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ABSTRACT 

Noise measurements from 140°K to 350°K ambient temperature and 

between 10kHz and 22MHz performed on a double injection silicon diode 

as a function of operating point indicate that the high frequency 

noise depends linearly on the ambient temperature T and on the 

differential conductance g measured at the same frequency. The 

noise is represented quantitatively by (i2 ) = a•4kTg6f. A new inter-

pretation demands Nyquist noise with a = 1 in these devices at high 

frequencies. This is in accord with an equivalent circuit derived for 

the double injection process. The effects of diode geometry on the 

static I-V characteristic as well as on the ac properties are 

illustrated. Investigation of the temperature dependence of double 

injection yields measurements of the temperature variation of the 

common high-level lifetime T(T ~ T2 ), the hole conductivity 

mobility ~p (~p ~ T-2 •
18

) and the electron conductivity mobility 

~nc~n ~ T-1.75). 
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CHAPTER I 

HIGH FREQUENCY NOISE IN DOUBLE INJECTION 

1.1. Introduction. 

Within the last few years, several experimental and theoretical 

studies directly related to the present subject of high frequency noise 

in double injection diodes have appeared in the literature. Two of 

the experimental investigators report that the mean square current 

fluctuations can be represented by 

(1.1.1) 

with a ~ 1, even though the two devices and their operating condi-

t · d . . ·1 ( l.l, 1. 2) I th d . . 1 lons are lSSliDl ar. n one case, e evlce lS a ong 

germanium diode operated in a square law range, whereas in the other 

case the device is a thin commercial germanium photocell biased in 

the v3 range. Another study presents noise measurements on a long 

double injection silicon diode operated in the square law range.(l.3) 

The value of the limiting white noise level is stated there in terms of 

the low frequency conductance oi/oV 

* Here k is Boltzman's constant; 
6f the frequency interval and g 

(1.1.2) 

T the temperature in °K; 
the conductance of the device. 
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where ~ = 0.52 ± 0.1 but the value of g at the measuring frequenc,y 

is not given. These results obtained on dissimilar devices operating 

under different conditions seem to indicate a general fact, namely, 

that double injection exhibits thermal noise at high frequencies. 

The present investigation has therefore been undertaken to clarify 

the matter. 

In general, the I-V characteristic is an unreliable means with 

which to confirm the presence of double injection. This is aptly 

demonstrated by Rose in his "comparative anatomy of models for double 

injection" in which two carrier injection encompasses a host of char

acteristics, including that of single injection.<1 •4) Fortunately, by 

determining such physical parameters as geometry, doping level, 

mobilities and lifetimes a specific mode of double injection can be 

established. The investigation presented here is primarily concerned 

with a long silicon (semiconductor) structure. Section 1.2 thus deals 

with the pertinent analysis and resulting de features of this 

special case. The effects of geometry on the current voltage charac-

teristic are also examined. Experimental results on a planar + + p 1C n 

silicon diode at room temperature confirm the analysis. The I-V 

characteristics are determined as a function of temperature, and 

a detailed description and analysis of the temperature behavior is 

presented in Chapter II. In Sections 1.3 and 1.4, which deal with 

transient and small signal ac behavior, an equivalent circuit is 

established for a long semiconductor double injection diode. The 

experimental verification of the results provide further confirmation 

of double injection. Nonlinear and temperature effects are also 

considered. Using the results from the transient and ac properties, 
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a model of the high frequency noise in double injection is proposed in 

Section 1.5. This model is verified by noise spectral density measure-

ments. Section 1.6 contains an estimate of the magnitude of the low 

frequency noise spectral density which originates from generation-

recombination effects. 

1.2. DC Properties of the Semiconductor Regime. 

1.2.1. Current-Voltage Characteristics. The current-voltage charac-

teristics resulting from the simultaneous injection of electrons and 

holes (double injection) into insulator and high resistivi ty material 

have been dealt with in detail primarily by M. Lampert and A. Rose.(l.5, 

1 •6,l.7) In fact, the latter has compiled and discussed some fourteen 

different models for two carrier injection.(l.4) Recently, J. Mayer, 

R. Baron and 0. Marsh mve experimentally verified three distinct double 

injection regimes predicted by Lampert and Rose.(l.B,l.9,l.lO) These 

consist of the "insulator" (J o: v3 /L5 ), the "semiconductor" (J o: v2 /L3) 

and the negative resistance regimes. In conjunction with these experi-

mental studies, the effects of diffusion and thermal generation on the 

I-V characteristics are investigated for both the insulator and semi-

d t (1.11,1.12) con uc or cases. 

The basic time-independent equations which describe double injection 

current consists of (i) the current equations for the electrons and 

holes, 

J = <W [nE + ~(\7n)] n n (1.2.1) 

(1..2.2) 



..... ..... ..... 
J = J + J n p 

4 

(1.2.3) 

where 
kT 

f3 = q' n = n + tm and p = p + flp, 
0 0 

(ii) the charge con-

servation equations, 

1 (<rJ•J ) = r 
q n (1.2.4) 

1 ("J•J ) = 
q p - r, (1.2.5) 

and (iii) Poisson's equation 

(1.2.6) 

Here, the symbols have their usual meanings, in particular, r is the 

net recombination rate, while n , p and 6.n and flp are the thermal 
0 0 

equilibrium and net excess carrier densities for the electrons and holes 

respectively. Equation (1.2.4) is now multiplied by 1/~ and (1.2.5) 
n 

by - 1/~p· By adding, the following equation results 

(b+l) r 
~n 

where b = ~n/~p· Rewriting Eq.(1.2.3) in terms of (1.2.1) and (1.2.2) 

gives 

J = ~ [p + bn + b.p + bb.n] E + f3(b"Jn-"JP) p 0 0 
(1.2.8) 
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These equations, (1. 2 .7) and (1.2.8), are now subject to a set of 

assumptions called the "high-level approximations" which state that the 

excess electron and hole carrier densities are approximately equal and 

are much greater than the thermal equilibrium carrier densities; that is, 

(a) 

(b) 

(c) 

6n >> n 
0 

6p >> p 
0 

6p ~ 6n (except that the value of 6p-6n 

is taken from Poisson's equation) • 

The net recombination rate is defined by 

6n 
r =-

T n 

6p 
T 
p 

(1.2.9b) 

(1.2.9c) 

(1.2 .10) 

which implies that there is a common high-level lifetime T where 

T = T T (1.2.11) 
n- P 

Under the high-level approximations, the individual retention in 

Eq.(l.2.7) of the first term, second term and third term produces 

respectively the semiconductor, insulator, and diffusion dominated 

regimes. Thus, the diffusion dominated regime is described by Eq. 

(1.2.8) and 

(1.2.12) 
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which leads to the definit.ion of an ambipolar diffusion length 

where 

La ='/2f3T ~ ~ /(~ +~ ) V n p n p 

Retaining only the second term of Eq.(1.2.7) results in 

(b+l) 
~ T p 

n 

L ' a 

(1.2 .13) 

(1.2 .14) 

This leads to the Lampert insulator regime in which the one dimensional 

I-V characteristic is given by 

, (1.2.15) 

where L is the length of the diode. Similarly, the retention of only 

the first term yields 

(p -n ) V•E = - (b+l) 
0 0 ~ T p 

n 
(1.2 .16) 

In this case, the resulting semiconductor regime is described by the 

current-voltage characteristic 

(1.2 .17) 

The initial behavior at low injection levels is, of course, given by 

3 = q ~ (p + bn ) E p 0 0 
(1.2.18) 
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which is just the ohmic regime. 

The investigation here is totally focused on a double injection 

diode made from high resistivity rr type silicon. This diode is 

"sister" to those previously investigated in Reference 1.10 and has 

parameters such that the semiconductor regime is the principal double 

injection mode. Therefore, the primary concern with the remainder of 

this work will be the semiconductor regime described by Eqs.(l.2.8), 

(1.2.16) and (1.2.17). 

1.2.2. Influence of Geometry on Semiconductor Regime I-V Charac-

teristics. The theoretical and experimental investigation of the 

current-voltage characteristics of Lampert's two-carrier semiconductor 

regime have been entirely concerned with the one and two dimensional 

planar cases (i.e. rectangular diodes). In this section the effect of 

geometry on the de properties is examined. Only the semiconductor 

regime + + p rr n type structures are investigated. As an example, the 

planar case is illustrated in Figure 1.2.1. Here, the 

supplies the holes and the + n contact the electrons. 

I 

rr 
+ p (high resistivity p-type) + n 

Planar 

Figure 1.2.1 
+ + p rr n double injection diode 

+ p contact 
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From Eqs.(l.2.8) and (1.2.16), the current density can be 

written as 

j = - ~ ~ T(p -n )(v•E) E p n o o 

Since the divergence of the current density is zero (i.e. 

(1.2.19) 

-v•J = o), 

and if the condition of spatial uniformity for the mobilities, common 

high-level lifetime and the net thermal equilibrium carrier density 

(p -n ) is maintained, then 
0 0 

(1.2.20) 

Equation (1.2.20) is now solved for the electric field subject to the 

following conditions: 

(i) The diode is forward biased as shown in Figure 1.2.1. The 

voltage across the structure is V. There is no appreciable 

voltage drop across either the + p + or n regions. 

(ii) The electric field at the electron emitting boundary R
2 

+ -(n -~ contact) is zero (i.e. E(R2) = 0). 

(iii) The electric field is a function of only one coordinate 

direction, that is, E = E(~) ~l • 

The potential and charge distributions can be determined fran the 

electric field by 

(1.2.21) 



and 

1-l T(p -n ) n o o 
b + 1 

9 

(1.2.22) 

Condition (iii) is fUlfilled by the cylindrical, spherical and planar 

geometrical configurations. By applying the divergence operator for 

curvilinear orthogonal coordinate systems, Eq.(l.2.20) is easily inte-

grated twice for the electric field (see Appendix A). Integrating the 

electric field along ~ from R1 to R2, the expression for the 

current-voltage characteristic results in 

2 
I_ I = o q !-! !-! -r(p -n ) V -n. . p n o o (1.2.23) 

The factor o depends only on the geometry and is therefore called the 

geometrical factor. This factor does not alter the square-law relation-

ship of the I-V characteristic but influences only the magnitude. It 

is interesting to observe that since the spatial dependences of the 

charge carriers and thus the electric field are functionally the same 

for pure unipolar space charge limited current, the geometrical factors 

are identical.(l.l3) That is, for single injection* 

I s.I. (1.2.24) 

* In this case, however, the appropriate boundary condition is that 
the electric field be zero at R1 rather than at R2 • Also, the 
introduction of the notion of space charge curren~ is relevant 
since for double injection the small difference in excess charge 
densities (~p-6n) does indeed form a space charge and can therefore 
be discussed in terms of single injection space charge current. 
I~ is also noted that R1 in Figure 1.2.1 is located at the 
p -rt contact. 
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By taking the ratio of Eqs.(l.2.23) and (l.2.24) and assuming ~ = ~n' 

where ~R is the dielectric (or Ohmic) relaxation time and is defined by 

~R = E/q ~ (p -n ) • p 0 0 
(l.2.26) 

Here, the ratio of double injection current to space charge limited 

current is not only independent of the geometrical factor but is deter-

* mined solely by the bulk lifetime and dielectric relaxation time. 

Equation (l. 2 .25) thus provides a means for determining the dominant 

mode of injection. For a given situation in which the semiconductor 

regime can exist, the bulk lifetime will in general be much greater 

than the relaxation time. Under this condition, the contribution of 

any space charge current to the overall current density will be neg-

ligible (see Section l.2.3). 

* It should be noted that a similar comparison between the double in
jecti on "insulator" regime (see Eq.(l.2.l5)) and single injection 
space charge limited current leads to 

~.I(Is.I. = i ~ ~p V 

where ~ is defined to be the geometrical factor associated with 
the insulator regime. The quantity 5/6 is, in general, a function 
of geometrical terms in contrast to expression (l.2.25). In partic
ular, for the planar case 

where the transit time Tp 

T =L2 /(~ V). p p 

is defined as 

Here the ratio of the doUble injection insulator regime current to 
that of space charge current is determined not only by geometrical 
factors but by the bulk lifetime and a transit time T • p 
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The low-level injection behavior is described by Ohm's Law (Eq. 

(1.2.18)) and can be expressed as 

l 
II"'\ = - q 1-1 ( p + bn ) V 

u 5 p 0 0 
(1.2.26) 

where 

(1.2.27) 

The terms h23 and h
3

2 are the diagonal elements of the metric 

tensor of the coordinate system and A is the cross-sectional area. 

In this case, the quantity 1/6 is the appropriate geometrical factor 

for the ohmic mode. A transition voltage VT is now defined to be 

that voltage which makes the ohmic current equal to the double injection 

current. Therefore, from Eq.(l.2.25) and (1.2.27) the transition 

voltage VT is 

1 1 
(p +bn ) 

0 0 

(p -n ) 
0 0 

(1.2.28) 

When the thermal equilibrium hole carrier concentration p is much 
0 

larger than the electron concentration n
0

, Eq.(l.2.28) reduces to 

l 1 

7)& 1-l ,. 
n 

(1.2.29) 

Since the quantity lj6& has dimensions of length squared (i.e. 1j6&: 

1
2 

for the planar case), Rose has suggested that the onset of the 
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semiconductor regime occurs when the minority carrier transit time is 

of the order of the bulk high-level lifetime (i.e. Tn = l/(66~ vT) ~ T). 
n -

Table 1.2.1 summarizes the analytical expressions for the geometrical 

factors, electric fields and carrier density profiles.(l.l4,l.l5) For 

convenience of comparison, the planar case is also presented. Two 

cases are considered with respect to the cylindrical and spherical 

structures. In case (a), the total current density is directed radi-

ally outward, whereas in case (b), the total current density is directed 

radially inward. Figure 1.2.2 contains qualitative plots of the electric 

fields and carrier densities. Here, the influence of geometry is 

clearly evident. In particular, the electric field for case (b) of the 

spherical geometry possesses a maximum value when pjp1 equals 41/3 

(i.e. * pjp1 = 1.587). Figure 1.2.3 illustrates the appropriate nomal-

ized geometrical factors as a function of the ratio of the radii. For 

the cases (a) and (b) in either the cylindrical or spherical geometries, 

the ratio of the double injection currents is not equal to unity but 

depends on the ratio of the radii. This current ratio, which is just 

the ratio of the geometrical factors, for the cylindrical case is 

given by 

[ ~] Cy Undrica1 = 

* The symbol p instead of r is used to designate the radial 
variable to avoid confusion with the notation foF the dynamic 
impedance. 

