a completely random oxygen-vacancy sublattice is studied. But we find most

SQS’s are unstable. Upon structural optimization, some oxygen atoms move to other

lattice sites, which changes the original configuration. In particular, the tetrahedron
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center of 4 Zr atoms (called 8a-site) is highly unfavored for the oxygen atom, and

the high oxygen concentration at these 8a-sites is the major reason for the instability.

Indeed, these sites are vacant in the pyrochlore structure. In response to this phe-

nomenon, we limit the oxygen concentration on these 8a-sites and study a disordered

phase as described below.

1. The cations are ordered as in pyrochlore.

2. Oxygen is randomly distributed on 8a-sites, with a concentration of 1/4.

3. Oxygen is randomly distributed on the rest sublattice, with a concentration of

27/28 (so that the chemical composition is La2Zr2O7).

We generate a SQS representation of this disordered phase. The SQS is stable. With

respect to pyrochlore, its energy is 33 meV/atom (35 kJ/mol La2Zr2O7). The entropic

free energy at 2500 K is

−TSfluorite = kT
∑

ni lnxi/
∑

ni = −32 meV/atom.

Combining energy and entropy, this disordered phase is of comparable stability as

the pyrochlore phase.

The actual disordered phase in reality will populate configurational states accord-

ing to a Boltzmann distribution, rather than the uniform distribution we assume in

the random structure. A Boltzmann distribution will result in the lowest free energy

compared to any other distribution, and therefore the free energy we calculate above

is the upper limit for the disordered phase. The actual disordered phase in reality

will be more stable than the randomly disordered one, which makes it very likely

to replace the pyrochlore phase at high temperatures. The fact that energetic and

entropic effects are so close suggests that the transition temperature will be close to

2500 K, very near the melting point.

Experimental X-ray diffraction cannot capture signals from oxygen atoms clearly,

as they are overwhelmed by signals from heavy La and Zr atoms. However, neutron
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Table 4.4: Pair correlation as an order parameter to quantify the randomness of newly
formed solid from MD. The values for ordered pyrochlore and completely disordered
random fluorite are listed for comparison.

Zr-Zr La-La Zr-La
2300 K 0.36± 0.01 0.36± 0.01 0.27± 0.02
2400 K 0.31± 0.02 0.32± 0.02 0.37± 0.02
2500 K 0.32± 0.02 0.32± 0.02 0.35± 0.04

pyrochlore 0.5 0.5 0
random fluorite 0.25 0.25 0.5

diffraction will clearly capture oxygen atoms, and we plan to work on this aspect in

the near future.

4.2.3.2 Cation sublattice

During MD simulation of solid-liquid coexistence, we observe a cation-disordered

solid phase when the liquid portion of the supercell solidifies. Although this may

serve as evidence for cation disordering, we cannot rule out the possibility that this

disordered solid is metastable. When solidifying, the random chaotic liquid portion

may not fully optimize and arrange itself to the thermodynamically most favored solid

structure, due to the limited length of time (only on the order of 10 picoseconds). It

requires a thermodynamic study on this disordered phase to assess its relative phase

stability.

The energy of this phase is first extracted from coexistence MD simulations. When

solid-liquid coexistence evolves to pure solid phase, we find that, in most cases, half

of the supercell is in the cation-disordered phase, while the other half is in the orig-

inal pyrochlore phase. The energy of this disordered phase is calculated to be 114

meV/atom (121 kJ/mol La2Zr2O7), compared to fully ordered pyrochlore. This en-

ergy is much higher than the oxygen-sublattice disordered phase (33 meV/atom, 35

kJ/mol La2Zr2O7). Indeed, this penalty is so large that we find only the maximal

configuration entropy could counteract it. At 2500 K, the maximal configurational

entropy is achieved if both cation and anion sublattices are completely random. Its
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contribution to free energy is

−TSfluorite = kT
∑

ni lnxi/
∑

ni = −113 meV/atom.

Therefore, unless this cation-disordered phase is highly random (i.e., with virtually no

short-range order) in reality, it would be thermodynamically unfavored with respect

to the pyrochlore phase.

We use two approaches to determine the randomness of this disordered phase.

