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Abstract
There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the

desired information and overcome the curse of dimensionality. In a wide range of applications, including

computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the

observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This

has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear

observations. More recently, low-rank approximation techniques have become prominent tools to approach

problems arising in machine learning, system identification and quantum tomography.

In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective

function, and one needs efficient methods to capture the low-dimensionality of these models. Convex op-

timization is often a promising tool to attack such problems. An intractable problem with a combinatorial

objective can often be “relaxed” to obtain a tractable but almost as powerful convex optimization problem.

This dissertation studies convex optimization techniques that can take advantage of low-dimensional rep-

resentations of the underlying high-dimensional data. We provide provable guarantees that ensure that the

proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:

• For a given number of measurements, can we reliably estimate the true signal?

• If so, how good is the reconstruction as a function of the model parameters?

More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known

for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show

that intuitive convex approaches do not perform as well as expected when it comes to signals that have

multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the

graph clustering problem and give sharp performance guarantees for a family of graphs arising from the

so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we

aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can

be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which

yields the right constants in our bounds and the true dependence between the problem parameters.
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Chapter 1

Introduction

The amount of data that is being generated, measured, and stored has been increasing exponentially in recent

years. As a result, there is a growing interest in taking advantage of possible patterns and structures in the

data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of

applications, including computer vision, machine learning, medical imaging, and social networks, the signal

that gives rise to the observations can be modeled to be approximately sparse. This has led to an immense

interest in the problem of efficiently reconstructing a sparse signal from limited linear measurements, which

is known as the compressed sensing (CS) problem [42, 43, 45, 73]. Exploiting sparsity can be extremely

beneficial. For instance, MRI acquisition can be done faster with better spatial resolution with CS algorithms

[140]. For image acquisition, the benefits of sparsity go beyond MRI thanks to applications such as the

“single pixel camera” [11].

Sparse approximation can be viewed as a specific, albeit major, example of a low-dimensional represen-

tation (LDR). The typical problem we consider is one for which the ambient dimension of the signal is very

large (think of a high resolution image, gene expression data from a DNA microarray, social network data,

etc.), yet is such that its desired properties lie in some low-dimensional structure (sparsity, low-rankness,

clusters, etc.). More recently, for instance, low-rank approximation has become a powerful tool, finding use

in applications varying from face recognition to recommendation systems [40, 94, 178]. The revolutionary

results that started CS are now a decade old; however, CS and LDR are still active research topics opening

doors to new applications as well as new challenges.
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1.1 Sparse signal estimation

Sparse approximation aims to represent a signal x as a linear combination of a few elements from a given

dictionary Ψ ∈ Rn×d . In particular, we can write x = Ψα , where α has few nonzero entries. Ψ depends on

the application, for instance; one can use wavelets for natural images. The aim is to parsimoniously represent

x and take advantage of this representation when the time comes. The typical problem in compressed sensing

assumes the linear observations of x of the form

y = Ax+ z.

Here A ∈ Rm×n is the measurement matrix and z is the additive noise (statisticians would use the notation

y = Xβ + z). Depending on the application, A can be enforced by the problem or it can be up to us to

design. To simplify the discussion, we will discard Ψ (or assume it to be identity) with the change of

variable AΨ→ A and α → x. Assuming A is full-rank, the problem is rather trivial when m≥ n, as we can

estimate x with the pseudo-inverse of A. However,

• In a growing list of applications, the signal x is high-dimensional and the amount of observations m

may be significantly smaller than n.

• If we do know that the true signal is approximately sparse, we need a way of encouraging sparsity in

our solution even in the overdetermined regime m≥ n.

In the noiseless setup (z = 0), to find x, we can enforce y = Ax′ while trying to minimize the number of

nonzero entries of the candidate solution x′

min‖x′‖0 subject to Ax′ = Ax.

The challenge in this formulation, especially in the m < n regime, is the fact that the sparse structure

we would like to enforce is combinatorial and often requires exponential search. Assuming x has k nonzero

entries, x lies on one of the
(n

k

)
k-dimensional subspaces induced by the locations of its nonzero entries.

x can be possibly found by trying out each of the m× k submatrices of A; however, this method becomes

exponentially difficult with increasing n and k.

Sparse approximation has been of significant interest at least since the 1990’s. Various algorithms have

been proposed to tackle this problem. Initial examples include the matching pursuit algorithms by Mallat

and Zhang in 1993 [143], the lasso estimator of Tibshirani in 1996 [201] and Basis Pursuit by Donoho and

2



Chen [58, 59]. Perhaps the most well-known technique is to replace the cardinality function with the `1

norm of the signal, i.e., the sum of the absolute values of the entries. This takes us from a combinatorially

challenging problem to a tractable one which can be solved in polynomial time. Moving from `0 quasi-norm

to `1 norm as the objective is known as “convex relaxation”. The new problem is known as the Basis Pursuit

(BP) and is given as [58, 59]

min‖x′‖1 subject to Ax′ = Ax (1.1)

As it will be discussed further in Section 1.2.1, convex relaxation techniques are not limited to sparse recov-

ery. Important signal classes that admit low-dimensional representation allow for convex relaxation.

In general, compressed sensing and sparse approximation techniques aim to provide efficient ways to

deal with the original combinatorial problem and reliably estimate x in the underdetermined regime m <

n. From a theoretical point of view, our aim is to understand the extent to which the data (x) can be

undersampled while allowing for efficient reconstruction. We will often try to answer the following question:

Question 1 How many observations m do we need to reliably and efficiently estimate x?

Preferably, the answer should depend on x, only through the problem parameters k and n. The answer is

also highly dependent on the specific algorithm we are using. It should be noted that the computational

efficiency is another important concern and there is often a tradeoff between the computational efficiency

and the estimation performance of the associated algorithm [49].

To address Question 1, since the late 1990’s there has been significant efforts in understanding the

performance of sparse approximation algorithms. In 2001, Donoho and Huo provided the initial results

on the recovery of a sparse signal from linear observations via BP [79]. Tropp jointly studied orthogonal

matching pursuit and BP and found conditions on A for which both both approaches can recover a sparse

signal [203].

In practice, BP often performs much better than the theoretical guarantees of these initial works. Later

on, it was revealed that with the help of randomness (over A), one can show significantly stronger results for

BP. For instance, when A is obtained by picking m rows of the Discrete Fourier Transform matrix uniformly

at random, it has been shown that signals up to O
(

m
logn

)
sparsity can be recovered via BP1. This is in

fact the celebrated result of Candes, Tao, and Romberg that started CS as a field [43]. To see why this is

1We remark that Gilbert et al. also considered reconstruction of signals that are sparse in frequency domain using sublinear time
combinatorial algorithms [107].
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remarkable, observe that m grows almost linearly in the sparsity k and it can be significantly smaller than the

ambient dimension n. We should remark that no algorithm can require less than k measurements. We will

expand more on the critical role of randomness in CS. The measurement ensembles for which we have strong

theoretical guarantees (i.e. linear scaling in sparsity) are mostly random. For instance, an important class

of measurement ensembles for which BP provably works are the matrices with independent and identically

distributed entries (under certain tail/moment conditions) [45, 73].

1.1.1 Overview of recovery conditions

In general, conditions for sparse recovery ask for A to be well-behaved and are often related with each

other. In linear regression, well-behaved often means that A is well-conditioned. In other words, denoting

maximum singular value by σmax(A) and minimum singular value by σmin(A), we require σmax(A)
σmin(A) to be

small. For sparse approximation, in the more interesting regime m� n, we have σmin(A) = 0, hence, one

needs to look for other conditions. Some of the conditions that guarantee success of BP are as follows.

•Restricted Isometry Property (RIP) [32,45]: This condition asks for submatrices of A to be well-conditioned.

Let 1 ≤ s ≤ n be an integer. Then, A satisfies the RIP with restricted isometry constant δs, if for all m× s

submatrices As of A, one has,

(1−δs)‖v‖2
2 ≤ ‖Asv‖2

2 ≤ (1+δs)‖v‖2
2

Observe that this is a natural generalization of conditioning of a matrix in the standard linear regression

setup. When the system is overdetermined, setting n = s, δs characterizes the relation between minimum

and maximum singular values of A. When RIP holds with δ2k ≈ 0.453, it is known that BP will successfully

get back to k-sparse x. RIP is alternatively known as the uniform uncertainty principle [46].

• Incoherence [79, 203]: This asks for columns of A to have low correlation with each other. In particular,

the coherence of the matrix A captures the maximum correlation between any two columns of A and is

defined as follows:

µA = max
i 6= j

〈
A{i},A{ j}

〉
‖A{i}‖2‖A{ j}‖2

.

Unlike the restricted isometry constant, µA can be easily calculated. However, the type of guarantees are

not as strong. We should remark that earlier results (before CS was introduced) on BP were based on

coherence. However, the number of observations m grew quadratically in sparsity rather than linearly. The

4



later works [41, 205] show that, almost linear scaling can be achieved by introducing randomness to the

sparsity pattern of the signal.

• Null-Space Property (NSP) [74, 85]: NSP is a condition on the null space of A. A typical version is the

following.

Definition 1.1 A satisfies the `1-NSP of order k; if all nonzero w that satisfies Aw = 0, also satisfies ‖w‖1 >

2‖wk‖1. Here, wk is the k sparse approximation of w obtained by setting all entries 0 except the largest k

(in absolute value).

RIP and incoherence based conditions are often sufficient but not necessary for BP. Unlike these, NSP is “if

and only if” (see Proposition 1.1). If A satisfies `1-NSP, BP can recover any k-sparse x; conversely, if NSP

does not hold, there exists a k sparse signal for which BP fails. Consequently, careful analysis of NSP can

lead us to understand the exact characteristics of BP. The first such analysis is due to Donoho and Tanner

who developed precise undersampling theorems when A has independent standard normal entries [83].

Proposition 1.1 ( [96]) Suppose A satisfies `1-NSP of order k. Then, (1.1) can recover any k sparse x.

Conversely, if A does not satisfy `1-NSP, there exists a k-sparse x, for which (1.1) fails.

Proof: Let x be a k-sparse vector and suppose x∗ is the minimizer of (1.1). Then, w= x∗−x∈Null(A).

Let S be a subset of {1,2, . . . ,n} be the set of nonzero locations (support) of x. We will use the fact that, for

i ∈ S, |xi +wi| ≥ |xi|− |wi|. It follows that

0≥ ‖x∗‖1−‖x‖1 ≥∑
i∈S

(|xi +wi|− |xi|)−∑
i 6∈S
|wi| ≥∑

i 6∈S
|wi|−∑

i∈S
|wi|.

Observe that ∑i 6∈S |wi|−∑i∈S |wi|= ‖w‖1−2∑i∈S |wi| ≥ ‖w‖1−2‖wk‖1 > 0 for all nonzero w. This implies

w = 0. Conversely, if a nonzero w ∈ Null(A) satisfies, ‖w‖1 ≤ 2‖wk‖1. Then, choose x to be −wk and

observe that ‖x+w‖1 ≤ ‖x‖1 and x is not the unique minimizer.

1.2 Low-dimensional representation via convex optimization

The abundance of results on sparsity naturally motivates us to extend CS theory beyond sparse recovery. The

idea is to apply the powerful techniques developed for CS to new applications. It turns out that this is indeed

possible to do, both theoretically and algorithmically. Focusing on the convex optimization techniques, we

will exemplify how convex relaxation can be applied to other problems.
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1.2.1 Examples of Structured Signals

• Block sparse signals and `1,2 minimization: Block sparsity [91, 147, 174, 175, 195, 204, 208] is a gen-

eralization of sparsity in which nonzero entries appear in blocks. One of the first work on such signals is

by Rao and Kreutz-Delgado in 1999 [174] (also see [56, 204, 208] for earlier works). Assume n = bt for

some positive integers b and t. Given x ∈ Rn, partition its entries into t vectors {xi}t
i=1 ∈ Rb such that

x = [x1 x2 . . . xt ]T . x is called a block sparse signal if only a few of its blocks are nonzero. The “structure

exploiting” function is the `1,2 norm, which is given as

‖x‖1,2 =
t

∑
i=1
‖xi‖2.

Observe that, the `1 norm is a special case of the `1,2 norm where the block length d is equal to 1.

• Sparse representation over a dictionary: As we have mentioned previously, often the signal x is not

sparse but it has a sparse representation α over a known dictionary Ψ [34, 75, 89]. In this case, to estimate

the signal from compressed observations one can use

α̂ = argmin
α ′
‖α ′‖1 subject to Ax = AΨα

′, (1.2)

and let x̂ = Ψα̂ . There are several alternatives to (1.2) (see [34, 211]). We remark that, often, instead of

recovery from linear observations Ax, we are simply interested in finding a sparse representation given the

signal x. Properties of Ψ plays a critical role in the recoverability of α and x. A related topic is learning a

dictionary to sparsely represent a group of signals, which is an active research area by itself [88, 141].

• Low rank matrices and nuclear norm minimization: In this case, our signal is a low-rank matrix X ∈
Rd1×d2 . In order to exploit the low rank structure, one can use the nuclear norm heuristic [39,40,94,128,178].

This is convex relaxation of the rank function. Denoting the i’th largest singular value of a matrix X by

σi(X), its nuclear norm is denoted by ‖X‖? and is given as follows

‖X‖? =
min{d1,d2}

∑
i=1

σi(X).

•Discrete total variation: In many imaging applications [26,160,231] the signal of interest x rarely changes

as a function of the coordinates. Consequently, letting di = xi+1−xi for 1≤ i≤ n−1, the difference vector

d ∈ Rn−1 becomes a sparse vector. To induce this structure, one may minimize the total variation of x,

6



namely,
‖x‖TV = ‖d‖1. (1.3)

• Nonuniformly sparse signals and weighted `1 minimization: Sometimes, we might have prior infor-

mation regarding the sparsity pattern of the signal [48, 127, 165, 212]. In particular, the signal x might be

relatively sparser over a certain region and denser over another. To exploit this additional information, we

can use a modified `1 minimization where different weights are assigned to different regions. More rig-

orously, assume that the set of entries {1,2, . . . ,n} is divided into t disjoint sets S1, . . . ,St that correspond

to regions with different sparsity levels. Then, given a nonnegative weight vector w = [w1 w2 . . . wt ], the

weighted `1 norm is given as

‖x‖w =
t

∑
i=1

wi ∑
j∈Si

|x j|.

• Other examples: Low-rank plus sparse matrices (see Section 1.2.3); simultaneously sparse and low-rank

matrices, low-rank tensors (see Chapter 5); sparse inverse covariance in graphical models [102]; incorporat-

ing convex constraints (e.g., nonnegativity, `∞-norm, positive semidefiniteness [84, 126]).

1.2.2 Generalized Basis Pursuit

These examples suggest that the success of the `1 minimization is not an isolated case, and the power of

convex relaxation is a commonly accepted phenomenon. A natural question is whether one needs to study

these problems individually, or there is a general line of attack to such problems. If we focus our attention

to the linear inverse problems, we can consider the generalized basis pursuit (GBP),

min
x′

f (x′) subject to Ax′ = Ax. (1.4)

Here, f (·) is a convex function that tries to capture the low-dimensionality of x. f (·) is often obtained by

relaxing a combinatorial objective function. The core arguments underlying GBP are due to the paper of

Rudelson and Vershynin in 2006 [184], and subsequent work by Mendelson et al. [151, 153]. These ideas

are later on further generalized and polished by Chandrasekaran et al. [50]. Similar to (1.1), we can consider

a null-space condition that ensures success of (1.4). To introduce this, we shall first define the descent set.

Definition 1.2 (Descent set) Given a convex function f (·) : Rn→ R, the descent set of f (·) at x is denoted

by D f (x) and is equal to {w ∈ Rn
∣∣ f (x+w)≤ f (x)}.
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The following lemma gives an equivalent of Proposition 1.1 for (1.4).

Proposition 1.2 x is the unique minimizer of (1.4) if and only if Null(A)∩D f (x) = {0}.

Proof: Null(A)∩D f (x) = {0} and x∗ is the minimizer. Let x∗−x = w. If w 6= 0, w 6∈D f (x); which

implies f (x∗) = f (x+w) > f (x) and contradicts with the optimality of x∗. Conversely, if there exists a

nonzero w ∈ Null(A)∩D f (x), we have f (x+w)≤ f (x).

Proposition 1.2 shows that the descent set D f (x), and the null space Null(A) determine the fate of (1.4). In

Chapter 2, we will see that Karush-Kuhn-Tucker optimality conditions will provide an alternative condition

which is dual to NSP. It will be more convenient to study NSP in terms of the tangent cone of f (·) at x.

Definition 1.3 (Tangent cone) Tangent cone is denoted by T f (x) and is obtained by taking the closure of

conic hull of D f (x) (see Chapter 2).

Clearly, Null(A)∩T f (x) = {0} =⇒ Null(A)∩D f (x) = {0}. We next introduce the restricted singular

value of a matrix.

Definition 1.4 (Restricted singular value (RSV)) Let S be a cone in Rn and let A ∈ Rm×n. The minimum

and maximum restricted singular values of A at S are respectively defined as

σS(A) = min
v∈S,‖v‖2=1

‖Av‖2, ΣS(A) = max
v∈S,‖v‖2=1

‖Av‖2.

It should be noted that similar definitions exist in the literature [50, 129, 206]. For instance, observe that the

restricted isometry constant defined in Section 1.1.1 can be connected to RSV by choosing the cone S to be

the set of at most s sparse vectors. The restricted singular value provides an alternative point of view on

GBP. Observe that, σT f (x)(A)> 0 is equivalent to Null(A)∩T f (x) = {0}. Hence, we have

σT f (x)(A)> 0 =⇒ x is the unique minimizer of (1.4). (1.5)

On the other hand, a larger restricted singular value will imply that (1.4) is better conditioned and is more

robust to noise [50].

When we have noisy observations y = Ax+ z, we can consider the Basis Pursuit Denoising or lasso

variation of this problem.

min
x′

λ f (x′)+
1
2
‖y−Ax′‖2

2 (1.6)
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This version tries to induce a structured signal with the help of f (·) and also tries to fit the observations y to

the estimate x′ with the second term ‖y−Ax′‖2
2. There are several questions we wish to answer regarding

these approaches.

1. How many measurements do we need to recover x in the noiseless case?

2. What are the bounds on estimation error in the noisy setup?

3. Are there simple and intuitive quantities capturing the behavior of these problems?

4. Is there a systematic way to construct convex f (·) given the signal structure?

5. Is there a gap between what can be done in theory and the performance of the relaxed approaches?

These questions have recently been subject of considerable interest. One of our main contributions will

be a comprehensive answer to the second and third questions. In general, it is difficult to find answers that

work for all measurement ensembles. As we seek better guarantees, we need to sacrifice the generality of

the results. For instance, most results in CS require A to be randomly generated. The sharp guarantees we

obtain in Chapter 3 will require A to be i.i.d. Gaussian.

1.2.3 Demixing problems

Most of our attention will focus on the linear inverse problem (1.4). However, we shall now introduce the

closely related demixing problem, which will be important for Chapter 6. In demixing, we often get to

observe the true signal x; however, the signal originates from a linear combination of several structured

signals. The task is to identify these components.

Example: Robust principal component analysis. Suppose the matrix of interest X can be decomposed

into a low rank piece L and a sparse piece S, and hence it is a “mixture” of the low rank and sparse structures.

This model is useful in applications such as video surveillance and face recognition [36,171,235]. The task

is to split X into its sparse and low-rank components. Often S is a dense sparse corruption on the desirable

data L, hence the name robust PCA. To decompose X, the natural optimization we wish to carry out has the

form

{L̂, Ŝ}= arg inf
L′+S′=X

rank(L′)+ γ‖S′‖0.
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Candès et al. and Chandrasekaran et al. independently proposed relaxing both objectives to end up with the

infimal convolution of the `1 norm and the nuclear norm, [36, 51]

{L̂, Ŝ}= arg inf
L′+S′=X

‖L′‖?+ γ‖S′‖1. (1.7)

The optimization on the right hand side simultaneously emphasizes sparse and low rank pieces in the given

matrix. In Chapter 6, we will cast the graph clustering problem as a low-rank and sparse decomposition

problem and propose convex approaches based on (1.7). The performance analysis of (1.7) focuses on the

allowable levels of rank(L0) and ‖S0‖0 for which (1.7) succeeds in identifying the individual components.

The other major example is the morphological component analysis (see Elad et al. [90]). In this case,

the signal is a linear combination of signals that are sparse in different basis. x = Ψ1α1+Ψ2α2. In this case,

we can minimize

{α̂1, α̂2}= arg min
Ψ1α ′1+Ψ2α ′2=x

‖α ′1‖1 + γ‖α ′2‖1. (1.8)

In a separate line of work, McCoy and Tropp proposed a general formulation for demixing problems

in a similar manner to (1.4) [144, 145]. In particular, they studied the case where one of the components is

multiplied by a random unitary matrix. This formulation allowed them to obtain sharper bounds compared

to the related literature that deals with more stringent conditions [36, 90, 235].

The tools to study the convexified demixing problems (1.7) and (1.8) often parallel those of linear inverse

problems. For instance, subgradient calculus plays an important role in both problems. Consequently, joint

analysis of both problems appear in several works [4, 36, 133, 221].

1.3 Phase Transitions

Returning to the basis pursuit problem (1.4), we can ask a stronger and more specific version of Question 1.

Question 2 What is the exact tradeoff between sparsity and measurements to recover x via (1.1)?

Focusing on the sparse recovery setup, in Section 1.1, we have mentioned that m ∼ O (k logn) samples are

sufficient for recovery. However, for practical applications it is crucial to know the true tradeoff between

problem parameters. Question 2 has first been studied by Donoho and Tanner for sparse signals and for

Gaussian measurement matrices. They obtain upper bounds on the required number of Gaussian measure-

ments which are tight in practice. In short, they show that m≥ 2k log 2n
k samples are sufficient for successful
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Figure 1.1: The y-axis is the normalized number of measurements. x-axis is the normalized sparsity. The gradient
illustrates the gradual increase in the success of BP. As there are more measurements per sparsity (towards the red
region), the likelihood of success increases. The black line is the Donoho-Tanner phase transition curve.

reconstruction with high probability. However, they derive the precise behavior as well, which is known

as the Donoho-Tanner bound (illustrated in Figure 1.1). Due to the universality phenomenon that we dis-

cuss in Section 1.4.5, studying properties of Gaussian matrices gives a good idea about other measurement

ensembles as well.

In general, phase transition tries to capture the exact tradeoff between problem parameters and is not

limited to linear inverse problems. In Chapter 3, we will investigate a stronger version of Question 2,

namely, the precise error bounds for basis pursuit denoising. On the other hand, in Chapter 6, we will

investigate the phase transitions of the graph clustering problem where we make use of convex relaxation.

1.4 Literature Survey

With the introduction of compressed sensing, recent years saw an explosion of interest to high dimensional

estimation problems. There have been several theoretical, algorithmic, and applied breakthroughs in a

relatively short period of time, and signal processing, statistics, and machine learning have been converging

to a unified setting. Our literature review will mostly focus on contributions in the theory of high dimensional

statistics and convex optimization techniques. Let us start with the results on sparse recovery, in particular,
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`1 minimization.

1.4.1 Sparse signal estimation and `1 minimization

Sparse signals show up in a variety of applications, and their properties have drawn attention since the

1990’s. Donoho and Johnstone used `1 regularization on wavelet coefficients in the context of function

estimation [80]. Closer to our interests, the lasso was introduced by Tibshirani [201] in 1994 as a noise

robust version of (1.1). The original formulation was

min
x
‖y−Ax‖2 subject to ‖x‖1 ≤ τ.

where τ ≥ 0 is a tuning parameter. At the same time, Donoho and Chen studied BP from a sparse signal

representation perspective, where A is a dictionary and the aim is to represent y as a linear combination of

few elements (columns of A) [58,59,79]. We should remark that “orthogonal matching pursuit” is a greedy

algorithm and has been extensively studied as an alternative technique [203, 207].

With the introduction of compressed sensing, randomness started playing a critical role in theoretical

guarantees. While guarantees for deterministic matrices require m ≥ O
(
k2
)
, for reasonable random mea-

surement ensembles one requires m≥O (k logn). First such result is due to Candes, Tao, and Romberg [43].

They considered randomly subsampling the rows of the Discrete Fourier Transform matrix, and have shown

that sparse signals can be recovered from incomplete frequencies. Later results included guarantees for ma-

trices with i.i.d entries [42,45,73]. Today, state of the art results make even weaker assumptions which cover

a wide range of measurement ensembles. As a generalization of sparsity, block-sparsity and non-uniform

sparsity have been studied in detail [48, 91, 127, 195]. We should emphasize that the literature on sparse

recovery is vast and we only attempt to cover a small but relevant portion of it here.

1.4.2 Phase transitions of sparse estimation

As we have discussed previously, it is desirable to understand the precise behavior of sparse estimation

problems, hence Question 2. For the Gaussian measurement ensemble it is known that the recovery of

a sparse vector x depends only on its sparsity level, and is independent of the locations or values of the

nonzero entries. Hence, we are interested in the relation between the sparsity k, ambient dimension n, and

the number of samples m that guarantees success of BP.
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Recovery types: Question 2 is interested in so-called weak-recovery, as we are interested in a recovery

of a particular vector x. There is also the notion of strong recovery, which asks for the same (random)

measurement matrix to recover all k-sparse vectors via BP. Observe that, Proposition 1.1 gives the condition

for the strong recovery. Clearly, strong recovery will require more measurements for the same sparsity level

compared to the weak recovery.

Neighborly polytopes: As we discussed in the previous section, Donoho and Tanner found upper

bounds on the required number of samples by studying neighborly polytopes and grassman angle com-

putations. They show that their bounds are tight in the regime where the relative sparsity k
n tends to zero.

Remarkably, these upper bounds were observed to be tight in simulation for all sparsity regimes [74,83,85].

The fact that the Donoho-Tanner bound is apparently tight gained considerable attention. As follow-up

works Xu, Khajehnejad, and Hassibi studied several variations of the phase transition problem by extending

the Grassman Angle approach. In [225, 226], they showed that when m is above the bound, BP also enjoys

robustness when recovering approximately sparse signals. In [127, 224, 227] they have analyzed weighted

and reweighted `1 minimization algorithms, and have provably shown that such algorithms could allow one

to go beyond the Donoho-Tanner bound.

Gaussian comparison inequalities: In 2008, Versynin and Rudelson used Gaussian comparison in-

equalities to study BP [184]. They found ≈ 8k log n
k measurements to be sufficient with a short argument.

This is strikingly close to the optimal closed form bound 2k log n
k . Later on, Stojnic carried out a more careful

analysis of comparison inequalities to obtain better bounds for `1 minimization [192]. Remarkably, Stojnic’s

analysis was able to recover the Donoho-Tanner bound with a more generalizable technique (compared to

Grassman angle), which can be extended to other structured signal classes. The tightness of Donoho-Tanner

bound has been proven by Amelunxen et al. [4], as well as Stojnic [194]. Namely, they show that, below the

Donoho-Tanner bound, BP will fail with high probability (also see Section 1.4.4).

Approximate Message Passing (AMP) algorithms: Message-passing algorithms have been introduced

by Donoho, Maleki, and Montanari as an alternative to BP thanks to their computational efficiency [81].

Remarkably, it has been observed that the sparsity–measurement trade-off of AMP matches the Donoho-

Tanner bound; which makes it appealing as one can have as good performance as `1 minimization with a

low-complexity algorithm. This was later proven by Bayati and Montanari [13, 14]. It should be noted that,

AMP can be extended to accommodate several other penalties in a similar manner to GBP [70]
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1.4.3 Low-rank estimation

The abundance of strong theoretical results on sparse estimation led researchers to consider other low-

dimensional representation problems. Low-rank matrices show up in a variety of applications and they

resemble sparse signals to a good degree. The rank minimization problem has first been considered in low-

order control system design problems [95,178]. Convex relaxation for the rank minimization (RM) problem

is due to Fazel, who replaced rank function with nuclear norm and also cast it as a semidefinite program [94].

Initial results on RM were limited to applications and implementations.

The significant theoretical developments in this problem came relatively later. This was made possible

by advances in sparse estimation theory and similarities between sparse and low-rank recovery problems.

Recht, Fazel, and Parrilo studied the RM problem from a compressed sensing point of view, where they

studied the number of measurements required to recover a low-rank matrix [178]. They introduced matrix

RIP and showed that it is sufficient to recover low-rank matrices via NNM. For i.i.d subgaussian measure-

ments, they also show that matrix RIP holds with O (rn logn) measurements. This is a significant result, as

one needs at least O (rn) measurements to accomplish this task (information theoretic lower bound). Candes

and Plan improved their bound to O (rn), which is information theoretically optimal [39].

Another major theoretical development on RM came with results on matrix completion (MC). Low-rank

matrix completion is a special case of the rank minimization problem. In MC, we get to observe the entries

of the true matrix, which we believe to be low-rank. Hence, measurement model is simpler compared to i.i.d

measurements obtained by linear combinations of the entries weighted by independent random variables.

This measurement model also has more applications, particularly in image processing and recommendation

systems. Results on MC requires certain incoherence conditions on the underlying matrix. Basically, the

matrix should not be spiky and the energy should be distributed smoothly over the entries. The first result

on MC is due to Candes and Recht [40], who show that O
(
r2n ·polylog(n)

)
measurements are sufficient

for MC via nuclear norm minimization. There is a significant amount of theory dedicated to improving

this result [37, 60, 125, 128]. In particular, the current best known results require O
(
rn log2 n

)
, where the

theoretical lower bound is O (rn logn) [47, 177].

Phase transitions: When the measurement map is i.i.d Gaussian, Recht et al. obtained the initial

Donoho-Tanner type bounds for the nuclear norm minimization [179]. Their rather loose bounds were

significantly improved by Oymak and Hassibi who found the exact rank-measurement tradeoff by care-

ful “Gaussian width” calculations following Stojnic’s approach [163, 165]. In particular, as small as 6rn
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measurements are sufficient to guarantee low-rank recovery via NNM. Chandrasekaran et al. have similar

results, which will be discussed next [50].

1.4.4 General approaches

The abundance of results on the estimation of structured signals naturally led to the development of a unified

understanding of these problems. Focusing on the linear inverse problems, we can tackle the generalized

basis pursuit,

min f (x′) subject to Ax′ = Ax. (1.9)

This problem has recently been a popular topic. The aim is to develop a theory for the general problem

and recover specific results as an application of the general framework. A notable idea in this direction is

the atomic norms, which are functions that aim to parsimoniously represent the signal as a sum of a few

core signals called “atoms”. For instance, if x is sparse over the dictionary Ψ, the columns of Ψ will be

the corresponding atoms. This idea goes back to mid 1990’s where it appears in the approximation theory

literature [68]. Closer to our discussion, importance of minimizing these functions, is first recognized by

Donoho in the context of Basis Pursuit [58]. More recently, in connection to atomic norms, Chandrasekaran

et al. [50] analyze the generalized basis pursuit with i.i.d Gaussian measurements using Gaussian compar-

ison results. They generalize the earlier results of Vershynin, Rudelson and Stojnic [184, 192] (who used

similar techniques to study BP) and find upper bounds to the phase transitions of GBP, which are seemingly

tight. Compared to the neighborly polytopes analysis of [74, 83, 224], Gaussian comparison inequalities re-

sult in more geometric and intuitive results; in particular, “Gaussian width” naturally comes up as a way to

capture the behavior of the problem (1.9). While the Gaussian width was introduced in 1980’s [111,112], its

importance in compressed sensing is discovered more recently by Vershynin and Rudelson [184]. Gaussian

width is also important for our exposition in Section 1.5, hence we will describe how it shows up in (1.9).

Definition 1.5 (Gaussian width) Let g ∈ Rn be a vector with independent standard normal entries. Given

a set S⊂ Rn, its Gaussian width is denoted by ω(S) and is defined as

ω(S) = E[sup
v∈S

vT g].

Gaussian width is a way of measuring size of the set, and it captures how well a set is aligned with a random

vector. The following result is due to Gordon [112] and it finds a bound on the minimum restricted singular
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values of Gaussian matrices.

Proposition 1.3 Denote the unit `2-ball by Bn−1. Suppose S is a cone in Rn. Let G ∈ Rm×n have indepen-

dent standard normal entries. Then, with probability 1− exp(− t2

2 )

σS(G)≥
√

m−1−ω(S∩Bn−1)− t.

This result is first used by Rudelson and Vershynin for basis pursuit [184]. Further developments in this

direction are due to Mendelson et al. [151, 153]. Chandrasekaran et al. have observed that this result can be

used to establish success of the more general problem GBP. In particular, combining (1.5) and Proposition

1.3 ensures that, if m ≥ (ω(T f (x)∩Bn−1)+ t)2 +1, GBP will succeed with high probability. Stojnic was

the first person to do a careful and tight analysis of this for basis pursuit and to show that Donoho-Tanner

phase transition bound is in fact equal to ω(T`1(x)∩Bn−1)2 [192].

The Gaussian width has been subject of several follow-up works, as it provides an easy way to analyze

the linear inverse problems [4, 18, 49, 163, 165, 175]. In particular ω(T f (x)∩Bn−1)2 has been established

as an upper bound on the minimum number of measurements to ensure success of GBP. Remarkably, this

bound was observed to be tight in simulation, in other words, when m < ω(T f (x)∩Bn−1)2, GBP would

fail with high probability.

It was proven to be tight more recently by Amelunxen et al. [4]. Amelunxen et al.’s study is based on the

intrinsic volumes of convex cones, and their results are applicable in demixing problems as well as linear

inverse problems. Stojnic’s lower bound is based on a duality argument; however, he still makes use of

comparison inequalities as his main tool [194].

1.4.5 Universality of the phase transitions

Donoho-Tanner type bounds are initially proven only for Gaussian measurements. However, in simula-

tion, it is widely observed that the phase transition points of different measurement ensembles match [71].

Examples include,

• Matrices with i.i.d subgaussian entries

• Randomly subsampling rows of certain deterministic matrices such as Discrete Fourier Transform

and Hadamard matrices
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While this is a widely accepted phenomenon, theoretical results are rather weak. Bayati et al. recently

showed the universality of phase transitions for BP via connection to the message passing algorithms for

i.i.d subgaussian ensembles [12]2. Universality phenomenon is also observed in the general problem (1.4);

however, we are not aware of a significant result on this. For GBP, the recent work by Tropp shows that,

subgaussian measurements have similar behavior to Gaussian ensemble up to an unknown constant over-

sampling factor [206] (also see works by Mendelson et al. [129, 152] and Ai et al. [2]). In Chapter 4.1, we

investigate the special case of Bernoulli measurement ensemble, where we provide a short argument that

states that 7ω(T f (x)∩Bn−1)2 Bernoulli measurements are sufficient for the success of GBP.

1.4.6 Noise Analysis

One of the desirable properties of an optimization algorithm is stability to perturbations. The noisy estima-

tion of structured signals has been studied extensively in the recent years. In this case, we get to observe

corrupted linear observations of the form y=Ax+z. Let us call the recovery stable if the estimate x̂ satisfies

‖x̂−x‖2 ≤C‖z‖2 for a positive constant C.

Results on sparse estimation: In case of `1 minimization, most conditions that ensure recovery of a

sparse signal from noiseless observations also ensure stable recovery from noisy observations (e.g., RIP,

NSP). Both the lasso estimator (1.6) and the Dantzig selector do a good job at emphasizing a sparse solution

while suppressing the noise [19, 31, 201]. For related literature see [19, 31, 45]. There is often a distinction

between worst-case noise analysis and the average-case noise analysis.

Assume A has i.i.d standard normal entries with variance 1
m and m ≥ O

(
k log 2n

k

)
. It can be shown

that, with high probability, ‖x̂− x‖2 ≤ C‖z‖2 for a positive constant for all vectors z [32, 43, 45, 50, 225].

This includes the adversarial noise scenario where z can be arranged (as a function of A,x) to degrade the

performance. On the other hand, the average-case reconstruction error ‖x̂− x‖2
2 (z is independent of A) is

known to scale as O
(

k logn
m ‖z‖2

2

)
[19, 31, 33, 82, 172]. In this case, z does not have the knowledge of A and

is not allowed to be adversarial.

Average-case noise is what we face in practice and it is an attractive problem to study. The exact error

behavior has been studied by Donoho, Maleki, and Montanari [13, 82] in connection to the Approximate

Message Passing framework. They are able to find the true error formulas (so-called the noise-sensitivity

bounds) which hold in high dimensions, as a function of the sparsity k, m, and the signal-to-noise ratio.

2They have several other constraints. For instance, the results are true asymptotically in m,n,k. They also require that the subgaus-
sian distribution has a small Gaussian component.
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Results on the generalized basis pursuit: For the general problem, Chandrasekaran et al. have worst-

case error bounds, which follows from arguments very similar to the noiseless case [50]. Negahban et al.

provide order-optimal convergence rates under a “decomposability” assumption on f [161]. The average-

case analysis for arbitrary convex functions and sharp error bounds with correct constants are studied by

Oymak et al. in [170, 200] and they are among the contributions of this dissertation.

1.4.7 Low-rank plus sparse decomposition

In several applications, the signal X can be modeled as the superposition of a low-rank matrix L and a sparse

matrix S. From both theory and application motivated reasons, it is important to understand under what

conditions we can split X into L and S, and whether it can be done in an efficient manner. The initial work

on this problem is due to Chandrasekaran et al. where authors derived deterministic conditions under which

(1.7) works [51]. These conditions are based on the incoherence between the low-rank and the sparse signal

domains. In particular we require the low-rank column-row spaces to not be spiky (diffused entries), and

the support of the sparse component to have a diffused singular value spectrum. Independently, Candès et

al. studied the problem in a randomized setup where the nonzero support of the sparse component is chosen

uniformly at random. Similar to the discussion in Section 1.1, randomness results in better guarantees

in terms of the sparsity-rank tradeoff [36]. The problem is also related to the low-rank matrix completion,

where we observe few entries of a low-rank matrix corrupted by additive sparse noise [1,36,235]. In Chapter

6, we propose a similar problem formulation for the graph clustering problem.

1.5 Contributions

We will list our contributions in four topics. These are:

• A general theory for noisy linear inverse problems

• Elementary equivalences in compressed sensing

• Recovery of simultaneously structured models

• Graph clustering via convex optimization
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Figure 1.2: We plot (1.11) for sparse recovery. The black line is the Donoho-Tanner bound; above which the recovery
is robust. The warmer colors correspond to better reconstruction guarantees; hence, this figure adds an extra dimension
to Figure 1.1; which only reflects “success” and “failure”. Dashed line corresponds to the fixed reconstruction error.
Remark: The heatmap is clipped to enhance the view (due to singularities of (1.11)).

1.5.1 A General Theory of Noisy Linear Inverse Problems

In Chapter 3, we consider the noisy system y = Ax+z. We are interested in estimating x and the normalized

estimation error NSE =
E‖x̂−x‖2

2
E‖z‖2

2
when A ∈ Rm×n has independent standard normal entries. When m > n,

the standard approach to solve this overdetermined system of equations is the least squares method. This

method is credited to Legendre and Gauss and is approximately 200 years old. The estimate is given by

the pseudo-inverse x̂ = (AAT )−1AT y and it can be shown that the error is approximately n
m−n , where m−n

corresponds to the statistical degrees of freedom (here the difference between the number of equations and

the number of unknowns). When the system is underdetermined (m< n), as is the case in many applications,

the problem is ill-posed and unique reconstruction is not possible in general. Assuming that the signal has

a structure, the standard way to overcome this challenge is to use the lasso formulation (1.6). In Chapter 3,

we are able to give precise error formulas as a function of,

• Penalty parameter λ • Convex structure inducing function f (·)

• Number of measurements m • Noise level z
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To give an exposition to our result, let us first consider the following variation of the problem.

min
x′
‖y−Ax′‖2 subject to f (x′)≤ f (x) (1.10)

We prove that the NSE satisfies (with high probability),

E‖x̂−x‖2
2

E‖z‖2
2

.
ω(T f (x)∩Bn−1)2

m−ω(T f (x)∩Bn−1)2 . (1.11)

Furthermore, the equality is achieved when signal-to-noise ratio ‖x‖2
2

E[‖z‖2
2]

approaches ∞. We also show that,

this is the best possible bound that is based on the knowledge of the first order statistics of the function.

Here, first order statistics means knowledge of the subgradients at x, and will become clear in Chapter 3.

From Section 1.4.4, recall that ω(T f (x)∩Bn−1)2 is the quantity that characterizes the fate of the noise-

less problem (1.4). When x is a k-sparse vector and we use `1 optimization, (1.11) reduces to the best known

error bounds for sparse recovery, namely,

E‖x̂−x‖2
2

E‖z‖2
2

.
2k log n

k
m−2k log n

k
.

This particular bound was previously studied by Donoho, Maleki, and Montanari under the name “noise

sensitivity” [13, 82]. (1.11) has several unifying aspects:

• We generalize the results known for noiseless linear inverse problems. Stable reconstruction is possi-

ble if and only if m > ω(T f (x)∩Bn−1)2.

• Setting f (·) = 0 reduces our results to standard least-squares technique where ω(T f (x)∩Bn−1)2 = n.

Hence, we recover the classic result n
m−n .

• We provide a generic guarantee for structured recovery problems. Instead of dealing with specific

cases such as sparse signals, low-rank matrices, block-sparsity, etc, we are able to handle any abstract

norm, and hence treat these specific cases systematically.

Penalized problems: (1.10) requires information about the true signal, namely, f (x). The more useful

formulation (1.6) uses penalization instead. In Chapter 3, we also study (1.6) as well as its variation,

min
x′
‖y−Ax′‖2 +λ f (x′). (1.12)

For penalized problems, we come up with the quantity “Gaussian distance”, which is a natural generalization
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of Gaussian width. We show that the error bounds for (1.12) are captured by this new term, which can reflect

the precise dependence on λ . In addition to error bounds, our results yield the optimal penalty parameters for

(1.6) and (1.12), which can achieve the bound (1.11). We defer the detailed analysis and rigorous statements

of our results to Chapter 3.

1.5.2 Elementary equivalences in compressed sensing

In Chapter 4, we present two results which are relatively short and are based on short and elementary

arguments. These are

• investigating properties of the Bernoulli measurement ensemble via connection to Gaussian ensemble,

• investigating RIP conditions for low-rank recovery via connection to RIP of sparse recovery.

1.5.2.1 Relating the Bernoulli and Gaussian ensembles

So far, we have discussed the importance of the Gaussian ensemble. In particular, one can find the exact

performance when the sensing matrix has independent N (0,1) entries. We have also discussed the univer-

sality phenomenon which is partially solved for `1-minimization. In Chapter 4.1, we consider (1.4) when

A has symmetric Bernoulli entries which are equally likely to be ±1. To analyze this, we write a Gaussian

matrix G as,

G =

√
2
π

sign(G)+R

where sign(·) returns the element-wise signs of the matrix, i.e. +1 if Gi, j ≥ 0 and−1 else. Observe that, this

decomposition ensures sign(G) is identical to a symmetric Bernoulli matrix. Furthermore, R is a zero-mean

matrix conditioned on sign(G). Based on this decomposition, we show that,

m≈ 7ω(T f (x0)∩Bn−1)2

Bernoulli samples are sufficient for successful recovery. Compared to the related works [2, 152, 206], our

argument is concise and yields reasonably small constants. We also find a deterministic relation between the

restricted isometry constants and restricted singular values of Gaussian and Bernoulli matrices. In particular,

restricted isometry constant corresponding to a Bernoulli matrix is at most π

2 times that of Gaussian.
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Figure 1.3: To illustrate the linear growth of the phase transition point in rd, we chose the y-axis to be m
rd and the

x-axis to be the normalized measurements m
d2 . Observe that only weak bound can be simulated and it shows a good

match with simulations. The numerical simulations are done for a 40× 40 matrix and when m ≥ 0.1d2. The dark
region implies that (1.13) failed to recover X.

1.5.2.2 Relating the recovery conditions for low-rank and sparse recovery

The tools that are used for low-rank approximation often originates from the sparse approximation tech-

niques. For instance, the initial guarantee of Recht, Fazel and Parrilo [178] is based on a restricted isometry

property specialized for low-rank estimation. Similarly, the null space property proposed by [179] also par-

allels that of sparse estimation. Despite the efforts of [39, 156, 178], the restricted isometry constants for

low-rank estimation was weaker than that of the sparse recovery and required a more complicated analysis.

Furthermore, the low-rank null space property given in [179] was rather loose and not “if and only if”. In

Chapter 4.2, we first find a tight null space condition for the success of nuclear norm minimization that

compares well with Proposition 1.1. With the help of this result, we establish a framework to “translate”

RIP conditions that guarantee sparse recovery (which we call “vector RIP”) to RIP conditions that guaran-

tee low-rank recovery (which we call “matrix RIP”). Our eventual result states that if a set of “vector RIP”

conditions guarantee sparse recovery, than the equivalent “matrix RIP” conditions can guarantee low-rank

recovery. Our results yield immediate improvement over those of [39, 87, 156, 178].

22



1.5.2.3 Phase transitions for nuclear norm minimization

Related to Section 1.5.2.2 and as mentioned in Section 1.4.3, in [163, 165] we study the sample complexity

of the low-rank matrix estimation via nuclear norm minimization3. In particular, given a rank r matrix

X ∈Rd×d , we are interested in recovering it from A (X) where A (·) : Rd×d →Rm is a linear i.i.d Gaussian

map, i.e. A (X) is equivalent to casting X into a d2×1 vector and multiplying with an m×d2 matrix with

independent standard normal entries. We consider

argmin
X′
‖X′‖? subject to A (X′) = A (X) (1.13)

as the estimator. In [163], we find Donoho-Tanner type precise undersampling bounds for this problem (il-

lustrated in Figure 1.3). As mentioned in Section 1.4.2, the weak bound asks for the recovery of a particular

rank r matrix, while the strong bound asks for the recovery of all rank r matrices simultaneously by the

same realization of A . We showed that when m is above the bounds (1.13) will succeed. However, the

recent progress on phase transitions strongly indicates that, our “weak threshold” is indeed tight [4,77,194].

In [165], we provide a robustness analysis of (1.13) and also find closed-form bounds:

• To ensure weak recovery one needs m & 6rd samples.

• To ensure strong recovery one needs m & 16rd samples.

Considering that a rank r matrix has 2dr− r2 degrees of freedom [40], the weak bound suggests that, one

needs to oversample X by only a factor of 3 to efficiently recover it from underdetermined observations.

1.5.3 Simultaneously structured signals

Most of the attention in the research community has focused on signals that exhibit a single structure,

such as variations of sparsity and low-rank matrices. However, signals exhibiting multiple low-dimensional

structures do show up in certain applications. For instance, in certain applications, we wish to encourage

a solution which is not only sparse but whose entries also vary slowly, i.e., the gradient of the signal is

approximately sparse as well (recall (1.3)). Tibshirani proposed fused lasso optimization for this task [202],

argminλ`1‖x′‖1 +λTV‖x′‖TV +
1
2
‖y−Ax′‖2

2.

Fused lasso aims to encourage a solution with two structures: sparsity and sparsity of the gradient.

3Due to time and space limitations, the technical details are not included in the dissertation.
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As a second example, we will talk about matrices that are simultaneously sparse and low-rank. Such

matrices typically arise from sparse vectors, with the mapping a→ A = aaT , where a is a sparse vector

itself. This mapping is also known as lifting as we move from lower dimensional Rn to a higher dimensional

space Rn×n. The new variable A has rank 1 and is also sparse. This model shows up in several applications,

including sparse principal component analysis [236] and sparse phase retrieval [44, 92, 122].

Example: Sparse Phase Retrieval. Phase retrieval is the problem of estimating a signal from its

phaseless observations. For instance, assume we get to observe power spectral density (PSD) of a signal.

PSD is obtained by taking the square of the Fourier Transform and is phaseless. In certain applications, most

notably X-Ray crystallography, one only has access to PSD information and the task is to find a solution

to the given PSD. There are multiple signals that can yield the same power spectral density, and hence we

often need an additional criteria to optimize over. This criteria is often the sparsity of the underlying signal,

which yields the problem “sparse phase retrieval”. In finite dimensions, the noiseless phase retrieval problem

assumes phaseless measurements yi = {|aT
i x|2}m

i=1 of the true vector x, where {ai}m
i=1 are the measurement

vectors. Hence, sparse PR problem is given as

‖x′‖0 subject to |aT
i x′|2 = yi.

This problem is nontrivial due to the quadratic equality constraints as well as the combinatorial objective.

Applying the lifting x→ X = xxT proposed by Balan et al. [9], we end up with linear measurements in the

new variable X,

‖X′‖0 subject to
〈
aiaT

i ,X
′〉= yi, rank(X′) = 1, X′ � 0.

Relaxing the sparsity and rank constraints by using `1 and nuclear norm, we find a convex formulation that

encourages a low-rank and sparse solution.

‖X′‖1 +λ‖X′‖? subject to X′ � 0,
〈
aiaT

i ,X
′〉= yi, 1≤ i≤ m. (1.14)

Traditional convex formulations for the sparse PCA problem have a striking similarity to (1.14) and also

make use of nuclear norm and `1 norm [64].

Finally, we remark that low-rank tensors are yet another example of simultaneously structured signals

[103, 158] and they will be discussed in more detail in Chapter 5.

Our contributions: Convex relaxation is a powerful tool because it often yields almost-optimal perfor-
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mance guarantees, i.e., we don’t lose much by solving the relaxed objective compared to the true objective.

For example, countless papers in literature show that `1 norm does a great job in encouraging sparsity. In

(1.14), the signal has two structures, and hence it has far fewer degrees of freedom compared to an only low-

rank or only sparse matrix. We investigate whether it is possible to do better (i.e., use fewer measurements)

by making use of this fact. We show that the answer is negative for any cost function that combines the `1

and nuclear norms. To be more precise, by combining convex penalties, one cannot reduce the number of

measurements much beyond what is needed for the best performing individual penalty (`1 or nuclear norm).

In Chapter 5, we will study the problem for abstract signals that have multiple structures and arrive at a more

general theory that can be applied to the specific signal types.

Our results are easy to interpret and apply to a wide range of measurement ensembles. In particular, we

show the limitations of standard convex relaxations for the sparse phase retrieval and the low-rank tensor

completion problems. For the latter one, each observation is a randomly chosen entry of the tensor. To give

a flavor of our results, let us return to the sparse and low-rank matrices, where we investigate,

‖X′‖1 +λ‖X′‖? subject to X′ � 0,
〈
Gi,X′

〉
= yi, 1≤ i≤ m. (1.15)

For simplicity, let {Gi}m
i=1 be matrices with independent standard normal entries and A (·) : Rn×n→ Rm is

the measurement operator. Suppose the true signal is X= xxT , where x∈Rn is a k-sparse vector. To simplify

the consequent notation, let us assume that the nonzero entries of x are comparable, i.e., ‖x‖1
‖x‖2
≈ O

(√
k
)

.

Then, we have the following,

• If only `1 norm is used (λ = 0), CS theory requires O
(
k2 log n

k

)
measurements to retrieve X via (1.15).

• If only nuclear norm is used, results on rank minimization requires O (n) measurements to retrieve X.

• Our results in Chapter 5 ensure that one needs at least Ω(min{k2,n}) measurements for any choice

of λ .

• Replace the objective function in (1.15) by ‖X′‖0 + λ rank(X′). There is a suitable λ , for which

O
(
k log n

k

)
measurements are sufficient.

There is a significant gap between what can be done by the optimally tuned convex approach (min{k2,n})
and the non-convex objective (k log n

k ). On the other hand, the optimally tuned convex approach is not better

(in order) than using only the best of the `1 norm and nuclear norm.
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1.5.4 Convex Optimization for Graph Clustering

Our results so far focused on the study of linear inverse problems. In Chapter 6, we consider a more

application-oriented problem, namely, graph clustering. Graphs are important tools to represent data effi-

ciently. An important task regarding graphs is to partition the nodes into groups that are densely connected.

In the simpler case, we may wish to find the largest clique in the graph, i.e., the largest group of nodes that

are fully connected to each other. In a similar flavor to the sparse estimation problem, the clustering problem

is challenging and highly combinatorial. Can this problem be cast in the convex optimization framework?

It turns out the answer is positive. We pose the clustering problem as a demixing problem where we wish to

decompose the adjacency matrix of the graph into a sparse and low-rank component. We then formulate two

optimizations, one of which is tailored for sparse graphs. Remarkably, performance of convex optimization

is on par with alternative state-of-the-art algorithms [6, 7, 146, 164] (also see Chapter 6). We carefully ana-

lyze these formulations and obtain intuitive quantities, dubbed “effective density”, that sharply capture the

performance of the proposed algorithms in terms of cluster sizes and densities.

Let the graph have n nodes, and A be the adjacency matrix, where 1 corresponds to an edge between

two nodes and 0 corresponds to no edge. A is a symmetric matrix, and, without loss of generality, assume

diagonal entries are 1. Observe that a clique corresponds to a submatrix of all 1’s. The rank of this submatrix

is simply 1. With this observation, Ames and Vavasis [6] proposed to find cliques via rank minimization,

and used nuclear norm as a convex surrogate of rank. We cast the clustering problem in a similar manner to

the clique finding problem, where cliques can have imperfections in the form of missing edges. Assuming

there are few missing edges, each cluster corresponds to the sum of a rank 1 matrix and a sparse matrix.

Let us assume the clusters are disjoint. Our first method (dubbed simple method) solves the following,

minimize
L,S

‖L‖?+λ‖S‖1 (1.16)

subject to

1≥ Li, j ≥ 0 for all i, j ∈ {1,2, . . .n}

L+S = A.

The nuclear norm and the `1 norm are used to induce a low-rank L and sparse S, respectively. The hope

is that Li, j will be 1 whenever nodes i and j will lie in the same cluster, and 0 otherwise. This way, rank(L)

will be equal to the number of clusters.
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We investigate this problem for the well-known stochastic block model [117], which is essentially a

nonuniform Erdös-Renyi graph. While Chapter 6 considers a general model, let us introduce the following

setup for the exposition.

Definition 1.6 (Simple Block Model) Assume that G is a random graph with n nodes with t clusters, where

each cluster has size d. Let A be the corresponding adjacency matrix. Further assume that the existence of

each edge is independent of each other, and

P(Ai, j = 1) =


p if i, j is in the same cluster

q else

for some constants p > q > 0.

Assuming d,n are large, d = o(n) and λ is well-tuned, for the simple block model, we find that,

• (1.16) correctly identifies the planted clusters if q < 1
2 and d(2p−1)> 4

√
q(1−q)n.

• (1.16) fails if d(2p−1)<
√

qn or q > 1
2 .

Here, d(2p− 1) jointly captures the size and density of the planted clusters; hence, we call it effective

density. Assuming q < 1
2 , d(2p− 1) is tightly sandwiched between

√
qn and 4

√
qn. This result indicates

that cluster sizes should grow with
√

n, which is consistent with state of the art results on clique finding

[6, 7, 61, 67, 185].

The simple method has critical drawbacks, as we require p > 1
2 > q. The algorithm tailored for sparse

graphs (dubbed “improved method”) is able to overcome this bottleneck. This new algorithm only requires

p > q and will succeed when

d(p−q)> 2
√

q(1−q)n.

This comes at the cost of requiring additional information about the cluster sizes, however, this new bound

is highly consistent with the existing results on very sparse graphs [146]. Unlike the comparable results in

the literature [3,5–7,61,62], our bounds are not only order optimal, but also have small constants that show

a good match with numerical simulations. We defer the extensive discussion and further literature survey to

Chapter 6.
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1.5.5 Organization

In Chapter 2, we go over the mathematical notation and tools that will be crucial to our discussion

throughout this dissertation.

In Chapter 3, we study the error bounds for the noisy linear inverse problems. We formulate three ver-

sions of the lasso optimization and find formulas that accurately capture the behavior based on the summary

parameters Gaussian width and Gaussian distance.

Chapter 4 will involve two topics. We first analyze Bernoulli measurement ensemble via connection to

the Gaussian measurement ensemble. Next, we study the low-rank approximation problem by establishing

a relation between the sparse and low-rank recovery conditions.

Chapter 5 is dedicated to the study of simultaneously structured signals. We formulate intuitive convex

relaxations for recovery of these signals and show that there is a significant gap between the performance of

convex approaches and what is possible information theoretically.

In Chapter 6, we develop convex relaxations for the graph clustering problem. We formulate two ap-

proaches, where one is particularly tailored for sparse graphs. We find intuitive parameters based on the

density and size of the clusters that sharply characterize the performance of these formulations. We also

numerically show that performance is on par with more traditional algorithms.

In Chapter 7, we discuss the related open problems and possible extensions to our results that are left to

be researched.
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Chapter 2

Preliminaries

We will now introduce some notation and definitions that will be used throughout the dissertation.

2.1 Notation

Vectors and matrices: Vectors will be denoted by bold lower case letters. Given a vector a∈Rn, aT will be

used to denote its transpose. For p≥ 1, `p norm of a will be denoted by ‖a‖p and is equal to (∑n
i=1 |ai|p)1/p.

The `0 quasi-norm returns the number of nonzero entries of the vector and will be denoted by ‖a‖0. For

a scalar a, sgn(a) returns its sign i.e. a · sgn(a) = |a| and sgn(0) = 0. sgn(·) : Rn → Rn returns a vector

consisting of the signs of the entries of the input.

Matrices will be denoted by bold upper case letters. n× n identity matrix will be denoted by In. For

a given matrix A ∈ Rn1×n2 , its null space and range space will be denoted by Null(A) and Range(A),

respectively. To vectorize a matrix, we can stack its columns on top of each other to obtain the vector

vec(A) ∈ Rn1n2 . rank(A) will denote the rank of the matrix. The minimum and maximum singular values

of a matrix A are denoted by σmin(A) and σmax(A). σmax(A) is equal to the spectral norm ‖A‖. ‖A‖F will

denote the Frobenius norm. This is essentially equivalent to the `2 norm of the vectorization of a matrix:

‖A‖2
F = (∑

n1
i=1 ∑

n2
j=1 A2

i, j)
1/2. tr(·) will return the trace of a matrix.

Probability: We will use P(·) to denote the probability of an event. E[·] and Var[·] will be the expectation

and variance operators, respectively. Gaussian random variables will play a critical role in our results. A

multivariate (or scalar) normal distribution with mean µµµ ∈ Rn and covariance ΣΣΣ ∈ Rn×n will be denoted

by N (µµµ,ΣΣΣ). “Independent and identically distributed” and “with high probability” will be abbreviated as

i.i.d and w.h.p respectively. The symbol “∼” should be read “is distributed as”. There may be additional

definitions specific to the individual chapters and they will be introduced accordingly.
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Convex geometry: Denote the unit `2 sphere and the unit `2 ball in Rn by S n−1 and Bn−1, respectively.

dim(·) will return the dimension of a linear subspace. For convex functions, the subgradient will play a

critical role. s is a subgradient of f (·) at the point v, if for all vectors w, we have that,

f (v+w)≥ f (v)+ sT w.

The set of all subgradients s is called the subdifferential and is denoted by ∂ f (v). If f :Rn→R is continuous

at v, then the subdifferential ∂ f (v) is a convex and compact set [23]. For a vector x ∈ Rn, ‖x‖ denotes a

general norm and ‖x‖∗ = sup‖z‖≤1 〈x,z〉 is the corresponding dual norm. Finally, the Lipschitz constant of

the function f (·) is a number L so that, for all v,u, we have that, | f (v)− f (u)| ≤ L‖v−u‖2.

Sets: Given sets S1,S2 ∈Rn, S1+S2 will be the Minkowski sum of these sets, i.e., {v1+v2
∣∣v1 ∈ S1, v2 ∈ S2}.

Closure of a set is denoted by Cl(·). For a scalar λ ∈ R and a nonempty set S ⊂ Rn, λS will be the dilated

set, and is equal to {λv ∈ Rn
∣∣ v ∈ S}. The cone induced by the set S will be denoted by cone(S) and is

equal to {λv
∣∣λ ≥ 0, v ∈ S}. It can also be written as a union of dilated sets as follows,

cone(S) =
⋃

λ≥0

λS.

The polar cone of S is defined as S◦ = {v ∈ Rn
∣∣ vT u≤ 0 ∀ u ∈ S}. The dual cone is S∗ =−S◦.

2.2 Projection and Distance

Given a point v and a closed and convex set C , there is a unique point a in C satisfying a = argmina′∈C ‖v−
a′‖2. This point is the projection of v onto C and will be denoted as ProjC (v) or Proj(v,C ). The distance

vector will be denoted by ΠC (v) = v−ProjC (v). The distance to a set is naturally induced by the definition

of the projection. We will let distC (v) = ‖v−ProjC (v)‖2.

When C is a closed and convex cone, we have the following useful identity due to Moreau [157].

Fact 2.1 (Moreau’s decomposition theorem) Let C be a closed and convex cone in Rn. For any v ∈ Rn,

the following two are equivalent:

1. v = a+b, a ∈ C ,b ∈ C ◦ and aT b = 0.

2. a = Proj(v,C ) and b = Proj(v,C ◦).
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Fact 2.2 (Properties of the projection, [17, 23]) Assume C ⊆Rn is a nonempty, closed, and convex set and

a,b ∈ Rn are arbitrary points. Then,

• The projection Proj(a,C ) is the unique vector satisfying, Proj(a,C ) = argminv∈C ‖a−v‖2.

• 〈Proj(a,C ),a−Proj(a,C )〉= sups∈C 〈s,a−Proj(a,C )〉 .
• ‖Proj(a,C )−Proj(b,C )‖2 ≤ ‖a−b‖2.

Descent set and tangent cone: Given a function f (·) and a point x, descent set is denoted by D f (x), and is

defined as

D f (x) = {w ∈ Rn
∣∣ f (x+w)≤ f (x)}.

We also define the tangent cone of f at x as T f (x) := Cl(cone(D f (x))). In words, tangent cone is the

closure of the conic hull of the descent set. These concepts will be quite important in our analysis. Recall

that Proposition 1.2 is based on the descent cone and is essentially the null-space property for the GBP. The

tangent cone is related to the subdifferential ∂ f (x) as follows [182].

Proposition 2.1 Suppose f : Rn→R is a convex and continuous function. The tangent cone has the follow-

ing properties.

• D f (x) is a convex set and T f (x) is a closed and convex cone.

• Suppose x is not a minimizer of f (·). Then, T f (x)
◦
= cone(∂ f (x)).

2.2.1 Subdifferential of structure inducing functions

Let us introduce the subdifferential of the `1 norm.

Proposition 2.2 ( [72]) Given x ∈ Rn, s ∈ ∂‖x‖1 if and only if, si = sgn(xi) for all i ∈ supp(x) and |si| ≤ 1

else.

Related to this, we define the soft-thresholding (a.k.a. shrinkage) operator.

Definition 2.1 (Shrinkage) Given λ ≥ 0, shrinkλ (·) : R→ R is defined as,

shrinkλ (x) =


x−λ if x≥ λ

x+λ if x≤−λ

0 if |x|< λ
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While the importance of shrinkage will become clear later on in the simplest setup, it shows up when one

considers denoising by `1 minimization [72].

Proposition 2.3 Suppose we see the noisy observations y = x + z and we wish to estimate x via x̂ =

argmin
x′

λ‖x′‖1 +
1
2‖y−x′‖2

2. The solution x̂ is given by

x̂i = shrinkλ (yi) f or 1≤ i≤ n.

This in turn is related to the distance of a vector to the scaled subdifferential, which will play an important

role in Chapter 3. It follows from Proposition 2.2 that Π(v,λ∂‖x‖1)i = vi−λ sgn(xi) when i ∈ supp(xi)

and shrink(vi) when i 6∈ supp(xi).

We will also discuss that subdifferentials of `1,2 norm and the nuclear norm have very similar forms to

that of `1 norm, and the distance to the subdifferential can again be characterized by the shrinkage operator.

For instance, the nuclear norm is associated with shrinking the singular values of the matrix while the `1,2

norm is associated with shrinking the `2 norms of the individual blocks [50, 70, 77].

2.3 Gaussian width, Statistical dimension and Gaussian distance

We have discussed Gaussian width (Def. 1.5) in Chapter 1.4 and its importance in dimension reduction via

Gaussian measurements. We now introduce two related quantities that will be useful for characterizing how

well one can estimate a signal by using a structure inducing convex function1. The first one is the Gaussian

squared-distance.

Definition 2.2 (Gaussian squared-distance) Let S ∈ Rn be a subset of Rn and g ∈ Rn have independent

N (0,1) entries. Define the Gaussian squared-distance of S to be,

D(S) = E[inf
v∈S
‖g−v‖2

2]

Definition 2.3 (Statistical dimension) Let C ∈ Rn be a closed and convex cone and g ∈ Rn have indepen-

dent N (0,1) entries. Define the statistical dimension of C to be,

δ (C ) = E[‖Proj(g,C )‖2
2]

1Another closely related quantity is the “mean width” of [172]
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k-sparse, x0 ∈ Rn Rank r, X0 ∈ Rd×d k-block sparse, x0 ∈ Rtb

δ (T f (x0)) 2k(log n
k +1) 6dr 4k(log t

k +b)

D(λ∂ f (x0)) (λ 2 +3)k for λ ≥
√

2log n
k λ 2r+2d(r+1) for λ ≥ 2

√
d (λ 2 +b+2)k for λ ≥

√
b+
√

2log t
k

Table 2.1: Closed form upper bounds for δ (T f (x0)) ( [50, 101]) and D(λ∂ f (x0)) corresponding to sparse, block-
sparse signals and low-rank matrices described in Section 1.2.1. See Section A.7 for the proofs.

The next proposition provides some basic relations between these quantities.

Proposition 2.4 Let C ∈Rn be a closed and convex set, C = cone(C) and g∈Rn have independent N (0,1)

entries. Then,

• ω(C ∩Bn−1)2 ≤ δ (C )≤ ω(C ∩Bn−1)2 +1.

• D(C)≥ D(C ) = δ (C ◦).

Proof: Let us first show that for any vector a,

‖Proj(a,C )‖2 = sup
v∈C∩Bn−1

vT a.

Using Moreau’s decomposition, a = Proj(a,C )+Proj(a,C ◦). For any unit length v ∈ C , we have, aT v ≤
〈Proj(a,C ),v〉 ≤ ‖Proj(a,C )‖2 hence right hand side is less than or equal to the left hand side. On the other

hand, the equality can be achieved by choosing v = 0 if Proj(a,C ) = 0 and v = Proj(a,C )
‖Proj(a,C )‖2

else.

With this observe that, ω(C ∩Bn−1) =E[‖Proj(g,C )‖2]. From Jensen’s inequality E[‖Proj(g,C )‖2]
2≤

E[‖Proj(g,C )‖2
2], hence ω(C ∩Bn−1)2 ≤ δ (C ). On the other hand, since ‖Proj(g,C )‖2 is 1-Lipschitz

function of g, using Fact 2.3, δ (C )≤ ω(C ∩Bn−1)2 +1. D(C)≥ D(C ) as C ⊆ C hence, the distance to C

is greater than or equal to the distance to C . Finally, using Fact 2.1 again, dist(v,C ) = ‖v−Proj(v,C )‖2 =

‖Proj(v,C ◦)‖2, hence E[‖Proj(v,C ◦)‖2
2] = E[dist(v,C )2].

Gaussian distance is particularly beneficial when one is dealing with weighted combination of functions

involving Gaussians. In such setups, Gaussian distance may be helpful in representing the outcome of the

problem as a function of penalty parameters. The next section will provide an example of this.
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2.4 Denoising via proximal operator

Let us focus on the basic estimation problem, where the aim is to estimate x0 from y = x0 + z. One can use

the proximal operator to accomplish this task in a similar manner to (1.4) [157].

x̂ = argmin
x

1
2
‖y−x‖2

2 +σλ f (x) (2.1)

An important question is the estimation error which can be defined as E[‖x̂−x0‖2
2]. When z has independent

N (0,σ2) entries, the following proposition shows that, the error is related to the Gaussian distance. The

reader is referred to [18, 49, 70, 167] for more details.

Proposition 2.5 Suppose λ > 0, f : Rn → R is convex and continuous and y = x0 + z ∈ Rn where z has

independent N (0,σ2) entries. Then,

E[‖x̂−x0‖2
2]

σ2 ≤ D(λ∂ f (x0)) (2.2)

Proof: From the Karush-Kuhn-Tucker optimality conditions, there exists s ∈ ∂ f (x̂) such that y =

x̂+λ s. Using the change of variable ŵ = x̂−x0, equivalently,

z = ŵ+σλ s (2.3)

Now, choose s0 ∈ ∂ f (x0) to be s0 = 1
σλ

Proj(z,σλ∂ f (x0)) and w0 = z−σλ s0. We will first explore the

relation between w0 and ŵ. The following inequality follows from the definition of the subgradient.

ŵT s≥ f (x0 + ŵ)− f (x0)≥ ŵT s0 =⇒ ŵT (s− s0)≥ 0 (2.4)

From (2.3) and (2.4), we will conclude that ‖ŵ‖2 ≤ ‖w0‖2. These are equivalent to:

〈ŵ,(z− ŵ)− (z−w0)〉= 〈ŵ,w0− ŵ〉 ≥ 0 =⇒ ‖ŵ‖2
2 ≤ 〈ŵ,w0〉 ≤ ‖ŵ‖2‖w0‖2

Hence, we find ‖w0‖2 = dist(z,σλ∂ f (x0))≥ ‖ŵ‖2. dist(z,σλ∂ f (x0)) = σdist( z
σ
,λ∂ f (x0)) where z

σ
has

N (0,1) entries. Taking the square and then expectation, we can conclude.

It is important to understand what happens when λ is optimally tuned to minimize the upper bound on

the error. This has been investigated by [4, 101, 167]. We will state the result from [4] which requires less
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assumption.