(1.2.30) 



TABIE 1.2.1 

Geometrical factors, electric fields and charge distributions for semiconductor 
regime double injection diodes in the planar, cylindrical and spherical geometries, 

GENERAL RElATIONSHIPS: 2 
v =!_[~] ~ I = 6 q ~ ~ T( p -n ) V , • n p o o T 7io T 

TYPE 
OF 

STRUCTURE 

DOUBIE-INJECTION 
GECMETRICAL 

FACTOR 

6 

OHMIC 
GECMETRICAL 

FACTOR 

6 

EIECTRIC 
FIEID 

E(~) 

CHARGE
DENSITIES 

n(~) : p(u1 ) 

DEFINITION 
OF 

SYMBOLS 

PlANAR CYLINDRICAL CASE (a) CYLINDRICAL CASE (b) 

u1 = x ~ = p ~ = p 

9A 
'S 13 

~ J-2 ~ ln (z+(z2-l)')- (z2-l) 
2 e z 

p2 

2rrH 2 -1 1 [ ~-2 
012 

z -1)t-cos z 

L 
A 

3 V ( X ' 21 1 - r;) 

t y_ Q' (1~ )-t 
L2 L 

L = Length 

H = Height 

A = Area 

p
1 

= inside radius 

-ln -1 [ 
0
2] 2;d{ e 01 

t [t,2]'-J 
~2 r -r,rw 

02 =outside radius (p2>o1 ) 

-ln -1 [ 
0
2] . 2rrH e p1 

f H:1JJf 

f[~
2 -jf 

z = o/o1 

P = Ii.) rrHqT~ ~ (p -n )) 1\~ npoo 

~ 
T(p -n )J2 

Q 
n o o 

= b + 1 

~n 

SPHERICAL CASE (a) I SPHERICAL CASE (b) 

~ = p ~ = 0 

u:rsr{ ~
02 

~
3 

T r J p -pl 
~ do 

6rr o 
p1 

1 ['2-p] 
!hi P2P1 

1 ['2-'1] !hi 0201 

[M ~23 _ o~J ~ ~ ~3- 013]] ' 
2 --2 

p 0 

~2r,f [,r,1'] • 
M = I/(6rrqT~~p(p0-n0 )) 

N=tQ 

It; 



PLANAR GEOMETRY CYLINDRICAL GEOMETRY SPHERICAL GEOMETRY 

CASE (a) CASE (b) CASE (a) CASE (b) 

xiL PIP2 0 PIP1 
10 0 PIP2 0 PIP1 

Figure 1.2.2. Qualitative representation of the electric field and charge distributions 
for the semiconductor regime double injection in planar, cylindrical and 

spherical configurations (p =radial variable). 
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Figure 1.2.3. Normalized geometrical factor as a function 
of the radii ratio p2jp1 for cylindrical and 

spherical geometries. 
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and for the spherical case by 2 p2 

[~]Spherical 
1 3 1/.2 

(x3-1~ 
1/.2 

p2 J (1-x ~ dx .(1.2.31) =-
pl 2 2 

X X 
pl 

p2 

Equation (1.2.30) and the numerical solution of Eq.(1.2.31) are plotted 

in Figure 1.2.4. Here, in each case, the current ratio ~/Ia is a 

smoothly increasing function of the ratio of the radii. It is also 

noted that for a given radii ratio, the spherica1 geometry current 

ratio is always greater than that for the cy1indrical geometry. 

Since the same geometrica1 factors app1y to unipo1ar space charge 

1imited current (see Eq.(1.2.24)), Figures 1.2.3 and 1.2.4 are also 

va1id for single injection structures. 

1.2.3. Experimental Resu1ts on a Long Si1icon + + P 1f n Structure 

4 0 0 from 1 0 K to 350 K. A p1anar doub1e injection diode is made from high-

resistivity f1oat zone grown p-type si1icon. The + n region is formed 

by lithium diffusion whereas the + p region is formed by evaporating 

a1uminum and alloying. Electrica1 contact to the + n and + p region 

is accomp1ished by app1ying a mixture (1:1) of gallium and indium. 

Further construction detai1s are presented in Ref. 1.10. Figure 1.2.5 

contains the physica1 dimensions of the diode and approximate doping as 

specified by the manufacture. The measured current-vo1tage character-

* istics as a function of temperature is a1so shown in Figure 1.2.5. The 

ambient temperature extends from 140°K to 350°K and all points are taken 

* Appendix F contains the description of the experimental equipment 
and procedure for varying the ambient temperature. 
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DIMENSIONS, mm 

[3~ ~~ 

101 

V (volts) 
Figure 1.2.5. I-V characteristics of a silicon double injection 
diode between 140°K and 350°K ambient temperature. The solid 
dots indicate the operating points at which noise measurements 

have been made. 
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with the di ode in the "dark". For the purpose of the ensuing noise 

measurement, a respectable square law range need exist. This criterion 

is met by the present diode since a quadratic behavior is observed 

over approximately a decade of current for each of the considered 

temperatures. At 140°K, the deviation from the square law (dashed 

line) at the higher current levels could possibly be due to diffusion 

t . f t d" b (l.l2) Th d . t• f or hea l.ng e fee s as 1.scussed y R. Baron. e evl.a 1.on ran 

the ohmic behavior at low injection levels is attributed to junction 

effects. For a given voltage, the square law current is seen to in-

crease with decreasing t emperature. This behavior is expected since 

the electron and hol e mobilities each possess this type of temperature 

variation. The temperature dependence of the double injection I-V 

characteristic in the semiconductor regime is treated in Chapter II. 

Since the host material is ~ type, the thermal equilibrium hole 

concentration p
0 

is much greater than the thermal equilibrium electron 

concentration n • Therefore, Eq.(l.2.17) describing the semiconductor 
0 

regime reduces to 

The measured room temperature (T = 298°K) values are 
2 

69.5 x 10-6 _a_ 
v-ern IJ.n = 1280 ~ 1 T = 30.7 X v-s 

(1.2.32) 

6 -2 2 A = 9. 7 x 10 em and -1 L = 5.92 x 10 em. From Eq.(l.2.32) 

the theoretical double injection square law current at 30 volts 

is 1.4 rna. This theoretical value is approximately 14% below 

the measured value of 1.6 rna (see Figure 1.2.5). However, R. Baron 



20 

has shown that this is expected from the effects of diffusion and 

l t
. (1.12) therma genera 1on. 

From Eq.(l. 2 .25) the ratio of the measured bulk high-level life

time ( 3 0. ~ sec) to the calculated dielectric relaxation time (15.3 ns) 

is 2 x 103 • This illustrates the magnitude of two carrier injection 

current over that of single injection and provides further assurance 

that the dominant mode is double injection. The negative resistance 

regime discussed by M. A. Lampert and J. W. Mayer was not observed 

under any of the present experimental conditions described herein.(l.7, 

1.8) 

1.3. Differential Step Response of Double Injection. 

As pointed out by R. Baron et.al., additional information on the 

properties of a double injection diode can be easily obtained from its 

differential step response. (l.l6) Consider the case of an I-V char

acteristic as shown in Figure 1.3.1 where I~ v2 • If the current is 

indeed entirely due to double injection as prescribed by Eq.(l.2.l7), 

an incremental voltage step ~V applied at t = 0 should generate the 

current response shown by the solid line of Figure 1.3.2. There is an 

instantaneous increase of current ~i(O) at t = 0+ followed by a 

second increase of ~i( ro) after several time constants The 

explanation of this behavior rests on the hypothesis that injected 

charge can not change instantaneously. Therefore, immediately after 

the application of the voltage pulse ~V, the diode behaves as a 

series of resistive elements whose values depend on the amount of 

charge stored in every interval dx along the length L of the diode. 

At t = 0+ the resistance is accordingly given by 
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v 
Figure 1.3.1. Ideal characteristics of a double 
injection d~ode in the semiconductor regime 

(I~ V ) (see text far details). 
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r ::: j [ Aq(IJ.nn(t=O) + 

0 

IJ. p( t:::o)) r 1 dx p = J [Ao(t=o)r
1

dx 

0 

(1.3 .1) 

Since, in general, the densities n and p of the electrons and 

holes vary with the distance x, the requirement that the current 

6i(O) be free of divergence demands that the additional field 6E(x) 

generated by 6V will not be constant either. It will, in fact, have 

to adjust itself everywhere such that 6E(x)•Ao(t=0) = 6i(O) is 

constant. This is achieved by minute rearrangements of charge in the 

bulk which takes place within a time span of the order of the dielectric 

relaxation time e = E/o. Hence, 6E(x)•Ao(t=0) = 6i(O) and 
L J t-.E(x)dx = 6V. As long as diffusion contributes negligibly to the 
0 
de current, the de value 

E(x)•Ao(t=O) = I
0

, and 

1 6i(O) Io 
r nv = v-

o 

E(x) of the electric field satisfies 
L 

I E(x)dx = V • It thus follows that 
0 0 

as indicated in Figure 1. 3 .1. 

(1.3. 2) 

The relationship between the initial step and the second increment 

follows from the law I ~ v2 and is 

6V + V 
M(oo) = --.,.,,..--0 Ai(O) v 

0 

(1. 3 . 3 ) 

where V is the initial bias voltage as shown in Figure 1.3 .1. If the 
0 

incremental step voltage 6V is much smaller than the bias voltage v ' 0 

then 6i(oo) ~ 6i(O). In the limit as 6V approaches zero (differential 

input), Eq.(l.3.3) reduces to the differential form 



di(ro) = di(O) (l.3.4) 

If the de characteristic is of the form I a:.~ , then similarly, 

di( ro) = (n-1) di(O) (l.3.5) 

By assuming the presence of a single linear recombination mechanism, 

this current transition will take place with a single time constant 

Tl which is equivalent to the previously defined high-level lifetime 

T (i.e • ,. l = ,. ) ; hence, 

6I(t) (l. 3 . 6) 

The step response of single injection space charge current con

trasts with that of double injection in that the characteristic time 

scale is the transit time (of the order of L2/~V) rather than a 

lifetime. It is also noted that the above argument is independent of 

the geometrical configuration of the double injection structure. It 

follows thusly, that Eqs.(l. 3 .2) and (l.3.5) are also valid for 

cylindrical and spherical geometries as well. 

An experimental incremental pulse response of the double injection 

diode of Figure 1. 2 .5 biased at 30V and 1. 6ma is shown in Figure l.3. 2 

(open circles). The excellent agreement between the theoretical 

current response (Eq.(l.3. 6)) and the experimental data indicates that 

the assumption of negligible diffusion is valid. The differential 

step response not only provides a convenient means for verifying the 
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double injection semiconductor regime but also provides a direct 

measurement of the high-level lifetime T and high frequency differ-

ential resistance r. 

1.4. AC Properties of the Semiconductor Regime. 

1.4.1. Small Signal AC Equivalent Circuit. To facilitate the 

understanding of the noise properties of double injection, it is 

advantageous to obtain the small signal ac equivalent circuit of the 

diode. Of course, the transient analysis described in section 1.3 is 

an equally valid means with which to establish a small signal 

equivalent circuit. However, since the noise measurement involves a 

frequency spectrum, a more equivalent approach is to establish the 

properties of the double injection diode as a function of frequency. 

The de equations of Section 1.2.1 are generalized to include time 

dependent quantities (i.e. E(t) and p(t)). With the same assumptions 

of high-level injection and negligible diffusion, the equations describ-

ing the semiconductor regime are given by 

and 

(p -n ) 
0 0 

-'V•E = - (b+l) 
1-Ln 

(1.4.1) 

(1.4.2) 

The charge density, electric field and current density are now written 

in the form 
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p + p jmt (1.4.3a) p = le 0 

E = E + E jmt (1.4.3b) 
0 le 

J = J + J jmt (1.4.3c) 
0 le 

where each of the variables is assumed to be a function of only one 

spatial coordinate u1 as in Section 1.2. By substituting these 

variables into Eqs.(l.4.1) and (1.4.2), the zero subscript values are 

easily seen to be the de solutions. The ac equations are linearized by 

neglecting higher order jmt e terms. 

equation for the electric field is 

where 

The resulting differential 

(1.4.4) 

cp = :: (hjmr) ~: + jo:£~ h1 , (l.4.4a) 

and 

ov 
~ = ~ (l+jaYr) hlh2h3 

0 

v 
0 

Ro =I 
0 

(1.4.4b) 

The ac impedance z1 describing the double injection diode is sUbse-



quently determined by solving 

this solution over u1 (i.e. 

Appendix B) 
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for the electric field and integrating 
R2 

V1 = +j[ E1 (u1 ) du1 ) yielding (see 
Rl 

(1.4.5) 

For the planar case (h1=h2=h
3
=l), Eq.(l.4.5) takes the form 

[ ] 

(l+jm-r) 
u' ~~ exp[jW8(l+j~)(u-u')] du (1.4.6) 

where 3 8 = - R c ·2 0 0 
and is the geometrical capacitance. Here u 

and u' are dummy integration variables. Equation (1.4.6) is now 

evaluated for case (i) in which W8 << l and case (ii) where W8 >> l. 

In case (i), the exponential term (Eq.(l.4.6)) is expanded in 

powers of W@. Retaining terms of the order of m18 and performing the 

integration gives 

Z ,..., R ( l+ jw-r) [l jw83 
l - o (2+jm-r) - --,:r- (1.4.7) 

This expression for the ac impedance is synthesized into the 

equivalent circuit illustrated in Figure l.4.la and reduces to the 

circuit shown in Figure l.4.lb when the geometrical capacitance C
0 

and terms involving 8/-r are considered negligible. At low fre-

quencies (m << 1/-r) the conductance is g = 2/R = oi/oV , 
0 

or just 

the de differential conductance. Correspondingly, for high frequencies 

(m >> 1/-r, but m << l/8) the conductance is given by g = 1/R • 
0 
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Figure 1.4.la. Small signal ac equivalent circuit representation 
of a double injection diode in the semic~nductor regime for fre
quencies less than l/(2rr®) where @ = - R C • 
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r=Ro 

Figure 1.4.lb. First order small signal ac equivalent circuit as 
derived from Figure 1.4.la when T >> e and the geometrical capaci
tance C is negligible. 
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These results are in agreement with the differential step response 

analysis of double injection given in Section 1.3. In fact, the 

current response of the first order ac equivalent circuit is just that 

of Eq.(l. 3 . 6) and the high frequency behavior is given by r = R
0 

(see Eq.(l.3.2)). 