Our analysis shows this phase is only partially disordered, so it is thermodynamically

unstable. In order to quantify the extent of disordering, we introduce a specific pair

correlation as an order parameter. We select a pair cluster twice the distance between

nearest neighbor La-La, and we calculate the pair correlation of cations, as shown in

Table 4.4. Two benchmarks, ordered pyrochlore and completely disordered random

fluorite, are listed for comparison. These data suggest the newly formed solid is

partially disordered. SQS analysis also shows that the disordering is limited. We

generate SQS, assuming complete disordering on both sublattices, i.e., the (La, Zr)

and the (O, vacancy) sublattices. After structural optimization, we find some oxygen

atoms moving to neighboring lattice sites, suggesting the SQS is unstable before

configurational change. Such behavior means this disordered phase is constrained in

a limited portion of configuration space, i.e., it is partially disordered.

Our theoretical result is confirmed by both X-ray diffraction and quenching exper-

iments. Synchrotron X-ray diffraction experiments were performed on laser heated

sample levitated in oxygen flow. Pyrochlore (111) reflections were observed up to

complete melting (Fig. 4.6). The ratio of (111)/(222) reflections was previously used

for evaluation of radiation induced antisite disorder in pyrochlores [116]. Our diffrac-

tion data indicate no significant variation (from 0.020 to 0.018) in (111)/(222) ratio

with temperature. Experiments on containerless quenching and splat quenching of

La2Zr2O7 melt were performed using a splittable nozzle aerodynamic levitator. The

pyrochlore phase was observed in all experiments with La2Zr2O7, even though the

fluorite phase has been obtained by this method for Eu2Zr2O7 [118].
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Figure 4.6: Synchrotron (λ = 0.10798 Å) X-ray diffraction of La2Zr2O7 at ∼ 2000−
2450 ◦C. Pyrochlore (111) reflection is evident until complete melting. Theoretical
X-ray diffraction from MD snapshots (generated by AFLOW/ACONVASP[117]) is
plotted for comparision.

Differential thermal analysis also clearly indicates the absence of a metastable

phase. Heat effects on melting and solidifying are quantified by differential thermal

analysis. As shown in Fig. 4.2, the values from integration of peaks in heat flow on

melting and crystallization are consistent within experimental uncertainty, indicating

no formation of a metastable phase of significantly different energy upon crystalliza-

tion.

Although we have strong evidence from both computation and experiment, we

note that we still cannot completely rule out the possibility of a cation-disordered

phase. The fact that this phase is present in MD simulation indicates that either

the transition to pyrochlore phase is kinetically hindered or that this phase is slightly

unstable relative to the pyrochlore phase so MD simulation does not reflect the sta-

bility difference. X-ray diffraction results do not completely exclude the possibility

of disordering either. As a thermal gradient is present in the diffracted volume [92],

the disordered phase could occur ∼100 ◦C below melting. Even if this is the case, the

possibility of transient defect fluorite phase occurrence in La2Zr2O7 right before melt-

ing can be treated more as a peculiarity of solid to liquid transition rather than solid

state phase transition and of little significance for La2Zr2O7 application as a thermal
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Figure 4.7: Heat capacity of pyrochlore La2Zr2O7 up to melting temperature. Com-
putational results are shown in red. The last data point at 2375 K may be invalid
due to the possible transition to oxygen-sublattice disordered phase near 2500 K. No
oxygen diffusion is observed below 2250 K. The black curve is from experiment up to
1550 K. [119]

barrier coating. Reported occurrences of lanthanum zirconate in disordered fluorite

phase at low temperature in precipitates and in small particles from vapor deposition

are likely to be induced by a surface energy term. This may play an important role in

design of thermal barrier coating microstructures and choice of the method of their

manufacturing and warrant separate investigation. However, analysis of these effects

is beyond the scope of this paper.

4.2.4 Heat capacity

We calculate heat capacity in a temperature region up to the melting point. At

each temperature, heat capacity is calculated as a derivative of enthalpy with respect

to temperature. We run first-principles MD under the NPT ensemble to obtain the

enthalpies at various temperatures. We include quantum corrections to vibrational

energies, since they are significant at low temperatures.

∆H =
1

N

3N∑
i=1

(
0.5 +

1

exp
(
hνi/kBT

)
− 1

)
· hνi − 3kBT, (4.3)
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Figure 4.8: Lattice parameter at various temperatures in MD simulation (+) and X-
ray diffraction experiment (◦). For theoretical thermal expansion, the coefficient is
linearly fitted in temperature region [1000, 2250] K. Lattice parameter is subject to
quantum effect at low temperature, and thus the first two data points are underesti-
mated.

where h is Planck constant, N is number of atoms, and ν is vibrational frequency. The

ATAT package [115] is employed to calculate the phonon frequencies. The calculated

heat capacities are shown in red in Fig. 4.7 and are found in good agreement with

available experimental data at lower temperature.