Proposition 2.6 (Theorem 4.3 of [4]) Suppose f : Rn→ R is a norm and x0 ∈ Rn is nonzero. Then,

δ (T f (x0))≤min
λ≥0

D(λ∂ f (x0))≤ δ (T f (x0))+2
sups∈∂ f (x0)

‖s‖2

f ( x0
‖x0‖2

)
(2.5)

Here, D(λ∂ f (x0)),δ (T f (x0)) are solely based on the subdifferential, hence, as long as ∂ f (x0) remains

same, one can change x0 to obtain a tighter bound by making f ( x0
‖x0‖2

) larger.

The left hand side of (2.5) is clear from Proposition 2.4 when we use the fact that D(λ∂ f (x0)) ⊆
D(cone(∂ f (x0))) = T f (x0)

◦. Let us consider the right-hand side, for a k-sparse x0 ∈ Rn. Letting x0 →
sgn(x0) do not change the subdifferential and results in 2

sups∈∂ f (x0)
‖s‖2

f ( x0
‖x0‖2

)
= 2
√n

k whereas δ (T f (x0))∼ 2k log en
k

from Table 2.1. Hence, when k and n is proportional and large, 2
√ n

k is not significant, and (2.5) is rather

tight.

Proposition 2.6 indicates that, minλ≥0 D(λ∂ f (x0)) ≈ δ (T f (x0)) and by optimally tuning λ , one can

reduce the upper bound on the normalized error in (2.2) to as small as δ (T f (x0)). Recall that, this is also

the sample complexity of (1.4) as discussed in Chapter 1.4. This relation between the estimation error

formula for (2.1) and the sample complexity of (1.4) is first proposed in [70] and rigorously established by

the results of [167] and [4]. In Chapter 3, we will find similar error formulas based on the Gaussian width

and distance terms for the less trivial lasso problem.

2.5 Inequalities for Gaussian Processes

Gaussian random variables have several nice properties that make their analysis more accessible. The fol-

lowing results are on the Lipschitz functions of Gaussian vectors.

Fact 2.3 (Variance of Lipschitz functions, [131]) Assume g ∼N (0,Ip) and let f (·) : Rp → R be an L-

Lipschitz function. Then,

Var[ f (g)]≤ L2.

Fact 2.4 (Gaussian concentration Inequality for Lipschitz functions, [131]) Let f (·) : Rp→ R be an L-

Lipschitz function and g∼N (0,Ip). Then,

P(| f (g)−E[ f (g)]| ≥ t)≤ 2exp(− t2

2L2 ).
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Our proofs will often involve Lipschitzness to argue strong concentration around mean. For instance, `2

norm is a 1-Lipschitz function. More generally, given a subset A of Rn, the distance function dist(x,A) =

infa∈A ‖x−a‖2 is 1-Lipschitz in x. Both of these essentially follow from application of triangle inequality.

The following lemma shows that restricted singular value is Lipschitz as well.

Lemma 2.1 Recall Definition 1.4 of σC (A) where C is a closed cone. σC (A) is 1-Lipschitz function of A.

Proof: Given A,B ∈ Rm×n, define vA = arg infv∈C∩S n−1 ‖Av‖2 and vB similarly. We have that,

σC (B)−σC (A) = ‖BvB‖2−‖AvA‖2 ≤ ‖BvA‖2−‖AvA‖2 ≤ ‖B−A‖F

Repeating the same argument for σC (A)−σC (B) gives, |σC (B)−σC (A)| ≤ ‖B−A‖F .

2.5.1 Gaussian comparison inequalities

Comparison inequalities will play a major role in our analysis in Chapter 3. Slepian’s Lemma is used to

compare supremums of two Gaussian processes based on their covariances.

Theorem 2.1 (Slepian’s Lemma, [131]) Let {xi}n
i=1,{yi}n

i=1 be zero-mean Gaussian random variables.

Suppose, for all 1≤ i≤ n, E[x2
i ] = E[y2

i ] and for all 1≤ i 6= j ≤ n, E[xix j]≤ E[yiy j]. Then,

E[ sup
1≤i≤n

yi]≤ E[ sup
1≤i≤n

xi].

We will use a generalization of this result due to Gordon. Gordon’s result will allow us to do minimax

type comparisons.

Theorem 2.2 (Gaussian Min-Max Theorem, [111, 112]) Let
{

Xi j
}

and
{

Yi j
}

, 1 ≤ i ≤ n, 1 ≤ j ≤ m, be

two centered Gaussian processes which satisfy the following inequalities for all choices of indices

1. E
[
|Xi j−Xik|2

]
≤ E

[
|Yi j−Yik|2

]
,

2. E
[
|Xi j−X`k|2

]
≥ E

[
|Yi j−Y`k|2

]
, if i 6= `.

Then,

E[min
i

max
j

Yi j]≥ E[min
i

max
j

Xi j].
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Suppose, we additionally have, E
[
X2

i j

]
= E

[
Y 2

i j

]
for all i, j. Then,

P

(
n⋂

i=1

m⋃
j=1

[Yi j ≥ λi j]

)
≥ P

(
n⋂

i=1

m⋃
j=1

[Xi j ≥ λi j]

)
,

for all scalars λi j ∈ R.

An immediate application of these lemmas is Proposition 1.3, which can be used to find sharp bounds

to minimum and maximum singular values of a Gaussian matrix. Chapter 3 will revisit these results for

our own purposes, in particular, we will use the following variations of this result that can obtain lower

bounds for certain linear functions of i.i.d Gaussian matrices. The first variation is available in Gordon’s

own paper [112] as a lemma.

Lemma 2.2 Let G ∈ Rm×n,g ∈ R,g ∈ Rm,h ∈ Rn be independent of each other and have independent

standard normal entries. Also, let S ⊂ Rn be an arbitrary set and ψ : S → R be an arbitrary function.

Then, for any c ∈ R,

P
(

min
x∈S
{‖Gx‖2 +‖x‖2g−ψ(x)} ≥ c

)
≥ P

(
min
x∈S

{
‖x‖2‖g‖2−hT x−ψ(x)

}
≥ c
)
. (2.6)

The next variation is a slight generalization of Lemma 2.2 and can be obtained by following techniques

that are similar to the proof of Lemma 2.2. The proof is provided in Section A.2.

Proposition 2.7 (Modified Gordon’s Lemma) Let G, g, h be defined as in Lemma 2.2 and let Φ1 ⊂ Rn

be arbitrary and Φ2 ⊂ Rm be a compact set. Also, assume ψ(·, ·) : Φ1×Φ2→ R is a continuous function.

Then, for any c ∈ R:

P
(

min
x∈Φ1

max
a∈Φ2

{
aT Gx−ψ(x,a)

}
≥ c
)
≥ 2P

(
min
x∈Φ1

max
a∈Φ2

{
‖x‖2gT a−‖a‖2hT x−ψ(x,a)

}
≥ c
)
−1.

Observe that, one can obtain Lemma 2.2 from Proposition 2.7 by setting Φ2 to be the unit `2 sphere

S m−1 and by allowing ψ to be only a function of x. The remaining difference is the extra term ‖x‖2g

in Lemma 2.2, which we use a symmetrization argument to get rid of at the expense of a slightly looser

estimate on the right hand side of Proposition 2.7.
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Chapter 3

A General Theory of Noisy Linear Inverse
Problems

Consider the setup where we have noisy observations y = Ax0 + z. Recall from Chapter 1 that, a common

approach to estimate x0 from y is to use the LASSO algorithm with a proper convex function f (·),

x∗LASSO = argmin
x

{
1
2
‖y−Ax‖2

2 +λ f (x)
}
. (3.1)

LASSO was originally introduced in [201] and has since then been subject of great interest as a natural

and powerful approach to do noise robust compressed sensing (CS), [13, 14, 19, 24, 25, 57, 76, 148, 201,

217, 234]. There are also closely related algorithms such as SOCP variations and the Dantzig selector

[31,138]. Of course, applications of (3.1) are not limited to sparse recovery; they extend to various problems

including the recovery of block sparse signals [147, 149], the matrix completion problem [37, 128] and the

total variation minimization [160]. In each application, f (·) is chosen in accordance to the structure of

x0. In this chapter, we consider arbitrary convex penalty functions f (·) and we will refer to this generic

formulation in (3.1) as the “Generalized LASSO” or simply “LASSO” problem.

3.0.2 Motivation

The LASSO problem can be viewed as a “merger” of two closely related problems, which have both recently

attracted a lot of attention by the research community; the problems of noiseless CS and that of proximal

denoising.

• Noiseless compressed sensing: In the noiseless CS problem one wishes to recover x0 from the random

linear measurements y=Ax0. The standard approach is solving the generalized basis pursuit (1.4) discussed
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in Chapter 1. Recall that a critical performance criteria for the GBP problem (1.4) concerns the minimum

number of measurements needed to guarantee successful recovery of x0 [4, 50, 74, 83, 85, 192, 194]. Here,

success means that x0 is the unique minimizer of (1.4), with high probability, over the realizations of the

random matrix A.

• Proximal denoising: As mentioned in Section 2.4, the proximal denoising problem tries to estimate

x0 from noisy but uncompressed observations y = x0 + z, z ∼ N (0,σ2In) via (2.1). A closely related

approach to estimate x0, which requires prior knowledge f (x0) about the signal of interest x0, is solving the

constrained denoising problem:

min
x
‖y−x‖2

2 subject to f (x)≤ f (x0). (3.2)

The natural question to be posed in both cases is how well can one estimate x0 via (2.1) (or (3.2)) [49,70,72,

166, 167]? The minimizer x∗ of (2.1) (or (3.2)) is a function of the noise vector z and the common measure

of performance, is the normalized mean-squared-error which is defined as E‖x∗−x0‖2
2

σ2 .

3.0.2.1 The “merger” LASSO

The Generalized LASSO problem is naturally merging the problems of noiseless CS and proximal denoising.

The compressed nature of measurements, poses the question of finding the minimum number of measure-

ments required to recover x0 robustly, that is with error proportional to the noise level. When recovery is

robust, it is of importance to be able to explicitly characterize how good the estimate is. In this direction,

when z∼N (0,σ2Im), a common measure of performance for the LASSO estimate x∗LASSO is defined to be

the normalized squared error (NSE) :

NSE =
1

σ2 ‖x
∗
LASSO−x0‖2

2.

This is exactly the main topic of this chapter: proving precise bounds for the NSE of the Generalized LASSO

problem.

In the specific case of `1-penalization in (3.1), researchers have considered other performance criteria

additional to the NSE [76, 217, 234]. As an example, we mention the support recovery criteria [217], which

measures how well (3.1) recovers the subset of nonzero indices of x0. However, under our general setup,

where we allow arbitrary structure to the signal x0, the NSE serves as the most natural measure of perfor-
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mance and is, thus, the sole focus in this chapter. In the relevant literature, researchers have dealt with the

analysis of the NSE of (3.1) under several settings (see Section 3.0.4). Yet, we still lack a general theory

that would yield precise bounds for the squared-error of (3.1) for arbitrary convex regularizer f (·). We aim

to close this gap. Our answer involves inherent quantities regarding the geometry of the problem which, in

fact, have recently appeared in the related literature, [4, 13, 14, 50, 101, 167].

3.0.3 Three Versions of the LASSO Problem

Throughout the analysis, we assume A∈Rm×n has independent standard normal entries and z∼N (0,σ2Im).

Our approach tackles various forms of the LASSO all at once, and relates them to each other. In particular,

we consider the following three versions:

? C-LASSO: Assumes a-priori knowledge of f (x0) and solves,

x∗c(A,z) = argmin
x
‖y−Ax‖2 subject to f (x)≤ f (x0). (3.3)

? `2-LASSO1: Uses `2-penalization rather than `2
2 and solves,

x∗`2
(λ ,A,z) = argmin

x
{ ‖y−Ax‖2 +λ f (x) } . (3.4)

? `2
2-LASSO: the original form given in (3.1) :

x∗`2
2
(τ,A,z) = argmin

x

{
1
2
‖y−Ax‖2

2 +στ f (x)
}
. (3.5)

C-LASSO in (3.3) stands for “Constrained LASSO”. This version of the LASSO problem assumes some

a-priori knowledge about x0, which makes the analysis of the problem arguably simpler than that of the

other two versions, in which the role of the penalty parameter (which is meant to compensate for the lack

of a-priori knowledge) has to be taken into consideration. To distinguish between the `2-LASSO and the

`2
2-LASSO, we use λ to denote the penalty parameter of the former and τ for the penalty parameter of the

latter. Part of our contribution is establishing useful connections between these three versions of the LASSO

problem. We will often drop the arguments λ ,τ,A,z from the LASSO estimates defined in (3.3)–(3.5),

when clear from context.

1`2-lasso is originally introduced by Belloni who dubbed it as “square-root lasso” [16].
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3.0.4 Relevant Literature

Precise characterization of the NSE of the LASSO is closely related to the precise performance analysis of

noiseless CS and proximal denoising. To keep the discussion short, we defer most of the comments on the

connections of our results to these problems to the main body of this chapter. Table 3.1 provides a summary

of the relevant literature and highlights the area of our contribution.

Convex functions `1-minimization

Noiseless CS
Chandrasekaran et al. [50]
Amelunxen et al. [4]

Donoho and Tanner, [83]
Stojnic, [192]

Proximal
denoising

Donoho et al. [70]
Oymak and Hassibi [167]

Donoho [72]

LASSO Our contribution
Bayati and Montanari,
[13], [14]
Stojnic, [193]

Table 3.1: Relevant Literature.

The works closest in spirit to our results include [13, 14, 142, 193], which focus on the exact analysis

of the LASSO problem, while restricting the attention on sparse recovery where f (x) = ‖x‖1 . In [13, 14],

Bayati and Montanari are able to show that the mean-squared-error of the LASSO problem is equivalent

to the one achieved by a properly defined “Approximate Message Passing” (AMP) algorithm. Following

this connection and after evaluating the error of the AMP algorithm, they obtain an explicit expression for

the mean squared error of the LASSO algorithm in an asymptotic setting. In [142], Maleki et al. proposes

Complex AMP, and characterizes the performance of LASSO for sparse signals with complex entries. In

[193], Stojnic’s approach relies on results on Gaussian processes [111, 112] to derive sharp bounds for the

worst case NSE of the `1-constrained LASSO problem in (3.3). Our approach in this chapter builds on the

framework proposed by Stojnic, but extends the results in multiple directions as noted in the next section.

3.0.5 Contributions

This section summarizes our main contributions. In short, this chapter:

• generalizes the results of [193] on the constrained LASSO for arbitrary convex functions; proves that

the worst case NSE is achieved when the noise level σ → 0, and derives sharp bounds for it.
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• extends the analysis to the NSE of the more challenging `2-LASSO; provides bounds as a function of

the penalty parameter λ , which are sharp when σ → 0.

• identifies a connection between the `2-LASSO to the `2
2-LASSO; proposes a formula for precisely

calculating the NSE of the latter when σ → 0.

• provides simple recipes for the optimal tuning of the penalty parameters λ and τ in the `2 and `2
2-

LASSO problems.

• analyzes the regime in which stable estimation of x0 fails.

3.0.6 Motivating Examples

Before going into specific examples, it is instructive to consider the scenario where f (·) = 0. This reduces

the problem to a regular least-squares estimation problem, the analysis of which is easy to perform. When

m < n, the system is underdetermined, and one cannot expect x∗ to be a good estimate. When m ≥ n, the

estimate can be given by x∗ = (AT A)−1AT y. In this case, the normalized mean-squared-error takes the

form,

E‖x∗−x0‖2

σ2 =
E[zT A(AT A)−2AT z]

σ2 = E[tr(()A(AT A)−2AT )] = E[tr(()(AT A)−1)].

AT A is a Wishart matrix and its inverse is well studied. In particular, when m≥ n+2, we have E[(AT A)−1] =

In
m−n−1 (see [173]). Hence,

E‖x∗−x0‖2

σ2 =
n

m−n−1
. (3.6)

How does this result change when a nontrivial convex function f (·) is introduced?

Our message is simple: when f (·) is an arbitrary convex function, the LASSO error formula is obtained

by simply replacing the ambient dimension n in (3.6) with a summary parameter D(cone(∂ f (x0))) or

D(λ∂ f (x0)) . These parameters are defined as the expected squared-distance of a standard normal vec-

tor in Rn to the conic hull of the subdifferential cone(∂ f (x0)) and to the scaled subdifferential λ∂ f (x0),

respectively. They summarize the effect of the structure of the signal x0 and choice of the function f (·) on

the estimation error.

To get a flavor of the (simple) nature of our results, we briefly describe how they apply in three commonly

encountered settings, namely the “sparse signal”, “low-rank matrix” and “block-sparse signal” estimation

problems. For simplicity of exposition, let us focus on the C-LASSO estimator in (3.3). A more elaborate
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discussion, including estimation via `2-LASSO and `2
2-LASSO, can be found in Section 3.3.4. The following

statements are true with high probability in A,v and hold under mild assumptions.

1. Sparse signal estimation: Assume x0 ∈ Rn has k nonzero entries. In order to estimate x0, use the

Constrained-LASSO and pick `1-norm for f (·). Let m > 2k(log n
k +1). Then,

‖x∗c−x0‖2
2

σ2 .
2k(log n

k +1)
m−2k(log n

k +1)
. (3.7)

2. Low-rank matrix estimation: Assume X0 ∈ Rd×d is a rank r matrix, n = d× d. This time, x0 ∈ Rn

corresponds to vectorization of X0 and f (·) is chosen as the nuclear norm ‖ · ‖? (sum of the singular values

of a matrix) [94, 178]. Hence, we observe y = A ·vec(X0)+ z and solve,

min
X∈Rd×d

‖y−A ·vec(X)‖2 subject to ‖X‖? ≤ ‖X0‖?

Let m > 6dr. Denote the LASSO estimate by X∗c and use ‖ · ‖F for the Frobenius norm of a matrix. Then,

‖X∗c−X0‖2
F

σ2 .
6dr

m−6dr
. (3.8)

3. Block sparse estimation: Let n = t×b and assume the entries of x0 ∈ Rn can be grouped into t known

blocks of size b so that only k of these t blocks are nonzero. To induce the structure, the standard approach

is to use the `1,2 norm which sums up the `2 norms of the blocks, [91,175, 191,195]. In particular, denoting

the subvector corresponding to i’th block of a vector x by xi, the `1,2 norm is equal to ‖x‖1,2 = ∑
t
i=1 ‖xi‖2.

Assume m > 4k(log t
k +b) . Then,

‖x∗c−x0‖2
2

σ2 .
4k(log t

k +b)
m−4k(log t

k +b)
. (3.9)

Note how (3.7)-(3.9) are similar in nature to (3.6).

3.1 Our Approach

In this section we introduce the main ideas that underlie our approach. This will also allow us to introduce

important concepts from convex geometry required for the statements of our main results in Section 3.2.

The details of most of the technical discussion in this introductory section are deferred to later sections. To
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keep the discussion concise, we focus our attention on the `2-LASSO.

3.1.1 First-Order Approximation

Recall the `2-LASSO problem introduced in (3.4):

x∗`2
= argmin

x
{ ‖y−Ax‖2 +λ f (x) } . (3.10)

A key idea behind our approach is using the linearization of the convex structure inducing function f (·)
around the vector of interest x0 [22, 182]:

f̂ (x) = f (x0)+ sup
s∈λ∂ f (x0)

sT (x−x0). (3.11)

∂ f (x0) denotes the subdifferential of f (·) at x0 and is always a compact and convex set [182]. Throughout,

we assume that x0 is not a minimizer of f (·), hence, ∂ f (x0) does not contain the origin. From convexity

of f (·), f (x) ≥ f̂ (x), for all x. What is more, when ‖x− x0‖2 is sufficiently small, then f̂ (x) ≈ f (x). We

substitute f (·) in (3.10) by its first-order approximation f̂ (·), to get a corresponding “Approximated LASSO”

problem. To write the approximated problem in an easy-to-work-with format, recall that y = Ax0 + z =

Ax0 +σv, for v∼N (0,Im) and change the optimization variable from x to w = x−x0:

ŵ`2(λ ,σ ,A,v) = argmin
w

{
‖Aw−σv‖2 + sup

s∈λ∂ f (x0)

sT w

}
. (3.12)

We will often drop all or part of the arguments λ ,σ ,A,v above, when it is clear from the context. We

denote ŵ`2 for the optimal solution of the approximated problem in (3.12) and w∗`2
= x∗`2

−x0 for the optimal

solution of the original problem in (3.10)2. Also, denote the optimal cost achieved in (3.11) by ŵ`2 , as

F̂`2(A,v).

Taking advantage of the simple characterization of f̂ (·) via the subdifferential ∂ f (x0), we are able to

precisely analyze the optimal cost and the normalized squared error of the resulting approximated problem.

The approximation is tight when ‖x∗`2
− x0‖2 → 0 and we later show that this is the case when the noise

level σ → 0. This fact allows us to translate the results obtained for the Approximated LASSO problem to

corresponding precise results for the Original LASSO problem, in the small noise variance regime.

2We follow this conventions throughout the chapter: use the symbol “ ˆ” over variables that are associated with the approximated
problems. To distinguish, use the symbol “ ∗ ” for the variables associated with the original problem .
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3.1.2 Importance of σ → 0

In this chapter, we focus on the precise characterization of the NSE. While we show that the first order

characteristics of the function, i.e. ∂ f (x0), suffice to provide sharp and closed-form bounds for small noise

level σ , we believe that higher order terms are required for such precise results when σ is arbitrary. On

the other hand, we empirically observe that the worst case NSE for the LASSO problem is achieved when

σ → 0. While we do not have a proof for the validity of this statement for the `2- and `2
2-LASSO, we do

prove that this is indeed the case for the C-LASSO problem. Interestingly, the same phenomena has been

observed and proved to be true for related estimation problems, for example for the proximal denoising

problem (2.1) in [70,78,167] and, closer to the present chapter, for the LASSO problem with `1 penalization

(see Donoho et al. [82]).

Summarizing, for the C-LASSO problem, we derive a formula that sharply characterizes its NSE for the

small σ regime and we show that the same formula upper bounds the NSE when σ is arbitrary. Proving the

validity of this last statement for the `2- and `2
2-LASSO would ensure that our corresponding NSE formulae

for small σ provide upper bounds to the NSE for arbitrary σ .

3.1.3 Gaussian Min-Max Theorem

Perhaps the most important technical ingredient of the analysis presented in this chapter is Gaussian Min-

Max Theorem [112]. For the purposes of our analysis, we will make use of Proposition 2.7. Here, it

suffices to observe that the Gordon’s original statement Lemma 2.2 is (almost) directly applicable to the

LASSO problem in (3.12). First, write ‖Aw−σv‖2 = max‖a‖2=1 aT [A,−v]

w

σ

 and take function ψ(·) in

the lemma to be sups∈λ∂ f (x0)
sT w. Then, the optimization problem in the left hand side of (2.6) takes the

format of the LASSO problem in (3.12), except for the “distracting” factor ‖x‖2g. Proposition 2.7 takes care

of this extra term without affecting the essence of the probabilistic statement of Lemma 2.2. Details being

postponed to the later sections (cf. Section 3.4), Corollary 3.1 below summarizes the result of applying

Proposition 2.7 to the LASSO problem.

Corollary 3.1 (Lower Key Optimization) Let g∼N (0,Im), h∼N (0,In) and h∼N (0,1) be indepen-

dent of each other. Define the following optimization problem:

L (g,h) = min
w

{√
‖w‖2

2 +σ2‖g‖2−hT w+ max
s∈λ∂ f (x0)

sT w
}
. (3.13)

45



Then, for any c ∈ R:

P
(

F̂`2(A,v)≥ c
)
≥ 2 ·P( L (g,h)−hσ ≥ c )−1.

Corollary 3.1 establishes a probabilistic connection between the LASSO problem and the minimization

(3.13). In the next section, we argue that the latter is much easier to analyze than the former. Intuitively, the

main reason is that instead of an m× n matrix, (3.13) only involves two vectors of sizes m× 1 and n× 1.

Even more, those vectors have independent standard normal entries and are independent of each other, which

greatly facilitates probabilistic statements about the value of L (g,h). Due to its central role in our analysis,

we often refer to problem (3.13) as “key optimization” or “lower key optimization”. The term “lower” is

attributed to the fact that analysis of (3.13) results in a probabilistic lower bound for the optimal cost of the

LASSO problem.

3.1.4 Analyzing the Key Optimization

3.1.4.1 Deterministic Analysis

First, we perform the deterministic analysis of L (g,h) for fixed g ∈ Rm and h ∈ Rn. In particular, we

reduce the optimization in (3.13) to a scalar optimization. To see this, perform the optimization over a fixed

`2-norm of w to equivalently write

L (g,h) = min
α≥0

{√
α2 +σ2‖g‖2− max

‖w‖2=α

min
s∈λ∂ f (x0)

(h− s)T w
}
.

The maximin problem that appears in the objective function of the optimization above has a simple solution.

It can be shown that

max
‖w‖2=α

min
s∈λ∂ f (x0)

(h− s)T w = min
s∈λ∂ f (x0)

max
‖w‖2=α

(h− s)T w

= α min
s∈λ∂ f (x0)

‖h− s‖2.

This reduces (3.13) to a scalar optimization problem over α , for which one can compute the optimal value

α̂ and the corresponding optimal cost. The result is summarized in Lemma 3.1 below. For the statement of

the lemma, for any vector v ∈Rn define its projection and its distance to a convex and closed set C ∈Rn as
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Proj(v,C ) := argmins∈C ‖v− s‖2 and dist(v,C ) := ‖v−Proj(v,C )‖2.

Lemma 3.1 Let ŵ(g,h) be a minimizer of the problem in (3.13). If ‖g‖2 > dist(h,λ∂ f (x0)), then,

a) ŵ(g,h) = σ
h−Proj(h,λ∂ f (x0))√
‖g‖2

2−dist2(h,λ∂ f (x0))
,

b) ‖ŵ(g,h)‖2
2 = σ

2 dist2(h,λ∂ f (x0))

‖g‖2
2−dist2(h,λ∂ f (x0))

,

c) L (g,h) = σ

√
‖g‖2

2−dist2(h,λ∂ f (x0)).

3.1.4.2 Probabilistic Analysis

Of interest is making probabilistic statements about L (g,h) and the norm of its minimizer ‖ŵ(g,h)‖2.

Lemma 3.1 provided closed form deterministic solutions for both of them, which only involve the quantities

‖g‖2
2 and dist2(h,λ∂ f (x0)). For g ∼N (0,Im) and h∼N (0,In), standard results on Gaussian concentra-

tion show that, these quantities concentrate nicely around their means E
[
‖g‖2

2
]
=m and E

[
dist2(h,λ∂ f (x0))

]
=: D(λ∂ f (x0)), respectively. Combining these arguments with Lemma 3.1, we conclude with Lemma 3.2

below.

Lemma 3.2 (Probabilistic Result) Assume that (1−εL)m≥D(λ∂ f (x0))≥ εLm for some constant εL > 0.

Define3,

η =
√

m−D(λ∂ f (x0)) and γ =
D(λ∂ f (x0))

m−D(λ∂ f (x0))
.

Then, for any ε > 0, there exists a constant c > 0 such that, for sufficiently large m, with probability 1−
exp(−cm),

|L (g,h)−ση | ≤ εση , and
∣∣∣∣‖ŵ(g,h)‖2

2
σ2 − γ

∣∣∣∣≤ εγ.

3Observe that the dependence of η and γ on λ , m and ∂ f (x0), is implicit in this definition.
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Remark: In Lemma 3.2, the condition “(1−εL)m≥D(λ∂ f (x0))” ensures that ‖g‖2 > dist(h,λ∂ f (x0)) (cf.

Lemma 3.1) with high probability over the realizations of g and h.

3.1.5 The Predictive Power of Gaussian Min-Max Theorem

Let us recap the last few steps of our approach. Application of the “modified Gordon’s Lemma” Proposition

2.7 to the approximated LASSO problem in (3.12) introduced the simpler lower key optimization (3.13).

Without much effort, we found in Lemma 3.2 that its cost L (g,h) and the normalized squared norm of its

minimizer ‖ŵ(g,h)‖2
2

σ2 concentrate around ση and γ , respectively. This brings the following question:

- To what extent do such results on L (g,h) and ŵ(g,h) translate to useful conclusions about F̂`2(A,v)

and ŵ`2(A,v)?

Application of Proposition 2.7 as performed in Corollary 3.1 when combined with Lemma 3.2, provide a

preliminary answer to this question: F̂`2(A,v) is lower bounded by ση with overwhelming probability.

Formally,

Lemma 3.3 (Lower Bound) Assume (1− εL)m ≥ D(λ∂ f (x0)) ≥ εLm for some constant εL > 0 and m is

sufficiently large. Then, for any ε > 0, there exists a constant c> 0 such that, with probability 1−exp(−cm),

F̂`2(A,v)≥ (1− ε)ση .

But is that all? A major part of our technical analysis in the remainder of this chapter involves showing

that the connection between the LASSO problem and the simple optimization (3.13) is much deeper than

Lemma 3.3 predicts. In short, under certain conditions on λ and m (similar in nature to those involved in

the assumption of Lemma 3.3), we prove that the followings are true:

• Similar to L (g,h), the optimal cost F̂`2(A,v) of the approximated `2-LASSO concentrates around

ση .

• Similar to ‖ŵ(g,h)‖2
2

σ2 , the NSE of the approximated `2-LASSO
‖ŵ`2 (A,v)‖2

2
σ2 concentrates around γ .

In some sense, L (g,h) “predicts” F̂`2(A,v) and ‖ŵ(g,h)‖2 “predicts” ‖ŵ`2(A,v)‖2, which attributes

Proposition 2.7 (or more precisely to the lower key optimization) a “predictive power”. This power is

not necessarily restricted to the two examples above. In Section 3.7, we extend the applicability of this idea

to prove that worst case NSE of the C-LASSO is achieved when σ → 0 . Finally, in Section 3.12 we rely on

this predictive power of Proposition 2.7 to motivate our claims regarding the `2
2-LASSO.
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The main idea behind the framework that underlies the proof of the above claims was originally in-

troduced by Stojnic in his recent work [193] in the context of the analysis of the `1-constrained LASSO.

While the fundamentals of the approach remain similar, we significantly extend the existing results in multi-

ple directions by analyzing the more involved `2-LASSO and `2
2-LASSO problems and by generalizing the

analysis to arbitrary convex functions. A synopsis of the framework is provided in the next section, while

the details are deferred to later sections.

3.1.6 Synopsis of the Technical Framework

We highlight the main steps of the technical framework.

1. Apply Proposition 2.7 to F̂`2(A,v) to find a high-probability lower bound for it. (cf. Lemma 3.3)

2. Apply Proposition 2.7 to the dual of F̂`2(A,v) to find a high-probability upper bound for it.

3. Both lower and upper bounds can be made arbitrarily close to ση . Hence, F̂`2(A,v) concentrates

with high probability around ση as well.

4. Assume
‖ŵ`2‖

2
2

σ2 deviates from γ . A third application of Proposition 2.7 shows that such a deviation

would result in a significant increase in the optimal cost, namely F̂`2(A,v) would be significantly

larger than ση .

5. From the previous step, conclude that
‖ŵ`2‖

2
2

σ2 concentrates with high probability around γ .

3.1.7 Gaussian Squared Distance and Related Quantities

The Gaussian squared distance to the λ -scaled set of subdifferential of f (·) at x0,

D(λ∂ f (x0)) := E
[
dist2(h,λ∂ f (x0))

]
, (3.14)

has been key to our discussion above. Here, we explore some of its useful properties and introduce some

other relevant quantities that altogether capture the (convex) geometry of the problem. Given a set C ∈ Rn,

denote its conic hull by cone(C ). Also, denote its polar cone by C ◦, which is the closed and convex set

{u ∈ Rn
∣∣uT v≤ 0 for all v ∈ C }.
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Let h∼N (0,In). Then, define,

C(λ∂ f (x0)) := E
[
(h−Proj(h,λ∂ f (x0)))

T Proj(h,λ∂ f (x0))
]
, (3.15)

D(cone(∂ f (x0))) := E
[

dist2(h,cone(∂ f (x0)))
]
. (3.16)

From the previous discussion, it has become clear how D(λ∂ f (x0)) appears in the analysis of the NSE

of the `2-LASSO. D(cone(∂ f (x0))) replaces D(λ∂ f (x0)) in the case of C-LASSO. This correspondence is

actually not surprising as the approximated C-LASSO problem can be written in the format of the problem in

(3.12) by replacing λ∂ f (x0) with cone(∂ f (x0)). While D(cone(∂ f (x0))) is the only quantity that appears in

the analysis of the C-LASSO, the analysis of the `2-LASSO requires considering not only D(λ∂ f (x0)) but

also C(λ∂ f (x0)). C(λ∂ f (x0)) appears in the analysis during the second step of the framework described

in Section 3.1.6. In fact, C(λ∂ f (x0)) is closely related to D(λ∂ f (x0)) as the following lemma shows.

Lemma 3.4 ( [4]) Suppose ∂ f (x0) is nonempty and does not contain the origin. Then,

1. D(λ∂ f (x0)) is a strictly convex function of λ ≥ 0, and is differentiable for λ > 0.

2. ∂D(λ∂ f (x0))
∂λ

=− 2
λ

C(λ∂ f (x0)).

As a last remark, the quantities D(cone(∂ f (x0))) and D(λ∂ f (x0)) also play a crucial role in the analysis

of the Noiseless CS and the Proximal Denoising problems. Without going into details, we mention that it

has been recently proved in [4]4 that the noiseless compressed sensing problem (1.4) exhibits a transition

from “failure” to “success” around m ≈ D(cone(∂ f (x0))). Also, [49, 70, 167] shows that D(λ∂ f (x0)) and

D(cone(∂ f (x0))) are equal to the worst case normalized mean-squared-error of the proximal denoisers

(2.1) and (3.2) respectively. Recall from Proposition 2.6 that D(cone(∂ f (x0))) is close to the optimally

tuned distance minλ≥0 D(λ∂ f (x0)) under mild assumptions (also see [4, 101, 167]).

3.2 Main Results

This section provides the formal statements of our main results. A more elaborate discussion follows in

Section 3.3.

4Recall from Chapter 2 that D(cone(∂ f (x0))) is same as the statistical dimension of the (cone(∂ f (x0)))
◦, or equivalently (see

Lemma 3.11) of the descent cone of f (·) at x0.
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Figure 3.1: We have considered the Constrained-LASSO with nuclear norm minimization and fixed the signal to noise ratio ‖X0‖2
F

σ 2

to 105. Size of the underlying matrices are 40×40 and their ranks are 1,3 and 5. Based on [78, 163], we estimate D f (X0,R+) ≈
179,450 and 663 respectively. As the rank increases, the corresponding D f (X0,R+) increases and the normalized squared error
increases.

3.2.1 Setup

Before stating our results, we repeat our basic assumptions on the model of the LASSO problem. Recall the

definitions of the three versions of the LASSO problem as given in (3.3), (3.4) and (3.5). Therein, assume:

• A ∈ Rm×n has independent standard normal entries,

• z∼N (0,σ2Im),

• f : Rn→ R is convex and continuous,

• ∂ f (x0) does not contain the origin.

The results to be presented hold with high probability over the realizations of the measurement matrix

A and the noise vector v. Finally, recall the definitions of the quantities D(λ∂ f (x0)),C(λ∂ f (x0)) and

D(cone(∂ f (x0))) in (3.14), (3.15) and (3.16), respectively.

3.2.2 C-LASSO

Theorem 3.1 (NSE of C-LASSO) Assume that m is sufficiently large and there exists a constant εL > 0

such that, (1− εL)m ≥ D(cone(∂ f (x0))) ≥ εLm. For any ε > 0, there exists a constant C = C(ε,εL) > 0
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such that, with probability 1− exp(−Cm),

‖x∗c−x0‖2
2

σ2 ≤ (1+ ε)
D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
, (3.17)

Furthermore, there exists a deterministic number σ0 > 0 (i.e. independent of A,v) such that, if σ ≤ σ0, with

the same probability,

∣∣∣∣‖x∗c−x0‖2
2

σ2 × m−D(cone(∂ f (x0)))

D(cone(∂ f (x0)))
−1
∣∣∣∣< ε. (3.18)

3.2.3 `2-LASSO

Definition 3.1 (RON) Suppose m > minλ≥0 D(λ∂ f (x0)). Define RON as follows,

RON = {λ > 0 | m−D(λ∂ f (x0))> max{0,C(λ∂ f (x0))}} .

Remark: Section 3.8 fully characterizes RON and shows that it is an open interval.

Theorem 3.2 (NSE of `2-LASSO in RON) Assume there exists a constant εL > 0 such that (1− εL)m ≥
max{D(λ∂ f (x0)), D(λ∂ f (x0))+C(λ∂ f (x0))} and D(λ∂ f (x0)) ≥ εLm. Further, assume that m is suf-

ficiently large. Then, for any ε > 0, there exists a constant C = C(ε,εL) > 0 and a deterministic number

σ0 > 0 (i.e. independent of A,v) such that, whenever σ ≤ σ0, with probability 1− exp(−C min{m, m2

n }),∣∣∣∣∣‖x∗`2
−x0‖2

2

σ2 × m−D(λ∂ f (x0))

D(λ∂ f (x0))
−1

∣∣∣∣∣< ε. (3.19)

Nonasymptotic bounds: In Section 3.10, we find a simple and non-asymptotic (which does not require

m,D(λ∂ f (x0)) to be large) bound for the `2-lasso which is strikingly close to what one would expect from

Theorem 3.2. This new bound holds for all penalty parameters λ ≥ 0 and all noise levels σ > 0 and gives

the bound
‖x∗`2−x0‖2

2

σ2 . 4D(λ∂ f (x0))

(
√

m−
√

D(λ∂ f (x0)))2
(see Theorem 3.7). Observe that, the difference between this and

D(λ∂ f (x0))
m−D(λ∂ f (x0))

is only a factor of 4 in the regime m� D(λ∂ f (x0)).
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Figure 3.2: We considered `2
2-LASSO problem, for a k sparse signal of size n = 1000. We let k

n = 0.1 and m
n = 0.5 and normalize

the signal power by setting ‖x0‖2 = 1. τ is varied from 0 to 80 and the signal-to-noise ratio (SNR) ‖x0‖2
2

σ 2 is varied from 1 to 104. We
observe that, for high SNR (σ2 ≤ 10−3), the analytical prediction matches with simulation. Furthermore, the lower SNR curves
are upper bounded by the high SNR curves. This behavior is fully consistent with what one would expect from Theorem 3.1 and
Formula 1.

3.2.4 `2
2-LASSO

Definition 3.2 (Mapping Function) For any λ ∈RON, define

map(λ ) = λ · m−D f (x0,λ )−C f (x0,λ )√
m−D f (x0,λ )

. (3.20)

Theorem 3.3 (Properties of map(·)) Assume m > minλ≥0 D(λ∂ f (x0)). The function map(·) : RON→ R+

is strictly increasing, continuous and bijective. Thus, its inverse function map−1(·) : R+ → RON is well

defined.

Formula 1 (Conjecture on the NSE of `2
2-LASSO) Assume (1−εL)m≥minλ≥0 D(λ∂ f (x0))≥ εLm for a

constant εL > 0 and m is sufficiently large. For any value of the penalty parameter τ > 0, we claim that, the

expression,
D f (x0,map−1(τ))

m−D f (x0,map−1(τ))
,

provides a good prediction of the NSE
‖x∗

`22
−x0‖2

2

σ2 for sufficiently small σ . Furthermore, we believe that the

same expression upper bounds the NSE for arbitrary values of σ .
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3.2.5 Converse Results

Definition 3.3 A function f (·) : Rn→ R is called Lipschitz continuous if there exists a constant L > 0 such

that, for all x,y ∈ Rn, we have | f (x)− f (y)| ≤ L‖x−y‖2.

Remark: Any norm in Rn is Lipschitz continuous [186].

Theorem 3.4 (Failure of Robust Recovery) Let f (·) be a Lipschitz continuous convex function Assume

m < D(cone(∂ f (x0))). Then, for any Cmax > 0, there exists a positive number σ0 := σ0(m,n, f ,x0,Cmax)

such that, if σ ≤ σ0, with probability 1−8exp(− (D(cone(∂ f (x0)))−m)2

4n ) , we have,

‖x∗`2
(A,z)−x0‖2

2

σ2 ≥Cmax, and
‖x∗

`2
2
(A,z)−x0‖2

2

σ2 ≥Cmax. (3.21)

3.2.6 Remarks

A detailed discussion of the results follows in Section 3.3. Before this, the following remarks are in place.

• Known results in the noiseless CS problem (1.4) quantify the minimum number of measurements required

for successful recovery of the signal of interest. Our Theorems 3.1 and 3.2 hold in the regime where this

minimum number of measurements required grows proportional to the actual number of measurements m.

As Theorem 3.4 shows, when m is less than the minimum number of measurements required, then the

LASSO programs fails to stably estimate x0.

• In Theorem 3.2, the exponent in the probability expression grows as min{m, m2

n }. This implies that, we

require m to grow at least linearly in
√

n.

• Theorem 3.1 suggests that the NSE of the Constrained-LASSO is maximized as σ→ 0. While we believe,

the same statement is also valid for the `2- and `2
2-LASSO, we do not have a proof yet. Thus, Theorem 3.2

and Formula 1 lack this guarantee.

• As expected the NSE of the `2-LASSO depends on the particular choice of the penalty parameter λ .

Theorem 3.2 sharply characterizes the NSE (in the small σ regime) for all values of the penalty parameter

λ ∈RON. In Section 3.3 we elaborate on the behavior of the NSE for other values of the penalty parameter.

Yet, the set of values RON is the most interesting one for several reasons, including but not limited to the

following:

(a) The optimal penalty parameter λbest that minimizes the NSE is in RON.
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(b) The function map(·) defined in Definition 3.2 proposes a bijective mapping from RON to R+. The

inverse of this function effectively maps any value of the penalty parameter τ of the `2
2-LASSO to a

particular value in RON. Following this mapping, the exact characterization of the NSE of the `2-

LASSO for λ ∈RON, translates (see Formula 1) to a prediction of the NSE of the `2
2-LASSO for any

τ ∈ R+.

• We don’t have a rigorous proof of Formula 1. Yet, we provide partial justification and explain the

intuition behind it in Section 3.12. Section 3.12 also shows that, when m > minλ≥0 D(λ∂ f (x0)), `2
2-LASSO

will stably recover x0 for any value of τ > 0, which is consistent with Formula 1. See also the discussion in

Section 3.3. We, also, present numerical simulations that support the validity of the claim.

• Theorem 3.4 proves that both in the `2- and `2
2-LASSO problems, the estimation error does not grow

proportionally to the noise level σ , when the number of measurements is not large enough. This result can

be seen as a corollary of Theorem 1 of [4]. A result of similar nature holds for the C-LASSO, as well. For

the exact statement of this result and the proofs see Section 3.13.

3.2.7 Organization of the Chapter

Section 3.3 contains a detailed discussion on our results and on their interpretation. Sections 3.4 and 3.5

contain the technical details of the framework as it was summarized in Section 3.1.6. In Sections 3.6 and 3.7,

we prove the two parts of Theorem 3.1 on the NSE of the C-LASSO. Section 3.8 analyzes the `2-LASSO

and Section 3.9 proves Theorem 3.2 regarding the NSE over RON. Section 3.12 discusses the mapping

between `2 and `2
2-LASSO, proves Theorem 3.3 and motivates Formula 1. In Section 3.13 we focus on the

regime where robust estimation fails and prove Theorem 3.4. Simulation results presented in Section 3.14

support our analytical predictions. Finally, directions for future work are discussed in Section 3.15. Some

of the technical details are deferred to the end of the chapter as “Further Proofs”.

3.3 Discussion of the Results

This section contains an extended discussion on the results of this work. We elaborate on their interpretation

and implications.
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3.3.1 C-LASSO

We are able to characterize the estimation performance of the Constrained-LASSO in (3.3) solely based on

D(cone(∂ f (x0))). Whenever m > D(cone(∂ f (x0))), for sufficiently small σ , we prove that,

‖x∗c−x0‖2
2

σ2 ≈ D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
. (3.22)

Furthermore, (3.22) holds for arbitrary values of σ when ≈ is replaced with .. Observe in (3.22) that as m

approaches D(cone(∂ f (x0))), the NSE increases and when m = D(cone(∂ f (x0))), NSE = ∞. This behavior

is not surprising as when m < D(cone(∂ f (x0))), one cannot even recover x0 from noiseless observations

via (1.4) hence it is futile to expect noise robustness. For purposes of illustration, notice that (3.22) can be

further simplified for certain regimes as follows:

‖x∗c−x0‖2
2

σ2 ≈


1 when m = 2D(cone(∂ f (x0))),

D(cone(∂ f (x0)))
m when m� D(cone(∂ f (x0))).

3.3.1.1 Relation to Proximal Denoising

We want to compare the NSE of the C-LASSO in (3.3) to the MSE risk of the constrained proximal denoiser

in (3.2). For a fair comparison, the average signal power E[‖Ax0‖2
2] in (3.3) should be equal to ‖x0‖2

2. This

is the case for example when A has independent N (0, 1
m) entries. This is equivalent to amplifying the noise

variance to mσ2 while still normalizing the error term ‖x∗c−x0‖2
2 by σ2. Thus, in this case, the formula (3.22)

for the NSE is multiplied by m to result in D(cone(∂ f (x0))) · m
m−D(cone(∂ f (x0)))

(see Section 3.3.5 for further

explanation). Now, let us compare this with the results known for proximal denoising. There [49, 167], it is

known that the normalized MSE is maximized when σ → 0 and is equal to D(cone(∂ f (x0))). Hence, we

can conclude that the NSE of the LASSO problem is amplified compared to the corresponding quantity of

proximal denoising by a factor of m
m−D(cone(∂ f (x0)))

> 1. This factor can be interpreted as the penalty paid in

the estimation error for using linear measurements.

3.3.2 `2-LASSO

Characterization of the NSE of the `2-LASSO is more involved than that of the NSE of the C-LASSO. For

this problem, choice of λ naturally plays a critical role. We characterize three distinct “regions of operation”
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of the `2-LASSO, depending on the particular value of λ .

3.3.2.1 Regions Of Operation

First, we identify the regime in which the `2-LASSO can robustly recover x0. In this direction, the number

of measurements should be large enough to guarantee at least noiseless recovery in (1.4), which is the case

when m>D(cone(∂ f (x0))) [4,50]. To translate this requirement in terms of D(λ∂ f (x0)), recall Proposition

2.6 and Lemma 3.4, and define λbest to be the unique minimizer of D(λ∂ f (x0)) over λ ∈ R+. We, then,

write the regime of interest as m > D f (x0,λbest)≈ D(cone(∂ f (x0))).

Next, we identify three important values of the penalty parameter λ , needed to describe the distinct

regions of operation of the estimator.

a) λbest : We show that λbest is optimal in the sense that the NSE is minimized for this particular choice of

the penalty parameter. This also explains the term “best” we associate with it.

b) λmax : Over λ ≥ λbest, the equation m = D(λ∂ f (x0)) has a unique solution. We denote this solution by

λmax. For values of λ larger than λmax, we have m≤ D(λ∂ f (x0)).

c) λcrit : Over 0≤ λ ≤ λbest, if m≤ n, the equation m−D(λ∂ f (x0)) = C(λ∂ f (x0)) has a unique solution

which we denote λcrit. Otherwise, it has no solution and λcrit := 0.

Based on the above definitions, we recognize the three distinct regions of operation of the `2-LASSO, as

follows,

a) RON = {λ ∈ R+
∣∣λcrit < λ < λmax}.

b) ROFF = {λ ∈ R+
∣∣λ ≤ λcrit}.

c) R∞ = {λ ∈ R+
∣∣λ ≥ λmax}.

See Figure 3.4 for an illustration of the definitions above and Section 3.8 for the detailed proofs of the

statements.

3.3.2.2 Characterizing the NSE in each Region

Our main result on the `2-LASSO is for the region RON as stated in Theorem 3.2. We also briefly discuss

on our observations regarding ROFF and R∞:
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Figure 3.3: We consider the `1-penalized `2-LASSO problem for a k sparse signal in Rn. x-axis is the penalty parameter λ . For
k
n = 0.1 and m

n = 0.5, we have λcrit ≈ 0.76, λbest ≈ 1.14, λmax ≈ 1.97.

• ROFF: For λ ∈ROFF, we empirically observe that the LASSO estimate x∗`2
satisfies y = Ax∗`2

and the

optimization (3.4) reduces to:

min
x

f (x) subject to y = Ax, (3.23)

which is the standard approach to solving the noiseless linear inverse problems (recall (1.4)). We

prove that this reduction is indeed true for values of λ sufficiently small (see Lemma 3.25), while our

empirical observations suggest that the claim is valid for all λ ∈ ROFF. Proving the validity of the

claim would show that when σ → 0, the NSE is D f (x0,λcrit)
m−D f (x0,λcrit)

, for all λ ∈ ROFF. Interestingly, this

would also give the NSE formula for the particularly interesting problem (3.23). Simulation results

in Section 3.14 validate the claim.

• RON: Begin with observing that RON is a nonempty and open interval. In particular, λbest ∈ RON

since m > D f (x0,λbest). We prove that for all λ ∈RON and σ is sufficiently small,

‖x∗`2
−x0‖2

2

σ2 ≈ D(λ∂ f (x0))

m−D(λ∂ f (x0))
. (3.24)

Also, empirical observations suggest that 3.24 holds for arbitrary σ when≈ replaced with .. Finally,

we should note that the NSE formula D(λ∂ f (x0))
m−D(λ∂ f (x0))

is a convex function of λ over RON.

• R∞: Empirically, we observe that the stable recovery of x0 is not possible for λ ∈R∞.
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3.3.2.3 Optimal Tuning of the Penalty Parameter

It is not hard to see that the formula in (3.24) is strictly increasing in D(λ∂ f (x0)). Thus, when σ → 0, the

NSE achieves its minimum value when the penalty parameter is set to λbest. Now, recall that D f (x0,λbest)≈
D(cone(∂ f (x0))) and compare the formulae in (3.22) and (3.24), to conclude that the C-LASSO and `2-

LASSO can be related by choosing λ = λbest. In particular, we have,

‖x∗`2
(λbest)−x0‖2

2

σ2 ≈ D f (x0,λbest)

m−D f (x0,λbest)
≈ D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
≈ ‖x

∗
c−x0‖2

2
σ2 . (3.25)

3.3.3 `2
2-LASSO

3.3.3.1 Connection to `2-LASSO

We propose a mapping between the penalty parameters λ of the `2-LASSO program (3.4) and τ of the `2
2-

LASSO program (3.5), for which the NSE of the two problems behaves the same. The mapping function was

defined in Definition 3.2. Observe that map(λ ) is well-defined over the region RON, since m > D(λ∂ f (x0))

and m−D(λ∂ f (x0)) > C(λ∂ f (x0)) for all λ ∈RON. Theorem 3.3 proves that map(·) defines a bijective

mapping from RON to R+. Other useful properties of the mapping function include the following:

• map(λcrit) = 0,

• limλ→λmax map(λ ) = ∞,

Section 3.12 proves these properties and more, and contains a short technical discussion that motivates the

proposed mapping function.

3.3.3.2 Proposed Formula

We use the mapping function in (3.20) to translate our results on the NSE of the `2-LASSO over RON (see

formula (3.24)) to corresponding results on the `2
2-LASSO for τ ∈ R+. Assume m > D f (x0,λbest). We

suspect that for any τ > 0,
D f (x0,map−1(τ))

m−D f (x0,map−1(τ))
,

accurately characterizes
‖x∗

`22
−x0‖2

2

σ2 for sufficiently small σ , and upper bounds
‖x∗

`22
−x0‖2

2

σ2 for arbitrary σ .
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Figure 3.4: We consider the exact same setup of Figure 3.3. a) We plot m−D(λ∂ f (x0)) and C(λ∂ f (x0)) as a function
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2-LASSO error as a function of τ√
m by using the map(·) function. The normalization is due to the fact that τ

grows linearly in
√

m.

3.3.3.3 A rule of thumb for the optimal penalty parameter

Formula 1 provides a simple recipe for computing the optimal value of the penalty parameter, which we

call τbest . Recall that λbest minimizes the error in the `2-LASSO. Then, the proposed mapping between the

two problems, suggests that τbest = map(λbest). To evaluate map(λbest) we make use of Lemma 3.4 and the

fact that dD(λ∂ f (x0))
dλ

= − 2
λ

C(λ∂ f (x0)) for all λ ≥ 0. Combine this with the fact that λbest is the unique

minimizer of D(λ∂ f (x0)), to show that C f (x0,λbest) = 0, and to conclude with,

τbest = λbest

√
m−D f (x0,λbest). (3.26)

As a last comment, (3.26) simplifies even further if one uses the fact D f (x0,λbest)≈D(cone(∂ f (x0))), which

is valid under reasonable assumptions, [4, 101, 167]. In this case, τbest ≈ λbest
√

m−D(cone(∂ f (x0))).

3.3.4 Closed Form Calculations of the Formulae

Table 3.2 summarizes the formulae for the NSE of the three versions of the LASSO problem. While sim-

ple and concise, it may appear to the reader that the formulae are rather abstract, because of the presence of

D(cone(∂ f (x0))) and D(λ∂ f (x0)) (C(λ∂ f (x0)) is also implicitly involved in the calculation of map−1(·))
which were introduced to capture the convex geometry of the problem. However, as discussed here, for

certain critical regularizers f (·), one can calculate (tight) upper bounds or even explicit formulas for these

quantities. For example, for the estimation of a k-sparse signal x0 with f (·) = ‖ · ‖1, it has been shown that
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Normalized Squared Error

C-LASSO D(cone(∂ f (x0)))
m−D(cone(∂ f (x0)))

`2-LASSO D(λ∂ f (x0))
m−D(λ∂ f (x0))

for λ ∈RON

`2
2-LASSO D f (x0,map−1(τ))

m−D f (x0,map−1(τ))
for τ ∈ R+

Table 3.2: Summary of formulae for the NSE.

D(cone(∂ f (x0))) . 2k(log n
k + 1). Substituting this into the formula for the NSE of the C-LASSO results

in the “closed-form” upper bound given in (3.7), i.e. one expressed only in terms of m,n and k. Analogous

results have been derived [50,101,163,191] for other well-known signal models as well, including low rank-

ness (see (3.8)) and block-sparsity (see (3.9)). The first row of Table 3.3 summarizes some of the results for

D(cone(∂ f (x0))) found in the literature (see [50,101]). The second row provides our closed form results on

D(λ∂ f (x0)) when λ is sufficiently large. The reader will observe that, by setting λ to its lower bound in the

second row, one approximately obtains the corresponding result in the first row. For a related discussion on

D(λ∂ f (x0)) and closed form bounds, the reader is referred to [101]. The derivation of these results can be

found in Section A.7 of the Appendix. In the same section, we also provide exact formulas for D(λ∂ f (x0))

and C(λ∂ f (x0)) for the same signal models. Based on those formulas and Table 3.3, one simply needs to

substitute D(cone(∂ f (x0))) or D(λ∂ f (x0)) with their corresponding value to reach the error bounds. We

should emphasize that, examples are not limited to the ones discussed here (see for instance [50]).

k-sparse, x0 ∈ Rn Rank r, X0 ∈ Rd×d k-block sparse, x0 ∈ Rtb

D(cone(∂ f (x0))) 2k(log n
k +1) 6dr 4k(log t

k +b)

D(λ∂ f (x0)) (λ 2 +3)k for λ ≥
√

2log n
k λ 2r+2d(r+1) for λ ≥ 2

√
d (λ 2 +b+2)k for λ ≥

√
b+
√

2log t
k

Table 3.3: Closed form upper bounds for D(cone(∂ f (x0))) ( [50,101]) and D(λ∂ f (x0)) corresponding to (3.7), (3.8)
and (3.9).

It follows from this discussion, that establishing new and tighter analytic bounds for D(λ∂ f (x0)) and

D(cone(∂ f (x0))) for more regularizers f is certainly an interesting direction for future research. In the

case where such analytic bounds do not already exist in literature or are hard to derive, one can numeri-

cally estimate D(λ∂ f (x0)) and D(cone(∂ f (x0))) once there is an available characterization of the set of

subdifferentials ∂ f (x0). More in detail, it is not hard to show that, when h ∼N (0,In), dist2(h,λ∂ f (x0))
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concentrates nicely around D(λ∂ f (x0)) (see Lemma A.3) . Hence to compute D(λ∂ f (x0)):

(a) draw a vector h∼N (0,In),

(b) return the solution of the convex program mins∈∂ f (x0) ‖h−λ s‖2
2.

Computing D(cone(∂ f (x0))) can be built on the same recipe by writing dist2(h,cone(∂ f (x0))) as min
λ≥0,s∈∂ f (x0)

‖h−λ s‖2
2.

Summing up, our proposed formulae for the NSE of the LASSO problems can be effectively calculated,

either analytically or numerically.

3.3.5 Translating the Results

Until this point, we have considered the scenario, in which the measurement matrix A has independent

standard normal entries, and the noise vector z is equal to σv with v ∼N (0,Im). In related literature, the

entries of A are often assumed to have variance 1
m or 1

n , [13, 14, 33]. For example, a variance of 1
m ensures

that in expectation ‖Ax‖2
2 is same as ‖x‖2

2. Hence, it is important to understand, how our setting can be

translated to those. To distinguish our setup from the “non-unit variance” setup, we introduce the “non-unit

variance” variables A′,σ ′,λ ′ and τ ′. Let entries of A′ have variance 1
m and consider the `2-LASSO problem

with these new variables, which can be equivalently written as,

min
x
‖A′x0 +σ

′v−A′x‖2 +λ
′ f (x).

Multiplying the objective with
√

m, we obtain,

min
x
‖√mA′x0 +

√
mσ
′v−√mA′x‖2 +

√
mλ
′ f (x).

Observe that,
√

mA′ is now statistically identical to A. Hence, Theorem 3.2 is applicable under the mapping

σ ←√mσ ′ and λ ←√mλ ′. Consequently, the NSE formula for the new setting for
√

mλ ′ ∈RON can be

given as,
‖x∗`2
−x0‖2

2

(
√

mσ ′)2 =
‖x∗`2
−x0‖2

2

σ2 .
D(λ∂ f (x0))

m−D(λ∂ f (x0))
=

D f (x0,
√

mλ ′)
m−D f (x0,

√
mλ ′)

.

Identical arguments for the Constrained-LASSO and `2
2-LASSO results in the following NSE formulas,

‖x∗c−x0‖2
2

mσ ′2
.

D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
and

‖x∗
`2

2
−x0‖2

2

mσ ′2
.

D f (x0,map−1(
√

mτ ′))
m−D f (x0,map−1(

√
mτ ′))

.
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In general, reducing the signal power ‖Ax0‖2
2 by a factor of m, amplifies the proposed NSE upper bound by

m times and the penalty parameters should be mapped as τ ←→√mτ ′ and λ ←→√mλ ′.

3.4 Applying Gaussian Min-Max Theorem

First, we introduce the basic notation that is used throughout the technical analysis of our results. Some

additional notation, specific to the subject of each particular section is introduced later therein. To make

explicit the variance of the noise vector z, we denote z = σv, where v ∼N (0,Im). Also, we reserve the

variables h and g to denote i.i.d. Gaussian vectors in Rn and Rm, respectively. In similar flavor, reserve

the variable s to describe the subgradients of f at x0. Finally, the Euclidean unit ball and unit sphere are

respectively denoted as

Bn−1 := {x ∈ Rn | ‖x‖2 ≤ 1} and S n−1 := {x ∈ Rn | ‖x‖2 = 1} .

3.4.1 Introducing the Error Vector

For each candidate solution x of the LASSO algorithm, denote w = x−x0. Solving for w is clearly equiv-

alent to solving for x, but simplifies considerably the presentation of the analysis. Under this notation,

‖y−Ax‖2 = ‖Aw−σv‖2. Furthermore, it is convenient to subtract the constant factor λ f (x0) from the

objective function of the LASSO problem and their approximations. In this direction, define the following

“perturbation” functions:

fp(w) = f (x0 +w)− f (x0), (3.27)

f̂p(w) = f̂ (x0 +w)− f (x0) = sup
s∈∂ f (x0)

sT w. (3.28)

Then, the `2-LASSO will write as

w∗`2
= argmin

w
{‖Aw−σv‖2 +λ fp(w)} . (3.29)
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and the C-LASSO as

w∗c =argmin
w
‖Aw−σv‖2

s.t. fp(w)≤ 0.

or, equivalently,

w∗c = argmin
w

{
‖Aw−σv‖2 +max

λ≥0
λ fp(w)

}
. (3.30)

3.4.2 The Approximate LASSO Problem

In Section 3.1, and in particular in (3.12) we introduced the approximated `2-LASSO problem. We repeat the

definition here, and also, we define accordingly the approximate C-LASSO. The approximated `2-LASSO

writes:

ŵ`2 = argmin
w

{
‖Aw−σv‖2 +λ f̂p(w)

}
. (3.31)

Similarly, the approximated C-LASSO writes

ŵc = argmin
w

{
‖Aw−σv‖2 +max

λ≥0
λ f̂p(w)

}
. (3.32)

Denote F̂c(A,v) and F̂`2(A,v) the optimal costs of problems (3.32) and (3.31), respectively. Note our

convention to use the symbol “ ˆ ” over variables that are associated with the approximate problems. To

distinguish, we use the symbol “ ∗ ” for the variables associated with the original problems.

3.4.3 Simplifying the LASSO objective through Gaussian Min-Max Theorem

Section 3.1.6 introduced the technical framework. Key feature in this framework is the application of Gor-

don’s Theorem. In particular, we apply the “modified Gordon’s Lemma” Proposition 2.7 three times: once

each for the purposes of the lower bound, the upper bound and the deviation analysis. Each application

results in a corresponding simplified problem, which we call “key optimization”. The analysis is carried out

for that latter one as opposed to the original and more complex LASSO problem. In this Section, we show

the details of applying Gordon’s Theorem and we identify the corresponding key optimizations. Later, in
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Section 3.5, we focus on the approximate LASSO problem and we show that in that case, the key optimiza-

tions are amenable to detailed analysis.

To avoid unnecessary repetitions, we treat the original and approximate versions of both the C-LASSO

and the `2-LASSO, in a common framework, by defining the following problem:

F (A,v) = min
w
{ ‖Aw−σv‖2 + p(w) }, (3.33)

where p : Rn → R∪∞ is a proper convex function [182]. Choose the penalty function p(·) in the generic

formulation (3.33) accordingly to end up with (3.29), (3.30), (3.31) or (3.32). To retrieve (3.30) and (3.32),

choose p(w) as the indicator function of the sets {w| fp(w)≤ 0} and
{

w| f̂p(w)≤ 0
}

[23].

3.4.3.1 Lower Bound

The following corollary is a direct application of Proposition 2.7 to F (A,v) in (3.33).

Corollary 3.2 Let g∼N (0,Im), h∼N (0,In) and h∼N (0,1) and assume all g,h,h are independently

generated. Let

L (g,h) = min
w

{√
‖w‖2

2 +σ2‖g‖2−hT w+ p(w)

}
. (3.34)

Then, for any c ∈ R:

P( F (A,v)≥ c )≥ 2 ·P( L (g,h)−hσ ≥ c )−1.

Proof: Notice that ‖Aw−σv‖2 = ‖Avwσ‖2, where Av := [A − v] is a matrix with i.i.d. standard

normal entries of size m× (n+ 1) and wσ = [wT σ ]T ∈ Rn+1. Apply Proposition 2.7, with x = wσ , Φ1 =

{wσ

∣∣w ∈ Rn}, Φ2 = S m−1, G = Av, ψ(wσ ) = p(w). Further perform the trivial optimizations over a on

both sides of the inequality. Namely, max‖a‖2=1 aT Az[wT σ ]T = ‖Azwσ‖2 and, max‖a‖2=1 gT a = ‖g‖2.

3.4.3.2 Upper Bound

Similar to the lower bound derived in the previous section, we derive an upper bound for F (A,v). For this,

we need to apply Gordon’s Theorem to −F (A,v) and use the dual formulation of it. Lemma A.3 in the
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Appendix shows that the dual of the minimization in (3.33) can be written as

−F (A,v) = min
‖µµµ‖2≤1

max
w

{
µµµ

T (Aw−σv)− p(w)
}
. (3.35)

Proposition 2.7 requires the set over which maximization is performed to be compact. We thus apply Propo-

sition 2.7 to the restricted problem,

min
‖µµµ‖2≤1

max
‖w‖2≤Cup

{
µµµ

T (Aw−σv)− p(w)
}
.

Notice, that this still gives a valid lower bound to −F (A,v) since the optimal cost of this latter problem is

no larger than −F (A,v). In Section 3.5, we will choose Cup so that the resulting lower bound is as tight as

possible.

Corollary 3.3 Let g∼N (0,Im), h∼N (0,In) and h∼N (0,1) and assume all g,h,h are independently

generated. Let,

U (g,h) =− min
‖µµµ‖2≤1

max
‖w‖2≤Cup

{√
‖w‖2

2 +σ2 gT
µµµ +‖µµµ‖2hT w− p(w)

}
. (3.36)

Then, for any c ∈ R:

P( F (A,v)≤ c )≥ 2 ·P
(

U (g,h)− min
0≤α≤1

ασh≤ c
)
−1.

Proof: Similar to the proof of Corollary 3.2 write ‖σv−Aw‖2 = ‖Avwσ‖2. Then, apply the modified

Gordon’s Theorem 2.7, with x = µµµ , α = wσ , Φ1 = Bm−1, Φ2 =
{

wσ | 1
Cup

w ∈Bn−1
}

, G = Av, ψ(wσ ) =

p(w), to find that for any c ∈ R:

P( −F (A,v)≥−c )≥ 2 ·P
(

min
‖µµµ‖2≤1

max
‖w‖2≤Cup

{
√

C2
up +σ2 gT

µµµ +‖µµµ‖2hT w− p(w)+‖µµµ‖2σh} ≥ −c
)
−1

≥ 2P
(
−U (g,h)+ min

‖µ‖2≤1
‖µµµ‖2σh≥−c

)
−1.
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3.4.3.3 Deviation Analysis

Of interest in the deviation analysis of the LASSO problem (cf. Step 4 in Section 3.1.6) is the analysis of a

restricted version of the LASSO problem, namely

min
‖w‖2∈Sdev

{‖Aw−σv‖2 + p(w)} (3.37)

where

Sdev :=
{
` |
∣∣∣∣ `

Cdev
−1
∣∣∣∣≥ δdev

}
.

δdev > 0 is any arbitrary small constant and Cdev > 0 a constant that will be chosen carefully for the purpose

of the deviation analysis . We establish a high probability lower bound for (3.37). As usual, we apply

Proposition 2.7 to our setup, to conclude the following.

Corollary 3.4 Let g∼N (0,Im), h∼N (0,In) and h∼N (0,1) and assume all g,h,h are independently

generated. Let

Ldev(g,h) = min
‖w‖2∈Sdev

{√
‖w‖2

2 +σ2‖g‖2−hT w+ p(w)

}
. (3.38)

Then, for any c ∈ R:

P
(

min
‖w‖2∈Sdev

{‖Aw−σv‖2 + p(w)} ≥ c
)
≥ 2 ·P( Ldev(g,h)−hσ ≥ c )−1.

Proof: Follows from Proposition 2.7 following exactly the same steps as in the proof of Corollary 3.2.

The reader will observe that L is a special case of Ldev where Sdev = R+.

3.4.3.4 Summary

We summarize the results of Corollaries 3.2, 3.3 and 3.4 in Lemma 3.5. Adding to a simple summary, we

perform a further simplification of the corresponding statements. In particular, we discard the “distracting”

term σh in Corollaries 3.2 and 3.4, as well as the term min0≤α≤1 ασh in Corollary 3.3. Recall the definitions

of the key optimizations L , U and Ldev in (3.34), (3.36) and (3.38).
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Lemma 3.5 Let g ∼N (0,Im) and h ∼N (0,In) be independently generated. Then, for any positive con-

stant ε > 0, the following are true:

1. P( F (A,v)≥ c )≥ 2 P
(

L (g,h)−σε
√

m≥ c
)
−4exp

(
−ε2m

2

)
−1.

2. P( F (A,v)≤ c )≥ 2 P
(

U (g,h)+σε
√

m≤ c
)
−4exp

(
−ε2m

2

)
−1.

3. P
(

min
‖w‖2∈Sdev

{‖Aw−σv‖2 + p(w)} ≥ c
)
≥ 2 P

(
Ldev(g,h)−σε

√
m≥ c

)
−4exp

(
−ε2m

2

)
−1.

Proof: For h∼N (0,1) and all ε > 0,

P
(
|h| ≤ ε

√
m
)
≥ 1−2exp(−ε2m

2
). (3.39)

Thus,

P( L (g,h)−hσ ≥ c )≥ P
(
L (g,h)− εσ

√
m≥ c , h≤ ε

√
m
)

≥ P(L (g,h)− εσ
√

m≥ c)−2exp(−ε2m
2

).

Combine this with Corollary 3.2 to conclude with the first statement of Lemma 3.5. The proof of the third

statement of the Lemma follows the exact same steps applied this time to Corollary 3.4. For the second

statement write,

P
(

U (g,h)− min
‖µ‖2≤1

‖µµµ‖2σh≤ c
)
≥ P( U (g,h)+σ |h| ≤ c )

≥ P
(

U (g,h)+ εσ
√

m≤ c , |h| ≤ ε
√

m
)
,

and use (3.39) as above. To conclude, combine with the statement of Corollary 3.3.

3.5 After Gordon’s Theorem: Analyzing the Key Optimizations

3.5.1 Preliminaries

This section is devoted to the analysis of the three key optimizations introduced in the previous section.