In case (ii), the integral is expanded in powers of 1/w@. The 

first two terms of the admittance are given by 

' 
(.l) >> 1/8 (1.4.8) 

where G
0 

= l/R
0

• As R. Baron points out, the frequency is sufficiently 

high that (a) the space charge distribution cannot change thus, the 

capacitance becomes just the geometrical capacitance and (b) the con-

ductance is given by the motion of the steady state carrier distribution 

in an excess electric field free of divergence. (l.l7) 

The first order equivalent circuit shown in Figure 1.4.lb is also 

* valid for cylindrical double injection diodes. However, the magnitude 

of the second order elements (components involving 8 in Figure 1.4.la) 

are affected by geometrical factors. For frequencies m >> 1/8, the 

conductance ratio g/G of a cylindrical double injection structure is a 
0 

function of the ratio of the radii which contrasts the result 

g/G
0 

= 1 for the frequency range 1/T . < m < 1/8. 

* A detailed discussion of the cylindrical case is presented in 
Appendix B. 
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Extension to the spherical case requires numerical methods; 

however, it is speculated that the first order equivalent circuit of 

Figure 1.4.lb is valid for this case also. 

1.4.2. Experimental verification of Results. Experimental data 

demonstrating the validity of the first order equivalent circuit shown 

in Figure 1.4.lb are illustrated by the current response data of 

Figure 1.3.2. In order to test the validity of this equivalent 

circuit independently of the differential response, the real and 

imaginary parts of the diode admittance have been measured from 90Hz 

to lOOMHz (T = 298°K). These results are shown in Figures 1.4.2 and 

1.4.3. Here, the dependences (solid lines) predicted from the first 

order equivalent circuit are given using a least squares fit. The 

agreement is quite good for frequencies between 90Hz and approximately 

30MHz. Above 30MHz, the increasing conductance Re(Y) (dashed lines) 

* indicates that the approximation rue << 1 is no longer valid. This 

is indeed the case since at the bias point of 30V, 1.6ma, the 

condition a@ = 1 is satisfied at 33MHz . As a result, the conductance 

begins to increase towards the value of (4/3 ) G for frequencies 
0 

greater than 3Q~z. In the differential step response data of Figure 

1 . 3.2, bandwidth limitations of the measuring equipment precluded the 

detection of this effect. 

In table 1.4.2, the values of r, ~l' and r determined from 
1 

the ac measurements are compared with those obtained from the differ-

ential step response at various operating points. The discrepancies 

* In the frequency range from 30MHz to lOOMHz, the errors in the con
ductance measurements which are obtained on a H.P. 250 RX bridge may 
be as large as 2o% . 
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TABLE 1.4.2 

Room temperature values of the parameters for the equivalent circuit 

of Figure 1.4.lb for the double injection diode of Figure 1.2.5. 

Operating point from step response from frequency response 

' Re(Y) Im(Y) 

V(V) I(mA) r(kD) t 1 (H) r 1 (kD) r(kO) t 1 (Y) r 1 (kO) t 1 (Y) 

30.0 1.60 18.1 0.70 18.5 17.8 0.69 16.8 0.63 

25.0 1.12 21.2 0.83 22.5 21.4 0.86 21.2 0.80 

20.0 0.710 26.7 1.08 29.7 27.0 1.08 28.7 1.01 

15.0 0.405 34.5 1.54 43.5 35.4 1.52 43.5 1.39 

10.0 0.196 47.1 2.4 81.9 48.7 2.6 81.4 2.3 

2.0 0.024 68 -- -- 73.5 -- -- --
-- --- ----- --- - - - - -

r 1 (kO) 

17.9 

21.4 

28.5 

42.5 

78 

--

! 
I 

' 

--

lAl 
lAl 



nowhere exceed lo%. The large effective inductance (of the order of 

a henry) which increases as the operating point moves from the quadratic 

region towards the linear range is an especially interesting feature 

of double injection. Unfortunately, the Q, which is maximum at 

f = l/( 2 rrT), is less than l/2. Above lOV the ratios t 1/r1 for the 

lifetime T all lie between 3~ sec. and 3~ sec. The simple first 

order equivalent circuit shown in Figure l.4.lb thus adequately repre-

sents the small signal behavior of a double injection diode in the semi-

conductor regime from low frequencies up to over three decades above the 

transition point ~ = l. 

When the ambient temperature of the device is monitor ed f rom l 40°K 

to 350°K by means of a thermostat (see Appendix F), the transient and 

ac measurements are extended to six different temperatures. The solid 

dots displayed in the I-V characteristics of Figure 1 .2 . 5 indicate 

the operating points at which these measurements are performed. Table 

1.4.3 summarizes the results. Here, along with the measured lifetimes, 

* the high frequency resistances as obtained by ac bridge measurements 

are compared to the values determined from the differential step 

response. Agreement between these values is quite good for temperatures 

above 220°K, however, at the lower ambient temperatures (T ~ 220°K) 

the difference is as large as 17%. This error at the lower temperatures 

is caused by an overshoot (~ lo%) in the step response at + 
t = 0 . 

* Each value presented in Table 1.4.3 represents an average of eight 
measurements taken between lMHz and 22MHz. 
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TABLE 1.4.3 

Values of the high frequency resistance and high-level lifetime as 
a function of temnerature for the double injection diode of Figure 1.2.5. 

Operating Point 
r(kO) r(kO) T( !-L sec) 
from from from 

frequency step step 
Temperature v(v) I(ma) response response response 

350°K 40.0 2 .10 17 .4 17 .4 44.9 
35 .0 1. 61 19 . 6 19. 6 40.1 
25 .0 O. b6b 26 . b 27 .0 39.9 
10.0 0.164 53 .9 55. 3 37 . 3 

2 .0 0.023 77 . 6 77 .0 39.5 

298°K 30.0 1. 60 17 . 8 18 .1 37 .8 
25 .0 1.12 21.4 21. 2 35.9 
20.0 0.710 27 .o 2o.7 36 .4 
15 .0 0.40) 3).4 34.5 35.4 
10.0 0.196 4b .7 47 .1 29.4 

2 .0 0.024 73 .5 6b .O ----
273°K 25.0 1.35 18 .5 18 . 5 26 .3 

20.0 O. b45 22 .7 23 .4 25.1 
15.0 0.4b0 30.b 30. b 23 .5 

b .O 0. 767 4b.l 4b . 2 ----
2 .0 0.02ts 62 .4 5b .3 ----

220°K 20.0 1. 34 13 .1 13 .4 17 . 3 
17 . 5 1.02 15.1 15 .4 16 . 9 
15 .0 0.746 17 .9 l tl .4 16 .7 

6 .0 0.160 31. 2 26. 2 ----
?. . 0 0 .037 37 .4 36 . ts ----

l 75°K 17 . 5 1. 58 7 .9 8. 3 ll.O 
15 .0 1.1) 9.4 10.1 11.3 
12 .5 . o. csoo .L.L.O 12.0 10.b 
10.0 0.520 13 .1 14. 6 10.9 
5.0 0.170 l 7 .b 20.13 9. 2 

l40°K 10.0 0.760 6 .9 7.4 8. 6 
ts .O 0.510 7.9 b. 3 tr.o 
6 .0 0. 292 9.2 9.4 6 .4 
4.0 0.145 10.2 10.4 ----



1.4.3 . Nonlinear Effects. In deriving the small signal equivalent 

circuit for double injection, the nonlinear aspects of the diode are 

of course neglected. Moreover, the ac measurements used to verify the 

equivalent circuit are obtained with an impedance bridge which employs 

a frequency tuned detector, thus the nonlinear properties of the diode 

are also suppressed in the experimental case. 

In order to investigate the nonlinearity, consider the double 

injection diode to be biased at v ' 0 
I 

0 
and let the sinusoidal 

voltage v = v1cos mt be applied across the diode. If the frequency 

is sufficiently low, the R.M.S. current will consist of a component 

at the applied frequency m and a component at twice the fundamental 

frequency (i.e. 2m). These components are given by 

20~ ~ (p -n ) T V Vl n p o o o (1.4.9) 

and 

(i 2 ( 2mt) //2 {2 o~ ~ (p -n ) - 2 = T v1 n p o o (1.4.10) 

where vl = vl//2. The ratio of these components, 

(i 2(mt) )1/2 {2v 
0 

(i2(2mt)lf2 = ' vl 
(1.4.11) 

is independent of any physical properties of the device (i.e. geometry, 

doping, mobility, etc.) and the derivation only requires that the 

current-voltage characteristic be quadratic. From Eq.(1.4.11), the 
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second harmonic com~onent of the current will be small when 

{2 v o;v 1 >> 1. 

The output of a signal generator operating at a frequency of 

100Hz is applied to the double injection diode of Figure 1.2.5 which 

is biased at V = 30v and I = 1.6ma (T = 298°K). In Figure 
0 0 

1 . 4.4, the measured R.M.S. current at the fundamental and the second 

harmonic frequencies is given as a function of the voltage and 

- 2 v
1 

respectively. Here, the current component at the generator 

frequency (fundamental) is shown to be directly proportional to the 

R.M.S. value of the applied signal, whereas the second harmonic is 

proportional to the square of the applied R.M.S. signal. When the 

period of the applied ac signal is comparable or greater than the 

high-level lifetime T, the magnitude of the second harmonic should 

decrease. The experimental data presented in Figure 1.4.5 demonstrate 

this attenuation of second harmonic generation of the diode as a 

function of frequency. Even though the nonlinearity under practical 

operating conditions is quite small (see Figure 1.4.4) it loses these 

properties altogether at sufficiently high frequencies. As a conse-

quence, the small signal ac equivalent circuit of Figure 1.4.lb is 

also valid for large signals when the frequency is greater than 1/T 

as expected from the discussion of the transient response (Section 1.3). 

1.5. High Frequency Noise in Double Injection Silicon Diodes. 

1.5.1. Generalities. In performing the noise measurements, the 

unknown noise from the double injection diode is compared to that of a 

standard calibrator shot noise source. Schottky's theorem states that 

the shot noise developed across a temperature limited vacuum diode far 
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frequencies less than TT (TT is the carrier transit time) is given 

by 

2q I ~f , c (1.5.1) 

where I is the de operating current.(l.lS) 
c 

The experimental tech-

nique of comparing an unknown noise source to a known noise source 

provides an accurate means with which to obtain the noise spectral 

* density of a two terminal device. 

Motivated by experimental evidence, a thermal noise hypothesis is 

introduced in discussing the high frequency fluctuation phenomena 

occurring in double injection. Recently, it has been deduced that the 

thermal noise in a passive resistance R(f) at the ambient temperature 

T is represented by 

(v
2

) = :JfR(f)[hf/2 + hf/(exp(hf/kT-1))] df (1.5.2) 

where (v2 )1/ 2 is the open circuit noise voltage fluctuation.(l.l9) 

When quantum mechanical effects are negligible (i.e. hf << kT) 

Eq.(l.5.2) reduces to Nyquist's result 

(1.5.3) 

* A detailed description of the experimental arrangement, procedure, 
and calibration of the entire noise measurement system is contained 
in Appendix C through G. 
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where the frequency interval ~f is sufficiently small that the 

resistance R(f) is constant over this bandwidth. "Thermal noise" is 

adopted here to refer also to quasithermal noise of quasilinear 

systems in which (v2 ) = 4kT r ~f, where r is a linear element 

characterizing a (nonlinear) system which is not in true thermal 

equilibrium. 

1.5.2. Model of High Frequency Noise in Double Injection. A model 

of the diode noise is now developed from the physical properties of 

the device. In the equivalent circuit shown in Figure l.4.lb, the 

t 1-r1 branch has a time constant Tl equal to the lifetime of the 

carriers (i.e. T1 = T). This means, physically, that the recombina

tion ~rocesses, which play a dominant role in establishing the static 

characteristic, are too slow to affect the current at frequencies 

m << 1/T. Thus, at high frequencies, the fluctuations are not affected 

by the recombination processes either. 

The total high frequency noise voltage developed across the 

double injection diode arises from fluctuations associated with the 

junctions + (p -rr, + * rr-n ) and the long high resistivity region. 

Van der Ziel has shown· that for a p-n junction with the I-V character-

is tic 

(1.5.4) 

* Any noise associated with surface phenomena is considered negligible 
at high frequencies. 
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the noise voltage developed across the junction under forward bias 

( I) . . t ,,.(1 . 20) V >> kT q 1s approx1ma e~ 

(1.5.5) 

If the long high resistivity section of the double injection diode is 

assumed to exhibit only thermal noise at high frequencies, then one may 

further assume that the noise voltage developed across this region is 

of the order of 

(1.5.6) 

where V /I is the de resistance of the diode. From Eqs.(l.5.5) 
0 0 

and (1.5. 6), the noise voltage developed across the injecting contacts 

will be negligible when the bias voltage v 
0 

is much greater than 

kT/q (i.e • V >> 25mv at 
0 

From Figure 1.2.5, this condition 

is fulfilled for all cases in which the diode is operating in the 

semiconductor regime (V >lOv). 
0 

When the diode is forward biased into the quadratic range, it is 

not in strict thermal equilibrium. If, regardless of conduction, (i) 

there is a stationary distribution of thermal velocities and (ii) this 

distribution involves only a small perturbation of the distribution 

from a Maxwellian, the diode can be considered to be in a state of 

quasithermal equilibrium. Since the thermal velocity of the charge 

carriers (~ 107 cm/s) is, in the present case, much greater than the 

drift velocity (~ 7 x 104 cm/s), this picture of quasithermal 



equilibrium appears quite justifiable for double injection. With this 

"thermal hypothis is ", the high frequency noise current of the double 

injection then becomes simply 

4kT g 6f (1.5.7) 

where g is the conductance of the diode at high frequencies. In 

terms of an equivalent saturated shot noise diode current (Ieq)' the 

noise spectral density is given by (see also Appendix C) 

I eq 
2kT 

q 
g • (1.5 .8) 

Using the high frequency conductance of the diode derived in Section 

1.4, the equivalent noise current of double injection is thus given 

by Eq.(l.5.8) where 

g 

and 

g 

I 
0 

v 
0 ' 

1/T < ill < 1/8 

lj@ < ill < 1/T c 

(T is the mean time between thermal scatterings). 
c 

(1.5.8a) 

(1.5.8b) 

A different approach to the explanation of the high frequency 

noise is developed from the transient response. Here, the current 

step t:,i(O) is determined by the electron and hole concentrations n 

and p immediately before the voltage step 6v is applied. Electrons 
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and holes contribute independently to the flow at that instant and 

without changing their concentration. Van der Ziel and van Vliet 

proved recently that carriers of a single type injected into a volume 

element of a device will generate thermal noise. If, however, recom-

bination is the only mechanism coupling the holes to the electrons and 

becomes ineffective at ro >> 1/T, van der Ziel and van Vliet's results 

applies to both electrons and holes independently. One must then 

expect 

4kT[A cr (ro)/L+ A cr (ro)/L] 6f 
n p (1.5.9) 

= 4kT g 6f 1/T < ro < 1/8 (1.5.10) 

This result is in agreement with Eq.(l.5.8). 