4.2.5 Thermal expansion

Using the same procedure, thermal expansion coefficients are calculated, as shown

in Fig. 4.8. The calculated thermal expansion coefficient is 11.1× 10−6 K−1.

Experimental thermal expansion coefficient (Fig. 4.8) is refined for the range 1400-

2100 ◦C, from X-ray diffraction on a laser heated levitated sample. The difference

in experimental and calculated cell parameters is due to both possible deviation in

stoichiometry in laser melted lanthanum zirconate, and known overestimation from

calculations (Table 1). However, the experimental value for thermal expansion coef-

ficient, 11.5× 10−6 K−1, is in remarkable agreement with MD simulations.
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4.3 Conclusions

In summary, we demonstrate how the combination of computations and experi-

ments can accurately determine key material properties in a complementary manner,

as illustrated by the example of La2Zr2O7. These properties include fusion enthalpy,

melting point, heat capacity, thermal expansion coefficients, and sublattice disorder-

ing phase transition. We identify the key factors that contribute to the high melting

temperature, namely large fusion enthalpy, the presence of soft phonon modes, and

sublattice disordering, which provide guidance in the design of novel refractories. The

close agreement with experiment in the known but structurally complex compound

La2Zr2O7 provides good indication that the computation methods described herein

can be used within a computational screening framework to identify novel refractory

materials. Conversely, the calculation of thermal properties such as heat of fusion and

heat capacity provides useful input for the calibration of an experimental apparatus

aimed at calorimetry measurements at high temperatures, where calibration stan-

dards are currently lacking. This collaborative work also allowed us to identify high

impact areas for computational and experimental efforts towards high temperature

properties. Novel experimental techniques, such as structural studies at high tem-

perature, provide validation between closely related phases often not unambiguously

resolved computationally. Measurements of fusion enthalpies and heat capacities

above 2000 ◦C are very challenging experimentally and can be greatly leveraged by

computational methods.
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Chapter 5

Design and search of novel
refractory materials

High-performance refractory materials [71, 120, 121, 122] play an important role

in applications ranging from gas turbines to heat shields for hypersonic vehicles. With

melting points above 4000 K, hafnium carbide (HfC) [123, 124, 125, 126, 127, 129, 128]

and tantalum carbide (TaC) [123, 130] are among the most refractory binary com-

pounds known to date [131]. Their mixture, with a general formula TaxHf1−xCy, is

known to have a melting point of 4215 K at the composition Ta4HfC5 [132] and has

long been considered as the highest melting temperature for any solid [133] . Very

few measurements of melting point in tantalum and hafnium carbides have been doc-

umented, because of the obvious experimental difficulties at extreme temperatures.

Here we report an extensive investigation of the melting temperatures of these refrac-

tories using ab initio calculations, which let us identify three major chemical factors

that contribute to the high melting temperatures. Based on these three factors, we

propose and explore a new class of materials, which, according to our ab initio calcu-

lations, may possess even higher melting temperatures than Ta-Hf-C. This study also

demonstrates the feasibility of materials screening and discovery via ab initio calcu-

lations for the optimization of “higher-level” properties whose determination requires

extensive sampling of atomic configuration space.
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Table 5.1: HSE correction on melting temperature. ∆H is heat of fusion. The bracket
〈· · · 〉HPBE means that we randomly choose snapshots from MD trajectories of PBE,
and calculate the energy differences between the two functionals.

material Tm / K ∆H / eV

〈
HHSE −HPBE

〉
HPBE / eV

Tm correction / K
solid liquid

HfC 3842 0.798 -1.566 -1.482 401
HfC0.94 3861 0.808 -1.558 -1.452 502
HfC0.88 3905 0.811 -1.531 -1.438 449
HfC0.81 3962 0.786 -1.510 -1.416 470
HfC0.75 3937 0.720 -1.489 -1.399 494

