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ABSTRACT

The propagation of the fast magnetosonic wave in a tokamak
plasma has been investigated at low power, between 10 and 300 watts,
as a prelude to future heating experiments.

The attention of the experiments has been focused on the under-
standing of the coupling between a loop antenna and a plasma-filled
cavity. Special emphasis has been given to the measurement of the com-
plex loading impedance of the plasma. The importance of this measure-
ment is that once the complex loading impedance of the plasma is known,
é matching network can be designed so that the r.f. generator impedance
can be matched to one of the cavity modes, thus delivering maximum
power to the plasma. For future heating experiments it will be essen-
tial to be able to match the generator impedance to a cavity mode in
order to coupie the r.f. energy efficiently to the plasma.

As a consequence of the complex impedance measurements, it was
discovered that the designs of the transmitting antenna and the imped-
ance matching network are both crucial. The losses in the antenna and
the matching network must be kept below the plasma loading in order to
be able to detect the complex plasma loading impedance. This is even
more important in future heating experiments, because the fundamental
basis for efficient heating before any other consideration is to deliver
more energy into the plasma than is dissipated in the antenna system.

The characteristics of the magnetosonic cavity modes are con-
firmed by three different methods. First, the cavity modes are qbserved

as voltage maxima at the output of a six-turn receiving probe.



-iv-

Second, they also appear as maxima in the input resistance of the trans-
mitting antenna. Finally, when the real and imaginary parts of the
measured complex input impedance of the antenna are plotted in the
complex impedance plane, the resulting curves are approximately circles,
indicating a resonance phenomenon.

The observed plasma loading resistances at the various cavity
modes are as high as 3 to 4 times the basic antenna resistance (v .4 Q).
The estimated cavity Q's were between 400 and 700. This means that
efficient energy coupling into the tokamak and Tow losses in the antenna

system are possible.
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I. INTRODUCTION

1.1 Introduction to Tokamak Fusion and Plasma Heating

In order to produce net energy from controlled thermonuclear fusion,
two physical parameters, the product of the plasma density n and the
confinement time t , and the ion temperature Ti must simultaneously
satisfy the Lawson criterion. The Lawson criterion is a statement of
energy break-even in a thermonuclear reaction, where the energy gained
in the reaction equals the energy lost due to both radiation and particle
losses. For example, the Lawson criterion‘%or the deuterium and tritium
reaction

4

D+ T ~> THe (3.5 MeV) + n (14.1 MeV) (1.1)

is that T, > 10 keV, and nt > 1014,

Among the many methods under study
to reach the Lawson criteripn, one device that has made a great deal of
progress toward achieving these parameters is the tokamak.

A tokamak is a toroidal magnetic confinement device with a toroidal
magnetic field and an inductively induced toroidal current (Figure 1.1;
and for details see Section 3.1). The tordida] current serves a two-fold
purpose: 1) to produce a poloidal field which provides the proper rota-
tional transform for plasma equilibrium; 2) to heat the plasme by ohmic
dissipation due to the plasma resistance.

There is a 1imit to the plasma temperature that can be reached by
heating the tokamak plasma with the toroidal current, because the plasma
resistance decreases with increasing plasma temperature. To dissipate the
same amount of ohmic power, IgR, in the plasma at a higher temperature,

the plasma current, I , must be higher since the plasma resistance R is

p’
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lower. The 1imit on the magnitude of the toroidal plasma current that
can be used for ohmic heating is the condition for plasma equilibrium
which specifies the maximum allowable poloidal magnetic field for a
given toroidal magnetic field (see Section 3.1).

The inverse temperature dependence of the plasma resistance is the
result of the Coulomb interaction of the charged particles in a plasma.

The plasma resistivity, or the Spitzer resistivity, is as follows:

9

o_ = 1.65 x 10722 1n ay13/2 (1.2)

S

where & = ]Zﬂ(gokBT/ez)B/z/ /ﬁ;-, and Te is in keV. Thus, after the

plasma temperature has reached between 1 and 3 key, other plasma heat-
ing methods must be used to supplement ohmic heating and to bring the

ion temperature to the required value. Currently, the two major pro-
posed methods for auxiliary heating of a tokamak plasma are neutral beam
injection heating and radio frequéncy wave heating.

The reason for using neutral beam injection to heat the plasma
instead of ion beam injection is that charged particles cannot penetrate
the magnetic field of the tokamak. The neutral particle injection scheme
is to inject a beam of energetic neutral particles across the magnetic
field. The neutral particles can deliver energy to the ions by charge
exchange with cold ions in the plasma, thus resulting in energetic ions
and cold neutrals which will escape.

The neutral beam is produced by passing an intense ion beam through
a gas neutralizing cell. Energetic neutrals can be formed by electron

capture by positive ions, electron stripping by negative ions or disso-

ciation of molecular ions [1]. Injection experiments using either
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hydrogen or deuterium beams with powers up to 700 kW have been performed
in various tokamaks around the world. A heating efficiency of 57%, for
example, has been reported by the TFR group in France [2].

Although neutral beam heating has enjoyed success in the present
experimental tokamaks, there are doubts about its efficiency in heating
the bulk of the ion distribution in a reactor-size tokamak, which would
be much larger. Because of the increase in size of the reactor tokamaks,
higher energy neutral particles are needed in order to penetrate to the
center of the tokamak. At present, difficulties have been encountered
with efficient neutralization of ion beams with energy greater than
120 keV. Therefore, alternatives to the neutral beam heating must be
studied for the auxiliary heating of a reactor-size tokamak.

The use of radio frequency electromagnetic waves to heat a plasma
was proposed in the early days of plasma physics. Efficient high power
wave generators in the radio frequency range are at present readily
available, and so the technological basis for using electromagnetic wave
heating is quite sound. Because of technical know-how in radio wave
generation, the cost of using r.f. heating in a reactor-size tokamak
could be lower than that for neutral beam heating.

The heating of a plasma using r.f. waves has been summarized by
T. H. Stix as follows [3]. First, the r.f. wave must be generated and
delivered to the plasma. The r.f. energy is then coupled to the plasma
and an "efficient way to couple the r.f. energy‘into the plasma is to
match the frequency and parallel wavelength of the driving field to those
of a natural mode in the plasma, thereby exciting a 'coupling resodnance'."

The r.f. wave interacts with the plasma through "either Tinear or nonlinear



~-5-
processes". There is some absorption process of the wave in the plasma,
"which competes with eddy current dissipation in the walls". Finally,
there must be "effective thermalization of the energy added to the plasma".

One proposed method for r.f. heating is the use of the magneto-
sonic wave to heat the ions. The attractive feature of this method is
that the wave energy should couple directly to the ions, instead of
heating the electrons first, then relying on electron-ion collisions to
transfer energy to the ions. The propagation of the magnetosonic wave
in a magnetized plasma can be approximately described by the cold plasma
dispersion relation. The cold plasma dispersion relation indicates that
there are two branches of waves that can propagate when the wave fre-
quency is approximately equa1 to the ion cyclotron frequency. One branch
is the ion cyclotron wave which is left-circularly polarized (LCP) and
has a resonance, i.e., a large plasma response to the field, at the ion
cyclotron frequency (Appendix b). The other branch is the magnetosonic
wave which is right-circularly polarized (RCP) and does not have a
resonance at the ion cyclotron frequency.

When the magnetosonic wave is propagating in a plasma-filled
metallic container such as a tokamak, the appropriate EM probiem can be
thought of as that of wave propagation in a die1éctr1c—f111ed cavity.

At first sight one would not expect to be able to couple energy to the
jons using the magnetosonic wave, because it has the wrong polarization.
However, when temperature effects are included in the dispersion rela-
tion, one finds that the magnetosonic wave is no longer pureiy RCP, but
contains a small left-handed component. F. Perkins [4] has workeg out

the damping decrements of the magnetosonic wave in a finite temperature
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plasma at both the ion cyclotron and twice the ion cyclotron frequencies.
It is found that the damping is not strong, and it is a linear function
of the ion temperature of the plasma.

Wave propagation in a plasma-filled cavity can be described by the
dispersion relation of the wave and the proper boundary conditions. To
keep the theory simple and yet retain the essential features of the
physics, some approximations are introduced. The plasma is assumed to be
cold, uniform, and magnetized. The tokamak is approximated by a cylindri-
cal cavity with perfectly conducting walls and a periodic boundary condi-
tion in the axial direction. The wave propagation problem is solved in
cylindrical coordinates with the plasma magnetized along the axial direc-
tion. From the cold plasma theory, the dispersion relation, w = w(k), is
obtained, where k is the wave vector (see Section 2.1). Once the plasma
is placed in the cylindrical cavity, only discrete values of k which
satisfy the boundary conditions can exist, i.e., the conducting wall
boundary conditions being that the tangential electric field and the nor-
mal magnetic field must vanish at the boundary. By exciting the magneto-
sonic wave at the eigenmode frequencies, w = w(k), standing waves are set
up in the cavity; thus, one has a forced oscillation system which will
enhance the damping of the wave. With the simple assumptions used here,
there are a few experimental effects that are neglected in the theory,
for example, the toroidal effects, effects due to both density and mag-
netic field gradients, the poloidal field effecté, finite temperature
effects, and the effects of the cavity wall resistance. Nevertheless,
the simple cold plasma theory describes the propagation of the magneto-

sonic wave reasonably well (see Section 2.2 for references to other
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theories that include these effects).

The problem of efficient r.f. heating of a tokamak plasma using
the fast magnetosonic wave can be studied in the following way. First,
the physics of the cavity modes must be understood experimentally. This
can be done by studying botn the standing wave patterns of the eigen-
modes in the tokamak and the plasma loading behavior at the transmitting
antenna during the passage through a cavity mode. Second, efficient ways
to feed r.f. energy into a plasma at the cavity modes need to be examined
carefully. By knowing the complex plasma loading impedance, the
antenna and the matching network can be designed so that the generator
impedance can be properly matched to the antenna at a cavity mode. This
ensures maximum power input into the plasma. Third, the duration of the
cavity modes used for heating must be Tong enough during the discharge
to get any significant increase in plasma temperature. Usually in the
present day tokamak discharges, the duration of the eigenmodes is not
long enough for effective plasma heating. The reason is that a particu-
lar cavity mode is excited only during the time when both the plasma den-
sity and the input frequency satisfy simultaneously the dispersion rela-
tion and the boundary conditions. As soon as the plasma density is
changed sufficiently, this mode no longer propagates in the tckamak, and
so no more wave heating is possible. Qne proposed way to track the modes
is by changing the input frequency of the transmitter to compsnsate for
any changes in the density which will shorten the duration of the modes.
Finally, high power experiments can be done to study the physics of the

damping mechanism of the wave by the plasma, and the actual temperature
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increase of the plasma due to the r.f. power input.

1.2 Summary of Previous Work on Magnetosonic Wave Heating in Tokamaks

The first series of magnetosonic wave heating experiments in the
United States was done 1in the ST tokamak and the ATC tokamak at
Princeton [5,6]. Initially, a low power experiment was performed on
the ST tokamak to show the existence of the magnetosonic wave and to
study the resistive loading of the transmitting antenna by the modes.

The modes were identified by measuring the standing wave patterns using
a number of probes placed around the tokamak. Both poleoidal and toroidal
mode numbers, m and N, were obtained. Matching networks were used so
that the r.f. generator impedance could be matched to one of the cavity
resonances [7]. The resistive loading of the transmitting antenna by
various modes was measured, and resistive loading results indicated that
efficient wave generation in the tokamak was possible.

One of the ST tokamak experimental results which was predicted by a
theory worked out by Chance and Perkins [8] was that the m = -1 mode was
split by the effect of the poloidal magnetic field (where the fields vary
as ei(k2+me—wt)), which makes the phase velocity of this mode different
when propagating in the opposite direction along the toroidal axis. In other
words, the dispersion curves for the m=-1 modes with positive and negative
N, the toroidal mode number, are different from each other. The splitting of
the m= -1 mode appears as “"double humps" on the cavity resonance peaks.

High power experiments were done with powef level up to 1 MW in the
ST tokamak with a hydrogen plasma, and a typical ion temperature increase

of 100 eV was observed [8]. This corresponded to a heating efficiency of
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20%. High power experiments in a deuterium plasma were also performed
in the ST and ATC tokamaks. However, the cavity Q of the cavity modes
measured in the deuterium plasma is much lower than the theoretical
predictions. At present, it is believed that the observed discrepancy
is due to the two ion hybrid resonance effect between the deuteron plasma
and the proton impurities in the tokamaks [6]. 1In this thesis the exper-
iments are done in a hydrogen plasma; thus, there are no two-ion hybrid
resonance effects. No further discussion will be made on this effect,
except to refer the interested reader to the latest theoretical and ex-
perimental publications on the subject.

Magnetosonic wave heating experiments were also performed on the
TM-1-VCH tokamak and the TO-1 tokamak in the Soviet Union [9,10]. The
TM-1-VCH tokamak is a small device with the major torus radius R = 40 cm
and the plasma radius=8 cm. Ion temperature increase of up to 100 eV at
generator power levels of 40 kW was reported. When a deuterium plasma
is used, the phenomenon of Tow cavity Q at the eigenmodes was also ob-
served, and the cavity Q was found to be about 10. Magnetosonic wave
heating experiments in the TO-1 had produced comparable ion temperature
increases. In the TO-1 experiments, some kind of frequency modulation
had been used to compensate any density variations and thus to remain on
one of the modes for a longer duration [10].