Figure 1.5.1 summarizes the noise spectral density of a planar 

double injection diode based on the thermal hypothesis for frequencies 

greater than 1/ T 

I eq 

2kT Io ----q v 
0 

1/® 
freq. 

1 T c 

Figure 1.5.1. Equivalent noise current versus 
frequency for a planar double injection diode. 



Since the first order equivalent circuit given in Figure 1.4.lb 

is independent of diode geometry, the equivalent noise current for 

the cylindrical and spherical geometries in the frequency range 

1/T <ill< 1/8 is also given by Eqs . (l.5.8) and (1.5.8a) (see Appendix 

B). However, for the frequency range 1/8 < ill < 1/T , c the value of 

the diode conductance and thus the equivalent noise current will, in 

* general, depend upon geometrical terms. 

1.5.3. Measured Spectral Noise Density. The measured de charac-

teristics and ac properties of the diode described in Figure 1.2.5 

have been shown in Sections 1.2, 1.3 and 1.4 to closely conform to 

the predictions of the model for double injection. 

injection silicon diode provides a sound basis with which to test the 

thermal noise theory presented in Section 1.5.2. 

To compare this theoretical model with the actual experimental 

noise of the device the measurements should cover as wide a frequency 

range as possible. This not only extends the amount of information 

but also helps minimize the possibility of systematic errors. From 

the conductance measurements illustrated in Figure 1.4.2, the ideal 

frequency range over which the spectral density should be measured 

extends from 500Hz to over 50 MHz. It is quite difficult to perform 

noise measurements over five decades of frequency and still optimize 

* The functional dependence of the conductance g on the geometrical 
factors for the cylindrical double injection configuration is given 
in Appendix B. 
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the apparatus (impedance, system noise, etc.) to yield the maximum 

amount of information about the noise of the device. Nevertheless, 

with the measurement system described in Appendix C through G, the 

equivalent noise current of the device can be obtained from 10kHz to 

22MHz. Provision in the experimental arrangement allows variation of 

the ambient temperature of the device and thus extends the noise 

measurements over a factor of two in absolute temperature. 

The solid dots displayed in the I-V characteristics of Figure 

1.2.5 indicate the operating points at which the noise measurements 

(and conductance) are performed. There is at least one point at 

every temperature where the diode is operating in the quadratic 

range. Figures 1.5.2a, b, c, d, e, f show the spectra in terms of an 

equivalent noise current for the temperatures 350, 298, 273, 220, 175 

and 140°K. It is seen that at all operating points and for all 

temperatures the noise spectra reach a constant level. The solid lines 

have been obtained by the least squares fitting of an assumed 

dependence 

I = c1 + eq 

c 
2 

[/~ 
(1.5.11) 

to the data as described in Appendix G. At 140°K, the low frequency 

noise is attenuated for the lOv and 8v spectra to prevent amplifier 

saturation. This is accomplished by the insertion, at the amplifier 

input, of an L-C network which is tunable from 5MHz to 22MHz (see 

Appendix D). 
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Figure l.5. 2a. Equivalent noise current (I ) 
eq versus frequency at five operating points for 

the double injection silicon diode given in 
Figure 1.2.5. (T = 350°K}. 
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Figure 1.5.2b. Equivalent noise current 
versus frequency at six operating points 
the double injection silicon diode given in 
Figure 1.2.5. (T = 298°K). 
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Figure 1.5.2c. Equivalent noise current (I ) eq versus frequency at five operating points for 
the double injection silicon diode given in 
Figure 1.2.5 (T = 273°K). 
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Figure 1.5. 2d. Equivalent noise current (I ) 
versus frequency at six operating points foreq 
the double injection silicon diode given 
Figure 1.2.5 (T = 220°K). 
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Figure 1.5.2e. Equivalent noise current (I ) eq 
versus frequency at five operating points for 
the double injection silicon diode given in 
Figure 1.2.5 (T = 175°K). 
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Figure 1.5.2f. Equivalent noise current (I ) eq versus frequency at four operating points for 
the double injection silicon diode given in 
Figure 1.2.5 (T = 140°K). 
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1.6. Evaluation of Results and Conclusion. From the constant c1 

of Eq.(l.5.ll), the measured equivalent noise resistance of the diode 

is given by 

r eq 
2kT 
qCl 

(l.6.l) 

Table 1.6.1 compares the values of r eq determined from the noise 

measurement with the high frequency resistance r of the diode for 

each operating point and over a temperature range from l40°K to 350°K. 

Here, the high frequency resistance r is measured throughout the 

frequency range in which the equivalent noise current is constant and 

corresponds to the values "from the frequency response" in Table 1.4.3. 

The very close agreement between r eq and the real part 

diode impedance at high frequencies indicates that 

r of the 

(1. 6 . 2 ) 

with a close to unity and g = 1/r. A better estimate of the value 

for a is obtained from a plot of the experimental values of I eq 

versus g as a function of ambient temperature as shown in Figure 

1.6.1. Also shown there (dashed lines) are the dependencies predicted 

from the equation 

I eq 
2kT 

q 
g • (1.6. 3 ) 

The ratios of the experimental values of I to this predicted value eq 
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TABIE l.6.l 

Comparison of the real part r of the diode impedance with the 
equivalent noise resistance r at high frequencies. eq 

Operating Point r r 
Temperature eq 

V(v) I(ma) (kO) (kO) 

350°K 4o.o 2 .10 17.4 16 .6 
35 .0 1.61 19.6 19.9 
25 .0 o.e6e 26 .e 27 .7 
10.0 0.164 53 . 9 51.6 

2 .0 0.023 77.6 74.3 

298°K 30 .0 1.60 17.8 18.0 
25 .0 1.12 21.4 21.6 
20 .0 0.710 27.0 26 .1 
15.0 0.405 35.4 32 .6 
10.0 0.196 4e.7 45.1 

2 .0 0.024 73.5 70.5 

273°K 25.0 1.35 18.5 18.3 
20 .0 0.845 22 .7 23.5 
15.0 o.4eo 30.e 30 .4 
e.o 0.767 48.1 4-7 .T; 
2 .0 0.028 62.4 59.o 

220°K 20 .0 1.34 13 .l 13 .1 
17.5 1.02 15.1 15.1 
15.0 0.746 17.9 19.1 

6 .0 0.160 31.2 30.4 
2 .0 0.037 37.4 38 .0 

l75°K 17.5 1.58 7.4 8.2 
15.0 1.15 9.4 8.9 
12.5 0.800 ll.O 10.9 
10.0 . 0. 520 13 .l 13.3 

5.0 0.170 17.8 18.1 

l40°K 10.0 0.760 6.9 6.9 
e.o 0.510 7.9 7·9 
6.0 0.292 9.2 9.3 
4.0 0.145 10.2 10.3 
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of 2kT g (i.e. a) have been evaluated by least squares fits as 
q 

l.oo, l.oo, 1.01, 1.01, l.o4, and 1.03 ± 0.05 for 140, 175, 220, 273, 

298 and 350°K respectively. This established that a = l to within 

5% and thus the high frequency noise is given by 

4kT g b.f 1/T < (1) < l/8 (1.6.4) 

4 0 0 where l 0 K ~ T ~ 350 K and g is the high frequency conductance of 

the device at the lattice temperature T. The quoted error of 5% is 

attributable to experimental causes, as indicated by the errors of 

* individual values of r • eq It is also noted that for a given tempera-

ture the thermal noise expression (Eq.(l.6.4)) is valid for every 

operating point, even where the square law does not hold. This again 

agrees with the idea of thermal noise. The overall conclusion is 

therefore drawn that Eq.(l.6.4) describes the noise of double injection 

accurately as long as recombination effects and diffusion are 

negligible. The thermal noise current source (i2 ) ; 4kT g b.f in 

the first order equivalent circuit shown in Figure 1.6.2 expresses 

these ideas formally. 

At lower frequencies, the equivalent noise currents as illustrated 

in the spectra of Figures 1.5.2, etc., have a "l/f" frequency dependence. 

Prompted by these results, Bilger, et al, have investigated the low 

* The error associated with the determination of c1 at each of the 
six ambient temperatures is an R.M.S. deviation of the fitted 
curve from the data (see Appendix G) and is generally less than 1%. 
Since the error in the lattice temperature of the diode is of the 
order of 3%, the stated error of 5% is a conservative estimate. 
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frequency noise of a + + p v n structure down to a few hertz. ( 1 •22 ) 

The spectra reveal qualitatively that the noise can be explained for 

frequencies m << 1/T in terms of generation-recombination (g-r) 

effects. Therefore, in the equivalent circuit of Figure 1.6.2, this 

ff t b f ll d b . t' (;12) and (;22) e ec can e orma y expresse y assoc~a ~ng • • 

* with g-r noise. Figure 1.6.3 shows the g-r equivalent noise 

current I measured at 100kHz as a function of the double 
eq, g-r 

** injection diode current I. It is noted, however, that the noise 

measurements presented in Figure 1.6.3 are not obtained with current-

less probe contacts which eliminate unwanted contact noise; therefore, 

the absolute magnitude of the g-r noise may be in error. 

1.7. Discussion and outlook. The conclusion that (i2 ) = 4kT g 6f 

at 1/T < m < l/8 necessitates the rejection of alternative theories 

advanced to explain high frequency noise in double injection.C1 •23, 

1.24,1.25) According to van der Ziel 

* A careful experimental analysis revealed traces of a second time 
constant T

2 
of about l/4 Tl' but the effect was judged to be 

sufficiently small to be neglected. 

** The low-frequency double injection current noise theory of A. 

FazakaS and A. Friedman predicts ( l. 23 ) I ex I 2 • Reference 
3/2 eq,g-r 

1.22, however, predicts I ex I for diodes operating in 
eq, g-r 

the semiconductor regime. 
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Figure l.6. 3 . Observed g-r noise at 100kHz versus diode 
current at four operating points (T = 298°K). 
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where 

a= (l.7.la) 

From the measured temperature dependencies of the electron mobility 

and the hole mobility 11 (" ex T-2 •18) ,....p ,....p of the silicon 

double injection diode presented in Chapter II, the representation 

a = 4~-.~.p~-.~.n/(IJ.p+IJ.n) 2 must be rejected because it is inconsistent with 

the result a= l.OO ±.05 throughout the temperature range from l40°K 

0 to 350 K. Other reported noise measurements, although difficult to 

cast into the light of an ac equivalent circuit owing to the lack of 

experimental data, are in agreement with the thermal noise model as 

expressed by Eq.(l.6.4.)*(l.l,l. 2, 1 · 3 ) However, the recent experimental 

results of J. H. Liao on a germanium + + p v n structure seem to indi-

cate that van der Ziel's result (Eqs.(l.7.l), (l.7.la)) is correct at 

T = 298°K.C1 •25 ) Unfortunately, insufficient data on the de charac-

teristics and high frequency properties of the device preclude the 

** verification of semiconductor regime double injection. 

* Since the correct relationship between the low frequency conductance 
G and the high frequency conductance g is g = ~ G , the term 
"Roise suppression" of Ref. l.3 is not appropriate in aouble 
injection as long as it refers to thermal noise. 

** The germanium diode reported on by Liao exhibits an I cxv2 from 
approximately O.lv to 0.5v. The observed noise, therefore, may be 
largely influenced by diffusion and contact effects. 
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There is no physical reason why the noise should not be thermal 

for frequencies above l/8 since this characteristic time pertains to 

the macroscopic phenomenon of dielectric relaxation. One thus expects 

that Eq.(l.6.4) is valid at least up to frequencies of the order of 

l/T • Moreover, there is no physical reason why the noise should not 
c 

be thermal for temperatures above 350°K and below l40°K as long as the 

double injection diode can be characterized by the Lampert model. 

Therefore, when recombination and diffusion effects are negligible, 

it is predicted that the thermal noise model for double injection 

given by (i2 ) = 4kT g ~f holds for any double injection device at 

any temperature and for all operating points over the frequency range 

Extension to various diode geometries is accomplished through the 

relationship between the geometrical factors (i.e. o) and the high 

frequency conductance of the diode. Thus, over the frequency range 

l/T < ru < l/8, the equivalent noise current for the cylindrical and 

spherical geometries as a function of the radii ratio is given by 

Figure 1.2.3 to within the normalized scale factor. For the frequency 

range l/8 < ru < l/T , c 
the conductance and thus the noise of the 

cylindrical configuration is determined by geometrical terms as dis-

cussed in Appendix B, whereas in the spherical case, the conductance 

must be resolved by numerical methods. 