In particular, we focus on the approximated C-LASSO and `2-LASSO problems, for which a detailed
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such analysis is tractable. Recall that the approximated C-LASSO and `2-LASSO are obtained from the

generic optimization in (3.33) when substituting p(w) = maxλ≥0 maxs∈λ∂ f (x0) sT w = maxs∈cone(∂ f (x0)) sT w

and p(w) = maxs∈λ∂ f (x0) sT w, respectively. Considering this and recalling the definitions in (3.34), (3.36)

and (3.38), we will be analyzing the following key optimizations,

L (g,h) = min
w

{√
‖w‖2

2 +σ2‖g‖2−hT w+max
s∈C

sT w
}
, (3.40a)

Û (g,h) =− min
‖µµµ‖2≤1

max
‖w‖2=Cup

{√
‖w‖2

2 +σ2 gT
µµµ +‖µµµ‖2hT w−max

s∈C
sT w

}
, (3.40b)

Ldev(g,h) = min
‖w‖2∈Sdev

{√
‖w‖2

2 +σ2‖g‖2−hT w+max
s∈C

sT w
}
, (3.40c)

where C is taken to be either cone(∂ f (x0)) or λ∂ f (x0), corresponding to the C-LASSO and `2-LASSO,

respectively. Notice that in (3.40b) we have constrained the feasible set of the inner maximization to the

scaled sphere rather than ball. Following our discussion, in Section 3.4.3.2 this does not affect the validity

of Lemma 3.5, while it facilitates our derivations here.

To be consistent with the definitions in (3.40), which treat the key optimizations of the C-LASSO and

`2-LASSO under a common framework with introducing a generic set C , we also define

F̂ (A,v) = min
w

{
‖Aw−σv‖2 +max

s∈C
sT w

}
, (3.41)

to correspond to (3.32) and (3.31), when setting C = cone(∂ f (x0)) and C = λ∂ f (x0), respectively.

3.5.2 Some Notation

Recall the definitions in Section 2.2. Additionally, define the correlation induced by a convex and closed set

C ∈ Rn by,

corr(x,C ) := 〈Proj(x,C ),Π(x,C )〉 .

Now, let h∼N (0,In). The following quantities are of central interest throughout the chapter:

D(C ) := E
[

dist2(h,C )
]
, (3.42a)

P(C ) := E
[
‖Proj(h,C )‖2

2
]
, (3.42b)

C(C ) := E [ corr(h,C ) ] , (3.42c)
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where the E[·] is over the distribution of the Gaussian vector h. It is easy to verify that n = D(C )+P(C )+

2C(C ). Under this notation,

D(λ∂ f (x0)) = D(λ∂ f (x0)),

C(λ∂ f (x0)) = C(λ∂ f (x0)),

D(cone(∂ f (x0))) = D(cone(∂ f (x0))).

On the same lines, define P(λ∂ f (x0)) := P(λ∂ f (x0)).

3.5.3 Analysis

We perform a detailed analysis of the three key optimization problems L , Û and Ldev. For each one of

them we summarize the results of the analysis in Lemmas 3.6, 3.7 and 3.8 below. Each lemma includes

three statements. First, we reduce the corresponding key optimization problem to a scalar optimization.

Next, we compute the optimal value of this optimization in a deterministic setup. We convert this into a

probabilistic statement in the last step, which is directly applicable in Lemma 3.5. Eventhough, we are

eventually interested only in this last probabilistic statement, we have decided to include all three steps in

the statement of the lemmas in order to provide some further intuition into how they nicely build up to the

desired result. All proofs of the lemmas are deferred to Section A.4 in the Appendix.

3.5.3.1 Lower Key Optimization

Lemma 3.6 (Properties of L ) Let g∼N (0,Im) and h∼N (0,In) and

L (g,h) = min
w

{√
‖w‖2

2 +σ2‖g‖2−hT w+max
s∈C

sT w
}
, (3.43)

Denote ŵlow(g,h) its optimal value. The following are true:

1. Scalarization: L (g,h) = minα≥0

{√
α2 +σ2‖g‖2−α ·dist(h,C )

}
2. Deterministic result: If ‖g‖2

2 > dist(h,C )2, then,

L (g,h) = σ

√
‖g‖2

2−dist2(h,C ),
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and,

‖ŵlow(g,h)‖2
2 = σ

2 dist2(h,C )

‖g‖2
2−dist2(h,C )

.

3. Probabilistic result: Assume that m ≥ D(C )+ εLm for some εL ≥ 0. Then, for any ε > 0, there exist

c1,c2 > 0 such that, for sufficiently large m,

P
(
L (g,h)≥ (1− ε)σ

√
m−D(C )

)
≥ 1− c1 exp(−c2m).

3.5.3.2 Upper Key Optimization

Lemma 3.7 (Properties of Û ) Let g∼N (0,Im), h∼N (0,In) and

Û (g,h) =− min
‖µ‖2≤1

max
‖w‖2=Cup

{√
C2

up +σ2 gT
µµµ +‖µµµ‖2hT w−max

s∈C
sT w

}
. (3.44)

The following hold true:

1. Scalarization: Û (g,h) =−min0≤α≤1

{
−α ·

√
C2

up +σ2 ‖g‖2 +Cupdist(αh,C )
}
.

2. Deterministic result: If h /∈ C and

Cupdist(h,C )+Cup
corr(h,C )

dist(h,C )
<
√

C2
up +σ2‖g‖2, (3.45)

then,

Û (g,h) =
√

C2
up +σ2‖g‖2−Cupdist(h,C ). (3.46)

3. Probabilistic result: Assume m≥max{D(C ),D(C )+C(C )}+ εLm for some εL > 0. Set

Cup = σ

√
D(C )

m−D(C )
.

Then, for any ε > 0, there exist c1,c2 > 0 such that for sufficiently large D(C ),

P
(
Û (g,h)≤ (1+ ε)σ

√
m−D(C )

)
≥ 1− c1 exp(−c2γ(m,n)) .

where γ(m,n) = m if C is a cone and γ(m,n) = min
{

m, m2

n

}
otherwise.
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3.5.3.3 Deviation Key Optimization

Lemma 3.8 (Properties of Ldev) Let g∼N (0,Im) and h∼N (0,In) and

Ldev(g,h) = min
‖w‖2∈Sdev

{√
‖w‖2

2 +σ2‖g‖2−hT w+max
s∈C

sT w
}
, (3.47)

where

Sdev :=
{
` |
∣∣∣∣ `

Cdev
−1
∣∣∣∣≥ δdev

}
,

δdev > 0 is any arbitrary small constant and Cdev > 0. The following are true:

1. Scalarization: Ldev(g,h) = minα∈Sdev

{√
α2 +σ2‖g‖2−α ·dist(h,C )

}
.

2. Deterministic result: If

σ ·dist(h,C )√
‖g‖2

2−dist2(h,C )
/∈ Sdev, (3.48)

then,

Ldev(g,h) =
√

(1±δdev)2C2
dev +σ2‖g‖2− (1± ε)Cdevdist(h,C ).

3. Probabilistic result: Assume (1− εL)m > D(C )> εLm, for some ε0 > 0 and set

Cdev = σ

√
D(C )

m−D(C )
.

Then, for all δdev > 0 there exists t > 0 and c1,c2 > 0 such that,

P
(
Ldev(g,h)≥ (1+ t)σ

√
m−D(C )

)
≥ 1− c1 exp(−c2m). (3.49)

3.5.4 Going Back: From the Key Optimizations to the Squared Error of the LASSO

Application of Gaussian Min-Max Theorem to F̂ (A,v) introduced the three key optimizations in Lemma

3.5. Next, in Lemmas 3.6, 3.7 and 3.8 we carried out the analysis of those problems. Here, we combine the

results of the four Lemmas mentioned above in order to evaluate F̂ (A,v) and to compute an exact value for
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the norm of its optimizer ŵ(A,v). Lemma 3.9 below formally states the results of the analysis and the proof

of it follows.

Lemma 3.9 Assume m ≥ max{D(C ),D(C )+C(C )}+ εLm and D(C ) ≥ εLm for some εL > 0. Also, as-

sume m is sufficiently large and let γ(m,n) = m if C is a cone and min{m, m2

n } else. Then, the following

statements are true.

1. For any ε > 0, there exist constants c1,c2 > 0 such that

∣∣∣F̂ (A,v)−σ
√

m−D(C )
∣∣∣≤ εσ

√
m−D(C ), (3.50)

with probability 1− c1 exp(−c2γ(m,n)).

2. For any δdev > 0 and all w ∈ C satisfying

∣∣∣∣∣‖w‖2−σ

√
D(C )

m−D(C )

∣∣∣∣∣≥ δdevσ

√
D(C )

m−D(C )
, (3.51)

there exists constant t(δdev)> 0 and c1,c2 > 0 such that

‖Aw−σv‖2 +max
s∈C

sT w≥ F̂ (A,v)+ tσ
√

m, (3.52)

with probability 1− c1 exp(−c2γ(m,n)).

3. For any δ > 0, there exist constants c1,c2 > 0 such that

∣∣∣∣∣‖ŵ(A,v)‖2−σ

√
D(C )

m−D(C )

∣∣∣∣∣≤ δσ

√
D(C )

m−D(C )
, (3.53)

with probability 1− c1 exp(−c2γ(m,n)).

Proof:

We prove each one of the three statements of Theorem 3.9 sequentially. Assume the regime where

m≥max{D(C ),D(C )+C(C )}+ εLm and D(C )≥ εLm for some εL > 0 and also m is sufficiently large.
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1. Proof of (3.50): Consider any ε ′ > 0. First, we establish a high probability lower bound for F̂ (A,v).

From Lemma 3.6,

L (g,h)≥ (1− ε
′)σ
√

m−D(C ),

with probability 1− exp(−O (m)). Combine this with the first statement of Lemma 3.5 to conclude that

F̂ (A,v)≥ (1− ε
′)σ
√

m−D(C )− ε
′
σ
√

m, (3.54)

with the same probability.

Similarly, for a high probability upper bound for F̂ (A,v) we have from Lemma 3.7, that

Û (g,h)≤ (1+ ε
′)σ
√

m−D(C ),

with probability 1−exp(−O (γ(m,n))). Combine this with the second statement of Lemma 3.5 to conclude

that

F̂ (A,v)≤ (1+ ε
′)σ
√

m−D(C )+ ε
′
σ
√

m, (3.55)

with the same probability. To conclude the proof of (3.50) fix any positive constant ε > 0, and observe that

by choosing ε ′ = ε

√
εL

1+
√

εL
in (3.54) and (3.55) we ensure that ε ′

(
1+

√
m√

m−D(C )

)
≤ ε . It then follows from

(3.54) and (3.55) that there exist c1,c2 > 0 such that∣∣∣∣∣ F̂ (A,v)
σ
√

m−D(C )
−1

∣∣∣∣∣≤ ε, (3.56)

with probability 1− c1 exp(−c2γ(m,n)).

2. Proof of (3.52): Fix any δdev > 0. In accordance to its definition in previous sections define the set

Sdev =

{
` |
∣∣∣∣∣`−σ

√
D(C )

m−D(C )

∣∣∣∣∣≤ δdevσ

√
D(C )

m−D(C )

}
.
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Clearly, for all w such that ‖w‖2 ∈ Sdev we have,

‖Aw−σv‖2 +max
s∈C

sT w≥ min
‖w‖2∈Sdev

{
‖Aw−σv‖2 +max

s∈C
sT w

}
.

Combining this with the third statement of Lemma 3.5, it suffices for the proof of (3.52) to show that there

exists constant t(δdev)> 0 such that

Ldev(g,h)≥ F̂ (A,v)+2tσ
√

m, (3.57)

with probability 1− exp(−O (m)).

To show (3.57), start from Lemma 3.8 which gives that here exists t ′(δdev)> 0, such that

Ldev(g,h)≥ (1+ t ′)σ
√

m−D(C ), (3.58)

with probability 1− exp(−O (m)). Furthermore, from the first statement of Lemma 3.9,

F̂ (A,v)≤ (1+
t ′

2
)σ
√

m−D(C ), (3.59)

with probability 1− exp(−O (γ(m,n))). Finally, choose t = t ′
4
√

εL to ensure that

2tσ
√

m≤ t ′

2
σ
√

m−D(C ). (3.60)

Combine (3.58), (3.59) and (3.60) to conclude that (3.57) indeed holds with the desired probability.

3. Proof of (3.53): The third statement of Lemma 3.9 is a simple consequence of its second statement. Fix

any ε > 0. The proof is by contradiction. Assume that ŵ(A,v) does not satisfy (3.53). It then satisfies (3.51)

for δdev = ε . Thus, it follows from the second statement of Lemma 3.9, that there exists t(ε)> 0 such that

F̂ (A,v)≥ F̂ (A,v)+ tσ
√

m, (3.61)

with probability 1− exp(−O (γ(m,n))). This is a contradiction and completes the proof.

75



3.6 The NSE of the C-LASSO

In this section, we prove the second statement of Theorem 3.1, namely (3.18). We restate the theorem here

for ease of reference.

Theorem 3.5 Assume there exists a constant εL > 0 such that, (1− εL)m ≥ D(cone(∂ f (x0))) ≥ εLm and

m is sufficiently large. For any ε > 0, there exists a constant C = C(ε,εL) > 0 such that, with probability

1− exp(−Cm),

‖x∗c−x0‖2
2

σ2 ≤ (1+ ε)
D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
. (3.62)

Furthermore, there exists a deterministic number σ0 > 0 (i.e. independent of A,v) such that, if σ ≤ σ0, with

the same probability,

∣∣∣∣‖x∗c−x0‖2
2

σ2 × m−D(cone(∂ f (x0)))

D(cone(∂ f (x0)))
−1
∣∣∣∣< ε. (3.63)

First, in Section 3.6.1 we focus on the approximated C-LASSO and prove that its NSE concentrates

around D(cone(∂ f (x0)))
m−D(cone(∂ f (x0)))

for arbitrary values of σ . Later in Section 3.6.2, we use that result and funda-

mental properties of the approximated problem to prove (3.18), i.e. that the NSE of the original problem

concentrates around the same quantity for small enough σ .

3.6.1 Approximated C-LASSO Problem

Recall the definition of the approximated C-LASSO problem in (3.32). As it has been argued previously,

this is equivalent to the generic problem (3.41) with C = cone{∂ f (x0)}. Hence, to calculate its NSE we

will simply apply the results we obtained throughout Section 3.5. We first start by mapping the generic

formulation in Section 3.5 to the C-LASSO.

Lemma 3.10 Let C = cone{∂ f (x0)}. Then,

• corr(h,C ) = 0, for all h ∈ Rn,

• C(C ) = 0.

Proof: The first statement is a direct consequence of Moreau’s decomposition theorem (Fact 2.1)

applied on the closed and convex cone cone{∂ f (x0)}. The second statement follows easily after taking the

expectation in both sides of the equality in the second statement.
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With this mapping, we can directly apply Lemma 3.9, where C is a cone, to conclude with the desired

result. The following corollary summarizes the result.

Corollary 3.5 Assume (1−εL)m≥D(cone(∂ f (x0)))≥ εLm, for some εL > 0. Also, assume m is sufficiently

large. Then, for any constants ε1,ε2 > 0, there exist constants c1,c2 > 0 such that with probability 1−
c1 exp(−c2m), ∣∣∣∣∣ F̂c(A,v)

σ
√

m−D(cone(∂ f (x0)))
−1

∣∣∣∣∣≤ ε1,

and

∣∣∣∣‖ŵc(A,v)‖2
2

σ2 − D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))

∣∣∣∣≤ ε2.

3.6.2 Original C-LASSO Problem

In this section we prove (3.18). For the proof we rely on Corollary 3.5. First, we require the introduction of

some useful concepts from convex analysis.

3.6.2.1 Tangent Cone and Cone of the Subdifferential

Consider any convex set C ⊂ Rn and x∗ ∈ C . We define the set of feasible directions in C at x∗ as

FC (x∗) := {u | (x∗+u) ∈ C } .

The tangent cone of C at x∗ is defined as

TC (x∗) := Cl(cone(FC (x∗))) ,

where Cl(·) denotes the closure of a set. By definition, tangent cone TC (x∗) and feasible set FC (x∗) should

be close to each other around a small neighborhood of 0. The following proposition is a corollary of Propo-

sition F.1 of [167] and shows that the elements of tangent cone, that are close to the origin, can be uniformly

approximated by the elements of the feasible set.

Proposition 3.1 (Approximating the tangent cone, [167]) Let C be a closed convex set and x∗ ∈ C . For
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any δ > 0, there exists ε > 0 such that

dist(u,FC (x∗))≤ δ‖u‖2,

for all u ∈TC (x∗) with ‖u‖2 ≤ ε .

Assume C is the descent set of f at x0, namely, C = {x | f (x)≤ f (x0)} for some convex function f (·).
In this case, we commonly refer to TC (x0) as the “tangent cone of f (·) at x0” and denote it by T f (x0).

Under the condition that x0 is not a minimizer of f (·), the following lemma relates T f (x0) to the cone of

the subdifferential.

Lemma 3.11 ( [182]) Assume f (·) : Rn→ R is convex and x0 ∈ Rn is not a minimizer of it . Then,

(T f (x0))
◦ = cone(∂ f (x0)).

3.6.2.2 Proof of Theorem 3.1: Small σ regime

We prove here the second part of Theorem 3.1, namely (3.18). For a proof of (3.17) see Section 3.7. For

the purposes of the proof, we will use C = {x
∣∣ f (x)≤ f (x0)}. Recall that we denote the minimizers of the

C-LASSO and approximated C-LASSO by w∗c and ŵc, respectively. Also, for convenience denote

ηc =
D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
.

Recalling the definition of the approximated C-LASSO problem in (3.32), we may write

ŵc = argmin
w

{
‖Aw−σv‖2 +max

λ≥0
λ f̂p(w)

}
= argmin

w

{
‖Aw−σv‖2 + max

s∈cone(∂ f (x0))
sT w

}
= arg min

w∈TC (x0)
‖Aw−σv‖2,

where for the last equality we have used Lemma 3.11. Hence,

ŵc ∈TC (x0). (3.64)
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At the same time, clearly,

w∗c ∈ FC (x0). (3.65)

After Corollary 3.5, ‖ŵc‖2
2 concentrates around σ2ηc. We will argue that, in the small noise regime, we can

translate our results to the original problem in a smooth way. Assume that the statements of Corollary 3.5,

hold with high probability for some arbitrary ε1,ε2 > 0. It suffices to prove that for any ε3 > 0 there exists

σ0 > 0 such that

∣∣∣∣‖w∗c‖2
2

σ2 −ηc

∣∣∣∣≤ ε3, (3.66)

for all σ < σ0. To begin with, fix a δ > 0, the value of which is to be determined later in the proof. As an

immediate implication of Proposition 3.1, there exists σ0 such that

dist(w,FC (x0))≤ δ‖w‖2 (3.67)

for all w ∈TC (x0) satisfying ‖w‖2 ≤C =C(σ0,ε2) := σ0
√
(1+ ε2)ηc.

Now, fix any σ < σ0. We will make use of the fact that the following three events hold with high

probability.

• Using Corollary 3.5, with high probability ŵc satisfies,

‖ŵc‖2 ≤ σ
√

(1+ ε2)ηc ≤C. (3.68)

• A has independent standard normal entries. Hence, its spectral norm satisfies ‖A‖ ≤ 2(
√

n+
√

m)

with probability 1− exp(−O (max{m,n})), [213].

• Using (3.52) of Lemma 3.9 with C = cone(∂ f (x0)), there exists a constant t = t(ε3) so that for all w

satisfying |‖w‖
2
2

σ2 −ηc| ≥ ε3, we have,

‖Aw−σv‖2 + max
s∈cone(∂ f (x0))

sT w≥ F̂c(A,v)+ t(ε3)σ
√

m. (3.69)
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Consider the projection of ŵc on the set of feasible directions FC (x0),

p(ŵc) := Proj(ŵc,FC (x0)) = ŵc− (ŵc,FC (x0)). (3.70)

First, we show that ‖Ap(ŵc)−σv‖2 is not much larger than the objective of the approximated problem,

namely F̂c(A,v). Indeed,

‖Ap(ŵc)−σv‖2 ≤ ‖Aŵc−σv‖2 +‖Aŵc−Ap(ŵc)‖2

≤ F̂c(A,v)+‖A‖dist(ŵc,FC (x0))

≤ F̂c(A,v)+‖A‖σδ
√
(1+ ε2)ηc

≤ F̂c(A,v)+2(
√

m+
√

n)σδ
√

(1+ ε2)ηc. (3.71)

The first inequality is an application of the triangle inequality and the second one follows from (3.70). For

the third inequality, we have used (3.64) and combined (3.67) with (3.68).

Next, we show that if (3.66) was not true then a suitable choice of δ would make ‖Ap(ŵc)−σv‖2 much

larger than the optimal F̂c(A,v) than (3.71) allows. Therefore, concluding a desired contradiction. More

precisely, assuming (3.66) does not hold, we have

‖Ap(ŵc)−σv‖2 ≥ ‖Aw∗c−σv‖2

≥ F̂c(A,v)+ t(ε3)σ
√

m. (3.72)

The first inequality above follows since p(ŵc) ∈ FC (x0) and from the optimality of w∗c ∈ FC (x0). To get the

second inequality, recall that (3.66) is not true. Also, from (3.65), maxs∈cone(∂ f (x0)) sT w∗c =maxs∈(T (x0))◦ sT w∗c =

0. Combine these and invoke (3.69).

To conclude, choose σ0 sufficiently small to ensure δ < t(ε3)
√

m
2(
√

m+
√

n)
√

(1+ε2)ηc
and combine (3.71) and

(3.72) to obtain the following contradiction.

F̂c(A,v)+2(
√

m+
√

n)δσ
√

(1+ ε2)ηc ≥ ‖Ap(ŵc)−σv‖2

≥ F̂c(A,v)+ t(ε3)σ
√

m.

σ0 is a deterministic number that is a function of m,n, f ,x0,ε3.
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3.7 Constrained-LASSO Analysis for Arbitrary σ

In Section 3.6 we proved the first part of Theorem 3.1, which refers to the case where σ → 0. Here, we

complete the proof of the Theorem by showing (3.17), which is to say that the worst case NSE of the C-

LASSO problem is achieved as σ → 0. In other words, we prove that our exact bounds for the small σ

regime upper bound the squared error, for arbitrary values of the noise variance. The analysis relies, again,

on the proper application of the “modified Gordon’s Lemma” Proposition 2.7.

3.7.1 Notation

We begin with describing some notation used throughout this section. First, we denote

distR+(h) := dist(h,cone(∂ f (x0))).

Also, recall the definitions of the “perturbation” functions fp(·) and f̂p(·) in (3.27) and (3.28). Finally, we

will be making use of the following functions:

F (w;A,v) := ‖Aw−σv‖2,

L (w;g,h) :=
√
‖w‖2

2 +σ2‖g‖2−hT w, (3.73)

L(α;a,b) :=
√

α2 +σ2a−αb. (3.74)

Using this notation, and denoting the optimal cost of the (original) C-LASSO (see (3.3)) as F ∗
c (A,v), we

write

F ∗
c (A,v) = min

fp(w)≤0
F (w;A,v) = F (w∗c ;A,v). (3.75)

3.7.2 Lower Key Optimization

As a first step in our proof, we apply Proposition 2.7 to the original C-LASSO problem in (3.75). Recall,

that application of Corollary 3.2 to the approximated problem resulted in the following key optimization:

L (g,h) = min
f̂p(w)≤0

{√
‖w‖2

2 +σ2‖g‖2−hT w
}
= min

f̂p(w)≤0
L (w;g,h). (3.76)
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Denote the minimizer of (3.76), as ŵlow. Using Corollary 3.2, the lower key optimization corresponding to

the original C-LASSO has the following form:

L ∗(g,h) = min
fp(w)≤0

{√
‖w‖2

2 +σ2‖g‖2−hT w
}
= min

fp(w)≤0
L (w;g,h). (3.77)

Recall that in both (3.76) and (3.77), g ∈ Rm and h ∈ Rn. In Lemma 3.6 in Section 3.5 we solved explicitly

for the optimizer ŵlow of problem (3.76). In a similar nature, Lemma 3.12 below identifies a critical property

of the optimizer w∗low of the key optimization (3.77): ‖w∗‖2 is no larger than ‖ŵlow‖2.

Lemma 3.12 Let g ∈ Rm,h ∈ Rn be given and ‖g‖2 > distR+(h). Denote the minimizer of the problem

(3.77) as w∗low = w∗low(g,h). Then,

‖w∗low‖2
2

σ2 ≤ distR+(h)2

‖g‖2
2−distR+(h)2 =

‖ŵlow‖2
2

σ2 . (3.78)

For the proof of Lemma 3.12, we require the following result on the tangent cone of the feasible set of

(3.77).

Lemma 3.13 Let f (·) : Rn→ R be a convex function and x0 ∈ Rn that is not a minimizer of f (·). Consider

the set C = {w
∣∣ f (x0 +w)≤ f (x0)}. Then, for all w∗ ∈ C ,

TC (w∗)◦ =


cone(∂ f (x0 +w∗)) if f (x0 +w∗) = f (x0),

{0} if f (x0 +w∗)< f (x0).

(3.79)

Proof: We need to characterize the feasible set FC (w∗).

Suppose f (x0+w∗)< f (x0). Since f (·) is continuous, for all directions u ∈Rn, there exists sufficiently

small ε > 0 such that f (x0+w∗+εu) ∈ C . Hence, TC (w∗) = cone(Cl(FC (w∗))) =Rn =⇒ (TC (w∗))◦ =

{0} in this case.

Now, assume f (x0 + w∗) = f (x0). Then, FC (w∗) = {u
∣∣ f (x0 + w∗ + u) ≤ f (x0) = f (x0 + w∗)} =

FC ′(x0 +w∗), where FC ′(x0 +w∗) denotes the set of feasible directions in C ′ := {x| f (x) ≤ f (x0 +w∗)}
at x0 +w∗. Thus, TC (w∗) = TC ′(x0 +w∗) = cone(∂ f (x0 +w∗))◦, where the last equality follows from

Lemma 3.11, and the fact that x0 +w∗ is not a minimizer of f (·) as f (x0) = f (x0 +w∗).

Proof: [Proof of Lemma 3.12]
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We first show that, w∗low exists and is finite. From the convexity of f (·), f̂p(w) ≤ fp(w), thus, every

feasible solution of (3.77) is also feasible for (3.76). This implies that L ∗(g,h) ≥ L (g,h). Also, from

Lemma 3.6, L (g,h) = σ

√
‖g‖2

2−distR+(h)2. Combining,

L ∗(g,h)≥ σ

√
‖g‖2

2−distR+(h)2 > 0. (3.80)

Using the scalarization result of Lemma 3.6 with C = cone(∂ f (x0)), for any α ≥ 0,

min
f̂p(w)≤0
‖w‖2=α

L (w;g,h) = L(α,‖g‖2,distR+(h)).

Hence, using Lemma A.10 in the appendix shows that, when ‖g‖2 > distR+(h),

lim
C→∞

min
‖w‖2≥C
fp(w)≤0

L (w;g,h) = lim
C→∞

min
α≥C

L(α,‖g‖2,distR+(h)) = ∞.

Combining this with (3.80) shows that L ∗(g,h) is strictly positive, and that ‖w∗low‖2 and w∗low is finite.

The minimizer w∗low satisfies the KKT optimality conditions of (3.77) [17]:

w∗low√
‖w∗low‖2

2 +σ2
‖g‖2 = h− s∗,

or, equivalently,

w∗low = σ
h− s∗√

‖g‖2
2−‖h− s∗‖2

2

, (3.81)

where, from Lemma 3.13,

s∗ ∈


cone

(
∂ f (x0 +w∗low)

)
if fp(wlow) = 0,

{0} if fp(wlow)< 0.
(3.82)

First, consider the scenario in (3.82) where fp(w∗low)< 0 and s∗ = 0. Then, from (3.81) h = chw∗low for

some constant ch > 0. But, from feasibility constraints, w∗low ∈ T f (x0), hence, h ∈ T f (x0) =⇒ ‖h‖2 =

distR+(h) which implies equality in (3.78).
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Otherwise, f (x0+w∗low)= f (x0) and s∗ ∈ cone
(
∂ f (x0 +w∗low)

)
. For this case, we argue that ‖h−s∗‖2≤

distR+(h). To begin with, there exists scalar θ > 0 such that θs∗ ∈ ∂ f (x0 +w∗low). Convexity of f (·), then,

implies that,

f (x0 +w∗low) = f (x0)≥ f (x0 +w∗low)−〈θs∗,w∗low〉 =⇒ 〈s∗,w∗low〉 ≥ 0. (3.83)

Furthermore, w∗low ∈T f (x0) and s0 := Proj(h,cone(∂ f (x0))), thus

〈w∗low,s0〉 ≤ 0. (3.84)

Combine (3.83) and (3.84), and further use (3.81) to conclude that

〈w∗low,s
∗− s0〉 ≥ 0 =⇒ 〈h− s∗,s∗− s0〉 ≥ 0.

We may then write,

(distR+(h))2 = ‖(h− s∗)+(s∗− s0)‖2
2 ≥ ‖h− s∗‖2

2, (3.85)

and combine with the fact that the function f (x,y) = x√
y2−x2

,x ≥ 0,y > 0 is nondecreasing in the regime

x < y, to complete the proof.

3.7.3 Upper Key Optimization

In this section we find a high probability upper bound for F ∗
c (A,v). Using Corollary 3.3 of Section 3.4.3.2,

application of Proposition 2.7 to the dual of the C-LASSO results in the following key optimization:

U ∗(g,h) = max
‖µ‖2≤1

 min
fp(w)≤0
‖w‖2≤σCup

√
‖w‖2

2 +σ2µ
T g−‖µ‖2hT w

 , (3.86)

where

Cup = 2

√
D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
.
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Normalizing the inner terms in (3.86) by ‖µ‖2 for µ 6= 0, this can be equivalently be written as,

U ∗(g,h) = max
‖µ‖2≤1

‖µ‖2 min
fp(w)≤0
‖w‖2≤σCup

{√
‖w‖2

2 +σ2‖g‖2−hT w
}

= max

0, min
fp(w)≤0
‖w‖2≤σCup

L (w;g,h)


= max

{
0, L ∗

up(g,h)
}
, (3.87)

where we additionally defined

L ∗
up(g,h) := min

fp(w)≤0
‖w‖2≤σCup

L (w;g,h). (3.88)

Observe the similarity of the upper key optimization (3.87) to the lower key optimization (3.77). The next

lemma proves that L ∗
up(g,h) and U ∗(g,h) are Lipschitz functions.

Lemma 3.14 (Lipschitzness of U ∗(g,h)) L ∗
up(g,h) and, consequently, U ∗(g,h) are Lipschitz with Lips-

chitz constants at most 2σ

√
C2

up +1.

Proof: First, we prove that L ∗
up(g,h) is Lipschitz. Given pairs (g1,h1),(g2,h2), denote w1 and w2 the

corresponding optimizers in problem (3.88). W.l.o.g., assume that L ∗
up(g1,h1)≥L ∗

up(g2,h2). Then,

L ∗
up(g1,h1)−L ∗

up(g2,h2) = L (w1;g1,h2)−L (w2;g2,h2)

≤L (w2;g1,h1)−L (w2;g2,h2)

=
√
‖w2‖2

2 +σ2(‖g1‖2−‖g2‖2)− (h1−h2)
T w2

≤
√

σ2C2
up +σ2‖g1−g2‖2 +‖h1−h2‖2σCup, (3.89)

where, we have used the fact that ‖w2‖2 ≤ σCup. From (3.89), it follows that L ∗
up(g,h) is indeed Lipschitz

and

|L ∗
up(g1,h1)−L ∗

up(g2,h2)| ≤ 2σ

√
C2

up +1
√
‖g1−g2‖2

2 +‖h1−h2‖2
2.
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To prove that U ∗(g,h) is Lipschitz with the same constant, assume w.l.o.g that U ∗(g1,h1) ≥ U ∗(g2,h2).

Then, from (3.87),

|U ∗(g1,h1)−U ∗(g2,h2)| ≤ |L ∗
up(g1,h1)−L ∗

up(g2,h2)|.

3.7.4 Matching Lower and Upper key Optimizations

Comparing (3.77) to (3.87), we have already noted that the lower and upper key optimizations have similar

forms. The next lemma proves that their optimal costs match, in the sense that they concentrate with high

probability over the same quantity, namely E[L ∗
up(g,h)].

Lemma 3.15 Let g∼N (0,Im),h∼N (0,In) be independent vectors. Assume (1−ε0)m≥D(cone(∂ f (x0)))

≥ ε0m for some constant ε0 > 0 and m sufficiently large. For any ε > 0, there exists c > 0 such that, with

probability 1− exp(−cm), we have,

1. |U ∗(g,h)−E[L ∗
up(g,h)]| ≤ εσ

√
m.

2. |L ∗(g,h)−E[L ∗
up(g,h)]| ≤ εσ

√
m.

In Lemma 3.14 we proved that L ∗
up(g,h) is Lipschitz. Gaussian concentration of Lipschitz functions (see

Lemma 2.4) implies, then, that L ∗
up(g,h) concentrates with high probability around its mean E[L ∗

up(g,h)].

According to Lemma 3.15, under certain conditions implied by its assumptions, U ∗(g,h) and L ∗(g,h)

also concentrate around the same quantity E[L ∗
up(g,h)]. The way to prove this fact is by showing that when

these conditions hold, U ∗(g,h) and L ∗(g,h) are equal to L ∗
up(g,h) with high probability. Once we have

shown that, we require the following result to complete the proof.

Lemma 3.16 Let f1, f2 :Rn→R and h∼N (0,In). Assume f1 is L-Lipschitz and, P( f1(g)= f2(g))> 1−ε .

Then, for all t > 0,

P(| f2(g)−E[ f1(g)]| ≤ t)> 1− ε−2exp
(
− t2

2L2

)
.

Proof: From standard concentration result on Lipschitz functions (see Lemma 2.4), for all t > 0,

| f1(g)−E[ f1(g)]|< t with probability 1−2exp(− t2

2L2 ). Also, by assumption f2(g) = f1(g) with probability
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1− ε . Combine those facts to complete the proof as follows,

P(| f2(g)−E[ f1(g)]| ≤ t)≥ P(| f2(g)−E[ f1(g)]| ≤ t | f1(g) = f2(g))P( f1(g) = f2(g))

= P(| f1(g)−E[ f1(g)]| ≤ t)P( f1(g) = f2(g))

≥
(

1−2exp(− t2

2L2 )

)
(1− ε).

Now, we complete the proof of Lemma 3.15 using the result of Lemma 3.16. Proof: [Proof of Lemma

3.15] We prove the two statements of the lemma in the order they appear.

1. First, we prove that under the assumptions of the lemma, U ∗ =L ∗
up w.h.p.. By (3.87), it suffices to show

that L ∗
up ≥ 0 w.h.p.. Constraining the feasible set of a minimization problem cannot result in a decrease in

its optimal cost, hence,

L ∗
up(g,h)≥L ∗(g,h)≥L (g,h). (3.90)

where recall L (g,h) is the lower key optimization of the approximated C-LASSO (see (3.76)). From

Lemma 3.6, since m≥ D(cone(∂ f (x0)))+ ε0m, we have that

L (g,h)≥ (1− ε)σ
√

m−D(cone(∂ f (x0)))≥ 0,

with 1− exp(−O (m)). Combine this with (3.90) to find that L ∗
up(g,h) ≥ 0 or U ∗ = L ∗

up with probability

1− exp(−O (m)). Furthermore, from Lemma 3.14, L ∗
up(g,h) is Lipschitz with constant L = 2σ

√
C2

up +1.

We now apply Lemma 3.16 setting f1 = L ∗
up(g,h), f2 = U ∗ and t = εσ

√
m, to find that

|U ∗(g,h)−E[L ∗
up(g,h)]| ≤ ε

√
m,

with probability 1− exp(−O (m)). In writing the exponent in the probability as O (m), we made use of the

fact that Cup = 2
√

D(cone(∂ f (x0)))
m−D(cone(∂ f (x0)))

is bounded below by a constant, since (1− ε0)m≥ D(cone(∂ f (x0)))≥
ε0m.

2. As in the first statement, we apply Lemma 3.16, this time setting f1 = L ∗
up, f2 = L ∗ and t = εσ

√
m.

The result is immediate after application of the lemma, but first we need to show that L ∗(g,h) = L ∗
up(g,h)

w.h.p.. We will show equivalently that the minimizer w∗low of (3.77) satisfies w∗low ∈ Sup. From Lemma

3.12, ‖w∗low‖2 ≤ distR+ (h)
‖g‖2−distR+ (h)

. On the other hand, using standard concentration arguments (Lemma A.2),
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with probability 1− exp(−O (m)), distR+ (h)
‖g‖2−distR+ (h)

≤ 2D(cone(∂ f (x0)))
m−D(cone(∂ f (x0)))

=Cup. Combining these completes the

proof.

3.7.5 Deviation Bound

Resembling the approach developed in Section 3.5, we show that if we restrict the norm of the error vector

‖w‖2 in (3.75) as follows

‖w‖2 ∈ Sdev :=

{
`
∣∣`≥ (1+ εdev)σ

√
D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))

}
, (3.91)

then, this results in a significant increase in the cost of C-LASSO. To lower bound the deviated cost, we

apply Corollary 3.4 of Section 3.4.3.3 to the restricted original C-LASSO, which yields the following key

optimization

L ∗
dev(g,h) = min

fp(w)≤0
‖w‖2∈Sdev

L (w;g,h). (3.92)

Lemma 3.17 Let g∼N (0,Im),h∼N (0,In). Assume (1−εL)m>D(cone(∂ f (x0)))> εLm and m is suffi-

ciently large. Then, there exists a constant δdev = δdev(εdev)> 0 such that, with probability 1−exp(−O (m)),

we have,

L ∗
dev(g,h)−E[L ∗

up(g,h)]≥ σδdev
√

m. (3.93)

As common, our analysis begins with a deterministic result, which builds towards the proof of the proba-

bilistic statement in Lemma 3.17.

3.7.5.1 Deterministic Result

For the statement of the deterministic result, we introduce first some notation. In particular, denote

ηd := σ

√
D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
,

and, for fixed g ∈ Rm,h ∈ Rn,

ηs = ηs(g,h) := σ
distR+(h)√

‖g‖2
2−distR+(h)2

.
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Also, recall the definition of the scalar function L(α;a,b) in (3.74).

Lemma 3.18 Let g ∈ Rm and h ∈ Rn be such that ‖g‖2 > distR+(h) and ηs(g,h)≤ (1+ εdev)ηd . Then,

L ∗
dev(g,h)−L ∗(g,h)≥ L((1+ εdev)ηd ;‖g‖2,distR+(h))−L(ηs(g,h);‖g‖2,distR+(h)) (3.94)

Proof: First assume that L ∗
dev(g,h) = ∞. Since L ∗(g,h) ≤L (0;g,h) = σ‖g‖2 and the right hand

side of (3.94) is finite, we can easily conclude with the desired result.

Hence, in the following assume that L ∗
dev(g,h) < ∞ and denote w∗dev the minimizer of the restricted

problem (3.92). From feasibility constraints, we have fp(wdev)≤ 0 and ‖w∗dev‖2 ∈ Sdev. Define w̄dev = cw∗dev

where c := ηs
‖w∗dev‖2

. Notice, ‖w∗dev‖2 ≥ (1+ εdev)ηd ≥ ηs(g,h), thus, c≤ 1. Then, from convexity of f (·),

fp(w̄dev) = fp(cw∗dev)≤ c fp(w∗dev)+(1− c) fp(0)︸ ︷︷ ︸
=0

≤ 0.

This shows that w̄dev is feasible for the minimization (3.77). Hence,

L (w̄dev,g,h)≥L ∗(g,h).

Starting with this, we write,

L ∗
dev(g,h)−L ∗(g,h)≥L (w∗dev;g,h)−L (w̄dev;g,h)

= (
√
‖w∗dev‖2

2 +σ2−
√
‖w̄dev‖2

2 +σ2)‖g‖2−hT (w∗dev− w̄dev)

= (
√
‖w∗dev‖2

2 +σ2−
√
‖w̄dev‖2

2 +σ2)‖g‖2− (1− c)hT w∗dev. (3.95)

Since, fp(w∗dev)≤ 0, w∗dev ∈T f (x0). Hence, and using Moreau’s decomposition Theorem (see Fact 2.1), we

have

hT w∗dev =
〈
Proj(h,T f (x0)),w∗dev

〉
+
〈
Proj(h,(T f (x0))

◦),w∗dev
〉︸ ︷︷ ︸

≤0

≤ distR+(h)‖w∗dev‖2. (3.96)
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Use (3.96) in (3.95), to write

L ∗
dev(g,h)−L ∗(g,h)≥ (

√
‖w∗dev‖2

2 +σ2−
√
‖w̄dev‖2

2 +σ2)− ‖w
∗
dev‖2−ηs

‖w∗dev‖2
distR+(h)‖w∗dev‖2

= (
√
‖w∗dev‖2

2 +σ2−
√

η2
s +σ2)‖g‖2− (‖w∗dev‖2−ηs)distR+(h)

= L(‖w∗dev‖2,‖g‖2,distR+(h))−L(ηs,‖g‖2,distR+(h))

≥ L((1+ ε)ηd ,‖g‖2,distR+(h))−L(ηs,‖g‖2,distR+(h)).

The last inequality above follows from the that L(α;‖g‖2,distR+(h)) is convex in α and minimized at ηs

(see Lemma A.10) and, also, ‖w∗dev‖2 ≥ (1+ εdev)ηd ≥ ηs.

3.7.5.2 Probabilistic result

We now prove the main result of the section, Lemma 3.17.

Proof: [Proof of Lemma 3.17] The proof is based on the results of Lemma 3.18. First, we show that

under the assumptions of Lemma 3.17, the assumptions of Lemma 3.18 hold w.h.p.. In this direction, using

standard concentration arguments provided in Lemmas A.5 and A.3, we find that,

1. ‖g‖2 ≥ distR+(h),

2. distR+ (h)√
‖g‖2

2−distR+ (h)2
≤ (1+ εdev)

m
m−D(cone(∂ f (x0)))

.

3. For any constant ε > 0,

|‖g‖2
2−m| ≤ εm and |(distR+(h))2−D(cone(∂ f (x0)))|< εm, (3.97)

all with probability 1−exp(−O (m)). It follows from the first two statements that Lemma 3.18 is applicable

and we can use (3.94). Thus, it suffinces to find a lower bound for the right hand side of (3.94).

Lemma A.10 in the Appendix analyzes in detail many properties of the scalar function L(α;a,b), which

appears in (3.94). Here, we use the sixth statement of that Lemma (in a similar manner to the proof of

Lemma 3.8). In particular, apply Lemma A.10 with the following mapping:

√
m ⇐⇒ a,

√
D(cone(∂ f (x0))) ⇐⇒ b, ‖g‖2 ⇐⇒ a′, distR+(h) ⇐⇒ b′
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Application of the lemma is valid since (3.97) is true, and gives that with probability 1− exp(−O (m)),

L((1+ ε)ηd ,‖g‖2,distR+(h))−L(ηs,‖g‖2,distR+(h))≥ 2σδdev
√

m

for some constant δdev. Combining this with Lemma 3.18, we may conclude

L ∗
dev(g,h)−L ∗(g,h)≥ 2σδdev

√
m. (3.98)

On the other hand, from Lemma 3.15,

|L ∗(g,h)−E[L ∗
up(g,h)]| ≤ σδdev

√
m (3.99)

with the desired probability. Union bounding over (3.98) and (3.99), we conclude with the desired result.

3.7.6 Merging Upper Bound and Deviation Results

This section combines the previous sections and finalizes the proof of Theorem 3.1 by showing the second

statement. Recall the definition (3.3) of the original C-LASSO problem and also the definition of the set

Sdev in (3.91).

Lemma 3.19 Assume there exists a constant εL such that, (1− εL)m ≥ D(cone(∂ f (x0))) ≥ εLm. Further

assume, m is sufficiently large. The following hold:

1. For any εup > 0, there exists cup > 0 such that, with probability 1− exp(−cupm), we have,

F ∗
c (A,v)≤ E[L ∗

up( f ,g,h)]+ εupσ
√

m (3.100)

2. There exists constants δdev > 0,cdev > 0, such that, for sufficiently large m, with probability 1−
exp(−cdevm), we have,

min
‖w‖2∈Sdev, fp(w)≤0

F (w;A,v)≥ E[L ∗
up( f ,g,h)]+δdevσ

√
m (3.101)
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3. For any εdev > 0, there exists c > 0 such that, with probability 1− exp(−cm),

‖x∗c−x0‖2
2 ≤ σ

2(1+ εdev)
D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
.

Proof: We prove the statements of the lemma in the order that they appear.

1. For notational simplicity denote ξ = E[L ∗
up(g,h)]. We combine second statement of Lemma 3.5 with

Lemma 3.15. For any constant εup, we have,

P(F ∗
c (A,v)≤ ξ +2σεup

√
m)≥ 2P(U ∗(g,h)+σε

√
m≤ ξ +2σεup

√
m)−1− exp(−O (m))

= 2P(U ∗(g,h)≤ ξ +σεup
√

m)−1− exp(−O (m))

≥ 1− exp(−O (m)),

where we used the first statement of Lemma (3.15) to lower bound the P(U ∗(g,h)≤ ξ +σεup
√

m).

2. Pick a small constant ε > 0 satisfying ε < δdev
2 in the third statement of Lemma 3.5. Now, using Lemma

3.17 and this choice of ε , with probability 1− exp(−O (m)), we have,

P( min
w∈Sdev, fp(w)≤0

F (w;A,v)≥ ξ +σ
δdev

2
√

m)≥ 2P(L ∗
dev(g,h)≥ ξ +σδdev

√
m− εσ

√
m)−1− exp(−O (m))

≥ 1− exp(−O (m)),

where we used (3.93) of Lemma 3.17.

3. Apply Statements 1. and 2. of the lemma, choosing εup =
δdev

8 . Union bounding we find that

P( min
w∈Sdev, fp(w)≤0

F (w;A,v)≥F ∗
c (A,v)+σ

δdev

4
)≥ 1− exp(−O (m)),

which implies with the same probability ‖w∗c‖2 6∈ Sdev, i.e., ‖w∗c‖2 ≤ (1+ εdev)σ
√

D(cone(∂ f (x0)))
m−D(cone(∂ f (x0)))

.

3.8 `2-LASSO: Regions of Operation

The performance of the `2-regularized LASSO clearly depends on the particular choice of the parameter λ .

A key contribution of this work is that we are able to fully characterize this dependence. In other words, our
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analysis predicts the performance of the `2-LASSO estimator for all values λ ≥ 0. To facilitate our analysis

we divide the range [0,∞) of possible values of λ into three distinct regions. We call the regions ROFF ,

RON and R∞. Each region has specific performance characteristics and the analysis is the same for all λ

that belong to the same region. In this Section, we formally define those distinct regions of operation.The

analysis of the value of the NSE for each one of them is then deferred to Section 3.9.

3.8.1 Properties of Distance, Projection and Correlation

For the purpose of defining the distinct regions of operation of the `2-LASSO, it is first important to explore

some useful properties of the Gaussian squared distance D(λ∂ f (x0)), projection P(λ∂ f (x0)) and corre-

lation C(λ∂ f (x0)). Those quantities are closely related to each other and are of key importance to our

analysis. We choose to enlist all their important properties in a single Lemma, which serves as a reference

for the rest of the Section.

Lemma 3.20 Consider fixed x0 and f (·). Let ∂ f (x0) be a nonempty, compact set of Rn that does not contain

the origin. Then, the following properties hold

1. D(λ∂ f (x0))+2C(λ∂ f (x0))+P(λ∂ f (x0)) = n.

2. D f (x0,0) = n , P f (x0,0) = 0, and C f (x0,0) = 0.

3. limλ→∞ D(λ∂ f (x0)) = ∞, limλ→∞ P(λ∂ f (x0)) = ∞, and limλ→∞ C(λ∂ f (x0)) =−∞.

4. P(λ∂ f (x0)), C(λ∂ f (x0)) and D(λ∂ f (x0)) are all continuous functions of λ ≥ 0.

5. D(λ∂ f (x0)) is strictly convex and attains its minimum at a unique point. Denote λbest the unique

minimizer of D(λ∂ f (x0)).

6. P(λ∂ f (x0)) is an increasing function for λ ≥ 0.

7. D(λ∂ f (x0)) is differentiable for λ > 0. For λ > 0,

dD(λ∂ f (x0))

dλ
=− 2

λ
C(λ∂ f (x0)).

For λ = 0, interpret dD(λ∂ f (x0))
dλ

as a right derivative.

93



8.

C(λ∂ f (x0))


≥ 0 ,λ ∈ [0,λbest]

= 0 ,λ = λbest

≤ 0 ,λ ∈ [λbest,∞)

9. D(λ∂ f (x0))+C(λ∂ f (x0)) is strictly decreasing for λ ∈ [0,λbest].

Some of the statements in Lemma 3.20 are easy to prove, while others require more work. Statements 5 and

7 have been recently proved in [4]. We defer the proofs of all statements to Appendix A.6.

3.8.2 Key Values of the Penalty Parameter

We define three key values of the regularizer λ . The main work is devoted to showing that those definitions

are well established.

3.8.2.1 λbest

The first key parameter is λbest which was defined in Lemma 3.20 to be the unique minimum of D(λ∂ f (x0))

over λ ∈ [0,∞). The rationale behind the subscript “best” associated with this parameter is that the estimation

error is minimized for that particular choice of λ . In that sense, λbest is the optimal penalty parameter. We

formally prove this fact in Section 3.9, where we explicitly calculate the NSE. In what follows, we assume

that D f (x0,λbest) < m to ensure that there exists λ ≥ 0 for which estimation of x0 is robust. Also, observe

that, D f (x0,λbest)≤ D f (x0,0) = n.

3.8.2.2 λmax

The second key parameter λmax is defined as the unique λ ≥ λbest that satisfies D(λ∂ f (x0)) = m. We

formally repeat this definition in the following Lemma.

Lemma 3.21 Suppose D f (x0,λbest)< m and consider the following equation over λ ≥ λbest:

D(λ∂ f (x0)) = m, λ ≥ λbest. (3.102)

Equation (3.102) has a unique solution, which we denote λmax.
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Proof: We make use of Lemma 3.20. First, we show that equation (3.102) has at most one solution:

D(λ∂ f (x0)) is a strictly convex function of λ ≥ 0 and thus strictly increasing for λ ≥ λbest. Next, we show

that (3.102) has at least one solution. From assumption, D(x0,λbest) < m. Also, limλ→∞ D(x0,λbest) = ∞.

Furthermore, D(λ∂ f (x0)) is continuous in λ . Combining those facts and using the intermediate value

theorem we conclude with the desired result.

3.8.2.3 λcrit

The third key parameter λcrit is defined to be the unique λ ≤ λbest that satisfies m−D(λ∂ f (x0))=C(λ∂ f (x0))

when m≤ n or to be 0 when m > n. We formally repeat this definition in the following Lemma.

Lemma 3.22 Suppose D(x0,λbest)< m and consider the following equation over 0≤ λ ≤ λbest:

m−D(λ∂ f (x0)) = C(λ∂ f (x0)), 0≤ λ ≤ λbest. (3.103)

• If m≤ n, then (3.103) has a unique solution, which we denote as λcrit.

• If m > n, then (3.103) has no solution. Then λcrit = 0.

Proof: We repeatedly make use of Lemma 3.20. For convenience define the function

g(λ ) = D(λ∂ f (x0))+C(λ∂ f (x0)),

for λ ∈ [0,λbest). The function g(λ ) has the following properties over λ ∈ [0,λbest]:

- it is strictly decreasing,

- g(0) = n,

- g(λbest) = D f (x0,λbest)< m.

If m ≤ n, from the intermediate value Theorem it follows that (3.103) has at least one solution. This

solution is unique since g(λ ) is strictly decreasing.

If m > n, since g(λ )≤ n for all λ ∈ [0,λbest], it is clear that (3.103) has no solution.

3.8.3 Regions of Operation: ROFF , RON , R∞

Having defined the key parameters λbest,λcrit and λmax, we are now ready to define the three distinct regions

of operation of the `2-LASSO problem.
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Definition 3.4 Define the following regions of operation for the `2-LASSO problem:

• ROFF = {λ | 0≤ λ ≤ λcrit} ,
• RON = {λ | λcrit < λ < λmax} ,
• R∞ = {λ | λ ≥ λmax} .

Remark: The definition of RON in Definition 3.4 is consistent to the Definition in 3.1. In other words,

λcrit ≤ λ ≤ λmax if and only if m ≥ max{D(λ∂ f (x0)),D(λ∂ f (x0)) +C(λ∂ f (x0))}. This follows after

combining Lemmas 3.21 and 3.22 with the Lemma 3.23 below.

Lemma 3.23 The following hold:

1. m−D(λ∂ f (x0))≤ C(λ∂ f (x0)) for all λ ∈ROFF if λcrit 6= 0.

2. m−D(λ∂ f (x0))> max{0,C(λ∂ f (x0))} for all λ ∈RON ,

3. m≤ D(λ∂ f (x0)) for all λ ∈R∞.

Proof: We prove the statements in the order they appear. We use Lemma 3.20 throughout.

1. The function D(λ∂ f (x0))+C(λ∂ f (x0)) is strictly decreasing in [0,λbest]. Thus, assuming λcrit 6= 0,

D(λ∂ f (x0))+C(λ∂ f (x0))≥ D f (x0,λcrit)+C f (x0,λcrit) = m for all λ ∈ [0,λcrit].

2. Since D(λ∂ f (x0)) is strictly convex, m−D(λ∂ f (x0)) is strictly concave and has a unique maximum at

λbest. Therefore, for all λ ∈ [λcrit,λmax],

m−D(λ∂ f (x0))≥max{ m−D f (x0,λcrit)︸ ︷︷ ︸
=C f (x0,λcrit)≥0

, m−D f (x0,λmax)︸ ︷︷ ︸
=0

} ≥ 0.

Furthermore, D(λ∂ f (x0))+C(λ∂ f (x0)) is strictly decreasing in [0,λbest]. Thus, D(λ∂ f (x0))+C(λ∂ f (x0))

< D f (x0,λcrit)+C f (x0,λcrit)≤m for all λ ∈ (λcrit,λbest]. For λ ∈ [λbest,λmax), we have m−D(λ∂ f (x0))>

0≥ C(λ∂ f (x0)).

3. D(λ∂ f (x0)) is strictly convex. Hence, m−D(λ∂ f (x0)) is strictly decreasing in [λbest,∞). This proves

that m−D(λ∂ f (x0))≤ m−D f (x0,λmax) = 0 for all λ ≥ λmax.
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3.9 The NSE of the `2-LASSO

We split our analysis in three sections, one for each of the three regions ROFF, RON and R∞. We start from

RON, for which the analysis is similar in nature to C-LASSO.

3.9.1 RON

In this section we prove Theorem 3.2 which characterizes the NSE of the `2-LASSO in the region RON. We

repeat the statement of the theorem here, for ease of reference.

Theorem 3.6 (NSE of `2-LASSO in RON) Assume there exists a constant εL > 0 such that (1− εL)m ≥
max{D(λ∂ f (x0)), D(λ∂ f (x0))+C(λ∂ f (x0))} and D(λ∂ f (x0)) ≥ εLm. Further, assume that m is suf-

ficiently large. Then, for any ε > 0, there exists a constant C = C(ε,εL) > 0 and a deterministic number

σ0 > 0 (i.e. independent of A,v) such that, whenever σ ≤ σ0, with probability 1− exp(−C min{m, m2

n }),∣∣∣∣∣‖x∗`2
−x0‖2

2

σ2 × m−D(λ∂ f (x0))

D(λ∂ f (x0))
−1

∣∣∣∣∣< ε. (3.104)

As usual, we first focus on the approximated `2-LASSO problem in Section 3.9.1.1. Next, in Section

3.9.1.2, we translate this result to the original `2-LASSO problem.

3.9.1.1 Approximated `2-LASSO

The approximated `2-LASSO problem is equivalent to the generic problem (3.41) after taking C = λ∂ f (x0).

Hence, we simply need to apply the result of Lemma 3.9. with D(C ) and C(C ) corresponding to D(λ∂ f (x0))

and C(λ∂ f (x0)). We conclude with the following result.

Corollary 3.6 Let m≥minλ≥0 D(λ∂ f (x0)) and assume there exists constant εL > 0 such that (1−εL)m≥
max{D(λ∂ f (x0)), D(λ∂ f (x0))+C(λ∂ f (x0))} and D(λ∂ f (x0)) ≥ εLm. Further assume that m is suffi-

ciently large. Then, for any constants ε1,ε2 > 0, there exist constants c1,c2 > 0 such that with probability

1− c1 exp(−c2 min{m, m2

n }), ∣∣∣∣∣ F̂`2(A,v)
σ
√

m−D(λ∂ f (x0))
−1

∣∣∣∣∣≤ ε1, (3.105)
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and

∣∣∣∣‖ŵ`2(A,v)‖2
2

σ2 − D(λ∂ f (x0))

m−D(λ∂ f (x0))

∣∣∣∣≤ ε2. (3.106)

3.9.1.2 Original `2-LASSO: Proof of Theorem 3.2

Next, we use Corollary 3.6 to prove Theorem 3.2. To do this, we will first relate f (·) and f̂ (·). The following

result shows that, f (·) and f̂ (·) are close around a sufficiently small neighborhood of x0.

Proposition 3.2 (Max formula, [21, 22]) Let f (·) : Rn → R be a convex and continuous function on Rn.

Then, any point x and any direction v satisfy,

lim
ε→0+

f (x+ εv)− f (x)
ε

= sup
s∈∂ f (x)

〈s,v〉 .

In particular, the subdifferential ∂ f (x) is nonempty.

Proposition 3.2 considers a fixed direction v, and compares f (x0 + εv) and f̂ (x0 + εv). We will need a

slightly stronger version which says f̂ (·) is a good approximation of f (·) at all directions simultaneously.

The following proposition is a restatement of Lemma 2.1.1 of Chapter VI of [116].

Proposition 3.3 (Uniform max formula) Assume f (·) : Rn→ R is convex and continuous on Rn and x0 ∈
Rn. Let f̂ (·) be the first order approximation of f (·) around x0 as defined in (3.11). Then, for any δ > 0,

there exists ε > 0 such that,

f (x0 +w)− f̂ (x0 +w)≤ δ‖w‖2, (3.107)

for all w ∈ Rn with ‖w‖2 ≤ ε .

Recall that we denote the minimizers of the `2-LASSO and approximated `2-LASSO by w∗`2
and ŵ`2 ,

respectively. Also, for convenience denote,

η`2 =
D(λ∂ f (x0))

m−D(λ∂ f (x0))
.

After Corollary 3.6, ‖ŵ`2‖2
2 concentrates around σ2η`2 . We will argue that, in the small noise regime, we

can translate our results to the original problem in a smooth way. Assume that the statements of Corollary

3.6 hold with high probability for some arbitrary ε1,ε2 > 0. It suffices to prove that for any ε3 > 0 there
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exists σ0 > 0 such that ∣∣∣∣∣‖w∗`2
‖2

2

σ2 −η`2

∣∣∣∣∣≤ ε3, (3.108)

for all σ < σ0. To begin with, fix a δ > 0, the value of which is to be determined later in the proof. As an

immediate implication of Proposition 3.3, there exists σ0 such that

f (x0 +w)− f̂ (x0 +w)≤ δ‖w‖2 (3.109)

for all w satisfying ‖w‖2 ≤C = C(σ0,ε2) := σ0
√
(1+ ε2)η`2 . Now, fix any σ < σ0. We will make use of

the fact that the following three events hold with high probability.

• Using Corollary 3.6, with high probability ŵ`2 satisfies,

‖ŵ`2‖2 ≤ σ

√
(1+ ε2)η`2 ≤C. (3.110)

• Using (3.52) of Lemma 3.9 with C = λ∂ f (x0), there exists a constant t = t(ε3) so that for any w

satisfying |‖w‖
2
2

σ2 −η`2 | ≥ ε3, we have,

‖Aw−σv‖2 + max
s∈λ∂ f (x0)

sT w≥ F̂`2(A,v)+ t(ε3)σ
√

m. (3.111)

Combine (3.110) with (3.109) to find that

‖Aŵ`2−σv‖2 +λ ( f (x0 + ŵ`2)− f (x0))≤ ‖Aŵ`2−σv‖2 +λ ( f̂ (x0 + ŵ`2)− f (x0))︸ ︷︷ ︸
=F̂`2 (A,v)

+δ‖ŵ`2‖2

≤ F̂`2(A,v)+δσ

√
(1+ ε2)η`2 . (3.112)

Now, assume that ‖w∗`2
‖2 does not satisfy (3.108). Then,

‖Aŵ`2−σv‖2 +λ ( f (x0 + ŵ`2)− f (x0))≥F ∗
`2
(A,v) (3.113)

≥ ‖Aw∗`2
−σv‖2 +λ max

s∈λ∂ f (x0)
sT w∗`2

(3.114)

≥ F̂`2(A,v)+ t(ε3)σ
√

m. (3.115)
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(3.113) follows from optimality of w∗`2
. For (3.114) we used convexity of f (·) and the basic property of

the subdifferential that f (x0 +w) ≥ f (x0)+ sT w, for all w and s ∈ ∂ f (x0). Finally, (3.115) follows from

(3.111).

To complete the proof, choose δ < t
√

m√
(1+ε2)η`2

. This will result in contradiction between (3.112) and

(3.115). Observe that, our choice of δ and σ0 is deterministic and depends on m,x0, f (·),ε3.

3.9.1.3 A Property of the NSE Formula

Theorem 3.2 shows that the asymptotic NSE formula in RON is D(λ∂ f (x0))
m−D(λ∂ f (x0))

. The next lemma provides a

useful property of this formula as a function of λ on RON.

Lemma 3.24 D(λ∂ f (x0))
m−D(λ∂ f (x0))

is a convex function of λ over RON.

Proof: From 3.20, D(λ∂ f (x0)) is a strictly convex function of λ . Also, x
m−x is an increasing function

of x over 0 ≤ x < m and its second derivative is m
(m−x)3 which is strictly positive over RON. Consequently,

the asymptotic NSE formula is a composition of an increasing convex function with a convex function, and

is thus itself convex [23].

3.9.2 ROFF

Our analysis, unfortunately, does not extend to ROFF , and we have no proof that characterizes the NSE in

this regime. On the other hand, our extensive numerical experiments (see Section 3.14) show that, in this

regime, the optimal estimate x∗`2
of (3.4) satisfies y = Ax∗`2

. Observe that, in this case, the `2-LASSO reduces

to the standard approach taken for the noiseless compressed sensing problem,

min f (x) subject to y = Ax. (3.116)

Here, we provide some intuition to why it is reasonable to expect this to be the case. Recall that λ ∈ROFF

iff 0 ≤ λ ≤ λcrit, and so the “small” values of the penalty parameter λ are in ROFF. As λ gets smaller,

‖y−Ax‖2 becomes the dominant term, and `2-LASSO penalizes this term more. So, at least for sufficiently

small λ , the reduction to problem (3.116) would not be surprising. Lemma 3.25 formalizes this idea for the

small λ regime.
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Lemma 3.25 Assume m ≤ αn for some constant α < 1 and f (·) is a Lipschitz continuous function with

Lipschitz constant L > 0. Then, for λ <
√

n−√m
L (1−o(1)), the solution x∗`2

of `2-LASSO satisfies y = Ax∗`2
,

with probability 1− exp(−O (n)). Here, o(1) term is arbitrarily small positive constant.

Proof: When m ≤ αn for some constant 0 < α < 1,
√

n−√m = O (
√

n). Then, from standard

concentration results (see [213]), with probability 1− exp(−O (n)), minimum singular value σmin(A) of A

satisfies
σmin(AT )√

n−√m
≥ 1−o(1).

Take any λ <
√

n−√m
L (1− o(1)) and let p := y−Ax∗`2

. We will prove that ‖p‖2 = 0. Denote w2 :=

AT (AAT )−1p. Using (3.117), with the same probability,

‖w2‖2
2 = pT (AAT )−1p≤ ‖p‖2

2
(σmin(AT ))2 ≤

‖p‖2
2

((
√

n−√m)(1−o(1)))2 , (3.117)

Define x2 = x∗`2
+w2, for which y−Ax2 = 0 and consider the difference between the `2-LASSO costs

achieved by the minimizer x∗`2
and x2. From optimality of x∗`2

, we have,

0≥ ‖p‖2 +λ f (x∗`2
)−λ f (x2)

≥ ‖p‖2−λL‖x∗`2
−x∗2‖2 = ‖p‖2−λL‖w2‖2 (3.118)

≥ ‖p‖2(1−λ
L

(
√

n−√m)(1−o(1))
). (3.119)

The inequality in (3.118) follows from Lipschitzness of f (·), while we use (3.117) to find (3.119). For the

sake of contradiction, assume that ‖p‖2 6= 0, then (3.119) reduces to 0 > 0, clearly, a contradiction.

For an illustration of Lemma 3.25, consider the case where f (·) = ‖ · ‖1. `1-norm is Lipschitz with L =
√

n

(see [168] for related discussion). Lemma 3.25 would, then, require λ < 1−
√m

n to be applicable. As

an example, considering the setup in Figure 3.3, Lemma 3.25 would yield λ < 1−
√

1
2 ≈ 0.292 whereas

λcrit ≈ 0.76. While Lemma 3.25 supports our claims on ROFF, it does not say much about the exact location

of the transition point, at which the `2-LASSO reduces to (3.116). We claim this point is λ = λcrit.

3.9.3 R∞

In this region m ≤ D(λ∂ f (x0)). In this region, we expect no noise robustness, namely,
‖x∗`2−x0‖2

2

σ2 → ∞ as

σ→ 0. In this work, we show this under a stricter assumption, namely, m<D(cone(∂ f (x0))). See Theorem
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3.4 and Section 3.13 for more details. Our proof method relies on results of [4] rather than Gaussian Min-

Max Theorem. On the other hand, we believe, a more careful study of Gaussian comparison inequalities

(Proposition 2.7) can give the desired result for the wider regime m < D(λ∂ f (x0)). We leave this as a future

work.

3.10 Nonasymptotic results on `2-LASSO

The main result of this section is a closed and non asymptotic bound which approximately matches to what

one would expect from Theorem 3.2. Rather remarkably, this bound holds for all λ ≥ 0.

Theorem 3.7 Assume m ≥ 2, z ∈ Rm and x0 ∈ Rn are arbitrary, and, A ∈ Rm×n has i.i.d N (0,1) entries.

Fix the regularizer parameter in (3.4) to be λ ≥ 0 and let x̂ be a minimizer of (3.4). Then, for any 0 < t ≤
(
√

m−1−
√

D(λ∂ f (x0))), with probability 1−5exp(−t2/32), we have,

‖x̂−x0‖2 ≤ 2
‖z‖2√

m

√
D(λ∂ f (x0))+ t√

m−1−
√

D(λ∂ f (x0))− t
. (3.120)

3.10.1 Interpretation

Theorem 3.7 provides a simple, general, non-asymptotic and (rather) sharp upper bound on the error of the

regularized lasso estimator (3.4), which also takes into account the specific choice of the regularizer param-

eter λ ≥ 0. In principle, the bound applies to any signal class that exhibits some sort of low-dimensionality

(see [169] and references therein). It is non-asymptotic and is applicable in any regime of m, λ and

D(λ∂ f (x0)). Also, the constants involved in it are small making it rather tight5.

The Gaussian distance term D(λ∂ f (x0)) summarizes the geometry of the problem and is key in (3.120).

In [4] (Proposition 4.4), it is proven that D(λ∂ f (x0)), when viewed as a function of λ ≥ 0, is strictly

convex, differentiable for λ > 0 and achieves its minimum at a unique point. Figure 3.5 illustrates this

behavior;
√

m−1−
√

D(λ∂ f (x0)) achieves its unique maximum value at some λ = λbest, it is strictly

increasing for λ < λbest and strictly decreasing for λ > λbest. For the bound in (3.120) to be at all mean-

ingful, we require m > minλ≥0 D(λ∂ f (x0)) = D(λbest∂ f (x0)). This is perfectly in line with our discussion

so far, and translates to the number of measurements being large enough to at least guarantee noiseless

5We suspect and is also supported by our simulations (e.g. Figure 3.6) that the factor of 2 in (3.120) is an artifact of our proof
technique and not essential.
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Figure 3.5: Illustration of the denominator
√

m−1−
√

D(λ∂ f (x0)) in (3.120) as a function of λ ≥ 0. The bound is meaningful
for λ ∈ (λmin,λmax) and attains its minimum value at λbest. The y-axis is normalized by

√
n.

recovery [4, 50, 81, 101, 167]. Lemma 3.21 in Section 3.8 proves that there exists a unique λmax satisfy-

ing λmax > λbest and
√

D(λmax∂ f (x0)) =
√

m−1. Similarly, when m ≤ n, there exists unique λmin < λbest

satisfying
√

D(λmin∂ f (x0)) =
√

m−1. From this, it follows that
√

m−1 >
√

D(λ∂ f (x0)) if and only if

λ ∈ (λmin,λmax). This is exactly the range of values of the regularizer parameter λ for which (3.120) is

meaningful; see also Figure 3.5.

The region (λmin,λmax), which our bound characterizes, contains λbest, for which, the bound in (3.120)

achieves its minimum value since it is strictly increasing in D(λ∂ f (x0)). Note that deriving λbest does not

require knowledge of any properties (e.g. variance) of the noise vector. All it requires is knowledge of the

particular structure of the unknown signal. For example, in the `1-case, λbest depends only on the sparsity of

x0, not x0 itself, and in the nuclear norm case, it only depends on the rank of x0, not x0 itself.

3.10.2 Comparison to related work

3.10.2.1 Sparse estimation

Belloni et al. [16] were the first to prove error guarantees for the `2-lasso (3.4). Their analysis shows that

the estimation error is of order O
(√

k log(n)
m

)
, when m = Ω(k logn) and λ >

√
2log(2n)6. Recalling Table

3.3 for sparsity with λ =
√

2log(n
k ) and applying Theorem 3.7 yields the same order-wise error guarantee.

Our result is non-asymtpotic and involves explicit coefficients, while the result of [16] is applicable to more

general constructions of the measurement matrix A.