Another experiment at Tow power Tevel (approximately 1kW) was done
on the TFR tokamak in France. 1In this experiment careful studies of the
density dependence of the eigenmodes, and tracking of the mcdes using

frequency modulation were performed. One of the interesting discoveries
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in the experiment was that the amplitude maxima of the eigenmodes
appeared to be modulated at a frequency around 1 kHz. This modulation
was due to a periodic density fluctuation in the tokamak of about .5%
at1 kHz as observed using soft x-ray diagnostics. The decrease of the
cavity Q in a deuterium plasma was examined in these experiments, and
some agreements between the data and the two-ion hybrid resonance theory
were found [11]. Mode tracking using frequency compensation was at-
tempted. The phase information between a local oscillator and a receiv-
ing probe signal was used to frequency modulate the pilot oscillator.
The density in the TFR varied only a few percent for several tens of msec.
The direction of the change in the frequency of the pilot oscillator was
such that it compensated any change 1in density which would destroy the
cavity resonance effect. Typically, a resonance condition which lasted
for .2 msec was extended to a duration of 5 msec [12]. In this experi-
ment, the transmitting antenna was carefully designed for Tow losses and
good coupling to the plasma.

Recently, magnetosonic wave experiments were done in two of the
smaller tokamaks, the Microtor at UCLA and the Erasmus tokamak in
Brussels, Belgium [13,14]. The results from the Microtor "showed no evi-
dence of a correlation between the excitation of Alfven (magnetosonic)
resonances and the antenna loading. Upper bound estimates on these ex-
periments indicate that 70% of the applied power went into the plasma but
less than 5% appeared as resonances" [13]. This:resu1t does not agree
with the data presented in this thesis, where it was found that most of

the r.f. power went into the plasma via the cavity resonances. However,
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not enough is known about the experimental procedures used in the UCLA
experiments to resolve this difference. The preliminary measurements in
the Erasmus tokamak "does not show a large increase of absorption due to
magnetosonic resonances. This is in disagreement with the resonance
loading seen on the TFR, T4, and the Caltech tokamak" [14]. In the
Erasmus tokamak experiments the modulation of the resonance peaks by a
periodic density fluctuation which was first reported by the TFR group
was also observed. |

- The magnetosonic wave experiment was done in the larger tokamak at
UCLA, the Macrotor tokamak (R = 95 cm, a = 44 cm) [15]. "In this machine
one is able to observe a definite correlation between antenna loading
and magnetosonic resonances for well shielded antenna, and during the
low density portion of the shot." The resonance loading was reported to
be between .5 and 1 ohm. "However, this wave loading is masked by the
parasitic loading during the early part of the shot when the density is

high."
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1.3 General Thesis Qutline

This thesis has been devoted to the understanding of how to couple
r.f. energy efficiently into a tokamak plasma via the maghetosonic
cavity modes. Special attention was given to the measurement of the
complex plasma loading impedance of the plasma at the cavity modes.
The ratio of the real part of the plasma loading impedance and the
antenna resistance determines the efficiency of the wave generation in
the tokamak at the cavity modes. The complex plasma loading impedance
contains the information needed to match the r.f. generator 1mpedénce
to the antenna during the presence of a cavity mode. Careful designs
of the antenna and the impedance matching network were found to be
necessary for efficient energy coupling to the tokamak plasma and prop-
erly matching the generator impedance to the antenna at a cavity mode.

In Chapter II, the theory of the magnetosonic wave inanaxially
magnetized cold uniform plasma filled cylindrical cavity is presented.
Although the cylindrical cold plasma theory is only an approximation
to the experimental conditions in a tokamak plasma, the theory is found
to agree reasonably with the transmission data of the cavity modes. The
characteristics of the magnetosonic cavity modes are determined from
the cold plasma dispersion relation, w = w(g), and the discrete values
of the wave vector, k, which satisfies the boundary conditions at the
cavity wall. Each of the discrete cavity modes "is associated with a
particular wave vector which is represented by a set of mode numbers
(£,m,N) corresponding to the three components of the wave vector, where

£ is the radial modes number, m is the poloidal mode number, and N is
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the axial mode number. An equivaient circuit representation of the
transmitting antenna and the tokamak cavity is used to obtain relations
between various physical parameters of the cavity modes [Section 2.3],
The antenna input impedance has been calculated from the equivalent
circuit with the antenna modelled by a transformer, and each of the
cavity modes represented by a R-L-C resonant circuit. The various
circuit parameters used in this calculation are either derived from
theory, or measured experimentally [Section 2.8].

In Chapter III, the operating conditions and the plasma parameters
of the Caltech tokamak are discussed, and the various diagnostic
tools available on the Caltech tokamak are described. The time depen-
dence of the plasma density, which is an important parameter governing
the behavior of the cavity modes, is given [Section 3.1]. Typically,
the plasma density increases rapidly during the first .3 millisecond,
then decays quickly to 20% of its maximum value in the next 2 milli-

seconds, and stays constant at around 1 x 10]2

particles per cm3 for
the remainder of the discharge.

Chapter IV is devoted to the experimental apparatus and procedures
of the different r.f. meausrements. The transmission measurements were
made with a single-turn tungsten transmitting loop antenna and a small
six-turn receiving loop probe with Tow coupling coefficient so as not
to load the cavity modes in the tokamak [Section 4.1]. The input
antenna resistance was determined by measuring the 1ncfdent and reflected

power into the antenna with a VHF directional coupler, and the r.f.

current in the antenna with a high frequency current probe [Section 4.3].
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The plasma loading resistance was obtained by determining the additional
resistance present at the transmitting antenna due to the plasma effect.
The complex input impedance of the antenna was computed from the data
of the amplitude and the phase difference of the incident and reflected
waves from the VHF directional coupler [Section 4.4]. Considerations that
went into the design of the two-turn copper transmitting antenna and
the impedance matching network using vacuum variable capacitors are
discussed in section 4.2, and the details of the construction of the
copper antenna are given in Appendix a.

Chapter V contains the experimental results of the r.f. measure-
ments and the computed values of the equivalent circuit parameters
from measured data. The computed equivalent circuit parameters of the
cavity modes include the antenna input impedance under different exper-
imental conditions, the cavity Q of the various cavity modes, and the
antenna coupling coefficient at the various cavity modes. The data
from the transmission measurements at the cavity modes appear as voltage
maxima in the output signal of the receiving probe, and agree reasonably
with the cold plasma theory given in Chapter II when the experimental
data are superimposed on the dispersion curves of the cavity modes in
a frequency versusvdensity plot [Section 5.1]. Plasma loading resis-
tance at the cavity modes has been observed to be as high as 3 to 4 times
the basic antenna resistance [Section 5. 3]. Thg complex plasma loading
impedance at the cavity modes follows the general behavior of the

impedance function derived from the equivalent circuit model of the
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cavity modes [Section 5.5]. When the real and imaginary parts of the

measured plasma loading impedance are plotted on the complex impedance

plane as a cavity mode is passed through, the resultant curve is approx-
imately a circle indicating a resonance effect.

Section 5.6 contains the estimated values of the cavity Q and the
coupling coefficient for the various cavity modes. The cavity Q can be
estimated from the time dependence of the plasma evolution by using the
approximate frequency-density relation for the cavity mode cutoffs
[Section 2.6]. The estimated Q obtained from the density data is the
cavity Q loaded by the impedance of the antenna and the r.f. generator.
The unloaded cavity Q, Qo’ can be related to the loaded Q by a circuit
equation. Once Q0 is known, the antenna coupling coefficient, «, can
be obtained from the circuit model of the antenna-cavity coupling.
After the parameters of the equivalent circuit have been computed, the
wave generation efficiency, n, of the antenna is estimated. For
the present antenna design, the efficiency has been found to be as high
as 80%.

In Section 5.5, attempts to match the r.f. generator impedance to
the antenna when one of the cavity modes is resonant are described.

Due to the variation of the plasma density with time, this matching can
only be done for a brief interval. The ability to match to a cavity
mode is the ultimate goal of the entire experiment, because in order
to deliver the maximum amount of power to the plasma, the generator

impedance must be properly matched at a cavity resonance where the
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loading is stronger than when there is no resonance.
Finally, the experimental results and conclusions- are summarized
in Chapter VI, and some improvements to the experimental apparatus for

future high power experiments are suggested.
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IT. COLD PLASMA THEORY AND CIRCUIT MODELING OF THE CAVITY MODES

2.1 Theory for a Cold Uniform Cylindrical Plasma Cavity

The mode structure of the electromagnetic wave in a dielectric filled
cavity with perfect conducting walls can be obtained from Maxwell's equa-
tions, equations for the dynamics of the plasma, and the boundary condi-
tions at the cavity wall. For substitution of the plasma dynamics into
the Maxwell's equations, it is convenient to derive a relation between
the plasma current density and the electric field. The plasma current
density can be thought of as a displacement current in a dielectric medium,
as shown in equation (b.1) of Appendix b, and the dynamics of the mag-

netized plasma is represented by a dielectric tensor [16]

?L Jex 0
g = =38y ?L 0
0 0 E1i

where the definitions of the components of the dielectric tensor are given
in equation (b.3) of Appendix b. For the propagation of the magnetosonic
wave in the tokamak, the following assumptions are made to keep the theory
simple, yet contain enough physics to reveal the essential features of the
cavity modes. The chamber of the tokamak is approximated by a cylindrical
cavity with perfectly conducting wall and periodic boundary condition in
the axial direction (Figure 2.1). The plasma is assumed to be uniform,
cold, collisionless, and axially magnetized with.a uniform magnetic field,
Bo' Several approximations of the dielectric properties of the plasma

can be used to simplify the dispersion relation. For instance, in the

dielectric tensor of the magnetized plasma, terms of the order (me/mi),
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where mg and m, are the electron and ion masses, respectively, are
neglected. The propagation frequency of the wave is taken to be near

the ion cyclotron frequency, which is much smaller than the electron
cyclotron frequency and the electron plasma frequency. After including
all the simplifications mentioned above, the resulting dispersion for the

magnetosonic wave is as follows [17]:

2 » T w2
Qs w_ . 2 9 Qe s
R = el o T8 5 LY & [y (2.1.1)
v (1—521.) VA(1~Q].) T

where T and k are the radial and axial components of the wave vector, Wej

is the angular ion cyclotron frequency, Qi is w/wci’ VA = Bo/ Vﬂgﬁ;ﬁ;'is
the Alfven velocity in the plasma, and n; is the ion number density. (For
more details, see Appendix b).

A1l the transverse components of the electric and magnetic fields
can be expressed in terms of the axia} electric field, EZ, and axial mag-
netic field, Hz‘ A consequence of the propagation frequency being much
smaller than the electron plasma frequency is that E, is small (see

Appendix b). For our calculation EZ is assumed to be zero. The solution

of the axial magnetic field, Hz’ as shown in equation (b.31) is

- jwt-mo-kz)
HZ = HOJm(Tr) e

(2.1.2)
where Jm is an integer order Bessel function, T and k are the radial and
axial components of the wave vector, respectively. (Note the fields vary as
e_jme --different from the ejm8 dependence used in some of the references.)
The boundary condition for the cavity is E6 = Hr = 0 at the con-
ducting wall, i.e., at r = a. As shown in Appendix b, equation (5.32),

the boundary condition can be written as:
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Y2
A8

TaJé(Ta) + me(Ta) = 0 (2.1.3)

£

where Yy = k2 - m2u0§L and Yo = mzu , m = the poloidal mode number,

0x
el and e, are the components of the dielectric tensor of the magnetized
ﬁ?asma.

The eigenmodes of the cavity are the simultaneous solutions of
equations (2.1.1) and (2.1.3). Each of these dispersion solutions is
identified by a set of mode numbers, (%,m,N), where £ is the radial mode
number, m is the poloidal mode number, and N is the axial mode number.
The poloidal mode number, m, is the integer order of the Bessel function
in the solution (2.1.2). The axial mode number, N, is related to the
axial component of the wave vector, k, by the periodic boundary condition
in the axial direction. k = N/R, where‘N is an integer, and R is the
major radius of the tokamak. The definition of the radial mode number,

2, can be best described in an example. Consider the m = 0 modes, the

boundary condition (2.1.3) can be written as
J](Ta) =

In this case the radial mode number is defined to be the order of the
zeros of J]. For instance, the Towest radial mode, 2 = 1, cerresponds to

Ta = 3.83, the first zero of J,, if J](O) = 0 is not included. (In

1
waveguide theory it is customary to denote the radial component of the
wave vector by TQm corresponding to the (2,m) mode. In the above case,
for instance, T]Oa = 3.83).

For m # 0 modes the solution is more involved because of the trans-

cendental nature of equation (2.1.3). Once the values of the independent

variables (the density, the poloidal mode number m, and the axial mode
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number, N) are imposed, Newton's method for solving a system of equa-
tions is used to find the splutions of the input frequency and the
radial component of wave vector, T, which simultaneously satisfy both
equations (2.1.1) and (2.1.3). For a given set of values for indepen-
dent variables, there are an infinite number of discrete solutions for
the frequency and T. Therefore, the radial mode number is picked in
the solution by the initial guesses for T and the frequency used in the
Newton method.

Two sets of cavity mode dispersion curves are shown in Figures 2.2
and 2.3. Figure 2.2 shows the various poloidal and axial modes of the
magnetosonic cavity wave for the lowest radial mode. Figure 2.3 shows
the various radial and axial modes for the m = 0 poloidal mode. From
Figure 2.3 one can see that for the parameters in our experiment, i.e.,
density less than 7 x 1012 particles per cm3 and w/wci less than 3, the
higher radial modes for the m = 0 poloidal mode are not excited. The
spacings between the various modes with different radial mode number in
the frequency versus density plot are large, so in our experiment only
modes with the lowest radial mode number are excited. Therefore, only
modes with the lowest radial mode number are used to compare with the
experimental data (Figure 5.2).