At frequencies below l/T, the noise can be explained in terms 

of generation-recombination effects . (l. 22 ) Therefore, the conclusion 

is drawn that the observed low frequency equivalent noise current is 

due primarily to g-r noise. It is also noted from Figures 1.5.2 a-f 
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that the frequency at which the g-r noise and thermal noise levels 

are equal increases with decreasing temperature. A more qualitative 

investigation of the low frequency noise in double injection is pre-

sently being pursued to establish the form of I 
eq,g-r 

With the high frequency noise in double injection reduced to 

thermal causes, an interesting question now arises as to when a 

ceases to be unity. Since times of the order of the mean free time 

between collisions is needed to "the rmalize" the carrier motion, one 

would expect therefore noise which is quite different from Nyquist 

noise at frequencies w ,..., 1/'r • c c Unfortunately, is usually in the 

microwave range and complicates the experimental situation. The 

violation of quasithermal equilibrium provides another possibility 

for a f. l. Therefore, double injection structures operating under 

large current densities may offer unique opportunities to study flue-

tuations of tepid and hot charge carriers in a solid. As discussed in 

Section 1.5.2 and illustrated in the experimental data of Figures 

1.5. 2 a-f, the high frequency noise associated with the + P -rr, + rr-n 

contacts is indeed negligible for the long silicon double injection 

diode of Figure 1. 2 .5. &van der Ziel has demonstrated both theoretic-

ally and experimentally that the noise developed in a p-n junction is 

shot like noise due to the diffusing of carriers. Therefore, by pro-

gressively shortening the physical length L of a double injection 

diode, a transition in the spectral noise density from thermal noise 

to semiconductor shot noise is expected. Presumably the transition 

range can be expressed in terms of the overall physical length L of 

the device and the ambipolar diffusion length L • a 
An investigation of 
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this nature may yield valuable information in estimating the influence 

of diffusion on thermal noise. 
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CHAPI'ER II 

TEMPERATURE DEPENDENCE OF THE COMMON HIGH-LEVEL LIFETJME 
AND CONDUCTIVITY MOBILITY OF CARRIERS IN SILICON FROM DOUBLE INJECTION 

2.l. Introduction. 

The purpose of this chapter is, in part, to explain the temperature 

dependence of the I-V characteristic from l40°K to 350°K for a double 

injection silicon diode operating in the semiconductor regime. In 

Lampert's model for two-carrier injection into a semiconductor, the 

magnitude of the current is given by I= o ~n~pT(p0-n0)v2 • Therefore, 

the explanation presented in Section 2.2 of the measured I-V charac-

teristics involves investigating the temperature variation of the 

charge carrier lifetime and mobility. Section 2.3 thus gives the 

measured temperature dependence of the common high-level lifetime as 

determined by differential step response techniques. In Section 2.4, 

the temperature dependence of the conductivity mobility ~ of the 
p 

* majority carrier is determined. In addition, the absolute values of 

~p 

(for 

(for 

and ~n are measured at room temperature with the Hall-Effect 

~p) and with the large signal transient method of R. H. Dean 

) (2 .l) 
~n • These measurements in conjunction with the I-V charac-

teristic provide a means with which to determine the temperature 

dependence of the minority carrier mobility ~n from l40°K to 350°K. 

The excellent agreement with other independent values found in the 

* No distinction is made between conductivity and drift mobility 
since they are considered equivalent throughout this discussion. 
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literature for the variation of the electron mobility with temperature 

provides further support for the model of double injection and validates 

the approximations of the Lampert representation.( 2 •2) This shows that 

trap-free double injection current can be used to study the common 

high-level carrier lifetime and conductivity mobility in high-resistiv-

ity materials. 

2.2. Temperature Dependence of the Current-Voltage Characteristic for 

Double Injection. 

In Figure l. 2 .5, the measured I-V characteristic for the silicon 

double injection diode C-l273, 3, 2.6. B is given at six ambient tempera

tures from l40°K to 350°K. The long high-resistivity rr region is 

boron doped with an impurity concentration of approximately l.l x lol2cm-3 

Therefore, with the acceptor level (0.045ev) fully ionized over 

the considered temperature range, the number of thermal equilibrium 

majority carriers (p
0

) is constant and equal to the number of 

acceptor impurities Na. From the discussion of Section l.2.3, the 

I-V characteristic of the diode is properly represented by 

v2 
I = A[9/8]q ~ ~ TN --

3 
(2.2.l) 

p n a L 

Over the range f'rom l40°K to 350°K, the temperature variation of T, 

and ~n can (approxi.nia.tely) be described by the power-law 

dependences 

T (2.2.2) 



J.lp = 
(o) 

J.lp [~orp 

J.ln = 
(o) [Tarn 

J.ln T 

where the room temperature 

superscript and the terms 

' 

' 

(T ) 
0 
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(2.2.3) 

(2.2.4) 

values are designated by the zero 

and a are constants.< 2 •2, 2 ·3) 
n 

Such dependences seem characteristic of drift mobilities dominated by 

lattice scattering. (2 •4 ) Rewriting Eq.(2.2.l) in terms of the 

applied current and substituting the expressions (2.2.2) to (2.2.4) 

gives 

(2.2.5) 

Figure 2.2.1 gives the values of the square of the voltage from l40°K 

to 350°K for currents between 2ma and o.6ma. The measurements are 

performed under constant current conditions to eliminate the deviation 

from the I ~ v2 law at l40°K for current levels greater than 2ma. 

The average of these four slopes is 2.0; therefore, 

= 2.0 (2.2.6) 

2.3. Common High-Level Lifetime Versus Temperature in Si. 

The measured common high-level lifetimes tabulated in Section 1.4 

4 4 0 0 (Table l •• 3) for temperatures from l 0 K to 350 K are obtained by the 

differential step response method described in Section 1.3. These 

measurements indicate that when the operating points of the diode are 
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Figure 2.2.1. Square of the de voltage from 140°K to 350°K 
for the double injection constant current levels 2.0, 1.5, 

1.0 and o.6ma. 
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in the square law range, the common high-level lifetime for all 

temperatures considered does not vary appreciably with injection level. 

This proves that it is indeed valid to introduce a common high-level 

lifetime which is independent of the magnitude and spatial distribution 

of the charge carriers as is done in the high-level approximations of 

Section 1.2. In Figure 2.3.1, the measured lifetime values are given 

as a function of temperature. It is seen that Eq.(2.2.2) properly 

represents the temperature dependence of the common high-level lifetime. 

Thus, y equals 1.93 and the room temperature value ,. (o) is equal 

to 30.7~ sec, so that 

(2.3.1) 

The nearly square law behavior of the lifetime versus temperature is in 

excellent agreement with previous measurements by D. M. Evans.( 2 .3) 

2 .4. Majority and Minority Carrier Mobility Versus Temperature in High 

Resistivity Silicon. 

From Section 2 . 2 and 2.3 the temperature dependence of the product 

of the mobilities ~ ~ is given by ~(o) ~(o) [Tolap+an where 
p n p n T J 

ap + an = 3. 93. The procedure now is to determine individually the 

t t •t ( (o) (o)) room empera ure magn1 udes ~p , ~n and the temperature 

dependences (ap' an) of the carrier conductivity mobilities. 

In the ohmic range (low level injection, Eq.(l.2.18)), 

a 

I = ~~o) [~a] p [A (2.4.1) 
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Figure 2 . 3 .l. Measured commgn high-level lifetime of charge 
carriers in Si from 140 K to 350°K. 
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Equation (2 .4.1) thus provides a means with which to determine a p 

and (o) 
J..l.n • 

Unfortunately, the ohmic regime, as illustrated in 

Figure 1.2.5, is not well defined throughout the complete temperature 

range (l40°K- 350°K). This is due to the onset of the semiconductor 

regime and junction effects . Figure 2.4 .1 shows potential probe 

measurements (open dots) with the double injection diode biased at 

0. 3V. These measurements are made by placing the diode in a fixture 

containing a tungsten probe which is mounted in a micromanipulator and 

traversing along a lapped (3200 mesh alumina) side of the structure. 

The potential does not decrease uniformly across the entire diode but 

is greatly influenced by the + rc-n junction. Similar probe measure-

ments with the diode biased into the semiconductor regime are also 

shown in Figure 2 .4.1 (solid dots). These measurements are in accord

ance with potential distributions obtained by J. w. Mayer et al.< 2 •5 ) 

The difficulty encountered with the + rc-n junction in the ohmic range 

precludes the use of the double injection diode in establishing the 

* majority carrier mobility. This problem is circumvented by fabricating 

+ + ( a p rc p structure semiconductor resistor) from the same high-

resistivity rc type silicon. Here, the + p contacts are made by 

evaporating aluminum onto chemically etched end surfaces (3.17 x 3 .14mm) 

and heating to the alloy temperature. Potential probe measurements 

* The resistivity and thus the majority carrier mobility (J..J.(o)) can 
be determined from the potential probe measurements of thepdouble 
injection diode given in Figure 2.4.1 (0.3V) . However, similar 
probe measurements proved to be intractable at low temperatures 
(T < 29(3°K) . 
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shown in Figure 2 .4. 2 illustrate the nearly ohmic behavior of the 

+ + p rr p structure. The resistivity of the rr type silicon as 

determined by the ohmic device is 14. 2 kO-cm. By varying the tempera-

ture of the + + p rr p structure under constant voltage bias, the 

current according to Eq.( 2 .4.1) will exhibit the temperature dependence 

of the majority carrier conductivity mobility (~p). Figure 2.4.3 

shows the measured current of this semiconductor resistor over a 

4 0 0 temperature range from 1 0 K to 350 K. The slope of this curve is 

equal to 2.18 (i.e. ap = 2 .18). Since a +a = 3.93, the temperap n 

ture dependence of the electron mobility (~n) is equal to 1.75 

(i.e. an= 1.75). These values are in good agreement with measurements 

reported in the literature which give 

2.6. (2.2) 

2 • 3 ~ a ~ 2 • 7 and 1. 5 ~ a ~ 
p n 

The absolute values of the conductivity mobilities ( o) 
~p and 

~~o) are now considered. R. H. Dean has shown that when a step 

voltage from zero bias to a point in the semiconductor regime is 

applied to a double injection diode, the derivative of the resulting 

current response contains a "cusp". The time t at which this cusp a 

occurs is related to the minority carrier mobility ~(o) by 
n 

(o) 
~n = 

which reduces to 

(o) 
iln = 

5 L
2 

6 t v 
a 

(2.4.2) 

(2.4.3) 
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Figure 2 .4.3. Measured current of thS p+ 1C p+ structure 
(C-l273, 3.2.6 AM) from l40°K to 350 K. 



for p >> n • 
0 0 

A large signal step voltage is therefore applied across the double 

injection silicon diode and the derivative of the current response is 

measured. The result of such a measurement is shown in Figure 2 .4.4. 

The cusp occurs at 3 . 2 5~ sec. From Eq.(2.4.3), the minority carrier 
2 

mobility is calculated to be ~(o) = 1280 ~ which is within 6% of n v-s 2 
the average value obtained by Ludwig and Watters (~~o) = 1350 ~s). (2 •6) 

The majority carrier mobility ( o) 
~p is now calculated from the 

measured resistivity and the doping concentration quoted by the 
2 

manufacturer (l.l x 1012 cm-3) to be ~(o) = 405 em (2 .7) As an p v:s . 
alternative check, a Hall mobility measurement is performed on the 

structure using a 3900 gauss magnetic field. With the device operating 

at a de current of 3~, 
2 

the measured Hall mobility is (o) 
~pHall = 348 

em 
v-s Using the value for the ratio of the Hall hole mobility to the 

drift mobility of 0.84 as determined by J. Messier and M. Flores in 

8k~cm silicon, the calculated hole mobility is 
2 

(o) = 415 ~ (2.8) 
~P v-s 

This value is in good agreement with the hole mobility obtained from 

the resistivity and doping level. Therefore, the average hole 
2 

mobility of 410 ~ is taken as the absolute roam temperature v-s 

(T = 298°K) value. 

In summary, the high-level lifetime and majority and minority 

conductivity mobilities in high-resistivity silicon as measured from 

double injection are 

T = 
6 I. T ] 1.93 

(30.7 X 10- ) L298 sec, (2.4.4) 
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t298] 2 .18 
2 em 

IJ.p = 410 -
' T v-s (2.4.5) 

t298Jl.75 
2 em 

IJ.n = 1280 T v-s (2.4.6) 

4 0 0 where 1 0 K ~ T ~ 350 K. An estimate of the error in all determined 

values ( T 11 11 y a a ) is ~ ~- Figure 2 .4.5. illustrates ' ,....p' ,....n' ' p' n uyG 

the electron and hole conductivity mobility given by Eqs.( 2 .4.5) and 

( 2 .4. 6 ). The excellent agreement between these measured quantities and 

the values quoted in the literature indicate that the temperature 

dependence of the I-V characteristic from 140°K to 350°K of double in-

jection semiconductor regime diodes is determined entirely by the 

temperature variation of the common high-level lifetime and the 

majority and minority carrier conductivity mobilities. 

2 . 5. Conclusion. 