6 [16] also imposes a “growth restriction” on λ , which agrees with the fact that our bound becomes vacuous for λ > λmax (see
Section 3.10.1).
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3.10.2.2 Sharp error bounds

In Section 3.9, we performed a detailed analysis of the regularized lasso problem (3.4) under the additional

assumption that the entries of the noise vector z are distributed N (0,σ2). In particular, when σ → 0 and m

is large enough, they prove that with high probability,

‖x̂−x0‖2 ≈ ‖z‖2

√
D(λ∂ f (x0))√

m−D(λ∂ f (x0))
, (3.121)

for λ belonging to a particular subset of (λmin,λmax). As expected, our bound in Theorem 3.7 is larger

than the term in (3.121). However, apart from a factor of 2, it only differs from the quantity in (3.121) in

the denominator, where instead of
√

m−D(λ∂ f (x0)), we have the smaller
√

m−1−
√

D(λ∂ f (x0)). This

difference becomes insignificant and indicates that our bound is rather tight when m is large. Although in

Theorem 3.2 we conjecture that (3.121) upper bounds the estimation error for arbitrary values of the noise

variance σ2, we will not prove so. In that sense, and to the best of our knowledge, Theorem 3.7 is the

first rigorous upper bound on the estimation error of (3.4), which holds for general convex regularizers, is

non-asymptotic and requires no assumption on the distribution of z.

3.10.3 Simulation results

Figure 3.6 illustrates the bound of Theorem 3.7, which is given in red for n = 340, m = 140, k = 10 and for

A having N (0, 1
m) entries. The upper bound from Section 3.9 is asymptotic in m and only applies to i.i.d

Gaussian z, is given in black. In our simulations, we assume x0 is a random unit norm vector over its support

and consider both i.i.d N (0,σ2), as well as, non-Gaussian noise vectors z. We have plotted the realizations

of the normalized error for different values of λ and σ . As noted, the bound in Section 3.9 is occasionally

violated since it requires very large m, as well as, i.i.d Gaussian noise. On the other hand, the bound given

in (3.120) always holds.

3.11 Proof of Theorem 3.7

It is convenient to rewrite (3.4) in terms of the error vector w = x−x0 as follows:

min
w
‖Aw− z‖2 +λ ( f (x0 +w)− f (x0)). (3.122)
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Denote the solution of (3.122) by ŵ. Then, ŵ = x̂−x0 and (3.120) bounds ‖ŵ‖2. To simplify notation, for

the rest of the proof, we denote the value of that upper bound as

`(t) := 2
‖z‖2√

m

√
D(λ∂ f (x0))+ t√

m−1−
√

D(λ∂ f (x0))− t
. (3.123)

It is easy to see that the optimal value of the minimization in (3.122) is no greater than ‖z‖2. Observe that

w = 0 achieves this value. However, Lemma 3.26 below shows that if we constrain the minimization in

(3.122) to be only over vectors w whose norm is greater than `(t), then the resulting optimal value is (with

high probability on the measurement matrix A) strictly greater than ‖z‖2. Combining those facts yields the

desired result, namely ‖ŵ‖2 ≤ `(t). Thus, it suffices to prove Lemma 3.26.

Lemma 3.26 Fix some λ ≥ 0 and 0 < t ≤ (
√

m−1−
√

D(λ∂ f (x0))). Let `(t) be defined as in (3.123).

Then, with probability 1−5exp(−t2/32), we have,

min
‖w‖2≥`(t)

{‖Aw− z‖2 +λ ( f (x0 +w)− f (x0))}> ‖z‖2. (3.124)
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3.11.1 Proof of Lemma 3.26

Fix λ and t, as in the statement of the lemma. From the convexity of f (·), f (x0+w)− f (x0)≥maxs∈∂ f (x0) sT w.

Hence, it suffices to prove that w.h.p. over A,

min
‖w‖2≥`(t)

{‖Aw− z‖2 + max
s∈λ∂ f (x0)

sT w}> ‖z‖2.

We begin with applying Gordon’s Proposition 2.7 to the optimization problem in the expression above.

Rewrite ‖Aw−z‖2 as max‖a‖2=1{aT Aw−aT z} and, then, apply Proposition 2.7 with G=A, S = {w | ‖w‖2≥
`(t)} and ψ(w,a) =−aT z+maxs∈λ∂ f (x0) sT w. This leads to the following statement:

P( (3.124) is true )≥ 2 ·P( L (t;g,h)> ‖z‖2 )−1,

where, L (t;g,h) is defined as

min
‖w‖2≥`(t)

max
‖a‖2=1

{(‖w‖2g− z)T a− min
s∈λ∂ f (x0)

(h− s)T w}. (3.125)

In the remaining, we analyze the simpler optimization problem defined in (3.125), and prove that L (t;g,h)>

‖z‖2 holds with probability 1− 5
2 exp(−t2/32). We begin with simplifying the expression for L (t;g,h), as

follows:

L (t;g,h) = min
‖w‖2≥`(t)

{‖‖w‖2g− z‖2− min
s∈λ∂ f (x0)

(h− s)T w}

= min
α≥`(t)

{‖αg− z‖2−αdist(h,λ∂ f (x0))}

= min
α≥`(t)

{
√

α2‖g‖2
2 +‖z‖2

2−2αgT z−αdist(h,λ∂ f (x0))}. (3.126)

The first equality above follows after performing the trivial maximization over a in (3.125). The second, uses

the fact that max‖w‖2=α mins∈λ∂ f (x0)(h− s)T w = mins∈λ∂ f (x0) max‖w‖2=α(h− s)T w = α ·dist(h,λ∂ f (x0)),

for all α ≥ 0. For a proof of this see Section A.4.

Next, we show that L (t;g,h) is strictly greater than ‖z‖2 with the desired high probability over realiza-
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tions of g and h. Consider the event Et of g and h satisfying all three conditions listed below,

1. ‖g‖2 ≥ γm− t/4, (3.127a)

2. dist(h,λ∂ f (x0))≤
√

D(λ∂ f (x0))+ t/4, (3.127b)

3. gT z≤ (t/4)‖z‖2. (3.127c)

In (3.127a) we have denoted γm := E[‖g‖2]; it is well known that γm =
√

2 Γ(m+1
2 )

Γ(m
2 )

and γm ≤
√

m. The

conditions in (3.127) hold with high probability. In particular, the first two hold with probability no less

than 1− exp(−t2/32). This is because the `2-norm and the distance function to a convex set are both

1-Lipschitz functions and, thus, Fact 2.4 applies. The third condition holds with probability at least 1−
(1/2)exp(−t2/32), since gT z is statistically identical to N (0,‖z‖2

2). Union bounding yields,

P(Et)≥ 1− (5/2)exp(−t2/32). (3.128)

Furthermore, Lemma 3.27, below, shows that if g and h are such that Et is satisfied, then L (t;g,h)> ‖z‖2.

This, when combined with (3.128) shows that P(L (t;g,h) > ‖z‖2) ≥ 1− (5/2)exp(−t2/32), completing

the proof of Lemma 3.26.

Lemma 3.27 Fix any 0 < t ≤ (
√

m−1−
√

D(λ∂ f (x0))). Suppose g and h are such that (3.127) holds and

recall the definition of L (t;g,h) in (3.126). Then, L (t;g,h)> ‖z‖2.

Proof: Take any α ≥ `(t) > 0. Following from (3.127), we have that the objective function of the

optimization in (3.126) is lower bounded by

φ(α) =√
α2(γm−

t
4
)2 +‖z‖2

2−
1
2

α‖z‖2t−α(
√

D(λ∂ f (x0))+
t
4
).

We will show that φ(a)> ‖z‖2, for all α ≥ `(t), and this will complete the proof. Starting with the desired

condition φ(α) > ‖z‖2, using the fact that α > 0 and performing some algebra, we have the following
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equivalences,

φ(a)> ‖z‖2⇔ α
2(γm− t/4)2 +‖z‖2

2− (1/2)α‖z‖2t >

(α(
√

D(λ∂ f (x0))+ t/4)+‖z‖2)
2

⇔ α >
2‖z‖2(

√
D(λ∂ f (x0))+ t/2)

γ2
m−D(λ∂ f (x0))− t

2(γm +
√

D(λ∂ f (x0)))
. (3.129)

Observing that γ2
m >
√

m
√

m−1 [86], γm ≤
√

m and
√

D(λ∂ f (x0)) <
√

m, it can be shown that `(t) is

strictly greater than the expression in the right hand side of (3.129). Thus, for all α ≥ `(t), we have φ(α)>

‖z‖2, as desired.

3.12 `2
2-LASSO

As we have discussed throughout our main results, one of the critical contributions of this chapter is that, we

are able to obtain a formula that predicts the performance of `2
2-penalized LASSO. We do this by relating

`2-LASSO and `2
2-LASSO problems. This relation is established by creating a mapping between the penalty

parameters λ and τ . While we don’t give a theoretical guarantee on `2
2-LASSO, we give justification based

on the predictive power of Gaussian Min-Max Theorem.

3.12.1 Mapping the `2-penalized to the `2
2-penalized LASSO problem

Our aim in this section is to provide justification for the mapping function given in (3.20). The following

lemma gives a simple condition for `2-LASSO and `2
2-LASSO to have the same solution.

Lemma 3.28 Let x∗`2
be a minimizer of `2-LASSO program with the penalty parameter λ and assume y−

Ax∗`2
6= 0. Then, x∗`2

is a minimizer of `2
2-LASSO with penalty parameter τ = λ · ‖Ax∗`2−y‖2

σ
.

Proof: The optimality condition for the `2
2-LASSO problem (3.4), implies the existence of s`2 ∈

∂ f (x∗`2
) such that,

λ s`2 +
AT (Ax∗`2

−y)
‖Ax∗`2

−y‖2
= 0 (3.130)
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On the other hand, from the optimality conditions of (3.5), x is a minimizer of the `2
2-LASSO if there exists

s ∈ ∂ f (x) such that,

στs+AT (Ax−y) = 0. (3.131)

Observe that, for τ = λ · ‖Ax∗`2−y‖2

σ
, using (3.130), x∗`2

satisfies (3.131) and is thus a minimizer of the `2
2-

LASSO.

In order to evaluate the mapping function as proposed in Lemma 3.28, we need to estimate ‖y−Ax∗`2
‖2.

We do this relying again on the approximated `2-LASSO problem in (3.31). Under the first-order approx-

imation, x∗`2
≈ x0 + ŵ∗`2

:= x̂`∗2 and also define, f̂p(w) := sups∈∂ f (x0)
sT w. Then, from (3.31) and Lemma

3.9,

‖y−Ax̂∗`2
‖2 = F̂ ∗

`2
(A,v)−λ f̂p(ŵ∗`2

)

≈ σ
√

m−D(λ∂ f (x0))−λ f̂p(ŵ∗`2
). (3.132)

Arguing that,

λ f̂p(w∗`2
)≈ σ

C(λ∂ f (x0))√
m−D(λ∂ f (x0))

, (3.133)

and substituting this in (3.132) will result in the desired mapping formula given in (3.20).

In the remaining lines we provide justification supporting our belief that (3.133) is true. Not surprisingly

at this point, the core of our argument relies on application of “modified Gordon’s Lemma” Proposition 2.7.

Following the lines of our discussion in Section 3.5, we use the minimizer w∗low(g,h) of the simple optimiza-

tion (3.13) as a proxy for w∗`2
and expect f̂p(w∗`2

) to concentrate around the same quantity as f̂p(w∗low(g,h))

does. Lemma 3.29 below shows that

λ f̂p(w∗low(g,h)) = σ
〈Π(h,λ∂ f (x0)),Proj(h,λ∂ f (x0))〉√

‖g‖2
2−dist(h,λ∂ f (x0))2

≈ σ
C(λ∂ f (x0))√

m−D(λ∂ f (x0))
,

where the second (approximate) equality follows via standard concentration inequalities.

Lemma 3.29 Assume (1− εL)m ≥ D(λ∂ f (x0)) and m is sufficiently large. Then, for any constant ε > 0,
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with probability 1− exp(−O
(

min{m, m2

n }
)
),

∣∣λ f̂p(w∗low)−σ
C(λ∂ f (x0))√

m−D(λ∂ f (x0))

∣∣< ε
√

m. (3.134)

Proof: Recall that w∗low(g,h) = σ
Π(h,C )√

‖g‖2
2−dist2(h,λ∂ f (x0))

for C = λ∂ f (x0). Combining this with Fact

2.2, we obtain,

f̂p(wlow) = max
s∈C
〈wlow,s〉=

〈Π(h,C ),Proj(h,C )〉√
‖g‖2

2−dist(h,C )2
.

What remains is to show the right hand side concentrates around C(λ∂ f (x0))√
m−D(λ∂ f (x0))

with the desired probability.

Fix a constant ε > 0. Consider the denominator. Using Lemma A.5, with probability 1− exp(−O (m)),

|

√
‖g‖2

2−dist(h,C )2√
m−D(λ∂ f (x0))

−1|< ε. (3.135)

We now apply Lemma A.3 for C(C ) where we choose t = m√
max{m,n} and use the fact that m > D(C ). Then,

with probability 1− exp(−O
(

min{m, m2

n }
)
), we have,

|corr(h,C )−C(C )| ≤ εm.

Combining this with (3.135) choosing ε > 0, sufficiently small (according to εL), we find (3.134) with the

desired probability.

The lemma above shows that, λ f̂p(w∗low) is around C(λ∂ f (x0))√
m−D(λ∂ f (x0))

with high probability and we ob-

tain the `2
2 formula by using f̂p(w∗low) as a proxy for λ f̂p(w∗`2

). Can we do further? Possibly yes. To

show f̂p(w∗`2
) is indeed around f̂p(w∗low), we can consider the modified deviation problem L ∗

dev(g,h) =

minw∈Sdev L (w;g,h) where we modify the set Sdev to,

Sdev = {w
∣∣|λ f̂p(w)

σ
− C(λ∂ f (x0))√

m−D(λ∂ f (x0))
|> εdev

√
m}.

We may then repeat the same arguments, i.e., try to argue that the objective restricted to Sdev is strictly greater

than what we get from the upper bound optimization Û (g,h). While this approach may be promising, we

believe it is more challenging than our `2 norm analysis of ‖w∗`2
‖2 and it will not be topic of this chapter.
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The next section shows that there exists a one-to-one (monotone) mapping of the region RON to the

entire possible regime of penalty parameters of the `2
2-LASSO.

3.12.2 Properties of map(λ )

The following result shows that P(λC ),D(λC ),C(λC ) (see (3.42)) are Lipschitz continuous and will be

useful for the consequent discussion. The proof can be found in Appendix A.1.

Lemma 3.30 Let C be a compact and convex set. Given scalar function g(x), define the local Lipschitz

constant to be Lg(x) = limsupx′→x

∣∣∣g(x′)−g(x)
x′−x

∣∣∣. Let maxs∈C ‖s‖2 = R. Then, viewing P(λC ),D(λC ),C(λC )

as functions of λ , for λ ≥ 0, we have,

max{LP(λ ),LD(λ ),LC(λ )} ≤ 2R(
√

n+λR).

The following proposition is restatement of Theorem 3.3. Recall the definition of RON from Definition 3.4.

Proposition 3.4 Assume m>D f (x0,λbest). Recall that RON =(λcrit,λmax). calib(λ )= m−D(λ∂ f (x0))−C(λ∂ f (x0))√
m−D(λ∂ f (x0))

and map(λ ) = λ · calib(λ ) have the following properties over {λcrit}∪RON→{0}∪R+.

• calib(λ ) is a nonnegative, increasing and continuous function over {λcrit}∪RON.

• map(λ ) is nonnegative, strictly increasing and continuous at all λ ∈ {λcrit}∪RON.

• map(λcrit) = 0. limλ→λmax map(λ ) = ∞. Hence, map(λ ) : {λcrit}∪RON→{0}∪R+ is bijective.

Proof: Proof of the first statement: Assume λ ∈ RON, from Lemma 3.23, m > max{D(λ∂ f (x0)),

D(λ∂ f (x0))+C(λ∂ f (x0))} and λ > 0. Hence, calib(λ ) is strictly positive over λ ∈RON. Recall that,

calib(λ ) =
m−D(λ∂ f (x0))−C(λ∂ f (x0))√

m−D(λ∂ f (x0))
=
√

m−D(λ∂ f (x0))−
C(λ∂ f (x0))√

m−D(λ∂ f (x0))
.

Let h > 0. We will investigate the change in calib(λ ) by considering calib(λ + h)− calib(λ ) as h→ 0+.

Since D(λ∂ f (x0)) is differentiable,
√

m−D(λ∂ f (x0)) is differentiable as well and gives,

∂
√

m−D(λ∂ f (x0))

∂λ
=

−D(λ∂ f (x0))
′

2
√

m−D(λ∂ f (x0))
. (3.136)
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For the second term, consider the following,

C f (x0,λ +h)√
m−D f (x0,λ +h)

− C(λ∂ f (x0))√
m−D(λ∂ f (x0))

= h[E1(λ ,h)+E2(λ ,h)],

where,

E1(λ ,h) =
1
h
[

C f (x0,λ +h)√
m−D f (x0,λ +h)

− C(λ∂ f (x0))√
m−D f (x0,λ +h)

],

E2(λ ,h) =
1
h
[

C(λ∂ f (x0))√
m−D f (x0,λ +h)

− C(λ∂ f (x0))√
m−D(λ∂ f (x0))

].

As h→ 0+, we have,

lim
h→0+

E2(λ ,h) = C(λ∂ f (x0))
∂

1√
m−D(λ∂ f (x0))

∂λ
=

C(λ∂ f (x0))D(λ∂ f (x0))
′

2(m−D(λ∂ f (x0)))3/2 ≤ 0, (3.137)

since sgn(C(λ∂ f (x0))) =−sgn(D(λ∂ f (x0))
′).

Fix arbitrary εD > 0 and let R = sups∈∂ f (x0)
‖s‖2. Using continuity of D(λ∂ f (x0)) and Lemma 3.30,

choose h sufficiently small to ensure,

| 1√
m−D(λ∂ f (x0))

− 1√
m−D f (x0,λ +h)

|< εD, |C f (x0,λ +h)−C(λ∂ f (x0))|< 3R(
√

n+λR)h.

We then have,

E1(λ ,h)≤
C f (x0,λ +h)−C(λ∂ f (x0))

h
1√

m−D(λ∂ f (x0))
+3εDR(

√
n+λR). (3.138)

Denote C f (x0,λ+h)−C(λ∂ f (x0))
h ,

D f (x0,λ+h)−D(λ∂ f (x0))
h by C̃ and D̃. Combining (3.137), (3.138) and (3.136), for

sufficiently small h, we find,

lim sup
h→0+

calib(λ +h)− calib(λ )
h

= lim sup
h→0

[
−D̃

2
√

m−D(λ∂ f (x0))
− C̃√

m−D(λ∂ f (x0))

− C(λ∂ f (x0))D(λ∂ f (x0))
′

2(m−D(λ∂ f (x0)))3/2 +3εDR(
√

n+λR)].

We can let εD go to 0 as h→ 0+ and −D̃− 2C̃ is always nonnegative as P(λ∂ f (x0)) is nondecreasing

due to Lemma 3.20. Hence, the right hand side is nonnegative. Observe that the increase is strict for
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λ 6= λbest, as we have C(λ∂ f (x0))D(λ∂ f (x0))
′ > 0 whenever λ 6= λbest due to the fact that D(λ∂ f (x0))

′

(and C(λ∂ f (x0))) is not 0. Since increase is strict around any neighborhood of λbest, this also implies strict

increase at λ = λbest.

Consider the scenario λ = λcrit. Since calib(λ ) is continuous for all λ ∈ {λcrit}∪RON (see next state-

ment) and is strictly increasing at all λ > λcrit, it is strictly increasing at λ = λcrit as well.

To see continuity of calib(λ ), observe that, for any λ ∈ RON ∪ {λcrit}, m−D(λ∂ f (x0)) > 0 and

from Lemma 3.30, D(λ∂ f (x0)),C(λ∂ f (x0)) are continuous functions which ensures continuity of m−
D(λ∂ f (x0))−C(λ∂ f (x0)) and m−D(λ∂ f (x0)). Hence, calib(λ ) is continuous as well.

Proof of the second statement: Since calib(λ ) is strictly increasing on RON, λ · calib(λ ) is strictly

increasing over RON as well. Increase at λ = λcrit follows from the fact that map(λcrit) = 0 (see next

statement). Since calib(λ ) is continuous, λ · calib(λ ) is continuous as well.

Proof of the third statement: From Lemma 3.22, if calib(λcrit) > 0, λcrit = 0 hence map(λcrit) = 0.

If calib(λcrit) = 0, then map(λcrit) = λcrit · calib(λcrit) = 0. In any case, map(λcrit) = 0. Similarly, since

λmax > λbest, C f (x0,λmax) < 0 and as λ → λmax from left side, calib(λ )→ ∞. This ensures map(λ )→ ∞

as well. Since map(λ ) is continuous and strictly increasing and achieves the values 0 and ∞, it maps

{λcrit}∪RON to {0}∪R+ bijectively.

3.12.3 On the stability of `2
2-LASSO

As it has been discussed in Section 3.12.2 in detail, map(·) takes the interval [λcrit,λmax) to [0,∞) and

Theorem 3.2 gives tight stability guarantees for λ ∈RON. Consequently, one would expect `2
2-LASSO to

be stable everywhere as long as the [λcrit,λmax) interval exists. λcrit and λmax is well defined for the regime

m > D f (x0,λbest). Hence, we now expect `2
2-LASSO to be stable everywhere for τ > 0. The next lemma

shows that this is indeed the case under Lipschitzness assumption.

Lemma 3.31 Consider the `2
2-LASSO problem (3.5). Assume f (·) is a convex and Lipschitz continuous

function and x0 is not a minimizer of f (·). Let A have independent standard normal entries and σv ∼
N (0,σ2Im). Assume (1−εL)m≥D(cone(∂ f (x0))) for a constant εL > 0 and m is sufficiently large. Then,

there exists a number C > 0 independent of σ , such that, with probability 1− exp(−O (m)),

‖x∗
`2

2
−x0‖2

2

σ2 ≤C. (3.139)
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Remark: We are not claiming anything about C except the fact that it is independent of σ . Better results

can be given, however, our intention is solely showing that the estimation error is proportional to the noise

variance. Proof: Consider the widening of the tangent cone defined as,

T f (x0,ε0) = Cl({α ·w
∣∣ f (x0 +w)≤ f (x0)+ ε0‖w‖2, α ≥ 0}).

Appendix A.8 investigates basic properties of this set. In particular, we will make use of Lemma A.14. We

can choose sufficiently small numbers ε0,ε1 > 0 (independent of σ ) such that,

min
w∈T f (x0,ε0),‖w‖2=1

‖Aw‖2 ≥ ε1, (3.140)

with probability 1− exp(−O (m)) as
√

m−1−
√

D(cone(∂ f (x0)))& (1−√1− εL)
√

m. Furthermore, we

will make use of the following fact that ‖z‖2 ≤ 2σ
√

m with probability 1− exp(−O (m)), where we let

z = σv (see Lemma A.2).

Assuming these hold, we will show the existence of C > 0 satisfying (3.139). Define the perturbation

function fp(w) = f (x0 +w)− f (x0). Denote the error vector by w∗
`2

2
= x∗

`2
2
−x0. Then, using the optimality

of x∗
`2

2
we have,

1
2
‖y−Ax∗`2

2
‖2

2 +στ f (x∗`2
2
) =

1
2
‖z−Aw∗`2

2
‖2

2 +στ fp(w∗`2
2
)≤ 1

2
‖z‖2

2.

On the other hand, expanding the terms,

1
2
‖z‖2

2 ≥
1
2
‖z−Aw∗`2

2
‖2

2 +στ fp(w∗`2
2
)≥ 1

2
‖z‖2

2−‖z‖2‖Aw∗`2
2
‖2 +

1
2
‖Aw∗`2

2
‖2

2 +στ fp(w∗`2
2
).

Using ‖z‖2 ≤ 2σ
√

m, this implies,

2σ
√

m‖Aw∗`2
2
‖2 ≥ ‖z‖2‖Aw∗`2

2
‖2 ≥

1
2
‖Aw∗`2

2
‖2

2 +στ fp(w∗`2
2
). (3.141)

Normalizing by σ ,

2
√

m‖Aw∗`2
2
‖2 ≥

1
2σ
‖Aw∗`2

2
‖2

2 + τ fp(w∗`2
2
).

The rest of the proof will be split into two cases.
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Case 1: Let L be the Lipschitz constant of f (·). If w∗
`2

2
∈T f (x0,ε0), using (3.140),

2
√

m‖Aw∗`2
2
‖2 ≥

1
2σ
‖Aw∗`2

2
‖2

2− τL‖w∗`2
2
‖2 ≥

1
2σ
‖Aw∗`2

2
‖2

2−
τL
ε1
‖Aw∗`2

2
‖2.

Further simplifying, we find, 2σ(2
√

m+ τL
ε1
)≥ ‖Aw∗

`2
2
‖2 ≥ ε1‖w∗`2

2
‖2. Hence, indeed,

‖w∗
`22
‖2

σ
is upper bound

by 4
√

m
ε1

+ 2τL
ε2

1
.

Case 2: Assume w∗
`2

2
6∈ T f (x0,ε0). Then fp(w∗`2

2
) ≥ ε0‖w∗`2

2
‖2. Using this and letting ŵ =

w∗
`22

σ
, we can

rewrite (3.141) without σ as,

1
2
‖Aŵ‖2

2−2
√

m‖Aŵ‖2 +2m+(τε0‖ŵ‖2−2m)≤ 0.

Finally, observing 1
2‖Aŵ‖2

2−2
√

m‖Aŵ‖2 +2m = 1
2(‖Aŵ‖2−2

√
m)2, we find,

τε0‖ŵ‖2−2m≤ 0 =⇒
‖w∗

`2
2
‖2

σ
≤ 2m

τε0
.

3.13 Converse Results

Until now, we have stated the results assuming m is sufficiently large. In particular, we have assumed that

m≥ D(cone(∂ f (x0))) or m≥ D(λ∂ f (x0)). It is important to understand the behavior of the problem when

m is small. Showing a converse result for m < D(cone(∂ f (x0))) or m < D(λ∂ f (x0)) will illustrate the

tightness of our analysis. In this section, we focus our attention on the case where m < D(cone(∂ f (x0)))

and show that the NSE approaches infinity as σ → 0. As it has been discussed previously, D(cone(∂ f (x0)))

is the compressed sensing threshold which is the number of measurements required for the success of the

noiseless problem (1.4):

min
x

f (x) subject to Ax = Ax0. (3.142)

For our analysis, we use Proposition 3.5 below, which is a slight modification of Theorem 1 in [4].

Proposition 3.5 ( [4]) Let A ∈ Rm×n have independent standard normal entries. Let y = Ax0 and assume

x0 is not a minimizer of f (·). Further, for some t > 0, assume m≤ D(cone(∂ f (x0)))− t
√

n. Then, x0 is not
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a minimizer of (3.142) with probability at least 1−4exp(− t2

4 ).

Proposition 3.5 leads to the following useful Corollary.

Corollary 3.7 Consider the same setting as in Proposition 3.5 and denote x∗ the minimizer of (3.142). For

a given t > 0, there exists an ε > 0 such that, with probability 1−8exp(− t2

4 ), we have,

f (x∗)≤ f (x0)− ε

Proof: Define the random variable χ = f (x∗)− f (x0). χ is random since A is random. Define

the events E = {χ < 0} and En = {χ ≤ −1
n} for positive integers n. From Proposition 3.5, P(E) ≥ 1−

4exp(− t2

4 ). Also, observe that,

E =
∞⋃

i=1

Ei and En =
n⋃

i=1

Ei,

Since En is an increasing sequence of events, by continuity property of probability, we have P(E) =

limn→∞P(En). Thus, we can pick n0 such that, P(En0) > 1− 8exp(− t2

4 ). Let ε = n−1
0 , to conclude the

proof.

The results discussed in this section, hold under the following assumption.

Assumption 1 Let mlack := D(cone(∂ f (x0)))−m > 0. x0 is not a minimizer of the convex function f (·).
For some L > 0, f (·) : Rn→ R is an L-Lipschitz function, i.e., for all x,y ∈ Rn, | f (x)− f (y)| ≤ L‖x−y‖2.

3.13.1 Converse Result for C-LASSO

Recall the C-LASSO problem (3.3):

min
x
‖Ax0 +σv−Ax‖2 subject to f (x)≤ f (x0). (3.143)

(3.143) has multiple minimizers, in particular, if x∗ is a minimizer, so is x∗+ v for any v ∈ N (A). We

will argue that when m is small, there exists a feasible minimizer which is far away from x0. The following

theorem is a rigorous statement of this idea.

Theorem 3.8 Suppose Assumption 1 holds and let A,v have independent standard normal entries. For any

given constant Cmax > 0, there exists σ0 > 0 such that, whenever σ ≤ σ0, with probability 1−8exp(−m2
lack
4n ),
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over the generation of A,v, there exists a minimizer of (3.143), x∗c , such that,

‖x∗c−x0‖2
2

σ2 ≥Cmax (3.144)

Proof: From Corollary 3.7, with probability 1− 8exp(−m2
lack
4n ), there exists ε > 0 and x′ satisfying

f (x′) ≤ f (x0)− ε and Ax′ = Ax0.Denote w′ = x′− x0 and pick a minimizer of (3.143) namely, x0 +w∗.

Now, let w∗2 = w∗+w′. Observe that ‖σv−Aw∗‖2 = ‖σv−Aw∗2‖2. Hence, w∗2 + x0 is a minimizer for

C-LASSO if f (x0 +w∗2)≤ f (x0). But,

f (x0 +w∗2) = f (x′+w∗)≤ f (x′)+L‖w∗‖2,

Hence, if ‖w∗‖2 ≤ f (x0)− f (x′)
L , w∗2 +x0 is a minimizer. Let Cw = min{ f (x0)− f (x′)

L , 1
2‖w′‖2} and consider,

w∗3 =


w∗ if ‖w∗‖2 ≥Cw,

w∗2 otherwise.

From the discussion above, x0+w∗3 is guaranteed to be feasible and minimizer. Now, since f (x′)≤ f (x0)−ε

and f (·) is Lipschitz, we have that ‖w′‖2 ≥ ε

L . Consequently, if ‖w∗‖2 ≥Cw, then, we have, ‖w
∗
3‖2

σ
≥ ε

2Lσ
.

Otherwise, ‖w∗‖2 ≤ ‖w
′‖2

2 , and so,

‖w∗3‖2

σ
=
‖w∗2‖2

σ
≥ |‖w

′‖2−‖w∗‖2|
σ

≥ ‖w
′‖2

2σ
≥ ε

2Lσ
.

In any case, we find that, ‖w
∗
3‖2

σ
is lower bounded by ε

2Lσ
with the desired probability. To conclude with

(3.144), we can choose σ0 sufficiently small to ensure ε2

4L2σ2
0
≥Cmax.

3.13.2 Converse Results for `2-LASSO and `2
2-LASSO

This section follows an argument of similar flavor. We should emphasize that the estimation guarantee

provided in Theorem 3.2 was for m ≥ D(λ∂ f (x0)). However, hereby, the converse guarantee we give is

slightly looser, namely, m ≤ D(cone(∂ f (x0))) where D(cone(∂ f (x0))) ≤ D(λ∂ f (x0)) by definition. This

is mostly because of the nature of our proof which uses Proposition 3.5 and we believe it is possible to get

a converse result for m≤ D(λ∂ f (x0)) via Proposition 2.7. We leave this to future work. Recall `2-LASSO
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in (3.4):

min
x
‖Ax0 +σv−Ax‖2 +λ f (x) (3.145)

The following theorem is a restatement of Theorem 3.4 and summarizes our result on the `2-LASSO when

m is small.

Theorem 3.9 Suppose Assumption 1 holds and let A,v have independent standard normal entries. For any

given constant Cmax > 0, there exists σ0 > 0 such that, whenever σ ≤ σ0, with probability 1−8exp(−m2
lack
4n ),

over the generation of A,v, the minimizer of (3.145), x∗`2
, satisfies,

‖x∗`2
−x0‖2

2

σ2 ≥Cmax. (3.146)

Proof: From Corollary 3.7, with probability 1− 8exp(−m2
lack
4n ), there exists ε > 0 and x′ satisfying

f (x′)≤ f (x0)−ε and Ax′ = Ax0. Denote w′ = x′−x0. Let w∗+x0 be a minimizer of (3.145) and let w∗2 =

w∗+w′. Clearly, ‖Aw∗2−σv‖2 = ‖Aw∗−σv‖2. Hence, optimality of w∗ implies f (x0 +w∗2)≥ f (x0 +w∗).

Also, using the Lipschitzness of f (·),

f (x0 +w∗2) = f (x′+w∗)≤ f (x′)+L‖w∗‖2,

and

f (x0 +w∗)≥ f (x0)−L‖w∗‖2.

Combining those, we find,

f (x′)+L‖w∗‖2 ≥ f (x0 +w∗2)≥ f (x0 +w∗)≥ f (x0)−L‖w∗‖2,

which implies, ‖w∗‖2 ≥ f (x0)− f (x′)
2L ≥ ε

2L , and gives the desired result (3.146) when σ0 ≤ ε

4L
√

Cmax
.

For the `2
2-LASSO result, let us rewrite (3.5) as,

min
x

1
2
‖Ax0 +σv−Ax‖2

2 +στ f (x) (3.147)
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Figure 3.7: Sparse signal estimation with n = 1500,m = 750,k = 150. a) `1-penalized `2-LASSO NSE. b) `1-
penalized `2

2-LASSO NSE. Observe that the minimum achievable NSE is same for both (around 1.92).

The next theorem shows that `2
2-LASSO does not recover x0 stably when m < D(cone(∂ f (x0))). Its proof

is identical to the proof of Theorem 3.9.

Theorem 3.10 Suppose Assumption 1 holds and let A,v have independent standard normal entries. For any

given constant Cmax > 0, there exists σ0 > 0 such that, whenever σ ≤ σ0, with probability 1−8exp(−m2
lack
4n ),

over the generation of A,v, the minimizer of (3.147), x∗
`2

2
, satisfies,

‖x∗
`2

2
−x0‖2

2

σ2 ≥Cmax.

3.14 Numerical Results

Simulation results presented in this section support our analytical predictions. We consider two standard

estimation problems, namely sparse signal estimation and low rank matrix recovery from linear observations.

3.14.1 Sparse Signal Estimation

First, consider the sparse signal recovery problem, where x0 is a k sparse vector in Rn and f (·) is the `1

norm. We wish to verify our predictions in the small noise regime.

We fix n = 1500, k
n = 0.1 and m

n = 0.5. Observe that, these particular choice of ratios has also been used

in the Figures 3.3 and 3.4. x0 ∈Rn is generated to be k sparse with standard normal nonzero entries and then

normalized to satisfy ‖x0‖= 1. To investigate the small σ regime, the noise variance is set to be σ2 = 10−5.

We observe y = Ax0 + z where z∼N (0,σIm) and solve the `2-LASSO and the `2
2-LASSO problems with
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`1 penalization. To obtain clearer results, each data point (red square markers) is obtained by averaging over

50 iterations of independently generated A,z,x0. The effect of averaging on the NSE is illustrated in Figure

3.7.

`2-LASSO: λ is varied from 0 to 2. The analytical predictions are calculated via the formulas given in

Appendix A.7 for the regime k
n = 0.1 and m

n = 0.5. We have investigated three properties.

• NSE: In Figure 3.7(a), we plot the simulation results with the small σ NSE formulas. Based on

Theorem 3.2 and Section 3.9, over RON, we plotted D(λ∂ f (x0))
m−D(λ∂ f (x0))

and over ROFF, we used D f (x0,λcrit)
m−D f (x0,λcrit)

for analytical prediction. We observe that NSE formula indeed matches with simulations. On the left

hand side, observe that NSE is flat and on the right hand side, it starts increasing as λ gets closer to

λmax.

• Normalized cost: We plotted the cost of `2-LASSO normalized by σ in Figure 3.8(a). The exact

function is 1
σ
(‖y−Ax∗`2

‖+λ ( f (x∗`2
)− f (x0))). In RON, this should be around

√
m−D(λ∂ f (x0))

due to Theorem 3.9. In ROFF, we expect cost to be linear in λ , in particular λ

λcrit

√
m−D f (x0,λcrit).

• Normalized fit: In Figure 3.8(b), we plotted
‖y−Ax∗`2‖

σ
, which is significant as it corresponds to the

calibration function calib(λ ) as described in Section 3.12. In RON, we analytically expect this to be
m−D(λ∂ f (x0))−C(λ∂ f (x0))√

m−D(λ∂ f (x0))
. In ROFF, as discussed in Section 3.9.2, the problem behaves as (1.4) and we

have y = Ax`2 . Numerical results for small variance verify our expectations.

`2
2-LASSO: We consider the exact same setup and solve `2

2-LASSO. We vary τ from 0 to 100 and test the

accuracy of Formula 1 in Figure 3.7(b). We find that, `2
2-LASSO is robust everywhere as expected and the

minimum achievable NSE is same as `2-LASSO and around 1.92 as we estimate D f (x0,λbest) to be around

330.

3.14.2 Low-Rank Matrix Estimation

For low rank estimation, we choose the nuclear norm ‖ · ‖? as a surrogate for rank [178]. Nuclear norm is

the sum of singular values of a matrix and basically takes the role of `1 minimization.

Since we will deal with matrices, we will use a slightly different notation and consider a low rank matrix

X0 ∈ Rd×d . Then, x0 = vec(X0) will be the vector representation of X0, n = d×d and A will effectively be

a Gaussian linear map Rd×d → Rm. Hence, for `2-LASSO, we solve,

min
X∈Rd×d

‖y−A ·vec(X)‖+λ‖X‖?.
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Figure 3.8: `2-LASSO with n = 1500, m = 750, k = 150. a) Normalized cost of the optimization. b) How well
the LASSO estimate fits the observations y. This also corresponds to the calib(λ ) function on RON. In ROFF,
(λ ≤ λcrit ≈ 0.76) observe that y = Ax∗`2

indeed holds.
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Figure 3.9: d = 45, m = 0.6d2, r = 6. We estimate D f (x0,λbest) ≈ 880. a) `2-LASSO NSE as a function of the
penalization parameter. b) `2

2-LASSO NSE as a function of the penalization parameter.

where y = A ·vec(X0)+ z.

Setup: We fixed d = 45, rank(X0) = 6 and m = 0.6d2 = 1215. To generate X0, we picked i.i.d. standard

normal matrices U,V ∈ Rd×r and set X0 = UVT

‖UVT ‖F
which ensures X0 is unit norm and rank r. We kept

σ2 = 10−5. The results for `2 and `2
2-LASSO are provided in Figures 3.9(b) and 3.9(a) respectively. Each

simulation point is obtained by averaging NSE’s of 50 simulations over A,z,X0.

To find the analytical predictions, based on Appendix A.7, we estimated D(λ∂ f (x0)),C(λ∂ f (x0)) in

the asymptotic regime: n→ ∞, r
d = 0.133 and m

n = 0.6. In particular, we estimate D f (x0,λbest) ≈ 880 and

best case NSE D f (x0,λbest)
m−D f (x0,λbest)

≈ 2.63. Even for such arguably small values of d and r, the simulation results

are quite consistent with our analytical predictions.
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3.14.3 C-LASSO with varying σ

Consider the low rank estimation problem as in Section 3.14.2, but use the C-LASSO as an estimator:

min
X∈Rd×d

‖y−A ·vec(X)‖ subject to ‖X‖? ≤ ‖X0‖?.

This time, we generate A with i.i.d. Bernoulli entries where each entry is either 1 or −1, with equal proba-

bility. The noise vectorz, the signal of interest X0 and the simulation points are generated in the same way

as in Section 3.14.2. Here, we used d = 40,r = 4 and varied m from 0 to 2000 and σ2 from 1 to 10−4. The

resulting curve is given in Figure 3.10. We observe that as the noise variance increases, the NSE decreases.

The worst case NSE is achieved as σ → 0, as Theorem 3.1 predicts. Our formula for the small σ regime
D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
indeed provides a good estimate of NSE for σ2 = 10−4 and upper bounds the remaining

ones. In particular, we estimate D(cone(∂ f (x0))) to be around 560. Based on Theorems 3.4 and 3.1, as m

moves from m < D(cone(∂ f (x0))) to m > D(cone(∂ f (x0))), we expect a change in robustness. Observe

that, for larger noise variances (such as σ2 = 1) this change is not that apparent and the NSE is still relatively

small. For σ2 ≤ 10−2, the NSE becomes noticeably high for the regime m < D(cone(∂ f (x0))).

3.15 Future Directions

This chapter sets up the fundamentals for a number of possible extensions. We enlist here some of those

promising directions to be explored in future work.

• `2
2-LASSO formula: While Section 3.12 provides justification behind Formula 1, a rigorous proof is

arguably the most important point missing in this chapter. Such a proof would close the gap in this
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chapter and will extend results of [13, 14] to arbitrary convex functions.

• Error formulas for arbitrary σ : Another issue that hasn’t been fully explored in this chapter is the

regime where σ is not small. For C-LASSO, we have shown that the NSE for arbitrary values of σ is

upper bounded by the NSE at σ → 0. For `2-LASSO, our results in Section 3.10 are slightly weaker

than the σ → 0 bound given by Theorem 3.2; however, the empirical observations suggest that our

prediction (that σ → 0 is the worst case) is correct both for the `2 and `2
2-LASSO. Proving that this is

the case is one open issue. What might be even more interesting, is computing exact error formulae

for the arbitrary σ regime. As we have discussed previously, we expect such formulae to not only

depend on the subdifferential of the function.

• A better understanding: Part of our discussion consists of repeated applications of Proposition 2.7

to the lasso problem and its dual to tightly sandwich the cost. We believe a more concise treatment to

the lasso objective may be possible by carrying the duality arguments into Proposition 2.7. Towards

this direction, our recent work shows that, under additional compactness and convexity assumptions,

the comparison inequality of Proposition 2.7 can be shown to be tight [199]. This can help us obtain

the upper and lower bounds on the objective in a single application. For the sake of completeness, we

provide the result of [199].

Theorem 3.11 Let G ∈ Rm×n, g ∈ Rm and h ∈ Rn have i.i.d. N (0,1) entries that are independent

of each other. Also, let Φ1 ⊂ Rn, Φ2 ⊂ Rm be nonempty convex and compact sets and ψ(·, ·) be a

continuous and convex-concave function on Φ1×Φ2. Finally, define

G (G) := min
x∈Φ1

max
y∈Φ2

yT Gx+ψ(x,y),

L (g,h) := min
x∈Φ1

max
y∈Φ2

‖x‖2gT y+‖y‖2hT x+ψ(x,y).

Then, for any c− ∈ R and c+ ∈ R:

P(G (G)< c−)≤ 2P(L (g,h)≤ c−) , (3.148)

P(G (G)> c+)≤ 2P(L (g,h)≥ c+) . (3.149)

Observe that (3.148) is basically identical to Proposition 2.7, while (3.149) is new.
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• Extension to multiple structures: Throughout this chapter, we have focused on the recovery of a

single signal x0. In general, one may consider a scenario, where we observe mixtures of multiple

structures. A classic example used to motivate such problems includes estimation of matrices that

can be represented as sum of a low rank and a sparse component [36,51,144,221]. Another example,

which is closer to our framework, is when the measurements Ax0 experience not only additive i.i.d.

noise z, but also sparse corruptions s0 [101, 133]. In this setup, we observe y = Ax0 + s0 + z and

we wish to estimate x0 from y. The authors in [101, 145] provide sharp recovery guarantees for the

noiseless problem, but do not address the precise noise analysis. We believe, our framework can be

extended to the exact noise analysis of the following constrained problem:

min
x,s
‖y−Ax− s‖2 subject to g(s)≤ g(s0) and f (x)≤ f (x0).

where g(·) is typically the `1 norm.

• Application specific results: In this chapter, we focused on a generic signal-function pair x0, f and

stated our results in terms of the convex geometry of the problem. We also provided numerical

experiments on NSE of sparse and low rank recovery and showed that, theory and simulations are

consistent. On the other hand, it would be useful to derive case-specific guarantees other than NSE.

For example, for sparse signals, we might be interested in the sparsity of the LASSO estimate, which

has been considered by Bayati and Montanari [13, 14]. Similarly, in low rank matrix estimation,

we might care about the rank and nuclear norm of the LASSO estimate. On the other hand, our

generic results may be useful to obtain NSE results for a growing set of specific problems with little

effort, [91, 144, 160, 168, 181, 221]. In particular, one can find an NSE upper bound to a LASSO

problem as long as he has an upper bound to D(λ∂ f (x0)) or D(cone(∂ f (x0))).

• Mean-Squared-Error (MSE) Analysis: In this chapter, we focused on the `2-norm square of the

LASSO error and provided high probability guarantees. It is of interest to give guarantees in terms of

mean-squared-error where we consider the expected NSE. Naturally, we expect our formulae to still

hold true for the MSE, possibly requiring some more assumptions.
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Chapter 4

Elementary equivalences in compressed
sensing

This chapter consists of several results that provide useful and concise equivalences for the linear inverse

problems. We will first illustrate that the sample complexity of i.i.d Bernoulli measurements can be related

to that of Gaussian measurement ensemble, by establishing a relation between the two matrix ensembles. In

the next section, our focus will be establishing a similarity between the signal structures. We will show that

the strong recovery conditions for the sparse and low-rank approximation problems are inherently related,

and hence, one can “translate” the RIP constants and the associated recovery guarantees from sparse vectors

to low-rank matrices with no effort.

4.1 A comparison between the Bernoulli and Gaussian ensembles

Recall that, the Gaussian measurement ensemble has particular importance in low-dimensional representa-

tion problems

x̂ = argmin
x

f (x) subject to Ax0 = Ax, (4.1)

as one can carry out sharp and nonasymptotic analysis of the performance of BP when A has independent

N (0,1) entries. Our interest in this section is to lay out a framework to obtain results for i.i.d nongaus-

sian measurements by constructing a proper similarity to the Gaussian measurements. We will restrict our

attention to symmetric Bernoulli (i.e. Rademacher) measurements, which are equally likely to be +1 and

−1. However, the proposed framework can be trivially extended from Bernoulli to, first, other discrete dis-

tributions and then to continuous distributions with more effort. Focusing on Bernoulli measurements will

make our results cleaner and arguably more elegant. Bernoulli measurement ensemble is interesting in its
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own right as it is advantageous both from computation and storage points of view [176, 232].

We show that Bernoulli measurements can be used for linear inverse problems in a similar manner to

Gaussian’s by paying a price of constant multiplier in front of the sample complexity. This is along the

lines of [206], which provide similar guarantees for the subgaussian ensemble up to unknown constants.

We present a novel strategy that allows us to measure the similarity between two distributions, which yields

explicit constants.

To give an initial intuition, we start with a basic comparison between a matrix with independent N (0,1)

entries and one with symmetric Bernoulli entries.

Proposition 4.1 Let S be a closed subset of the unit sphere in Rn. Let G∈Rm×n and B∈Rm×n be matrices

with independent N (0,1) and symmetric Bernoulli entries respectively. Suppose, for some ε > 0, we have

(1− ε)m≤ Emin
v∈S
‖Gv‖2

2 ≤ Emax
v∈S
‖Gv‖2

2 ≤ (1+ ε)m. (4.2)

Then, we also have

(1− π

2
ε)m≤ Emin

v∈S
‖Bv‖2

2 ≤ Emax
v∈S
‖Bv‖2

2 ≤ (1+
π

2
ε)m.

Observe that, for a fixed unit length vector v, we have that

E‖Gv‖2
2 = E‖Bv‖2

2 = m.

On the other hand, when S is not a singleton, it is less nontrivial to estimate minv∈S ‖Av‖2 and maxv∈S ‖Av‖2.

From the discussion in Chapter 1, we know that, these quantities are important for the analysis of (4.1) and

has been the subject of interest recently. A standard example is when we let S to be the set of at most k

sparse (and normalized) vectors, i.e.

S = {v ∈ Rn
∣∣‖v‖0 ≤ k, ‖v‖2 = 1}.

In this case, the smallest possible ε in (4.2) effectively corresponds to the k-Restricted Isometry Constant δk

of the Gaussian matrix. Hence, Proposition 4.1 relates the δk(G) and δk(B), namely, δk(B)≤ π

2 δk(G). For

the following discussion, probability density functions (p.d.f) will be denoted by lower case letters and the

cumulative density functions (c.d.f) will be denoted by the corresponding upper case letters. Given a p.d.f

f (·), mean( f ) and var( f ) will correspond to the mean and variance of the associated random variable. Also,
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let us recall the definition of restricted singular value.

Definition 4.1 (Restricted Singular Value) Given a closed cone C and a matrix A, the restricted minimum

and maximum singular values of A at C are defined as,

σC (A) = min
v∈C ,‖v‖2=1

‖Av‖2, ΣC (A) = max
v∈C ,‖v‖2=1

‖Av‖2.

We will now describe how to establish a similarity between symmetric Bernoulli and standard normal

distribution.

4.1.1 Proportional Mean Decomposition

Given a piecewise continuous density function fC and discrete distribution fD, we propose the following

partitioning of the continuous distribution in terms of the discrete one.

Definition 4.2 (Proportional mean decomposition (PMD)) Let fC be a zero-mean probability distribution

and fD be a zero-mean discrete distribution with alphabet size of K, given by,

fD(x) =
K

∑
i=1

piδ (x−ai)

where ∑
K
i=1 pi = 1 and {ai}n

i=1’s are ordered increasingly and δ (·) is the Dirac delta function. We say { fi}K
i=1

is a proportional mean decomposition of fC with respect to fD with the similarity constant cS, if, there exists

probability distributions { fi}K
i=1 satisfying,

fC =
K

∑
i=1

pi fi

mean( fi) = cSai

Additionally, let σi =
√

var( fi) and σmax = max1≤i≤K σi.

4.1.1.1 Examples

To provide a better intuition, we provide two examples on PMD when fC ∼N (0,1).
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Figure 4.1: Dashed black lines correspond to mean( fi).

• Suppose fD is symmetric Bernoulli ±1. Let

f1(x) =

√
2
π

exp(−x2

2
) for x≥ 0,

f2(x) =

√
2
π

exp(−x2

2
) for x < 0.

Then, c2
S =

2
π

and σ2
max = σ2

1 = σ2
2 = 1− 2

π
.

• Suppose fD is the ternary distribution,

fD =
1
4

δ (x+
√

2)+
1
2

δ (x)+
1
4

δ (x−
√

2).

Let Q be the tail function of N (0,1). Then, let

f1(x) =

√
2
π

exp(−x2

2
) for x≥ Q−1(1/4),

f2(x) =

√
2
π

exp(−x2

2
) for |x|< Q−1(1/4),

f3(x) = f1(−x) for x≤−Q−1(1/4).

as described in Figure 4.1. In this case, σ2
max = σ2

1 = σ2
3 ≈ 0.242, σ2

2 ≈ 0.143 and c2
S ≈ 0.808.

4.1.1.2 Properties of PMD

PMD satisfies the following properties.
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Lemma 4.1 Consider the setup in Definition 4.2.

• The set of achievable similarity constants cS is convex and contains 0.

• ∑
K
k=1 piσ

2
i = 1− c2

S.

• Suppose xD ∈ R is distributed with fD (i.e. xD ∼ fD). Define xC conditioned on xD as follows,

xC ∼ fi iff xD = ai 1≤ i≤ K.

Then, xC ∼ fC. Furthermore, xC − cSxD has variance 1− c2
S and conditioned on xD, xC − cSxD is

zero-mean.

Proof: First statement: cS = 0 can be achieved by choosing fi = fC for 1≤ i≤ K as fC is zero-mean.

Let c1,c2 be two similarity constants with the corresponding p.d.f’s { f1,i}K
i=1,{ f2,i}K

i=1. One can achieve

cS = αc1 +(1−α)c2 for 0≤ α ≤ 1, by choosing,

fα,i = α f1,i +(1−α) f2,i

and using the linearity of expectation.

Second statement: For each i, we have that, var( fi)+mean( fi)
2 =

∫
∞

−∞
x2 fi(x)dx, and,

1 = var( fC) =
∫

∞

−∞

x2
K

∑
i=1

pi fi(x)dx =
K

∑
i=1

pi

∫
∞

−∞

x2 fi(x)dx

Recalling mean( fi) = cSai, and var( fD) = ∑
K
i=1 pia2

i = 1, we find,

1 = c2
Svar( fD)+

K

∑
i=1

piσ
2
i = c2

S +
K

∑
i=1

piσ
2
i

Third statement: Focusing on the c.d.f of xC,

P(xC ≤ α) =
K

∑
k=1

P(xC ≤ α
∣∣xD = ak)P(xD = ak)

=
K

∑
k=1

pkFk(α) = FC(α).
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Hence, p.d.f of xC is indeed fC. Similarly, conditioning over xD,

E[xC− cSxD
∣∣xD = ai] = E[xC|xD = ai]− cSai = 0.

Using the mean is equal to zero,

var(xC−cSxD) =E[(xC−cSxD)
2] =

K

∑
i=1

E[(xC−cSxD)
2∣∣xD = ai]pi =

K

∑
i=1

[
∫
R

t2 fi(t)dt]pi−
K

∑
i=1

c2
Sa2

i pi = 1−c2
S.

4.1.1.3 From scalars to i.i.d matrices

Our next aim is to use PMD to obtain results on random matrices.

Definition 4.3 (Sensing matrices) Consider Definition 4.2. Let D ∈ Rm×n be a matrix with i.i.d entries

distributed as fD. Let C be a matrix satisfying,

Ci, j ∼ fk if Di, j = ak, ∀ 1≤ k ≤ K, 1≤ i≤ m, 1≤ j ≤ n.

Finally, define the residual matrix to be R := R( fC, fD) = C− cSD.

The following proposition provides an initial motivation on PMD.

Proposition 4.2 (Bound in Expectation) Suppose D and C are as defined above. Let σmin = min1≤k≤K σi.

Then, for any closed cone C ∈ Rn,

E[σC (D)2]≥ E[σC (C)2]−σ2
maxm

c2
S

, E[ΣC (D)2]≤ E[ΣC (C)2]−σ2
minm

c2
S

.

Proof: To prove the first statement, given D and C , let,

v̂ = arg min
v∈C∩S n−1

‖Dv‖2.

where S n−1 is the unit `2 sphere. Conditioned on D, v̂ is fixed and C− cSD has independent, zero-mean

entries. Hence,

EC|D[‖Cv̂‖2
2] = ‖cSDv̂‖2

2 +EC|D[‖(C− cSD)v̂‖2
2] (4.3)
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Since v has unit length and the entries of C−cSD has variance at most σ2
max, EC|D[‖(C−cSD)v̂‖2

2]≤ σ2
maxm.

Hence, taking the expectation over D, we find,

E[σ2
C (C)]≤ E[‖Cv̂‖2

2]≤ E[‖cSDv̂‖2
2]+σ

2
maxm = c2

SE[σC (D)2]+σ
2
maxm (4.4)

To prove the second statement, let v̂ = argmaxv∈C∩S n−1 ‖Dv‖2 and observe that EC|D[‖(C− cSD)v̂‖2
2] ≥

σ2
minm. Instead of (4.4), we use,

E[Σ2
C (C)]≥ E[‖Cv̂‖2

2]≥ E[‖cSDv̂‖2
2]+σ

2
minm = c2

SE[ΣC (D)2]+σ
2
minm.

4.1.1.4 Proof of Proposition 4.1

We are in a position to prove Proposition 4.1; which is essentially a corollary of Proposition 4.2. For

fC ∼N (0,1) and fD is symmetric Bernoulli, we have c2
S =

2
π

, σ2
max = σ2

min = 1− 2
π

. Hence, if E[σ2
C (C)]≥

(1− ε)m,

E[σC (D)2]≥ (1− ε)m− (1− 2
π
)m

2
π

= (1− π

2
ε)m.

Similarly, using E[Σ2
C (C)]≤ (1+ ε)m,

E[ΣC (D)2]≤ (1+ ε)m− (1− 2
π
)m

2
π

= (1+
π

2
ε)m.

Proposition 4.2 considers the crude bounds involving σ2
min and σ2

max in the statements. In fact, one can

always replace them with 1− c2
S by moving from a deterministic statement to a probabilistic one. This can

be done by arguing that, with high probability (for large m), each ai occurs at most (1+ ε ′)mpi times at

each column of D. For such D’s, the expected energy of each column of C− cSD can be upper bounded by

(1+ε ′)m(1−c2
S). One can similarly obtain lower bounds on the column sizes with (1−ε ′) multiplicity and

then repeat the argument in Proposition 4.2 to get results that hold with high probability over D.
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4.1.2 On the sample complexity of Bernoulli ensemble

We will obtain results for Bernoulli matrices by using Gordon’s Comparison Theorem. Recall that, for

success of (4.1), we need, σT f (x0)(A) > 0 where T f (x0) is the tangent cone of f at x0. Recall that δ (C )

is the phase transition point for (4.1) when the measurements are Gaussian. The next result, obtains a

probabilistic success result for symmetric Bernoulli’s in terms of δ (C ).

Theorem 4.1 (Sample complexity bound for Bernoulli) Let f :Rn→R be a convex and continuous func-

tion. Suppose B ∈ Rm×n is a matrix with independent entries that are ±1 equally likely. Fix a tolerance

level ρ . Then, x0 is the unique solution of (4.1), with probability 1− exp(− c2

2 ), whenever

√
m≥ 2.6(ω(T f (x0)∩Bn−1)+ c+4).

Proof: Let C = T f (x0). Define G ∈Rm×n with i.i.d fC ∼N (0,1) entries based on B as in Definition

4.3. From Proposition 4.2 (in particular (4.3)), we know that

E[σ2
C (G)|B] = σ

2
C (B)+(1− 2

π
)m. (4.5)

In order to estimate the left hand side, we will use a probabilistic argument. Combining 1-Lipschitzness of

RSV and Proposition 1.3, for t < γm−ω(C ∩Bn−1), with probability 1− exp(− t2

2 ),

σ
2
C (G)≥ (γm−ω(C ∩Bn−1)− t)2.

Now, let let E be the event {σC (G)≤ γm−ω(C ∩Bn−1)−t} and given ρ := exp(− c2

2 )> 0, S⊂{1,−1}m×n

be the set of B such that P(E
∣∣B)≥ ρ−1 exp(− t2

2 ). We have,

exp(− t2

2
)≥ P(E) = ∑

A∈{1,−1}m×n

P(E
∣∣B = A)P(B = A)

≥ P(E
∣∣B ∈ S)P(B ∈ S)

≥ ρ
−1 exp(− t2

2
)P(B ∈ S).
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It follows that, P(B ∈ S)≤ ρ . Hence, with probability 1−ρ over B,

P(σC (G)≥ γm−ω(C ∩Bn−1)− t
∣∣B)≥ 1−ρ

−1 exp(− t2

2
).

Hence, with the same probability,

E[σC (G)2]≥ (γm−ω(C ∩Bn−1)− t)2(1−ρ
−1 exp(− t2

2
)).

Choose t =
√

2logρ−1+3. This ensures, (1−ρ−1 exp(− t2

2 ))≥ 0.98. Using γm≥
√

m−1, to show σC (B)>

0, from (4.5), we wish to guarantee,

√
m− (ω(C ∩Bn−1)+ t +1)≥ 1

0.98

√
1− 2

π

√
m.

Hence, we simply need
√

m≥ 2.6(ω(C ∩Bn−1)+ t +1).

4.1.3 Concluding remarks

We have introduced the “proportional mean decomposition” as a way to capture similarity of one distribution

to another and discussed how it can be useful in compressed sensing, especially when the measurement

matrix has i.i.d Bernoulli entries. While we are able to obtain small explicit constants in Proposition 4.1

and Theorem 4.1, our basic approach fails to capture the universality phenomenon, which is the common

belief that, the sample complexity for i.i.d Bernoulli (and more generally i.i.d subgaussian) and i.i.d Gaussian

ensembles are asymptotically equal. This remains as an important open question, which is partially answered

by Montanari et al. in the case of `1 minimization [12].

4.2 An equivalence between the recovery conditions for sparse signals and

low-rank matrices

The Restricted Isometry Property (RIP) was introduced by Candès and Tao in [32, 45] and has played a

major role in proving recoverability of sparse signals from compressed measurements. The first recovery

algorithm that was analyzed using RIP was `1 minimization in [32,45]. Since then, many algorithms includ-

ing Reweighed `1 [159], GraDes [104] have been analyzed using RIP. Analogous to the vector case, RIP
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has also been used in the analysis of algorithms for low rank matrix recovery, for example Nuclear Norm

Minimization [178], Reweighted Trace Minimization [156], and SVP [150]. Other recovery conditions have

also been proposed for recovery of both sparse vectors and low-rank matrices including the Null Space Prop-

erty [163,233] and the Spherical Section Property [87,233] (also known as the ‘almost Euclidean’ property)

for the nullspace. The first matrix RIP result was due to Recht et. al. [178] where it was shown that the RIP

is sufficient for low rank recovery using nuclear norm minimization, and that it holds with high probability

as long as number of measurements are sufficiently large. This analysis was improved in [39] to require

a minimal order of measurements. Recently, [156] improved the RIP constants with a stronger analysis

similar to [27].

In this section, we show that if a set of conditions are sufficient for the robust recovery of sparse vectors

with sparsity at most k, then “extension” (defined later) of the same set of conditions are sufficient for

the robust recovery of low rank matrices up to rank k. In particular, we show RIP for matrices implies

extension of RIP for vectors hence one can easily translate the best known RIP conditions for vector recovery

to low rank matrices. While the recovery analysis in [156] and [39] (Theorem 2.4) is complicated and

lengthy, our results (see “Main Theorem”) are easily derived due to the use of a key singular value inequality

(Lemma 4.2). The best known bounds on the RIP constants δk and δ2k for sparse vector recovery using `1

minimization are 0.309 and 0.5 respectively [27,130]. A simple consequence of this section is the following:

δk < 0.309 or δ2k < 0.5 are sufficient for robust recovery of matrices with rank at most k improving the

previous conditions of δ2k < 0.307 in [156]. Improving the RIP conditions is not the focus of this section,

although such improvements have been of independent mathematical interest (e.g., [27, 28]).

Our results also apply another recovery condition known as the Nullspace Spherical Section Property

(SSP) hence it easily follows from our main theorem that the spherical section constant ∆ > 4r is sufficient

for the recovery of matrices up to rank r as in the vector case [233]. This approach not only simplifies the

analysis in [87], but also gives a better condition (as compared to ∆ > 6r in [87]). Our final contribution

is to give nullspace based conditions for recovery of low-rank matrices using Schatten-p quasi-norm mini-

mization, which is analogous to `p minimization with 0 < p < 1 for vectors and has motivated algorithms

such as IRLS [65,155] that have been shown to empirically improve on the recovery performance of nuclear

norm minimization.
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4.2.1 Section specific notation

x̄ denotes the vector obtained by decreasingly sorting the absolute values of the entries of x, and xk denotes

the vector obtained by restricting x to its k largest elements (in absolute value). Let diag(·) : Rn×n → Rn

return the vector of diagonal entries of a matrix, and diag(·) : Rn → Rn×n return a diagonal matrix with

the entries of the input vector on the diagonal. Let n1 ≤ n2. Denote the ith largest singular value of a

matrix X by σi(X). Let Σ(X) = [σ1(X), . . . ,σn1(X)]T be vector of decreasingly sorted singular values of

X. Xk denotes the matrix obtained by taking the first k terms in the singular value decomposition of X.

Let ΣX = diag(Σ(X)) ∈ Rn1×n1 . We call (U,V) a unitary pair if UT U = UUT = VT V = I. Then, for the

rest of the section, we’ll use the following singular value decomposition of X: X = UΣXVT where (U,V)

is some unitary pair. Obviously U ∈ Rn1×n1 ,V ∈ Rn2×n1 . Notice that the set of matrices UDVT , where

D is diagonal, form an n1 dimensional subspace. Denote this space by S(U,V). Let A (·) : Rn1×n2 → Rm

be a linear operator. AU,V(·) : Rn1 → Rm is called the restriction of A to unitary pair (U,V) if we have

AU,V(x) = A (Udiag(x)VT ) for all x ∈ Rn1 . In particular, AU,V(·) can be represented by a matrix AU,V.

Consider the problem of recovering the desired vector x0 ∈Rn from corrupted measurements y = Ax0+

z, with ‖z‖2 ≤ ε where ε denotes the noise energy, and A ∈ Rm×n denotes the measurement matrix. It

is known that sparse recovery can be achieved under certain conditions by solving the following convex

problem,

minimize ‖x‖1

subject to ‖Ax−y‖2 ≤ ε,
(4.6)

where recovery is known to be robust to noise as well as imperfect sparsity. We say x∗ is as good as x0 if

‖Ax∗−y‖2 ≤ ε and ‖x∗‖1 ≤ ‖x0‖1. In particular, the optimal solution of the problem 4.6 is as good as x0.

With a slight abuse of notation, let X0 ∈ Rn1×n2 with n = n1 ≤ n2 and let A : Rn1×n2 → Rm be the

measurement operator. We observe corrupted measurements y = A (X0)+ z with ‖z‖2 ≤ ε . For low rank

recovery we solve the following convex problem,

minimize ‖X‖?
subject to ‖A (X)−y‖2 ≤ ε.

(4.7)

Similar to the vector case, we say that X∗ is as good as X0 if ‖A (X∗)−y‖2 ≤ ε and ‖X∗‖? ≤ ‖X0‖?. We

now give the definitions for certain recovery conditions on the measurement map, the Restricted Isometry
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Property and the Spherical Section Property.

Definition 4.4 (Restricted Isometry Constant) δk of a matrix A is the smallest constant for which

(1−δk)‖x‖2
2 < ‖Ax‖2

2 < (1+δk)‖x‖2
2

holds for all vectors x with ‖x‖0 ≤ k.

RIP constant δk for matrices is defined similarly, with X instead of x, A instead of A and rank(X)≤ k

instead of ‖x‖0 ≤ k.

Definition 4.5 (Restricted Orthogonality Constant) θk,k′ of a matrix A is the smallest constant for which

|
〈
< Ax,Ax′

〉
> | ≤ θk,k′‖x‖2‖x′‖2

holds for all vectors x,x′ with disjoint supports and ‖x‖0 ≤ k and ‖x′‖0 ≤ k′.

Our definition of matrix ROC will be slightly looser than the one given in [156]. For an operator A ,

θk,k′ is the smallest constant for which

|
〈
< A (X),A (X′)

〉
> | ≤ θk,k′‖X‖F‖X′‖F

holds for all matrices X,X′ such that rank(X)≤ k, rank(X′)≤ k′ and both column and row spaces of X,X′

are orthogonal, i.e., in a suitable basis we can write X =

X11 0

0 0

 and X′ =

0 0

0 X′22

.

As it will be clear in the subsequent sections, Restricted Isometry Property (RIP) is basically a set of condi-

tions on restricted isometry constants of the measurement operator.

Definition 4.6 (Spherical Section Constant) Spherical section constant ∆(A ) is defined as follows:

∆(A ) =

(
min

Z∈Null(A )\{0}
‖Z‖∗
‖Z‖F

)2

.

Furthermore, We say A satisfies ∆ Spherical Section Property (SSP), if ∆(A )≥ ∆.

The definition of SSP for a matrix A ∈ Rn×m for analyzing recovery of sparse vectors is analogous to the

above definition. Another way to describe this property is to note that a large ∆ implies the nullspace is
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an almost Euclidean subspace [233], where the ratio of `1 to `2 norms cannot be small and therefore the

subspace cannot be aligned with the coordinate planes.

4.2.2 Key Observations

Throughout this note, many of the proofs involving matrices are repeated applications of the following useful

Lemma which enables us to “vectorize” matrices when dealing with matrix norm inequalities.

Lemma 4.2 ( [119]) (Key Lemma) Let Z = X−Y ∈ Rn1×n2 . Then we have the following inequality:

n1

∑
i=1
|σi(X)−σi(Y)| ≤ ‖Z‖?. (4.8)

We now give a useful application of Lemma 4.2.

Lemma 4.3 Given W with singular value decomposition UΣWVT , if there is an X0 for which ‖X0+W‖? ≤
‖X0‖? then there exists X1 ∈ S(U,V) with Σ(X1) = Σ(X0) such that ‖X1 +W‖? ≤ ‖X1‖?. In particular this

is true for X1 =−UΣX0VT .

Proof: From Lemma 4.2 we have

‖X0 +W‖? ≥∑
i
|σi(X0)−σi(W)|. (4.9)

On the other hand, for X1 =−UΣX0VT ,W we have

‖X1 +W‖? = ‖−ΣX0 +ΣW‖? = ∑
i
|σi(X0)−σi(W)|. (4.10)

Then from (4.9) and (4.10) it follows

‖X1 +W‖? ≤ ‖X0 +W‖? ≤ ‖X0‖? = ‖X1‖?.

Although, Lemma 4.3 is trivial to prove its implications are important. It suggests that if there exists a

“bad” X0 for a particular perturbation W, then there is also a “bad” X1, which is “similar” to X0, but lies

on the same restricted subspace S(U,V) as W. On the other hand, as will be clear in a moment, if we have
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a guarantee that none of such subspaces contains a bad (X1,W) pair, then we can also guarantee that there

won’t be a bad (X0,W) pair even if we consider a union of subspaces.

To further illustrate the similarity between sparse and low rank recovery, we state the null space condi-

tions for noiseless recovery.

Lemma 4.4 ( [96]) Null space condition for sparse recovery

Let A ∈ Rm×n be a measurement matrix. Assume ε = 0 then one can perfectly recover all vectors x0 with

‖x0‖0 ≤ k via program 4.6 if and only if for any w ∈ Null(A) we have:

k

∑
i=1

w̄i <
n

∑
i=k+1

w̄i, (4.11)

where w̄i is the ith entry of w̄ defined previously.

We now state a critical result, that provides an “if and only if” condition for the strong recovery of

low-rank matrices via NNM. Our condition is strikingly similar to Lemma 4.4.