Simplifications to the dispersion relation in equation (2.1.1) can
be made under certain conditions for various modes as an aid to es-
timating some of the measured physical quantitiés. For instance, the
cut-off relation, i.e., k = 0, for the various modes is very useful both

as a guide to the general trends of the dispersion curves in the density
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Figure 2.2

Dispersion curves of the magnetosonic cavity modes in a cold uniform cylindrical
plasma filled cavity with conducting walls. £ = the radial mode number, m = the
poloidal mode number, and N = the toroidal mode number. Theses are the lowest
radial modes (£ = 1). For hydrogen plasma, with R=.45 m and a=.15 m.
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Figure 2.3

Dispersion curves of various radial and toroidal modes for m = 0.

Definitions and parameters same as in Fig. 2.2.
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versus frequency plane, and in the estimation of the cavity Q. The cut-
off relation will be estimated for modes in two frequency ranges. First,
consider w << Wei << we The dispers}on relation (2.1.1) with k = 0
can be written as follows:

N
N

Fe)

£

. 2 p <
i T T i ci
- - 7?._\/Q.§_) |15 =0 (2.1.4)

where VA = BO/%uomini is the Alfven velocity. For the approximation

that Qi << 1, the result is

2 22 2
T = inci/ VA

If the hydrogen plasma is assumed to be fully ionized, then the electron

number density Ne is equal to the ion number density n;- The relation

between resonant frequency of a given mode and electron density is

f=A  /V/n_ (2.1.5)

where Almo is a constant, and %,m are the corresponding radial and po-
oidal mode numbers.

Next, consider the region where Qi is near one. Then T2/2 <<
(Q?wgi)/[V§(1-Q§)] for the lower T modes. Therefore, equation (2.1.1)
can be reduced to

of w2 ey :
TR T2

2 8 ug1- 9

Z g (- ap(+ay)

B
T~ w /VA



. .

which is the same as equation (2.1.4). Since the cut-off relation is
continuous for the frequency range between Qi = 1 and Qi = 3, equation

(2.1.4) should be a fairly good approximation for our purpose.

2.2 Summary of More Sophisticated Theories of Magnetosonic Cavity Modes

The theory presented here is a great simplification of the experi-
mental conditions.  Many physical conditions, such as the toroidal
geometry, density, and magnetic field gradients, finite plasma tempera-
ture, and finite conductivity of the tokamak wall, have all been
neglected. Therefore, this theory cannot predict all the effects of the
cavity modes, but Only can give the general features of the cavity reson-
ances. There have been several theories developed by different groups,
each including some of the neglected effects. Perkins, Chance, and
Kindel have included the finite temperature effects and predicted damping
of the magnetosonic wave by cyclotron damping at both the ion cyclotron

frequency and twice the ion cyclotron frequency, and by electron transit
| time damping when the thermal velocity of the electrons is close to the
phase velocity of the wave. They have also calculated the damping due
to the finite conductivity of the tokamak wall [4].

As mentioned in the introduction, the effects of the pcioidal field
on the cavity modes were first suggested by Chance and Perkins [8], and
later worked out in more detail by J. Adam and J. Jacquinot [12]. The
poloidal field splits the toroidal mode degeneracy of the m = -1 poloidal
modes. In other words, when the poloidal field is included in the calcu-
lation, the dispersion curves for the m = -1 modes with positive and

negative toroidal mode number, N, are different from each other. The
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experimental result is the splitting of the cavity modes. We observed
some modes in our experiments had double peaks; however, no definite
conclusion can be drawn because of two difficulties. First, there was
not an independent mode identification measurement, other than using
density information to correlate with theory, as to which modes should
appear at a given time in the plasma discharge. Second, the plasma
density decays bery quickly during the first two milliseconds in the
discharge (see Section 3.1 for detailed explanations), and so the cavity
modes are swept through very fast. Consequently, it is hard to tell the
difference between a mode splitting and two different modes appearing
very close to each other in time.

The effects of radial density profile on the cavity modes were
studies by Paoloni [18,19]. The first model used in the theory was a
cylindrical cavity with a vacuum layer between a uniform plasma and the
conducting wall. The m = 0, +1 modes were studies (where the fields vary
as ejme), and the conclusion was that for the magnetosonic wave the m = 0
and m = -1 modes each has a definite cut-off frequency; however, for a
sufficiently thick layer of vacuum, the m = -1 mode has no cutoff. In our
experiments the cavity modes disappear when the input frequency is below
7 MHz. This does not necessarily mean that the m = 1 mode does not propa-
gate below 7 MHz. Perhaps the transmitting antenna used here does not
couple strongly to this mode at low frequencies. It is also possible that

the vacuum layer in our tokamak has not reached the thickness requirement

of the theory.
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The second model used in the theory was a cylindrical cavity with
a non-uniform radial density profile [19]. It was found that the radial
variation of the wave fields depended on the assumed radial density pro-
file. For the Tow radial and poloidal modes, the fields at the outer
radius of the cylinder are much smaller in the case of the parabolic
profile than in a uniform plasma, where the parabolic and uniform pro-
files have the same line-average density. This means that if a loop
antenna is placed at the outer radius of the cylindrical cavity, the
antenna coupling to the cavity modes is weaker for the parabolic density
profile because of the Tower field linkage compared to a uniform density
profile.

The effect of the finite conductivity in the tokamak chamber wall
is an important factor in the wave heating. As indicated in the summary
of r.f. heating by Stix [3], the eddy current dissipation in the tokamak
wall competes with the wave absorption processes in the plasma. In
Appendix c, the Tosses in the stainless steel wall of the Caltech tokamak
have been estimated in terms of the quality factor, Q, of the tokamak
cavity for the 2=1, m=0, and k=0 mode. The quality factor Q is de-
fined as

energy stored
energy lost per cycle

Q = 2w
The estimated Q for the particular mode in Appendix c is a lower limit
for the Q for the various other cavity modes. When the estimated Q due
to wall loss is compared with the cavity Q measured in the experiment,
the estimated Q is two to three times the measured Q, indicating the ab-

sorption processes in the plasma are comparable or higher than the
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dissipation in the wall (Section 5.4). Therefore, a large part of the

input r.f. energy should be absorbed by the plasma.

2.3 Circuit Model of the Antenna-Cavity Couplina:

For a cavity filled with a linear scalar dielectric, the amplitudes
of the various cavity modes can be described by a set of equations
derived from the Maxwell's equations and the boundary conditions at the
cavity walls. This set of equation is the same as those for an R-L-C elec-
tric circuit; hence the cavity can be modelled by an equivalent resonance
circuit [20]. The use of the circuit model of a cavity is only for the
convenience of those who have good intuition about the behavior of elec-
triéa] circuits. To justify the use of a simple R-L-C resonance circuit
to represent a cavity filled with a maanetized plasma would be a very
involved task. Therefore, we shall summarize the approach used by Slater
[21] to justify the modelling of a Tinear scalar dielectric filled micro-
wave cavity by a R-L-C circuit, and assume that a similar derivation can
be carried out for a linear tensor dielectric in a cavity. The validity
of the circuit representation of the tokamak can be tested when the exper-
imental results are compared with the model.

The electromagnetic fields in the cavity can be expressed in terms
of a set of complete orthonormal functions, called the normal modes of
the cavity: {E, + F,} and {H,} where V-E, = 0, V'H, =0, Vxf, = 0.

The orthonormal conditions are expressed as follows:

dv = ¢

Im
ch

v Ept K, om
Vf Eﬁ' Em dv = Gﬂm
/B By dV = 8
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where V is the cavity volume. These normal modes are the solutions of

the wave equation,

2 2 .
VEpt kg Bp= 0
2 2.
VH, + K2 H, = 0
and kpE = Vb,

Vi + Ky by = 0
Associated with each of the eigenmodes is a characteristic angular reson-
ance frequency, Wp s which can be related to the wave number by ki = euw%.

The fields in the cavity can be expanded in terms of the normal modes with

the following coefficients: Ep = 6§;§£dv, Hp = 6ﬂ;ﬂ£dv, Fo= 6§;££dv

E=3(Ep Ep+ Fplp ) (2.3.1)
H = i Hy H, (2.3.2)

The solutions of the fields must satify both the Maxwell's equations
and the boundary conditions. There are two types of boundaries in the
problem: conducting surfaces, denoted by S, and insulating surfaces,
denoted by S'. The boundary conditions are

nxE,=0 and n-H, =0 (2.3.3)

at a perfectly conducting surface, S, and

n x ﬂ£ =0 and Q;§£ = 0 (2.3.4)
at a perfectly insulating surface S'. As shown by Slater, if equations
(2.3.1)and (2.3.2) are substituted into the Maxwell's equations, the result-

ing integro-differential equations for the expansion coefficients are as

follows:
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d 2 _ . d _
-kE fs(nxg) ﬂ£ da (2.3.5)
( dz + PZ Y H, = ~k,l fIE, dV - So.(nxH)-E, da ]
ez T ke ) M T TRer IRk g A g 6
d
~e Gx J(nXE)-H, da (2.3.6)

These are the differential equations for simple harmonic motion (%ferms
on the left-hand side) with dampings and external forces(terms on the

right-hand side). The convenience of these equations is that the bound-
ary conditions at S or S' can be readily substituted into the equations.
To demonstrate the damping terms, consider a cavity filled with a Tossy
dielectric represented by a finite conductivity, J = oE. Equation @.3.5)

becomes
2

oy ¢ e + )5y 0

T

When the time dependence of Eﬁ is taken to be eI“%, the following

solution for w is obtained
W = iwﬁ/ 1 - (1/720)2 + jwp/2Q 5 where Q = ew,/o
This equation is analogous to a R-L-C circuit if the following equi-

valent circuit parameters are used [ 22]

-
5 = e/(k% V)
RK = cuk%V/e

The losses due to the finite conductivity of the cavity wall can be in-
cluded by substituting the boundary condition on the conducting surface
S, nxE = H(1 + j)vwu/20, into the surface integral over S in equation

2.3.6. The effects of the wall loss in the tokamak are discussed in
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Appendix c.

Next let us find the input impedance of cavity using equations(2.3.5)
and the proper boundary condition. Consider a cavity coupled to an out-
side system by a waveguide or coaxial Tine. The input impedance of the
cavity can be obtained from the fields at an insulating surface, S',
parallel to the cross section of the transmission line near the input
of the cavity. As shown by Slater, once the boundary conditions of equa-
tion (2.3.4) are 1imposed, the fields at S' can be expanded in terms of

the transverse components of the normal modes of the wave guide, E. and

tn

ﬂtn’ -

e E H H

£ = % Ven Etn L= % an1n—¢n

where uﬂn's are the time independent expansion coefficients of the elec-

tric field, in are the coefficients of the magnetic field, and Z]n is

the characteristic impedance of the wave guide for the nth mode. After

some manfpu]ations the surface integral of equation (2.3.5) can be
related to the expansion coefficients
fS'(Dfﬂ)'E£ am 7 inuﬁn

When the above integral is substituted into equation (2.3.5), the follow-
ing solution of the expansion coefficients of the electric fisid, EK’
is obtained

E, = 3 (&, vy /ug)/3l1 - (05 /u%)]

2~ i Vo Ve 4

E=3VE (the transverse electric field at S')

n ntn

where a ;

Voo & L

7 =75 Ven¥em S
B 1 M (A )
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The quantities in and Vn can be interpreted as the 'current' and the

‘voltage' of the nth mode of the wave quide. Z _ are the impedance

nm
coefficients of the various modes in the wave gquide. If only one mode,

h

say the 1t mode, in the wave quide is dominating, and loss terms, such

as dielectric and wall losses, are introduced into equations (2.3.5) and

(2.3.6) the resultant cavity input impedance is as follows:

7 = 7("%1/8‘”}) ,
i1 7 2300 - (of /e 170,

where 1/Q£ = 1/Q + 1/Q This is just the equation satis-

wall dielectric’

fied by the input impedance of a R-L-C resonance circuit if the follow-

ing analogies are made:

2 -

where LK ¥ CK » and RZ are the equivalent circuit parameters of the

Zth

cavity mode. Ugi represents the coupling between the wave guide

and the cavity. In our experiment, the cavity is coupled to the out-
side system by a loop antenna which is modelled by a'transformer with
a certain mutual inductance, M£ , to the Kth cavity mode; thus, we can
make the following analogy between the coupling coefficient Vii and M%

for high Q cavities, i.e., wn wy, [23]
ME/L£ = u%i/aui
The equivalent circuit of the antenna-cavity system is shown in
Figure 2.4. Each of the eigenmodes is denoted hy a subscript, for
example, Rp., Lp_, and Cp_ are the equivalent circuit elements of the
1th mode. }he sLbscript 1‘p' denotes that the cavity is filled with a

magnetized plasma. Unlike the simple microwave cavity where the circuit

elements can be calculated theoretically, the equivalent circuit elements
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of the tokamak are more difficult to calculate and have not actually
been computed. Since the physical quantities measured in the experi-
ments are not the circuit elements themselves, but rather functions of
these circuit elements, such as the Q of the cavity and the resonance
frequency, only the measurable quantities need to be calculated. In
particular, one would like to know whether the complex input impedance
of the antenna-tokamak system satisfies the form of the complex input
impedance function derived from the equivalent circuit model.

By using this model, one can get an expression for the input imped-
ance of the antenna, ZL, when the various eigenmodes impedances are
reflected into the primary of the transformer. The contribution to ZL
from the each of the R-L-C circuits is a simulation of the plasma Toad-
ing. For the circuit shown in Figure 2.4, ZL can be written as follows:

Z, = R}

. . 1
LRt el f (wMiﬁ[Rp.ﬂ (6, - =] (2.3.7)

i 1 hs
:
where Rant and Lant are the resistance and inductance of the antenna.