5.1 Hf-C system

To help identify the factors leading to high melting points and validate our com-

putational methodology, we first explore trends among known classes of refracto-

ries. Employing the small-cell coexistence method, we calculate the melting temper-

atures of HfCx (x ∈ [0.75, 1]), as shown in Fig. 5.1. Our calculations successfully

capture the volcano-shape melting curve, which is widely observed in experiment

[124, 126, 127, 129], as well as the location of the apex (within 3% (at.) of carbon

content). Starting from stoichiometric HfC, the melting temperature increases along

with carbon deficiency, until it reaches a maximum at the congruent melting point,

near 45 atomic % C (HfC0.82). This feature explains why HfC undergoes carbon loss

when it is heated and melted [135]. Further decrease in carbon composition leads to

a drop of melting temperature. The vertical shift of the melting curve, relative to

experiment, does not appear to affect trends and amounts to about 5% of the melting

temperature itself, which is typical for DFT calculations. We have cross-checked a

subset of data points with more accurate, but considerably more expensive, HSE-

based calculations and found an average shift upward by +460 K, which is consistent

with the observed shift (see Table 5.1).

The high melting temperature of hafnium carbide is primarily (through the well-

known relation Tm = ∆H/∆S) due to its exceptionally large fusion enthalpy of 0.81

eV·atom−1, a value usually unparalleled among refractories. (For reference, Al2O3

(m.p. 2345 K): 0.22; W (m.p. 3695 K): 0.37; Hf (m.p. 2506 K): 0.26 eV·atom−1.)
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Figure 5.1: Hf-C phase diagram. Prior experimental measurements of the melting
points are compared with the present computational results (labelled “PBE” as they
rely on the Perdew-Burke-Ernzerhof functional [39]). The temperatures where free
energies of the liquid and of the solid intersect are marked by “+”. Also shown are
the solidus and liquidus obtained via a CALPHAD model [134]. The vertical shift
of theoretical phase diagram is mostly due to density functional theory (DFT) error.
We estimate the melting point correction to be +460 K, based on the more accurate
(but much more expensive) hybrid Heyd-Scuseria-Ernzerhof (HSE) functional [94].

Figure 5.2: Wavefunctions illustrating the diversity of bond types in HfC with clear
covalent character. From left to right, these figures represent Hf 5d σ bond, C 2p σ
bond, and Hf 5d−C 2p π bond. Surfaces of constant value in the real part of the
wavefunction are represented. Hf and C atoms are colored yellow and gray respec-
tively.
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Figure 5.3: Electronic density of states in HfC showing clear participation of both Hf
and C in forming covalent bonds. Total density of states is shown in black. Projections
on C and Hf are colored red and blue, respectively. The Fermi level is at 0. Vertical
lines are energy levels of atomic orbitals.
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Figure 5.4: Electron transfer in HfC. The figure reports ρ/ρ0−1, where ρ is electronic
charge density from DFT wavefunction and ρ0 is initial overlapping atomic charge
density. The sharp contrast clearly shows a charge transfer from Hf to C indicative
of ionic interactions, although covalent character is still visible in the anisotropy of
the charge density.
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Indeed, a large heat of fusion is the first and most prominent factor we find that

contributes to a high melting point. The chemical origin of the remarkably large heat

of fusion can be studied via a wavefunction analysis. The system’s wavefunctions,

illustrated in Fig. 5.3, reveal numerous types of chemical interactions, including

Hf−Hf 5d σ bond, C−C 2p σ bond and Hf 5d−C 2p π bond. This diversity enables

each atom to bind with all its first and second nearest neighbors, thus forming an

unsually large number of bonds and promoting the formation of a deep valence band

(see Fig. 5.3). These bonds also carry both covalent and ionic characters: on one

hand, the decomposed density of states (Fig. 5.3) shows contribution from both

carbon and hafnium, hence demonstrating a typical covalent bond pattern. On the

other hand, charge density analysis (Fig. 5.4) clearly shows partial charge transfer

from hafnium to carbon, which is strong evidence of ionic bonding, and is confirmed

by a Bader charge analysis [136] indicating a 0.62e charge transfer.

The second contributor we recognize is the presence of point defects, which af-

fect melting temperature via entropy. More generally, we find that, at high tem-

peratures, entropic effects favor and stabilize a considerable amount of lattice de-

fects. When solid HfC becomes off-stoichiometric HfC1−x, the presence of carbon

vacancies increases the configurational entropy (e.g., for an ideal lattice solution,

S = −k∑i xi lnxi), and this benefit is further magnified by the high temperature

(G = H − TS). If this entropic effect more than offsets the defect formation energy

penalty, these vacancies stabilize the solid phase. Since, by definition, vacancies can

only exist in the solid phase, this effect is absent in the liquid and the net effect would

be an increase in melting temperature.