Proposition 4.3 (also see [163]) Null space condition for low-rank recovery

Let A : Rn1×n2 → Rm be a linear measurement operator. Assume ε = 0 then one can recover all matrices

X0 with rank(X0)≤ k via program 4.7 if and only if for any W ∈ Null(A ) we have:

k

∑
i=1

σi(W)<
n1

∑
i=k+1

σi(W). (4.12)

Proof: Suppose (4.12) holds for all W ∈ Null(A ). Then, for any feasible perturbation W, using

Lemma 4.2,
n1

∑
i=1
|σi(X0)−σi(W)| ≤ ‖X0 +W‖?.

Now, to conclude with ‖X0 +W‖? > ‖X0‖?, observe that σi(X0) = 0 for i > k and,

n1

∑
i=1
|σi(X0)−σi(W)| ≥

k

∑
i=1

(σi(X0)−σi(W))+
n1

∑
i=k+1

σi(W)> ‖X0‖?

To show the failure result, assume there exists a W ∈ Null(A ) for which (4.12) does not hold. Assume W

has SVD Udiag(w)VT and choose X0 = Udiag(d)VT where di = −wi for 1 ≤ i ≤ k and 0 else. Clearly,
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rank(X0)≤ k and

‖X0 +W‖? = ‖d+w‖1 =
n1

∑
i=k+1

σi(W)≤
k

∑
i=1

σi(W) = ‖w‖1 = ‖X0‖?

hence, X0 is not the unique minimizer.

4.2.3 Main Result

Definition 4.7 (Extension) Let P be a property defined for matrices in Rn→Rm. We denote extension of P

by Pe which is a property of linear operators A : Rn1×n2 → Rm as follows:

A (·) has property Pe if all its restrictions, AU,V, have property P.

In this section, we state our main result which enables us to translate vector recovery to matrix recovery via

extension. In particular, as we discuss later, standard RIP and SSP based conditions for matrices implies

extensions of RIP and SSP based conditions for vectors, thus enabling translation of results from vectors to

matrices as an application of the main theorem. Let ‖ · ‖v be an arbitrary norm on Rn with ‖x‖v = ‖x̄‖v for

all x. Let ‖ · ‖m be the corresponding unitarily invariant matrix norm on Rn1×n2 such that ‖X‖m = ‖Σ(X)‖v.

For the sake of clarity, we use the following shorthand notation for statements regarding recovery of vectors,

in the main theorem:

• V1: A matrix A : Rn→ Rm satisfies a property P.

• V2: In program 4.6, for any x0, ‖z‖2 ≤ ε , y = Ax0 + z and any x∗ as good as x0 we have,

‖x∗−x0‖v ≤ h(x0,ε).

• V3: For any w ∈ Null(A), w satisfies a certain property Q.

We also use the following shorthand for statements regarding recovery of matrices, in the main theorem:

• M1: A linear operator A : Rn1×n2 → Rm satisfies the extension property Pe.

• M2: In program 4.7, for any X0, ‖z‖2 ≤ ε , y = A (X0)+ z and any X∗ as good as X0 we have,

‖X∗−X0‖m ≤ h(Σ(X0),ε).

• M3: For any W ∈ Null(A ), Σ(W) satisfies property Q.
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Theorem 4.2 (Main Theorem) For a given P, the following implications hold true:

(V1 =⇒ V2) =⇒ (M1 =⇒ M2). (4.13)

(V1 =⇒ V3) =⇒ (M1 =⇒ M3). (4.14)

Proof: (V1 =⇒ V2) =⇒ (M1 =⇒ M2).

Assume V1 =⇒ V2 and A satisfies Pe. Consider program 4.7 where measurements are y0 = A (X0)+ z0

with ‖z0‖2 ≤ ε . Also let X∗ = X0 +W be as good as X0. This implies that ‖X0 +W‖? ≤ ‖X0‖? and

‖A (X0 +W)− y0‖2 ≤ ε . Then, from Lemma 4.3 for X1 = −UΣX0VT (where W has SVD UΣWVT ) we

have ‖X1 +W‖? ≤ ‖X1‖?. Now, let y1 = A (X1)+ z0. Clearly

‖A (X1 +W)−y1‖2 = ‖A (X0 +W)−y0‖2 ≤ ε

hence X1+W is as good as X1. Now consider program 1 with AU,V as measurement matrix, y1 as measure-

ments, x1 =−Σ(X0) as unknown vector and w = Σ(W) to be perturbation. Notice that x1 +w is as good as

x1. Also since A has Pe, AU,V has P. Using V1 =⇒ V2 we conclude

‖W‖m = ‖w‖v ≤ h(x̄1,ε) = h(Σ(X0),ε)

Hence, we found: M1 =⇒ M2.

Using similar arguments, now we show that (V1 =⇒ V3) =⇒ (M1 =⇒ M3).

Assume V1 =⇒ V3 and A has Pe. Consider any W∈Null(A ) with SVD of W = UΣWVT . Then, A (W) =

AU,VΣ(W) = 0. Also AU,V satisfies P. Using V1 =⇒ V3, we find Σ(W) satisfies Q. Hence M1 =⇒ M3.

As it can be seen from Main Theorem, throughout this section, we are actually dealing with a strong

notion of recovery. By strong we mean, P guarantees a recovery result for all x0 (X0) with sparsity (rank)

at most k instead of a particular x0 (X0). For example, matrix completion results in the literature don’t have

strong recovery. On the other hand it is known that (good) RIP or SSP conditions guarantee recoverability

for all vectors hence they result in a strong recovery.

To apply the main theorem, we require linear maps on matrices to satisfy the extensions of the properties

of linear maps on vectors. Below, we apply our results to RIP and SSP.
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4.2.3.1 Applications of Main Theorem to RIP based recovery

We first show that RIP for matrices implies extension of RIP for vectors thus Theorem 4.2 is applicable for

RIP. We say f (δi1 , . . . ,δim ,θ j1, j′1
, . . . ,θ jn, j′n)≤ c is an RIP inequality where c≥ 0 is a constant and f (·) is an

increasing function of its parameters (RIC and ROC) and f (0, . . . ,0) = 0. Let F be a set of RIP inequalities

namely f1, . . . , fN where k’th inequality is of the form:

fk(δik,1 , . . . ,δik,mk
,θ jk,1, j′k,1

, . . . ,θ jk,nk , j
′
k,nk

)≤ ck.

Lemma 4.5 If A : Rn1×n2 →Rm satisfies a set of (matrix) RIP and ROC inequalities F, then for all unitary

pairs (U,V), AU,V will satisfy the same inequalities, thus RIP for matrices implies extension of RIP for

vectors.

Proof: Let δ ′k,θ
′
k,k′ denote RIC and ROC of of AU,V and δk,θk,k′ denote RIC and ROC of A (·). Then

we claim: δ ′k ≤ δk and θ ′k,k′ ≤ θk,k′ . For any x of ‖x‖0 ≤ k, let X = Udiag(x)VT . Using ‖x‖2 = ‖X‖F and

AU,Vx = A (X) we have:

(1−δk)‖x‖2
2 < ‖A (X)‖2

F = ‖AU,Vx‖2
2 < (1+δk)‖x‖2

2

Hence δ ′k ≤ δk. Similarly let x,x′ have disjoint supports with sparsity at most k,k′ respectively. Then

obviously X = Udiag(x)VT and X′ = Udiag(x′)VT satisfies the condition in ROC definition. Hence:

|
〈
< AU,Vx,AU,Vx′

〉
> |= |

〈
< A (X),A (X′)

〉
> |

≤ θk,k′‖X‖F‖X′‖F = θk,k′‖x‖2‖x′‖2

Hence θ ′k,k′ ≤ θk,k′ . Thus, AU,V satisfies the set of inequalities F as fi(·)’s are increasing function of δk’s and

θk,k′’s.

By using this observation and the main theorem, we can smoothly translate any implication of RIP for vec-

tors to corresponding implication for matrices. In particular, some typical RIP implications are as follows.

Proposition 4.4 (RIP implications for k-sparse recovery ( [32])) Suppose A : Rn→ Rm satisfies, a set of

RIP inequalities F. Then for all x0, ‖z‖2≤ ε and x∗ as good as x0 we have the following `2 and `1 robustness

results,
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‖x0−x∗‖2 ≤
C1√

k
‖x0−xk

0‖1 +C2ε (4.15)

‖x0−x∗‖1 ≤C3‖x0−xk
0‖1

For some constants C1,C2,C3 > 0.

Now, using Theorem 4.2, we translate these implications to matrices in the following lemma.

Lemma 4.6 Suppose A : Rn1×n2 → Rm satisfies the same inequalities F as in (4.15). Then for all X0,

‖z‖2 ≤ ε and X∗ as good as X0 we have the following Frobenius norm and nuclear norm robustness results,

‖X0−X∗‖F ≤
C1√

k
‖X0−Xk

0‖?+C2ε

‖X0−X∗‖? ≤C3‖X0−Xk
0‖?

4.2.3.2 Application of Main Theorem to SSP based recovery

The following lemma suggests that SSP for linear operators on matrices implies extension of SSP for linear

operators on vectors.

Lemma 4.7 Let ∆ > 0. If A : Rn1×n2 →Rm satisfies ∆-SSP, then for all unitary pairs (U,V), AU,V satisfies

∆-SSP.

Proof: Consider any w ∈Null(AU,V). Then, A (Udiag(w)VT ) = 0 and therefore W = Udiag(w)VT ∈
Null(A ). Since A satisfies ∆-SSP, we have ‖W‖?‖W‖F

= ‖w‖1
‖w‖2
≥
√

∆(A )≥
√

∆. Thus AU,V satisfies ∆-SSP.

Now we give the following SSP based result for matrices as an application of main theorem.

Theorem 4.3 Consider program 4.7 with z = 0, y = A (X0). Let X∗ be as good as X0. Then if A satisfies

∆-SSP with ∆ > 4r, it holds that

‖X∗−X0‖?‖ ≤C‖X0−Xr
0‖?

where C = 2
1−2
√

r/∆
.

Note that the use of main theorem and Key Lemma simplifies the recovery analysis in [87] and also improves

the sufficient condition of r < ∆

6 in [87] to r < ∆

4 . This improved sufficient condition matches the sufficient

condition given in [233] for the sparse vector recovery problem.
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4.2.4 Simplified Robustness Conditions

We show that various robustness conditions are equivalent to simple conditions on the measurement operator.

The case of noiseless and perfectly sparse signals, is already given in Lemmas 4.4 and 4.3. Such simple

conditions might be useful for analysis of nuclear norm minimization in later works. We state the conditions

for matrices only; however, vector and matrix conditions will be identical (similar to Lemmas 4.4, 4.3) as

one can expect from Theorem 4.2. The proofs follow from simple algebraic manipulations with the help of

Lemma 4.2.

Lemma 4.8 (Nuclear Norm Robustness for Matrices)

Assume ε = 0 (no noise). Let C > 1 be constant. Then for any X0 and any X∗ as good as X0 we are

guaranteed to have:

‖X0−X∗‖? < 2C‖X0−Xk
0‖?

if and only if for all W ∈ Null(A ) we have:

‖Wk‖? <
C−1
C+1

‖W−Wk‖?

Lemma 4.9 (Frobenius Norm Robustness for Matrices)

Let ε = 0. Then for any X0 and X∗ as good as X0,

‖X0−X∗‖F <
C√

k
‖X0−Xk

0‖?,

if and only if for all W ∈ Null(A ),

‖W−Wk‖?−‖Wk‖? >
2
√

k
C
‖W‖F

Lemma 4.10 (Matrix Noise Robustness) For any X0 with rank(X0)≤ k, any ‖z‖2 ≤ ε and any X∗ as good

as X0,

‖X0−X∗‖F <Cε,

if and only if for any W with ‖Wk‖? ≥ ‖W−Wk‖?,

‖W‖F <
C
2
‖A (W)‖2
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4.2.5 Null space based recovery result for Schatten-p quasi-norm minimization

In the previous sections, we stated the main theorem and considered its applications on RIP and SSP based

conditions to show that results for recovery of sparse vectors can be analogously extended to recovery of low-

rank matrices without making the recovery conditions stronger. In this section, we consider extending results

from vectors to matrices using an algorithm different from `1 minimization or nuclear norm minimization.

The `p quasi-norm (with 0 < p < 1) is given by ‖x‖p
p = ∑

n
i=1 |xi|p. Note that for p = 0, this is nothing

but the cardinality function. Thus it is natural to consider the minimization of the `p quasi-norm (as a

surrogate for minimizing the cardinality function). Indeed, `p minimization has been a starting point for

algorithms including Iterative Reweighted Least Squares [65] and Iterative Reweighted `1 minimization

[29, 100]. Note that although `1 minimization is convex, `p minimization with 0 < p < 1 is non-convex.

However empirically, `p minimization based algorithms with 0 < p < 1 have a better recovery performance

as compared to `1 minimization (see e.g. [54], [100]). The recovery analysis of these algorithms has mostly

been based on RIP. However Null space based recovery conditions analogous to those for `1 minimization

have been given for `p minimization (see e.g. [219]).

Let Tr |A|p = Tr(AT A)
p
2 = ∑

n
i=1 σ

p
i (A) denote the Schatten-p quasi norm with 0 < p < 1. Analogous

to the vector case, one can consider the minimization of the Schatten-p quasi-norm for the recovery of

low-rank matrices,

minimize Tr |X|p

subject to A (X) = y
(4.16)

where y = A (X0) with X0 being the low-rank solution we wish to recover. IRLS-p has been proposed as

an algorithm to find a local minimum to (4.16) in [155]. However no null-space based recovery condition

has been given for the recovery analysis of Schatten-p quasi norm minimization. We give such a condition

below, after mentioning a few useful inequalities.

Lemma 4.11 ( [210]) For any two matrices A,B∈Rm×n it holds that ∑
k
i=1(σ

p
i (A)−σ

p
i (B))≤∑

k
i=1 σ

p
i (A−

B) for all k = 1,2, . . . ,n.

Note that the p quasi-norm of a vector satisfies the triangle inequality (x,y∈Rn, ∑
n
i=1 |xi+yi|p≤∑

n
i=1 |xi|p+

∑
n
i=1 |yi|p). Lemma 4.11 generalizes this result to matrices.
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Lemma 4.12 ( [118]) For any two matrices P,Q it holds that

σt+s−1(P+Q)≤ σt(P)+σs(Q)

where t + s−1≤ n and t,s≥ 0.

The following lemma easily follows as a consequence.

Lemma 4.13 For any two matrices, A,B with B of rank r and any p > 0,

n−r

∑
i=r+1

σ
p
i (A−B)≥

n

∑
i=2r+1

σ
p
i (A).

Theorem 4.4 Let tr((X0)) = r and let X̄ denote the global minimizer of (4.16). A sufficient condition for

X̄ = X0 is that ∑
2r
i=1 σ

p
i (W) ≤ ∑

n
i=2r+1 σ

p
i (W) for all W ∈ Null(A ). A necessary condition for X̄ = X0 is

that ∑
r
i=1 σ

p
i (W)≤ ∑

n
i=r+1 σ

p
i (W) for all W ∈ Null(A ).

Proof: (⇒) For any W ∈ Null(A )\{0},

Tr |X0 +W|p=
r

∑
i=1

σ
p
i (X0 +W)+

n

∑
i=r+1

σ
p
i (X0 +W)

≥
r

∑
i=1

(σ p
i (X0)−σ

p
i (W))+

n

∑
i=2r+1

σ
p
i (W)

≥ Tr |X0|p

where the first inequality follows from Lemma 4.11 and Lemma 4.13. The necessary condition is easy to

show analgous to the results for nuclear norm minimization.

Note that there is a gap between the necessary and sufficient conditions. We observe through numerical

experiments that a better inequality such as
n

∑
i=1

σ
p
i (A−B)≥

n

∑
i=1
|σ p

i (A)−σ
p
i (B)| seems to hold for any two

matrices A,B. Note that this is in particular true for p = 1 (Lemma 4.2) and p = 0. If this inequality is

proven true for all 0 < p < 1, then we could bridge the gap between necessity and sufficiency in Theorem

4.4. Thus we have that singular value inequalities including those in Lemma 4.2 and Lemma 4.13, 4.11 play

a fundamental role in extending recovery results from vectors to matrices. Although, our condition is not

tight, we can still use the Theorems 4.2 and 4.4 to conclude the following:
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Lemma 4.14 Assume property S on matrices Rn→Rm implies perfect recovery of all vectors with sparsity

at most 2k via `p quasi-norm minimization where 0< p< 1. Then Se implies perfect recovery of all matrices

with rank at most k via Schatten-p quasi-norm minimization.

Proof Idea: Since S implies perfect recovery of all vectors with sparsity at most 2k, it necessarily implies a

null space property (call it Q) similar to the one given in Lemma 4.4, (4.11) but with p in the exponent (see

e.g. [219]) and k replaced by 2k. Now the main theorem, (4.14), combined with Theorem 4.4 implies that

Se is sufficient for perfect revovery of rank k matrices.

In particular, using Lemma 4.14, we can conclude, any set of RIP conditions that are sufficient for recovery

of vectors of sparsity up to 2k via `p minimization, are also sufficient for recovery of matrices of rank up to

k via Schatten-p minimization. As an immediate consequence it follows that the results in [53, 100] can be

easily extended.

4.2.6 Conclusions

This section presented a general result stating that extension of any sufficient condition for the recovery of

sparse vectors using `1 minimization is also sufficient for the recovery of low-rank matrices using nuclear

norm minimization. As an immediate consequence of this result, we have that the best known RIP-based

recovery conditions of δk < 0.309, δ2k < 0.5 for sparse vector recovery is also sufficient for low-rank matrix

recovery. We also show that a Null-space based sufficient condition (Spherical Section Property) given in

[233] easily extends to the matrix case, tightening the existing conditions for low-rank matrix recovery [87].

Finally, we gave null-space based conditions for recovery using Schatten-p quasi-norm minimization and

showed that RIP based conditions for `p minimization extend to the matrix case. We note that all of these

results rely on the ability to “vectorize” matrices through the use of key singular value inequalities including

Lemma 4.2, 4.11.
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Chapter 5

Simultaneously Structured Models

There are many applications where the model of interest is known to have several structures at the same

time (Section 5.0.8). We then seek a signal that lies in the intersection of several sets defining the individual

structures (in a sense that we will make precise later). The most common convex regularizer (penalty) used

to promote all structures together is a linear combination of well-known regularizers for each structure.

However, there is currently no general analysis and understanding of how well such regularization performs

in terms of the number of observations required for successful recovery of the desired model. This chapter

addresses this ubiquitous yet unexplored problem; i.e., the recovery of simultaneously structured models.

An example of a simultaneously structured model is a matrix that is simultaneously sparse and low-rank.

One would like to come up with algorithms that exploit both types of structures to minimize the number of

measurements required for recovery. An n×n matrix with rank r� n can be described by O (rn) parameters,

and can be recovered using O (rn) generic measurements via nuclear norm minimization [39, 178]. On the

other hand, a block-sparse matrix with a k×k nonzero block where k� n can be described by k2 parameters

and can be recovered with O
(
k2 log n

k

)
generic measurements using `1 minimization. However, a matrix

that is both rank r and block-sparse can be described by O (rk) parameters. The question is whether we can

exploit this joint structure to efficiently recover such a matrix with O (rk) measurements.

In this chapter we give a negative answer to this question in the following sense: if we use multi-objective

optimization with the `1 and nuclear norms (used for sparse signals and low rank matrices, respectively),

then the number of measurements required is lower bounded by O
(
min{k2,rn}

)
. In other words, we need

at least this number of observations for the desired signal to lie on the Pareto optimal front traced by the `1

norm and the nuclear norm. This means we can do no better than an algorithm that exploits only one of the

two structures.
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We introduce a framework to express general simultaneous structures, and as our main result, we prove

that the same phenomenon happens for a general set of structures. We are able to analyze a wide range

of measurement ensembles, including subsampled standard basis (i.e. matrix completion), Gaussian and

subgaussian measurements, and quadratic measurements. Table 5.1 summarizes known results on recovery

of some common structured models, along with a result of this chapter specialized to the problem of low-

rank and sparse matrix recovery. The first column gives the number of parameters needed to describe the

model (often referred to as its ‘degrees of freedom’), the second and third columns show how many generic

measurements are needed for successful recovery. In ‘nonconvex recovery’, we assume we are able to find

the global minimum of a nonconvex problem. This is clearly intractable in general, and not a practical

recovery method—we consider it as a benchmark for theoretical comparison with the (tractable) convex

relaxation in order to determine how powerful the relaxation is.

The first and second rows are the results on k sparse vectors in Rn and rank r matrices in Rn×n respec-

tively, [43, 45]. The third row considers the recovery of “low-rank plus sparse” matrices. Consider a matrix

X ∈ Rn×n that can be decomposed as X = XL +XS where XL is a rank r matrix and XS is a matrix with

only k nonzero entries. The degrees of freedom of X is O (rn+ k). Minimizing the infimal convolution of `1

norm and nuclear norm, i.e., f (X) = minY ‖Y‖?+λ‖X−Y‖1 subject to random Gaussian measurements on

X, gives a convex approach for recovering X. It has been shown that under reasonable incoherence assump-

tions, X can be recovered from O
(
(rn+ k) log2 n

)
measurements which is suboptimal only by a logarithmic

factor [222]. Finally, the last row in Table 5.1 shows one of the results in this chapter. Let X∈Rn×n be a rank

r matrix whose entries are zero outside a k1× k2 submatrix. The degrees of freedom of X is O ((k1 + k2)r).

We consider both convex and non-convex programs for the recovery of this type of matrices. The noncon-

vex method involves minimizing the number of nonzero rows, columns and rank of the matrix jointly, as

discussed in Section 5.2.2. As shown later, O ((k1 + k2)r logn) measurements suffices for this program to

successfully recover the original matrix. The convex method minimizes any convex combination of the indi-

vidual structure-inducing norms, namely the nuclear norm and the `1,2 norm of the matrix, which encourage

low-rank and column/row-sparse solutions respectively. We show that with high probability this program

cannot recover the original matrix with fewer than Ω(rn) measurements. In summary, while nonconvex

method is slightly suboptimal, the convex method performs poorly as the number of measurements scales

with n rather than k1 + k2.
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Model Degrees of Freedom Nonconvex recovery Convex recovery
Sparse vectors k O (k) O

(
k log n

k

)
Low rank matrices r(2n− r) O (rn) O (rn)
Low rank plus sparse O (rn+ k) not analyzed O

(
(rn+ k) log2 n

)
Low rank and sparse O (r(k1 + k2)) O (r(k1 + k2) logn) Ω(rn)

Table 5.1: Summary of results in recovery of structured signals. This chapter shows a gap between the performance
of convex and nonconvex recovery programs for simultaneously structured matrices (last row).

5.0.7 Contributions

This chapter describes a general framework for analyzing the recovery of models that have more than one

structure, by combining penalty functions corresponding to each structure. The framework proposed in-

cludes special cases that are of interest in their own right, e.g., sparse and low-rank matrix recovery and

low-rank tensor completion [103, 114]. Our contributions can be summarized as follows.

Poor performance of convex relaxations. We consider a model with several structures and associated

structure-inducing norms. For recovery, we consider a multi-objective optimization problem to minimize

the individual norms simultaneously. Using Pareto optimality, we know that minimizing a weighted sum of

the norms and varying the weights traces out all points of the Pareto-optimal front (i.e., the trade-off surface,

Section 5.1). We obtain a lower bound on the number of measurements for any convex function combining

the individual norms. A sketch of our main result is as follows.

Given a model x0 with τ simultaneous structures, the number of measurements required for

recovery with high probability using any linear combination of the individual norms satisfies

the lower bound

m≥ cmmin = c min
i=1,...,τ

mi

where mi is an intrinsic lower bound on the required number of measurements when minimizing

the ith norm only. The term c depends on the measurement ensemble we are dealing with.

For the norms of interest, mi will be approximately proportional to the degrees of freedom of the ith model,

as well as the sample complexity of the associated norm. With mmin as the bottleneck, this result indicates

that the combination of norms performs no better than using only one of the norms, even though the target

model has a very small degree of freedom.
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Different measurement ensembles. Our characterization of recovery failure is easy to interpret and de-

terministic in nature. We show that it can be used to obtain probabilistic failure results for various random

measurement ensembles. In particular, our results hold for measurement matrices with i.i.d subgaussian

rows, quadratic measurements and matrix completion type measurements.

Understanding the effect of weighting. We characterize the sample complexity of the multi-objective

function as a function of the weights associated with the individual norms. Our upper and lower bounds

reveal that the sample complexity of the multi-objective function is related to a certain convex combination

of the sample complexities associated with the individual norms. We give formulas for this combination as

a function of the weights.

Incorporating general cone constraints. In addition, we can incorporate side information on x0, ex-

pressed as convex cone constraints. This additional information helps in recovery; however, quantifying

how much the cone constraints help is not trivial. Our analysis explicitly determines the role of the cone

constraint: Geometric properties of the cone such as its Gaussian width determines the constant factors in

the bound on the number of measurements.

Sparse and Low-rank matrix recovery: illustrating a gap. As a special case, we consider the recovery

of simultaneously sparse and low-rank matrices and prove that there is a significant gap between the per-

formance of convex and non-convex recovery programs. This gap is surprising when one considers similar

results in low-dimensional model recovery discussed above in Table 5.1.

5.0.8 Applications

We survey several applications where simultaneous structures arise, as well as existing results specific to

these applications. These applications all involve models with simultaneous structures, but the measurement

model and the norms that matter differ among applications.

Sparse signal recovery from quadratic measurements. Sparsity has long been exploited in signal pro-

cessing, applied mathematics, statistics and computer science for tasks such as compression, denoising,

model selection, image processing and more. Despite the great interest in exploiting sparsity in various

applications, most of the work to date has focused on recovering sparse or low rank data from linear mea-
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surements. Recently, the basic sparse recovery problem has been generalized to the case in which the

measurements are given by nonlinear transforms of the unknown input, [15]. A special case of this more

general setting is quadratic compressed sensing [189] in which the goal is to recover a sparse vector x from

quadratic measurements bi = xT Aix. This problem can be linearized by lifting, where we wish to recover a

“low rank and sparse” matrix X = xxT subject to measurements bi = 〈Ai,X〉.
Sparse recovery problems from quadratic measurements arise in a variety of problems in optics. One

example is sub-wavelength optical imaging [189, 197] in which the goal is to recover a sparse image from

its far-field measurements, where due to the laws of physics the relationship between the (clean) measure-

ment and the unknown image is quadratic. In [189] the quadratic relationship is a result of using partially-

incoherent light. The quadratic behavior of the measurements in [197] arises from coherent diffractive imag-

ing in which the image is recovered from its intensity pattern. Under an appropriate experimental setup, this

problem amounts to reconstruction of a sparse signal from the magnitude of its Fourier transform.

A related and notable problem involving sparse and low-rank matrices is Sparse Principal Component

Analysis (SPCA), mentioned in Section 5.8.

Sparse phase retrieval. Quadratic measurements appear in phase retrieval problems, in which a signal is

to be recovered from the magnitude of its measurements bi = |aT
i x|, where each measurement is a linear

transform of the input x ∈ Rn and ai’s are arbitrary, possibly complex-valued measurement vectors. An

important case is when aT
i x is the Fourier Transform and b2

i is the power spectral density. Phase retrieval

is of great interest in many applications such as optical imaging [154, 218], crystallography [115], and

more [97, 105, 120].

The problem becomes linear when x is lifted and we consider the recovery of X = xxT where each

measurement takes the form b2
i =

〈
aiaT

i ,X
〉
. In [189], an algorithm was developed to treat phase retrieval

problems with sparse x based on a semidefinite relaxation, and low-rank matrix recovery combined with

a row-sparsity constraint on the resulting matrix. More recent works also proposed the use of semidefinite

relaxation together with sparsity constraints for phase retrieval [121,134,139,162]. An alternative algorithm

was recently designed in [188] based on a greedy search. In [121], the authors also consider sparse signal

recovery based on combinatorial and probabilistic approaches and give uniqueness results under certain

conditions. Stable uniqueness in phase retrieval problems is studied in [92]. The results of [35, 44] applies

to general (non-sparse) signals where in some cases masked versions of the signal are required.
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Fused lasso. Suppose the signal of interest is sparse and its entries vary slowly, i.e., the signal can be

approximated by a piecewise constant function. To encourage sparsity, one can use the `1 norm, and to

encourage the piece-wise constant structure, discrete total variation can be used, defined as

‖x‖TV =
n−1

∑
i=1
|xi+1−xi| .

‖ · ‖TV is basically the `1 norm of the gradient of the vector; and is approximately sparse. The resulting

optimization problem is known as the fused-lasso [202], and is given as

min
x
‖x‖1 +λ‖x‖TV s.t. A (x) = A (x0). (5.1)

To the best of our knowledge, the sample complexity of fused lasso has not been analyzed from a compressed

sensing point of view. However, there is a series of recent work on the total variation minimization, which

may lead to analysis of (5.1) in the future [160].

We remark that TV regularization is also used together with the nuclear norm to encourage a low-rank

and smooth (i.e., slowly varying entries) solution. This regularization finds applications in imaging and

physics [110, 187].

Low-rank tensors. Tensors with small Tucker rank can be seen as a generalization of low-rank matrices

[209]. In this setup, the signal of interest is the tensor X0 ∈Rn1×···×nt , and X0 is low-rank along its unfoldings

which are obtained by reshaping X0 as a matrix with size ni× n
ni

, where n = ∏
t
i=1 ni. Denoting the i’th

unfolding by Ui(X0), a standard approach to estimate X0 from y = A (X0) is minimizing the weighted

nuclear norms of the unfoldings,

min
X

t

∑
i=1

λi‖Ui(X)‖? subject to y = A (X0) (5.2)

Low-rank tensors have applications in machine learning, physics, computational finance and high dimen-

sional PDE’s [114]. (5.2) has been investigated by several papers [103, 137]. Closer to us, [158] recently

showed that the convex relaxation (5.2) performs poorly compared to information theoretically optimal

bounds for Gaussian measurements. Our results can extend those to the more applicable tensor completion

setup, where we observe the entries of the tensor.

Other applications of simultaneously structured signals include Collaborative Hierarchical Sparse Mod-
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Figure 5.1: Depiction of the correlation between a vector x and a set S . s∗ achieves the largest angle with x , hence s∗
has the minimum correlation with x.

eling [190] where sparsity is considered within the non-zero blocks in a block-sparse vector, and the recovery

of hyperspectral images where we aim to recover a simultaneously block sparse and low rank matrix from

compressed observations [109].

5.0.9 Outline of the chapter

The chapter is structured as follows. Background and definitions are given in Section 5.1. An overview of the

main results is provided in Section 5.2. Section 5.3 discusses some measurement ensembles for which our

results apply. Section 5.4 provides upper bounds for the convex relaxations for the Gaussian measurement

ensemble. The proofs of the general results are presented in Section 5.5. The proofs for the special case

of simultaneously sparse and low-rank matrices are given in Section 5.6, where we compare corollaries

of the general results with the results on non-convex recovery approaches, and illustrate a gap. Numerical

simulations in Section 5.7 empirically support the results on sparse and low-rank matrices. Future directions

of research and discussion of results are in Section 5.8.

5.1 Problem Setup

We begin by recalling some basic notation. In this chapter, the `1,2 norm will be the sum of the `2 norms

of the columns of a matrix. With this definition, minimizing the `1,2 norm will encourage a column-sparse

solution, [175,204]; see section 5.5.4 for more detailed discussion of these norms and their subdifferentials.

Overlines denote normalization, i.e., for a vector x and a matrix X, x̄ = x
‖x‖2

and X̄ = X
‖X‖F

. The set of n×n

positive semidefinite (PSD) and symmetric matrices are denoted by Sn
+ and Sn respectively. A (·) :Rn→Rm

is a linear measurement operator if A (x) is equivalent to the matrix multiplication Ax where A ∈ Rm×n. If

x is a matrix, A (x) will be a matrix multiplication with a suitably vectorized x.
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Figure 5.2: Consider the scaled norm ball passing through x0 , then κ = ‖p‖2
‖x0‖2 , where p is any of the closest points on

the scaled norm ball to the origin.

Definition 5.1.1 (Correlation) Given a nonzero vector x and a set S, ρ(x,S) is defined as

ρ(x,S) := inf
06=s∈S

|xT s|
‖x‖2‖s‖2

.

ρ(x,S) corresponds to the minimum absolute-valued correlation between the vector x and elements of

S. Let x̄ = x
‖x‖2

. The correlation between x and the associated subdifferential has a simple form.

ρ(x,∂‖x‖) = inf
g∈∂‖x‖

x̄T g
‖g‖2

=
‖x̄‖

supg∈∂‖x‖ ‖g‖2
.

Here, we used the fact that, for norms, subgradients g ∈ ∂‖x‖ satisfy xT g = ‖x‖, [220]. The denominator

of the right hand side is the local Lipschitz constant of ‖ · ‖ at x and is upper bounded by the Lipschitz

constant L of ‖ · ‖. Consequently, ρ(x,∂‖x‖) ≥ ‖x̄‖
L . We will denote ‖x̄‖L by κ . Recently, this quantity

has been studied by Mu et al. to analyze the simultaneously structured signals in a similar spirit to us for

Gaussian measurements [158]1. Similar calculations as above gives an alternative interpretation for κ which

is illustrated in Figure 5.2.

κ is a measure of alignment between the vector x and the subdifferential. For the norms of interest, it

is associated with the model complexity. For instance, for a k-sparse vector x, ‖x̄‖1 lies between 1 and
√

k

depending on how spiky nonzero entries are. Also L =
√

n. When nonzero entries are ±1, we find κ2 = k
n .

Similarly, given a d×d, rank r matrix X, ‖X̄‖? lies between 1 and
√

r. If the singular values are spread (i.e.

1This chapter is based on the author’s work [168]. The work [158] is submitted after initial submission of [168]; which was
projecting the subdifferential onto a carefully chosen subspace to obtain bounds on the sample complexity (see Proposition 5.5.1).
Inspired from [158], projection onto x0 and the use of κ led to the simplification of the notation and improvement of the results
in [168], in particular, Section 5.3.
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±1), we find κ2 = r
d = rd

d2 . In these cases, κ2 is proportional to the model complexity normalized by the

ambient dimension.

Simultaneously structured models. We consider a signal x0 which has several low-dimensional struc-

tures S1, S2, . . . , Sτ (e.g., sparsity, group sparsity, low-rank). Suppose each structure i corresponds to a norm

denoted by ‖ · ‖(i) which promotes that structure (e.g., `1, `1,2, nuclear norm). We refer to such an x0 as a

simultaneously structured model.

5.1.1 Convex recovery program

We investigate the recovery of the simultaneously structured x0 from its linear measurements A (x0). To

recover x0, we would like to simultaneously minimize the norms ‖ ·‖(i), i = 1, . . . ,τ , which leads to a multi-

objective (vector-valued) optimization problem. For all feasible points x satisfying A (x) = A (x0) and side

information x ∈ C , consider the set of achievable norms {‖x‖(i)}τ
i=1 denoted as points in Rτ . The minimal

points of this set with respect to the positive orthant Rτ
+ form the Pareto-optimal front, as illustrated in

Figure 5.3. Since the problem is convex, one can alternatively consider the set

{v ∈ Rτ : ∃x ∈ Rn s.t. x ∈ C , A (x) = A (x0), vi ≥ ‖x‖(i), for i = 1, . . . ,τ},

which is convex and has the same Pareto optimal points as the original set (see, e.g., [23, Chapter 4]).

Definition 5.1.2 (Recoverability) We call x0 recoverable if it is a Pareto optimal point; i.e., there does not

exist a feasible x′ 6= x satisfying A (x′) = A (x0) and x′ ∈ C , with ‖x′‖(i) ≤ ‖x0‖(i) for i = 1, . . . ,τ .

The vector-valued convex recovery program can be turned into a scalar optimization problem as

minimize
x∈C

f (x) = h(‖x‖(1), . . . ,‖x‖(τ))

subject to A (x) = A (x0),
(5.3)

where h :Rτ
+→R+ is convex and non-decreasing in each argument (i.e., non-decreasing and strictly increas-

ing in at least one coordinate). For convex problems with strong duality, it is known that we can recover

all of the Pareto optimal points by optimizing weighted sums f (x) = ∑
τ
i=1 λi‖x‖(i) , with positive weights

λi , among all possible functions f (x) = h(‖x‖(1), . . . ,‖x‖(τ)) . For each x0 on the Pareto, the coefficients of

such recovering function are given by the hyperplane supporting the Pareto at x0 [23, Chapter 4].
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Figure 5.3: Suppose x0 corresponds to the point shown with a dot. We need at least m measurements for x0 to be
recoverable since for any m′ < m this point is not on the Pareto optimal front.

In Figure 5.3, consider the smallest m that makes x0 recoverable. Then one can choose a function h and

recover x0 by (5.3) using the m measurements. If the number of measurements is any less, then no function

can recover x0. Our goal is to provide lower bounds on m.

Note that in [50], Chandrasekaran et al. propose a general theory for constructing a suitable penalty,

called an atomic norm, given a single set of atoms that describes the structure of the target object. In

the case of simultaneous structures, this construction requires defining new atoms, and then ensuring the

resulting atomic norm can be minimized in a computationally tractable way, which is nontrivial and often

intractable. We briefly discuss such constructions as a future research direction in Section 5.8.

5.2 Main Results: Theorem Statements

In this section, we state our main theorems that aim to characterize the number of measurements needed to

recover a simultaneously structured signal by convex or nonconvex programs. We first present our general

results, followed by results for simultaneously sparse and low-rank matrices as a specific but important

instance of the general case. The proofs are given in Sections 5.5 and 5.6. All of our statements will

implicitly assume x0 6= 0. This will ensure that x0 is not a trivial minimizer and 0 is not in the subdifferentials.

5.2.1 General simultaneously structured signals

This section deals with the recovery of a signal x0 that is simultaneously structured with S1,S2, . . . ,Sτ as

described in Section 5.1. We give a lower bound on the required number of measurements, using the

geometric properties of the individual norms.

156



Theorem 5.2.1 (Deterministic failure) Suppose C = Rn and,

ρ(x0,∂ f (x0)) := inf
g∈∂ f (x0)

|ḡT x̄0|>
‖Ax̄0‖2

σmin(AT )
. (5.4)

Then, x0 is not a minimizer of (5.3).

Theorem 5.2.1 is deterministic in nature. However, it can be easily specialized to specific random

measurement ensembles. The left hand side of (5.4) depends only on the vector x0 and the subdifferential

∂ f (x0), hence it is independent of the measurement matrix A. For simultaneously structured models, we

will argue that, the left hand side cannot be made too small, as the subgradients are aligned with the signal.

On the other hand, the right hand side depends only on A and x0 and is independent of the subdifferential.

In linear inverse problems, A is often assumed to be random. For large class of random matrices, we will

argue that, the right hand side is approximately ∼
√m

n which will yield a lower bound on the number of

required measurements.

Typical measurement ensembles include the following,

• Sampling entries: In low-rank matrix and tensor completion problems, we observe the entries of

x0 uniformly at random. In this case, rows of A are chosen from the standard basis in Rn. We

should remark that, instead of the standard basis, one can consider other orthonormal bases such as

the Fourier basis.

• Matrices with i.i.d. rows: A has independent and identically distributed rows with certain moment

conditions. This is a widely used setup in compressed sensing as each measurement we make is

associated with the corresponding row of A [38].

• Quadratic measurements: Arises in the phase retrieval problem as discussed in Section 5.0.8.

In Section 5.3, we find upper bounds on the right hand side of (5.4) for these ensembles. As it will be

discussed in Section 5.3, we can do modifications in the rows of A to get better bounds as long as it does

not affect its null space. For instance, one can discard the identical rows to improve conditioning. However,

as m increases and A has more linearly independent rows, σmin(AT ) will naturally decrease and (5.4) will

no longer hold after a certain point. In particular, (5.4) cannot hold beyond m≥ n as σmin(AT ) = 0. This is

indeed natural as the system becomes overdetermined.

The following proposition lower bounds the left hand side of (5.4) in an interpretable manner. In partic-

ular, the correlation ρ(x0,∂ f (x0)) can be lower bounded by the smallest individual correlation.
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Proposition 5.2.1 Let Li be the Lipschitz constant of the i’th norm and κi =
‖x̄0‖(i)

Li
for 1 ≤ i ≤ τ . Set

κmin = min{κi : i = 1, . . . ,τ}. We have the following,

• All functions f (·) in (5.3) satisfy, ρ(x0,∂ f (x0))≥ κmin
2.

• Suppose f (·) is a weighted linear combination f (x) = ∑
τ
i=1 λi‖x‖(i) for nonnegative {λi}τ

i=1. Let

λ̄i =
λiLi

∑
τ
i=1 λiLi

for 1≤ i≤ τ . Then, ρ(x0,∂ f (x0))≥ ∑
τ
i=1 λ̄iκi.

Proof: From Lemma 5.5.3, any subgradient of f (·) can be written as, g = ∑
τ
i=1 wigi for some nonneg-

ative wi’s. On the other hand, from [220], 〈x̄0,gi〉= ‖x̄0‖(i). Combining, we find,

gT x̄0 =
τ

∑
i=1

wi‖x̄0‖(i).

From triangle inequality, ‖g‖2 ≤ ∑
τ
i=1 wiLi. To conclude, we use,

∑
τ
i=1 wi‖x̄0‖(i)
∑

τ
i=1 wiLi

≥ min
1≤i≤τ

wi‖x̄0‖(i)
wiLi

= κmin. (5.5)

For the second part, we use the fact that for the weighted sums of norms, wi = λi and subgradients has the

form g = ∑
τ
i=1 λigi, [23]. Then, substitute λ̄i for λi on the left hand side of (5.5).

Before stating the next result, let us recall the Gaussian distance definition from Chapter 2, which will

be useful throughout.

Definition 5.2.1 (Gaussian squared-distance) Let M be a closed convex set in Rn and let h ∈ Rn be a

vector with independent standard normal entries. Then, the Gaussian distance of M is defined as

D(M ) = E[ inf
v∈M
‖h−v‖2

2]

For notational simplicity, let the normalized distance be D̄(M ) = D(M )
n .

We will now state our result for Gaussian measurements; which can additionally include cone constraints

for the lower bound. One can obtain results for the other ensembles by referring to Section 5.3.

Theorem 5.2.2 (Gaussian lower bound) Suppose A has independent N (0,1) entries. Whenever m ≤
mlow, x0 will not be a minimizer of any of the recovery programs in (5.3) with probability at least 1−
2The lower bound κmin is directly comparable to Theorem 5 of [158]. Indeed, our lower bounds on the sample complexity will
have the form O

(
κ2

minn
)
.
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10exp(− 1
16 min{mlow,(1−

√
D̄(C ))2n}), where

mlow ,
(1−

√
D̄(C ))nκ2

min
100

.

Remark: When C = Rn, D̄(C ) = 0 hence, the lower bound simplifies to mlow =
nκ2

min
100 .

Here D̄(C ) depends only on C and can be viewed as a constant. For instance, for the positive semidefi-

nite cone, we show D̄(Sn
+)<

3
4 . Observe that for a smaller cone C , it is reasonable to expect a smaller lower

bound to the required number of measurements. Indeed, as C gets smaller, D(C ) gets larger.

As discussed before, there are various options for the scalarizing function in (5.3), with one choice being

the weighted sum of norms. In fact, for a recoverable point x0 there always exists a weighted sum of norms

which recovers it. This function is also often the choice in applications, where the space of positive weights

is searched for a good combination. Thus, we can state the following theorem as a general result.

Corollary 5.2.1 (Weighted lower bound) Suppose A has i.i.d N (0,1) entries and f (x) = ∑
τ
i=1 λi‖x‖(i)

for nonnegative weights {λi}τ
i=1. Whenever m ≤ m′low, x0 will not be a minimizer of the recovery program

(5.3) with probability at least 1−10exp(− 1
16 min{m′low,(1−

√
D̄(C ))2n}), where

m′low ,
n(1−

√
D̄(C ))(∑τ

i=1 λ̄iκi)
2

100
,

and λ̄i =
λiLi

∑
τ
i=1 λiLi

.

Observe that Theorem 5.2.2 is stronger than stating “a particular function h(‖x‖(1), . . . ,‖x‖(τ)) will not

work”. Instead, our result states that with high probability none of the programs in the class (5.3) can return

x0 as the optimal unless the number of measurements are sufficiently large.

To understand the result better, note that the required number of measurements is proportional to κ2
minn

which is often proportional to the sample complexity of the best individual norm. As we have argued in

Section 5.1, κ2
i n corresponds to how structured the signal is. For sparse signals it is equal to the sparsity, and

for a rank r matrix, it is equal to the degrees of freedom of the set of rank r matrices. Consequently, Theorem

5.2.2 suggests that even if the signal satisfies multiple structures, the required number of measurements is

effectively determined by only one dominant structure.

Intuitively, the degrees of freedom of a simultaneously structured signal can be much lower, which is

provable for the S&L matrices. Hence, there is a considerable gap between the expected measurements
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Model f (·) L ‖x̄0‖ ≤ nκ2 ≤
k sparse vector ‖ · ‖1

√
n
√

k k
k column-sparse matrix ‖ · ‖1,2

√
d
√

k kd
Rank r matrix ‖ · ‖?

√
d
√

r rd
S&L (k,k,r) matrix h(‖ · ‖?,‖ · ‖1) − − min{k2,rd}

Table 5.2: Summary of the parameters that are discussed in this section. The last three lines is for a d×d S&L (k,k,r)
matrix where n = d2. In the fourth column, the corresponding entry for S&L is κmin = min{κ`1 ,κ?}.

based on model complexity and the number of measurements needed for recovery via (5.3) (κ2
minn).

5.2.2 Simultaneously Sparse and Low-rank Matrices

We now focus on a special case, namely simultaneously sparse and low-rank (S&L) matrices. We consider

matrices with nonzero entries contained in a small submatrix where the submatrix itself is low rank. Here,

norms of interest are ‖ · ‖1,2, ‖ · ‖1 and ‖ · ‖? and the cone of interest is the PSD cone. We also consider

nonconvex approaches and contrast the results with convex approaches. For the nonconvex problem, we re-

place the norms ‖·‖1,‖·‖1,2,‖·‖? with the functions ‖·‖0,‖·‖0,2, rank(·) which give the number of nonzero

entries, the number of nonzero columns and rank of a matrix respectively and use the same cone constraint

as the convex method. We show that convex methods perform poorly as predicted by the general result in

Theorem 5.2.2, while nonconvex methods require optimal number of measurements (up to a logarithmic

factor). Proofs are given in Section 5.6.

Definition 5.2.2 We say X0 ∈Rd1×d2 is an S&L matrix with (k1,k2,r) if the smallest submatrix that contains

nonzero entries of X0 has size k1× k2 and rank(X0) = r. When X0 is symmetric, let d = d1 = d2 and

k = k1 = k2. We consider the following cases.

(a) General: X0 ∈ Rd1×d2 is S&L with (k1,k2,r).

(b) PSD model: X0 ∈ Rn×n is PSD and S&L with (k,k,r).

We are interested in S&L matrices with k1� d1,k2� d2 so that the matrix is sparse, and r� min{k1,k2}
so that the submatrix containing the nonzero entries is low rank. Recall from Section 5.1.1 that our goal

is to recover X0 from linear observations A (X0) via convex or nonconvex optimization programs. The

measurements can be equivalently written as Avec(X0), where A ∈ Rm×d1d2 and vec(X0) ∈ Rd1d2 denotes

the vector obtained by stacking the columns of X0.

160



Based on the results in Section 5.2.1, we obtain lower bounds on the number of measurements for con-

vex recovery. We additionally show that significantly fewer measurements are sufficient for non-convex pro-

grams to uniquely recover X0; thus proving a performance gap between convex and nonconvex approaches.

The following theorem summarizes the results.

Theorem 5.2.3 (Performance of S&L matrix recovery) Suppose A (·) is an i.i.d Gaussian map and con-

sider recovering X0 ∈ Rd1×d2 via

minimize
X∈C

f (X) subject to A (X) = A (X0). (5.6)

For the cases given in Definition 5.2.2, the following convex and nonconvex recovery results hold for some

positive constants c1,c2.

(a) General model:

(a1) Let f (X)= ‖X‖1,2+λ1‖XT‖1,2+λ2‖X‖? where λ1,λ2≥ 0 and C =Rd1×d2 . Then, (5.6) will fail

to recover X0 with probability 1−exp(−c1m0) whenever m≤ c2m0 where m0 =min{d1k2,d2k1,

(d1 +d2)r}.
(a2) Let f (X) = 1

k2
‖X‖0,2 +

1
k1
‖XT‖0,2 +

1
r rank(X) and C = Rd1×d2 . Then, (5.6) will uniquely re-

cover X0 with probability 1− exp(−c1m) whenever m≥ c2 max{(k1 + k2)r,k1 log d1
k1
,k2 log d2

k2
}.

(b) PSD with `1,2:

(b1) Let f (X) = ‖X‖1,2 +λ‖X‖? where λ ≥ 0 and C = Sd
+. Then, (5.6) will fail to recover X0 with

probability 1− exp(−c1rd) whenever m≤ c2rd.

(b2) Let f (X) = 2
k‖X‖0,2 +

1
r rank(X) and C = Sd . Then, (5.6) will uniquely recover X0 with prob-

ability 1− exp(−c1m) whenever m≥ c2 max{rk,k log d
k }.

(c) PSD with `1:

(c1) Let f (X) = ‖X‖1 + λ‖X‖? and C = Sd
+. Then, (5.6) will fail to recover X0 with probability

1− exp(−c1m0) for all possible λ ≥ 0 whenever m≤ c2m0 where m0 = min{‖X̄0‖2
1,‖X̄0‖2

?d}.
(c2) Suppose rank(X0) = 1. Let f (X) = 1

k2 ‖X‖0 + rank(X) and C = Sd . Then, (5.6) will uniquely

recover X0 with probability 1− exp(−c1m) whenever m≥ c2k log d
k .

Remark on “PSD with `1”: In the special case, X0 = aaT for a k-sparse vector a, we have m0 =min{‖ā‖4
1,d}.

When nonzero entries of a are ±1, we have m0 = min{k2,d}.
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Setting Nonconvex sufficient m Convex required m
General model O

(
max{rk,k log d

k }
)

Ω(rd)
PSD with `1,2 O

(
max{rk,k log d

k }
)

Ω(rd)
PSD with `1 O

(
k log d

k

)
Ω(min{k2,rd})

Table 5.3: Summary of recovery results for models in Definition 5.2.2, assuming d1 = d2 = d and k1 = k2 = k. For
the PSD with `1 case, we assume ‖X̄0‖1

k and ‖X̄0‖?√
r to be approximately constants for the sake of simplicity. Nonconvex

approaches are optimal up to a logarithmic factor, while convex approaches perform poorly.

The nonconvex programs require almost the same number of measurements as the degrees of freedom

(or number of parameters) of the underlying model. For instance, it is known that the degrees of freedom

of a rank r matrix of size k1× k2 is simply r(k1 + k2− r) which is O ((k1 + k2)r). Hence, the nonconvex

results are optimal up to a logarithmic factor. On the other hand, our results on the convex programs that

follow from Theorem 5.2.2 show that the required number of measurements are significantly larger. Table

5.3 provides a quick comparison of the results on S&L.

For the S&L (k,k,r) model, from standard results one can easily deduce that [43, 178, 195],

• `1 penalty only: requires at least k2,

• `1,2 penalty only: requires at least kd,

• Nuclear norm penalty only: requires at least rd measurements.

These follow from the model complexity of the sparse, column-sparse and low-rank matrices. Theorem

5.2.2 shows that, combination of norms require at least as much as the best individual norm. For instance,

combination of `1 and the nuclear norm penalization yields the lower bound O
(
min{k2,rd}

)
for S&L

matrices whose singular values and nonzero entries are spread. This is indeed what we would expect from

the interpretation that κ2n is often proportional to the sample complexity of the corresponding norm and,

the lower bound κ2
minn is proportional to that of the best individual norm.

As we saw in Section 5.2.1, adding a cone constraint to the recovery program does not help in reduc-

ing the lower bound by more than a constant factor. In particular, we discuss the positive semidefiniteness

assumption that is beneficial in the sparse phase retrieval problem,, and show that the number of measure-

ments remain high even when we include this extra information. On the other hand, the nonconvex recovery

programs performs well even without the PSD constraint.

We remark that, we could have stated Theorem 5.2.3 for more general measurements given in Section

5.3 without the cone constraint. For instance, the following result holds for the weighted linear combination

of individual norms and for the subgaussian ensemble.
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Corollary 5.2.2 Suppose X0 ∈ Rd×d obeys the general model with k1 = k2 = k and A is a linear sub-

gaussian map as described in Proposition 5.3.1. Choose f (X) = λ`1‖X‖1 + λ?‖X‖?, where λ`1 = β ,

λ? = (1−β )
√

d and 0≤ β ≤ 1. Then, whenever, m≤min{mlow,c1n}, where,

mlow =
(β‖X̄0‖1 +(1−β )‖X̄0‖?

√
d)2

2
,

(5.6) fails with probability 1− 4exp(−c2mlow). Here c1,c2 > 0 are constants as described in Proposition

5.3.1.

Remark: Choosing X0 = aaT where nonzero entries of a are ±1 yields 1
2(βk+(1−β )

√
d)2 on the right

hand side. An explicit construction of an S&L matrix with maximal ‖X̄‖1,‖X̄‖? is provided in Section 5.6.3.

This corollary compares well with the upper bound obtained in Corollary 5.4.1 of Section 5.4. In par-

ticular, both the bounds and the penalty parameters match up to logarithmic factors. Hence, together, they

sandwich the sample complexity of the combined cost f (X).

5.3 Measurement ensembles

This section will make use of standard results on sub-gaussian random variables and random matrix theory

to obtain probabilistic statements. We will explain how one can analyze the right hand side of (5.4) for,

• Matrices with sub-gaussian rows,

• Subsampled standard basis (in matrix completion),

• Quadratic measurements arising in phase retrieval.

5.3.1 Sub-gaussian measurements

We first consider the measurement maps with sub-gaussian entries. The following definitions are borrowed

from [213].

Definition 5.3.1 (Sub-gaussian random variable) A random variable x is sub-gaussian if there exists a

constant K > 0 such that for all p≥ 1,

(E |x|p)1/p ≤ K
√

p.

The smallest such K is called the sub-gaussian norm of x and is denoted by ‖x‖Ψ2 . A sub-exponential random

variable y is one for which there exists a constant K′ such that, P(|y|> t)≤ exp(1− t
K′ ). x is sub-gaussian
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if and only if x2 is sub-exponential.

Definition 5.3.2 (Isotropic sub-gaussian vector) A random vector x ∈ Rn is sub-gaussian if the one di-

mensional marginals xT v are sub-gaussian random variables for all v ∈ Rn. The sub-gaussian norm of x is

defined as,

‖x‖Ψ2 = sup
‖v‖=1

‖xT v‖Ψ2

x is also isotropic, if its covariance is equal to identity, i.e. ExxT = In.

Proposition 5.3.1 (Sub-gaussian measurements) Suppose A has i.i.d rows in either of the following forms,

• a copy of a zero-mean isotropic sub-gaussian vector a ∈ Rn, where ‖a‖2 =
√

n almost surely.

• have independent zero-mean unit variance sub-gaussian entries.

Then, there exists constants c1,c2 depending only on the sub-gaussian norm of the rows, such that, whenever

m≤ c1n, with probability 1−4exp(−c2m), we have,

‖Ax̄0‖2
2

σ2
min(AT )

≤ 2m
n

Proof: Using Theorem 5.58 of [213], there exists constants c,C depending only on the sub-gaussian

norm of a such that for any t ≥ 0, with probability 1−2exp(−ct2)

σmin(AT )≥√n−C
√

m− t

Choosing t =C
√

m and m≤ n
100C2 would ensure σmin(AT )≥ 4

√
n

5 .

Next, we shall estimate ‖Ax̄0‖2. ‖Ax̄0‖2
2 is sum of i.i.d. sub-exponential random variables identical to

|aT x̄0|2. Also, E[|aT x̄0|2] = 1. Hence, Proposition 5.16 of [213] gives,

P(‖Ax̄0‖2
2 ≥ m+ t)≤ 2exp(−c′min{ t2

m
, t})

Choosing t = 7m
25 , we find that P(‖Ax̄0‖2

2 ≥ 32m
25 )≤ 2exp(−c′′m). Combining the two, we obtain,

P(
‖Ax̄0‖2

2

σ2
min(AT )

≤ 2m
n
)≥ 1−4exp(−c′′′m)

The second statement can be proved in the exact same manner by using Theorem 5.39 of [213] instead

of Theorem 5.58.
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Remark: While Proposition 5.3.1 assumes a has fixed `2 norm, this can be ensured by properly nor-

malizing rows of A (assuming they stay sub-gaussian). For instance, if the `2 norm of the rows are larger

than c
√

n for a positive constant c, normalization will not affect sub-gaussianity. Note that, scaling rows of

a matrix do not change its null space.

5.3.2 Randomly sampling entries

We now consider the scenario where each row of A is chosen from the standard basis uniformly at random.

Note that, when m is comparable to n, there is a nonnegligible probability that A will have duplicate rows.

Theorem 5.2.1 does not take this situation into account which would make σmin(AT ) = 0. In this case, one

can discard the copies as they don’t affect the recoverability of x0. This would get rid of the ill-conditioning,

as the new matrix is well-conditioned with the exact same null space as the original, and would correspond

to a “sampling without replacement” scheme where we ensure each row is different.

Similar to achievability results in matrix completion [40], the following failure result requires true signal

to be incoherent with the standard basis, where incoherence is characterized by ‖x̄0‖∞, which lies between
1√
n and 1.

Proposition 5.3.2 (Sampling entries) Let {ei}n
i=1 be the standard basis in Rn and suppose each row of A

is chosen from {ei}n
i=1 uniformly at random. Let Â be the matrix obtained by removing the duplicate rows

in A. Then, with probability 1− exp(− m
4n‖x̄0‖2

∞

), we have,

‖Âx̄0‖2
2

σ2
min(Â)

≤ 2m
n

Proof: Let Â be the matrix obtained by discarding the rows of A that occur multiple times except one of

them. Clearly Null(Â) = Null(A) hence they are equivalent for the purpose of recovering x0. Furthermore,

σmin(Â) = 1. Hence, we are interested in upper bounding ‖Âx̄0‖2.

Clearly ‖Âx̄0‖2 ≤ ‖Ax̄0‖2. Hence, we will bound ‖Ax̄0‖2
2 probabilistically. Let a be the first row of A.

|aT x̄0|2 is a random variable, with mean 1
n and is upper bounded by ‖x̄0‖2

∞. Hence, applying the Chernoff

Bound would yield,

P(‖Ax̄0‖2
2 ≥

m
n
(1+δ ))≤ exp(− mδ 2

2(1+δ )n‖x̄0‖2
∞

)
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Setting δ = 1, we find that, with probability 1− exp(− m
4n‖x̄0‖2

∞

), we have,

‖Âx̄0‖2
2

σmin(Â)2
≤ ‖Ax̄0‖2

2

σmin(Â)2
≤ 2m

n

A significant application of this result would be for the low-rank tensor completion problem, where we

randomly observe some entries of a low-rank tensor and try to reconstruct it. A promising approach for this

problem is using the weighted linear combinations of nuclear norms of the unfoldings of the tensor to induce

the low-rank tensor structure described in (5.2), [103,114]. Related work [158] shows the poor performance

of (5.2) for the special case of Gaussian measurements. Combination of Theorem 5.2.1 and Proposition

5.3.2 will immediately extend the results of [158] to the more applicable tensor completion setup (under

proper incoherence conditions that bound ‖x̄0‖∞).

Remark: In Propositions 5.3.1 and 5.3.2, we can make the upper bound for the ratio ‖Ax̄0‖2
2

σmin(A)2 arbitrarily

close to m
n by changing the proof parameters. Combined with Proposition 5.2.1, this would suggest that,

failure happens, when m < nκmin.

5.3.3 Quadratic measurements

As mentioned in the phase retrieval problem, quadratic measurements |vT a|2 of the vector a ∈ Rd can be

linearized by the change of variable a→ X0 = aaT and using V = vvT . The following proposition can be

used to obtain a lower bound for such ensembles when combined with Theorem 5.2.1.

Proposition 5.3.3 Suppose we observe quadratic measurements A (X0)∈Rm of a matrix X0 = aaT ∈Rd×d .

Here, assume that i’th entry of A (X0) is equal to |vT
i a|2 where {vi}m

i=1 are independent vectors, either with

N (0,1) entries or are uniformly distributed over the sphere with radius
√

d. Then, there exists absolute

constants c1,c2 > 0 such that whenever m < c1d
logd , with probability 1−2ed−2,

‖A (X̄0)‖2

σmin(AT )
≤ c2
√

m logd
d
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Proof: Let Vi = vivT
i . Without loss of generality, assume vi’s are uniformly distributed over sphere

with radius
√

d. To lower bound σmin(AT ), we will estimate the coherence of its columns, defined by,

µ(AT ) = max
i 6= j

|
〈
Vi,V j

〉
|

‖Vi‖F‖V j‖F
=

(vT
i v j)

2

d2

Section 5.2.5 of [213] states that sub-gaussian norm of vi is bounded by an absolute constant. Hence,

conditioned on v j (which satisfies ‖v j‖2 =
√

d), (vT
i v j)

2

d is a subexponential random variable with mean 1.

Hence, using Definition 5.3.1, there exists a constant c > 0 such that,

P(
(vT

i v j)
2

d
> c logd)≤ ed−4

Union bounding over all i, j pairs ensure that with probability ed−2 we have µ(AT ) ≤ c logd
d . Next, we use

the standard result that for a matrix with columns of equal length, σmin(AT )≥ d(1− (m−1)µ). The reader

is referred to Proposition 1 of [205]. Hence, m≤ d
2c logd , gives σmin(AT )≥ d

2 .

It remains to upper bound ‖A (X̄0)‖2 . The i’th entry of A (X̄0) is equal to |vT
i ā|2, hence it is subex-

ponential. Consequently, there exists a constant c′ so that each entry is upper bounded by c′
2 logd with

probability 1− ed−3. Union bounding, and using m≤ d, we find that ‖A (X̄0)‖2 ≤ c′
2
√

m logd with proba-

bility 1− ed−2. Combining with the σmin(AT ) estimate we can conclude.

Comparison to existing literature. Proposition 5.3.3 is useful to estimate the performance of the sparse

phase retrieval problem, in which a is a k sparse vector, and we minimize a combination of the `1 norm

and the nuclear norm to recover X0. Combined with Theorem 5.2.1, Proposition 5.3.3 gives that, whenever

m ≤ c1d
logd and c2

√
m logd
d ≤ min{‖X̄0‖1

d , ‖X̄0‖?√
d
}, the recovery fails with high probability. Since ‖X̄0‖? = 1 and

‖X̄0‖1 = ‖ā‖2
1, the failure condition reduces to,

m≤ c
log2 d

min{‖ā‖4
1,d}.

When ā is a k-sparse vector with ±1 entries, in a similar flavor to Theorem 5.2.3, the right hand side has the

form c
log2 d

min{k2,d}.
We should emphasize that the lower bound provided in [134] is directly comparable to our results. Au-

thors in [134] consider the same problem and give two results: first, if m≥O
(
‖ā‖2

1k logd
)

then minimizing

‖X‖1 + λ tr(X) for suitable value of λ over the set of PSD matrices will exactly recover X0 with high
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probability. Secondly, their Theorem 1.3 gives a necessary condition (lower bound) on the number of mea-

surements, under which the recovery program fails to recover X0 with high probability. In particular, their

failure condition is m≤min{m0,
d

40logd} where m0 =
max(‖ā‖2

1−k/2,0)2

500log2 d
.

First, observe that both results have m ≤ O
(

d
logd

)
condition. Focusing on the sparsity requirements,

when the nonzero entries are sufficiently diffused (i.e. ‖a‖2
1 ≈ k) both results yield O

(
‖ā‖4

log2 d

)
as a lower

bound. On the other hand, if ‖ā‖1 ≤
√

k
2 , their lower bound disappears while our lower bound still requires

O
(
‖ā‖4

log2 d

)
measurements. ‖ā‖1 ≤

√
k
2 can happen as soon as the nonzero entries are rather spiky, i.e. some

of the entries are much larger than the rest. In this sense, our bounds are tighter. On the other hand, their

lower bound includes the PSD constraint unlike ours.

5.3.4 Asymptotic regime

While we discussed two cases in the nonasymptotic setup, we believe significantly more general results can

be stated asymptotically (m,n→ ∞). For instance, under finite fourth moment constraint, thanks to Bai-Yin

law [8], asymptotically, the smallest singular value of a matrix with i.i.d. unit variance entries concentrate

around
√

n−√m. Similarly, ‖Ax̄0‖2
2 is sum of independent variables; hence thanks to the law of large

numbers, we will have ‖Ax̄0‖2
2

m → 1. Together, these yield ‖Ax̄0‖2
σmin(AT )

→
√

m√
n−√m .

5.4 Upper bounds

We now state an upper bound on the simultaneous optimization for Gaussian measurement ensemble. Our

upper bound will be in terms of distance to the dilated subdifferentials.

To accomplish this, we will make use of the characterization of the linear inverse phase transitions via

Gaussian width; which has been discussed in Chapter 2 and Chapter 3. The works due to Chandrasekaran et

al. [50], Amelunxen et al. [4] and Donoho and Tanner [83] focus on signals with single structure and do not

study properties of a penalty that is a combination of norms. The next theorem relates the phase transition

point of the joint optimization (5.3) to the individual subdifferentials.

Theorem 5.4.1 Suppose A has i.i.d. N (0,1) entries and let f (x) = ∑
τ
i=1 λi‖x‖(i). For positive scalars

{αi}τ
i=1, let λ̄i =

λiα
−1
i

∑
τ
i=1 λiα

−1
i

and define,

mup({αi}τ
i=1) :=

(
∑

i
λ̄iD(αi∂‖x0‖(i))1/2

)2
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If m≥ (
√mup + t)2 +1, then program (5.3) will succeed with probability 1−2exp(− t2

2 ).

Proof: Fix h as an i.i.d. standard normal vector. Let gi be so that αigi is closest to h over αi∂‖x0‖(i).
Let γ = (∑i

λi
αi
)−1. Then, we may write,

inf
g′∈cone(∂ f (x0))

‖h−g′‖2 ≤ inf
g∈∂ f (x0)

‖h− γg‖2

≤ ‖h− γ ∑
i

λigi‖2

= ‖h− γ ∑
i

λi

αi
αigi‖2 = ‖h−∑

i
λ̄iαigi‖2

≤∑
i

λ̄i‖h−αigi‖2

= ∑
i

λ̄i inf
g′i∈∂‖x0‖(i)

‖h−αig′i‖2

Taking the expectations of both sides and using the definition of D(·), we find,

D(cone(∂ f (x0)))
1/2 ≤∑

i
λ̄iD(αi∂‖x0‖(i))1/2 .

Using definition of D(·), this gives, mup ≥ D(cone(∂ f (x0))). The result then follows from Proposition

1.3, which gives that when m ≥ (D(cone(∂ f (x0)))
1/2 + t)2 + 1, recovery succeeds with probability 1−

2exp(− t2

2 ). To see this, recall that,

D(cone(∂ f (x0)))≥ ω(T f (x0)∩Bn−1)2 (5.7)

For Theorem 5.4.1 to be useful, choices of αi should be made wisely. An obvious choice is letting,

α
∗
i = arg min

αi≥0
D(αi∂‖x0‖(i)). (5.8)

With this choice, our upper bounds can be related to the individual sample complexities, which is equal to

D(cone(∂‖x0‖(i))). Proposition 1 of [101] shows that, if ‖ · ‖(i) is a decomposable norm, then,

D(cone(∂‖x0‖(i)))1/2 ≤ D(α∗i ∂‖x0‖(i))1/2 ≤ D(cone(∂‖x0‖(i)))1/2 +6
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Decomposability is defined and discussed in detail in Section 5.5.4. In particular, `1, `1,2 and the nuclear

norm are decomposable. With this assumption, our upper bound will suggest that, the sample complexity of

the simultaneous optimization is smaller than a certain convex combination of individual sample complexi-

ties.

Corollary 5.4.1 Suppose A has i.i.d N (0,1) entries and let f (x) = ∑
τ
i=1 λi‖x‖(i) for decomposable norms

{‖ · ‖(i)}τ
i=1. Let {α∗i }τ

i=1 be as in (5.8) and assume they are strictly positive. Let λ̄ ∗i =
λi(α

∗
i )
−1

∑
τ
i=1 λi(α∗i )

−1 and

define, √
mup({α∗i }τ

i=1) := ∑
i

λ̄
∗
i D(cone(∂‖x0‖(i)))1/2 +6

If m≥ (
√mup + t)2 +1, then program (5.3) will succeed with probability 1−2exp(− t2

2 ).

Here, we used the fact that ∑i λ̄ ∗i = 1 to take 6 out of the sum over i. We note that Corollaries 5.2.1 and

5.4.1 can be related in the case of sparse and low-rank matrices. For norms of interest, roughly speaking,

• nκ2
i is proportional to the sample complexity D(cone(∂‖x0‖(i))).

• Li is proportional to
√

n
α∗i

.

Consequently, the sample complexity of (5.3) will be upper and lower bounded by similar convex combina-

tions.

5.4.1 Upper bounds for the S&L model

We will now apply the bound obtained in Theorem 5.4.1 for S&L matrices. To obtain simple and closed

form bounds, we will make use of the existing results in the literature.

• Table II of [101]: If x0 ∈Rn is a k sparse vector, choosing α`1 =
√

2log n
k , D(α`1∂‖x0‖1)≤ 2k log en

k .

• Table 3 of [170]: If X0 ∈ Rd×d is a rank r matrix, choosing α? = 2
√

d, D(α?∂‖X0‖?)≤ 6dr+2d.