For the convenience of comparison with experimental results, it is de-
sirable to rewrite equation (2.3.7) in terms of the following guantities

which are measured in the experiments.

= w.L_ /R
Qpi Y pi/ P
= 1/L_C

¥4 /pi P
Qa - wLant/Rant

Two dimensionless quantities are used for convenience, the ccupling

coefficient, Kis and the normalized frequency, Qp 5
.i



Circuit Model of Toroidal Eigenmodes

(:2
Z =50} /#If
300
WATTS G,
OSC.
Zin—

GENERATOR —+f+——————+——

IMPEDENCE ANTENNA
MATCHING &
NETWORK CAVITY

ith CAVITY MODE

Figure 2.4
Cirduit model of the antenna-cavity coupling. Each cavity mode
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.
Ky T M1'/Lp1.Lant
Qpi = wi/m

The real and imaginary parts of ZL can be expressed in terms of these

parameters:
2
Q.k:Qp:QRy:
R = R[]+ p—2iniPi ] (2.3.8)
L ant j QZ +Q2 (1 - Q2 )2

Pi Pi Pi

2 Nl e

i (-I - Qp-i)K"l Qp-l

><
|

= X_.[1 -2 ]
L ant i 921+Q2,(] _ QZ )2

b D (2.3.9)

Near the resonance of the jth cavity mode, equations (2.3.8) and (2.3.9)

can be approximated as

R

R

R

2
L ant i MJ

.wg/Rpj (2.3.8a)

T
(1 - 9y )xy Opy

43 02 102 - 02.)2

><
2

L~ Xant[] - (2.3.9a)

At a particular frequency, only the term with a resonance freaquency
closest to the applied frequency will dominate the resistive loadina,
whereas the reactance depends on the coupling coefficient and 2 of all
the other modes. Depending on magnitudes of the contribution to the
input reactance from the modes above and below the resonance frequency,
i.e. > 1or Q <1, the total reactance from all the cavity modes,

XL - Xant' can be greater or less than zero. If the reactance contri-
bution from modes with resonant frequency, wj < Wy, is greater than

the contribution from the other modes, for instance, the input reac-

tance, XL, will show an increase to the basic antenna inductive reac-

tance from the effects of the cavity modes.
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2.4 Transient Measurements of Steady State Quantities

The impedance measurements made in our experiment are transient
measurements. The tokamak operates in a pulse mode with the duration
of the plasma current about 12 milliseconds. Furthermore, as mentioned
in the introduction, the cavity eigenmodes are swept through very
rapidly due to the changing plasma density. (This point will be detailed
in Section 4.2). Therefore, the input impedance of the cavity modes is
changing in a very short time. However, the concept of impedance is
defined for a steady state situation, and so it is appropriate at this
point to examine the conditions under which the impedance concept is
valid. To get an estimate of how Tong one must wait to achieve steady
state condition in a transient measurement, consider the following
idealized probiem. A R-L-C resonance circuit for one of the eigenmodes
is subjected to a step of r.f. voltage input at the resonance frequency,
Wy > of the circuit. The voltage-current relationship can be written in

the following integro-differential equation:

t
Jw t
L%%HRMC J Idt=Ve ° U(t) (2.4.1)
0
where
0 t <0
Uit) =
1 t >0

The equation can also be expressed in the following form:

2 Jw_ t
s i dI 1 _ - 0
1L _dt2 + R at + T I= VO Ju)o e

U(t) (2.4.2)
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First, the homogeneous solution to the differential equation is found

using Laplace's transform

s2 4+ (R/L)s + 1/LC = 0

SHE

and so the solution of the form Ioe can be written as

s = -(u,/20) * Ju, 1~ (1/20)° (2.4.3)

N

where wg = 1/LC, and Q = mOL/R. In our case the Q is very high and so
the imaginary term is approximately equal to iwo.
In the high Q approximation, the general solution to equation
(2.2.5) can be written as follows:
-w_t/2Q Juw t

L= (V/R)(1 - e S (2.4.4)
From this equation one can see that the time required for the circuit to
reach steady state is 2 to 3 times 2Q/w0. Thus the time, T, to sweep
through the half power points of the resonance must be longer than ZQ/wO.
The longer T is compared to 2Q/w0, the more accurately the steady state
impedance can be measured. The condition for accurate impedance measure-
ment is

T > 2Q/wO (2.4.5)

Fortunately, the density decay is slow enough for this condition to be
satisfied in our experiments. In Section 5.6, equation (2.4.5) will be
applied to the experimental data and the validity of the impedance mea-

surements will be discussed.
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2.5 Impedance Matching

The impedance matching network, consisting of the two tuning capac-
itors, C] and C2 in Figure 2.4, is used to tune out the imaginary part of
the impedance in the antenna circuit, and to transform the real part of
the impedance to 50 ohms. For a particular setting of C] and C2, only

one value of Lan and Rant can be matched to 50 ohms. Therefore, one

t
must be specific as to the condition under which the antenna is matched.
The most simple way to match the antenna is in vacuum when no plasma is
present. However, it is found that once the plasma is formed around the
antenna, the antenna then becomes mismatched. Even when there are ho
cavity resonances present during the discharge, the plasma causes a suf-
ficient change in impedance to the antenna that retuning C] and C2 is
needed. This kind of tuning will be denoted as "off-resonance" matching.
A precise definition of the "off-resonance" matching is to match the gen-

erator impedance at a specific time in the plasma discharge, when no

cavity mode is resonant. The reason for specifying the time in the dis-

charge is that the plasma condition is changing as a function of time,

and so the impedance contributed from the plasma when no cavity resonance
is present is also changing as a function of time. From now on the sum of
the "off-resonance" plasma impedance plus the antenna impedance will be
denoted by Zoff = Roff + onff. It is found from the experiments that the
changes 1in Zoff resulting from the changes in the plasma conditions are
slow enough that "off-resonance" matching for fairly long periods in the
discharge (typically 3 milliseconds) is possible. In this way, one set-

ting of C] and C2 can ensure that the generator is properly "off-resonance"
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matched for the first two milliseconds in the plasma discharge where
most of the cavity modes appear.
There is one more type of matching, namely to match the generator

impedance to the impedance of the antenna plus the added contribution from

the plasma at one of the resonance peaks. Because the impadance contribu-

tion from each of the eigenmodes is different from the others, only one
mode can be properly matched for a particular setting of C] and C2. The
details of this type of tuning arediscussed in Section 4.5. For future
reference, the term "on-resonance" matching is coined to denote this type
of matching.

In the experiment, the directional coupler used has a characteris-
tic impedance of 50 ohms, and it measures the impedance of the antenna
and the plasma loading after being transformed through the matching net-
work. This measured impedance is the term Zin shown in Figure 2.4. The
quantity of interest is the impedance looking directly into the antenna,
; [ ZL (see Figure 2.4). The transformation relating these two imped-

ances is readily shown to be

) ?
R = RinXC]/D (2.5.1)
Xc, (Xc,* Xg,* Xip)
XL = XC [1 - ] (2.5.2)
1 D
where D = (X. + X+ X. )2 + R and X. = 1/wCy, X. = 1/uC
¢," *¢," Min in Gy o 2

The ideal matching procedure for "on-resonance" matching is first
to match the impedance of the generator at the "off-resonance” condition,

which is an easier process than "on-resonance" matching. From the measured
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complex reflection coefficient p, ZL can be calculated. From the values

of ZL at the resonance peaks, the XC] and XC2 can be calculated for "on-
resonance" matching, i.e., Rin= 50 ohms, X1n= 0. This procedure was not fol-
lowed in this thesis because of the lack of an on-line computer system to
calculate ZL and the new C] and C2. The actual "on-resonance" matching
reported in this thesis was done by minimizing the reflected voltage from
the directional coupler at one of the modes through trial and error. More
discussions on "resonance" matching and data of impedance at "on-resonance"

matching are presented in Section 5.7.

2.6 Relations between Circuit Parameters

The actual physical quantities that are measured in the experiment
are the amplitude and the phase of the incident and reflected voltages
into the matching network from the generator, the antenna current, and
the plasma density. From these measured quantities, the following cir-
cuit parameters, shown in Figure 2.4, can be calculated: the input
impedance Zin’ the resonance plasma loading resistance M2w§/Rpi, the
cavity Q,Qpi, the coupling coefficient k, and the antenna efficiency
=

To obtain the resistance information from the measured incident
and reflected voltage into the antenna and the antenna current requires
some basic equations used in transmission line theory. The incident and
reflected waves into the capacitor matching network are measurad by a r.f.
directional coupler, which has a characteristic impedance of 50 ohms.
Since the generator and the directional coupler is also 50 ohms, the

incident and reflected power into the antenna circuit can be written as
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Pinc = Vinc/0 (2:6.1)

P =V /50 (2.6.2)
ref ref Che

where Pinc and Pref are the incident and reflectad powers, respectively.

If we call the antenna current Ia’ then the resistance can be obtained

as
R=(P. -P_ )12 (2.6.3)
inc ref a s

To find the complex input impedance, first define the complex re-
flection coefficient. The complex reflection coefficient, p, can be

related to the amplitude and the phase of the incident and reflected vol-

tages as
" Jo
p = (Vref/vjnc) e (2.6.4)

where ¢ is the phase between the incident and the reflected voltages

[24]. The complex input impedance can be obtained from the complex re-

flection coefficient by the following transformation:
Zi = Z,L(140)/(1-p)] (2.6.5)

where Zin = Rin+jX1n’ and Z0 is the characteristic impedance of the trans-
mission line, i.e., Z0 = 50 ohms for our experiment. Using this formula

to solve for Rin and Xin for our case, the following equations are ob-

tained:

X
1}

= 2 L0-1pl2)/(1 - 2]plcos o + |p]%)] (2.6.6)

X; = Zg[2]plsin o/(1 - 2|plcos ¢ + [p|*)] (2.6.7)

where |p| is the magnitude of the reflection coefficient. These two
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equations are used in Sections 4.4 and 5.5 to calculate the complex im-
pedance from the experimental data.

The cavity Q can be estimated from the plasma density at the
cavity resonance, the rate of density change as a function of time, and
the 3 dB time width of the resonance peak.. The reason density informa-
tion can be used to get the cavity Q is because of the nature of the
dispersion relation of the magnetosonic wave (Figure 2.2). As shown in
Figure 2.2, a change in the density can be interpreted as a kind of
frequency sweep in the cavity. During the plasma discharge, the density
is changing as a function of time (Figure 3.2). In the experiments where
the input frequency of the antenna is fixed, the cavity modes are swept
through as a series of resonance peaks by the density decay. Thus, the
cavity Q can be derived as a function of the plasma density. To demon-
strate this point, examine the approximate cut-off relation, k = 0,
for the modes. As shown in Section 2.1, equation (2.1.5) is a good ap-
proximation of the cut-off relation for the frequency range for our

experiment, Wi < W< 3wc1' Restating equation (2.1.5):
= Ao/ Me
The Q of the cavity can be written as

Q= f /03 48 (2.6.8)

where fo = the cavity resonance frequency. Using the cut-off relation

the Q can be related to the density as

Q= 2ne/Ane 3 dB

Such a measurement gives the loaded Q of the cavity QL’ rather than the
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unloaded Q, Qo’ but the two are related as follows. Consider the rela-
tion between QL and Q0 of an "off-resonance" matched antenna. When the
system is "off-resonance" matched, C] and C2 are chosen so that Zin
looks 1ike 50 ohms during the plasma discharge when no cavity resonance
is present, i.e., when ZL = Zoff' Zoff is the "off-resonance" impedance

defined in Section 2.5. Because the tuning is off resonance, ZL 1ooks

like 50 ohms when transformed through C] and C2. By the same token, the

generator impedance, which is 50 ohms, looks 1ike the complex conjugate of
zoff (i.e., Roff-jxoff), when transformed back through C] and C2. Finally,
when the generator impedance is transferred through the antenna into the
resonance circuit of the ith eigenmode, an additional resistance of M2w2/R £f
is in the R-L-C circuit. This additional resistance, as shown in Figure 2.5,
will add in series with the Rp , thus lowering the Q of the cavity. From the
resonance circuit shown in Figure 2.5c, one can write the loaded cavity

Q as follows:
- a2
QL = Lp w/Rp (1 + ™™ /2R0ffRp ) (2.6.10)

Solving for Qd=w Lp /Rp

Qo = O (1+ FIF/2R R ) (2.6.11)

0

A11 the terms in this equation are known. Roff is the antenna resistance
plus the contribution from the plasma during the "off-resonanc=" condi-
tion. wZMz/Rp is the loading of the antenna due to the plasma at the
peak of a resonance. Both of these can be determined by experiment.