It is established that from 140°K to 350°K the dependence of the 

I-V characteristic of a silicon double injection diode on the lattice 

temperature is consistent with Eq.( 2 . 2 .1) and the variation of IJ.P(T) , 

IJ.n(T) and T(T) quoted in the literature. Thus, the validity of 

Lampert's representation for two-carrier injection in high resistivity 

p-type silicon is demonstrated throughout the temperature range from 

140°K to 350°K. The excellent agreement found between theory and 

experiment suggests that double injection, once its presence has been 

established, offers access to the values of IJ.p (T), 1J. (T) and T(T) n 

by relatively simple de and pulse measurements. To assure the presence 

of trap-free double injection current may, however, not be an easy 
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Electron and hole conductivity mobility from 
l40°K to 350 K in high-resistivity silicon (> 3~cm) as 

determined from double injection. 



task, in general. Nevertheless, from the results presented herein, 

the properties of two carrier injection may possibly be used in the 

future as a primary tool for investigating the transport behavior of 

carriers in high-resistivity materials. 
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APPENDIX A 

SOLUTION FOR GEOMETRICAL FACTOR 

Equation (l.2.20) is written as 

= 0 (A.l) 

which is easily integrated once resulting in 

where Cl is the integration constant. With the substitution of 

2 
w(ul) = E (ul)' Eq.(A.2) is reduced to 

dw 2w -+--dul h2h3 
= (A.3) 

Solving (A.3) for w(ul)' and subsequently the electric field, 

results in 

where 

Since 

as 

(A.4) 

(A.5) 

J = - ClJ.l _j.l ,- ( p -n ) ( '\7 • E) E , the constant cl is evaluated 
p n o o 



So 

(A .6) 

Substituting this value of Cl into Eq.(A.4) gives 

(A.7) 

where I/A = J. The current-voltage characteristic is determined from 

Eq.(l.2.2l) and the boundary condition (ii). 

and finally 

where 

I = o~ ~ T(p -n ) v2 
p n o o 

J A'J •Fe 
0 = ~2 ~ _ :~ l/2 duj -2 

Rl l 

That is, 

(A.8) 

(A.9) 

(A.lO) 
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APPENDIX B 

SOLUTION OF AC SMALL SIGNAL IMPEDANCE 

The linearized ac equations which result from the substitution of 

Eqs.(l.4.3 a,b,c) into Eqs.(l.4.l) and (1.4.2) are given by 

(B.l) 

and 

(B.2) 

where pT = p
0

- n
0

• Solving Eq.(B.l) for P1 (u1) and substituting 

into (B. 2) yields 

where J 1 = I1/A and J = AqP ~ E (b+l). Since 
0 0 p 0 

2 
I = o~ ~ TpTV o p n o 

(see Eq.(A.9)). Eq.(B. 3) can be rewritten as 

where R = V /I • This equation is now placed in the form 
0 0 0 

&V 
cp = AE 0 (l+i(.l)'T") (I

0
/E

0
+jm=:A) h1, and 

0 

(B. 5) 
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6V 

w = AEo (l+j mT) h1h2h
3

• The solution of Eq.(B.5) and therefore the 
0 

electric field is easily found to be 

(B.6) 

By integrating the electric field along u
1 

from R
1 

to R
2

, the 
vl 

voltage v
1 

and subsequently the ac impedance z
1 

= 
11 

is determined. 

The result is 

which is Eq.(l.4.5). 

Consider the cylindrical geometry (case (a)) discussed in Section 

1.2.2. From Eq.(B.7), the ac impedance z1 after some manipulation is 

brought into the form 

~[~·] (1+jmT) 

0 

exp[jill8(l+jmT)(u-u')] (B.8) 

where H is the height of the diode and 8 ER (2~H6) 1/2 . Expanding 
0 

the integral (Eq.(B.8)) in powers of W8 to O(ruB) 2 and integrating, 

the resultant expression for the ac impedance is given by 

(B.9) 



where 

ij = 
I, 2 l/2 2 l/2]2 
Llne(z + (z -1) ) - (1-z- ) 

(B.lO) 

Case (a) 

and z = p
2
jp1 • In this case, the impedance (B.9) is formally identical 

to the expression for the planar geometry impedance (Eq.(l.4.7)). The 

difference arises in the magnitude of the second order terms which 

involve the factor "8". In the planar configuration the ratio 

8/(R C ) 
0 0 

is constant and equal to 3/2 (i.e. 8/(R C ) = 3/2). 
0 0 

How-

ever, for the cylindrical configuration the ratio ®/(R
0
C

0
) where c 

0 

is the geometrical capacitance of the cylindric~l diode, is not 

constant but depends upon the value of the radii ratio p2jp1 as shown 

in Figure B.l. As pzfp1 approaches unity the ratio ~,{R0c0 ) tends 

toward the value 3/2 which is anticipated from the planar result. 

The form of the ac impedance for case (b) is identical with Eq.(B.9) 

except 8 is now given by 

@ = 

Case (b) 

2 
It 2 l/2 1 l 
L:z -1) - cos- (1/z)J 

(B.ll) 

From Figure B.l, the ratio ®;(R
0

C
0

) in e~ch case (a and b) is a 

rather insensitive function of the radii ratio and can thus be 

a~proximated by the constant value 3/2 when p2jp1 < 10. 
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When the second order terms involving ~ are negligible, the 

first order small signal equivalent circuit shown in Figure 1.4.lb 

represents both the planar and cylindrical geometries. This is in 

agreement with the step response analysis of Section 1.3 which is 

independent of any arguments based on geometrical properties of the 

double injection diode. The ac impedance for the spherical geometry 

must be determined from Eq.(B.7) by numerical techniques. Nevertheless, 

by analogy to the planar and cylindrical cases, it is assumed that the 

first order equivalent circuit illustrated in Figure 1.4.lb is applicable 

to the spherical geometry also. 

For frequencies w >> 1/S, Eq.(B.8) is expanded in powers of 

1/(WS) through o(ae)-2 • The small signal admittance f~r the cylindri-

cal configuration is thus given by 

where 

g = 
Case (a) 

g = 

Case (b) 

= g + jo.:C 
0 ' 

2 1/2 [ln (z+ (z -1) ) e 

w >> 1/S 

1 1/2 1 2 1/2 
- (1-z-) ][tanh- (1-z-) ] 

2 
(ln z) e 

2 1/2 
-1 I -l 2 

1/2 
[(z -1) - cos (1 z)][tan (z -1) J 

G 
(ln z) 0 

e 

and C
0 

(the geometrical capacitance) is given by 

(B.l2) 

G 
0 

(B.l3) 

(B.l4) 
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In the planar geometry, the ratio g/G 
0 

is constant and equal to 4/3 

(i.e. g/G = 0 
4/3 ). However, for the cylindrical configuration the 

ratio g/G 
0 

is not constant but depends upon the value of the radii 

ratio P2/Pl as shown in Figure B.2. For both cases (a and b), the 

ratio g/G 
0 

tends toward the value 4/3 as p2jp1 approaches unity. 
~ 

The conductance g in the frequency range 1/® < rn < 1/T now depends c 

upon geometrical terms and contrasts the result for the first order 

equivalent circuit given in Figure 1.4.lb. 

Numerical means must be used to determine the ac admittance from 

Eq.(B.7) when the geometrical configuration is spherical. 
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APPENDIX C 

THEORY OF NOISE MEASUREMENT AND EXPERIMENTAL PROCEDURE 

C.l. Noise Spectral Density. For a two-terminal network, the noise 

in a frequency interval D.f can be represented by an equivalent noise 
2 l/2 

voltage (v ) in series with the network or alternatively by an 

equivalent noise current generator 
2 l/2 

(i ) in parallel with the 

network~C.l) In general, the network will consist of both passive and 

active elements. Another representation of the noise current is 

obtained by introducting (i2) per unit bandwidth 

s. (f) 
l. ' 

(C.l.l) 

where s. (f) 
l. 

is the "noise spectral density". 

In the measurement procedure, the unknown noise source of the 

device is compared to a known shot noise diode calibrator source. Thus, 

an alternative representation of the noise current is 

2 q I D.f 
eq (C.l.2) 

where I is an "equivalent" saturated noise diode current giving the eq 

same mean square value of the short-circuit noise current in the 

frequency interval D.f. From equations (C.l.l) and (C.l.2), the noise 

spectral density is given by 

2 q I eq (C.l.3) 



I will be used throughout the remainder of this discussion as a eq 

measure of the noise current spectral density. 

C. 2 . Measurement System. A block diagram of the measurement system 

is outlined in Figure c. 2.1. In this case, noise signals from the 

device are passed through an amplifier and wave analyzer. The wave 

analyzer consists of a variable narrow bandpass filter and a linear 

half-wave rectifier. The rectified output voltage is integrated and 

displayed on a digital voltmeter. By activating a shot noise calibrator 

source, the equivalent noise current of the device is subsequently 

compared to that of a known noise source~C- 2 ) This technique eliminates 

the need for accurate amplifier gain and filter bandpass measurements. 

The temperature of the device is varied by the temperature control 

unit. This allows measurements to be made as a function of ambient 

temperature. 

C . 3 . Small Signal AC Equivalent Circuit and Notation. The small s ig-

nal ac equivalent circuit along with the pertinent noise sources of 

the amplifier input are shown in Figure C.3.1. The device noise is 

2 1/2 (1.•2) represented by a noise generator (i ) , where is given by 

Eq. (C.l.2). 

The following notation and symbols are defined as: 

q = lql, magnitude of the electronic charge, 1.6 x 10-l9 

coulombs. 

T = Temperature, °K 

k = Boltzmann's constant, 1.38 x 10-23 joule/°K 

~f = Frequency interval of narrow bandpass filter 
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Shot noise current generator of the temperature 

limited diode (5722 vacuum tube), (i 2) = 2 q I ~f 
c c 

where 

diode(C. 3) I is the de plate current of the 
c 

rd = Real part of the dynamic impedance of the device 

rb = Real part of amplifier input impedance 

~ = Total input capacitance of amplifier (includes device 

capacitance) 

Thermal noise current generator due to rb; (~2 ) = 

4kT(l/rb) ~f(c. 4 ) 

(v 2 ) = Equivalent noise voltage source of amplifying system. The 
a 

<v 2> . location of in F1gure C.3.1 expresses the fact that a 

this noise source is found experimentally to be insensitive 

to the amplifier input impedance Z and the plate current 

I (see Section D.5) c 

Sl Switch which activates shot noise source. This is illus-

trated symbolically in Figure C.3.1 by a switch in series 

with the noise source (i 2 ) 
c 

S2 = Shorting switch at amplifier input 

Z = Total input impedance (includes rd) 

Ga =Voltage gain of system with (va2 ) as the source. This 

gain is experimentally found to be insensitive to the 

input impedance Z and plate current 

D.5) 

I 
c 

(see Section 

Gl =Voltage gain of system with (i2 ) and (~2 ) as sources, 

Sl open, S2 open 
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G2 =Voltage gain of system with (i2), (ic
2

) and (~2 ) as 

sources, sl closed, s2 open 

~=Gain ratio, ~ = ja1 j2jja2 j2 • The introduction of ~ is 

motivated by experimental evidence indicating that in 

C .4. Measurement Procedure. The variable narrow bandpass filter 

(wave analyzer) is set at a center frequency f and the output noise 
0 

2 l/2 2 l/2 2 l/2 
voltages (va ) , (v

1 
) and (v2 ) are measured by employing 

the following 

( i) 

(ii) 

(iii) 

(iv) 

procedure (see Figure C.3.l): 
2 l/2 

With Sl open, S2 closed, measure (va ) 

2 l/2 
With Sl open, S2 open, measure <vl ) 

With Sl closed, S2 open, measure 
2 l/2 

<v2 ) 

and the noise diode plate current I (i.e. I is c c 
2 l/2 

(vl2)l/2, adjusted such that <v2 ) >> see 

Appendix D.l.l) 

The device is removed from the input. 

and (iii) 
~ 2 l/2 

(V2 ) 

are now repeated yielding 

and I . 
c 

Steps (i), (ii) 
~ 2 l/2 ~ 2 l/2 

(v a ) , <vl ) 

By repeating this procedure for various f 's 
0 ' 

these eight measured 

quantities in conjunction with the value ~ are sufficient to obtain 

a measure of the device noise spectral density 

C • 5 • Analysis • Since G ' a 

I • eq 

are smoothly 

varying functions of frequency, they can be considered to be constant 

' 

over a sufficiently small frequency interval 6f. The voltage gain G 
a 



of the amplifier equivalent noise source is assumed to be independent 

of the input impedance 

voltages 

* z. 

and 

With these assumptions, the noise 

2 (v2 ) are expressed as 

(C.5.1) 

(C.5.2) 

<v2
2

) = (va
2

>1Gal
2 

+ (i
2

)lz\
2

IG2 12 
+ (~2 >lzi 2 IG2 1 2 + (ic

2
>lzi

2
\G2 1

2 

(C.5.3) 

Here, for example, the terms in Eq.(C.5.3) represent the amplifier 

noise, device noise, amplifier input resistance noise and the shot 

noise sources respectively. Solving Eqs.(C.5.1), (C.5.2), and (C.5.3) 

for the equivalent noise current I of the device gives eq 

<v 2) - <v 2) (1-11) <v 2) 
1 a a 2kT 

I 1 - I eq 
11 <v 2) - (v 2> 11 <v22)-

2 (V 2) 
c qrb 

(Vl ) + (1-11) 2 1 a 

(C.5.4) 

The second term of Eq.(C.5.4) is recognized as the equivalent noise 

current (I ) eq, b 

I eq,b 

of rb' where 

(C.5.5) 

* Any change in the system gain due to "Miller effect" is found 
experimentally to be negligible (see Appendix D). 
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This equivalent noise current is experimentally determined by invoking 

step (iv) of the measurement procedure (c.4). That is, 

Thus, Eq.(C.5.4) becomes 

I = 0 and eq 

I - I c eq,b 

(C.5.7) 

At the center frequency f , the equivalent noise current is now 
0 

totally determined by experimentally measured quantities. When the 

value of ~ (see Appendix D) is equal to l.O, Eq.(C.5.7) simplifies to 

(C.5.8) 

In this case, I does not depend upon the characteristics of the eq 

system gain. 



APPENDIX D 

REALIZATION OF NOISE MEASUREMENT APPARATUS 

D.l. Description of Amplifier and Input Circuitry. The amplifier, 

shot noise calibrator diode and associated power supplies are illustrated 

in Figures D.l.l and D.l.2. Here, Sl, S2, Ql and the parallel 

combination of Rl, R2 and R3 represent respectively the elements 

Sl, S2, and (to first order) in the ac equivalent circuit 

shown in Figure D.3.l. The resistors Rl, R2 and R3 constitute the 

input biasing networks and are considered as part of the input impedance 

of the amplifier. The vacuum tube Ql (type 5722), which operates as a 

temperature limited diode, is used as the shot noise calibrator 

source.(D.l) This noise source is activated by the switch Sl located 

in the filament supply. A 200vdc supply in conjunction with Rl 

provides the device current, whereas a similar voltage supply with R2 

provides the plate current I for the shot noise diode. By adjusting c 

the filament current via R62, the equivalent noise current (I ) c of 

the shot noise diode can be varied from 0 to 500~A (see table D.l.l). 