Proposition 5.4.1 Suppose A has i.i.d N (0,1) entries and X0 ∈ Rd×d is a rank r matrix whose nonzero

entries lie on a k× k submatrix. For 0 ≤ β ≤ 1, let f (X) = λ`1‖X‖1 +λ?‖X‖? where λ`1 = β

√
log d

k and

λ? = (1−β )
√

d. Then, whenever,

m≥
(

2βk

√
log

ed
k
+(1−β )

√
6dr+2d + t

)2

+1,

X0 can be recovered via (5.3) with probability 1−2exp(− t2

2 ).
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Proof: To apply Theorem 5.4.1, we will choose α`1 =
√

4log d
k and α? = 2

√
d. X0 is effectively an

(at most) k2 sparse vector of size d2. Hence, α`1 =
√

2log d2

k2 and D(α`1‖X0‖1)≤ 4k2 log ed
k .

Now, for the choice of α?, we have, D(α?‖X0‖?)≤ 6dr+2d. Observe that α
−1
`1

λ`1 =
β

2 , α−1
? λ? =

1−β

2

and apply Theorem 5.4.1 to conclude.

5.5 General Simultaneously Structured Model Recovery

Recall the setup from Section 5.1 where we consider a vector x0 ∈ Rn whose structures are associated with

a family of norms {‖ · ‖(i)}τ
i=1 and x0 satisfies the cone constraint x0 ∈ C . This section is dedicated to the

proofs of theorems in Section 5.2.1 and additional side results where the goal is to find lower bounds on the

required number of measurements to recover x0. For a subspace M, denote its orthogonal complement by

M⊥.

5.5.1 Preliminary Lemmas

We first show that the objective function max1≤i≤τ

‖x‖(i)
‖x0‖(i) can be viewed as the ‘best’ among the functions

mentioned in (5.3) for recovery of x0.

Lemma 5.5.1 Consider the class of recovery programs in (5.3). If the program

minimize
x∈C

fbest(x), maxi=1,...,τ
‖x‖(i)
‖x0‖(i)

subject to A (x) = A (x0)
(5.9)

fails to recover x0, then any member of this class will also fail to recover x0.

Proof: Suppose (5.9) does not have x0 as an optimal solution and there exists x′ such that fbest(x′) ≤
fbest(x0), then

1
‖x0‖(i)

‖x′‖(i) ≤ fbest(x′)≤ fbest(x0) = 1, for i = 1, . . . ,τ,

which implies,

‖x′‖(i) ≤ ‖x0‖(i), for all i = 1, . . . ,τ. (5.10)

Conversely, given (5.10), we have fbest(x′)≤ fbest(x0) from the definition of fbest.

Furthermore, since we assume h(·) in (5.3) is non-decreasing in its arguments and increasing in at least

one of them, (5.10) implies f (x′)≤ f (x0) for any such function f (·). Thus, failure of fbest(·) in recovery of
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x0 implies failure of any other function in (5.3) in this task.

The following lemma gives necessary conditions for x0 to be a minimizer of the problem (5.3).

Lemma 5.5.2 If x0 is a minimizer of the program (5.3), then there exist v ∈ C ∗, z, and g ∈ ∂ f (x0) such that

g−v−AT z = 0 and 〈x0,v〉= 0.

The proof of Lemma 5.5.2 follows from the KKT conditions for (5.3) to have x0 as an optimal solution [17,

Section 4.7].

The next lemma describes the subdifferential of any general function f (x) = h(‖x‖(1), . . . ,‖x‖(τ)) as

discussed in Section 5.1.1.

Lemma 5.5.3 For any subgradient of the function f (x) = h(‖x‖(1), . . . ,‖x‖(τ)) at x 6= 0 defined by convex

function h(·), there exists non-negative constants wi, i = 1, . . . ,τ such that

g =
τ

∑
i=1

wigi

where gi ∈ ∂‖x0‖(i) .

Proof: Consider the function N(x) =
[
‖x‖(1), . . . , ‖x‖(τ)

]T
by which we have f (x) = h(N(x)). By

Theorem 10.49 in [183] we have

∂ f (x) =
⋃{

∂ (yT N(x)) : y ∈ ∂h(N(x))
}

where we used the convexity of f and h. Now notice that any y∈ ∂h(N(x)) is a non-negative vector because

of the monotonicity assumption on h(·). This implies that any subgradient g ∈ ∂ f (x) is in the form of

∂ (wT N(x)) for some nonnegative vector w. The desired result simply follows because subgradients of

conic combination of norms are conic combinations of their subgradients, (see e.g. [182]).

Using Lemmas 5.5.2 and 5.5.3, we now provide the proofs of Theorems 5.2.1 and 5.2.2.

5.5.2 Proof of Theorem 5.2.1

We prove the more general version of Theorem 5.2.1, which can take care of the cone constraint and align-

ment of subgradients over arbitrary subspaces. This will require us to extend the definition of correlation to
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handle subspaces. For a linear subspace R ∈ Rn and a set S ∈ Rn, we define,

ρ(R,S) = inf
06=s∈S

‖ProjR(s)‖2

‖s‖2
.

Proposition 5.5.1 Let σC (AT ) = inf‖z‖2=1
‖ProjC (AT z)‖2
‖AT z‖2

. Let R be an arbitrary linear subspace orthogonal

to the following cone,

{y ∈ Rn
∣∣xT

0 y = 0, y ∈ C ∗} . (5.11)

Suppose,

ρ(R,∂ f (x0)) := inf
g∈∂ f (x0)

‖ProjR(g)‖2

‖g‖2
>

σmax(ProjR(AT ))

σC (AT )σmin(AT )
.

Then, x0 is not a minimizer of (5.3).

Proof: Suppose x0 is a minimizer of (5.3). From Lemma 5.5.2, there exist a g ∈ ∂ f (x0), z ∈ Rm and

v ∈ C ∗ such that

g = AT z+v (5.12)

and 〈x0,v〉 = 0. We will first eliminate the contribution of v in equation (5.12). Projecting both sides of

(5.12) onto the subspace R gives,

ProjR(g) = ProjR(AT z) = ProjR(AT )z (5.13)

Taking the `2 norms,

‖ProjR(g)‖2 = ‖ProjR(AT )z‖2 ≤ σmax(ProjR(AT ))‖z‖2. (5.14)

Since v ∈ C ∗, from Fact 2.1 we have ProjC (−v) = ProjC (AT z−g) = 0. Using Corollary B.1.1,

‖g‖2 ≥ ‖ProjC (A
T z)‖2. (5.15)

From the initial assumption, for any z ∈ Rm, we have,

σC (AT )‖AT z‖2 ≤ ‖ProjC (A
T z)‖2 (5.16)
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Combining (5.15) and (5.16) yields ‖g‖2 ≥ σC (AT )‖AT z‖2. Further incorporating (5.14), we find,

‖ProjR(g)‖2

σmax(ProjR(AT ))
≤ ‖z‖2 ≤

‖AT z‖2

σmin(AT )
≤ ‖g‖2

σC (AT )σmin(AT )
.

Hence, if x0 is recoverable, there exists g ∈ ∂ f (x0) satisfying,

‖ProjR(g)‖2

‖g‖2
≤ σmax(ProjR(AT ))

σC (AT )σmin(AT )
.

To obtain Theorem 5.2.1, choose R = span({x0}) and C =Rn. This choice of R yields σmax(ProjR(AT ))=

‖x̄0x̄T
0 AT‖2 = ‖Ax̄0‖2 and ‖ProjR(g)‖2 = |x̄T

0 g|. Choice of C = Rn yields σC (A) = 1. Also note that, for

any choice of C , x0 is orthogonal to (5.11) by definition.

5.5.3 Proof of Theorem 5.2.2

Rotational invariance of Gaussian measurements allow us to make full use of Proposition 5.5.1. The follow-

ing is a generalization of Theorem 5.2.2.

Proposition 5.5.2 Consider the setup in Proposition 5.5.1 where A has i.i.d N (0,1) entries. Let,

mlow =
n(1− D̄(C )1/2)ρ(R,∂ f (x0))

2

100
,

and suppose dim(R) ≤ mlow. Then, whenever m ≤ mlow, with probability 1− 10exp(− 1
16 min{mlow,(1−

D̄(C )1/2)2n}), (5.3) will fail for all functions f (·).

Proof: More measurements can only increase the chance of success. Hence, without losing gen-

erality, assume m = mlow and dim(R) ≤ m. The result will follow from Proposition 5.5.1. Recall that

m≤ (1−D̄(C )1/2)n
100 .

• ProjR(AT ) is statistically identical to a dim(R)×m matrix with i.i.d. N (0,1) entries under proper

unitary rotation. Hence, using Corollary 5.35 of [213], with probability 1−2exp(−m
8 ), σmax(ProjR

(AT ))≤ 1.5
√

m+
√

dim(R)≤ 2.5
√

m. With the same probability, σmin(AT )≥√n−1.5
√

m.

• From Theorem B.1.2, using m≤ (1−D̄(C )1/2)n
100 , with probability 1−6exp(− (1−D̄(C )1/2)2n

16 ), σ2
C (A

T )≥
1−D̄(C )1/2

4(1+D̄(C )1/2)
≥ 1−D̄(C )1/2

8 .

174



Since m
n ≤ 1

30 , combining these, with the desired probability,

σmax(ProjR(AT ))

σC (AT )σmin(AT )
≤
√

8
1− D̄(C )1/2

2.5
√

m√
n−1.5

√
m

<
10
√

m√
(1− D̄(C )1/2)n

.

Finally, using Proposition 5.5.1 and m ≤ n(1−D̄(C )1/2)
100 ρ(R,∂ f (x0))

2, with the same probability (5.3) fails.

To achieve Theorem 5.2.2, choose R = span({x0}) and use the first statement of Proposition 5.2.1.

To achieve Corollary 5.2.1, choose R = span({x0}) and use the second statement of Proposition 5.2.1.

5.5.4 Enhanced lower bounds

From our initial results, it may look like our lower bounds are suboptimal. For instance, considering only `1

norm, κ = ‖x̄0‖1√
n lies between 1√

n and
√

k
n for a k sparse signal. Combined with Theorem 5.2.2, this would

give a lower bound of ‖x̄0‖2
1 measurements. On the other hand, clearly, we need at least O(k) measurements

to estimate a k sparse vector.

Indeed, Proposition 5.5.1 gives such a bound with a better choice of R. In particular, let us choose

R = span({sign(x0)}). For any g ∈ ∂‖x0‖1, we have that,

〈
g, sign(x0)√

k

〉
L

=

√
k
n

=⇒ ρ(sign(x0),∂‖x0‖1) =

√
k
n

Hence, we immediately have m ≥ O (k) as a lower bound. The idea of choosing such sign vectors can be

generalized to the so-called decomposable norms.

Definition 5.5.1 (Decomposable Norm) A norm ‖ · ‖ is decomposable at x ∈ Rn if there exist a subspace

T ⊂ Rn and a vector e ∈ T such that the subdifferential at x has the form

∂‖x‖= {z ∈ Rn : ProjT (z) = e , ‖PT⊥(z)‖∗ ≤ 1}.

We refer to T as the support and e as the sign vector of x with respect to ‖ · ‖ .

Similar definitions are used in [30] and [221]. Our definition is simpler and less strict compared to these

works. Note that L is a global property of the norm while e and T depend on both the norm and the point

under consideration (decomposability is a local property in this sense).
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To give some intuition for Definition 5.5.1, we review examples of norms that arise when considering

simultaneously sparse and low rank matrices. For a matrix X ∈Rd1×d2 , let Xi, j, Xi,. and X., j denote its (i, j)

entry, ith row and jth column respectively.

Lemma 5.5.4 (see [30]) The `1 norm, the `1,2 norm and the nuclear norm are decomposable as follows.

• `1 norm is decomposable at every x ∈ Rn, with sign e = sgn(x) , and support as

T = supp(x) = {y ∈ Rn : xi = 0 ⇒ yi = 0 for i = 1, . . . ,n} .

• `1,2 norm is decomposable at every X ∈ Rd1×d2 . The support is

T =
{

Y ∈ Rd1×d2 : X.,i = 0 ⇒ Y.,i = 0 for i = 1, . . . ,d2

}
,

and the sign vector e ∈ Rd1×d2 is obtained by normalizing the columns of X present in the support, e., j =
X., j
‖X., j‖2

if ‖X., j‖2 6= 0, and setting the rest of the columns to zero.

• Nuclear norm is decomposable at every X ∈ Rd1×d2 . For a matrix X with rank r and compact singular

value decomposition X = UΣΣΣVT where ΣΣΣ ∈ Rr×r, we have e = UVT and

T =
{

Y ∈ Rd1×d2 : (I−UUT )Y(I−VVT ) = 0
}

=
{

Z1VT +UZT
2 | Z1 ∈ Rd1×r,Z2 ∈ Rd2×r

}
.

The next lemma shows that the sign vector e will yield the largest correlation with the subdifferential

and the best lower bound for such norms.

Lemma 5.5.5 Let ‖ · ‖ be a decomposable norm with support T and sign vector e. For any v 6= 0, we have

that,

ρ(v,∂‖x0‖)≤ ρ(e,∂‖x0‖) (5.17)

Also ρ(e,∂‖x0‖)≥ ‖e‖2
L .

Proof: Let v be a unit vector. Without losing generality, assume vT e ≥ 0. Pick a vector z ∈ T⊥ with

‖z‖∗ = 1 such that zT v≤ 0 (otherwise pick −z). Now, consider the class of subgradients g(α) = e+αz for
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Figure 5.4: An example of a decomposable norm: `1 norm is decomposable at x0 = (1,0). The sign vector e, the
support T , and shifted subspace T⊥ are illustrated. A subgradient g at x0 and its projection onto T⊥ are also shown.

1≥ α ≥−1. Then,

inf
−1≤α≤1

|vT g(α)|
‖g(α)‖2

= inf
0≤α≤1

|vT g(α)|
‖g(α)‖2

= inf
0≤α≤1

|eT v−α|zT v||
(‖e‖2

2 +α2‖z‖2
2)

1/2

If |zT v| ≥ eT v, then, the numerator can be made 0 and ρ(v,∂‖x0‖) = 0. Otherwise, the right hand side is

decreasing function of α , hence the minimum is achieved at α = 1, which gives,

inf
−1≤α≤1

|vT g(α)|
‖g(α)‖2

=
|eT v−|zT v||

(‖e‖2
2 +‖z‖2

2)
1/2 ≤

|eT v|
(‖e‖2

2 +‖z‖2
2)

1/2 ≤
‖e‖2

(‖e‖2
2 +‖z‖2

2)
1/2 = inf

−1≤α≤1

|ēT g(α)|
‖g(α)‖2

where we used eT g(α) = eT e = ‖e‖2
2. Hence, along any direction z, e yields a higher minimum correlation

than v. To obtain (5.17), further take infimum over all z ∈ T⊥,‖z‖∗ ≤ 1 which will yield infimum over

∂‖x0‖. Finally, use ‖g(α)‖2 ≤ L to lower bound ρ(e,∂‖x0‖).

Based on Lemma 5.5.5, the individual lower bound would be O
(
‖e‖2

2
L2

)
n. Calculating ‖e‖2

2
L2 n for the

norms in Lemma 5.5.4, reveals that, this quantity is k for a k sparse vector, cd1 for a c-column sparse matrix

and r max{d1,d2} for a rank r matrix. Compared to bounds obtained by using x̄0, these new quantities are

directly proportional to the true model complexities. Finally, we remark that, these new bounds correspond

to choosing x0 that maximizes the value of ‖x̄0‖1,‖x̄0‖? or ‖x̄0‖1,2 while keeping sparsity, rank or column

sparsity fixed. In particular, in these examples, e has the same sparsity, rank, column sparsity as x0.

The next lemma gives a correlation bound for the combination of decomposable norms as well as a

simple lower bound on the sample complexity.

Proposition 5.5.3 Given decomposable norms ‖·‖(i) with supports Ti and sign vectors ei. Let T∩=
⋂

1≤i≤τ Ti.

Choose the subspace R to be a subset of T∩.
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• Assume
〈
ProjR(ei),ProjR(e j)

〉
≥ 0 for all i, j and min1≤i≤τ

‖ProjR(ei)‖2
‖ei‖2

≥ υ . Then,

ρ(R,∂ f (x0))≥
υ√
τ

min
1≤i≤τ

ρ(ei,∂‖x0‖(i)).

• Consider Proposition 5.5.1 with Gaussian measurements and suppose R is orthogonal to the set

(5.11). Let f (x) = ∑
τ
i=1 λi‖x‖(i) for nonnegative {λi}’s. Then, if m < dim(R), (5.3) fails with proba-

bility 1.

Proof: Let g = ∑
τ
i=1 wigi for some gi ∈ ∂‖x0‖(i). First, ‖g‖2 ≤ ∑

τ
i=1 wi‖gi‖2. Next,

‖ProjR(g)‖2
2 = ‖

τ

∑
i=1

wiProjR(ei)‖2
2 ≥

τ

∑
i=1

w2
i ‖ProjR(ei)‖2

2 ≥ υ
2

τ

∑
i=1

w2
i ‖ei‖2

2 ≥
υ2

τ
(

τ

∑
i=1

wi‖ei‖2)
2.

To see the second statement, consider the line (5.13) from the proof of Proposition 5.5.1. ProjR(g) =

∑
τ
i=1 λiProjR(ei). On the other hand, column space of ProjR(AT ) is an m-dimensional random subspace of

R. If m < dim(R), ProjR(g) is linearly independent with ProjR(AT ) with probability 1 and (5.13) will not

hold.

In the next section, we will show how better choices of R (based on the decomposability assumption)

can improve the lower bounds for S&L recovery.

5.6 Proofs for Section 5.2.2

Using the general framework provided in Section 5.2.1, in this section we present the proof of Theorem

5.2.3, which states various convex and nonconvex recovery results for the S&L models. We start with the

proofs of the convex recovery.

5.6.1 Convex recovery results for S&L

In this section, we prove the statements of Theorem 5.2.3 regarding convex approaches, using Theorem

5.2.2 and Proposition 5.5.2. We will make use of the decomposable norms to obtain better lower bounds.

Hence, we first state a result on the sign vectors and the supports of the S&L model following Lemma 5.5.4.

The proof is provided in Appendix B.2.

Lemma 5.6.1 Denote the norm ‖XT‖1,2 by ‖·T ‖1,2. Given a matrix X0 ∈Rd1×d2 , let E?,Ec,Er and T?,Tc,Tr

be the sign vectors and supports for the norms ‖ · ‖?, ‖ · ‖1,2, ‖ ·T ‖1,2 respectively. Then,
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• E?,Er,Ec ∈ T?∩Tc∩Tr,

• 〈E?,Er〉 ≥ 0, 〈E?,Ec〉 ≥ 0, and 〈Ec,Er〉 ≥ 0.

5.6.1.1 Proof of Theorem 5.2.3: Convex cases

Proof of (a1) We use the functions ‖ ·‖1,2,‖ ·T ‖1,2 and ‖ ·‖? without the cone constraint, i.e., C =Rd1×d2 .

We will apply Proposition 5.5.2 with R = T?∩Tc∩Tr. From Lemma 5.6.1 all the sign vectors lie on R and

they have pairwise nonnegative inner products. Consequently, applying Proposition 5.5.3,

ρ(R,∂ f (X0))
2 ≥ 1

3
min{ k1

d1
,

k2

d2
,

r
min{d1,d2}

}

If m < dim(R), we have failure with probability 1. Hence, assume m ≥ dim(R). Now, apply Proposition

5.5.2 with the given mlow.

Proof of (b1) In this case, we apply Lemma B.2.2. We choose R = T? ∩ Tc ∩ Tr ∩ Sn, the norms are

the same as in the general model, and υ ≥ 1√
2
. Also, pairwise inner products are positive, hence, using

Proposition 5.5.3, ρ(R,∂ f (X0))
2 ≥ 1

4 min{ k
d ,

r
d}. Again, we may assume m ≥ dim(R). Finally, based on

Corollary B.1.1, for the PSD cone we have D̄(C ) ≥ 3
4 . The result follows from Proposition 5.5.2 with the

given mlow.

Proof of (c1) For PSD cone, D̄(C ) ≥ 3
4 and we simply use Theorem 5.2.2 to obtain the result by using

κ2
`1
=
‖X̄0‖2

1
d2 and κ2

? =
‖X̄0‖2

?
d .

5.6.1.2 Proof of Corollary 5.2.2

To show this, we will simply use Theorem 5.2.1 and will substitute κ’s corresponding to `1 and the nuclear

norm. κ? =
‖X̄0‖?√

d
and κ`1 =

‖X̄0‖`1
d . Also observe that, λ`1L`1 = βd and λ?L? = (1−β )d. Hence, ∑

2
i=1 λ̄iκi =

α‖X̄0‖1 +(1−α)‖X̄0‖?
√

d. Use Proposition 5.3.1 to conclude with sufficiently small c1,c2 > 0.

5.6.2 Nonconvex recovery results for S&L

While Theorem 5.2.3 states the result for Gaussian measurements, we prove the nonconvex recovery for

the more general sub-gaussian measurements. We first state a lemma that will be useful in proving the

nonconvex results. The proof is provided in the Appendix B.3 and uses standard arguments.
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Lemma 5.6.2 Consider the set of matrices M in Rd1×d2 that are supported over an s1× s2 submatrix with

rank at most q. There exists a constant c > 0 such that whenever m ≥ cmin{(s1 + s2)q,s1 log d1
s1
,s2 log d2

s2
},

with probability 1−2exp(−cm), A (·) : Rd1×d2→Rm with i.i.d. zero-mean and isotropic sub-gaussian rows

will satisfy the following,

A (X) 6= 0, for all X ∈M. (5.18)

5.6.2.1 Proof of Theorem 5.2.3: Nonconvex cases

Denote the sphere in Rd1×d2 with unit Frobenius norm by S d1×d2 .

Proof of (a2) Observe that the function f (X) =
‖X‖0,2
‖X0‖0,2

+
‖XT ‖0,2

‖XT
0 ‖0,2

+ rank(X)
rank(X0)

satisfies the triangle inequality

and we have f (X0) = 3. Hence, if all null space elements W ∈ Null(A ) satisfy f (W)> 6, we have

f (X)≥ f (X−X0)− f (−X0)> 3,

for all feasible X which implies X0 being the unique minimizer.

Consider the set M of matrices, which are supported over a 6k1× 6k2 submatrix with rank at most 6r.

Observe that any Z satisfying f (Z) ≤ 6 belongs to M. Hence ensuring Null(A )∩M = {0} would ensure

f (W)> 6 for all W ∈Null(A ). Since M is a cone, this is equivalent to Null(A )∩ (M∩S d1×d2) = /0. Now,

applying Lemma 5.6.2 with set M and s1 = 6k1, s2 = 6k2, q = 6r we find the desired result.

Proof of (b2) Observe that due to the symmetry constraint,

f (X) =
‖X‖0,2

‖X0‖0,2
+
‖XT‖0,2

‖XT
0 ‖0,2

+
rank(X)

rank(X0)
.

Hence, the minimization is the same as (a2), the matrix is rank r contained in a k× k submatrix and we

additionally have the positive semidefinite constraint which can only reduce the amount of required mea-

surements compared to (a2). Consequently, the result follows by applying Lemma 5.6.2, similar to (a2).

Proof of (c2) Let C = {X 6= 0
∣∣ f (X) ≤ f (X0)}. Since rank(X0) = 1, if f (X) ≤ f (X0) = 2, rank(X) = 1.

With the symmetry constraint, this means X = ±xxT for some l-sparse x. Observe that X−X0 has rank at

most 2 and is contained in a 2k× 2k submatrix as l ≤ k. Let M be the set of matrices that are symmetric

and whose support lies in a 2k× 2k submatrix. Using Lemma 5.6.2 with q = 2, s1 = s2 = 2k, whenever
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m≥ ck log n
k , with desired probability all nonzero W ∈M will satisfy A (W) 6= 0. Consequently, any X ∈C

will have A (X) 6= A (X0), hence X0 will be the unique minimizer.

5.6.3 Existence of a matrix with large κ’s

We now argue that, there exists an S&L matrix that have large κ`1 ,κ`1,2 and κ? simultaneously. We will have

a deterministic construction that is close to optimal. Our construction will be based on Hadamard matrices.

Hn ∈ Rn×n is called a Hadamard matrix if it has ±1 entries and orthogonal rows. Hadamard matrices exist

for n that is an integer power of 2.

Using Hn, our aim will be to construct a d1× d2 S&L (k1,k2,r) matrix X0 that satisfy ‖X̄0‖2
1 ≈ k1k2,

‖X̄0‖2
? ≈ r, ‖X̄0‖2

1,2 ≈ k2 and ‖X̄T
0 ‖2

1,2 ≈ k1. To do this, we will construct a k1× k2 matrix and then plant it

into a larger d1×d2 matrix. The following lemma summarizes the construction.

Lemma 5.6.3 Without loss of generality, assume k2 ≥ k1 ≥ r. Let H := Hblog2 k2c. Let X ∈Rk1×k2 be so that,

i’th row of X is equal to [i−1 (mod r)]+1’th row of H followed by 0’s for 1≤ i≤ k1. Then,

‖X̄0‖2
1 ≥

k1k2

2
, ‖X̄0‖2

? ≥
r
2
, ‖X̄0‖2

1,2 ≥
k2

2
, ‖X̄T

0 ‖2
1,2 = k1.

In particular, if k1 ≡ 0 (mod r) and k2 is an integer power of 2, then,

‖X̄0‖2
1 = k1k2, ‖X̄0‖2

? = r, ‖X̄0‖2
1,2 = k2, ‖X̄T

0 ‖2
1,2 = k1.

Proof: The left k1× 2blog2 k2c entries of X are ±1, and the remaining entries are 0. This makes the

calculation of `1 and `1,2 and Frobenius norms trivial.

In particular, ‖X0‖2
F = ‖X0‖1 = k12blog2 k2c, ‖X0‖1,2 =

√
k12blog2 k2c and ‖XT

0 ‖1,2 = k12
blog2 k2c

2 . Substitut-

ing these yield the results for these norms.

To lower bound the nuclear norm, observe that, each of the first r rows of the H are repeated at least b k1
r c

times in X. Combined with the orthogonality, this ensures that each singular value of X that is associated

with the j’th row of H is at least
√

2blog2 k2cb k1
r c for all 1≤ j ≤ r. Consequently,

‖X‖? ≥ r

√
2blog2 k2cbk1

r
c
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Figure 5.5: Performance of the recovery program minimizing max{ tr(X)
tr(X0)

,
‖X‖1,2
‖X0‖1,2 } with a PSD constraint. The dark

region corresponds to the experimental region of failure due to insufficient measurements. As predicted by Theorem
5.2.3, the number of required measurements increases linearly with rd.

Hence,

‖X̄‖? ≥
r
√

2blog2 k2cb k1
r c√

k12blog2 k2c
=

r
√

2blog2 k2cb k1
r c√

2blog2 k2c
= r

√
1
k1
bk1

r
c

Use the fact that b k1
r c ≥ k1

2r as k1 ≥ r.

If we are allowed to use complex numbers, one can apply the same idea with the Discrete Fourier Trans-

form (DFT) matrix. Similar to Hn, DFT has orthogonal rows and its entries have the same absolute value.

However, it exists for any n≥ 1; which would make the argument more concise.

5.7 Numerical Experiments

In this section, we numerically verify our theoretical bounds on the number of measurements for the Sparse

and Low-rank recovery problem. We demonstrate the empirical performance of the weighted maximum of

the norms fbest (see Lemma 5.5.1), as well as the weighted sum of norms.

The experimental setup is as follows. Our goal is to explore how the number of required measurements

m scales with the size of the matrix d. We consider a grid of (m,d) values, and generate at least 100 test

instances for each grid point (in the boundary areas, we increase the number of instances to at least 200).

We generate the target matrix X0 by generating a k× r i.i.d. Gaussian matrix G, and inserting the k× k

matrix GGT in an d×d matrix of zeros. We take r = 1 and k = 8 in all of the following experiments; even

with these small values, we can observe the scaling predicted by our bounds. In each test, we measure the
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Figure 5.6: Performance of the recovery program minimizing max{ tr(X)
tr(X0)

, ‖X‖1‖X0‖1 } with a PSD constraint. r = 1,k = 8

and d is allowed to vary. The plot shows m versus d to illustrate the lower bound Ω(min{k2,dr}) predicted by Theorem
5.2.3.

normalized recovery error ‖X−X0‖F
‖X0‖F

and declare successful recovery when this error is less than 10−4. The

optimization programs are solved using the CVX package [113], which calls the SDP solver SeDuMi [196].

We first test our bound in part (b) of Theorem 5.2.3, Ω(rd), on the number of measurements for recovery

in the case of minimizing max{ tr(X)
tr(X0)

,
‖X‖1,2
‖X0‖1,2

} over the set of positive semi-definite matrices. Figure 5.5

shows the results, which demonstrates m scaling linearly with d (note that r = 1).

Next, we replace `1,2 norm with `1 norm and consider a recovery program that emphasizes entry-wise

sparsity rather than block sparsity. Figure 5.6 demonstrates the lower bound Ω(min{k2,d}) in Part (c)

of Theorem 5.2.3 where we attempt to recover a rank-1 positive semi-definite matrix X0 by minimizing

max{ tr(X)
tr(X0)

, ‖X‖1
‖X0‖1

} subject to the measurements and a PSD constraint. The green curve in the figure shows

the empirical 95% failure boundary, depicting the region of failure with high probability that our results have

predicted. It starts off growing linearly with d, when the term rd dominates the term k2, and then saturates

as d grows and the k2 term (which is a constant in our experiments) becomes dominant.

The penalty function max{ tr(X)
tr(X0)

, ‖X‖1
‖X0‖1

} depends on the norm of X0. In practice the norm of the solution

is not known beforehand, a weighted sum of norms is used instead. In Figure 5.7 we examine the perfor-

mance of the weighted sum of norms penalty in recovery of a rank-1 PSD matrix, for different weights. We

pick λ = 0.20 and λ = 0.35 for a randomly generated matrix X0, and it can be seen that we get a reasonable

result which is comparable to the performance of max{ tr(X)
tr(X0)

, ‖X‖1
‖X0‖1

}.
In addition, we consider the amount of error in the recovery when the program fails. Figure 5.8 shows

two curves below which we get a 90% percent failure, where for the green curve the normalized error
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Figure 5.7: Performance of the recovery program minimizing tr(X)+λ‖X‖1 with a PSD constraint, for λ = 0.2 (left)
and λ = 0.35 (right).
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Figure 5.8: 90% frequency of failure where the threshold of recovery is 10−4 for the green and 0.05 for the red curve.
max{ tr(X)

tr(X0)
, ‖X‖1‖X0‖1 } is minimized subject to the PSD constraint and the measurements.

threshold for declaring failure is 10−4, and for the red curve it is a larger value of 0.05. We minimize

max{ tr(X)
tr(X0)

, ‖X‖1
‖X0‖1

} as the objective. We observe that when the recovery program has an error, it is very likely

that this error is large, as the curves for 10−4 and 0.05 almost overlap. Thus, when the program fails, it fails

badly. This observation agrees with intuition from similar problems in compressed sensing where sharp

phase transition is observed.

As a final comment, observe that, in Figures 5.6, 5.7 and 5.8 the required amount of measurements

slowly increases even when d is large and k2 = 64 is the dominant constant term. While this is consistent

with our lower bound of Ω(k2,d), the slow increase for constant k, can be explained by the fact that, as

d gets larger, sparsity becomes the dominant structure and `1 minimization by itself requires O
(
k2 log d

k

)
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measurements rather than O
(
k2
)
. Hence for large d, the number of measurements can be expected to grow

logarithmically in d.

In Figure 5.9, we compare the estimated phase transition points for different approaches for varying

sparsity levels. The algorithms we compare are,

• Minimize `1 norm,

• Minimize `1 norm subject to the positive-semidefinite constraint,

• Minimize trace norm subject to the positive-semidefinite constraint,

• Minimize max{ tr(X)
tr(X0)

, ‖X‖1
‖X0‖1

} subject to the positive-semidefinite constraint

Not surprisingly, the last option outperforms the rest in all cases. On the other hand, its performance

is highly comparable to the minimum of the second and third approaches. For all regimes of sparsity, we

observe that, measurements required by the last method is at least half as much as the minimum of second

and third methods.

5.8 Discussion

We have considered the problem of recovery of a simultaneously structured object from limited measure-

ments. It is common in practice to combine known norm penalties corresponding to the individual structures

(also known as regularizers in statistics and machine learning applications), and minimize this combined ob-

jective in order to recover the object of interest. The common use of this approach motivated us to analyze
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its performance, in terms of the smallest number of generic measurements needed for correct recovery. We

showed that, under a certain assumption on the norms involved, the combined penalty requires more generic

measurements than one would expect based on the degrees of freedom of the desired object. Our lower

bounds on the required number of measurements implies that the combined norm penalty cannot perform

significantly better than the best individual norm.

These results raise several interesting questions, and lead to directions for future work. We briefly outline

some of these directions, as well as connections to some related problems.

Defining new atoms for simultaneously structured models. Our results show that combinations of in-

dividual norms do not exhibit a strong recovery performance. On the other hand, the paper [50] proposes

a remarkably general construction for an appropriate penalty given a set of atoms. Can we revisit a simul-

taneously structured recovery problem, and define new atoms that capture all structures at the same time?

And can we obtain a new norm penalty induced by the convex hull of the atoms? Abstractly, the answer is

yes, but such convex hulls may be hard to characterize, and the corresponding penalty may not be efficiently

computable. It is interesting to find special cases where this construction can be carried out and results in

a tractable problem. Recent developments in this direction include the “square norm” proposed by [158]

for the low-rank tensor recovery; which provably outperforms (5.2) for Gaussian measurements and the

(k,q)-trace norm introduced by Richard et al. to estimate S&L matrices [180].

Algorithms for minimizing combination of norms. Despite the limitation in their theoretical perfor-

mance, in practice one may still need to solve convex relaxations that combine the different norms, i.e.,

problem (5.3). Consider the special case of sparse and low-rank matrix recovery. All corresponding opti-

mization problems mentioned in Theorem 5.2.3 can be expressed as a semidefinite program and solved by

standard solvers; for example, for the numerical experiments in Section 5.7 we used the interior-point solver

SeDuMi [196] via the modeling environment CVX [113]. However, interior point methods do not scale

for problems with tens of thousands of matrix entries, which are common in machine learning applications.

One future research direction is to explore first-order methods, which have been successful in solving prob-

lems with a single structure (for example `1 or nuclear norm regularization alone). In particular, Alternating

Directions Methods of Multipliers (ADMM) appears to be a promising candidate.
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Connection to Sparse PCA. The sparse PCA problem (see, e.g. [64, 124, 236]) seeks sparse principal

components given a (possibly noisy) data matrix. Several formulations for this problem exist, and many

algorithms have been proposed. In particular, a popular algorithm is the SDP relaxation proposed in [64],

which is based on the following formulation.

For the first principal component to be sparse, we seek an x ∈ Rn that maximizes xT Ax for a given

data matrix A, and minimizes ‖x‖0. Similar to the sparse phase retrieval problem, this problem can be

reformulated in terms of a rank-1, PSD matrix X = xxT which is also row- and column-sparse. Thus we

seek a simultaneously low-rank and sparse X. This problem is different from the recovery problem studied

in this chapter, since we do not have m random measurements of X. Yet, it will be interesting to connect this

chapter’s results to the sparse PCA problem to potentially provide new insights for sparse PCA.
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Chapter 6

Graph Clustering via Low-Rank and Sparse
Decomposition

Given an unweighted graph, finding nodes that are well-connected with each other is a very useful prob-

lem with applications in social networks [69, 99], data mining [228], bioinformatics [229, 230], com-

puter networks, sensor networks. Different versions of this problem have been studied as graph cluster-

ing [52,98,106,185], correlation clustering [10,66,108], graph partitioning on planted partition model [20].

Developments in convex optimization techniques to recover low-rank matrices [36,40,43,50,51] via nuclear

norm minimization has recently led to the development of several convex algorithms to recover clusters in a

graph [3, 5–7, 61, 62, 164, 223]1.

Let us assume that a given graph has dense clusters; we can look at its adjacency matrix as a low-rank

matrix with sparse noise. That is, the graph can be viewed as a union of cliques with some edges missing

inside the cliques and extra edges between the cliques. Our aim is to recover the low-rank matrix since it is

equivalent to finding clusters. A standard approach is the following convex program which decomposes the

adjacency matrix (A) as the sum of a low-rank (L) and a sparse (S) component.

Simple Convex Program:

minimize
L,S

‖L‖?+λ‖S‖1 (6.1)

subject to

1≥ Li, j ≥ 0 for all i, j ∈ {1,2, . . .n} (6.2)

L+S = A

1This chapter is based on the works [164, 214, 215].
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Figure 6.1: Feasibility of Program 6.1 in terms of the minimum effective density (EDmin).
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Figure 6.2: Feasibility of Program 6.1 in terms of the regularization parameter (λ ).

Figure 6.3: Characterization of the feasibility of Program (6.1) in terms of the minimum effective density and the value of the
regularization parameter. The feasibility is determined by the values of these parameters in comparison with two constants Λsucc
and Λfail, derived in Theorem 6.1 and Theorem 6.2. The thresholds guaranteeing the success or failure of Program 6.1 derived in
this chapter are fairly close to each other.

where λ > 0 is a regularization parameter. This program is very intuitive and requires the knowledge of

only the adjacency matrix. Program 6.1 has been studied in several works [36, 51, 61, 62], including [164]

which is due to the author.

While (6.1) requires only the knowledge of adjacency matrix, it is not difficult to see that, when the edge

probability inside the cluster is p < 1/2, (as n→ ∞) Program 6.1 will return L0 = 0 as the optimal solution

(since if the cluster is not dense completing the missing edges is more costly compared to treating the cluster

as sparse). As a result our analysis of Program 6.1, and the corresponding Theorems 6.1 and 6.2, assumes

p > 1/2. Clearly, there are many instances of graphs we would like to cluster where p < 1/2, most notably

social networking. If the total size of the cluster region (i.e, the total number of edges in the cluster, denoted

by |R|) is known, then the following convex program can be used, and can be shown to work for p < 1/2

(see Theorem 6.3).

Improved Convex Program:

minimize
L,S

‖L‖?+λ‖S‖1 (6.3)

subject to

1≥ Li, j ≥ Si, j ≥ 0 for all i, j ∈ {1,2, . . .n} (6.4)

Li, j = Si, j whenever Ai, j = 0 (6.5)

sum(L)≥ |R| (6.6)
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As before, L is the low-rank matrix corresponding to the ideal cluster structure and λ ≥ 0 is the regularization

parameter. However, S will now correspond to the sparse error matrix that accounts only for the missing

edges inside the clusters. This program was first proposed by the author in [164]. The similar approaches

include work by Ames [5, 7].

If R is not known, it is possible to solve Problem 6.3 for several values of R until the desired perfor-

mance is obtained. Intuitively, as the right hand side of (6.6) is increased, Improved Program should return

a larger group of clusters. Hence, one can start from a small estimate of |R| and increase it as long as he

gets a reasonable performance. Our analytic results, however, will assume the exact knowledge of |R|.

6.0.1 Our Contributions

• We define the “effective density” of a cluster (which depends on the program we solve). Effective

density is a function of the size and density of the cluster as well as inter-cluster edges. Our results

are in terms of the effective density, i.e. when a cluster has large effective density, it is recoverable

via the proposed convex approaches.

• We analyze the Simple Convex Program 6.1 for the SBM. We provide explicit bounds on the regu-

larization parameter as a function of the parameters of the SBM, that characterizes the success and

failure conditions of Program 6.1 (see results in Section 6.2.1). Our success and failure conditions

show a good match (the gap is a constant factor of 4); hence our analysis is helpful in understanding

the phase transition from failure to success for the simple approach.

• We also analyze the Improved Convex Program 6.3. We explicitly characterize the conditions on the

parameters of the SBM and the regularization parameter for successfully recovering clusters using

this approach (see results in Section 6.2.3). Our bounds not only reflect the correct relation between

the problem parameters; but also have small constants in front.

• Our findings are shown to match well with the numerical experiments.

We consider the popular stochastic block model (also called the planted partition model) for the graph.

Under this model of generating random graphs, the existence of an edge between any pair of vertices is

independent of the other edges. The probability of the existence of an edge is identical within any individual

cluster, but may vary across clusters. One may think of this as a heterogeneous form of the Erdös-Renyi

model. We characterize the conditions under which Programs 6.1 and 6.3 can successfully recover the

correct clustering, and when it cannot. Our analysis reveals the dependence of its success on a metric that
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we term the minimum effective density of the graph. While defined more formally later in the chapter, in

a nutshell, the minimum effective density of a random graph tries to capture the density of edges in the

sparsest cluster. We derive explicit upper and lower bounds on the value of this metric that determine the

success or failure of Program 6.1 (as illustrated in Fig. 6.1).

A second contribution of this chapter is to explicitly characterize the efficacy of Programs 6.1 and 6.3

with respect to the regularization parameter λ . We obtain bounds on the values of λ that permit the recovery

of the clusters, or those that necessitate Program 6.1 to fail (as illustrated in Fig. 6.2). Our results thus lead

to a more principled approach towards the choice of the regularization parameter for the problem at hand.

Most of the convex algorithms proposed for graph clustering, for example, the recent works by Xu et

al. [223], Ames and Vavasis [6,7], Jalali et al. [61], Chen et al. [62], Ames [5], Ailon et al. [3] are variants of

Program 6.1. These results show that planted clusters can be identified via tractable convex programs as long

as the cluster size is proportional to the square-root of the size of the adjacency matrix. However, the exact

requirements on the cluster size are not known. In this chapter, we find sharp bounds for the identifiability

as a function of cluster sizes, inter cluster density and intra cluster density. To the best of our knowledge,

this is the first explicit characterization of the feasibility of the convex optimization based approaches (6.1)

and (6.3) towards this problem.

The rest of the chapter is organized as follows. Section 6.1 formally introduces the model considered

in this chapter. Section 6.2.1 presents the main results of the chapter: an analytical characterization of the

feasibility of the low rank plus sparse based approximation for identifying clusters. Section 6.3 presents

simulations that corroborate our theoretical results. Finally, the proofs of the technical results are deferred

to Sections C.1, C.2 and C.3.

6.1 Model

For any positive integer m, let [m] denote the set {1,2, . . . ,m}. Let G be an unweighted graph on n nodes,

[n], with K disjoint (dense) clusters. Let Ci denote the set of nodes in the ith cluster. Let ni denote the size

of the ith cluster, i.e., the number of nodes in Ci. We shall term the set of nodes that do not fall in any

of these K clusters as outliers and denote them as CK+1 := [n]−⋃K
i=1 Ci. The number of outliers is thus

nK+1 := n−∑
K
i=1 ni. Since the clusters are assumed to be disjoint, we have Ci∩C j = /0 for all i, j ∈ [n].

Let R be the region corresponding to the union of regions induced by the clusters, i.e., R =
⋃K

i=1 Ci×
Ci ⊆ [n]× [n]. So, Rc = [n]× [n]−R is the region corresponding to out of cluster regions. Note that
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|R|= ∑
K
i=1 n2

i and |Rc|= n2−∑
K
i=1 n2

i . Let nmin := min
1≤i≤K

ni.

Let A = AT denote the adjacency matrix of the graph G. The diagonal entries of A are 1. The adjacency

matrix will follow a probabilistic model, in particular, a more general version of the popular stochastic block

model [63, 117].

Definition 6.1 (Stochastic Block Model) Let {pi}K
i=1,q be constants between 0 and 1. Then, a random

graph G, generated according to stochastic block model, has the following adjacency matrix. Entries of A

on the lower triangular part are independent random variables and for any i > j:

Ai, j =


Bernoulli(pl) if both {i, j} ∈ Cl for some l ≤ K

Bernoulli(q) otherwise.

So, an edge inside ith cluster exists with probability pi and an edge outside the clusters exists with

probability q. Let pmin := min
1≤i≤K

pi. We assume that the clusters are dense and the density of edges inside

clusters is greater than outside, i.e., pmin > 1
2 > q > 0. We note that the Program 6.1 does not require

the knowledge of {pi}K
i=1,q or K, and uses only the adjacency matrix A for its operation. However, the

knowledge of {pi}K
i=1,q will help us tune λ in a better way.

6.2 Main Results

6.2.1 Results on the Simple Convex Program

The desired solution to Program 6.1 is (L0,S0) where L0 corresponds to the full cliques, when missing edges

inside R are completed, and S0 corresponds to the missing edges and the extra edges between the clusters.

In particular we want:

L0
i, j =


1 if both {i, j} ∈ Cl for some l ≤ K,

0 otherwise.
(6.7)

S0
i, j =


−1 if both {i, j} ∈ Cl for some l ≤ K, and Ai, j = 0,

1 if {i, j} are not in the same cluster and Ai, j = 1,

0 otherwise.
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It is easy to see that the (L0,S0) pair is feasible. We say that Program 6.1 succeeds when (L0,S0) is the

optimal solution to Program 6.1. In this section we present two theorems which give the conditions under

which Program 6.1 succeeds or fails.

The following definitions are critical to our results.

• Define EDi := ni (2pi−1) as the effective density of cluster Ci and EDmin = min
1≤i≤K

EDi.

• Let γsucc := max
1≤i≤K

4
√

(q(1−q)+ pi(1− pi))ni,

γfail := ∑
K
i=1

n2
i

n

• Λfail := 1√
q(n−γfail)

and Λsucc := 1
4
√

q(1−q)n+γsucc
.

Theorem 6.1 Let G be a random graph generated according to the Stochastic Block Model 6.1 with K

clusters of sizes {ni}K
i=1 and probabilities {pi}K

i=1 and q, such that pmin >
1
2 > q > 0. Given ε > 0, there

exists positive constants δ ,c1,c2 such that,

1. For any given λ ≥ 0, if EDmin≤ (1−ε)Λ−1
fail then Program 6.1 fails with probability 1−c1 exp(−c2|Rc|).

2. Whenever EDmin ≥ (1+ ε)Λ−1
succ, for λ = (1− δ )Λsucc, Program 6.1 succeeds with probability 1−

c1n2 exp(−c2nmin).

As it will be discussed in Sections C.1 and C.2, Theorem 6.1 is actually a special case of the following

result, which characterizes success and failure as a function of λ .

Theorem 6.2 Let G be a random graph generated according to the Stochastic Block Model 6.1 with K

clusters of sizes {ni}K
i=1 and probabilities {pi}K

i=1 and q, such that pmin >
1
2 > q > 0. Given ε > 0, there

exists positive constants c′1,c
′
2 such that,

1. If λ ≥ (1+ ε)Λfail, then Program 6.1 fails with probability 1− c′1 exp(−c′2|Rc|).

2. If λ ≤ (1− ε)Λsucc then,

• If EDmin ≤ (1− ε) 1
λ

, then Program 6.1 fails with probability 1− c′1 exp(−c′2nmin).

• If EDmin ≥ (1+ ε) 1
λ

, then Program 6.1 succeeds with probability 1− c′1n2 exp(−c′2nmin).

We see that the minimum effective density EDmin,Λsucc and Λfail play a fundamental role in determining

the success of Program 6.1. Theorem 6.1 gives a criteria for the inherent success of Program 6.1, whereas

Theorem 6.2 characterizes the conditions for the success of Program 6.1 as a function of the regularization

parameter λ . We illustrate these results in Figures 6.1 and 6.2.
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Figure 6.4: Simulation results showing the region of success (white region) and failure (black region) of Program 6.1 with
λ = 0.99Λsucc. Also depicted are the thresholds for success (solid red curve on the top-right) and failure (dashed green curve on
the bottom-left) predicted by Theorem 6.1.
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Figure 6.5: Simulation results showing the region of success (white region) and failure (black region) of Program 6.1 with
λ = 2ED−1

min. Also depicted are the thresholds for success (solid red curve on the top-right) and failure (dashed green curve on the
bottom-left) predicted by Theorem 6.2.

6.2.2 Sharp Performance Bounds

From our forward and converse results, we see that there is a gap between Λfail and Λsucc. The gap is Λfail
Λsucc

=

4
√

q(1−q)n+γsucc√
q(n−γfail)

times. In the small cluster regime where max
1≤i≤K

ni = o(n) and ∑
K
i=1 n2

i = o(n2), the ratio Λfail
Λsucc

takes an extremely simple form as we have γfail� n and γsucc�
√

n. In particular, Λfail
Λsucc

= 4
√

1−q+o(1),

which is at most 4 times in the worst case.

6.2.3 Results on the Improved Convex Program

The following definitions are critical to describe our results.

• Define ẼDi := ni (pi−q) as the effective density of cluster i and ẼDmin = min
1≤i≤K

ẼDi.
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• γ̃succ := 2 max
1≤i≤K

√
ni
√
(1− pi)pi +(1−q)q

• Λ̃−1
succ := 2

√
nq(1−q)+ γ̃succ.

We note that the threshold, Λ̃succ depends only on the parameters of the model.

Theorem 6.3 (Improved Program) Consider a random graph generated according to the SBM of Defini-

tion 6.1, with adjacency matrix A, K disjoint clusters of sizes {ni}K
i=1, and probabilities {pi}K

i=1 and q, such

that pmin > q > 0. Further assume each edge of A is independently observed with probability r. Given

ε > 0, there exists positive constants c′1,c
′
2 such that: If 0 < λ ≤ (1− ε)Λ̃succ and ẼDmin ≥ (1+ ε) 1

λ
, then

Program 6.3 succeeds in recovering the clusters with probability 1− c′1n2 exp(−c′2nmin).

Discussion:

1. Theorem 6.3 gives a sufficient condition for the success of Program 6.3 as a function of λ . In partic-

ular, for any λ > 0, we succeed if ẼD−1
min < λ < Λ̃succ

2. Small Cluster Regime:

When nmax = o(n), we have Λ̃−1
succ = 2

√
nq(1−q). For simplicity let pi = p, ∀ i, which yields ẼDmin =

nmin(p−q). Then ẼDmin > Λ̃−1
succ implies,

nmin >
2
√

nq(1−q)
p−q

, (6.8)

which gives a lower bound on the minimum cluster size that is sufficient for success. This lower

bound on the minimum cluster size will increase as the noise term q increases or as the clusters get

sparser (smaller p) which is intuitive.

Note: The proofs for Theorems 6.1, 6.2 and 6.3 are provided in Appendices C.1, C.2 and C.3.

6.2.4 Comparison to the literature on graph theory

While we approached the clustering problem from a convex optimization view point, it is crucial that our

results compare well with the related literature. Fixing densities, and focusing on the minimum recoverable

cluster size, we find that, we need nmin = O(
√

n) for the programs to be successful. This compares well with

the convex optimization based results of [5–7, 61, 62, 164].

Now, let us allow the cluster sizes to be O(n) and investigate how small p = p1 = · · · = pK and q can

be. For comparison, we will make use of McSherry’s result which is based on spectral techniques [146].
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Corollary 1 of [146] essentially states that, their proposed algorithm will succeed if,

p−q
p

> c

√
logn
pn
⇐⇒

√
n

logn
> c
√

p
p−q

. (6.9)

In this regime, we have to take γ̃succ term in the account as ni,n is comparable. Hence, our bound yields the

condition,

ni = O(n)> c′
√

pn
p−q

. (6.10)

Ignoring the logn term in (6.9), it can be seen that the two bounds are identical. We remark that the extra

logn term in (6.9) and the minimum density of p∼ O( logn
n ) is indeed necessary. For instance, to be able to

identify a cluster, we require it to be connected, which requires p ∼ O( logn
n ) [93]. The reason it does not

exist in our bounds is because we assume p,q are constants independent of n. We believe p,q ∼ O( logn
n )

regime can be handled as well, however, our arguments should be modified to accommodate sparse random

matrices, which will change the spectral norm estimates in our proof.

6.3 Simulations

We implement Program 6.1 using the inexact augmented Lagrangian multiplier method algorithm by Lin et

al. [136]. We note that this algorithm solves the program approximately. Moreover, numerical imprecision

prevents the output of the algorithm from being strictly 1 or 0. Hence we round each entry to 1 or 0 by

comparing it with the mean of all entries of the output. In other words, if an entry is greater than the overall

mean, we round it to 1 and to 0 otherwise. We declare success if the number of entries that are wrong in the

rounded output compared to L0 (recall from (6.7)) is less than 0.1%.

We consider the set up with n = 200 nodes and two clusters of equal sizes, n1 = n2. We vary the

cluster sizes from 10 to 100 in steps of 10. We fix q = 0.1 and vary the probability of edge inside clusters

p1 = p2 = p from 0.6 to 0.95 in steps of 0.05. We run the experiments 20 times and average over the

outcomes. In the first set of experiments, we run the program with λ = 0.99Λsucc which ensures that λ <

Λsucc. Figure 6.4 shows the region of success (white region) and failure (black region) for this experiment.

From Theorem 6.1, we expect the program to succeed when EDmin > Λ−1
succ, which is the region above the

solid red curve in Figure 6.4, and fail when EDmin < Λ
−1
fail, which is the region below the dashed green curve

in Figure 6.4.
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In the second set of experiments, we run the program with λ = 2
EDmin

. This ensures that EDmin > 1
λ

.

Figure 6.5 shows the region of success (white region) and failure (black region) for this experiment. From

Theorem 6.2, we expect the program to succeed when λ < Λsucc which is the region above the solid red

curve in Figure 6.5 and fail when λ > Λfail which is the region below the dashed green curve in Figure 6.5.

We see that the transition indeed happens between the solid red curve and the dashed green curve in both

Figure 6.4 and Figure 6.5 as predicted by Theorem 6.1 and Theorem 6.2 respectively.

6.4 Discussion and Conclusion

To tackle the task of graph clustering, we proposed convex programs 6.1 and 6.3 based on decomposing

the adjacency matrix into low-rank and sparse components. (6.1) was already being used for low-rank

and sparse decomposition task, however, we showed its viability for the specific problem of clustering and

also developed tight conditions it fails. For sparse graphs, Improved Program 6.3 is shown to have a good

performance comparable with existing literature. We believe, our technique can be extended to tightly

analyze variants of this approach. These results can be extended in a few ways, for instance studying the

case where the adjacency matrix is partially observed, or modifying the Programs 6.1 and 6.3 for clustering

weighted graphs, where the adjacency with {0,1}-entries is replaced by a similarity matrix with real entries.
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Chapter 7

Conclusions

There are several directions in which our results can be extended.

7.1 Generalized Lasso

In Chapter 3, we considered three formulation of the lasso problem. We give a full proof for the case of

constrained lasso. For the `2-lasso, our analysis holds in the large SNR regime. For arbitrary SNR levels, the

results in Section 3.10 show that 2D(λ∂ f (x0))

(
√

m−
√

D(λ∂ f (x0)))2
is an upper bound; however, in simulation D(λ∂ f (x0))

m−D(λ∂ f (x0))

looks to be the correct upper bound. It would be interesting to prove that this is indeed the case.

We also state the conjecture on `2
2-lasso, which is the most popular variation. The proof of this conjecture

would complete the missing piece in Chapter 3. Chapter 3 can be extended in several ways. An obvious

direction is to investigate different loss functions, in particular, the problem,

min
x′

L (y−Ax′)+λ f (x′).

The typical choices of L would be `1 and `∞ norms. `1 norm has resilience to sparse noise and `∞ is

advantageous when the noise is known to be bounded (for instance ±σ ). Minimax formulation we used for

`2-loss would work in these setups as well by making use of the corresponding dual norms. For instance,

for the `1 loss, we have that

min
x′
‖y−Ax′‖1 +λ f (x′) = min

x′
max
‖v‖∞≤1

〈
y−Ax′,v

〉
+λ f (x′).

Consequently, Gaussian Min-Max Theorem would be applicable to find bounds on the objective function.
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Another direction is the exact characterization of the noise behavior in the arbitrary SNR regime. While

high SNR error bound is a function of subdifferential, when the SNR is arbitrary we need more than first

order statistics. For an arbitrary convex function f (·), it is not possible to give a simple formula as we do

not know the curvature of the function. However, from Section 3.7, we have argued that the error bounds

can be related to the solution of the key optimization (3.77). Hence, one possibility is to give the error in

form of an outcome of the simpler optimization (3.77). The other option is the explicit calculation for well-

known functions with a reasonable signal model. For instance, in [82], Donoho et al. attempts to analyze `1

recovery (lasso) where they assume x to be a sparse signal whose nonzero entries are i.i.d. Gaussian with a

certain variance, which determines the SNR.

7.2 Universality of the Phase Transitions

There is a mature theory on phase transitions when the measurement ensemble is i.i.d. Gaussian. In par-

ticular, we have seen that Gaussian width and statistical dimension can fully capture the behavior of linear

inverse problems. The usefulness of these quantities extends to the more challenging problems such as the

demixing problem and noise analysis [101, 144, 170]. In Chapter 3, we have seen that the noisy problem

(lasso formulation) requires the related quantity Gaussian distance. For linear inverse problems, these quan-

tities are based only on the subdifferential ∂ f (x) (i.e., first order characteristics). In summary, with few

parameters we are able to know what to expect from structured signal recovery problems.

It is widely accepted that the phase transitions exhibit universality [71]. In the simplest case, for noiseless

`1 minimization, Donoho-Tanner bound characterizes the PT for a wide variety of ensembles including i.i.d.

matrices. In Chapter 3, we have seen that numerical experiments indicate:

• Phase transitions are universal for different problems.

• Error (robustness) behaviors are universal.

Based on these, an obvious direction is to study the precise characteristics of i.i.d. subgaussian measurement

ensembles. We expect Gaussian width and Gaussian distance to asymptotically (large dimensions) capture

the behavior for these ensembles. In fact, there is already a significant amount of work dedicated toward

this goal. In [129, 152], Mendelson and coauthors introduce comparison theorems for subgaussians. Using

these techniques, Tropp shows that for a wide class of measurement ensembles, the required oversampling

is proportional to the Gaussian width (up to a possibly large constant) [206]. Along the similar lines, in

Chapter 4.1, we gave a short argument to obtain small constants for the Bernoulli ensemble. While these
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results are powerful, they are far from capturing the true behavior: the asymptotic behavior is the same as

Gaussians. Further study and generalization of message passing algorithms and their relation to BP is an

alternative approach towards this goal. As of today, the universality phenomenon is proven for the case of

sparse recovery thanks to the significant advances in AMP [12]. We believe proper applications of standard

techniques such as the Lindeberg replacement might be promising directions towards this goal [55, 198].

Related directions include the investigation of universal behavior when we have nonlinear measurements.

The notable examples are the phase retrieval and the one bit compressed sensing problems [35, 172].

7.3 Simultaneously structured signals

In Chapter 5, we have shown that for simultaneously structured signal (SSS), performance of convex opti-

mization can be far from being optimal. This creates a challenge for several applications involving sparse

and low-rank matrices and low-rank tensors. This bottleneck is also theoretically intriguing as for sparse

and low-rank recovery, the performance of convex relaxation is on par with the performance of minimizing

the (non-relaxed) cardinality and rank objectives. A natural direction is to overcome this limitation. This

can be pursued in two ways.

• Find a better convex relaxation for SSS: Linear combination of the individual structure inducing

norms is a tempting approach; however, it does not have to be the best convex relaxation. Can we

construct a better norm which exploits the fact that the signal is simultaneously structured? If so, is

this norm computationally efficient?

• We know that nonconvex approaches are information theoretically optimal; however, they have expo-

nential complexity. Can we find an efficient algorithm tailored for SSS?

These problems are already getting attention. For instance, [132] proposes a new algorithm for the recovery

of S&L matrices that can outperform the standard convex methods in certain settings (also see [158] and

[180]).

In Chapter 5, we focused on the compressive sensing of simultaneously sparse and low-rank matrices,

which shows up in quadratic CS and sparse phase retrieval. These signals also show up in important es-

timation problems such as sparse principal component analysis and graph clustering [64, 164, 236] (also

see Chapter 6). It would be interesting to relate the computational and statistical challenges arising in these

problems and have a unified theory that connects them.
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7.4 Structured signal recovery beyond convexity

As we have argued throughout, for a structured signal estimation problem, when the problem is convex or it

can be relaxed into a convex one, we have a good idea on how to approach it. For instance, in the case of

linear inverse problems, subdifferential determines the characteristics of the problem. In various important

problems, there is no nice convex formulation or the convex approaches are not computationally efficient.

These include important machine learning problems such as the dictionary learning, nonnegative matrix

factorization, and several formulations of the matrix completion [88, 125, 135, 141]. The formulations of

these problems are often based on alternating minimization; however, we can additionally take advantage

of the fact that the signal to be recovered is structured. As an example, consider the following formulation

of the matrix completion problem. We wish to represent X ∈ Rn×n as X = UVT , where U,V ∈ Rn×r are

variables and r is an upper bound to rank(X). Assume we have the measurements y = A (X) ∈ Rm. We

wish to solve the problem

min
U,V∈Rn×r

‖y−A (UVT )‖2.

The problem is not convex, however, it is convex in U for fixed V and vice versa. Hence, we can start from

an initial point U0,V0 and alternate between U and V until convergence. This formulation has been studied

extensively, and it has been recently shown that one can provably recover the low-rank X with a “good”

initialization and for reasonable measurements A (·) [123]. It would be interesting to have a general theory

of such approaches when the objective signal is structured in some sense.
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[228] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. A fast parallel clustering algorithm for large

spatial databases. In High Performance Data Mining, pages 263–290. Springer, 2002.

[229] Ying Xu, Victor Olman, and Dong Xu. Clustering gene expression data using a graph-theoretic

approach: an application of minimum spanning trees. Bioinformatics, 18(4):536–545, 2002.

[230] Qiaofeng Yang and Stefano Lonardi. A parallel algorithm for clustering protein-protein interaction

networks. In Computational Systems Bioinformatics Conference, 2005. Workshops and Poster Ab-

stracts. IEEE, pages 174–177. IEEE, 2005.

[231] Wotao Yin, Stanley Osher, Donald Goldfarb, and Jerome Darbon. Bregman iterative algorithms

for `1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences,

1(1):143–168, 2008.

[232] Gesen Zhang, Shuhong Jiao, Xiaoli Xu, and Lan Wang. Compressed sensing and reconstruction with

bernoulli matrices. In Information and Automation (ICIA), 2010 IEEE International Conference on,

pages 455–460. IEEE, 2010.

221



[233] Y. Zhang. Theory of compressive sensing via l1 minimization: A Non-RIP analysis and extensions.

IEEE Trans Info. Theory, 2008. Technical Report TR08-11 revised. Available at http://www.

caam.rice.edu/˜zhang/reports/tr0811_revised.pdf.

[234] Peng Zhao and Bin Yu. On model selection consistency of lasso. The Journal of Machine Learning

Research, 7:2541–2563, 2006.

[235] Zihan Zhou, Xiaodong Li, John Wright, Emmanuel Candes, and Yi Ma. Stable principal component

pursuit. In Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on, pages

1518–1522. IEEE, 2010.

[236] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal of

computational and graphical statistics, 15(2):265–286, 2006.

222

http://www.caam.rice.edu/~zhang/reports/tr0811_revised.pdf
http://www.caam.rice.edu/~zhang/reports/tr0811_revised.pdf


List of Figures

1.1 The y-axis is the normalized number of measurements. x-axis is the normalized sparsity. The

gradient illustrates the gradual increase in the success of BP. As there are more measurements

per sparsity (towards the red region), the likelihood of success increases. The black line is the

Donoho-Tanner phase transition curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 We plot (1.11) for sparse recovery. The black line is the Donoho-Tanner bound; above which

the recovery is robust. The warmer colors correspond to better reconstruction guarantees;

hence, this figure adds an extra dimension to Figure 1.1; which only reflects “success” and

“failure”. Dashed line corresponds to the fixed reconstruction error. Remark: The heatmap is

clipped to enhance the view (due to singularities of (1.11)). . . . . . . . . . . . . . . . . . . . 19

1.3 To illustrate the linear growth of the phase transition point in rd, we chose the y-axis to be m
rd

and the x-axis to be the normalized measurements m
d2 . Observe that only weak bound can be

simulated and it shows a good match with simulations. The numerical simulations are done

for a 40×40 matrix and when m≥ 0.1d2. The dark region implies that (1.13) failed to recover

X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 We have considered the Constrained-LASSO with nuclear norm minimization and fixed the signal to noise ratio

‖X0‖2
F

σ 2 to 105. Size of the underlying matrices are 40× 40 and their ranks are 1,3 and 5. Based on [78, 163],

we estimate D f (X0,R+)≈ 179,450 and 663 respectively. As the rank increases, the corresponding D f (X0,R+)

increases and the normalized squared error increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 We considered `2
2-LASSO problem, for a k sparse signal of size n = 1000. We let k

n = 0.1 and m
n = 0.5 and

normalize the signal power by setting ‖x0‖2 = 1. τ is varied from 0 to 80 and the signal-to-noise ratio (SNR)

‖x0‖2
2

σ 2 is varied from 1 to 104. We observe that, for high SNR (σ2 ≤ 10−3), the analytical prediction matches with

simulation. Furthermore, the lower SNR curves are upper bounded by the high SNR curves. This behavior is fully

consistent with what one would expect from Theorem 3.1 and Formula 1. . . . . . . . . . . . . . . . . . . 53

223



3.3 We consider the `1-penalized `2-LASSO problem for a k sparse signal in Rn. x-axis is the penalty parameter λ .

For k
n = 0.1 and m

n = 0.5, we have λcrit ≈ 0.76, λbest ≈ 1.14, λmax ≈ 1.97. . . . . . . . . . . . . . . . . . . 58

3.4 We consider the exact same setup of Figure 3.3. a) We plot m−D(λ∂ f (x0)) and C(λ∂ f (x0)) as a

function of λ to illustrate the important penalty parameters λcrit,λbest,λmax and the regions of operation

ROFF,RON,R∞. b) We plot the `2
2-LASSO error as a function of τ√

m by using the map(·) function.

The normalization is due to the fact that τ grows linearly in
√

m. . . . . . . . . . . . . . . . . . . . 60

3.5 Illustration of the denominator
√

m−1−
√

D(λ∂ f (x0)) in (3.120) as a function of λ ≥ 0. The bound is mean-

ingful for λ ∈ (λmin,λmax) and attains its minimum value at λbest. The y-axis is normalized by
√

n. . . . . . . . 103

3.6 The normalized error of (3.4) as a function of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.7 Sparse signal estimation with n = 1500,m = 750,k = 150. a) `1-penalized `2-LASSO NSE. b) `1-

penalized `2
2-LASSO NSE. Observe that the minimum achievable NSE is same for both (around 1.92). 119

3.8 `2-LASSO with n = 1500, m = 750, k = 150. a) Normalized cost of the optimization. b) How well

the LASSO estimate fits the observations y. This also corresponds to the calib(λ ) function on RON.

In ROFF, (λ ≤ λcrit ≈ 0.76) observe that y = Ax∗`2
indeed holds. . . . . . . . . . . . . . . . . . . . 121

3.9 d = 45, m = 0.6d2, r = 6. We estimate D f (x0,λbest) ≈ 880. a) `2-LASSO NSE as a function of the

penalization parameter. b) `2
2-LASSO NSE as a function of the penalization parameter. . . . . . . . . 121

3.10 X0 is a 40×40 matrix with rank 4. As σ decreases, NSE increases. The vertical dashed lines marks

the estimated D(cone(∂ f (x0))) where we expect a transition in stability. . . . . . . . . . . . . . . . 122

4.1 Dashed black lines correspond to mean( fi). . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 Depiction of the correlation between a vector x and a set S . s∗ achieves the largest angle with

x , hence s∗ has the minimum correlation with x. . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 Consider the scaled norm ball passing through x0 , then κ = ‖p‖2
‖x0‖2

, where p is any of the closest

points on the scaled norm ball to the origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3 Suppose x0 corresponds to the point shown with a dot. We need at least m measurements for

x0 to be recoverable since for any m′ < m this point is not on the Pareto optimal front. . . . . . 156

5.4 An example of a decomposable norm: `1 norm is decomposable at x0 = (1,0). The sign

vector e, the support T , and shifted subspace T⊥ are illustrated. A subgradient g at x0 and its

projection onto T⊥ are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

224



5.5 Performance of the recovery program minimizing max{ tr(X)
tr(X0)

,
‖X‖1,2
‖X0‖1,2

} with a PSD constraint.