Now the antenna coupling coefficient can be calculated for one of
the cavity modes:
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Circuit model relating the loaded Q and the unloaded Q. (a) is the equivalent circuit of the
antenna, the matching network, and the generator impedance. (b) is the equivalent circuit
looking back at the generator impedance through the matching network. (c) is the circuit in
(b) transformed through the mutual inductance M into one of the cavity resonance circuits.
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Kf = (R/R_ - D/ Q, (2.6.12)
1

2.7 PAntenna Efficiency

Another physical quantity of considerable interest is the effici-
ency of the transmitting antenna. The efficiency n is defined as the
amount of power coupled into the cavity, divided by the total power
delivered to the antenna by the r.f. generator. n can be obtained
straightforwardly by considering the circuit in Figure 2.6. Here the
plasma impedance has been transformed into the antenna circuit, and the
current i flows in the loaded antemna. The settings on the matching
capacitors determine the magnitude of the power delivered to the antenna,
with the maximum power transfer when the impedances of both sides are
matched. At a cavity resonance, the plasma loading impedance is real,

2 2

and the value is M w /Rp. The only dissipative elements in the circuit

2 2 :
are Rant and M~ /Rp. Thus n can be written as

2.2 2
- THu (2.7.1)

) 27
PR O[R o+ (FW™/R )]

It is more enlightening to write n 1in terms of k, Qa’ and Qp

KZQaQ
= el (2.7.2)
1+x Qan
This equation is very useful in designing an efficient antenna system.
After deciding on a particular antenna shape, this equation gives the

directions for improving the efficiency. In Section 6.2 the designing

problem will be discussed further.
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(a) Impedance of the RLC resonance circuit transforms through
the mutual inductance M into the antenna circuit. i is the

antenna current. Z0 is the generator impedance. (b) At reson-
2.2

ance, the transformed impedance is real and equal to M w /Rp.
The antenna efficiency, n, is Mzw‘ .
R R + Mlw?
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2.8 Simulation of Cavity Resonances

It is useful to see what general effects the impedance function
[equation (2.3.1)] will predict before actually discussing the experimen-
tal results. The essence of the discussion in Section 2.3 is that the

form of the impedance function observed in the experiment should be rea-

sonably close to the form of equation (2.3.1). The unknowns are the
various circuit parameters, such as the antenmna Q, the Q of the cavity
modes, the antenna coupling coefficient k , etc., and they can be measured
experimentally. The values of the circuit parameters used in the simula-
tion are either estimated from theoretical considerations, or measured in
experiment.

The simulation starts with the equivalent R-L-C circuits for the
resonance cavity. Since the cutoff relation of the eigenmodes is ap-
proximately f = 1/vn and wop o 1//@;} where wop is the resonance angular
frequency of the R-L-C circuit, the change of the capacitor as a func-
tion of time is assumed to be proportional to the density. A typical set
of density evolution data is fitted by a polynomial, n = n(t), and the
time dependence of the normalized frequency Qpi, is taken to be propor-
tional to this density function, n(t). The proportionality between the
frequency, Qpi, and the density, n(t), for the jth mode is such that when
the resonance condition for the ith mode is satisfied at a certain den-
sity value, Qpi = 1. The density dependence of the cavity mcdes is com-
puted from the simple cold plasma theory. Each of the cavity resonances
is simulated by one of the R-L-C circuits with its own resonance frequency.

The resonance effects of all the R-L-C circuits are substituted arid

summed in equations (2.3.8) and (2.3.9).



=B

The coupling coefficient K? and the cavity Qp can be estimated
i
from theory [25]. The values of><§ and Qp used in this simulation are
i
the same for all modes for the sake of simplicity, even though they are

actually different for the various modes in the experiment. Equations
(2.3.8) and (2.3.9) are solved on a computer, and the results of the
simulation for ZL are shown in Figure 2.7 for the typical density evolu-
tion and "off-resonant" tuning. The resistance and the reactance, R and X,

th th

shown in the 6~ and 7~ traces in Figure 2.7 are related to ZL by the

following relations:

Z

R # g%

L=1) - Lt~ (RL"Rant)'+j(xL —Xant) (2.8.1)

The values of the various parameters used in the computation are

as follows: Q. = 100, Q_ = 400, and «% = 8 x 107>, Note that the cavity Q
a p p

used in this calculation is the estimated unloaded cavity QO (see
Section 2.6 for the definition of Tloaded and unloaded cavity Q).

The experimental Q which will be compared directly with this calculation
is not the unloaded Q, but rather the cavity Q loaded by the generator
impedance. Therefore, the estimated loaded Q. is computed for proper

comparison with the experimental data. The loaded QL can be related

to the unloaded Q0 by equation (2.6.11)

_ 2
q = Q/(1+«Q,Q,/2)
The loaded cavity Q for this calculation is 150.

To simulate the "off-resonance" tuning effect, the reactance of

the matching capacitor, Xci and XCZ’ are calculated for Rin = 50 ohms



7 X 109

-49-

DENSITY
\
) /
-6 L REF, COFF,
L
PHASE
___L_Jn N [ \Ur'\ [
- L
200 Q L
L LJJ i
n
50Q l | (R
0
60 QL
X.
. l\_J ) in_
([
1 QL
l k k k ?
0
5 QL
X
0
-5 QL
1 1 ! |
0 -5 1 1:5 2
TIME (msec)
Figure 2.7

Computer simulation of various equivalent circuit parameters.
In the computation, Q, = 100, Q_ = 400, and o = B 1077
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and Xin = 0 when the cavity modes are not present, i.e., RL = Rant,band
XL = Xant' The equations for the capacitive reactances are
Xe = R (1+Q3)/[0 - [(1+ Q3R /R, - 1] (2.8.1)
C] L a a \/ a’ L“in S
X [/“+Q§)R 1] R (2.8.2)
C2 Rin L in o

where Rin = 50 ohms, RL = .3 ohm = Rant’ and Qa = 100. For this calcula-

tion XC = 32.5 ohms and XC = 384 ohms. By substituting the resultant
1 2
values of XC and XC and the simulated values of RL and XL including the
1 2
cavity resonances into the following equations, Rin and Xin for this model

can be obtained:

2 2
Rin = RUDRU/Xg VP0G /Ry - )+ 1)) (2.8.3)

2 2 2
(2.8.4)

By inverting the conformal transform of equation (2.6.5), the complex
reflection coefficient can be calculated from Zin in the following manner:

o= (Z;- L)/ (it Z,)

in
where Z0 = 50 ohms.

The time dependence of the density evolution used in the calcula-
tions is shown in the top curve in Figure 2.7. Some of the general
features of the computed solutions which will be compared with the exper-
imental data later in Section 5.5 are noted as follows. First, for a

simple pole resonance, there is a relation between the real and the

imaginary parts of the impedance. Corresponding to every peak in the
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real part of the impedance, the imaginary part should go through a steep
change. Since the reflection coefficient is related to the impedance by
a complex transform, this same behavior should also exist between the
amplitude and the phase of the complex reflection coefficient. As shown
in traces 2 and 3, whenever the amplitude of the reflection coefficient
reaches a maximum, the slope of the phase as a function of time also is

a maximum. Curves 4 and 5 show the similar behavior in the real and
imaginary parts of the impedance. Second, the direction of the change of
the reactance is a function of the sign of the slope of the density evo-
lution. To clarify this point, consider curves one and five in Figure
2.7. The first curve which is the density evolution has a positive

slope during the first millisecond when the density is increasing, and
has a negative slope after the first millisecond when the density decays.
This change in the sign of the slope is reflected in the reactance
curves, traces 5 and 7. During the density buildup, the reactance goes
negative first, then jumps to a positive value when a resonance is passed
through. During the density decay, the reactance is positive before pass-

ing through a resonance.

2.9 Q Circles

Another way to see the simple pole rescnance effect of & cavity mode
is by plotting the input resistance of the cavity against the input reac-
tance in the complex impedance plane. As a cavity resonance is passed
through, the resultant curve is a circle, known as a Q circle [20].
Depending on how the resonance is passed through, there is a definite
direction in tracing out the Q circle, i.e., whether it is clockwise or

counterclockwise. The dependence of the direction of the change of the
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reactance on the sign of the slope of the density evolution mentioned
in Section 2.8 can be clearly demonstrated by the direction in which the
Q circles are traced out. The Q circles for the resonances appearing
during the density buildup are formed opposite to the direction of rota-
tion of those occurring at the density decay. The Q circles of the
experimental data are plotted in Figures 5.7 to 5.9, and this reversal
of direction in which the Q circles are traced out has been observed ex-

perimentally (see Section 5.5).
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IIT. GENERAL EXPERIMENTAL SETUP

3.1 Tokamak Characteristics

A tokamak is a toroidal plasma confinement device which can be
described as having the shape of a doughnut (Figure 1.1). The vacuum
chamber of the Caltech tokamak is made of stainless steel with the major
radius about 46 cm and the minor radius approximately 15 cm. A toroidal
magnetic field is created by a current carrying coil wound on the sur-
face of the torus. The current in the toroidal field winding is produced
by a capacitor bank containing up to 50 kJ of energy.

A second winding, known as the ohmic heating winding, is wound in
the toroidal direction. The windings are placed on a single surface
above the toroidal field windings. The purpose of the ohmic heating coil
is to produce a changing magnetic flux linking the plasma, but to have no
field inside the vacuum to disturb the plasma confinement. By Faraday's
induction law, the changing magnetic field linking the plasma will induce
a toroidal electric field in the plasma; thus, a toroidal plasma current
will be produced. This plasma current serves two purposes: First, it will
provide a poloidal magnetic field which, when added to the toroidal
field, will give a rotational transform to the field as illustirated in

Figure 3.1. The rotational angle 1(a) at the edge of the plasma

B

T _ 21R
§~ ml = (3.1.1)
so that
B
. _27nR "p
tia == B, {3.1.9)

where R = major radius, and a = minor radius. The safety factor q=2n/i
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Rotation transform in a tokamak. The pitch
angle 1 = ZWRBp/aBT. The safety factor q is
2r/1. 6 = the poloidal angle, and ¢ = the
toroidal angle. (From Principles of Plasma

Physics, by N.A. Krall and A.W. Trivelpiece)
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must be greater than 2 or 3 for stable operation. For the Caltech
tokamak, q is typically between 5 and 7, depending on the plasma current.
Second, the current will also heat the plasma through dissipation of the
plasma resistance; thus the name, ohmic heating current. The chmic heat-
ing winding is energized by a second capacitor bank containing up to 8 kdJ
of energy.

Due to the toroidal geometry of the tokamak, the induced toroidal
plasma current produces a poloidal field which is stronger in the "hole of
the doughnut" than on the outside of the torus. This results in a mag-
netic pressure which pushes the plasma outward. Therefore, a third set of
coils is used to produce an approximately vertical magnetic field in the
plasma. This field and the plasma current produce a J x gv force which
compensates the outward magnetic pressure. The vertical field winding is
energized by a third capacitor energy supply. The time dependence of the
vertical field must be designed so as to insure equilibrium throughout the
discharge period, even when the discharge parameters change. With the
proper vertical field, the plasma current lasts for about 12 milliseconds.

The Caltech tokamak operates in a pulsed mode with a repetition
rate of once a minute, being dictated essentially by the time to charge
the capacitor banks. As mentioned previously, the energy for the differ-
ent windings is stored in capacitor banks. A digital timing unit is used
to control the discharge sequence of the various banks. First, the
toroidal field is created. Then, a 16 kHz, one millisecond burst, called
the preionization pulse, is applied to the ohmic heating winding to parti-
ally ionize the gas. This is followed by discharging the ohmic heating

capacitor bank into the ohmic heating winding, producing a plasma current
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up to 15 kA. Simultaneously, the vertical field is applied to provide
the proper plasma equilibrium.

The vacuum chamber of the Caltech tokamak is cleaned by a process
called "discharge cleaning". The method employed, first proposed by
Robert Taylor of UCLA, is to bombard the vacuum chamber wall by a rapidly
pulsed (2-3 times a second) low temperature hydrogen plasma [26]. The
object of the process is to reduce the loosely bonded high mass impuri-
ties (carbon and oxygen) on the chamber wall so that during the actual
tokamak discharge fewer impurities will be present in the plasma. Such
impurities can be detrimental in a plasma confinement device because
they greatly increase the radiation losses in the plasma. The rate of

energy Toss in the plasma due to Bremsstrahlung radiation is

3722 1/2

P effn neTe

- 4.8x10 watts/m° (3.1.3)

b

where Te is the electron temperature in keV, Ne is the electron density,

Zeff is defined as

~ 2
Zogs = E Zyn,/n (3.1.4)

Ny is the density of the kth species ion, Zk is the degree of ionization
of the kth species, and n = ng/Zee [27].

One can see that to minimize the Bremsstrahlung radiation power
loss in a plasma, the Zeff must be minimized. This 1is the reason for
using discharge cleaning. The Zeff of the Caltech tokamak plasma is
believed to be quite low as the result of low bower discharge cleaning.

A side effect of the discharge cleaning is that the plasma density
drops very quickly after the initial plasma density buildup. The exact

cause of this behavior in the plasma density is not completely understood
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and is currently under investigation. As shown in Figure 3.2, the
electron density peaks at 7 x 1012 particles per cm3 in the first .3
millisecond, then drops to 1 x 10]2 particles per cm3 in the next two
milliseconds. This behavior in the plasma density has important con-
sequences in the wave excitation experiments. From the dispersion
curves in Figures 2.2 and 2.3, one can see that for an input frequency
between one and three times the ion cyclotron frequency, no cavity mode
can propagate in the Caltech tokamak beyond the first two milliseconds
in the plasma discharge when the plasma density falls below 1.5 x]O]2
particles per cm—3. This means that all the impedance measurements of

the cavity resonances must be made within the first two milliseconds in

the plasma discharge.

3.2 Plasma Diagnostics

a. Plasma Current and Toroidal Field Measurements

The plasma current is measured with a Rogowski coil placed on the
vacuum chamber surface. The Rogowski coil is made by winding a coil on
a long plastic tube, which then encircles the plasma. By Faraday's in-

duction law, the voltage measured from the coil is

D.LDQ.
| —

N

Z(E

V= mp ) (3.2:1)

where p is the radius of the tube, L is the length of the tube, N is the
number of turns of the wire, Ip is the plasma current. To get the
plasma current, the signal is electronically integrated.

