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ABSTRACT 

Soft hierarchical materials often present unique functional properties that are sensitive to 

the geometry and organization of their micro- and nano-structural features across different 

lengthscales. Carbon Nanotube (CNT) foams are hierarchical materials with fibrous 

morphology that are known for their remarkable physical, chemical and electrical 

properties. Their complex microstructure has led them to exhibit intriguing mechanical 

responses at different length-scales and in different loading regimes. Even though these 

materials have been studied for mechanical behavior over the past few years, their response 

at high-rate finite deformations and the influence of their microstructure on bulk 

mechanical behavior and energy dissipative characteristics remain elusive. 

In this dissertation, we study the response of aligned CNT foams at the high strain-rate 

regime of 102 - 104 s-1. We investigate their bulk dynamic response and the fundamental 

deformation mechanisms at different lengthscales, and correlate them to the microstructural 

characteristics of the foams. We develop an experimental platform, with which to study the 

mechanics of CNT foams in high-rate deformations, that includes direct measurements of 

the strain and transmitted forces, and allows for a full field visualization of the sample’s 

deformation through high-speed microscopy. 

We synthesize various CNT foams (e.g., vertically aligned CNT (VACNT) foams, helical 

CNT foams, micro-architectured VACNT foams and VACNT foams with microscale 

heterogeneities) and show that the bulk functional properties of these materials are highly 

tunable either by tailoring their microstructure during synthesis or by designing micro-

architectures that exploit the principles of structural mechanics. We also develop numerical 

models to describe the bulk dynamic response using multiscale mass-spring models and 

identify the mechanical properties at length scales that are smaller than the sample height. 

The ability to control the geometry of microstructural features, and their local interactions, 

allows the creation of novel hierarchical materials with desired functional properties. The 

fundamental understanding provided by this work on the key structure-function relations 

that govern the bulk response of CNT foams can be extended to other fibrous, soft and 

hierarchical materials. The findings can be used to design materials with tailored properties 
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for different engineering applications, like vibration damping, impact mitigation and 

packaging. 
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the Herman’s orientation factor along the height, from the top of the sample. 
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Figure A.3. A characteristic stress-strain response of a VACNT foam subjected 
to three compressive loading-unloading cycles. 

134 

Figure A.4. (a) A characteristic stress-strain response of a VACNT sample 
showing the method of calculating unloading modulus. (b) The variation of 
unloading modulus of the VACNT foams with strain. Error bars represent the 
standard deviation of many samples tested. 

135 

Figure A.5. The variation of the compressive strength (peak stress at 80% 
strain) with the bulk density of the VACNT foams. 

135 

Figure A.6. (a-d) Local non-uniform buckle formation: (a) onset of buckling at 
different locations, (b) closer view of on-set of buckling, (c) after several 
buckles have formed sequentially under compression, (d) closer view showing 
non-uniformity in the buckles. (e-f) Buckle induced delamination of the 
VACNTs from the substrate: (e) delamination at the interface of VACNTs and 
substrate, (f) closer view of the delaminated surface of the VACNTs. 

137 

Figure A.7. Collective buckles observed (a) outside and (b) inside a VACNT 
foam sample. SEM images were acquired at the same scales for a side-by-side 
comparison. 
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Figure A.8. (a-d) Buckle wavelengths measured outside the sample: (a) in-situ 
microscopy image showing the critical buckle wavelength onset of buckling 
(Lcr) and the buckle wavelength after the buckle is compressed (Lco), (b) 
variation of the critical buckle wavelength (Lcr) with location of the buckle 
measured from the substrate, (c) variation of buckle wavelength after the buckle 
is compressed (Lco) with location of the buckle measured from the substrate, 
and (d) the linear correlation between the buckle wavelengths on-set of 
buckling and after compression. (e-f) Buckle wavelengths measured inside the 
sample: (e) SEM images showing large number of buckles with much lower 
wavelengths, and (f) variation of compressed buckle wavelengths (Lco) with 
location of the buckle measured from the substrate. 
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Figure A.9. A simplified Euler buckling model of the CNT in a VACNT array. 
A CNT is modeled as a cylindrical hollow column with pin supports in both 
ends. 
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Figure B.1. Schematic of the experimental setup and data reduction method: (a) 
experimental setup showing the periodic array of VACNT foams and stainless 
steel cylinders, static precompression applied by the pulley-weight system, 
striker impact generator, optical interrupters for striker velocity measurements, 
and the dynamic force sensors for force-time measurements; (b) dynamic force 
sensor bead with embedded piezoelectric disc; (c) characteristic dynamic force-
time profiles measured by sensors; inset shows the effective time (Δt) 
measurement scheme based on the full duration at half maximum method. 
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Figure B.2. (a) The variation of effective wave velocity with the dynamic force 
normalized by static precompression. (b) Characteristic stress-strain response of 
a single layer VACNT foam in quasistatic compression cycle. (c) Scanning 
electron microscope images showing the formation of buckles at the bottom 
‘soft’ region of a VACNT foam at a strain of 0.20. 
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Figure B.3. (a) Exponential loading and unloading curve-fits for the 
experimental quasistatic force-displacement curve. (b) The comparison of the 
force-displacement curves obtained from experiment and the simulated model. 
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Figure B.4. A qualitative comparison between (a) the numerical results and (b) 
the experimental results of the decreasing trend of the effective wave velocity at 
different static precompressions. 
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Figure B.5. The dynamic loading-unloading response of a VACNT foam during 
the transient excitation of the periodic array, showing the softening response. 
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Figure B.6. Comparison of the numerical results with experimental results of 
the decreasing trend of the effective wave velocity at different static 
precompressions, calculated for !=34.48 mm-1 and !!=4.31 µm. 
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