Indeed, this fact explains why melting point climbs when HfC becomes off-stoichiometic

and carbon-deficient, a phenomenon widely observed in experiments (Fig. 5.1). Fur-

thermore, this entropic effect becomes so large at high temperatures that it not only

stabilizes defects, but facilitates their formation as well. For instance, we observe the

formation of C2 (two carbon atoms near one anion lattice site) and vacancy in MD

simulations, especially for compositions close to stoichiometric HfC. These unstable

C2 complexes tend to leave the solid, which results in carbon loss of stoichiometric
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Figure 5.5: Melting temperature of TaxHf1−xC0.875 as a function of x. This illustrates
the effect of tuning, via alloying, the Fermi level so that it lies precisely between the
bonding and antibonding bands. The inset shows the effect on the Fermi level of the
solid phase by tuning composition in TaxHf1−xC. Vertical lines are Fermi levels.

HfC.

5.2 Hf-Ta-C sytem

The third chemical factor we identify is well exemplified in the Hf-Ta-C system.

While binary carbides, such as HfC and TaC, are constrained by the given electronic

properties of these metals, mixing two carbides provides an avenue to tune chemical

properties. Hf and Ta share a similar electronic structure but a slightly different

number of valance electrons, which allows tuning of the location of the Fermi level so

that it lies precisely between the bonding and anti-bonding bands without distorting

the density state.

To investigate this effect, we calculate melting points of HfxTa1−xC0.875 at various

compositions (x = 0, 0.25, 0.5, 0.75, 1). The Hf-Ta-C system contains Ta4HfC5, which

has long been considered as the most refractory substance known to date. Our com-

putational results, in general, agree with Agte’s experimental measurements [132],

as shown in Fig. 5.5. Our calculation indeed captures a cusp in the composition-

dependence of the melting point. While Agte found HfC has a melting temperature

only 10 K higher than TaC [132], later publications tended to show HfC melting at

least 100 K above TaC [131]. Our calculations corroborate the later measurements,
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with a calculated melting temperature of HfC ∼70 K higher than that of TaC.

5.3 Hf-C-N system

Guided by the three contributing factors discussed above, we explore a new class

of refractory materials, which may have higher melting temperatures than Hf-Ta-C.

(1) We focus on isostructural alternatives to Hf-Ta-C, because the strong binding

with both first and second-nearest neighbors is a very favorable feature we wish

to maintain. For the same reason, we look for alternate composition with similar

cation/anion atomic radius ratios and similar electronegativity differences. (2) To

preserve the ability to tune the Fermi level, we consider more than one element on

both the cation and the anion sublattices and start with a composition space including

Ta, Hf, B, C, and N. Including more transition metals did not appear beneficial since

the valance electron density of Ta and Hf already brackets the optimal Fermi level

for the rocksalt crystal structure considered here. For the anions, atom size and

electronegativity considerations (to preserve the rocksalt crystal structure) lead us

to limit ourselves to 2p elements. (3) According to known melting temperatures of

binary compounds (HfB: 2280 (decompose); HfN: 3660; TaB: 3360; TaN: 3370 K), we

identified the Hf-C-N ternary subsystem as a promising candidate. HfN, a solid in

rocksalt structure like HfC, has the highest melting temperature of all known metal

nitrides. The high stability of both HfN and HfC suggests a thermally stable ternary

system. Indeed, we find that the Hf-C-N system generally has a larger heat of fusion

than HfC does. (4) To exploit possible entropic effects, we allow for vacancies on the

anion sublattice.

Our calculations indicate that the Hf-C-N system includes materials that have

higher melting points than any other substances known to date. As shown in Fig.