The toroidal magnetic field can be accurately calculated from the

toroidal winding current which is measured with a Rogowski coil. = The
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Electron density evolution as a function of time (4 mm
microwave interferometer).
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toroidal field variation as a function of the major radius, R, is an
inverse relation, i.e., BT « 1/R. From the dimension of the Caltech
tokamak, R = 45 cm and a (the minor radius) = 15 cm, the toroidal mag-
netic field varies by a factor of two from the inner wall to the outer

wall.

b. One-Turn Voltage

The voltage induced by the ohmic heating coil to drive the plasma
current is another important quantity. To measure this voltage, a
single turn wire is placed around the outside of the vacuum chamber in
the direction of the plasma current. It encircles the hole in the
"doughnut", thus enclosing all the flux produced by the ohmic heating
air core transformer. The voltage from this one-turn loop is just the
EMF produced by the changing'ohmic heating flux.

One of the purposes of the so-called one-turn voltage is to
infer the average electron temperature of the plasma through a measure-
ment of the plasma resistance. The plasma temperature is related to
the resistivity of the plasma as follows:

9 2/3

T =[1.65x10"
e

Zeff]n A/n] (3.2.2)

2,3/2
12ﬂ(£0kBT/e )

where n is the resistivity of the plasma, A is 72 , and
n
e

Zeff is the effective charge of the plasma due to high mass impurities
in the plasma [28]. The Zeff defined in equation (3.1.4) for a hydrogen
plasma is greater than one. Although we do not have a direct measure-

ment of the Zeff’ the Zeff in the Caltech tokamak is believed to Pe

quite low because of the discharge cleaning.
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c. Plasma "Magnetic" Position Measurement

One would also 1ike to know the position of the plasma column with
respect to the vacuum chamber wall in order to keep the plasma well cen-
tered. This position is measured by placing two coils, the in-out coil
and the up-down coil, on the'torus. The in-out coil is a cosine coil, so
named because it is a Rogowski coil with the number of windings per unit
length following a cosine function of the poloidal angle © (see Figure 3.1).
The up-down coil is a sine coil. The cosine coil is wound on a plastic tube
such that there are more turns near 6 = 0 and 180°; moreover, the direction
of the winding is changed at © = 90 and 270°. Therefore, the signal from
the left half of the windings is of opposite sign to the right half. If
the plasma moves toward the one side of the chamber, the signal picked up
by the coil on that side will increase. Thus the total output voltage is a

function of position [29]

o

I
5 {3.2.3)

o

¥V = f{r.0)

o

By electronically integrating the signal with respect to time, the -
output is a position signal. The sine coil works the same way except it
is rotated 90" in the poloidal direction from the cosine coil.

Beéause of the toroidal geometry the magnetic flux produced by the
plasma current is greater at 6 = 180° than 6 = 0°, i.e., it is stronger on
the inside of the torus than on the outside; therefore, the winding density
is no longer symmetric with © for the proper calibration of the output
voltage. The cosine coil has less windings on the inside of the torus,

i.e., 6 = 180°% than the outside, 6 = 0o
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d. Line Average Electron Density Measurement

The 1line average electron density in the Caltech tokamak is meas-
sured by a microwave interferometer (Figure 3.3). The phase shift
between the reference signal and the signal through the plasma contains
the density information. The plasma density is a function of the posi-
tion, and so the average phase difference between the two legs of the

interferometer is
L
Ay = Lk - E[ n dX (3.3.4)
e p
0
where L is the width of the piasma, np is the index of refraction of the
plasma, and k is the free space wave number. For an ordinary wave, i.e.,

the electric field of the wave is parallel to the d.c. magnetic field,

the index of refraction can be written as follows:

2
w_ (X
n. = ]_L
p 2
w
so that ) L wz(x)
AW=Lk—EJ\1 -—9-2—— dx (3.2.5)
0 W

Since wie/wz_ o mi/me, the contribution is mostly from the elactrons.

pi

When the applied wave frequency is much greater than the electron plasma
frequency, i.e., wz/wie(x) >> 1, the above equation can be aporoximated

by the following:

. w2 (x) ;?
) e - W "pe
My = J Pe ax = 5o P2 (3.2.6)
0 w w
. L
where wge = J wge(x) dx is the average electron plasma frequsncy. This

phase shift can be seen as a series of interference fringes at the
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Interferometry arrangement for microwave measurement of the
plasma density. (4 mm microwave interferometer)
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detector output. One fringe corresponds to a phase shift of Ay = 2m. The

L
corresponding average electron density M, # %—J ne(x) dx, 1is

0
m e w
=~ _ €0,y 2c
ne = (.___.T) 3 A(‘D (3.2.7)
e
when wz/wge(x) >> 1 is imposed. Thus the electron density is a linear

function of the phase shift or the number of output fringes when the
microwave frequency satisfies the above condition, (wz/wge(x)) >> 1. The
frequency of the microwave interferometer used on the Caltech tokamak is

60 GHz. and the maximum average electron density is about 7x 1012

particles
per cm3, which corresponds to an electron plasma frequency of 24 GHz.

If it is assumed that the density profile is a paraholic function of dis-
tance, the relation between the peak density and the average density is

= (3/2)n

npeak o So the peak density corresponding to our case is ap-

avg’

13 partic]es/cm3, which gives an approximate electron

proximately 1 x 10
plasma frequency of 36 GHz. Therefore, the assumntion of (wz/wée(x)) >> ]
is a good one even for the peak density.

The fringe counting for the microwave system on the Caltech tokamak
has an uncertainty factor of *1/4 fringe. The source of the uncertainty
comes from the noise superimposed on the interference signal from the de-
tector. The origin of the noise is not completely understood. Some of it
may be due to actual fluctuation in the plasma density. By carefully

matching the fringes for the initial density buildup with the decay fringes,

the time dependence of the plasma density can be determined fairly well.

e. Langmuir Probe Measurement
The conditions at the edge of the plasma are mild enough that

Langmuir probes can be used to measure the local electron density and
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temperature. Data have been taken for the first 5 cm into the plasma
by R. Kubena [30] without any major probe damage. The results when
extrapolated agree fairly well with the density measurements from the
microwave interferometer mentioned in Section 3.2c, and the electron
temperature data from the plasma resistance measurement depicted 1in

Section 3.2b.

3.3 Summary of Plasma Parameters

From the diagnostics just described, the Caltech tokamak plasma
has the following characteristics:
Toroidal field: 3 to 6 kG (4 kG on center) at R = 30 cm
and R = 60 cm, respectively
Plasma current: 15 kA (peak)
12 msec (duration)

Line average elec- 7 x 1012 t6 1.5 xlO]2

em> (decays during
tron density:

the first two msec)

Average electron 50 to 100 eV (assuming Zse¢ = 1.5)
temperature:

where R is the major radius of the torus.

3.4 Digital Data Acquisition System

A1l experimental data from the Caltech tokamak experimsnts, such
as the signals from various diagnostics, the crystal detected r.f.
signals, etc., are recorded on a multichannel digital transient recorder
which converts the various analog signals into digital data that are

stored in its semiconductor memories. Each of the 16 channels of the
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transient recorder has a 1024 word memory with 8 bits amplitude resolu-
tion per word. Four of the channels have a one-microsecond per word
clock rate, so the maximum frequency response with four-word resolution
is about 200 kHz. The rest of the channels have a clock rate of 5
microseconds per word, so the frequency response with four-word resolu-
tion is about 40 kHz.

The digital output signals from the transient recorder memories
can then be used in several ways. Analog signals can be reconstructed
with D-A converters for continuous display on scope monitors after
each plasma shot. The transient recorder can also drive an analog
pen plotter, so that hard copies of the signal can be produced. If
calculations need to be done with the data, the digital data can be
written on magnetic tape for later processing at the Caltech central

computer facility (IBM 370, model 158).
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IV. EXPERIMENTAL SETUP FOR THE R.F. MEASUREMENTS

4.1 Experimental Arrangement for Transmission Measurement

The first step in the study of the magnetosonic cavity modes was
to observe them with a receiving probe located 180° toroidally from a
transmitting antenna (Figure 4.7).

A simple single-turn transmitting loop antenna made of tungsten
was first used (Figure 4.2). The race track shape antenna had the
dimension of 3.75" x 1". The design of the antenna was governed by
three factors. First, it must fit into a 4"x 1"x 6" port. Second, to
get good coupling with the plasma, the loop area should be maximized.
Finally, the antenna should be kept away from the center region of the
plasma where most of the damage to the antenna will occur. This made
the shape long and narrow. R.F. signals are carried to the tungsten
antenna by parallel copper wires enclosed in a glass-to-stainless steel
transition tube. The stainless steel tube provides the mechanical feed-
through from the outside into the vacuum chamber. The glass is to give
electrical insulation for the antenna from the tokamak. The measured
resistance of the entire antenna structure is about 2 ohms at 10 MHz.

The antenna can be moved radially in and out of the plasma
through a vacuum O-ring seal. All transmission measurements are done
with the antenna located no more than 1.25 inches into the vacuum cham-
ber in order to prevent any plasma damage to the antenna. This is the
low density region in the tokamak, according to Langmuir probe data,

11

(ne < 5x 10 partic]es/cmz).
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A matching network consists of a variable series capacitor used
to tune out the antenna inductance, and a R.F. transformer to match the
antenna impedance to 50 ohms. An ENI 300-watt wide-band amplifier
driven by a Hewlett-Packard 8601A sweeper oscillator is used to excite
the wave. The input r.f. frequency to the transmitting antenna is fixed
for each plasma discharge. This way only one variable, the plasma den-
sity, is changing during the experiment. To study the frequency depend-
ence of the cavity modes, the input frequency is changed between plasma
shots.

To detect the cavity resonances, a small six-turn loop probe is
placed in the tokamak. The receiving probe is kept small so that it
couples weakly to the cavity. This way the probe does not influence the
cavity while it is measuring the r.f. signal. As shown in Figure 4.1,
the receiving probe is located 180° toroidally from the transmitting
antenna. The output of the probe is passed through a tunable bandpass
filter, with a bandwidth of 300 kHz; thus any broadhand noise from the
plasma can be reduced. The r.f. signal is then split into two branches.
One branch goes into a square law crystal detector which has en output
operational amplifier with a slew rate of 4V in 2 usec, for amplitude
detection. The other 1line is fed into a phase detector which can
respond to a 27 phase shift in 4 psec so the phase between the trans-
mitted and the received signals can be examined. As mentioned in
Section 3.4, the output of the phase and amplitude detectors is digi-
tized and recorded in the multichannel transient recorder. The
experimental data of the transmission measurements are presented in

Section 5.1.
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4.2 Antenna and Matching Network Design

The initial measurement of the plasma loading resistance was made
with the single-turn tungsten antenna, which has a resistance of 2 ohms
at 10 MHz. The impedance matching circuit consists of a series of air
variable capacitors used to tune out the antenna inductance, and a
broad-band ferrite core r.f. transformer made to match the antenna re-
sistance to the amplifier impedance. With this setup, only a minute
amount of plasma loading at the cavity resonances was detected. However,
the large increase in the transmitted signal measured by the six-turn
probe at the cavity resonances led us to think that there must be better
power coupling between the antenna and the tokamak at the cavity reson-
ances than when there were no cavity modes. This effect should show up
as antenna loading by the plasma at the cavity resonances. It was be-
lieved that the sum of the resistance from the antenna, the matching
network, and the r.f. transformer was so high that the plasma loading
was overshadowed.

To understand the effect of the antenna resistance on the plasma
loading resistance measurement, consider equation(2.3.8a) at one of the

cavity mode frequencies:

} 2
R = Ranel? *+ Qa5 Qp

i

ant

where it is assumed that the various cavity modes are separatad far
enough in their eigenfrequencies that only one mode dominates in the
resistivity loading. From this expression, one can see that in order
K?Q > 1. Let us estimate

a i p;

the magnitude of this factor for the tungsten antenna. For the

to measure the plasma loading effect, Q
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tungsten antenna, Qa is around 10, K2 is estimated to be 5 x 10_6

, and
Qp is assumed to be 500, so their product is 2.5 x 10_2, which is much
smaller than one. Furthermore, consider the efficiency of the antenna

n in equation (2.7.2)
n o= <00 /0 + <00

for one of the modes. In order to have efficient wave generation in the
tokamak, the same inequality, i.e., KzQan > 1, must be satisfied in
order to generate more energy in the tokamak than is dissipated by the
antenna. Therefore, the antenna and the matching network was redesigned
to improve the factor K2Qa.

The coupling coefficient K2 can be increased by increasing the
antenna size. However, as mentioned in Section 4.1, the loop area of
the antenna is determined by the port size on the tokamak, and the maxi-
mum distance the antenna can protrude into the plasma without suffering
damage to the antenna. Therefore, the coupling coefficient of the an-
tenna cannot be increased very much. There are two ways to increase the
antenna Q, Qa: either increase the inductance or decrease the resistance.
The antenna inductance is increased by going from a single-turn loop to
a two-turn loop. The maximum number of turns on the loop antenna is de-
termined by the size of the conductor used and the width of the port,
which is one inch on the tokamak. The antenna resistance is decreased
by using material with better conductivity, and‘by increasing the size of
the conductor. The conductor used in the antenna is changed from 16

gauge tungsten wire to 1/8-inch diameter copper tubing. To prevent plasma
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damage to the copper antenna and to insulate the antenna electrically
from the plasma, the copper antenna is enclosed in pyrex glass. The
measured Q of the bare copper antenna is about 132 at 10 MHz, and the
inductance of the antenna is about .46 microhenry.

However, once the copper antenna is placed in a glass-to-stainless
steel transition tube which provides the mechanical feedthrough from
the outside to the vacuum chamber, the antenna Q drops by a factor of
two. The additional losses come from the eddy current losses in the
stainless steel tube which has a 50 times higher resistivity than copper.
To reduce the eddy current losses, a copper lining of .025 inch thick
is placed on the inner wall of the stainless steel tube, thus reducing
the eddy current losses. With the copper lining, the Q of the antenna
is about 100 at 10 MHz, and the inductance of the antenna is .46 micro-
henry.