Metering circuits Ml and M2 continuously monitor the device current 

and noise diode plate current respectively. The first stage of ampli-

fication, which is denoted by Q2 and Q3, is a standard cascade 

arrangement and the output stage Ql2 is an emitter follower. The 

somewhat unusual mid-stage gain section is differential. This is done 

to provide an option for having a differential input. However, this 

possibility was not exploited since the single ended cascade arrange-

ment proved adequate. 
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Figure D.l.l. Input amplifier and shot noise source. 
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* RESISTORS 

Rl 
R2 
R3 
R4, 5, 16, 23 
R6 
R7 , 17, 21, 22, 24 
R8 
R9, 13 
RlO,l2 
Rll 
Rl4, 15 
Rl 8, 19 
R20 
R25, 26 
R27,54 
R28, 29, 30, 31 
R32 
R33 
R34 
R35 
R36 
R37 
R38 
R3 9 
R40 
R41 
R42 
R43 
R44 
R45 
R46, 47 
R48 
R49 
R50 
R51, 52 
R53 
R55, 60 
R56 
R57 
R58 
R59 
R61 
R62 
R63 
RMl 
RM2 

99 

TABLE D .1.1 

Parts lis t for amplifier and power supplies. 

lOOk, l/2w, MF 
lOOk or 3 OOk, 1/ 2w, MF 
lOMO, l/2w, MF 
l.5k, l/2w, MF 
3 .48k, l/4w, MF 
750, l/4w 
10. 7k, l/4w, MF 
lOk, lj4w, MF 
620, l/4w 
39, l/4w 
40. 2k, l/2w, MF 
221, l/8w, MF 
24, l/4w 
267, l/8w, MF 
2k, l/2w 
8 . 2k, l/2w, MF 
lk, 1/lw 
4.7k, 1/lw 
lMO, lw 
68ok, 1j2w 
2. 2k, l/2w 
4. 7k, l/2w 
llOk, l/2w 
lOOk, l/2w 
lOk, trim.pot. 
47k, l/2w 
68k, l/2w 
2 .4k, l/2w 
l 20k, l/2w 
lOk, lOw 
5k, lw 
lOk, Helipot 
lOk, lw 
3 .3k, l/2w 
470, l/2w 
27k, l/2w 
lk, l/2w 
2 .8k, l/2w 
3, l/2w 
1.82k, l/2w 
510 trim.pot. 
l.lk, lw 
500 Helipot 
2 .15, 25w 

{selected meter shunts 
tl/2w, MF 



Table D.l.l (Continued) 

** CAPACITORS 

Cl, 2, 22 
C3,7 
c4, 8 
C5, 28 
c6, 11, 12, 13 
C9 
ClO, 14, 32,33 
Cl5 
Cl6 
Cl7 
Cl8,19 
C20, 21, 25 
C23, 24 
C26 
C27, 30 
C29 
C3l 
C34 

INDUCTORS 

Ll 

12 

13 
L4 
15 

TRANSISTORS 

Q2 
Q3, 6, 7 
Q4,5 
Q8, 9,12 
QlO,ll 
Ql3 
Ql4, 15,16 
Ql7 
Ql8, 20, 21, 22 
Ql9 
Q23 
Q24 

DIODES & ZENERS 

Dl 
D2,3,4,5 

0.02 
0.47 
l.O 
0.1 
0.47 
2 .0 
0.01 
5-80 pfd 
2 . 2 pfd 
3 .9 pfd 
100 pfd 
80 
4o 
0.5 
100 
0.001 
4ooo 
50 

100 

l~h, 50 turns #22 wire on Micrometal 
T80-7 toroid core 
2 .~h, 20 turns #16 wire on Micrometal 
T80-6 toroid core 
4.7mh 
&.th 
8~h 

SF-5868 or 2N3819 (selected for low noise) 
2N250l 
2N3572 
2N426l 
MM 999 
RCA 40424 
RCA 40327 
2N3906 
2N3904 
Tektronix 151-140 
2N442 
2N3715 

IN 962 
IN 4005 



Table D.l.l (Continued) 

D9, 10, ll, 12, 13, 15 
D6 
D71 8 
Dl4 

NOISE DIODE 

METERS 

Ml, M2 

101 

Tektronix l52-0o40 
IN 752 
IN 227 
IN 960B 

5722 (Sylvania) 

0-50t-J.A TAUT BAND 

* All resistor values are in ohms; MF =metal film. 

** All capacitor values are in microfarads unless otherwise specified; 
capacitors associated with the amplifier are ~ 50 VWDC, whereas 
the capacitors associated with the power supply are ~ 250 VWDC. 
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D.2. Amplifier and Wave Analyzer Characteristics. In order to perform 

the necessary noise measurements, the amplifier must be linear, low 

noise and have sufficient voltage gain over a wide frequency range to 
. 

enable the wave analyzer to detect the small noise signals. The wave 

analyzer is a Hewlett-Packard HOR-312A with a frequency range from 

ldcHz to 22MHz. A filter bandpass of 3kHz is used for all measurements. 

Since the device dynamic resistance is of the order of 1 kO to 10 kO 

the real part of the amplifier input impedance should be greater than 

10 kO in order to reduce attenuation of the device noise signals. How-

ever, the output impedance of the amplifier should be about 50 0 or 

less since this is the value of the input impedance of the wave 

analyzer. 

A junction Field-Effect-Transistor (FET), type SF-5868, is utilized 

in the first stage of amplification since it fulfills the criterion of 

low noise and high input impedance (the real part being greater than 

lOOMeg 0). Figure D.2.1 shows the amplifier gain as a function of 

frequency for an input ac generator source impedance of 50 0. For this 

case the amplifier is also terminated in 50 0. The gain is greater than 

40db over the frequency range from lO~z to 22MHz. This gain is more 

than adequate for the sensitivity of the wave analyzer. Since Rl = 

300 kO, R2 = 100 kO and R3 = lOMeg 0, the real part of the input 

impedance is approximately 75 kO. The measured output impedance is 

8.4 o. 

Van der Ziel has shown that for a junction FET the theoretical 

equivalent noise resistance is given by 
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Figure D.2.1. Voltage gain of the input amplifier 
(Figure D.l.l) from 10kHz to 40MHz. 
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(D.2.1) 

where is the transconductance of the FET. (D. 2 ) A measured 

gml of 4.5 ma/v 

VGS=O 

for the SF-5868 corresponds therefore to a 

theoretical equivalent noise resistance of 148 O. The actual measured 

short-circuit equivalent noise resistance of the amplifier is shown in 

Figure D.2.2. A high frequency limiting value for R of approxi-eq 

mately 275 0 indicates that possibly other noise sources besides that 

of the FET are contributing to the overall short-circuit noise of the 

amplifier. For device dynamic resistances greater than 275 O, the 

noise of the amplifier is sufficiently low to insure accurate 

measurements of I . eq 

D.3. High Frequency Effects. The total measured input capacitance of 

the amplifier is 15.4 pfd. Approximately 6pfd, 7pfd and 2.4pfd are 

associated with the FET, noise diode, and distributed wiring capacitance 

respectively. Depending on the dynamic resistance of the device, this 

input capacitance may appreciably attenuate the noise signals at high 

frequencies. As a result, the signal noise approaches that of the 

amplifier, and the error in the measured spectral noise density of the 

device may become very large (see Eq.(C.5.7)). To overcome this effect, 

a tuned circuit consisting of a high Q inductor and variable capacitor 

is added to the input impedance of the amplifier. This circuitry 

consists of the elements Ll, L2, Cl5 and 83 as shown in Figure D.l.l. 

The combination of the inductor Ll, input capacitance (""' ~) and 
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Figure D.2.2. Equivalent noise resistance of amplifier 
(Figure D.l.l) from 10kHz to 22 MHz. 
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variable capacitor Cl5 is tunable over a f'requency range f'rom 

5MHz to 9MHz, while L2 in a similar arrangement covers 13 MHz to 

22 MHz. With the wave analyzer set, for example, in the f'requency 

range where Ll is applicable, the variable capacitor Cl5 is 

adjusted for maximum noise output signal. Under this resonance condi-

tion, the reactive part of the input impedance is eliminated, and the 

parallel combination of Rl, R2, R3 plus the losses associated with 

Ll determines the magnitude of the real part of the amplifier input 

impedance (> lOkO ) • The theory and procedure of the noise measure-

ment described in Appendix C is not altered by the introduction of the 

tuned circuitry at high frequencies. Since the Q of the wave analyzer 

is much greater than that of the tuned circuit, the f'requency bandpass 

6f is still determined by the wave analyzer. 

D.4. Low Frequency Effects. If the dynamic resistance of the device 

is sufficiently small, the increasing impedance of the coupling 

capacitor Cl at low frequencies causes the measured noise spectral 

density to decrease. Under these conditions, the correct equivalent 

noise current is calculated f'rom 

I = s(f ) I , 
eq 0 eq measured 

(D.4.1) 

where 

s(f ) 
0 

(D.4.2) 
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Since the value of the capacitor Cl is 0.02~fd, which in this case 

is the maximum value attainable within the given space restrictions, 

Eq.(D.4.1) is utilized when rd is less than lkO over the appropriate 

low frequency range. 

D.5. Measurement of Gain Ratio ~. The deviation of the gain ratio ~ 

from 1.0 is found experimentally to depend only on the magnitude of R3 

and the noise diode plate current I • c This probably arises from a de 

leakage current through C2 developing a bias voltage across R3 which 

subsequently alters the ~ of the FET Q2. This effect is negligible 

(i.e. ~ ~ 1) when the high frequency L-C network is switched into 

the amplifier input since Ll and L2 effectively short circuit any 

de voltage appearing across R3. The measured values of ~ for 

various values of I and R3 are given in Table D.5.1. c 

TABLE D.5.1 

Measured values of the gain ratio ~. 