5.6, we find a large number of Hf-C-N mixtures, whose melting temperatures are

significantly higher than the Hf-C and Hf-Ta-C systems (see Table 5.2). These new

refractory materials increase the melting temperature record by up to 200 K. A re-

gression analysis of our melting point data indicates that the highest melting point
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Table 5.2: Melting temperatures from small-cell coexistence calculations.

chemical formula melting temperature / K
HfC 3842± 25

HfC0.97 3850± 34
HfC0.94 3861± 21
HfC0.91 3876± 24
HfC0.88 3905± 27
HfC0.84 3950± 17
HfC0.81 3962± 27
HfC0.78 3936± 12
HfC0.75 3937± 17

Hf0.75Ta0.25C0.88 3916± 19
Hf0.5Ta0.5C0.88 3869± 16

Hf0.25Ta0.75C0.88 3989± 14
TaC0.88 3830± 24

HfC0.75N0.22 4039± 26
HfC0.62N0.19 4081± 12
HfC0.56N0.38 4141± 21
HfC0.56N0.25 4082± 28
HfC0.5N0.25 4055± 24
HfC0.44N0.5 4106± 14
HfC0.44N0.19 3847± 24
HfC0.38N0.38 4008± 19

Hf0.75Ta0.25C0.56N0.25 3980± 13

Table 5.3: A regression analysis on melting temperatures in the Hf-Ta-C-N system.
The quadratic function is fitted to the expression Tm = k1(x cos θ + y sin θ − a1)2 +
k2(−x sin θ + y cos θ − a2)2 + T0, where x and y are compositions in HfCxNy.

T0 k1 k2 a1 a2 θ
4135 K −947 K −7302 K 0.654 0.0456 −0.285π
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Figure 5.6: Melting temperatures of Ta-Hf-C-N alloys. Filled circles mark the calcu-
lated melting temperatures in the Hf-C and Hf-C-N systems while open circles show
data from the Ta-Hf-C system for comparison. The melting temperature surface
Tm(xN , xC) (shown as contour lines) was obtained via a regression analysis of the
calculated melting temperatures based on a quadratic function of composition.

is located in the vicinity of xN = 0.20 and xC = 0.27 (see Table 5.3). We find that

Ta does not help increase the melting temperature further. As the calculations are

performed under constant pressure conditions, they can determine whether the solid

melts or sublimates and only melting is observed. However, the calculations do not

include the possible effects of an oxygen-rich environment (carbon loss and oxidation)

and are thus representative of heating under an inert atmosphere (e.g., nitrogen).

In investigating this broader class of systems, we have observed another, inde-

pendent, melting point-enhancing mechanism. We find that the addition of nitrogen

remarkably changes the liquid structure and renders the phase less stable, which hin-

ders melting. We explain this effect as follows. A liquid is more stable at a high

temperature because it can access a much larger phase space, which contributes to a

larger entropy that offsets its higher energy. In particular, the liquid allows for a richer

variety of pairwise correlations. For instance, while there are only Hf−X (X=C, N)

nearest neighbors in solid-state Hf-C-N, additional pairs such as Hf−Hf and X1−X2

(X1, X2=C, N) are allowed in the liquid. This is an important entropic benefit in

favor of the liquid phase, provided these new pairs do not entail too much energy
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penalty. We find that the main impact of the additional nitrogen is via the unstable

C−N and N−N pairs, which is made clear in the following two analyses. First, we

calculate defect formation energy of X−X (X=C,N) in the matrix of solid-state HfC

as

∆E = E(a X-X pair on one anion lattice site) + E(vacancy)− 2E(X).

This quantity measures the energy cost to move a X atom from an anion sublattice

site (leaving a vacancy at the site) to another anion (creating a X−X pair at the

site). We find N−N has a much higher defect formation energy than C−C (5.8 vs.

3.6 eV), which suggests a larger energy penalty when breaking Hf−N bonds to form

N−N, a necessary step to melt the solid. As this process becomes less favorable with

nitrogen added, the Hf-C-N system is harder to melt. Indeed, the heat of fusion is

larger in the Hf-C-N system (see Fig. 5.7). Second, the pair-correlation function

in Hf-C-N liquid (Fig. 5.8) shows dramatically lower occurrence of C−N and N−N,

compared to a considerable amount of C−C pairs. This is also due to the higher

formation energy of these two pairs. Indeed, a nitrogen atom has significantly less

tendency than carbon (Fig. 5.8) to couple with the anions (C and N). The addition of

nitrogen atoms largely reduces the number of anion-anion pairs in the liquid, forcing

them to bind with Hf. This constraint limits the accessible phase space of the liquid

and thus reduces its entropy. Fig. 5.9 formally quantifies this effect in the Hf-C-

N system. The relative instability of the N−N bond may appear strange at first,

as the nitrogen molecule (N2) is usually considered very stable. However, when a

N−N complex is also bound to other atoms, its stability can significantly decrease, as

commonly observed in other compounds. For example, azide, a common compound

with an anion N−3 , is usually explosive, hydrazine (N2H4) is used as high-energy rocket

fuels, and dinitrogen tetroxide (N2O4) easily undergoes decomposition to its monomer