The dark region corresponds to the experimental region of failure due to insufficient mea-

surements. As predicted by Theorem 5.2.3, the number of required measurements increases

linearly with rd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.6 Performance of the recovery program minimizing max{ tr(X)
tr(X0)

, ‖X‖1
‖X0‖1

} with a PSD constraint.

r = 1,k = 8 and d is allowed to vary. The plot shows m versus d to illustrate the lower bound

Ω(min{k2,dr}) predicted by Theorem 5.2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.7 Performance of the recovery program minimizing tr(X)+λ‖X‖1 with a PSD constraint, for

λ = 0.2 (left) and λ = 0.35 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.8 90% frequency of failure where the threshold of recovery is 10−4 for the green and 0.05 for the

red curve. max{ tr(X)
tr(X0)

, ‖X‖1
‖X0‖1

} is minimized subject to the PSD constraint and the measurements.184

5.9 We compare sample complexities of different approaches for a rank 1, 40× 40 matrix as

function of sparsity. The sample complexities were estimated by a search over m, where we

chose the m with success rate closest to 50% (over 100 iterations). . . . . . . . . . . . . . . . 185

6.1 Feasibility of Program 6.1 in terms of the minimum effective density (EDmin). . . . . . . . . . 189

6.2 Feasibility of Program 6.1 in terms of the regularization parameter (λ ). . . . . . . . . . . . . 189

6.3 Characterization of the feasibility of Program (6.1) in terms of the minimum effective density and the value of the

regularization parameter. The feasibility is determined by the values of these parameters in comparison with two

constants Λsucc and Λfail, derived in Theorem 6.1 and Theorem 6.2. The thresholds guaranteeing the success or

failure of Program 6.1 derived in this chapter are fairly close to each other. . . . . . . . . . . . . . . . . . . 189

6.4 Simulation results showing the region of success (white region) and failure (black region) of Program 6.1 with

λ = 0.99Λsucc. Also depicted are the thresholds for success (solid red curve on the top-right) and failure (dashed

green curve on the bottom-left) predicted by Theorem 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.5 Simulation results showing the region of success (white region) and failure (black region) of Program 6.1 with

λ = 2ED−1
min. Also depicted are the thresholds for success (solid red curve on the top-right) and failure (dashed

green curve on the bottom-left) predicted by Theorem 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.1 Possible configurations of the points in Lemma A.11 when ZP̂1O is wide angle. . . . . . . . . 254

A.2 Lemma A.11 when ZP̂1O is acute or right angle. . . . . . . . . . . . . . . . . . . . . . . . . 255

C.1 Illustration of {Ri, j} dividing [n]× [n] into disjoint regions similar to a grid. . . . . . . . . . . . . . . . . . 271

225



List of Tables

2.1 Closed form upper bounds for δ (T f (x0)) ( [50, 101]) and D(λ∂ f (x0)) corresponding to

sparse, block-sparse signals and low-rank matrices described in Section 1.2.1. See Section

A.7 for the proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Relevant Literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Summary of formulae for the NSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Closed form upper bounds for D(cone(∂ f (x0))) ( [50, 101]) and D(λ∂ f (x0)) corresponding

to (3.7), (3.8) and (3.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Summary of results in recovery of structured signals. This chapter shows a gap between

the performance of convex and nonconvex recovery programs for simultaneously structured

matrices (last row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.2 Summary of the parameters that are discussed in this section. The last three lines is for a d×d

S&L (k,k,r) matrix where n = d2. In the fourth column, the corresponding entry for S&L is

κmin = min{κ`1 ,κ?}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.3 Summary of recovery results for models in Definition 5.2.2, assuming d1 = d2 = d and k1 =

k2 = k. For the PSD with `1 case, we assume ‖X̄0‖1
k and ‖X̄0‖?√

r to be approximately constants

for the sake of simplicity. Nonconvex approaches are optimal up to a logarithmic factor, while

convex approaches perform poorly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

226



Appendix A

Further Proofs for Chapter 3

A.1 Auxiliary Results

Lemma A.1 Let f (·) : Rp → R be an L-Lipschitz function and g ∼N (0, Ip). Then, with probability 1−
2exp(− t2

2L2 ),

√
E [( f (g))2]−L2− t ≤ f (g)≤

√
E [( f (g))2]+ t.

Proof: From Fact 2.4, | f (g)−E[ f (g)]| ≤ t holds with probability 1−2exp(− t2

2L2 ). Furthermore,

E[( f (g))2]−L2 ≤ (E[ f (g)])2 ≤ E[( f (g))2]. (A.1)

The left hand side inequality in (A.1) follows from an application of Fact 2.3 and the right hand side follows

from Jensen’s Inequality. Combining | f (g)−E[ f (g)]| ≤ t and (A.1) completes the proof.

For the statements of the lemmas below, recall the definitions of D(C ),P(C ) and C(C ) in Section 3.5.2.

Lemma A.2 Let g∼N (0,Im),h∼N (0,In) and let C ∈Rn be a closed and convex set. Given t > 0, each

of the followings hold with probability 1−2exp
(
−t2

2

)
.

•
√

m−1− t ≤ ‖g‖2 ≤
√

m+ t

•
√

D(C )−1− t ≤ dist(h,C )≤
√

D(C )+ t

•
√

P(C )−1− t ≤ ‖Proj(h,C )‖2 ≤
√

P(C )+ t

Proof: The result is an immediate application of Lemma A.1. The functions ‖ · ‖2, ‖Proj(·,C )‖2 and

dist(·,C ) are all 1-Lipschitz. Furthermore, E[‖g‖2
2] = m and E[Proj(h,C )2] = P(C ), E[dist(h,C )2] = D(C )

by definition.
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Lemma A.3 Let h∼N (0,In) and let C ∈ Rn be a convex and closed set. Then, given t > 0,

• |dist(h,C )2−D(C )| ≤ 2t
√

D(C )+ t2 +1.

• |‖Proj(h,C )‖2
2−P(C )| ≤ 3t

√
n+D(C )+ t2 +1.

• |corr(h,C )−C(C )| ≤ 3t
√

n+D(C )+ t2 +1.

with probability 1−4exp(− t2

2 ).

Proof: The first two statements follow trivially from Lemma A.2. For the second statement, use again

Lemma A.2 and also upper bound P(C ) by 2(n+D(C )) via Lemma A.4. To obtain the third statement, we

write,

corr(h,C ) =
n− (‖Proj(h,C )‖2

2 +dist(h,C )2)

2

and use the fact that first two statements hold with probability 1−4exp(− t2

2 ). This will give,

|corr(h,C )−C(C )| ≤ t(
√

D(C )+
√

P(C ))+ t2 +1,

which when combined with Lemma A.4 concludes the proof.

Lemma A.4 Let C ∈ Rn be a convex and closed set. Then, the following holds,

max{C(C ),P(C )} ≤ 2(n+D(C )).

Proof: From triangle inequality, for any h ∈ Rn,

‖Proj(h,C )‖2 ≤ ‖h‖2 +dist(h,C ).

We also have,

E[‖h‖2 ·dist(h,C )]≤ 1
2
(E[‖h‖2

2]+E[dist(h,C )2]) =
n+D(C )

2
.

From these, we may write,

C(C ) = E[〈Π(h,C ),Proj(h,C )〉]

≤ E[dist(h,C )‖Proj(h,C )‖2]

≤ n+3D(C )

2
.
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Similarly, we have,

P(C ) = E[‖Proj(h,C )‖2
2]≤ E[‖h‖2 +dist(h,C )2]≤ 2(n+D(C )).

Lemma A.5 Let g ∼ N (0,Im) and h ∼ N (0,In). Let C be a closed and convex set in Rn. Assume

m(1−εL)> D(C )> εLm for some constant εL > 0 and m is sufficiently large. Then, for any constant ε > 0,

each of the following holds with probability 1− exp(−O (m)),

• ‖g‖2 > dist(h,C ).

•
∣∣‖g‖2

2−dist2(h,C )
m−D(C ) −1

∣∣< ε .

•
∣∣ dist2(h,C )

‖g‖2
2−dist2(h,C )

× m−D(C )
D(C ) −1

∣∣< ε .

Proof: Let δ be a constant to be determined. For sufficiently large m, using Lemma A.2, with proba-

bility 1− exp(−O (m)), we have,

|‖g‖2
2−m|< δm, |dist(h,C )2−D(C )|< δm

Now, choose δ < εL
2 , which gives,

‖g‖2 ≥
√

m(1−δ )>
√

D(C )+ εLm−δm >
√

D(C )+δm≥ dist(h,C )

This gives the first statement. For the second statement, observe that,

1+
2δ

εL
≥ m−D(C )+2δ

m−D(C )
≥ ‖g‖

2
2−dist2(h,C )

m−D(C )
≥ m−D(C )−2δ

m−D(C )
≥ 1− 2δ

εL
.

Choose δ

εL
< ε

2 to ensure the desired result. For the last statement, we similarly have,

1+ δ

εL

1− 2δ

εL

≥ dist2(h,C )

‖g‖2
2−dist2(h,C )

× m−D(C )

D(C )
≥

1− δ

εL

1+ 2δ

εL

(A.2)

To conclude, notice that we can choose δ

εL
sufficiently small (constant) to ensure that the left and right

bounds in (A.2) above are between 1± ε .
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Proof: [Proof of Lemma 3.30] We will show the results for LP(λ ) and LD(λ ). LC(λ ) follows from the

fact that P(λC )+D(λC )+2C(λC ) = n. Let h ∈ Rn. Then, for λ + ε,λ > 0,

‖Proj(h,(λ + ε)C )‖2 =
λ + ε

λ
‖Proj(

λh
λ + ε

,λC )‖2 = ‖Proj(
λh

λ + ε
,λC )‖2 +

ε

λ
‖Proj(

λh
λ + ε

,λC )‖2

This gives, ∣∣‖Proj(h,(λ + ε)C )‖2−‖Proj(
λh

λ + ε
,λC )‖2

∣∣≤ |ε|R
Next, observe that, ∣∣‖Proj(

λh
λ + ε

,λC )‖2−‖Proj(h,λC )‖2
∣∣≤ |ε|‖h‖2

λ + ε

Combining, letting h∼N (0,In) and using ‖Proj(h,λC )‖2 ≤ λR, we find,

P((λ + ε)C )≤ E[(‖Proj(h,λC )‖2 +
|ε|‖h‖2

λ + ε
+ |ε|R)2]

≤ P(λC )+2λR|ε|(E[‖h‖2]

λ + ε
+R)+ |ε|2E[( ‖h‖2

λ + ε
+R)2]

Obtaining the similar lower bound on P((λ + ε)C ) and letting ε → 0,

LP(λ ) = lim
ε→0

sup
∣∣∣∣P((λ + ε)C )−P(λC )

ε

∣∣∣∣≤ lim
ε→0

2λR(
E[‖h‖2]

λ + ε
+R+O (|ε|))≤ 2R(

√
n+λR)

For λ = 0, observe that for any ε > 0,h ∈ Rn, ‖Proj(h,εC )‖2 ≤ εR which implies P(εC )≤ ε2R2. Hence,

LP(0) = lim
ε→0+

ε
−1(P(εC )−P(0)) = 0 (A.3)

Next, consider D(λC ). Using differentiability of D(λC ), for λ > 0,

LD(λ )= |D(λC )′|= 2
λ
|C(λC )| ≤ 2 ·E[‖Proj(h,λC )‖2 ·dist(h,λC )]

λ
≤ 2R·E[dist(h,λC )]≤ 2R(

√
n+λR)

For λ = 0, see the “Continuity at zero” part of the proof of Lemma B.2 in [4], which gives the upper bound

2R
√

n on LD(0).
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A.2 Proof of Proposition 2.7

In this section we prove Proposition 2.7. The proposition is a consequence of Theorem 2.2. We repeat the

statement of the proposition for ease of reference.

Proposition A.1 (Modified Gordon’s Lemma) Let G ∈ Rm×n, g ∈ Rm, h ∈ Rn be independent with i.i.d

N (0,1) entries and let Φ1 ⊂ Rn be arbitrary and Φ2 ⊂ Rm be a compact set. Also, assume ψ(·, ·) :

Φ1×Φ2→ R is a continuous function. Then, for any c ∈ R:

P
(

min
x∈Φ1

max
a∈Φ2

{
aT Gx−ψ(x,a)

}
≥ c
)
≥ 2P

(
min
x∈Φ1

max
a∈Φ2

{
‖x‖2gT a−‖a‖2hT x−ψ(x,a)

}
≥ c
)
−1.

Our proof will closely parallel the proof of Gordon’s original variation Lemma 3.1 of [112].

Proof: Let S1,S2 be finite subsets of Φ1,Φ2. For x ∈ S1 and a ∈ S2 define the two processes,

Yx,a = xT Ga+‖a‖2‖x‖2g and Xx,a = ‖x‖2gT a−‖a‖2hT x

where G,g,h are as defined in the statement of the proposition and g ∼N (0,1) and independent of the

other. We show that the processes defined satisfy the conditions of Gordon’s Theorem 2.2:

E[X2
x,a] = ‖x‖2

2‖a‖2
2 +‖a‖2

2‖x‖2
2 = E[Y 2

x,a],

and

E[Xx,aXx′,a′ ]−E[Yx,aYx′,a′ ] = ‖x‖2‖x′‖2(aT a′)+‖a‖2
2(x

T x′)− (xT x′)(aT a′)−‖a‖2‖a′‖2‖x‖2‖x′‖2

=

‖x‖2‖x′‖2− (xT x′)︸ ︷︷ ︸
≥0


(aT a′)−‖a‖2‖a′‖2︸ ︷︷ ︸

≤0

 ,

which is non positive and equal to zero when x = x′. Also, on the way of applying Theorem 2.2 for the two

processes defined above, let

λx,a = ψ(x,a)+ c.
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Now, for finite Φ1 and Φ2, we can apply Theorem 2.2 and then use Section A.2.2 to conclude. Hence,

we are interested in moving from finite sets to the case where Φ1 is arbitrary and Φ2 is compact. This

technicality is addressed by Gordon in [112] (see Lemma 3.1 therein), for the case where Φ1 is arbitrary, Φ2

is the unit sphere and ψ(·) is only a function of x.

We will give two related proofs for this, one of which follows directly that of Gordon’s argument and

the other one is based on an elementary covering technique but requires Φ1 to be compact.

A.2.1 From discrete to continuous sets

• Moving from a finite set to a compact set can be done via Lemma A.6. Hence, we may replace S2 with

Φ2. To move from S1 to Φ1, repeating Gordon’s argument, we will first show that, for fixed x, the set,

{[G,g] ∈ Rmn+1∣∣max
a∈Φ2
{Yx,a−λx,a} ≥ 0}= {max

a∈Φ2
{xT Ga+‖a‖2‖x‖2g−ψ(x,a)− c} ≥ 0}

is closed in the probability space {Rmn+1,P} where P is the standard Gaussian measure of Rmn+1. To see

this, observe that, for fixed x using the boundedness of Φ2, γx,a(G,g) = maxa∈Φ2{xT Ga+ ‖a‖2‖x‖2g−
ψ(x,a)− c} is a continuous function of [G,g]. Hence, if γx,a(G,g) < 0, a sufficiently small neighborhood

of [G,g] will be strictly negative as well. Hence, the set is indeed closed. The same argument applies to Xx,a

(i.e. [g,h]). Let F be the collection of finite subsets S1 of Φ1 ordered by inclusion. From Theorem 2.2, we

know that,

lim
F

P(min
x∈S1

max
a∈Φ2
{Yx,a−λx,a} ≥ 0)≥ lim

F
P(min

x∈S1
max
a∈Φ2
{Xx,a−λx,a} ≥ 0). (A.4)

Here, by inclusion, the (left and right) sequences are decreasing hence the limits exist. Now, the sets

{minx∈Φ1 maxa∈Φ2{Xx,a− λx,a} ≥ 0} and {minx∈Φ1 maxa∈Φ2{Yx,a− λx,a} ≥ 0} are intersection of closed

sets, and hence are closed themselves (in {Rm+n,P}, {Rmn+1,P}). Additionally P is a regular measure,

therefore, it follows that, the limits over F will yield the intersections over Φ1, i.e. (A.4) is identical to,

P(min
x∈Φ1

max
a∈Φ2
{Yx,a−λx,a} ≥ 0)≥ P(min

x∈Φ1
max
a∈Φ2
{Xx,a−λx,a} ≥ 0).

• Argument for compact sets: When Φ1 is also compact, we can state the following lemma.

Lemma A.6 Let G ∈ Rm×n,g ∈ Rm,h ∈ Rn,g ∈ R be independent with i.i.d. standard normal entries. Let

Φ1 ⊂ Rn,Φ2 ⊂ Rm be compact sets. Let ψ(·, ·) : Rn×Rm → R be a continuous function. Assume, for all
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finite sets S1 ⊂Φ1,S2 ⊂Φ2 and c ∈ R, we have,

P(min
x∈S1

max
a∈S2
{aT Gx+‖a‖2‖x‖2g−ψ(x,a)} ≥ c)≥ P(min

x∈S1
max
a∈S2
{‖x‖2gT a−‖a‖2hT x−ψ(x,a)} ≥ c).

Then,

P(min
x∈Φ1

max
a∈Φ2

{aT Gx+‖a‖2‖x‖2g−ψ(x,a)} ≥ c)≥ P(min
x∈Φ1

max
a∈Φ2

{‖x‖2gT a−‖a‖2hT x−ψ(x,a)}> c).

Proof: Let R(Φi) = supv∈Φi
‖v‖2 for 1 ≤ i ≤ 2. Let S1 ⊂ Φ1,S2 ⊂ Φ2 be arbitrary ε-coverings of

the sets Φ1,Φ2 so that, for any v ∈ Φi, there exists v′ ∈ Si satisfying ‖v′− v‖2 ≤ ε . Furthermore, using

continuity of ψ over the compact set Φ1×Φ2, for any δ > 0, we can choose ε sufficiently small to guarantee

that |ψ(x,a)−ψ(x′,a′)| < δ . Here δ can be made arbitrarily small as a function of ε . Now, for any

x ∈Φ1,a ∈Φ2, pick x′,a′ in the ε-coverings S1,S2. This gives,

|[aT Gx−ψ(x,a)]− [a′T Gx′−ψ(x′,a′)]| ≤ ε(R(Φ1)+R(Φ2)+ ε)‖G‖+δ (A.5)

|[‖x‖2gT a−‖a‖2hT x−ψ(x,a)]− [‖x′‖2gT a′−‖a′‖2hT x′−ψ(x′,a′)]|

≤ ε(R(Φ1)+R(Φ2)+ ε)(‖g‖2 +‖h‖2)+δ (A.6)

Next, using Lipschitzness of ‖g‖2,‖h‖2,‖G‖ and Fact 2.4, for t > 1, we have,

P(max{‖g‖2 +‖h‖2,‖G‖} ≤ t(
√

n+
√

m))≥ 1−4exp(−(t−1)2(m+n)
2

) := p(t) (A.7)

Let C(t,ε) = tε(R(Φ1)+R(Φ2)+ ε)(
√

m+
√

n)+ δ . Then, since (A.5) and (A.6) holds for all a,x, using

(A.7),

P(min
x∈Φ1

max
a∈Φ2
{aT Gx+‖a‖2‖x‖2g−ψ(x,a)} ≥ c−C(t,ε)) (A.8)

≥ P(min
x∈S1

max
a∈S2
{aT Gx−ψ(x,a)} ≥ c)− p(t)

P(min
x∈S1

max
a∈S2
{‖x‖2gT a−‖a‖2hT x−ψ(x,a)} ≥ c) (A.9)

≥ P(min
x∈Φ1

max
a∈Φ2
{‖x‖2gT a−‖a‖2hT x−ψ(x,a)} ≥ c+C(t,ε))− p(t)
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Combining (A.8) and (A.9), for all ε > 0, t > 1, the following holds,

P(min
x∈Φ1

max
a∈Φ2
{aT Gx+‖a‖2‖x‖2g−ψ(x,a)} ≥ c−C(t,ε))≥

P(min
x∈Φ1

max
a∈Φ2
{‖x‖2gT a−‖a‖2hT x−ψ(x,a)} ≥ c+C(t,ε))−2p(t)

Setting t = ε−1/2 and letting ε → 0, we obtain the desired result as C(t,ε),δ → 0 and p(t)→ 1. Here, we

implicitly use the standard continuity results on the limits of decreasing and increasing sequence of events.

A.2.2 Symmetrization

To conclude, using Theorem 2.2 and Section A.2.1 we have,

P
(

min
x∈Φ1

max
a∈Φ2

{
aT Gx+‖a‖2‖x‖2g−ψ(x,a)

}
≥ c
)
≥

P
(

min
x∈Φ1

max
a∈Φ2

{
‖x‖2gT a−‖a‖2hT x−ψ(x,a)

}
≥ c
)

:= q. (A.10)

Since g∼N (0,1), we can write the left hand side of (A.10) as, p = p++p−
2 where we define p+, p−, p0 as,

p− = P
(

min
x∈Φ1

max
a∈Φ2

{
aT Gx+‖a‖2‖x‖2g−ψ(x,a)

}
≥ c

∣∣ g≤ 0
)
,

p+ = P
(

min
x∈Φ1

max
a∈Φ2

{
aT Gx+‖a‖2‖x‖2g−ψ(x,a)

}
≥ c

∣∣ g > 0
)
,

p0 = P
(

min
x∈Φ1

max
a∈Φ2

{
aT Gx−ψ(x,a)

}
≥ c
)

By construction and independence of g,G; 1 ≥ p+ ≥ p0 ≥ p−. On the other hand, 1− q ≥ 1− p ≥ 1−p−
2

which implies, p− ≥ 2q−1. This further yields p0 ≥ 2q−1, which is what we want.
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A.3 The Dual of the LASSO

To derive the dual we write the problem in (3.33) equivalently as

F (A,v) =min
w,b
{‖b‖2 + p(w)}

s.t. b = Aw−σv,

and then reduce it to

min
w,b

max
µµµ

{
‖b‖2 +µµµ

T (b−Aw+σv)+ p(w)
}
.

The dual of the problem above is

max
µµµ

min
w,b
{‖b‖2 +µµµ

T (b−Aw+σv)+ p(w)}. (A.11)

The minimization over b above is easy to perform. A simple application of the Cauchy–Schwarz inequality

gives

‖b‖2 +µµµ
T b≥ ‖b‖2−‖b‖2‖µµµ‖2

= (1−‖µµµ‖2)‖b‖2.

Thus,

min
b

{
‖b‖2 +µµµ

T b
}
=


0 ,‖µµµ‖2 ≤ 1,

−∞ ,o.w..

Combining this with (A.11) we conclude that the dual problem of the problem in (3.33) is the following:

max
‖µµµ‖2≤1

min
w

{
µµµ

T (−Aw+σv)+ p(w)
}
.
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We equivalently rewrite the dual problem in the format of a minimization problem as follows:

− min
‖µµµ‖2≤1

max
w

{
µµµ

T (Aw−σv)− p(w)
}
. (A.12)

If p(w) is a finite convex function from Rn → R, the problem in (3.33) is convex and satisfies Slater’s

conditions. When p(w) is the indicator function of a convex set {w
∣∣g(w)≤ 0}, the problem can be viewed

as ming(w)≤0,b
{
‖b‖2 +µµµT (b−Aw+σv)

}
. For strong duality, we need strict feasibility, i.e., there must

exist w satisfying g(w)< 0. In our setup, g(w) = f (x0+w)− f (x0) and x0 is not a minimizer of f (·), hence

strong duality holds and thus problems in (3.33) and (A.12) have the same optimal cost F (A,v).

A.4 Proofs for Section 3.5

A.4.1 Proof of Lemma 3.6

We prove the statements of the lemma in the order that they appear.

A.4.1.1 Scalarization

The first statement of Lemma 3.6 claims that the optimization problem in (3.43) can be reduced into a one

dimensional optimization problem. To see this begin by evaluating the optimization over w for fixed ‖w‖2:

L (g,h) = min
w

{√
‖w‖2

2 +σ2‖g‖2−hT w+max
s∈C

sT w
}

= min
w:‖w‖2=α

α≥0

{√
‖w‖2

2 +σ2‖g‖2−hT w+max
s∈C

sT w
}

= min
α≥0

{√
α2 +σ2‖g‖2 + min

w:‖w‖2=α

{
−hT w+max

s∈C
sT w

}}
= min

α≥0

{√
α2 +σ2‖g‖2− max

w:‖w‖2=α

{
hT w−min

s∈C
sT w

}}
= min

α≥0

{√
α2 +σ2‖g‖2− max

w:‖w‖2=α

min
s∈C

{
(h− s)T w

}}
(A.13)

To further simplify (A.13), we use the following key observation as summarized in the Lemma below.
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Lemma A.7 Let C ∈ Rn be a nonempty convex set in Rn, h ∈ Rn and α ≥ 0. Then,

max
w:‖w‖2=α

min
s∈C

{
(h− s)T w

}
= min

s∈C
max

w:‖w‖2=α

{
(h− s)T w

}
.

Thus,

max
w:‖w‖2=α

min
s∈C

{
(h− s)T w

}
= α ·dist(h,C ),

and the optimum is attained at w∗ = α · Π(h,C )
dist(h,C ) .

Proof: First notice that

min
s∈C

max
w:‖w‖2=α

(h− s)T w = min
s∈C

α‖h− s‖2 = α ·dist(h,C ).

Furthermore, MinMax is never less than MaxMin [23]. Thus,

max
w:‖w‖2=α

min
s∈C

{
(h− s)T w

}
≤ min

s∈C
max

w:‖w‖2=α

{
(h− s)T w

}
= α ·dist(h,C ).

It suffices to prove that

max
w:‖w‖2=α

min
s∈C

{
(h− s)T w

}
≥ α ·dist(h,C ).

Consider w∗ = α · Π(h,C )
dist(h,C ) . Clearly,

max
w:‖w‖2=α

min
s∈C

{
(h− s)T w

}
≥ min

s∈C

{
(h− s)T w∗

}
.

But,

min
s∈C

{
(h− s)T w∗

}
=

α

dist(h,C )
·
(

hT
Π(h,C )−max

s∈C
sT

Π(h,C )

)
(A.14)

=
α

dist(h,C )
·
(
hT

Π(h,C )−Proj(h,C )T
Π(h,C )

)
(A.15)

= α ·dist(h,C ),

where (A.15) follows from Fact 2.2. This completes the proof of the Lemma.
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Applying the result of Lemma A.7 to (A.13), we conclude that

L (g,h) = min
w

{√
‖w‖2

2 +σ2‖g‖2−hT w+max
s∈C

sT w
}

= min
α≥0

{√
α2 +σ2‖g‖2−α ·dist(h,C )

}
(A.16)

A.4.1.2 Deterministic Result

The optimization problem in (A.16) is one dimensional and easy to handle. Setting the derivative of its

objective function equal to zero and solving for the optimal α∗, under the assumption that

‖g‖2
2 > dist(h,C )2, (A.17)

it only takes a few simple calculations to prove the second statement of Lemma 3.6, i.e.

(α∗)2 = ‖w∗low(g,h)‖2
2 = σ

2 dist2(h,C )

‖g‖2
2−dist2(h,C )

and,

L (g,h) = σ

√
‖g‖2

2−dist2(h,C ). (A.18)

A.4.1.3 Probabilistic Result

Next, we prove the high probability lower bound for L (g,h) implied by the last statement of Lemma 3.6.

To do this, we will make use of concentration results for specific functions of Gaussian vectors as they are

stated in Lemma A.3. Setting t = δ
√

m in Lemma A.3, with probability 1−8exp(−c0δ 2m),

|‖g‖2
2−m| ≤ 2δm+δ

2m+1,

|dist2(h,C )−D(C )| ≤ 2δ
√

D(C )m+δ
2m+1≤ 2δm+δ

2m+1.
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Combining these and using the assumption that m≥ D(C )+ εLm, we find that

‖g‖2
2−dist2(h,C )≥ m−D(C )− [(2δ

2 +4δ )m+2]

≥ m−D(C )− [(2δ
2 +4δ )

m−D(C )

εL
+2]

≥ (m−D(C ))[1− (2δ 2 +4δ )

εL
]−2,

with the same probability. Choose ε ′ so that
√

1− ε ′ = 1− ε . Also, choose δ such that (2δ 2+4δ )
εL

< ε ′
2 and m

sufficiently large to ensure εLε ′m > 4. Combined,

‖g‖2
2−dist2(h,C )≥ (m−D(C ))(1− ε ′

2
)−2≥ (m−D(C ))(1− ε

′), (A.19)

with probability 1− 8exp(−c0δ 2m). Since the right hand side in (A.19) is positive, it follows from the

second statement of Lemma 3.6 that

L (g,h)≥ σ
√

(m−D(C ))(1− ε ′) = σ(1− ε)
√

m−D(C ),

with the same probability. This concludes the proof.

A.4.2 Proof of Lemma 3.7

A.4.2.1 Scalarization

We have

Û (g,h) =− min
‖µ‖2≤1

max
‖w‖2=Cup

{√
C2

up +σ2 gT
µµµ +‖µµµ‖2hT w−max

s∈C
sT w

}
=− min

‖µ‖2≤1

{√
C2

up +σ2 gT
µµµ + max

‖w‖2=Cup

{
‖µµµ‖2hT w−max

s∈C
sT w

}}
. (A.20)

Notice that

max
‖w‖2=Cup

{
‖µµµ‖2hT w−max

s∈C
sT w

}
= max
‖w‖2=Cup

min
s∈C

(‖µµµ‖2h− s)T w

=Cupdist(‖µµµ‖2h,C ). (A.21)
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where (A.21) follows directly from Lemma A.7. Combine (A.20) and (A.21) to conclude that

Û (g,h) =− min
‖µ‖2≤1

{√
C2

up +σ2 gT
µµµ +Cupdist(‖µµµ‖2h,C )

}
=− min

0≤α≤1

{
−α ·

√
C2

up +σ2 ‖g‖2 +Cupdist(αh,C )
}
. (A.22)

A.4.2.2 Deterministic Result

For convenience denote the objective function of problem (A.22) as

φ(α) =Cupdist(αh,C )−α

√
C2

up +σ2‖g‖2.

Notice that φ(·) is convex. By way of justification, dist(αh,C ) is a convex function for α ≥ 0 [182], and

α
√

C2 +σ2‖g‖2 is linear in α . Denote α∗ = argminφ(α). Clearly, it suffices to show that α∗ = 1. First, we

prove that φ(α) is differentiable as a function of α at α = 1. For this, we make use of the following lemma.

Lemma A.8 Let C be a nonempty closed and convex set and h /∈C. Then

lim
ε→0

dist(h+ εh,C)−dist(h,C)

ε
= 〈h, Π(h,C)

‖Π(h,C)‖2
〉,

Proof: Let H be a hyperplane of C at Proj(h,C ) orthogonal to Π(h,C). Using the second statement of

Fact 2.2, H is a supporting hyperplane and h and C lie on different half planes induced by H (also see [23]).

Also, observe that Π(h,C ) = Π(h,H) and Proj(h,C ) = Proj(h,H). Choose ε > 0 sufficiently small such

that (1+ ε)h lies on the same half-plane as h. We then have,

‖Π((1+ ε)h,C )‖2 ≥ ‖Π((1+ ε)h,H)‖2 = ‖Π(h,C )‖2 +

〈
εh,

Π(h,C )

‖Π(h,C )‖2

〉
. (A.23)

Denote the n−1 dimensional subspace that is orthogonal to Π(h,H) and parallel to H by H0. Decomposing

εh to its orthonormal components along Π(h,H) and H0, we have

‖Π((1+ε)h,C)‖2
2 ≤ ‖(1+ε)h−Proj(h,C)‖2

2 =

(
‖Π(h,C)‖2 +

〈
εh,

Π(h,C)

‖Π(h,C)‖2

〉)2

+ε
2‖Proj(h,H0)‖2

2.

(A.24)
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Take square roots in both sides of (A.24) and apply on the right hand side the useful inequality
√

a2 +b2 ≤
a+ b2

2a , which is true for all a,b ∈ R+. Combine the result with the lower bound in (A.23) and let ε → 0 to

conclude the proof.

Since h /∈ C , it follows from Lemma A.8, that dist(αh,C ) is differentiable as a function of α at α = 1,

implying the same result for φ(α). In fact, we have

φ
′(1) =Cupdist(h,C )+Cup

〈Π(h,C ),Proj(h,C )〉
dist(h,C )

−
√

C2
up +σ2‖g‖2 < 0,

where the negativity follows from assumption (3.45). To conclude the proof, we make use of the following

simple lemma.

Lemma A.9 Suppose f : R→ R is a convex function, that is differentiable at x0 ∈ R and f ′(x0)< 0. Then,

f (x)≥ f (x0) for all x≤ x0.

Proof: By convexity of f (·), for all x≤ x0:

f (x)≥ f (x0)+ f ′(x0)︸ ︷︷ ︸
<0

(x− x0)︸ ︷︷ ︸
≤0

≥ f (x0)

Applying Lemma A.9 for the convex function φ(·) at α = 1, gives that φ(α) ≥ φ(1) for all α ∈ [0,1].

Therefore, α∗ = 1.

A.4.2.3 Probabilistic Result

We consider the setting where m is sufficiently large and,

(1− εL)m≥max(D(C )+C(C ),D(C )) , D(C )≥ εLm (A.25)

Choose Cup = σ

√
D(C )

m−D(C ) which would give C2
up +σ2 = σ2 m

m−D(C ) . Hence, the assumption (3.45) in the

second statement of Lemma 3.7 can be rewritten as,

√
m‖g‖2dist(h,C )>

√
D(C )(dist(h,C )2 + corr(h,C )). (A.26)
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The proof technique is as follows. We first show that (A.26) (and thus (3.45)) holds with high probability.

Also, that h /∈ C with high probability. Then, as a last step we make use of the second statement of Lemma

3.7 to compute the lower bound on Û .

• (3.45) holds with high probability:

Using standard concentration arguments (see Lemma A.2), we have

√
m‖g‖2dist(h,C )≥√m(

√
m−1− t)(

√
D(C )−1− t)

with probability 1−4exp
(
−t2

2

)
. Choose a sufficiently small constant δ > 0 and set t = δ

√
D(C ) to ensure,

√
m‖g‖2dist(h,C )≥ (1− εL

2
)m
√

D(C ) (A.27)

with probability 1− exp(−O (m)), where we used (1− εL) ≥ D(C ) ≥ εLm. In particular, for sufficiently

large D(C ) we need (1−δ )2 > 1− εL
2 .

Equation (A.27) establishes a high probability lower bound for the expression at the left hand side of

(A.26). Next, we show that the expression at the right hand side of (A.26) is upper bounded with high

probability by the same quantity.

Case 1: If C is a cone, corr(h,C ) = 0 and using Lemma A.3 dist(h,C )2 ≤ D(C )+ 2t
√

D(C )+ t2 ≤
(1−εL)m+2t

√
m+ t2 with probability 1−2exp(− t2

2 ). Hence, we can choose t = ε
√

m for a small constant

ε > 0 to ensure, dist(h,C )2 < (1− εL
2 )m with probability 1−exp(−O (m)). This gives (A.26) in combination

with (A.27).

Case 2: Otherwise, from Lemma A.4, we have that P(C )≤ 2(n+D(C )) and from (A.25), m≥ D(C ).

Then, applying Lemma A.3, we have

dist(h,C )2 + corr(h,C )≤ D(C )+C(C )+3t
√

D(C )︸ ︷︷ ︸
≤√m

+t
√

P(C )︸ ︷︷ ︸
≤
√

2(n+m)

+2(t2 +1)

≤ D(C )+C(C )+3t
√

m+ t
√

2(n+m)+2(t2 +1)

≤ (1− εL)m+3t
√

m+ t
√

2(n+m)+2(t2 +1).
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with probability 1−4exp
(
−t2

2

)
. Therefore, with the same probability,

√
D(C )(dist(h,C )2 + corr(h,C ))≤ (1− εL)m

√
D(C )+3t

√
m
√

D(C ) (A.28)

+ t
√

2(n+m)
√

D(C )+2(t2 +1)
√

D(C )

Comparing the right hand sides of inequalities A.27 and A.28 , we need to ensure that,

3t
√

m
√

D(C )+t
√

2(n+m)
√

D(C )+2(t2 +1)
√

D(C )≤ εL

2
m
√

D(C ) ⇐⇒

3t
√

m+ t
√

2(n+m)+2(t2 +1)≤ εL

2
m. (A.29)

Choose t = ε min{√m, m√
n} for sufficiently small ε such that (A.29) and (A.26) then hold with probability

1− exp
(
−O

(
min{m2

n ,m}
))

.

Combining Case 1 and Case 2, (A.26) holds with probability 1−exp(−O (γ(m,n))) where γ(m,n) = m

when C is cone and γ(m,n) = min{m2

n ,m} otherwise.

• h 6∈ C with high probability:

Apply Lemma A.2 on dist(h,C ) with t = ε
√

D(C ) to show that dist(h,C ) is strictly positive. This

proves that h /∈ C , with probability 1− exp(−O (D(C )))=1− exp(−O (m)).

• High probability lower bound for Û :

Thus far we have proved that assumptions h 6∈ C and (3.45) of the second statement in Lemma 3.7 hold

with the desired probability. Therefore, (3.46) holds with the same high probability, namely,

Û (g,h) =
σ√

m−D(C )

(√
m‖g‖2−

√
D(C )dist(h,C )

)
(A.30)

We will use similar concentration arguments as above to upper bound the right hand side of (A.30). For

any t > 0:

√
m‖g‖2 ≤ m+ t

√
m√

D(C )dist(h,C )≥
√

D(C )(
√

D(C )−1− t)
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with probability 1−4exp(− t2

2 ). Thus,

√
m‖g‖2−

√
D(C )dist(h,C )≤ m−D(C )+ t(

√
m+

√
D(C ))+1. (A.31)

For a given constant ε > 0, substitute (A.31) in (A.30) and choose t = ε ′
√

m (for some sufficiently small

constant ε ′ > 0), to ensure that,

Û (g,h)≤ (1+ ε)σ
√

m−D(x0,λ )

with probability 1−4exp(−ε ′2m
2 ). Combining this with the high probability events of all previous steps, we

obtain the desired result.

A.4.3 Proof of Lemma 3.8

A.4.3.1 Scalarization

The reduction of Ldev(g,h) to an one-dimensional optimization problem follows identically the steps as in

the proof for L (g,h) in Section A.4.1.1.

A.4.3.2 Deterministic Result

From the first statement of Lemma 3.8,

Ldev(g,h) = min
α∈Sdev


√

α2 +σ2‖g‖2−α ·dist(h,C )︸ ︷︷ ︸
:=L(α)

 , (A.32)

where we have denoted the objective function as L(α) for notational convenience. It takes no much effort

(see also statements 1 and 2 of Lemma A.10) to prove that L(·):

• is a strictly convex function,

• attains its minimum at

α
∗(g,h) =

σ ·dist(h,C )√
‖g‖2

2−dist2(h,C )
.

The minimization of L(α) in (A.32) is restricted to the set Sdev. Also, by assumption (3.48), α∗(g,h) /∈ Sdev.

Strict convexity implies then that the minimum of L(·) over α ∈ Sdev is attained at the boundary points of
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the set Sdev, i.e. at (1±δdev)Cdev [23]. Thus, Ldev(g,h) = L((1±δdev)Cdev), which completes the proof.

A.4.3.3 Probabilistic Result

Choose Cdev = σ

√
D(C )

m−D(C ) and consider the regime where (1− εL)m > D(C ) > εLm for some constant

εL > 0. δdev > 0 is also a constant.

• Mapping Ldev to Lemma A.10: It is helpful for the purposes of the presentation to consider the

function

L(x) := L(x;a,b) =
√

x2 +σ2a− xb, (A.33)

over x ≥ 0, and a,b are positive parameters. Substituting a,b,x with ‖g‖2,dist(h,C ),α , we can map

L(x;a,b) to our function of interest,

L(α;‖g‖2,dist(h,C )) =
√

α2 +σ2‖g‖2−αdist(h,C ).

In Lemma A.10 we have analyzed useful properties of the function L(x;a,b), which are of key importance

for the purposes of this proof. This lemma focuses on perturbation analysis and investigates L(x′;a′,b′)−
L(x;a,b) where x′,a′,b′ are the perturbations from the fixed values x,a,b. In this sense, a′,b′ correspond to

‖g‖2,dist(h,C ) which are probabilistic quantities and a,b correspond to
√

m,
√

D(C ), i.e. the approximate

means of the former ones.

In what follows, we refer continuously to statements of Lemma A.10 and use them to complete the proof

of the “Probabilistic result” of Lemma 3.8. Let us denote the minimizer of L(x;a,b) by x∗(a,b). To see how

the definitions above are relevant to our setup, it follows from the first statement of Lemma A.10 that,

L
(

x∗(
√

m,
√

D(C ));
√

m,
√

D(C )
)
= σ

√
m−D(C ), (A.34)

and

x∗(
√

m,
√

D(C )) = σ

√
D(C )

m−D(C )
=Cdev, (A.35)

• Verifying assumption (3.48): Going back to the proof, we begin by proving that assumption (3.48) of

the second statement of Lemma 3.8 is valid with high probability. Observe that from the definition of Sdev
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and (A.35), assumption (3.48) can be equivalently written as∣∣∣∣∣x∗(‖g‖2,dist(h,C ))

x∗(
√

m,
√

D(C ))
−1

∣∣∣∣∣≤ δdev. (A.36)

On the other hand, from the third statement of Lemma A.10 there exists sufficiently small constant ε1 > 0

such that (A.36) is true for all g and h satisfying

|‖g‖2−
√

m| ≤ ε1
√

m and |dist(h,C )−
√

D(C )| ≤ ε1
√

m. (A.37)

Furthermore, for large enough D(C ) and from basic concentration arguments (see Lemma A.2), g and h

satisfy (A.37) with probability 1− 2exp(− ε2
1 m
2 ). This proves that assumption (3.48) holds with the same

high probability.

• Lower bounding Ldev: From the deterministic result of Lemma 3.8, once (3.48) is satisfied then

Ldev(g,h) = L((1±δdev)Cdev;‖g‖2,dist(h,C )) . (A.38)

Thus, to prove (3.49) we will show that there exists t > 0 such that

L((1±δdev)Cdev;‖g‖2,dist(h,C ))≥ (1+ t)σ
√

m−D(C ), (A.39)

with high probability. Equivalently, using (A.34), it suffices to show that there exists a constant t > 0 such

that

L
(
(1±δdev)x∗(

√
m,
√

D(C ));‖g‖2,dist(h,C )
)
−L

(
x∗(
√

m,
√

D(C ));
√

m,
√

D(C )
)
≥ tσ

√
m, (A.40)

with high probability. Applying the sixth statement of Lemma A.10 with γ← δdev, for any constant δdev > 0,

there exists constants t,ε2 such that (A.40) holds for all g and h satisfying

|‖g‖2−
√

m| ≤ ε2
√

m and |dist(h,C )−
√

D(C )| ≤ ε2
√

m,

which holds with probability 1− 2exp(− ε2
2 m
2 ) for sufficiently large D(C ). Thus, (A.40) is true with the

same high probability.

Union bounding over the events that (A.36) and (A.40) are true, we end up with the desired result. The
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reason is that with high probability (A.38) and (A.40) hold, i.e.,

Ldev(g,h) = L((1±δdev)Cdev;‖g‖2,dist(h,C ))≥ L
(

x∗(
√

m,
√

D(C ));
√

m,
√

D(C )
)
+ tσ
√

m

= σ
√

m−D(C )+ tσ
√

m.

A.5 Deviation Analysis: Key Lemma

Lemma A.10 Consider the following function over x≥ 0:

L(x) := L(x;a,b) =
√

x2 +σ2a− xb

where σ > 0 is constant and a,b are positive parameters satisfying (1− ε)a > b > εa for some constant

ε > 0. Denote the minimizer of L(x;a,b) by x∗(a,b). Then,

1. x∗(a,b) = σb√
a2−b2 and L(x∗(a,b);a,b) = σ

√
a2−b2.

2. For fixed a and b, L(x;a,b) is strictly convex in x≥ 0.

3. For any constant η > 0, there exists sufficiently small constant ε1 > 0, such that

∣∣∣∣x∗(a′,b′)x∗(a,b)
−1
∣∣∣∣≤ η ,

for all a′,b′ satisfying |a′−a|< ε1a and |b′−b|< ε1a.

4. There exists positive constant η > 0, such that, for sufficiently small constant ε1 > 0,

∣∣L(x∗(a,b);a′,b′)−L(x∗(a,b),a,b)
∣∣≤ ηε1σa,

for all a′,b′ satisfying |a′−a|< ε1a and |b′−b|< ε1a.

5. For any constant γ > 0, there exists a constant ε2 > 0 such that for sufficiently small constant ε1 > 0,

L(x;a′,b′)−L(x∗(a,b);a′,b′)≥ ε2σa,

for all x,a′ and b′ satisfying |x− x∗(a,b)|> γx∗(a,b), |a′−a|< ε1a and |b′−b|< ε1a.
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6. For any constant γ > 0, there exists a constant ε2 > 0 such that for sufficiently small constant ε1 > 0,

L(x;a′,b′)−L(x∗(a,b);a,b)≥ ε2σa,

for all x,a′ and b′ satisfying |x− x∗(a,b)|> γx∗(a,b), |a′−a|< ε1a and |b′−b|< ε1a.

7. Given clow > 0, consider the restricted optimization, minx≥clow L(x;a,b). We have,

lim
clow→∞

min
x≥clow

L(x;a,b)→ ∞

Proof: First statement: The derivative (w.r.t. x) of L(x;a,b) is:

L′(x;a,b) =
ax√

x2 +σ2
−b.

Setting this to 0, using strict convexity and solving for x, we obtain the first statement.

Second statement: The second derivative is,

L′′(x;a,b) =
a
√

x2 +σ2− ax2√
x2+σ2

x2 +σ2 =
aσ2

(x2 +σ2)3/2 > 0,

for all x≥ 0. Consequently, f is strictly convex.

Third statement: We can write,

∣∣x∗(a′,b′)− x∗(a,b)
∣∣= σ

∣∣∣∣ b′√
a′2−b′2

− b√
a2−b2

∣∣∣∣ .
Observe that x∗(a,b) = b√

a2−b2 is decreasing in a and increasing in b as long as a > b ≥ 0. Also, for

sufficiently small constant ε1, we have, a′,b′ > 0 for all |a′−a|< ε1a, |b′−b|< ε1a. Therefore,

b− ε1a√
(a+ ε1a)2− (b− ε1a)2

≤ b′√
a′2−b′2

≤ b+ ε1a√
(a− ε1a)2− (b+ ε1a)2

.

Now, for any constant δ > 0, we can choose ε1 sufficiently small such that both b− ε1a and b+ ε1a lie in the

interval (1±δ )b. Similarly, (a±ε1a)2−(b∓ε1a)2 can be also chosen to lie in the interval (1±δ )(a2−b2).

Combining, we obtain the desired result∣∣∣∣ b′√
a′2−b′2

− b√
a2−b2

∣∣∣∣< η(δ )
b√

a2−b2
.

248



Fourth statement: For |a−a′|< ε1a and |b−b′|< ε1a, we have,

|L(x∗(a,b);a′,b′)−L(x∗(a,b);a,b)|= σ√
a2−b2

|(aa′−bb′)− (a2−b2)| ≤ ε1σ
|a2 +ab|
a2−b2 .

By assumption, (1− ε)a > b > εa. Thus,

ε1σ
|a2 +ab|
a2−b2 ≤ ε1σ

2a2

2εa2 =
ε1σ

ε
.

Choosing ε1 sufficiently small, we conclude with the desired result.

Fifth statement: We will show the statement for a sufficiently small γ . Notice that, as γ gets larger, the

set |x− x∗(a,b)| ≥ γx∗(a,b) gets smaller hence, proof for small γ implies the proof for larger γ .

Using the Third Statement, choose ε1 to ensure that |x∗(a′,b′)−x∗(a,b)|< γx∗(a,b) for all |a′−a|< ε1a

and |b′−b|< ε1a. For each such a′,b′, since L(x,a′,b′) is a strictly convex function of x and the minimizer

x∗(a′,b′) lies between (1± γ)x∗(a,b) we have,

L(x,a′,b′)≥min{L((1− γ)x∗(a,b),a′,b′),L((1+ γ)x∗(a,b),a′,b′)},

for all |x− x∗(a,b)| > γx∗(a,b). In summary, we simply need to characterize the increase in the function

value at the points (1± γ)x∗(a,b).

We have that,

L((1± γ)x∗(a,b);a′,b′) =
σ√

a2−b2
(
√

a2 +(±2γ + γ2)b2a′− (1± γ)bb′), (A.41)

and

L(x∗(a,b);a′,b′) =
σ√

a2−b2
(aa′−bb′). (A.42)

In the following discussion, without loss of generality, we consider only the “+γ” case in (A.41) since the

exact same argument works for the “−γ” case as well.

Subtracting (A.42) from (A.41) and discarding the constant in front, we will focus on the following
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quantity,

diff(γ) = (
√

a2 +(2γ + γ2)b2a′− (1+ γ)bb′)− (aa′−bb′)

= (
√

a2 +(2γ + γ2)b2︸ ︷︷ ︸
:=g(γ)

−a)a′− γbb′. (A.43)

To find a lower bound for g(γ), write

g(γ) =
√

a2 +(2γ + γ2)b2

=

√
(a+ γ

b2

a
)2 + γ2(b2− b4

a2 )

≥ (a+ γ
b2

a
)+

γ2(b2− b4

a2 )

4(a+ γ
b2

a )
, (A.44)

where we have assumed γ ≤ 1 and used the fact that (a+ γ
b2

a )
2 ≥ a2 ≥ b2− b4

a2 . Equation (A.44) can be

further lower bounded by,

g(γ)≥ (a+ γ
b2

a
)+

γ2(a2b2−b4)

8a3

Combining with (A.43) , we find that,

diff(γ)≥ γ(
b2

a
a′−bb′)+ γ

2 a2b2−b4

8a3 a′. (A.45)

Consider the second term on the right hand side of the inequality in (A.45). Choosing ε1 < 1/2, we ensure,

a′ ≥ a/2, and thus,

γ
2 a2b2−b4

8a3 a′ ≥ γ
2 a2b2−b4

16a2 ≥ γ
2 εa2b2

16a2 = γ
2
ε

b2

16
. (A.46)

Next, consider the other term in (A.45). We have,

(
b2

a
a′−bb′

)
=

b2

a
(a′−a)−b(b′−b)≥−

(∣∣∣∣b2

a
(a′−a)

∣∣∣∣+ |b(b′−b)|
)
.

Choosing ε1 sufficiently small (depending only on γ), we can ensure that,

∣∣∣∣b2

a
(a′−a)

∣∣∣∣+ |b(b′−b)|< γε
b2

32
. (A.47)
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Combining (A.45), (A.46) and (A.47), we conclude that there exists sufficiently small constant ε1 > 0 such

that,

diff(γ)≥ γ
2
ε

b2

32
.

Multiplying with σ√
a2−b2 , we end up with the desired result since b2√

a2−b2 ≥ ε2√
1−ε2 a.

Sixth statement: The last statement can be deduced from the fourth and fifth statements. Given γ > 0,

choose ε1 > 0 sufficiently small to ensure,

L(x;a′,b′)−L(x∗(a,b),a′,b′)≥ ε2σa

and

|L(x∗(a,b);a,b)−L(x∗(a,b),a′,b′)| ≥ ηε1σa

Using the triangle inequality,

L(x;a′,b′)−L(x∗(a,b),a,b)≥ L(x;a′,b′)−L(x∗(a,b),a′,b′)−|L(x∗(a,b),a′,b′)−L(x∗(a,b),a,b)|

≥ (ε2−ηε1)σa. (A.48)

Choosing ε1 to further satisfy ηε1 <
ε2
2 , (A.48) is guaranteed to be larger than ε2

2 σa which gives the desired

result.

Seventh statement: To show this, we may use a > b and simply write,

L(x;a,b)≥ (a−b)x =⇒ lim
clow→∞

min
x≥clow

L(x;a,b)≥ lim
clow→∞

(a−b)clow = ∞

A.6 Proof of Lemma 3.20

Proof of the Lemma requires some work. We prove the statements in the specific order that they appear.

Statement 1: We have

n = E
[
‖h‖2

2
]
= E

[
‖Projλ (h)+h−Projλ (h)‖2

2
]
= E[‖Projλ (h)‖2

2]+E[‖Πλ (h)‖2
2]+2E[〈Πλ (h),Projλ (h)〉]

= P(λ∂ f (x0))+D(λ∂ f (x0))+2C(λ∂ f (x0)).
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Statement 2: We have Proj0(h) = 0 and Π0(h) = h, and the statement follows easily.

Statement 3: Let r = infs∈∂ f (x0) ‖s‖2. Then, for any λ ≥ 0, ‖Projλ (v)‖2≥ λ‖s‖2, which implies P(λ∂ f (x0))

≥ λ 2‖s‖2
2. Letting λ → ∞, we find P(λ∂ f (x0))→ ∞.

Similarly, for any h, application of the triangle inequality gives

‖Πλ (h)‖2 ≥ λ r−‖h‖2 =⇒ ‖Πλ (h)‖2
2 ≥ λ

2r2−2λ r‖h‖2.

Let h∼N (0, I) and take expectations in both sides of the inequality above. Recalling that E[‖h‖2]≤
√

n,

and letting λ → ∞, we find D(λ∂ f (x0))→ ∞.

Finally, since D(λ∂ f (x0)) +P(λ∂ f (x0)) + 2C(λ∂ f (x0)) = n, C(λ∂ f (x0))→ −∞ as λ → ∞. This

completes the proof.

Statement 4: Continuity of D(λ∂ f (x0)) follows from Lemma B.2 in Amelunxen et al. [4]. We will now

show continuity of P(λ∂ f (x0)) and continuity of C(λ∂ f (x0)) will follow from the fact that C(λ∂ f (x0)) is

a continuous function of D(λ∂ f (x0)) and P(λ∂ f (x0)).

Recall that Projλ (v) = λProj1(
v
λ
). Also, given v1,v2, we have,

‖Projλ (v1)−Projλ (v2)‖2 ≤ ‖v1−v2‖2

Consequently, given λ1,λ2 > 0,

‖Projλ1
(v)−Projλ2

(v)‖2 = ‖λ1Proj1(
v
λ1

)−λ2Proj1(
v
λ2

)‖2

≤ |λ1−λ2|‖Proj1(
v
λ1

)‖2 +‖λ2(Proj1(
v
λ1

)−Proj1(
v
λ2

))‖2

≤ |λ1−λ2|‖Proj1(
v
λ1

)‖2 +λ2‖v‖2
|λ1−λ2|

λ1λ2

= |λ1−λ2|(‖Proj1(
v
λ1

)‖2 +
‖v‖2

λ1
)

Hence, setting λ2 = λ1 + ε ,

‖Projλ2
(v)‖2

2 ≤ [‖Projλ1
(v)‖2 + ε(‖Proj1(

v
λ1

)‖2 +
‖v‖2

λ1
)]2
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which implies,

‖Projλ2
(v)‖2

2−‖Projλ1
(v)‖2

2 ≤ 2ε(‖Proj1(
v
λ1

)‖2 +
‖v‖2

λ1
)‖Projλ1

(v)‖2 + ε
2(‖Proj1(

v
λ1

)‖2 +
‖v‖2

λ1
)

Similarly, using ‖Projλ2
(v)‖2 ≥ ‖Projλ1

(v)‖2− ε(‖Proj1(
v
λ1
)‖2 +

‖v‖2
λ1

), we find,

‖Projλ1
(v)‖2

2−‖Projλ2
(v)‖2

2 ≤ 2ε(‖Proj1(
v
λ1

)‖2 +
‖v‖2

λ1
)‖Projλ1

(v)‖2λ1)

Combining these, we always have,

|‖Projλ2
(v)‖2

2−‖Projλ1
(v)‖2

2| ≤ 2ε(‖Proj1(
v
λ1

)‖2 +
‖v‖2

λ1
)‖Projλ1

(v)‖2 + ε
2(‖Proj1(

v
λ1

)‖2 +
‖v‖2

λ1
)

Now, letting v∼N (0, I) and taking the expectation of both sides and letting ε → 0, we conclude with the

continuity of P(λ∂ f (x0)) for λ > 0.

To show continuity at 0, observe that, for any λ > 0, we have, ‖Projλ (v)‖2≤Rλ where R= sups∈∂ f (x0)
‖s‖2.

Hence,

|P(λ∂ f (x0))−P f (x0,0)|= P(λ∂ f (x0))≤ R2
λ

2

As λ → 0, P(λ∂ f (x0)) = 0.

Statement 5: For a proof see Lemma B.2 in [4].

Statement 6: Based on Lemma A.11, given vector v, set C and scalar 1≥ c > 0, we have,

‖Proj(cv,C )‖2

c
≥ ‖Proj(v,C )‖2

Given λ1 > λ2 > 0, this gives,

‖Proj(v,λ1∂ f (x0))‖2 = λ1‖Proj(
v
λ1

,∂ f (x0))‖2 ≥ λ1
λ2

λ1
‖Proj(

v
λ2

,∂ f (x0))‖2 = ‖Proj(v,λ2∂ f (x0))‖2

Since this is true for all v, choosing v∼N (0, I), we end up with D f (x0,λ1)≥ D f (x0,λ2).

Finally, at 0 we have D f (x0,0) = 0 and by definition D(λ∂ f (x0)) ≥ 0 which implies the increase at

λ = 0. For the rest of the discussion, given three points A,B,C in Rn, the angle induced by the lines AB and

BC will be denoted by AB̂C.

Lemma A.11 Let C be a convex and closed set in Rn. Let z and 0 < α < 1 be arbitrary, let p1 = Proj(z,C ),

253



P’#O# P1#

Z#

Z’#

H#

S#

U#

T#T’#

P’#O# P1#

Z#

Z’#

U#

H#

S#

Case#2#Case#1#

Figure A.1: Possible configurations of the points in Lemma A.11 when ZP̂1O is wide angle.

p2 = Proj(αz,C ). Then,

‖p1‖2 ≤
‖p2‖2

α

Proof:

Denote the points whose coordinates are determined by 0,p1,p2,z by O,P1,P2 and Z respectively. We

start by reducing the problem to a two dimensional one. Obtain C ′ by projecting the set C to the 2D

plane induced by the points Z,P1 and O. Now, let p′2 = Proj(αz,C ′). Due to the projection, we still have:

‖z−p′2‖2 ≤ ‖z−p2‖2 and ‖p′2‖2 ≤ ‖p2‖2. We wish to prove that ‖p′2‖2 ≥ ‖αp1‖2. Figures A.1 and A.2

will help us explain our approach.

Let the line UP1 be perpendicular to ZP1. Let P′Z′ be parallel to P1Z1. Observe that P′ corresponds to

αp1. H is the intersection of P′Z′ and P1U . Denote the point corresponding to p′2 by P′2. Observe that P′2

satisfies the following:

• P1 is the closest point to Z in C hence P′2 lies on the side of P1U which doesn’t include Z.

• P2 is the closest point to Z′. Hence, Z′P̂2P1 is not acute angle. Otherwise, we can draw a perpendicular

to P2P1 from Z′ and end up with a shorter distance. This would also imply that Z′P̂′2P1 is not acute as

well as Z′P1 stays same but |Z′P′2| ≤ |Z′P2| and |P′2P1| ≤ |P2P1|.

We will do the proof case by case.

When ZP̂1O is wide angle: Assume ZP̂1O is wide angle and UP1 crosses ZO at S.

Based on these observations, we investigate the problem in two cases illustrated by Figure A.1.

Case 1 (S lies on Z′Z): Consider the lefthand side of Figure A.1. If P′2 lies on the triangle P′P1H then

OP̂′P′2 > OP̂′Z which implies OP̂′P′2 is wide angle and |OP′2| ≥ |OP′|. If P′2 lies on the region induced by

OP′Z′T ′ then P1P̂′2Z′ is acute angle as P1Ẑ′P′2 > P1Ẑ′O is wide, which contradicts with P1P̂′2Z′ is not acute.

Finally, let U be chosen so that P′U is perpendicular to OP1. Then, if P′2 lies on the quadrilateral UT Z′H
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Figure A.2: Lemma A.11 when ZP̂1O is acute or right angle.

then |OP′2| ≥ |OP′| as OP̂′P′2 is wide or right angle. If it lies on the remaining region T ′TU , then Z′P̂′2P1 is

acute. The reason is, P′2Ẑ′P1 is wide as follows:

P′2Ẑ′P1 ≥UẐ′P1 >UT̂ P1 >UP̂′P1 =
π

2

Case 2 (S lies on OZ′): Consider the righthand side of Figure A.1. Due to location restrictions, P′2 lies

on either P1P′H triangle or the region induced by OP′HU . If it lies on P1P′H then, OP̂′P′2 > OP̂′H which

implies |OP′2| ≥ |OP′| as OP̂′P′2 is wide angle.

If P′2 lies on OP′HU then, P1P̂′2Z′ < P1ĤZ′ = π

2 hence P1P̂′2Z′ is acute angle which cannot happen as it

was discussed in the list of properties of P′2.

When ZP̂1O is right or acute angle: Consider Figure A.2. P′2 lies above UP1. It cannot belong to the region

induced by UHT as it would imply Z′P̂′2P1 < Z′ĤP1 ≤ π

2 . Then, it belongs to the region induced by T HP1

which implies the desired result as OP̂′P′2 is at least right angle.

In all cases, we end up with |OP′2| ≥ |OP′| which implies ‖p2‖2 ≥ ‖p′2‖2 ≥ α‖p1‖2 as desired.

Statement 7: For a proof see Lemma B.2 in [4].

Statement 8: From Statement 7, C(λ∂ f (x0)) = −λ

2
dD(λ∂ f (x0))

dλ
. Also from Statement 5, D(λ∂ f (x0)) is

strictly convex. Thus, dD(λ∂ f (x0))
dλ

≤ 0 for all λ ∈ [0,λbest] which yields C(λ∂ f (x0))≥ 0 for all λ ∈ [0,λbest].

Similarly, dD(λ∂ f (x0))
dλ

≥ 0 for all λ ∈ [λbest,∞) which yields C(λ∂ f (x0))≤ 0 for all λ ∈ [λbest,∞). Finally,

λbest minimizes D(λ∂ f (x0)). Hence dD(λ∂ f (x0))
dλ

|λ=λbest = 0 which yields C f (x0,λbest) = 0.

Statement 9: We prove that for any 0≤ λ1 < λ2 ≤ λbest,

D f (x0,λ1)+C f (x0,λ1)> D f (x0,λ2)+C f (x0,λ2). (A.49)
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From Statement 5, D(λ∂ f (x0)) is strictly decreasing for λ ∈ [0,λbest]. Thus,

D f (x0,λ1)> D f (x0,λ2). (A.50)

Furthermore, from Statement 6, P(λ∂ f (x0)) is an increasing function of λ . Thus,

D f (x0,λ1)+2C f (x0,λ1)≥ D f (x0,λ2)+2C f (x0,λ2). (A.51)

where we have used Statement 1. Combining (A.50) and (A.51), we conclude with (A.49), as desired.

A.7 Explicit formulas for well-known functions

A.7.1 `1 minimization

Let x0 ∈ Rn be a k sparse vector and let β = k
n . Then, we have the following when f (·) = ‖ · ‖1,

• D(λ∂ f (x0))
n = (1+λ 2)(1− (1−β )erf( λ√

2
))−

√
2
π
(1−β )λ exp(−λ 2

2 )

• P(λ∂ f (x0))
n = βλ 2 +(1−β )[erf( λ√

2
)+λ 2erfc( λ√

2
)−
√

2
π

λ exp(−λ 2

2 )]

• C(λ∂ f (x0))
n =−λ 2β +(1−β )[

√
2
π

λ exp(−λ 2

2 )−λ 2erfc( λ√
2
)]

These are not difficult to obtain. For example, to find D(λ∂ f (x0)), pick g∼N (0,I) and consider the vector

Π(g,λ∂ f (x0)). The distance vector to the subdifferential of the `1 norm takes the form of soft thresholding

on the entries of g. In particular,

(Π(g,λ∂ f (x0)))i =


g(i)−λ · sgn(x0(i)) if x0(i) 6= 0,

shrinkλ (g(i)) otherwise.

where shrinkλ (g(i)) is the soft thresholding operator defined as,

shrinkλ (x) =


x−λ if x > λ ,

0 if |x| ≤ λ ,

x+λ if x <−λ .

Consequently, we obtain our formulas after taking the expectation of g(i)−λ · sgn(x0(i)) and shrinkλ (g(i)).

For more details on these formulas, the reader is referred to [72, 74, 83, 192] which calculate the phase
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transitions of `1 minimization.

A.7.1.1 Closed form bound

We will now find a closed form bound on D(λ∂ f (x0)) for the same sparse signal x0. In particular, we

will show that D(λ∂ f (x0)) ≤ (λ 2 + 2)k for λ ≥
√

2log n
k . Following the above discussion and letting

g∼N (0,In), first observe that, E[(gi−λ · sgn(x0(i)))2] = λ 2 +1

D(λ∂ f (x0)) = ∑E[(g(i)−λ · sgn(x0(i)))2]+ (n− k)E[shrinkλ (g(i))2] (A.52)

The sum on the left hand side is simply (λ 2 +1)k. The interesting term is shrinkλ (g(i)). To calculate this,

we will use the following lemma.

Lemma A.12 Let x be a nonnegative random variable. Assume, there exists c > 0 such that for all t > 0,

P(x≥ c+ t)≤ exp(− t2

2
)

For any a≥ 0, we have,

E[shrinka+c(x)2]≤ 2
a2 +1

exp(−a2

2
).

Proof: Let Q(t) = P(x≥ t).

E[shrinka+c(x)2] =
∫

∞

a+c
(x−a− c)2d(−Q(x))

≤−[Q(x)(x−a− c)2]∞a+c +
∫

∞

a+c
Q(x)d(x−a− c)2 =

∫
∞

a+c
Q(x)d(x−a− c)2 (A.53)

≤
∫

∞

a+c
2(x−a− c)Q(x)d(x−a− c)≤ 2

∫
∞

a+c
(x−a− c)exp(−(x− c)2

2
)d(x−a− c)

≤ 2
∫

∞

a
(u−a)exp(−u2

2
)du≤ 2exp(−a2

2
)−2a

a
a2 +1

exp(−a2

2
) =

2
a2 +1

exp(−a2

2
)

(A.54)

(A.53) follows from integration by parts and (A.54) follows from the standard result on Gaussian tail bound,∫
∞

a exp(−u2

2 )du≥ a
a2+1 exp(−a2

2 )

To calculate E[shrinkλ (g)2] for g∼N (0,1) we make use of the standard fact about Gaussian distribu-

tion, P(|g| > t) ≤ exp(− t2

2 ). Applying the Lemma A.12 with c = 0 and a = λ yields, E[|shrinkλ (g)|2] ≤
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2
λ 2+1 exp(−λ 2

2 ). Combining this with (A.52), we find,

D(λ∂ f (x0))≤ (λ 2 +1)k+
2n

λ 2 +1
exp(−λ 2

2
)

For λ ≥
√

2log n
k , exp(−λ 2

2 )≤ k
n . Hence, we obtain,

D(λ∂ f (x0))≤ (λ 2 +1)k+
2k

λ 2 +1
≤ (λ 2 +3)k

A.7.2 Nuclear norm minimization

Assume X0 is a d×d matrix of rank r and x0 is its vector representation where n= d2 and we choose nuclear

norm to exploit the structure. Denote the spectral norm of a matrix by ‖ ·‖2. Assume X0 has skinny singular

value decomposition UΣVT where Σ ∈ Rr×r. Define the “support” subspace of X0 as,

SX0 = {M ∈ Rd×d
∣∣(I−UUT )M(I−VVT ) = 0}

The subdifferential of nuclear norm is given as,

∂‖X0‖? = {S ∈ Rd×d
∣∣Proj(S,SX0) = UVT , and ‖Proj(S,S⊥X0

)‖ ≤ 1}

Based on this, we wish to calculate dist(G,λ∂ f (x0)) when G has i.i.d. standard normal entries. As it has

been discussed in [77, 163, 165], Π(G,λ∂ f (x0)) effectively behaves as singular value soft thresholding. In

particular, we have,

Π(G,λ∂ f (x0)) = (Proj(G,SX0)−λUVT )+
n−r

∑
i=1

shrinkλ (σG,i)uG,ivT
G,i

where Proj(G,S⊥X0
) has singular value decomposition ∑

n−r
i=1 σG,iuG,ivT

G,i.

Based on this behavior, dist(G,λ∂ f (x0)) has been analyzed in various works in the linear regime where
r
d is constant. This is done by using the fact that the singular value distribution of a d×d matrix approaches

to the quarter circle law when singular values are normalized by
√

d

ψ(x) =


1
π

√
4− x2 if 0≤ x≤ 2

0 else
.
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Based on ψ , define the quantities related to the moments of tail of ψ . Namely,

Ψi(x) =
∫

∞

x
xi

ψ(x)dx

We can now give the following explicit formulas for the asymptotic behavior of ∂‖X0‖? where r
d = β is

fixed. Define,

υ =
λ

2
√

1−β

• D f (x0,λ
√

d)
n = [2β −β 2 +βλ 2]+ [(1−β )λ 2Ψ0(υ)+(1−β )2Ψ2(υ)−2(1−β )3/2λΨ1(υ)]

• P f (x0,λ
√

d)
n = βλ 2 +(1−β )λ 2Ψ0(υ)+(1−β )2(1−Ψ2(υ))

• C f (x0,λ
√

d)
n =−λ 2β − (1−β )λ 2Ψ0(υ)+(1−β )3/2λΨ1(υ)

A.7.2.1 Closed form bounds

Our approach will exactly follow the proof of Proposition 3.11 in [50]. Given G with i.i.d. standard normal

entries, the spectral norm of the off-support term Proj(G,S⊥X0
) satisfies,

P(‖Proj(G,S⊥X0
)‖2 ≥ 2

√
d− r+ t)≤ exp(− t2

2
)

It follows that all singular values of Proj(G,S⊥X0
) satisfies the same inequality as well. Consequently, for any

singular value and for λ ≥ 2
√

d− r, applying Lemma A.12, we may write,

E[shrinkλ (σG,i)
2]≤ 2

(λ −2
√

d− r)2 +1
exp(−(λ −2

√
d− r)2

2
)≤ 2

It follows that,
d−r

∑
i=1

E[shrinkλ (σG,i)
2]≤ 2(d− r)

To estimate the in-support terms, we need to consider Proj(G,SX0)−λUVT . Since λUVT and Proj(G,SX0)

are independent, we have,

‖Proj(G,SX0)−λUVT‖2
F = λ

2r+ |SX0 |= λ
2r+2dr− r2
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Combining, we find,

D(λ∂ f (x0))≤ λ
2r+2dr− r2 +2d−2r ≤ (λ 2 +2d)r+2d

A.7.3 Block sparse signals

Let n = t × b and assume entries of x0 ∈ Rn can be partitioned into t blocks of size b so that only k of

these t blocks are nonzero. To induce the structure, use the `1,2 norm which sums up the `2 norms of the

blocks, [91, 175, 191]. In particular, denoting the subvector corresponding to i’th block of x by xi

‖x‖1,2 =
t

∑
i=1
‖xi‖

To calculate D(λ∂ f (x0)),C(λ∂ f (x0)),P(λ∂ f (x0)) with f (·) = ‖ · ‖1,2, pick g ∼ N (0,In) and consider

Π(g,λ∂‖x0‖1,2) and Proj(g,λ∂‖x0‖1,2). Similar to `1 norm and the nuclear norm, distance to subdifferential

will correspond to a “soft-thresholding”. In particular, Π(g,λ∂‖x0‖1,2) has been studied in [175, 191] and

is given as,

Π(g,λ∂‖x0‖1,2) =


gi−λ

x0,i
‖x0,i‖ if x0,i 6= 0

vshrinkλ (gi) else

where the vector shrinkage vshrinkλ is defined as,

vshrinkλ (v) =


v(1− λ

‖v‖) if ‖v‖> λ

0 if ‖v‖ ≤ λ

When x0,i 6= 0 and gi is i.i.d. standard normal, E[‖gi−λ
x0,i
‖x0,i‖2 ‖2] = E[‖gi‖2] +λ 2 = b+λ 2. Calculation

of vshrinkλ (gi) and has to do with the tails of χ2-distribution with b degrees of freedom (see Section 3

of [175]). Similar to previous section, define the tail function of a χ2-distribution with b degrees of freedom

as,

Ψi(x) =
∫

∞

x
xi 1

2
k
2 Γ( k

2)
x

k
2−1 exp(− x

2
)dx

Then, E[‖vshrinkλ (gi)‖2] = Ψ1(λ
2)+Ψ0(λ

2)λ 2− 2Ψ 1
2
(λ 2)λ . Based on this, we calculate D(λ∂ f (x0)),

P(λ∂ f (x0)) and C(λ∂ f (x0)) as follows.