~ I ~5~ I ~ 10~ I = 20~ I ' 
c c c c 

L-C out 1 0.953 0.883 
R3~10Meg0 

L-C out 1 1 1 
R3~500KO 

L-Cin l l 1 

~~~ 

0.828 

0.950 

1 

It is noted that for I less than 5~A, the gain ratio ~ is equal 
c 

to 1 and does not depend on the amplifier input impedance. 
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D. 6 . Comments on Construction. The amplifier, input circuitry, noise 

diode and associated power supplies form an integral system. The 

utilization of solid state devices permits all of these units to be 

placed in a single metal enclosure which acts as a Faraday shield. 

This construction also facilitates the location of one signal ground 

which is labeled ~ in Figure D.l.l. The general construction 

techniques of high frequency equipment are employed in laying out the 

amplifier and input circuitry. Metal film resistors which exhibit 

nearly ideal thermal noise over a wide range of frequency and current 

are used extensively. The shorting switch 82 is a point contact of 

low capacity. Inductors Ll and 12 are toroids and have Q's 

typically greater than 175. All power supplies are of the series 

regulator type and have peak to peak ripple of less than l millivolt. 

D.7. Active Integrator. With a noise signal at the input, the output 

voltage of the narrow bandpass wave analyzer fluctuates around a mean 

value v (v ~ lV). To improve on the expected error of this reading, 

the output voltage is integrated for T seconds (see Appendix H). 

The integrator consists basically of an operational amplifier 

with an RC feedback network. Figure D.7.1 illustrates such an 

integrating scheme. Here, the operational amplifier Ql in conjunction 

with C2 and R6 through Rll make up the integrator for the fluctu

ating input voltage. The total integration time T is determined by 

a similar arrangement (Q2, C3, Rl2-Rl7) which integrates a constant 

input voltage of lV. When 82 is in the RESET position, the FET 

switches Q4 and Q5 are on; capacitors C2 and C3 are discharged 

by resistors Rl8 and R20 respe.ctively. Placing 82 in the INT. 
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54 
PIN CONNECTIONS FOR SP65U (01,02,03) 

SPAR 
ELECTROSTATICS -15 
POWER SUPPLY 

MODEL 500 

+15 

Rl 

R6 Rl8 

-=- RESET 

Sl 

INPUT 

1 
-= 

OUTPUT 

1 - 15V 

7 

Bl 

-15V 

-= 

Rl2 R20 

0 .5 Rl7 

- 15V 

Figure D.7.1. Wiring diagram for active integrator. 



* RESISTORS 

Rl,29 
R2,3 
R4 
R5, l8, 20,30 
R6, l2 
R7, l3 
R8,l4 
R9,l5 
RlO, l6, 22 
Rll, l7, 24 
Rl9, 2l 
R23 
R25 
R26 
R27 
R28 
R3l 
R32 

** CAPACITORS 

Cl, C2, C3 

DEVICES 

Ql, 2, 3 
Q.4,5 

llO 

TABLE D. 7 .l 

Parts list for active integrator. 

JMO, l/2W 
lOOMO, l/4w 
l4k, l/2W 
lk, l/2W 
l.6MO, l/2W 
800k, l/2w 
4ook, l/2W 
200k, l/2w 
lOOk, l/2W 
50k, l/2W 
500k, l/2w 
l50k, l/2W 
23lk, l/2w 
lOk, l/2W 
30, l/2W 
lOOk, l/2W 
470, l/2W 
lOk, lOw 

lj.lfd 

Philbrick SP65Au operational amplifier 
2N38l9 

* All resistors values are in ohms; MF = metal film. 

** All capacitor values are :<! 50 VWDC. 
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position starts the integration. After T seconds, the level detector 

Q3 activates the READY indicator B2 and turns off Q4 and Q5 

simultaneously. The integrated input voltage is read at the output of 

Ql with a digital voltmeter. One of the main advantages of such an 

integrator is that the relative standard error is smaller than with a 

passive RC integrator of the same time constant. (D.3) 
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APPENDIX E 

CALIBRATION MEASUREMENTS 

E .l. Wave Analyzer Detector. An investigation of the wave analyzer 

shows that the detector is a linear half-wave rectifier followed by a 

passive RC time averaging circuit. For an input sine wave with ampli

tude v ' 0 
the half wave-rectified output voltage <v ) h.w.r S 

V 
0 is -1'( 

The output of the wave analyzer, however, is calibrated in R.M.S. 

(root-mean-square) voltage and reads 

2 l/2 
(V )S INDICATED 

' 

Therefore, for a sine wave 

v 
0 

2 l/2 
(V )S INDICATED rc 
----~'--------- = ---<v ) 

h.w.r. S 

(E.l.l) 

(E.l.2) 

Now consider an input noise voltage being applied to the same half-

wave rectifier. The noise voltage is assumed to have a normal (Gaussian) 

distribution which is defined as 

p(v) = J ~." v ~ff exp [ ~ [v.;i]j (E.l.3) 

where p(v) dv is the probability that the noise voltage has a value 

between v and v + dv and veff is the standard deviation. For a 

half-wave rectifier, the expected value of the output noise voltage is 



Cv ) h.w.r. N 

and the R.M.S. value is given by 

Therefore, for a noise voltage 

2 1/2 
<v >N 
(v, > = F . 

h.w.r. N 

113 

(-v-) 2] dv = 
veff 

(E.l.4) 

(E.l.5) 

(E.l.6) 

From Eqs.(E.l.2) and (E.l.6), the actual R.M.S. noise is given by 

2 2 1/2 
-(V )N INDICATED 
{rf ' 

Since the system is used as a comparator (see Eq.(C.5.7)) this 

correction does not appear explicitly in the evaluation of the result. 

It does appear, however, in the testing procedure discussed in 

Section E.2. 

E.2. Verification of Nyquist 's Theorem. According to Nyquist's theorem, 

the mean square value of the voltage developed across a resistance R 

at the ambient temperature T °K in a narrow frequency interval ~f 

is(c.4) 

(E.2.l) 
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A lOkO metal film resistor in lieu of the device is placed at the 

input of the amplifier. The measured value of this resistor in 

parallel with the input biasing networks of the amplifier is 8.2 kO 

at a temperature of 298°K. With the wave analyzer set at a center 

frequency of 50kHz and a bandwidth 6f of 3kHz, the voltage gain of 

the system as measured by the wave analyzer is 173. From Eq.(E.2.1) 

the theoretica1 noise voltage is 

<v2> 
theoretical 

The output reading is 97~V (RMS at wave analyzer). Therefore the actual 

noise measured with respect to the input is 

2 (0.401 ± .Ol)(~v) 

The experimental resu1t agrees very well with the theoretical expression 

of Nyquist and demonstrates that meta1 film resistors exhibit nearly 

idea1 thermal noise. 

E.3. Verification of Schottky's Theorem. In accordance with Schottky's 

theorem, the mean square noise current from a temperature limited 

vacuum tube diode in a frequency interval 6f is given by 

2q I 6f 
c ' 

where I is the de plate current of the diode.(C.3) 
c 

(E.3.1) 
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Under experimental conditions identical with those described in 

E. 2 the output noise voltage with the shot noise diode activated is 

(see Eq.(C.5.3)) 

(E.3.2) 

where 

Figure E. 3 .l shows a plot of the output noise (v2 ) as a function of 

the shot noise diode plate current I . 
c 

The result demonstrates the 

linear dependence of on I , c 
and also establishes the linearity 

of the amplifying system. From the slope of this curve and Eq.(E.3.2), 

the value of jqj is determined as 

jqj = (1. 65 ± .06) x l0-l9 coulombs 

This measured value for the magnitude of the electronic charge is in 

good agreement with the accepted value of 1. 602 x l0-l9 coulombs. It 

also verifies t he pure shot noise behavior, as expressed by Eq.(E.3.l), 

of the temperature limited diode Ql. 

E.4. Resistor Calibration. In order to fully check the performance of 

the noise measuring apparatus and verify the theory and procedure 

described in Appendix c, the noise spectral density for a series of 

resistors is measured at room temperature (T; 298°K). The theoretical 
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Figure F.3.1. Mean square amplifier output voltage versus noise diode de 
plate current for 5722 vacuum tube at 50kHz. 
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equivalent noise current of a resistance R is given by 

I 
e~heoretical 

= 
2kT (E.4.1) 

Figure E.4.1 shows the measured equivalent noise current for a 

lOOkO, lOkO, lkO and 3010 metal film resistor over a frequency range 

from 10kHz to 22MHz. The results are tabulated in Table E.4.1. In 

all cases, the average measured equivalent noise current deviates by 

no more than 5% from the theoretical equivalent noise current calcula-

ted from Eq.(E.4.1). Since the real part of the amplifier input 

impedance at 22MHz is approximately 17k0, the experimental results for 

the lOOkO r esistor illustrate the rather remarkable accuracy that can 

be obtained by this technique. The experimental data presented in 

Figure E.4.1 demonstrate that the apparatus has a capability of making 

noise spectral density measurements on two terminal devices which may 

have an equivalent noise current from 0.5~ to over 17~. The long 

term stability, reliability and absence of temperature drift of the 

system, is attributed to well designed solid state circuitry and is 

reflected in the measurements shown in Figure E.4.1. 

TABLE E.4.1 

Comparison between the theoretical and measured equivalent noise current 
for resistors. 

Resistance I e (I-LA) I (~-tA) ··a;; Error 
(0 ) ~easured eqtheoretical 
lOOk 0.50 0.52 3 . 9'k 

lOk 5.2 5.2 -(J!fo 

lk 51 52 1.% 
301 164 171 4.1% 
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APPENDIX F 

TEMPERATURE ENVIRONMENT AND THERMOSTAT 

F.l. General Considerations. The principle applied to vary the 

temperature of the device under test is to heat _ precooled nitrogen 

gas to the desired temperature and expose the device to this gas. A 

thermally insulated fixture houses the device and heating element. 

Feedback is utilized to maintain a constant temperature within the 

chamber. Temperatures from l00°K to over 400°K have been achieved with 

this system. 

F.2. Description of Thermostat . Figure F.2.l shows the experimental 

arrangement. Nitrogen gas is passed through a coiled copper tube 

submersed in liquid nitrogen . A reduction valve and flowmeter, which 

is calibrated from 0 up to 40 SCFH (Standard Cubic Feet per Hour), 

regulates the gas flow. The precooled gas flows to a heater coil where 

it is heated and subsequently enters the temperature chamber which 

contains the device. The ambient temperature is raised in the same 

manner but without precooling the gas (i.e. no liquid nitrogen). 

The feedback configuration used for control of the temperature 

consists of a thermocouple sensor, temperature reference source, 

comparison voltage source, and amplification system (dark lines in 

Fig. F.2.l). An iron-constantan thermocouple located in the temperature 

chamber near the device is the sensor. The iron-constantan wires are 

carried through the amplifier enclosure to a copper block located in a 

crystal oven (Monitor Model 5l2, T = 349.7°K) . This establishes the 

temperature of the reference junction. The output voltage between the 
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sensor and reference thermocouple junctions is compared to a variable 

(0-15mv) voltage source. An error voltage 6V resulting from this 

comparison is amplified by two cascaded chopper stabilized amplifiers 

with a total voltage gain of 106. This amplified error voltage is 

the input signal for a power transistor (RCA 40312) with the heater 

coil as its collector load. If 6V is greater than Ov, the heater 

coil will draw current from its 28v de supply. The heater, which is 

composed of Nichrome wire wound around four ceramic tubes and assembled 

in a "bird cage" fashion, has a small heat capacity and a resistance of 

approximately 200. Therefore, the heater is capable of delivering 39 

watts into the gas stream. Indication of the chamber temperature is 

provided by a XlOOO chopper stabilized amplifier and a de voltmeter. 

A recorder output is also supplied. 

F.3. Operation and Procedure. The chamber temperature is determined 

by setting the comparison voltage. Depending upon the desired tempera-

tureJ the voltage across the heater coil will be Ov (off) or 28v (on). 

Successful operation of the system is achieved when the measured heater 

voltage is somewhere between 0 and 28v. This is accomplished by 

adjusting the flowmeter and or the gain of the error signal amplifier. 

When the system is properly adjusted, a change in temperature (typically 

2Q%) is accomplished within a few minutes. The temperature will 

generally overshoot and then undershoot once before accurate regulation 

is achieved. 

In order that the room temperature characteristics of the amplifier 

remain constant, a thermal insulating wall which consists of a Teflon 

disc is used to couple the temperature chamber to the amplifier enclosure. 
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Stainless steel wires, which have a relatively low ~hermal conductivity, 

are used to carry the noise signals and biasing current of the device 

through the temperature wall to the amplifier input. Furthermore, 

the temperature chamber being made of copper provides an extension 

the Faraday shield. 

F.4. Calibration. With ice-water (273°K) as a reference temperature, 

the iron-constantan thermocouple is calibrated at liquid nitrogen 

(77°K) and found to be less than 1% from the values quoted in standard 

calibration tables~F.l) Using this calibrated thermocouple, the measured 

temperature of the crystal oven is 349.7°K. Calibration of the 

comparison voltage supply indicates an error of l~V (less than l% 

error for voltages greater than lmV). 

For noise considerations, the sensor thermocouple is not directly 

attached to the device. Therefore, in order to insure that the device 

temperature is that of the temperature chamber, the following measure-

ments are performed. A lkO metal film resistor is placed in the 

temperature chamber and the spectral noise density is measured at l00°K 

and 200°K. Figure F.4.l shows the results in which the measured tern-

perature of the resistor R is determined from T = qRI /2k. eq 

Table F.4.l summarizes the results. 

TABLE F.4.l 

Calibration values for temperature chamber. 

T (Thermocouple) T (Resistor) % Error 

l00°K l03°K 3% 

200°K 205°K 2.5% 
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There is excellent agreement between the temperature as 

measured by the thermocouple and that of the resistor which is deter

mined from the noise measurement. This illustrates the fact that the 

lattice temperature of the device (under normal operating conditions) 

is equal to the ambient temperature of the chamber to within 3%. 
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APPENDIX G 

CURVE FITTING AND ERROR ANALYSIS 

G.l. Introduction. In the present case, the experimentally measured 

equivalent noise current of the double injection diode can be repre-

sented by the equation 

I = c1 + eq (G .1.1) 

where f is between 10kHz and 22MHz. The first term c1 represents 

the "white" or thermal noise level, whereas the second term represents 

the "excess" noise (due to generation-recombination). In order to 

improve upon the estimate of c1, Eq.(G.l.l) is fitted to the data by 

a least-squares procedure. 

Least-Squares Curve Fitting of a Function I = y(f,C ). (G.l) 
--------------------------------~~----------------~q - ~ G.2. 

Consider the function y(f,C ) which need not be linear in the 
v 

coefficients C • The independent variable f is real and assumed to 
v 

have no errors. The data consist of L points which shall exceed the 

N parameters C (i.e. 
v 

v = 1, • • • , N) to be determined. Each point 

is represented by the number pair I , f. • The I 's are 
eqi ~ eqi 

assumed to be uncorrelated, however, the absolute errors in the 

are not, in general, equal. Therefore, the weights w. are incorpor
~ 

ated. A given initial set of estimated coefficients is represented by 

c~0)(v = 1, ••• , N). The function is now linearized in the coefficients 

by means of a Taylor expansion through Thus, 



where 

and 
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y(f.C ) - y(f.,C ) ( ) = 6y. , 
l,V l V C C 0 l 

N 

1 = 1 

C = C (o) 
N N 

6y. = ~- d 6C + 0 ( 6C 2 ) 
l ~ v v v 

, 

d = v 

V=l 

o (f.,C) 
y l v 

oc v 

The quantity 

where 

2 
- 6y.) 

l 

(G.2.1) 

(G.2.2) 

(G.2.3) 

(G.2.4) 

(G.2.5) 

is now minimized. After differentiation versus the N coefficients Cv' 

the N linear equations for the 6C are given by 
v 
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L 

L widld2t.C2 
i=l 

L L 

+ • • • 

+ • •• 

L widl~t.cl + L wid2<\fC2 + •• • 

i=l i=l 

By solving these equations for the 

for the coefficients is given by 

= C ( o) + t.C 
v v 

L 

+ L widlycN 
i=l 

L 

+ L wid2~t.CN 
i=l 

t.c ' v 
an improved estimate 

The analysis is now repeated using the improved coefficients 

the initial estimates. 

(G.2.6) 

(c ) v 

(G.2.7) 

c as 
v 

G.3. Determination of the Weights wi. A good approximation for the 

spectral noise density at a center frequency f is (see Appendix C) 

I eq (G.3 .1) 
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where the time average symbols are dropped for convenience. The 

weight, which is proportional to the reciprocal of the variance 
2 

() ' 
is given by 

2 
w = lja . By considering the propagation of errors, the 

variance is calculated accordingly as 

where 

and 

2 -2 ""2 
a =a + a 

In this case, I and 
c 

quantities (V 2>1
/ 2 

l ' 

(G.3.2) 

(G.3.3) 

"' Ic are assumed to have no errors. Also, the 

<v 2>1j2 <v 2>1j2 t 
2 , a , e c. are assumed to be 

Gaussian distributed with equal relative standard errors. 

In order to demonstrate that the relative standard errors are 

approximately equal, 500 measurements are made on each of the noise 

readings and The readings are taken with the 

active integrator set for a 2 second total integration time. Figure 

G.3.l shows the experimental data in which the relative standard errors 

for and are 0.80% and 0.84% respectively. A 

Gaussian with the same mean and variance is also fitted to the 
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appropriate data. The theoretical standard error 

where 

T = total integration time. 

1/2 ex is given by 

(G.3.5) 

From Eq.(G.3.5), the theoretical relative standard error is 0.91% which 

is in good agreement with the measured results. 

G.4. Computer Program. A computer program is written to perform the 

necessary arithmetical manipulations involved in calculating I eq 

from Eq.(C.5.7). In general, more than 25 data points (I , f.) 
eqi ~ 

are determined throughout the frequency range from 10kHz to 22 MHz. 

Equation (G.l.l) is then fitted to the data using the least-squares 

procedure of G.2. In this procedure, the iterations are continued 

until the sum of the squares, ~6y2, of the residuals, in two 

successive iterations m and m+l satisfies the condition 

~6 2 LY m+l 

< E (G.4.l) 

An error matrix is also calculated in which the diagonal terms are 

the R.M.S. errors 

given by 

A of the coefficients ~-'v Cv. Estimates of l3v are 
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lsUMS Q, A J l/2 [L-N vv 
(G.4.2) 

where A is the inverted matrix of the set of linear equations, and 

SUMSQ, is the magnitude of the sum squares of the residuals after the 

last iteration. A graphical plot of the data plus the fitted curve is 

also provided. 



l.l. 

l.2. 

l. 3 . 

l.4. 

l.5. 

1.6. 

1.8. 

l.9. 
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