It is just as important to reduce the losses in the impedance
matching network. There were two problems with the original matching
network. First, the equivalent series resistance of the air variable
capacitor and the added resistance from the transformer are quite high.
Second, the winding ratio on the transformer is fixed, thus the impedance
of the generator can be matched only at one frequency, since the antenna
resistance is a function of frequency. Therefore, the improved matching
network must have two essential features. It must have low resistance
and it must be able to match the antenna and the generator for the entire
range of frequencies of interest. It was finally decided to use vacuum

variable capacitors which have low series resistance and multiturn
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adjustment capability that assures precise tuning. The new matching network
is shown in Figure 4. 3. This particular circuit was chosen because of

its simplicity and the minimum number of circuit elements needed.
Details on the dimensions of the antenna and the values of the capacitors

in the matching network are covered in Appendix a.

4.3 Plasma Loading Resistance Measurements

As shown in Section 2.7, the plasma loading resistance at one of
the cavity resistances, RL = HZwZ/Rp, is a crucial quantity in determin-
ing the efficiency of the antenna in delivering the r.f. power into the
tokamak. The efficiency, n, depends 6n the plasma loading resistance and

the antenna resistance, Rant’ in the following way [equation (2.7.1)]
. e B e &
n= Muw /Rp [Rant + M w /Rp]
Therefore, in order to have good efficiency in wave generation in the
tokamak, it is essential for the resonance plasma loading resistance to

2 2

be greater than the antenna resistance M- w /Rp > R And so the plasma

ant’
loading resistance must be measured in the experiment and compared with
the antenna resistance.

One way to obtain the plasma loading resistance is to measure the
incident power, the reflected power into the antenna, and the antenna
current. As indicated in equations (2.6.1) and (2.6.2), the incident
and reflected power into the antenna can be derived from the incident
and reflected voltages measured with a VHF directional coupler placed

between the generator and the antenna matching network.

P. = V2 /50 p

w2
inc inc = Vyef/50

ref
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The antenna current is measured with a high frequency Tektronix current

probe. Once the antenna current is known, the plasma loading resistance

can be calculated as follows:

_ 3 2
R = (Pinc Pr‘ef)/I —Rant (4.3.1)

where I is the antenna current, and Rant is the antenna resistance.

The experimental setup for the plasma loading resistance measure-
ments is shown in Figure 4.3. As mentioned previously, the incident and
reflected voltages are measured by a VHF directional coupler with a char-
acteristic impedance of 50 ohms. The directional coupler is placed
between the r.f. amplifier and the antenna impedance matching network,
and so any change in the antenna resistance due to the plasma would show
up as a change in the reflected voltage. The output of the directional
coupler is fed into a r.f. crystal detector and a phase detector. The
crystal detector measures the amplitude modulation on the r.f. signal
coming from the directional coupler. The output of the crystal detector
is fed into the multichannel transient recorder to be digitized and re-
corded. The phase measurement of the incident and reflected voltages is
for obtaining the complex plasma loading impedance, and the details of
this measurement are covered in the next section (Section 4.4).

When the low resistance copper antenna is used, the r.f. current
in the antenna can get as high as 30 amperes. The r.f. current probe used
is only linear up to 2 amperes, so a 15 to 1 current divider is placed in
parallel with the antenna. The current divider is simply a piece of small
diameter wire with resistivity 15 times higher than the 1/8 inch copper

used in the antenna. Since the current probe is mounted on the divider,
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which is 1in parallel with the antenna, any addad resistive losses due
to the current probe has Tittle effect on the antenna resistance. The

results of the plasma loading resistance measurements are presented in

Section 5.3.

4.4 Phase Measurement

To obtain the complex loading impedance of the plasma at a cavity
resonance, the phase difference between the incident and the reflected
voltage into the antenna must be measured. As shown in Section 2.6,
the ratio of the amplitudes of the incident and reflected voltages into
the antenna gives the magnitude of the reflection coefficient, and the
phase difference between the incident and the reflected voltage into the

antenna gives the phase of the reflection coefficient.

o = (Vgp/Vapne) €% = [o] 3 (4.4.1)

where ¢ = ¢ The complex input impedance can he obtained from

ref ~ ®inc’
the complex reflection coefficient by a complex transform. The resistance,
Rin’ and the reactance, Xin’ measured at the antenna matching network

(see Figure 2.4) are related to the complex reflection coefficient by
equations (2.6.6) and (2.6.7).

As shown in Figure 4.4, the signals from the directionz1 coupler
which measures Vref and Vinc are split with one branch going to the
crystal detectors, and the other going to a phase detector. The phase
detector is built to measure phase in a pulsed system. The phase detec-
tor is capable of following a 2w phase shift in 4 microseconds. As shown

in the block diagram of the detector (Figure 4.5), the input r.f. signals
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R.F. phase detector (5 - 50 MHz).
signal into a square wave.

Zero crossing comparators are used to shape the 1 MHz sinusoidal
The threshold detector has no output if the input 1 MHz signal is below

the voltage set by the threshold adjustment, thus disabling the phase detector. 200 KHz Tow pass filter

is a 5-pole Butterworth filter with 10-90 % risetime in 4 usec.
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are mixed down to 1 MHz with a local oscillator, so that the output
voltage of the detector is not frequency dependent. A sensitive zero
crossing comparator is used to ensure that the phase output is not
amplitude dependent. The input frequency range of the detector is be-
tween 5 and 50 MHz, which covers the frequency range of interest, 7 to
20 MHz. The output voltage of the detector is a linear function of the
phase, and the detector is capable of measuring phase shifts up to 2mw.
When the complex reflection coefficient is calculated from the measured
amplitude and phase of the incident and reflected voltages, the complex
plasma loading impedance can be obtained from the conformal transforms
in equations (2.6.6) and (2.6.7).

The quantity of interest in the experiment, as indicated in
Section 2.6, is the plasma loading impedance, ZL (see Fiqure 2.4). ZL
can be obtained from Zin by substituting the measured values of C] and
C2 of the impedance matching network into equations (2.5.1) and (2.5.2).
The plasma loading impedance, Z, can be derived from ZL by subtracting

out the antenna impedance, Zant:

Z=1 -1 (4.4.2)

The experimental results of these measurements are presented in Section

5.5
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V. EXPERIMENTAL RESULTS

5.1 Transmission Measurements

The toroidal eigenmodes were first observed in transmission. As
described in Section 4.1, the transmitted signals were detected by a
six-turn Toop probe located 180° around the toroidal axis from the
transmitter (Figure 4.1). The input frequency into the transmitting
antenna was held constant. The cavity modes were swept through by the
change in density as a function of time. The modes appear as a series
of peaks on the r.f. output of the receiving probe. The received r.f.
signals were passed through band-pass filter with 300 kHz bandwidth
and then fed into a crystal detector for amplitude detection. The
output of the crystal detector is just the amplitude modulation on
the r.f. signal, i.e. a series of peaks.

A few of the typical transmission measurements for various input
frequencies are shown in Figure 5.1. The top curve in Figure 5.1 is a
trace of the electron density evolution as a function of time for a
typical plasma discharge. The density evolution for different plasma
shots is not completely reproducible, so the purpose of this trace is
only to give the general features of a plasma discharge.

The density values at which the cavity resonances are swept through
are found to be a function of the applied frequency. At the lower ap-
plied frequencies, the transmission peaks c1uster near the high density
region, whereas they become more spread out and éppear in the low density
region at the higher applied frequencies. The reason for this behavior
can be understood by studying the dispersion relations of the magnétosonic

wave. From the dispersion curves in Figure 2.2, one can see that in
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order to excite a particular mode at a given frequency, a certain plasma
density is required. To excite the same mode at a lower frequency means
the plasma density must be higher. This is just the observed experimen-
tal result. When the input frequency is low, the resonance peaks gather
around the high density region, and as the input frequency increases, the
peaks move into the low density region.

This inverse relation between frequency and plasma density can be
simply summarized by the cut-off relation of the modes, i.e., k = 0.

The approximate cut-off relation is expressed in equation (2.1.5),

f Almo//ﬁé

2m0
where 2 is the radial mode number, m is the poloidal mode number, N = 0
is the axial mode number, and Ne is the electron density. The equation
shows that for higher density, the cut-off frequency is lower; by the
same token, the low frequency modes propagate only near the density maxi-
mum. One of the observations in the experiment is that no cavity mode
was observed at frequencies below 7 MHz.

To compare with the theory for a cold uniform cylindrical plasma-
filled cavity model, the cut-off curves for various poloidal modes are
superimposed on the experimental data in a density versus frequency plot
(Figure 5.2). The data points in the figure are obtained by the follow-
ing procedure. The transmission peaks and the plasma density are re-
corded as in Figure 5.1 for a series of plasma discharges, typically
between 4 and 6 shots, with the same input r.f. frequency. The time at

which a cavity resonance appears during the discharge is recorded. The
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values of the density at which the cavity resonances appear can be ob-
tained from the measured line average density values at these recorded
moments in time. Once both the frequency and the density for the modes
are known, a point can be plotted on the density-frequency graph (Figure
5.2). The input frequency has been normalized to the ion cyclotron at
the center of the tokamak, i.e., 6 MHz. Only the consistent peaks--that
is, peaks that appear in the same general density region for all the
shots, are used. To get the frequency dependence of the modes, the input
frequency is changed between series of fixed frequency shots.

The agreement between the experimental data and the theory as shown
in Figure 5.2 is fairly good, though not perfect. There are data points
below the general region of the cut-off curves. The reason for the small
number of discrepancies between theory and experiment is the
simplicity of the theory used. The toroidal effects, radial density pro-
file, poloidal magnetic field effects, and many others have not been
properly accounted for in the theory. There is also a small amount of
uncertainty in the experimental data as indicated in Figure 5.2. This
comes from the experimental errors in the electron density measurement
where the density uncertainty is about %% fringe at the output of the
microwave interferometer (see Section 3.2d).

Since the plasma-filled cavity can be modeled by the equivalent
R-L-C circuit which has a simple pole at resonance, there must be some
relation between the amplitude and phase of the.transmitted signal at
the cavity resonances. Passing through a resonance, the phase should

undergo rapid change whenever the amplitude shows a peak. This effect
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can be detected by measuring the phase difference between the received
wave and the input oscillator signal at the transmitter (see Fiqure 4.1).
The result of a typical phase measurement and amplitude signal versus
time is shown in Figure 5.3.

Several properties of the amplitude and phase detectors, and the
experimental conditions can aid in the understanding of some of the
features of the data shown in Figure 5.3. The amplitude signal is
inverted because the crystal detector used in the experiment is inverting.
As shown in Figure 4.5, the phase detector has a threshold detector
where if the input signal is below a preset d.c. value, the cutput of
the phase detector sits at the highest output level (corresponding to
the zero value shown in Figure 5.3). This is the reason that the phase
signal always returns to zero when the amplitude drops below a certain
level. The phase measurements were done with approximately 20 watts
r.f. power into the transmitting antenna, so the received amplitude
signals were rather Tow. As the signal level approaches the d.c. threshold
level of the phase detector, there is a transition region of 10 mV around
the threshold voltage where the phase detector output is an oscillating
signal. This is the result of the TTL transition region for the nand
gate (74LS00) when it switches between zero and one states. This can
explain some of the noise-like oscillation when the phase detactor is

turning on and off. Furthermore, the phase detector has a "dead" region
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of 20 degrees when the phase goes beyond 360 degrees and returns at
zero degree. Finally, there were cases of the data where the peaks
in the amplitude do not occur exactly at the same time as the steepest
rate of change of phase. There is no good explanation for such cases.
One proposed way to identify the various poloidal modes, which
are separated fairly far from each other, is to reduce the step size
of the change in input frequency between shots. This way a resonance
peak seen at a particular density for a given input frequency can be
identified with a peak at a slightly different density, when the
input frequency is changed by a small amount. In other words, to
decrease the size of the frequency step taken between plasma shots
so that the data points in Figure 5.2 would be more closely spaced
along the frequency axis. In priciple, as the frequency steps are
reduced to small values, the peaks that belong to the same mode can
be picked out. (In our experiment some correlations between peaks
can be made). By overlaying the theoretical dispersion curves on the
data one can guess that a particular set of data corresponds to a
certain mode. However, this method is not used here because the
various theories are not adequate for such a detailed comparicon.
For example, the dispersion curves depend on the assumed radizl density
profile used in the theory.
The theory used in this thesis is for a uniform plasma density.
However, if a vacuum region is introduced between the plasma znd the

cavity wall, the locations of the dispersion curves would shift. .If the
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vacuum is large enough, as was shown by Paoloni [18], the m = 1 mode has
no Tow frequency cut-off (see Section 2.2).

The unambiguous method for mode identification is to use probes to
measure the spatial dependence of the fields in the tokamak. This mea-
surement was not made in our experiment because ot lack of time, so there

is no definite mode identification.