• D(λ∂ f (x0)) = k(b+λ 2)+ [Ψ1(λ
2)+Ψ0(λ

2)λ 2−2Ψ 1
2
(λ 2)λ ](t− k)
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• P(λ∂ f (x0)) = λ 2k+[(Ψ1(0)−Ψ1(λ
2))+λ 2Ψ0(λ

2)](t− k)

• C(λ∂ f (x0)) =−λ 2k+[λΨ 1
2
(λ 2)−λ 2Ψ0(λ

2)](t− k)

A.7.3.1 Closed form bound

Similar to Proposition 3 of [101], we will make use of the following bound for a x distributed with χ2-

distribution with b degrees of freedom.

P(
√

x≥
√

b+ t)≤ exp(− t2

2
) for all t > 0 (A.55)

Now, the total contribution of nonzero blocks to D(λ∂ f (x0)) is simply (λ 2 + b)k as E[‖gi−λ
x0,i
‖x0,i‖‖

2] =

λ 2 + b. For the remaining, we need to estimate E[‖vshrinkλ (gi)‖2] for an i.i.d. standard normal gi ∈ Rd .

Using Lemma A.12, with c =
√

b and a = λ −
√

b and using the tail bound (A.55), we obtain,

E[‖vshrinkλ (gi)‖2]≤ 2
(λ −

√
b)2 +1

exp(−(λ −
√

b)2

2
)

Combining everything,

D(λ∂ f (x0))≤ k(λ 2 +b)+
2t

(λ −
√

b)2 +1
exp(−(λ −

√
b)2

2
)

Setting λ ≥
√

b+
√

2log t
k , we ensure, exp(− (λ−

√
b)2

2 )≤ k
t , hence,

D(λ∂ f (x0))≤ k(λ 2 +b)+
2k

(λ −
√

b)2 +1
≤ k(λ 2 +b+2)

A.8 Gaussian Width of the Widened Tangent Cone

The results in this appendix will be useful to show the stability of `2
2-LASSO for all τ > 0. Recall the defi-

nition of Gaussian width from Chapter 2. The following lemma provides a Gaussian width characterization

of “widening of a tangent cone”.

Lemma A.13 Assume f (·) is a convex function and x0 is not a minimizer of f (·). Given ε0 > 0, consider

the ε0-widened tangent cone defined as,

T f (x0,ε0) = Cl({α ·w
∣∣ f (x0 +w)≤ f (x0)+ ε0‖w‖2, α ≥ 0}) (A.56)
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Let Rmin = mins∈∂ f (x0) ‖s‖2 and Bn−1 be the unit `2-ball in Rn. Then,

ω(T f (x0,ε0)∩Bn−1)≤ ω(T f (x0)∩Bn−1)+
ε0
√

n
Rmin

Proof: Let w ∈T f (x0,ε0). Write w = w1 +w2 via Moreau’s decomposition theorem (Fact 2.1) where

w1 ∈ T f (x0) and w2 ∈ cone(∂ f (x0)) and wT
1 w2 = 0. Here we used the fact that x0 is not a minimizer and

T f (x0)
∗ = cone(∂ f (x0)). To find a bound on T f (x0,ε0) in terms of T f (x0), our intention will be to find a

reasonable bound on w2 and to argue w cannot be far away from its projection on the tangent cone.

To do this, we will make use of the followings.

• If w2 6= 0, since wT
1 w2 = 0, maxs∈∂ f (x0) wT

1 s = 0.

• Assume w2 6= 0. Then w2 = αs(w2) for some α > 0 and s(w2) ∈ ∂ f (x0).

From convexity, for any 1 > ε > 0, εε0‖w‖2 ≥ f (εw+x0)− f (x0). Now, using Proposition 3.3 with δ → 0,

we obtain,

ε0‖w‖2 ≥ lim
ε→0

f (εw+x0)− f (x0)

ε
= sup

s∈∂ f (x0)

wT s

≥ wT s(w2) = wT
1 s(w2)+wT

2 s(w2)

= ‖w2‖2‖s(w2)‖2 ≥ ‖w2‖2Rmin

This gives, ‖w2‖2
‖w‖2

≤ ε0
Rmin

. Equivalently, for a unit size w, ‖w2‖2 ≤ ε0
Rmin

.

What remains is to estimate the Gaussian width of T f (x0,ε0)∩Bn−1. Let g ∼N (0,In). w1,w2 still

denote the projection of w onto T f (x0) and cone(∂ f (x0)) respectively.

ω(T f (x0,ε0)∩Bn−1) = E[ sup
w∈T f (x0,ε0)∩Bn−1

wT g]

≤ E[ sup
w∈T f (x0,ε0)∩Bn−1

wT
1 g]+E[ sup

w∈T f (x0,ε0)∩Bn−1
wT

2 g]

Observe that, for w ∈T f (x0,ε0)∩Bn−1, ‖w2‖2 ≤ ε0
Rmin

,

E[ sup
w∈T f (x0,ε0)∩Bn−1

wT
2 g]≤ E[ sup

w∈T f (x0,ε0)∩Bn−1
‖w2‖2‖g‖2]≤

ε0

Rmin
E‖g‖2 ≤

ε0
√

n
Rmin
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For w1, we have w1 ∈T f (x0) and ‖w1‖2 ≤ ‖w‖2 ≤ 1 which gives,

E[ sup
w∈T f (x0,ε0)∩Bn−1

wT
1 g]≤ E[ sup

w′∈T f (x0)∩Bn−1
w′T g] = ω(T f (x0)∩Bn−1)

Combining these individual bounds, we find,

ω(T f (x0,ε0)∩Bn−1)≤ ω(T f (x0)∩Bn−1)+
ε0
√

n
Rmin

Lemma A.14 Let T f (x0,ε0) denote the widened cone defined in (A.56) and consider the exact same setup

in Lemma A.13. Fix ε1 > 0. Let A ∈ Rm×n have i.i.d. standard normal entries. Then, whenever,

γ(m, f ,ε0,ε1) :=
√

m−1−
√

D(cone(∂ f (x0)))−
ε0
√

n
Rmin

− ε1 > 0

we have,

P( min
v∈T f (x0,ε0)∩Bn−1

‖Av‖2 ≥ ε1)≥ 1− exp(−1
2

γ(m, f ,ε0,ε1)
2)

Proof: Our proof will be based on Proposition 1.3. Pick C = T f (x0,ε0)∩Bn−1 in the above proposi-

tion. Combined with Lemma A.13 for any t < (
√

m−1−ω(T f (x0))− ε0
√

n
Rmin

), we have,

P( min
v∈T f (x0,ε0)∩Bn−1

‖Av‖2 ≥
√

m−1−ω(T f (x0))−
ε0
√

n
Rmin

− t)≥ 1− exp(− t2

2
)

Now, choose t = γ(m, f ,ε0,ε1) and use the fact that ω(T f (x0)∩Bn−1)2 ≤ D(cone(∂ f (x0))).

263



Appendix B

Further Proofs for Chapter 5

B.1 Properties of Cones

In this appendix, we state some results regarding cones which are used in the proof of general recovery.

Corollary B.1.1 Let C be a closed convex cone and a,b be vectors satisfying ProjC (a−b) = 0. Then

‖b‖2 ≥ ‖ProjC (a)‖2.

Proof: Using the last statement of Fact 2.2, we have ‖ProjC (a)‖2 = ‖ProjC (a)−ProjC (a−b)‖2 ≤
‖b‖2.

To proceed, we require the following result which is in similar spirit to Proposition 1.3.

Theorem B.1.1 (Escape through a mesh, [112]) Let D be a subset of the unit sphere S n−1. Given m, let

d =
√

n−m− 1
4
√

n−m . Provided that ω(D) ≤ d a random m−dimensional subspace which is uniformly

drawn w.r.t. Haar measure will have no intersection with D with probability at least

1−3.5exp(−(d−ω(D))2). (B.1)

Theorem B.1.2 Consider a random Gaussian map G : Rn→ Rm with i.i.d. entires and the corresponding

adjoint operator G ∗. Let C be a closed and convex cone and recalling Definition 5.2.1, let

ζ (C ) := 1−
√

D̄(C ), γ(C ) := 2

√
1+
√

D̄(C )

1−
√

D̄(C )
.

where D̄(C ) = D(C )
n . Then, if m≤ 7ζ (C )

16 n, with probability at least 1−6exp(−( ζ (C )
4 )2n), for all z ∈ Rn we
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have

‖G ∗(z)‖2 ≤ γ(C )‖ProjC (G
∗(z))‖2. (B.2)

Proof: For notational simplicity, let ζ = ζ (C ) and γ = γ(C ). Consider the set

D =
{

x ∈S n−1 : ‖x‖2 ≥ γ‖ProjC (x)‖2
}
.

and we are going to show that with high probability, the range of G ∗ misses D . Using Moreau’s decompo-

sition (Fact 2.1), for any x ∈D , we may write

〈x,g〉= 〈ProjC (x)+ProjC ◦(x),ProjC (g)+ProjC ◦(g)〉

≤ 〈ProjC (x),ProjC (g)〉+ 〈ProjC ◦(x),ProjC ◦(g)〉 (B.3)

≤ ‖ProjC (x)‖2‖ProjC (g)‖2 +‖ProjC ◦(x)‖2‖ProjC ◦(g)‖2

≤ γ
−1‖ProjC (g)‖2 +‖ProjC ◦(g)‖2

where in (B.3) we used the fact that elements of C and C ◦ have nonpositive inner products and ‖ProjC (x)‖2≤
‖x‖2 is by Fact 2.2. Hence, from the definition of Gaussian width,

ω(D) = E
[

sup
x∈D
〈x,g〉

]
≤ γ

−1E [‖ProjC (g)‖2]+E [‖ProjC ◦(g)‖2]

≤√n(γ−1
√

D̄(C ◦)+
√

D̄(C ))≤ 2−ζ

2
√

n.

Where we used the fact that γ ≥ 2
√

D̄(C ◦)

1−
√

D̄(C )
; which follows from D̄(C )+ D̄(C ◦) = 1 (recall Fact 2.1). Hence,

whenever,

m≤ 7ζ

16
n≤ (1− (

4−ζ

4
)2)n = m′,

using the upper bound on ω(D), we have,

(
√

n−m−ω(D)− 1
4
√

n−m
)2 ≥ (

√
n−m−ω(D))2− 1

2
≥ (

ζ

4
)2n− 1

2
. (B.4)

Now, using Theorem B.1.1, the range space of G ∗ will miss the undesired set D with probability at least

1−3.5exp(−( ζ

4 )
2n+ 1

2)≥ 1−6exp(−( ζ

4 )
2n).

Lemma B.1.1 Consider the cones Sd and Sd
+ in the space Rd×d . Then, D̄(Sd)< 1

2 and D̄(Sd
+)<

3
4 .
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Proof: Let G be a d× d matrix with i.i.d. standard normal entries. Set of symmetric matrices Sd is

an d(d+1)
2 dimensional subspace of Rd×d . Hence, E‖ProjSd (G)‖2

F = d(d+1)
2 and E‖Proj(Sd)◦(G)‖2

F = d(d−1)
2 .

Hence,

D̄(Sd) =
d(d−1)

2d2 <
1
2
.

To prove the second statement, observe that projection of a matrix A ∈ Rd×d onto Sd
+ is obtained by first

projecting A onto Sd and then taking the matrix induced by the positive eigenvalues of ProjSd (A). Since,

G and −G are identically distributed and Sd
+ is a self dual cone, ProjSd

+
(G) is identically distributed as

−ProjSd
−
(G) where Sd

− = (Sd
+)
◦ stands for negative semidefinite matrices. Hence,

E‖ProjSd
+
(G)‖2

F =
E‖ProjSd (G)‖2

F

2
=

d(d +1)
4

, E‖Proj(Sd
+)
◦(G)‖2

F =
d(3d−1)

4
.

Consequently, D̄(Sd
+) =

3
4 − 1

4d < 3
4 .

B.2 Norms in Sparse and Low-rank Model

B.2.1 Relevant notation for the proofs

Let [k] denote the set {1,2, . . . ,k}. Let Sc,Sr denote the indexes of the nonzero columns and rows of X0 so

that nonzero entries of X0 lies on Sr× Sc submatrix. Sc,Sr denotes the k1,k2 dimensional subspaces of

vectors whose nonzero entries lie on Sc and Sr respectively.

Let X0 have singular value decomposition UΣΣΣVT such that ΣΣΣ∈Rr×r and columns of U,V lies on Sc,Sr

respectively.

B.2.2 Proof of Lemma 5.6.1

Proof: Observe that Tc = Rd ×Sc and Tr = Sr×Rd hence Tc ∩Tr is the set of matrices that lie on

Sr×Sc. Hence, E? = UVT ∈ Tc∩Tr. Similarly, Ec and Er are the matrices obtained by scaling columns and

rows of X0 to have unit size. As a result, they also lie on Sr×Sc and Tc∩Tr. E? ∈ T? by definition.

Next, we may write Ec = X0Dc where Dc is the scaling nonnegative diagonal matrix. Consequently, Ec

lies on the range space of X0 and belongs to T?. This follows from definition of T? in Lemma 5.5.4 and the

fact that (I−UUT )Ec = 0.
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In the exact same way, Er = DrX0 for some nonnegative diagonal Dr and lies on the range space of XT

and hence lies on T?. Consequently, E?,Ec,Er lies on Tc∩Tr ∩T?.

Now, consider

〈Ec,E?〉=
〈
X0Dc,UVT〉= tr

(
VUT UΣΣΣVT Dc

)
= tr

(
VΣΣΣVT Dc)≥ 0.

since both VΣΣΣVT and Dc are positive semidefinite matrices. In the exact same way, we have 〈Ec,E?〉 ≥ 0.

Finally,

〈Ec,Er〉= 〈X0Dc,DrX0〉= tr
(
DcXT

0 DrX0
)
≥ 0,

since both Dc and XT
0 DrX0 are PSD matrices. Overall, the pairwise inner products of Er,Ec,E? are nonneg-

ative.

B.2.3 Results on the positive semidefinite constraint

Lemma B.2.1 Assume X,Y∈Sd
+ have eigenvalue decompositions X=∑

rank(X)
i=1 σiuiuT

i and Y=∑
rank(Y)
i=1 civivT

i .

Further, assume 〈Y,X〉= 0. Then, UT Y = 0 where U = [u1 u2 . . . urank(X)].

Proof: Observe that,

〈Y,X〉=
rank(X)

∑
i=1

rank(Y)

∑
j=1

σic j|uT
i v j|2.

Since σi,c j > 0, right hand side is 0 if and only if uT
i v j = 0 for all i, j. Hence, the result follows.

Lemma B.2.2 Assume X0 ∈ Sd
+ so that in Section B.2.1, Sc = Sr, Tc = Tr, k1 = k2 = k and U = V. Let

R = Tc∩Tr ∩T?∩Sd , S? = T?∩Sd , and,

Y = {Y
∣∣Y ∈ (Sd

+)
∗, 〈Y,X0〉= 0},

Then, the following statements hold.

• S? ⊆ span(Y )⊥. Hence, R ⊆ S? and is orthogonal to Y .

• E? ∈R, ‖ProjR(Ec)‖F
‖Ec‖F

= ‖ProjR(Er)‖F
‖Er‖F

≥ 1√
2
.

Proof: The dual of Sd
+ with respect to Rd×d is the set sum of Sd

+ and Skewd where Skewd is the

set of skew-symmetric matrices. Now, assume, Y ∈ Y and X ∈ S?. Then, 〈Y,X〉 =
〈Z

2 ,X
〉

where Z =
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Y+YT ∈ Sd
+ and 〈Z,X0〉= 0. Since X0, Z are both PSD, applying Lemma B.2.1, we have UT Z = 0 hence

(I−UUT )Z(I−UUT ) = Z which means Z ∈ T⊥? . Hence, 〈Z,X〉 = 〈Y,X〉 = 0 as X ∈ S? ⊂ T?. Hence,

span(Y )⊆ S⊥? .

For the second statement, let T∩ = T? ∩Tc ∩Tr. Recalling Lemma 5.6.1, observe that E? ∈ T∩. Since

E? is also symmetric, E? ∈R. Similarly, Ec,Er ∈ T∩, 〈Ec,Er〉 ≥ 0 and ‖ProjR(Ec)‖ = ‖Ec+Er
2 ‖F ≥ ‖Ec‖F√

2
.

Similar result is true for Er.

B.3 Results on non-convex recovery

Next two lemmas are standard results on sub-gaussian measurement operators.

Lemma B.3.1 (Properties of sub-gaussian mappings) Assume X is an arbitrary matrix with unit Frobe-

nius norm. A measurement operator A (·) with i.i.d zero-mean isotropic subgaussian rows (see Section 5.3)

satisfies the following:

• E[‖A (X)‖2
2] = m.

• There exists an absolute constant c > 0 such that, for all 1≥ ε ≥ 0, we have

P(|‖A (X)‖2
2−m| ≥ εm)≤ 2exp(−cε

2m).

Proof: Observe that, when ‖X‖F = 1, entries of A (X) are zero-mean with unit variance. Hence, the

first statement follows directly. For the second statement, we use the fact that square of a sub-gaussian

random variable is sub-exponential and view ‖A (X)‖2
2 as a sum of m i.i.d. subexponentials with unit mean.

Then, result follows from Corollary 5.17 of [213].

For the consequent lemmas, S d1×d2 denotes the unit Frobenius norm sphere in Rd1×d2 .

Lemma B.3.2 Let D ∈ Rd1×d2 be an arbitrary cone and A (·) : Rd1×d2 → Rm be a measurement oper-

ator with i.i.d zero-mean and isotropic sub-gaussian rows. Assume that the set D̄ = S d1×d2 ∩D has

ε-covering number bounded above by η(ε). Then, there exists constants c1,c2 > 0 such that whenever

m≥ c1 logη(1/4), with probability 1−2exp(−c2m), we have

D ∩Null(A ) = {0}.
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Proof: Let η = η(1
4), and {Xi}η

i=1 be a 1
4 -covering of D̄ . With probability at least 1−2η exp(−cε2m),

for all i, we have

(1− ε)m≤ ‖A (Xi)‖2
2 ≤ (1+ ε)m.

Now, let Xsup = argsupX∈D̄ ‖A(X)‖2. Choose 1≤ a≤ η such that ‖Xa−Xsup‖2 ≤ 1/4. Then:

‖A(Xsup)‖2 ≤ ‖A(Xa)‖2 +‖A(Xsup−Xa)‖2 ≤ (1+ ε)m+
1
4
‖A(Xsup)‖2.

Hence, ‖A(Xsup)‖2 ≤ 4
3(1+ ε)m. Similarly, let Xinf = arg infX∈D̄ ‖A(X)‖2. Choose 1 ≤ b ≤ η satisfying

‖Xb−Xinf‖ ≤ 1/4. Then,

‖A(Xinf)‖2 ≥ ‖A(Xb)‖2−‖A(Xinf−Xb)‖2 ≥ (1− ε)m− 1
3
(1+ ε)m.

This yields ‖A(Xinf)‖2 ≥ 2−4ε

3 m. Choosing ε = 1/4 whenever m ≥ 32
c log(η) with the desired probability,

‖A(Xinf)‖2 > 0. Equivalently, D̄ ∩Null(A) = /0. Since A(·) is linear and D is a cone, the claim is proved.

The following lemma gives a covering number of the set of low rank matrices.

Lemma B.3.3 (Candes and Plan, [39]) Let M be the set of matrices in Rd1×d2 with rank at most r. Then,

for any ε > 0, there exists a covering of S d1×d2 ∩M with size at most ( c3
ε
)(d1+d2)r where c3 is an absolute

constant. In particular, log(η(1/4)) is upper bounded by C(d1+d2)r for some constant C > 0.

Now, we use Lemma B.3.3 to find the covering number of the set of simultaneously low rank and sparse

matrices.

B.3.1 Proof of Lemma 5.6.2

Proof: Assume M has 1
4 -covering number N. Then, using Lemma B.3.2, whenever m ≥ c1 logN,

(5.18) will hold. What remains is to find N. To do this, we cover each individual s1× s2 submatrix and then

take the union of the covers. For a fixed submatrix, using Lemma B.3.3, 1
4 -covering number is given by

C(s1+s2)q. In total there are
(d1

s1

)
×
(d2

s2

)
distinct submatrices. Consequently, by using log

(d
s

)
≈ s log d

s + s, we

find

logN ≤ log
((

d1

s1

)
×
(

d2

s2

)
C(s1+s2)q

)
≤ s1 log

d1

s1
+ s1 + s2 log

d2

s2
+ s2 +(s1 + s2)q logC,

and obtain the desired result.
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Appendix C

Further Proofs for Chapter 6

C.1 On the success of the simple program

The theorems in Section 6.2.1 provide the conditions under which Program 6.1 succeeds or fails. In this

section, we provide the proofs of the success results, i.e., the last statements of Theorems 6.1 and 6.2. The

failure results will be the topic of Section C.2.

Notation: Before we proceed, we need some additional notation. 1n will denote a vector in Rn with all

ones. Complement of a set S will be denoted by Sc. Let Ri, j = Ci×C j for 1 ≤ i, j ≤ K + 1. One can see

that {Ri, j} divides [n]× [n] into (K+1)2 disjoint regions similar to a grid which is illustrated in Figure C.1.

Thus, Ri,i is the region induced by i’th cluster for any i≤ K.

Let A ⊆ [n]× [n] be the set of nonzero coordinates of A. Then the sets,

1. A ∩R corresponds to the edges inside the clusters.

2. A c∩R corresponds to the missing edges inside the clusters.

3. A ∩Rc corresponds to the set of edges outside the clusters, which should be ideally not present.

Let c and d be positive integers. Consider a matrix, X ∈ Rc×d . Let β be a subset of [c]× [d]. Then, let

Xβ denote the matrix induced by the entries of X on β i.e.,

(Xβ )i, j =


Xi, j if (i, j) ∈ β

0 otherwise .

In other words, Xβ is a matrix whose entries match those of X in the positions (i, j) ∈ β and zero otherwise.

For example, 1n×n
A = A. Given a matrix A, sum(A) will denote the sum of all entries of A. Finally, we

270



Figure C.1: Illustration of {Ri, j} dividing [n]× [n] into disjoint regions similar to a grid.

introduce the following parameter which will be useful for the subsequent analysis. This parameter can be

seen as a measure of distinctness of the “worst” cluster from the “background noise”. Here, by background

noise we mean the edges over Rc. Given q,{pi}K
i=1, let,

DA =
1
2

min{1−2q,{2pi−1− 1
λni

K

i=1
} (C.1)

=
1
2

min{1−2q,
EDi−λ−1

ni
}

For our proofs, we will make use of the following Big O notation. f (n) = Ω(n) will mean there exists a

positive constant c such that for sufficiently large n, f (n)≥ cn. f (n) = O(n) will mean there exists a positive

constant c such that for sufficiently large n, f (n)≤ cn.

Observe that the success condition of Theorem 6.1 is a special case of that of Theorem 6.2. Considering

Theorem 6.1, suppose EDmin ≥ (1+ε)Λ−1
succ and λ = (1−δ )Λsucc where δ > 0 is to be determined. Choose

δ so that 1− δ = (1+ ε)−1/2. Now, considering Theorem 6.2, we already have, λ ≤ (1− δ )Λsucc and we

also satisfy the second requirement as we have EDmin ≥ (1+ ε)Λ−1
succ = (1+ ε)(1− δ )λ−1 =

√
1+ ελ−1.

Consequently, we will only prove Theorem 6.2 and we will assume that there exists a constant ε > 0 such

that,

λ ≤ (1− ε)Λsucc (C.2)

EDmin ≥ (1+ ε)λ−1

This implies that DA is lower bounded by a positive constant. The reason is pmin > 1/2 hence 2pi−1> 0
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and we additionally have that 2pi−1≥ (1+ ε) 1
λni

. Together, these ensure, 2pi−1− 1
λni
≥ ε

1+ε
(2pi−1).

C.1.1 Conditions for Success of the Simple Program

In order to show that (L0,S0) is the unique optimal solution to the program (6.1), we need to prove that the

objective function strictly increases for any perturbation, i.e.,

(‖L0 +EL‖?+λ ‖S0 +ES‖1)− (‖L0‖?+λ ‖S0‖1)> 0, (C.3)

for all feasible perturbations (EL,ES).

For the following discussion, we will use a slightly abused notation where we denote a subgradient of a

norm ‖ · ‖∗ at the point x by ∂‖x‖∗. In the standard notation, ∂‖x‖∗ denotes the set of all subgradients, i.e.,

the subdifferential.

We can lower bound the LHS of the equation (C.3) using the subgradients as follows,

(‖L0 +EL‖?+λ ‖S0 +ES‖1)−
(
‖L0‖?+λ ‖S0‖1

)
≥ 〈∂‖L0‖?,EL〉+λ 〈∂‖S0‖1,ES〉, (C.4)

where ∂‖L0‖? and ∂‖S0‖1 are subgradients of nuclear norm and `1-norm respectively at the points
(
L0,S0

)
.

To make use of (C.4), it is crucial to choose good subgradients. Our efforts will now focus on construc-

tion of such subgradients.

C.1.1.1 Subgradient construction

Write L0 = UΛUT , where Λ = diag{n1,n2, . . . ,nK} and U = [u1 . . . uK ] ∈ Rn×K , with

ul,i =


1√
nl

if i ∈ Cl

0 otherwise.

Then the subgradient ∂‖L0‖? is of the form UUT +W such that W∈MU := {X : XU=UT X= 0,‖X‖≤
1}. The subgradient ∂‖S0‖1 is of the form sign(S0)+Q where Qi, j = 0 if S0

i, j 6= 0 and ‖Q‖∞ ≤ 1. We note

that since L+S = A, EL = −ES. Note that sign(S0) = 1
n×n
A ∩Rc −1n×n

A c∩R . Choosing Q = 1
n×n
A ∩R −1n×n

A c∩Rc ,

we get,
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‖L0+EL‖?+λ ‖S0 +ES‖1− (‖L0‖?+λ ‖S0‖1)

≥ 〈∂‖L0‖?,EL〉+λ 〈∂‖S0‖1,ES〉

= 〈UUT +W,EL〉+λ 〈sign(S0)+Q,ES〉

=
K

∑
i=1

1
ni

sum(ERi,i)+λ
(
sum(EL

A c)− sum(EL
A )
)

︸ ︷︷ ︸
:=g(EL)

+
〈
W,EL〉 . (C.5)

Define,

g(EL) :=
K

∑
i=1

1
ni

sum(EL
Ri,i

)+λ
(
sum(EL

A c)− sum(EL
A )
)
. (C.6)

Also, define f
(
EL,W

)
:= g

(
EL
)
+
〈
W,EL

〉
. Our aim is to show that for all feasible perturbations EL,

there exists W such that,

f
(
EL,W

)
= g(EL)+

〈
W,EL〉> 0. (C.7)

Note that g(EL) does not depend on W.

Lemma C.1 Given EL, assume there exists W ∈MU with ‖W‖< 1 such that f (EL,W)≥ 0. Then at least

one of the followings holds:

• There exists W∗ ∈MU with ‖W∗‖ ≤ 1 and

f (EL,W∗)> 0.

• For all W ∈MU,
〈
EL,W

〉
= 0.

Proof: Let c = 1− ‖W‖. Assume
〈
EL,W′〉 6= 0 for some W′ ∈MU. If

〈
EL,W′〉 > 0, choose

W∗ = W+ cW′. Otherwise, choose W∗ = W− cW′. Since ‖W′‖ ≤ 1, we have, ‖W∗‖ ≤ 1 and W∗ ∈MU.

Consequently,

f (EL,W∗) = f (EL,W)+ |
〈
EL,cW′〉 |

> f (EL,W)≥ 0 (C.8)
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Notice that, for all W ∈MU,
〈
EL,W

〉
= 0 is equivalent to EL ∈M⊥

U which is the orthogonal comple-

ment of MU in Rn×n. M⊥
U has the following characterization:

M⊥
U = {X ∈ Rn×n : X = UMT +NUT

for some M,N ∈ Rn×K}. (C.9)

Now we have broken down our aim into two steps.

1. Construct W ∈MU with ‖W‖< 1, such that f (EL,W)≥ 0 for all feasible perturbations EL.

2. For all non-zero feasible EL ∈M⊥
U , show that g(EL)> 0.

As a first step, in Section C.1.2, we will argue that, under certain conditions, there exists a W ∈MU

with ‖W‖ < 1 such that with high probability, f (EL,W) ≥ 0 for all feasible EL. This W is called the

dual certificate. Secondly, in Section C.1.3, we will show that, under certain conditions, for all EL ∈M⊥
U

with high probability, g(EL) > 0. Finally, combining these two arguments, and using Lemma C.1 we will

conclude that (L0,S0) is the unique optimal with high probability.

C.1.2 Showing existence of the dual certificate

Recall that

f (EL,W) =
K

∑
i=1

1
ni

sum(EL
Ri,i

)+
〈
EL,W

〉
+λ
(
sum

(
EL

A c

)
− sum

(
EL

A

))
W will be constructed from the candidate W0, which is given as follows.

C.1.2.1 Candidate W0

Based on Program 6.1, we propose the following,

W0 =
K

∑
i=1

ci1
n×n
Ri,i

+ c1n×n
Rc +λ

(
1

n×n
A −1n×n

A c

)
,

where {ci}K
i=1,c are real numbers to be determined.
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We now have to find a bound on the spectral norm of W0. Note that W0 is a random matrix where

randomness is due to A . In order to ensure a small spectral norm, we will set its expectation to 0, i.e., we

will choose c,{ci}′s to ensure that E[W0] = 0.

Following from the Stochastic Block Model 6.1, the expectation of an entry of W0 on Ri,i (region corre-

sponding to cluster i) and Rc (region outside the clusters) is ci +λ (2pi−1) and c+λ (2q−1) respectively.

Hence, we set,

ci =−λ (2pi−1) and c =−λ (2q−1),

With these choices, the candidate W0 and f (EL,W0) take the following forms,

W0 = 2λ

[
K

∑
i=1

(1− pi) 1
n×n
Ri,i∩A − pi 1

n×n
Ri,i∩A c

]
+2λ

[
(1−q) 1n×n

Rc∩A −q 1n×n
Rc∩A c

]
(C.10)

f (EL,W0) = λ
[
(1−2q) sum(EL

Rc)
]

−λ

[
K

∑
i=1

(
2pi−1− 1

λni

)
sum(EL

Ri,i
)

]
(C.11)

From L0 and (6.2), it follows that,

EL
Rc is (entrywise) nonnegative. (C.12)

EL
R is (entrywise) nonpositive.

Thus, sum(EL
Rc) ≤ 0 and sum(EL

Ri,i
) ≥ 0. When λ (2pi− 1)− 1

ni
≥ 0 and λ (2q− 1) ≤ 0; we will have

f (EL,W0)≥ 0 for all feasible EL. This indeed holds due to the assumptions of Theorem 6.1 (see (C.1)), as

we assumed 2pi−1 > 1
λni

for i = 1,2 · · · ,K and 1 > 2q.

We will now proceed to find a tight bound on the spectral norm of W0. Let us define the zero-mean
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Bernoulli distribution Bern0(α) as follows. X ∼ Bern0(α) if,

X =


1−α w.p. α

−α w.p. 1−α

.

Theorem C.1 Assume A ∈Rn×n obeys the stochastic block model (6.1) and let M ∈Rn×n. Let entries of M

be as follows.

Mi, j ∼


Bern0(pk) if (i, j) ∈Rk,k

Bern0(q) if (i, j) ∈Rc.

Then, for a constant ε ′ (to be determined) each of the following holds with probability 1−exp(−Ω(n)).

• ‖M‖ ≤ (1+ ε ′)
√

n.

• ‖M‖ ≤ 2
√

q(1−q)
√

n

+max
i≤K

2
√

q(1−q)+ pi(1− pi)
√

ni + ε ′
√

n.

• Assume max
1≤i≤K

ni = o(n). Then, for sufficiently large n,

‖M‖ ≤ (2
√

q(1−q)+ ε
′)
√

n.

Proof: The entries of M are i.i.d. with maximum variance of 1/4. Hence, the first statement follows

directly from [216]. For the second statement, let,

M1(i, j) =


M(i, j) if i, j ∈ Rc

Bern0(q) else
.

Also let M2 = M−M1. Observe that, M1 has i.i.d. Bern0(q) entries. From standard results on random

matrix theory, it follows that, with the desired probability

‖M1‖ ≤ (2
√

q(1−q)+ ε
′)
√

n.

For M2, first observe that over Ri,i M2 has i.i.d. entries with variance q(1− q) + pi(1− pi). This

similarly gives,

‖M2,Ri,i‖ ≤ 2
√

q(1−q)+ pi(1− pi)
√

ni + ε
′√n.

276



Now, observing, ‖M2‖= sup
i≤K
‖M2,Ri,i‖ and using a union bound over i≤ K we have,

‖M2‖ ≤max
i≤K

2
√

q(1−q)+ pi(1− pi)
√

ni + ε
′√n.

Finally, we use the triangle inequality ‖M‖ ≤ ‖M1‖+‖M2‖ to conclude.

The following lemma gives a bound on ‖W0‖.

Lemma C.2 Recall that, W0 is a random matrix; where randomness is on the stochastic block model A

and it is given by,

W0 = 2λ

K

∑
i=1

[
(1− pi)1

n×n
A ∩Ri,i

− pi1
n×n
A c∩Ri,i

]
+2λ

[
(1−q)1n×n

A ∩Rc−q1n×n
A c∩Rc

]
(C.13)

Then, for any ε ′ > 0, with probability 1− exp(−Ω(n)), we have

‖W0‖ ≤ 4λ
√

q(1−q)
√

n

+max
i≤K

4λ
√

q(1−q)+ pi(1− pi)
√

ni + ε
′
λ
√

n

≤ λΛ
−1
succ + ε

′
λ
√

n

Further, if max
1≤i≤K

ni = o(n). Then, for sufficiently large n, with the same probability,

‖W0‖ ≤ 4λ
√

q(1−q)n+ ε
′
λ
√

n.

Proof: 1
2λ

W0 is a random matrix whose entries are i.i.d. and distributed as Bern0(pi) on Ri,i and

Bern0(q) on Rc. Consequently, using Theorem C.1 and recalling the definition of Λsucc we obtain the

result.

Lemma C.2 verifies that asymptotically with high probability we can make ‖W0‖ < 1 as long as λ is

sufficiently small. However, W0 itself is not sufficient for construction of the desired W, since we do not

have any guarantee that W0 ∈MU. In order to achieve this, we will correct W0 by projecting it onto MU.

Following lemma suggests that W0 does not change much by such a correction.
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C.1.2.2 Correcting the candidate W0

Lemma C.3 W0 is as described previously in (C.13). Let WH be the projection of W0 on MU. Then

• ‖WH‖ ≤ ‖W0‖
• For any ε ′′ > 0 (constant to be determined), with probability

1−6n2 exp(−2ε ′′2nmin) we have

‖W0−WH‖∞ ≤ 3λε
′′.

Proof: Choose arbitrary vectors {ui}n
i=K+1 to make {ui}n

i=1 an orthonormal basis in Rn. Call U2 =

[uK+1 . . . un] and P = UUT , P2 = U2UT
2 . Now notice that for any matrix X ∈ Rn×n, P2XP2 is in MU since

UT U2 = 0. Let I denote the identity matrix. Then,

X−P2XP2 = X− (I−P)X(I−P)

= PX+XP−PXP ∈M⊥
U (C.14)

Hence, P2XP2 is the orthogonal projection on MU. Clearly,

‖WH‖= ‖P2W0P2‖ ≤ ‖P2‖2‖W0‖ ≤ ‖W0‖

For analysis of ‖W0−WH‖∞ we can consider terms on the right hand side of (C.14) separately as we

have:

‖W0−WH‖∞ ≤ ‖PW0‖∞ +‖W0P‖∞ +‖PW0P‖∞.

Clearly P = ∑
K
i=1

1
ni
1

n×n
Ri,i

. Then, each entry of 1
λ

PW0 is either a summation of ni i.i.d. Bern0(pi) or

Bern0(q) random variables scaled by n−1
i for some i≤ K or 0. Hence any c,d ∈ [n] and ε ′′ > 0

P[|(PW0)c,d | ≥ λε
′′]≤ 2exp(−2ε

′′2nmin).

Same (or better) bounds holds for entries of W0P and PW0P. Then a union bound over all entries of the

three matrices will give with probability 1−6n2 exp(−2ε ′′2nmin), we have ‖W0−WH‖∞ ≤ 3λε ′′.

Recall that γsucc := max
1≤i≤K

4
√
(q(1−q)+ pi(1− pi))ni, and Λsucc := 1

4
√

q(1−q)n+γsucc
.

We can summarize our discussion so far in the following lemma,
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Lemma C.4 W0 is as described previously in (C.10). Choose W to be projection of W0 on MU. Also

suppose λ ≤ (1−δ )Λsucc. Then, with probability 1−6n2 exp(−Ω(nmin))−4exp(−Ω(n)) we have,

• ‖W‖< 1

• For all feasible EL, f (EL,W)≥ 0.

Proof: To begin with, observe that Λ−1
succ is Ω(

√
n). Since λ ≤ Λsucc, λ

√
n = O (1). Consequently,

using λΛ−1
succ < 1 and applying Lemma C.2, and choosing a sufficiently small ε ′ > 0, we conclude with,

‖W‖ ≤ ‖W0‖< 1,

with probability 1− exp(−Ω(n)) where the constant in the exponent depends on the constant ε ′ > 0.

Next, from Lemma C.3 with probability 1− 6n2 exp(−2
9 ε ′′2nmin) we have ‖W0−W‖∞ ≤ λε ′′. Then

based on (C.11) for all EL, we have that,

f (EL,W) = f (EL,W0)−
〈
W0−W,EL〉

≥ f (EL,W0)−λε
′′ (sum(EL

R)− sum(EL
Rc)
)

= λ
[
(1−2q− ε

′′)sum(EL
Rc)
]

−λ

K

∑
i=1

[
(2pi−1− 1

λni
− ε
′′)sum(EL

Ri,i
)

]
≥ 0

where we chose ε ′′ to be a sufficiently small constant. In particular, we set ε ′′ < DA , i.e., set ε ′′ < 1− 2q

and ε ′′ < 2pi−1− 1
λni

for all i≤ K.

Hence, by using a union bound W satisfies both of the desired conditions.

Summary so far: Combining the last lemma with Lemma C.1, with high probability, either there exists a

dual vector W∗ which ensures f (EL,W∗) > 0 or EL ∈M⊥
U . If former, we are done. Hence, we need to

focus on the latter case and show that for all perturbations EL ∈M⊥
U , the objective will strictly increase at

(L0,S0) with high probability.

C.1.3 Solving for EL ∈M⊥
U case

Recall that,

g
(
EL)= K

∑
i=1

1
ni

sum(ERi,i)+λ
(
sum(EL

A c)− sum(EL
A )
)
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Let us define,

g1(X) :=
K

∑
i=1

1
ni

sum(XRi,i),

g2(X) := sum(XA c)− sum(XA ),

so that, g(X) = g1(X)+λg2(X). Also let V = [v1 . . . vK ] where vi =
√

niui. Thus, V is basically obtained

by, normalizing columns of U to make its nonzero entries 1. Assume EL ∈M⊥
U . Then, by definition of

M⊥
U , we can write,

EL = VMT +NVT .

Let mi,ni denote i’th columns of M,N respectively. From L0 and (6.2) it follows that

EL
Rc is (entrywise) nonnegative

EL
R is (entrywise) nonpositive

Now, we list some simple observations regarding structure of EL. We can write

EL =
K

∑
i=1

(vimT
i +nivT

i ) =
K+1

∑
i=1

K+1

∑
j=1

EL
Ri, j

. (C.15)

Notice that only two components : vimT
i and n jvT

j , contribute to the term EL
Ri, j

.

Let {ai, j}ni
j=1 be an (arbitrary) indexing of elements of Ci i.e. Ci = {ai,1, . . . ,ai,ni}. For a vector z ∈ Rn,

let zi ∈ Rni denote the vector induced by entries of z in Ci. Basically, for any 1≤ j ≤ ni, zi
j = zai, j . Also, let

Ei, j ∈ Rni×n j which is EL induced by entries on Ri, j.

In other words,

Ei, j
c,d = EL

ai,c,a j,d
for all (i, j) ∈ Ci×C j and

all 1≤ c≤ ni, 1≤ d ≤ n j

Basically, Ei, j is same as EL
Ri, j

when we get rid of trivial zero rows and zero columns. Then

Ei, j = 1nim j
i

T
+ni

j1
n j T . (C.16)

Clearly, given {Ei, j}1≤i, j≤n, EL is uniquely determined. Now, assume we fix sum(Ei, j) for all i, j and
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we would like to find the worst EL subject to these constraints. Variables in such an optimization are mi,ni.

Basically we are interested in,

ming(EL) (C.17)

subject to

sum(Ei, j) = ci, j for all i, j

Ei, j


nonnegative if i 6= j

nonpositive if i = j
(C.18)

where {ci, j} are constants. Constraint (C.18) follows from (C.12).

Remark: For the special case of i = j = K +1, notice that Ei, j = 0.

In (C.17), g1(EL) is fixed and is equal to ∑
K
i=1

1
ni

ci,i. Consequently, we just need to do the optimization

with the objective g2(EL) = sum(EL
A c)− sum(EL

A ).

Let βi, j ⊆ [ni]× [n j] be a set of coordinates defined as follows. For any (c,d) ∈ [ni]× [n j]

(c,d) ∈ βi, j iff (ai,c,a j,d) ∈A .

For (i1, j1) 6= (i2, j2), (m j1
i1 ,n

i1
j1) and (m j2

i2 ,n
i2
j2) are independent variables. Consequently, due to (C.16),

we can partition problem (C.17) into the following smaller disjoint problems.

min
m j

i ,n
i
j

sum(Ei, j
β c

i, j
)− sum(Ei, j

βi, j
) (C.19)

subject to

sum(Ei, j) = ci, j

Ei, j is


nonnegative if i 6= j

nonpositive if i = j

Then, we can solve these problems locally (for each i, j) to finally obtain,

g2(EL,∗) = ∑
i, j

sum(Ei, j,∗
β c

i, j
)−∑

i, j
sum(Ei, j,∗

βi, j
),
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to find the overall result of problem (C.17), where ∗ denotes the optimal solutions in problems (C.17) and

(C.19). The following lemma will be useful for analysis of these local optimizations.

Lemma C.5 Let a ∈ Rc, b ∈ Rd and X = 1cbT + a1dT be variables and C0 ≥ 0 be a constant. Also let

β ⊆ [c]× [d]. Consider the following optimization problem

min
a,b

sum(Xβ c)− sum(Xβ )

subject to

Xi, j ≥ 0 for all i, j

sum(X) =C0

For this problem there exists a (entrywise) nonnegative minimizer (a0,b0).

Proof: Let xi denotes i’th entry of vector x. Assume (a∗,b∗) is a minimizer. Without loss of generality

assume b∗1 = mini, j{a∗i ,b∗j}. If b∗1 ≥ 0 we are done. Otherwise, since Xi, j ≥ 0 we have a∗i ≥−b∗1 for all i≤ c.

Then set a0 = a∗+1cb∗1 and b0 = b∗−1db∗1. Clearly, (a0,b0) is nonnegative. On the other hand, we have:

X∗ = 1cb∗T +a∗1dT
= 1cb0T

+a01dT
= X0,

which implies,

sum(X∗
β
)− sum(X∗

β c) = sum(X0
β
)− sum(X0

β c)

= optimal value

Lemma C.6 A direct consequence of Lemma C.5 is the fact that in the local optimizations (C.19), Without

loss of generality, we can assume (m j
i ,n

i
j) entrywise nonnegative whenever i 6= j and entrywise nonpositive

when i = j. This follows from the structure of Ei, j given in (C.16) and (C.12).

The following lemma will help us characterize the relationship between sum(Ei, j) and sum(Ei, j
β c

i, j
).

Lemma C.7 Let β be a random set generated by choosing elements of [c]× [d] indecently with probability

0≤ r≤ 1. Then for any ε ′ > 0 with probability 1−d exp(−2ε ′2c) for all nonzero and entrywise nonnegative
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a ∈ Rd we’ll have:

sum(Xβ )> (r− ε
′)sum(X) (C.20)

where X = 1caT . Similarly, with the same probability, for all such a, we’ll have sum(Xβ )< (r+ ε ′)sum(X)

Proof: We’ll only prove the first statement (C.20) as the proofs are identical. For each i≤ d, ai occurs

exactly c times in X as i’th column of X is 1cai. By using a Chernoff bound, we can estimate the number

of coordinates of i’th column which are element of β (call this number Ci) as we can view this number as a

sum of c i.i.d. Bernoulli(r) random variables. Then

P(Ci ≤ c(r− ε
′))≤ exp(−2ε

′2c).

Now, we can use a union bound over all columns to make sure for all i, Ci > c(r− ε ′)

P(Ci > c(r− ε
′) for all i≤ d)≥ 1−d exp(−2ε

′2c).

On the other hand if each Ci > c(r− ε ′) then for any nonnegative a 6= 0,

sum(Xβ ) = ∑
(i, j)∈β

Xi, j =
d

∑
i=

Ciai

> c(r− ε
′)

d

∑
i=1

ai

= (r− ε
′)sum(X)

Using Lemma C.7, we can calculate a lower bound for g(EL) with high probability as long as the cluster

sizes are sufficiently large. Due to (C.15) and the linearity of g(EL), we can focus on contributions due to

specific clusters i.e. vimT
i +nivT

i for the i’th cluster. We additionally know the simple structure of mi,ni

from Lemma C.6. In particular, subvectors mi
i and ni

i of mi,ni can be assumed to be nonpositive and rest of

the entries are nonnegative.

Lemma C.8 Assume, l ≤ K, DA > 0 and (without loss of generality) ml has the structure described in

Lemma C.6. Then, with probability 1− nexp(−2D2
A (nl − 1)), we have g(vlmT

l ) ≥ 0 for all ml . Also, if

ml 6= 0 then inequality is strict.
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Proof: Recall that ml satisfies mi
l is nonpositive/nonnegative when i = l/i 6= l for all i. Call Xi =

1nl mi
l
T . We can write

g(vlmT
l ) =

1
nl

sum(Xl)+
K

∑
i=1

λh(Xi,β c
l,i)

where h(Xi,β c
l,i) = sum(Xi

β c
l,i
)− sum(Xi

βl,i
). Now assume i 6= l. Using Lemma C.7 and the fact that βl,i is a

randomly generated subset (with parameter q), with probability 1−ni exp(−2ε ′2nl), for all Xi, we have,

h(Xi,β c
l,i)≥ (1−q− ε

′)sum(Xi)− (q+ ε
′)sum(Xi)

= (1−2q−2ε
′)sum(Xi)

where inequality is strict if X i 6= 0. Similarly, when i = l with probability 1− nl exp(−2ε ′2(nl − 1)), we

have,

1
λnl

sum(Xl)+h(Xl,β c
l,l)≥ (C.21)(

1− pl + ε
′+

1
λnl

)
sum(Xl)−

(
pl− ε

′)sum(Xl)

=−
(

2pl−1− 1
λnl
−2ε

′
)

sum(Xl)

Choosing ε ′ = DA
2 and using the facts that 1− 2q− 2DA ≥ 0, 2pl − 1− 1

λnl
− 2DA ≥ 0 and using a

union bound, with probability 1− nexp(−2D2
A (nl − 1)), we have g(vlmT

l ) ≥ 0 and the inequality is strict

when ml 6= 0 as at least one of the Xi’s will be nonzero.

The following lemma immediately follows from Lemma C.8 and summarizes the main result of the

section.

Lemma C.9 Let DA be as defined in (C.1) and assume DA > 0. Then with probability 1−2nK exp(−2D2
A

(nmin−1)) we have g(EL)> 0 for all nonzero feasible EL ∈M⊥
U .

For the proof, we basically use the fact that EL is linear superposition of vlmT
l ’s and nlvT

l ’s and if EL 6= 0,

due to Lemmas C.6 and C.8 at least one of the vlmT
l (or nlvT

l ) terms are nonzero and has a strictly positive

contribution to g(EL).

C.1.4 The Final Step

Lemma C.10 Let pmin >
1
2 > q and G be a random graph generated according to Model 6.1 with cluster

sizes {ni}K
i=1. If λ ≤ (1− ε)Λsucc and EDmin = min

1≤i≤n
(2pi−1)ni ≥ (1+ ε) 1

λ
, then

(
L0,S0

)
is the unique
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optimal solution to Program 6.1 with probability 1− exp(−Ω(n))−6n2 exp(−Ω(nmin)).

Proof: Based on Lemma C.4 and Lemma C.9, with probability 1− cn2 exp(−C min{1− 2q,2pmin−
1}2nmin),

• There exists W ∈MU with ‖W‖< 1 such that for all feasible EL, f (EL,W)≥ 0.

• For all nonzero EL ∈M⊥
U we have g(EL)> 0.

Consequently based on Lemma C.1, (L0,S0) is the unique optimal of Problem 6.1.

C.2 On the failure of the simple program

This section will provide the proofs of the failure results, i.e., the initial statements of Theorems 6.1 and

6.2. Let us start by arguing that, failure result of Theorem 6.2 implies failure result of Theorem 6.1. To

see this, assume Theorem 6.2 holds and EDmin ≤ (1− ε)Λ−1
f ail . Let ε ′ be a constant to be determined.

If λ ≥ (1+ ε ′)Λ f ail or EDmin ≤ (1− ε ′)λ−1, due to Theorem 6.2, Program 6.1 would fail and we can

conclude. Suppose, these are not the case, i.e., λ ≤ (1+ ε ′)Λ f ail and EDmin ≥ (1− ε ′)λ−1. These would

imply, EDmin ≥ 1−ε ′
1+ε ′Λ

−1
f ail . We can end up with a contradiction by choosing ε ′ small enough to ensure

1−ε ′
1+ε ′ > 1− ε . Consequntly, we will only prove Theorem 6.2.

Lemma C.11 Let pmin >
1
2 > q and G be a random graph generated according to the Model 6.1 with cluster

sizes {ni}K
i=1.

1. If min
i
{ni (2pi−1)} ≤ (1− ε) 1

λ
, then

(
L0,S0

)
is not an optimal solution to the Program 6.1 with

probability at least 1−K exp
(
−Ω(n2

min)
)
.

2. If λ ≥ (1+ ε)
√

n
q(n2−∑

K
i=1 n2

i )
, then

(
L0,S0

)
is not an optimal solution to the Program 6.1 with high

probability.

Proof:

Proof of the first statement: Choose ε ′ to be a constant satisfying 2pi−1+ ε ′ < 1
λni

for some 1≤ i≤
K. This is indeed possible if the assumption of the Statement 1 of Lemma C.11 holds. Lagrange for the

Problem 6.1 can be written as follows,

L (L,S;M,N) = ‖L‖?+λ‖S‖1 + trace(M(L−1n×n))

− trace(NL). (C.22)
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where M and N are dual variables corresponding to the inequality constraints (6.2).

For L0 to be an optimal solution to (6.1), it has to satisfy the KKT conditions. Therefore, the subgradient

of (C.22) at L0 has to be 0, i.e.,

∂‖L0‖?+λ ∂‖A−L0‖1 +M0−N0 = 0. (C.23)

where M0 and N0 are optimal dual variables.

Also, by complementary slackness,

trace(M0(L0−1n×n)) = 0, (C.24)

and

trace(N0L0) = 0. (C.25)

From (6.7), (C.24), and (C.25), we have (M0)R ≥ 0, (M0)Rc = 0, (N0)R = 0 and (N0)Rc ≥ 0. Hence

(M0−N0)R ≥ 0 and (M0−N0)Rc ≤ 0.

Recall, L0 = UΛUT , where U = [u1 . . . uK ] ∈ Rn×K ,

ul,i =


1√
kl

if i ∈ Cl

0 else.

Also, recall that the subgradient ∂‖L0‖? is of the form UUT +W such that W ∈ {X : XU = UT X =

0,‖X‖ ≤ 1}. The subgradient ∂‖S0‖1 is of the form sign(S0)+Q where Qi, j = 0 if Si, j 6= 0 and ‖Q‖∞ ≤ 1.

From (C.23), we have,

UUT +W−λ
(
sign(S0)+Q

)
+(M0−N0) = 0. (C.26)

Consider the sum of the entires corresponding Ri,i, i.e.,

sum
(

L0
Ri,i

)
︸ ︷︷ ︸

ni

−sum
(

λ
(
sign(S0)+Q

)
Ri,i

)

+ sum
(
(M0−N0)Ri,i

)︸ ︷︷ ︸
≥0

= 0. (C.27)
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By Bernstein’s inequality and using ‖Q‖∞ ≤ 1, with probability 1− exp
(
−Ω(n2

i )
)

we have,

sum
(
sign(S0)

)
≤−n2

i (1− pi−
ε ′

2
) (C.28)

sum(Q)≤ n2
i (pi +

ε ′

2
). (C.29)

Thus, −sum
(

λ
(
sign(S0)+Q

)
Ri,i

)
≥ λn2

i (1−2pi− ε ′) and hence,

sum
(

L0
Ri,i

)
︸ ︷︷ ︸

ni

−sum
(

λ
(
sign(S0)+Q

)
Ri,i

)

+ sum
(
(M0−N0)

Ri,i
)︸ ︷︷ ︸

≥0

≥ ni +λn2
i (1−2pi− ε

′).

Now, choose i = argmin1≤ j≤K ni(2pi−1). From the initial choice of ε ′, we have that ni+λn2
i (1−2pi−

ε ′)> 0. Consequently, the equation (C.23) does not hold and hence L0 cannot be an optimal solution to the

Program 6.1.

Proof of the second statement: Let ε ′ be a constant to be determined. Notice that
(
UUT

)
Rc = 0 and

the entries of −
(
sign(S0)+Q

)
and M0−N0 over Rc∩A are nonpositive. Hence from (C.26),

‖W‖2
F ≥ ‖

(
UUT +W

)
Rc∩A ‖

2
F

≥ ‖λ
(
sign(S0)+Q

)
Rc∩A ‖

2
F . (C.30)

Recall that S0
Rc∩A 6= 0 and hence QRc∩A = 0. Further, recall that by Model 6.1, each entry of A

over Rc is non-zero with probability q. Hence with probability at least 1− exp(−Ω(|Rc|)), |Rc ∩A | ≥
(q− ε ′)(n2−∑

K
i=1 n2

i ). Thus from (C.30) we have,

‖W‖2
F ≥ λ

2(q− ε
′)(n2−

K

∑
i=1

n2
i ), (C.31)

Recall that ‖W‖ ≤ 1 should hold true for
(
L0,S0

)
to be an optimal solution to the Program 6.1. Using the

standard inequality n‖W‖2 ≥ ‖W‖2
F and the equation (C.31), we find,

‖W‖ ≥ λ

√
(q− ε ′)

(
n2−∑

K
i=1 n2

i

)
n

.
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So, if λ

√
q(1− ε ′)

(
n2−∑

K
i=1 n2

i

)
/n > 1 then,

(
L0,S0

)
cannot be an optimal solution to Program 6.1.

This is indeed the case with the choice (1−ε ′)−1/2 < (1+ε). This gives us the Statement 2 of Lemma C.11.

C.3 Proof of Theorem 6.3

This section will show that, the optimal solution of Problem 6.3 is the pair (L0,S0) under reasonable condi-

tions, where,

L0 = 1n×n
R , S0 = 1n×n

R∩A c (C.32)

Also denote the true optimal pair by (L∗,S∗). Let 1 ≥ pmin > q > 0. G be a random graph generated

according to the stochastic block model 6.1 with cluster sizes {ni}K
i=1. Theorem 6.3 is based on the following

lemma:

Lemma C.12 If λ < Λ̃succ and ẼDmin > 1
λ

, then
(
L0,S0

)
is the unique optimal solution to Program 6.3

with high probability.

Given q,{pi}K
i=1, define the following parameter which will be useful for the subsequent analysis. This

parameter can be seen as a measure of distinctness of the “worst” cluster from the “background noise”.

Here, by background noise we mean the edges over Rc.

ẼDA =
1
2

min
1≤i≤K

{
(pi−q)− 1

λni

}
(C.33)

=
1
2

min
1≤i≤K

ẼDi−λ−1

ni

C.3.1 Perturbation Analysis

Our aim is to show that
(
L0,S0

)
defined in (C.32) is unique optimal solution to Problem 6.3.

Lemma C.13 Let (EL,ES) be a feasible perturbation. Then, the objective will increase by at least,

f (EL,W) =
K

∑
i=1

1
ni

sum(EL
Ri,i

)+ 〈EL,W〉+λ sum(EL
A c) (C.34)

for any W ∈MU, ‖W‖ ≤ 1.

288



Proof: From constraint (6.5), we have Li, j = Si, j whenever Ai, j = 0. Entries of S over A are not

constrained by the Improved Program hence, they will be equal to 0. Since, if they are not zero, setting them

to be zero will strictly decrease the objective ‖S‖1 without effecting the feasibility of the solution. Hence,

S∗ = L∗A c .

Recall that,

‖L0 +EL‖?+λ ‖S0 +ES‖1− (‖L0‖?+λ ‖S0‖1)≥ 〈∂‖L0‖?,EL〉+λ 〈∂‖S0‖1,ES〉

= 〈UUT +W,EL〉+λ 〈sign(S0)+Q,ES〉

Using sign(S0) = 1
n×n
A c∩R , and choosing Q = 1

n×n
A c−(A c∩R), we get,

‖L0 +EL‖?+λ ‖S0 +ES‖1− (‖L0‖?+λ ‖S0‖1)≥
〈
W,EL〉

+
K

∑
i=1

1
ni

sum(EL
Ri,i
)+λ

(
sum(EL

A c)
)

︸ ︷︷ ︸
:=g(EL)

(C.35)

for any W ∈MU.

From this point onward, for simplicity we will ignore the superscript L on EL and just use E. Define,

g(E) :=
K

∑
i=1

1
ni

sum(ERi,i)+λ sum(EA c)). (C.36)

Also, define f (E,W) := g(E)+ 〈W,E〉. Our aim is to show that for all feasible perturbations E, there

exists W such that,

f (E,W) = g(E)+ 〈W,E〉> 0. (C.37)

Note that g(E) does not depend on W.

We can directly use Lemma C.1. So, as in the previous section, we have broken down our aim into two

steps.

1. Construct W ∈MU with ‖W‖< 1, such that f (E,W)≥ 0 for all feasible perturbations E.

2. For all non-zero feasible E ∈M⊥
U , show that g(E)> 0.
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As a first step, in Section C.3.2, we will argue that, under certain conditions, there exists a W ∈MU

with ‖W‖< 1 such that with high probability, f (E,W)≥ 0 for all feasible E. Recall that such a W is called

the dual certificate. Secondly, in Section C.3.3, we will show that, under certain conditions, for all E ∈M⊥
U

with high probability, g(E) > 0. Finally, combining these two arguments, and using Lemma C.1 we will

conclude that (L0,S0) is the unique optimal with high probability.

C.3.2 Showing existence of the dual certificate

Recall that

f (E,W) =
K

∑
i=1

1
ni

sum(ERi,i)+ 〈E,W〉+λ sum(EA c)

W will be constructed from the candidate W0, which is given as follows.

C.3.2.1 Candidate W0

Based on Program 6.3, we propose the following,

W0 =
K

∑
i=1

ci1
n×n
Ri,i

+ c1n×n−λ1
n×n
A c ,

where {ci}K
i=1,c are real numbers to be determined.

f (E,W0) =
K

∑
i=1

(
1
ni
+ ci) sum(ERi,i)+ c sum(E)

Note that W0 is a random matrix where randomness is due to A. In order to ensure a small spectral

norm, we will set its expectation to 0, i.e., we will choose c,{ci}′s to ensure that E[W0] = 0.

Following from the Stochastic Block Model 6.1, the expectation of an entry of W0 on Ri,i (region

corresponding to cluster i) and Rc (region outside the clusters) is ci+λ (pi−q) and c+λ (q−1) respectively.

Hence, we set,

ci =−λ (pi−q) and c = λ (1−q),

With these choices, the candidate W0 and f (E,W0) take the following forms,

W0 = λ

[
K

∑
i=1
−pi 1

n×n
Ri,i∩A c +(1− pi)1

n×n
Ri,i∩A

]
+λ
[
−q1n×n

Rc∩A c +(1−q)1n×n
Rc∩A

]
(C.38)
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f (E,W0) = λ [(1−q) sum(E)]−λ

[
K

∑
i=1

(
(pi−q)− 1

λni

)
sum(ERi,i)

]

From L0 and the constraint 1≥ Li, j ≥ 0, it follows that,

ERc is (entrywise) nonnegative. (C.39)

ER is (entrywise) nonpositive.

Thus, sum(ERc) ≤ 0 and sum(ERi,i) ≥ 0. When λ (pi− q)− 1
ni
≥ 0 and λ (1− q) ≥ 0; we will have

f (E,W0) ≥ 0 for all feasible E. This indeed holds due to the assumptions of Theorem 6.3 (see (C.33)), as

we assumed pi−q > 1
λni

for i = 1,2 · · · ,K and 1 > q.

Using the same technique as in Theorem C.1, we can bound the spectral norm of W0 as follows

Lemma C.14 Recall that, W0 is a random matrix; where randomness is on the stochastic block model A

and it is given by,

W0 = λ

[
K

∑
i=1
−pi 1

n×n
Ri,i∩A c +(1− p)1n×n

Ri,i∩A

]
+λ
[
−q1n×n

Rc∩A c +(1−q)1n×n
Rc∩A

]
Then, for any ε ′ > 0, with probability 1− exp(−Ω(n)), we have

‖ 1
λ

W0‖ ≤ 2
√

n
√
(1−q)q+ max

1≤i≤K
2
√

ni
√
(1− pi)pi +(1−q)q+ ε

′√n

Further, if max
1≤i≤K

ni = o(n). Then, for sufficiently large n, with the same probability,

‖W0‖ ≤ 2λ
√

n
√

(1−q)q+ ε
′
λ
√

n.

Lemma C.14 verifies that asymptotically with high probability we can make ‖W0‖ < 1 as long as λ is

sufficiently small. However, W0 itself is not sufficient for construction of the desired W, since we do not

have any guarantee that W0 ∈MU. In order to achieve this, we will correct W0 by projecting it onto MU.

Lemma C.3 can be used to here.

Recall that, γ̃succ := 2 max
1≤i≤K

√
ni
√
(1− pi)pi +(1−q)q and Λ̃−1

succ := 2
√

n
√

q(1−q)+ γ̃succ.

We can summarize our discussion so far in the following lemma,
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Lemma C.15 W0 is as described previously in (C.38). Choose W to be projection of W0 on MU. Also

suppose λ ≤ (1−δ )Λ̃succ. Then, with probability 1−6n2 exp(−Ω(nmin))−4exp(−Ω(n)) we have,

• ‖W‖< 1

• For all feasible E, f (E,W)≥ 0.

Proof: To begin with, observe that Λ̃−1
succ is Ω(

√
n). Since λ ≤ Λ̃succ, λ

√
n = O (1). Consequently,

using λ Λ̃−1
succ < 1 and applying Lemma C.14, and choosing a sufficiently small ε ′ > 0, we conclude with,

‖W‖ ≤ ‖W0‖< 1

with probability 1− exp(−Ω(n)) where the constant in the exponent depends on the constant ε ′ > 0.

Next, from Lemma C.3 with probability 1− 6n2 exp(−2
9 ε ′′2nmin) we have ‖W0−W‖∞ ≤ λε ′′. Then

based on (C.39) for all E, we have that,

f (E,W) = f (E,W0)−〈W0−W,E〉

≥ f (E,W0)−λε
′′ (sum(ER)− sum(ERc))

= λ
[
((1−q)− ε

′′)sum(ERc)
]

−λ

K

∑
i=1

[(
(pi−q)− 1

λni
− ε
′′
)

sum(ERi,i)

]
≥ 0

where we chose ε ′′ to be a sufficiently small constant. In particular, we set ε ′′ < ẼDA , i.e., set ε ′′ < 1− q

and ε ′′ < (pi−q)− 1
λni

for all 1≤ i≤ K.

Hence, by using a union bound W satisfies both of the desired conditions.

Summary so far: Combining the last lemma with Lemma C.1, with high probability, either there exists

a dual vector W∗ which ensures f (E,W∗)> 0 or E ∈M⊥
U . If former, we are done. Hence, we need to focus

on the latter case and show that for all perturbations E ∈M⊥
U , the objective will strictly increase at (L0,S0)

with high probability.

C.3.3 Solving for EL ∈M⊥
U case

Recall that,

g(E) =
K

∑
i=1

1
ni

sum(ERi,i)+λ sum(EA c)
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Let us define,

g1(X) :=
K

∑
i=1

1
ni

sum(XRi,i),

g2(X) := sum(XA c),

so that, g(X) = g1(X)+λg2(X). Also let V = [v1 . . . vK ] where vi =
√

niui. Thus, V is basically obtained

by, normalizing columns of U to make its nonzero entries 1. Assume E ∈M⊥
U . Then, by definition of M⊥

U ,

we can write,

E = VMT +NVT .

Let mi,ni denote i’th columns of M,N respectively.

Again as in previous section C.1.3, we consider optimization problem C.17. Since g1(E) is fixed, we

just need to optimize over g2(E). This optimization can be reduced to local optimizations C.19. Since

L0 = 1
n×n
R and the condition (6.4),

ERc is (entrywise) nonnegative

ER is (entrywise) nonpositive

We can make use of Lemma C.6 and assume mCi
l is nonpositive/nonnegative when i = l/i 6= l for all i.

Hence using Lemma C.7 we lower bound g(vlmT
l ) as described in the following section.

C.3.3.1 Lower bounding g(E)

Lemma C.16 Assume, 1 ≤ l ≤ K, ẼDA > 0. Then, with probability 1− nexp(−2ẼD2
A (nl − 1)), we have

g(vlmT
l )≥ λ (1−q− ẼDA )sum(vlmT

l ) for all ml . Also, if ml 6= 0 then inequality is strict.

Proof: Recall that ml satisfies mCi
l is nonpositive/nonnegative when i = l/i 6= l for all i. Define

Xi := 1nl mCi
l

T
. We can write

g(vlmT
l ) =

1
nl

sum(Xl)+
K

∑
i=1

λ sum(Xi
β c

l,i
)

Now assume i 6= l. Using Lemma C.7 and the fact that βl,i is a randomly generated subset (with parameter

q), with probability 1−ni exp(−2ε ′2nl), for all Xi, we have,
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sum(Xi
β c

l,i
)≥ ((1−q)− ε

′)sum(Xi) (C.40)

where inequality is strict if X i 6= 0. Similarly, when i = l with probability 1− nl exp(−2ε ′2(nl − 1)), we

have,

1
λnl

sum(Xl)+ sum(Xl
β c

l,l
)≥

(
1

λnl
+(1− pl)+ ε

′
)

sum(Xl)

Together,

g(vlmT
l )≥ λ ∑

i 6=l
((1−q)− ε

′)sum(Xi)+

(
1

λnl
+(1− pl)+ ε

′
)

sum(Xl)

≥ λ ((1−q)− ε
′)

K

∑
i=1

sum(Xi) = λ ((1−q)− ε
′)sum(vlmT

l )

Choosing ε ′ = ẼDA and using the facts that (1−q)−2ẼDA ≥ 0, (pl−q)− 1
λnl
−2ẼDA ≥ 0 and using

a union bound, with probability 1−nexp(−2ẼD2
A (nl−1)), we have g(vlmT

l )≥ 0 and the inequality is strict

when ml 6= 0 as at least one of the Xi’s will be nonzero.

The following lemma immediately follows from Lemma C.16 by summing up over all vlmT
l and nlvT

l

terms and using sum(EL)≥ 0. It summarizes the main result of the section.

Lemma C.17 Let ẼDA be as defined in (C.1) and assume ẼDA > 0. Then with probability 1−2nK exp(−2

ẼD2
A (nmin−1)) we have g(EL)> 0 for all nonzero feasible EL ∈M⊥

U .

C.3.4 The Final Step

Lemma C.18 Let pmin > q and G be a random graph generated according to Model 6.1 with cluster sizes

{ni}K
i=1. If λ ≤ (1− ε)Λ̃succ and EDmin = min

1≤i≤n
r (pi−q)ni ≥ (1+ ε) 1

λ
, then

(
L0,S0

)
is the unique optimal

solution to Program 6.1 with probability 1− exp(−Ω(n))−6n2 exp(−Ω(nmin)).

Proof: Based on Lemma C.15 and Lemma C.17,

with probability 1− cn2 exp(−C(pmin−q)2nmin),

• There exists W ∈MU with ‖W‖< 1 such that for all feasible EL, f (EL,W)≥ 0.

• For all nonzero EL ∈M⊥
U we have g(EL)> 0.

Consequently based on Lemma C.1, (L0,S0) is the unique optimal of Problem 6.3.
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