(NO2) under room temperature.
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Figure 5.7: Heat of fusion in Hf-C (blue) and Hf-C-N (red) systems. Each solid dot
corresponds to one compound, while an open circle with error bar is the average and
standard error. The addition of nitrogen increases the heat of fusion by 4%, which is
comparable to the increment of melting temperature. Here heat of fusion is derived
as a byproduct of melting temperature calculations, according to Ref. 16 in main
text.
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(2.17% vs. 7.15%) and N (0.02% vs. 0.59%).
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−2πρ
∑

i,j xixj
∫∞

0

(
gij(r) ln gij(r)−

[
gij(r)− 1

])
r2 dr, where ρ is density, xi is frac-

tional composition, and gij is pair correlation function between species i and j. It
is evident that nitrogen brings down the total entropy (black), through anion-anion
(X−X, red) and anion-cation (X−Hf, purple) pairs, while leaving the cation-cation
(Hf−Hf, blue) contribution nearly untouched.

5.4 Conclusions

In summary, we have identified and investigated, via electronic structure calcula-

tions, three factors responsible for the exceptionally high melting points in a class of

transition metal carbides: (i) the presence of a large number of strong bonds between

both nearest and second nearest neighbors that exhibit a mixture of strong covalent

and strong ionic characters; (ii) the entropy contribution of point defects that can

exists in the solid but in the liquid (such as vacancies); (iii) the ability to tune, via

alloying, the position of the Fermi level so that it lies just between the bonding and

anti-bonding bands. These observations suggest the exploration of the Ta-Hf-C-N

system in order to further increase the melting point. Our calculations suggest that a

Hf-C-N alloy with 20 at. % of N and 27 at. % of C increases the current melting point

record by up to 200 K and identify a melting point increase mechanism mediated by

changes in pair correlation functions.



92

Chapter 6

Conclusions

In this thesis, we present two new methods, i.e., the improved Widom particle

insertion method and the small-cell coexistence method, which we developed in order

to capture melting temperatures both accurately and quickly.

Using a modification of Widom’s particle insertion method, we demonstrate that

it is computationally practical to calculate the chemical potential of a liquid directly

from first principles, i.e., without the help of any high-quality empirical potentials,

which are available only for a limited number and type of materials. This distinct

advantage is crucial when such empirical potentials are difficult to obtain, e.g., for

multi-component materials. An algorithm is proposed to efficiently find and study

cavities. It reduces the computational cost drastically, e.g., by more than three orders

of magnitude for the example we study, relative to Widom’s original method. We

present an application to the chemical potential and melting temperature calculation

of copper.

We develop the small-cell coexistence method based on the statistical analysis of

small-size coexistence MD simulations, so it circumvents both the hysteresis over-

heating problem in small system size and the prohibitive computer cost in traditional

coexistence method. Using empirical potentials, we present the validation of the

method and systematically study the finite-size effect on the melting temperature’s

calculated. Through the DFT examples, we demonstrate the capability and flexibility

of the method in its practical applications.

The small-cell coexistence method is extensively utilized in two studies of refrac-
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tory materials. (1) In a combined computational and experimental study of La2Zr2O7,

we demonstrate how the combination can accurately determine key material proper-

ties in a complementary manner. These properties include fusion enthalpy, melting

point, heat capacity, thermal expansion coefficients, and sublattice disordering phase

transition. The close agreement with experiment in the known but structurally com-

plex compound La2Zr2O7 provides a good indication that the computation methods

described herein can be used within a computational screening framework to iden-

tify novel refractory materials. Conversely, the calculation of thermal properties such

as heat of fusion and heat capacity provides useful input for the calibration of an

experimental apparatus aimed at calorimetry measurements at high temperatures,

where calibration standards are currently lacking. (2) Based on melting temper-

ature calculations of the Hf-Ta-C system, we have identified and investigated, via

electronic structure calculations, key factors responsible for the exceptionally high

melting points in a class of transition metal carbides. These investigations suggest

the exploration of the Hf-Ta-C-N system in order to further increase the melting

point. Our calculations suggest that a Hf-C-N alloy with 20 at. % of N and 27 at. %

of C increases the current melting point record by up to 200 K and identify a melting

point increase mechanism mediated by changes in pair correlation functions.
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