5.2 Plasma Loading Impedance in the Absence of the Cavity Modes

In this section the experimental results of the "off resonance"
antenna impedance for different input frequencies are presented. The
"off resonance" antenna impedance, Zoff = Roff i s jxoff’ is defined in
Section 2.5 as the sum of the antenna impedance and the plasma loading
impedance during the absence of any cavity resonances. Roff and Xoff
are determined by substituting the capacitance values, C] and C2’ of
the impedance matching circuit used to match the generator impedance
"off resonantly" into equations (2.5.1) and (2.5.2). (The condition
for impedance matching in these equations is when Rin = generator
impedance = 500.) To obtain the "off resonance" loading impedance due
to the plasma alone, AZ = AR + jAX, the antenna impedance must be sub-

tracted from Zoff’

AR = R - R (6.2.1)

"
>

- X (5.2.2)

AX off ant

An interesting experimental finding is that the "off resonance" plasma
loading reactance, AX, is greater than zero, i.e. the antenna induc-

tance is increased by the plasma effect. A possible explanation for the
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increase in the antenna input inductance with the onset of the plasma is
given in Section 2.3. As indicated in equation (2.3.9a), if the reac-
tance contribution from the cavity modes with resonant frequencies higher
than the applied frequency is greater than the contribution for the other
modes, the basic antenna inductive reactance will show an increase from
the effects of the cavity modes. The values of AR and AX for

different input frequencies are given in Tables 5.1 and 5.2.

The experimental procedure for measuring the "off resonance"
impedance, Zoff’ was as follows. First the antenna was matchad to the
generator impedance in the absence of the plasma. The matching process
was to adjust the capacitors C] and C2 so that a minimum in the re-
flected voltage from directional coupler was observed (see Figure 4.3).
Once the plasma was formed around the antenna, the generator impedance
was no longer matched, and the reflected voltage from the directional
coupler increased. At this point C] and C2 were readjusted to minimize
the reflected voltage in the presence of the plasma. The values of C]
and C2 were recorded and then substituted into equations (2.5.1) and
(2.5.2) so that the "off resonance" impedance could be obtained.

The effects of "off resonance" plasma loading impedance for various
input frequencies are summarized in the 7th and 8th columns of Tables
5.1 and 5.2. The data in these tables were taken under similar condi-
tions but on different days, and so they serve as a compariscn for
each other. The first column indicates the input frequencies. Corre-
sponding to each frequency, the input impedance of the antennz was
measured with and without a plasma, as indicated in column 2. First the
antenna impedance was obtained in the vacuum chamber by measuring‘the

values of the tuning capacitors C] and C2 (see columns 3 and 4). The
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antenna resistance, Rant’ and inductance, Lant’ can be derived by sub-
stituting C] and 62 into equations (2.5.1) and (2.5.2). As shown in

the tables, when the plasma is present the capacitors must be retuned,
and the "off resonance" impedance Zoff = Roff % JXOff is computed from

the retuned values of C] and CZ' Zant is shown on the top line of

Freq. | Condition Cl(pf) C2(pf) Lg«}i) R(Q) | AR{Q) AXL(Q) R (Q)_

(Miz) cur
10 Vacuum | 531 L5.7 LL W

Plasma | 502 L7 L62 .36 .05 1.38 o5 = O
e Vacuum | 360 36 s Lk

Plasma | 3L7T 38 L6 L4185 | .085 1.13 2B e L
1k Vacuum | 270 28.7 .433 | .Ls56

Plasma | 255 30.7 453 | .57 | W11k 1.76 .8 - 1.5

16 Vacuum | 207 23.5 .13 .51k

Plasma | 190 25 L6 .668 | .15L 3. 9 -1.2
18 Vacuum |[165.6 | 20.5 L2 .6

Plasma |148.8 | 22 .L59 .82 2D L. L1 29 = 1.2

Table 5.1 Summary of the plasma loading impedance for 'off rescnant'
matching condition. R and L are the input resistance and inductance of

the antenna measured under various conditions. The top Tine of each double
rows is the data taken in vacuum and the second line corresponds to data
taken in the plasma. AR = Roff—Rant and AXL = XOﬁC-Xant are the 'off reson-
ant' plasma loading impedance. Rcur is tha range of the peak loading
resistance obtained by using equation 4.3.1. The antenna is 1.1 inches into

the tokamak chamber.
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Freq. | Condition Cl(pf) Cz(pf) L(we) | R(R) [AR(Q) | AX(Q) Rcur(Q)
(Miz)

10 Vacuum 525 4L, 5 Lhs 3

Plasma 490 45,2 Ak b L350 .05 1:8281 U = .8
12 | Vacuum 364 350 b .38

Plasma 352 375 453 | .L56 ] .076 .86 o8 = 1.2

1L | Vacuum 26k 27.8 B TRTD T B IO %)

Plasma ohL 28.2 L76 w5 .082 | 2.77 26— T
16 Vacuum 200 23.9 4Lz .563

Plasma 192 26 .Ls55 o s e v e P «00 = 3.8
18 | Vacuum 161 20 .L32 .60k

Plasma 150 24.9 L8 | 1. b 1.81 I = 1.2

Table 5.2 Summary of another data set taken under similar conditions
as the data presented in Table 5.1. This data set was taken on a diff-

erent day than those given in Table 5.1.
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columns 3 and 4 for each set of data with a given frequency, and Zoff is
on the bottom line. The contributions from the plasma alone to the "off

-R

resonance" impedance are shown in columns 7 and 8, where AR = Roff ant

and AX = X X

off =~ “ant’

Two points must be emphasized about the condition under which these
data were taken. First, as shown in Figure a.l of Appendix a, the anten-
na impedance is a function of its distance into the tokamak vacuum
chamber. This is because when the antenna is out of the vacuum chamber
it sits ina 6x4x1" stainless steel port. This port can influence the
antenna impedance by lowering its inductance and increasing its resis-
tive losses through eddy current losses in the port wall. Also, the
plasma loading depends on how far the antenna 1is into the chamber, since
it is a function of the coupling coefficient of the antenna. When the
antenna is completely out of the tokamak chamber and into the port, for
example, the plasma loading is zero. The data presented in Tables 5.1
and 5.2 were taken with the antenna approximately 1.1 inches into the

vacuum chamber.

5.3 Plasma Loading Resistance at the Cavity Resonances

The experimental results of the plasma loading resistanze, R, at
the various cavity modes are presented in this section. The plasma re-
sistance is obtained from the power-current measurements discussed in
Section 4.3. The equation used to compute the plasma loading resistance

is reiterated here for the convenience of the readers (equation (4.3.1)):

R = (Pinc‘ Pref

)/Ia - Rant
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where Pinc and Pref are the incident and reflected power, respectively,
Ia is the antenna current, and Rant is the basic antenna resistance.

The presentation of the experimental data for the plasma loading
resistance at the cavity resonances is divided into two parts. First,
one set of experimental data taken at a given input frequency is pre-
sented as an example of the measured data and the computed results of
the loading resistance. The general features of the data for other fre-
quencies are described. Second, the magnitudes of the plasma loading
resistance for the various cavity modes at different input frequencies
are summarized in Tables 5.1 and 5.2. For each input frequency there
are many cavity modes excited, each with a different loading resistance.
Therefore, only the range of peak loading resistance for various cavity

resonances at each input frequency is given in these tables. This

range of the "resonant" Toading resistance is denoted by Rcur’ where

the subscript ‘cur' is to identify the power-current method used to

determine the resistance, and to differentiate this result from the
range of "resonant" loading resistance Rres obtained from the measured

complex reflection coefficient. The computed values of RCu and Rre

r S

from experimental data are compared in Table 5.3.

Figure 5.4 shows a typical plasma discharge, where the input
r.f. frequency is 11 MHz and the antenna is "off resonantly" tuned with
the tuning capacitors Cy= 424 pf and C,= 44 pf (see Figure 2.4). The
"off resonance" tuning condition is indicated in the reflected voltage
data, the 4th trace, where the reflected voltage is a minimum between

the cavity resonances. Under the "off resonance" tuning condition, when
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a cavity resonance appears, the generator impedance is no longer matched,
and so the cavity resonances show up as increases in the reflected vol-
tage from the directional coupler and decreases in the antenna current.
These are the observed behaviors of the measured reflected voltage and
antenna current as shown in traces 3 and 4.

The relation between the reflected voltage and the antenna current,
i.e., an increase in the reflected voltage corresponds to a decrease
in antenna current, can be understood as follows. Since the incident
voltage is relatively constant throughout the plasma discharge, the
amplitude of the reflection coefficients, |p| = (Vref/vinc) should be
proportional to the amplitude of the reflected voltage. The antenna

current can be expressed in terms of the reflection ccefficient as:

I =V/Z
vV 1 -
Lo 7 bl 0) (5.3.1)

where equation (2.6.5)1s used to related Z and p, and Zo is the charac-
teristic impedance. For a mismatch condition, the reflected voltage

increases so the magnitude of the reflection coefficient will increase
accordingly. The term 1/(1 + p) of equation (5.3.1) can be approxi-

mated by (1-p) if the mismatch is small. Thus equation (5.3.1) can be written

in the following approximate form:

v

] = 50 (1 - 2p)

where Zo is taken to be 50 ohms. From this relation one can see that if
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there 1is an increase in the reflected voltage, there must be a corres-
ponding decrease in the antenna current. As a confirmation of this
relation, the antenna current in trace 3 of Figure 5.4 has a minimum
whenever the reflected voltage shows a maximum.

The general features of the time dependence of the peaks of the
resonant loading resistance correlate well with the time dependence
of the peaks in the transmitted signal. Whenever a peak in the trans-
mitted signal occurs, a corresponding peak in the loading resistance
appears at the same time. Moreover, the density dependence of the
resistive loading peaks is the same as the transmission peaks. When
the input frequency is lTow, most of the resistive peaks occur near the
density maximum, whereas at the higher frequencies, the peaks become
more spread out.

An observation in the experiment is that the modes with the largest
transmission amplitude are not necessarily the ones that show the largest
input Toading resistance. This is because the input loading resistance
measures the power delivered into the cavity, whereas the receiving probe
only detects one component of the field. Depending on the cavity mode
that is excited, strong input loading does not necessarily correspond to a
strong field component measured by the probe.

In Tables 5.1 and 5.2, the ranges of the peaks of the resonant

loading resistance, R_ ., for the different modes at various input fre-

cur

quencies are summarized. The resistance values are calculated using

equation 4.3.1 in the same fashion as the data shown in Figure 5.4. Only
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loading peaks that are substantially above the noise Tevel are kept.
In the same tables, the "off resonance" plasma loading resistances,

i.e., AR =R R

—_— for the same plasma shots are presented as a

off ~

comparison to the peak "resonant" plasma loading resistance, Rcur'

5.4 Reproducibility of the Plasma Loading Resistance Measurement

Even with the same input frequency, the magnitude of the resistive
loading at the various cavity modes has been observed to be different
for different plasma shots. For two consecutive plasma discharges, the
resistive loading may be strong at certain cavity modes on one shot,
yet appears weaker for the same modes on the next shot. One possible
explanation for this behavior in the plasma loading is that the radial
density profile of the plasma is not completely reproducible for dif-
ferent plasma discharges. As shown by Paoloni in a recent paper, the
coupling coefficient of the transmitting antenna depends on the radial
density profile [18]. For the low radial and poloidal modes, which
are believed to be the observed modes here, the radial dependence of
the r.f. magnetic field for a uniform density profile is quite different
than that of a parabolic density profile. The strength of the magnetic
field components at the outer radius of a cylindrical cavity is weaker
for a parabolic density profile than a uniform density profile. (The
uniform density profile used here has the same }ine—average density as
the parabolic profile.) Since the antenna is located at the outer edge
of the tokamak, the coupling coefficient of the antenna should be higher
for a uniform density profile than a parabolic profile. (For more de-

tails of the theory see the paper by PaoToni). The position of the plasma
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column in the tokamak in some sense can be thought of as a radial density
profile. The coupling coefficient will depend on whether during the

first two msec of the discharge the plasma column is near the outer wall
of the tokamak where the transmitting antenna is located, or it is

formed initially near the inner wall. Since there is no radial profile
measurement in our experiment, this is only a possible explanation of

the fluctuation in the magnitude of the resonance loading resistance. It
must be pointed out here that there were some judgmental factors in the
data taking. Only shots with strong cavity mode loading were kept and
those with weak loading were discarded. Therefore, the range of the cavity
mode loading presented in Tables 5.1 and 5.2 are examples of the strong

loading cases.

5.5 Complex Plasma Loading Impedance Measurement

As indicated in the introduction, the main emphasis of this thesis
is on the measurement of the complex plasma loading impedance of the
cavity modes. The real part of the impedance, as mentioned previously,
is important in the determination of the efficiency of wave generation
in the tokamak. The complex loading impedance is important in determin-
ing how to match the generator impedance to one of the cavity resonances.
Only by matching the generator impedance to a cavity resonance can the
maximum power be delivered to the cavity when the plasma loading 1is
highest.

The experimental data in this section are presented in the same way
as in Section 5.2. Experimental results for two input frequencies,

11 MHz and 16 MHz,are shown in Figures 5.5 and 5.6, and the general be-
havior of the complex input impedance for the various input frequencies

are discussed. Then the complex impedance data for the various input
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frequencies are summarized in Table 5.3.

The physical quantities actually measured in the complex plasma
loading impedance experiment are the incident voltage, the reflected
voltage, the phase difference between the incident and reflected waves,
the antenna current, the transmitted signal, and the plasma density. The
incident voltage, as mentioned earlier, is fairly constant during the
plasma discharge. The antenna current is measured so that the resistive
loading can be calculated using the power-current equation as a check for
the real part of the complex loading impedance. Figure 5.5 shows a set
of experimental data for an input frequency of 11 MHz. When the third
and fourth traces of Figure 5.5 are compared with the second and third
traces in Figure 2.7, one can see that there is general agreement between
theory and experiment as to how the reflected voltage and the phase be-
tween the incident and reflected waves pass through a cavity resonance.
Here it is assumed that the incident voltage is constant enough so that
the reflection coefficient follows the trends of the reflected voltage.
As expected, corresponding to every peak in the reflected voltage, there
is a steep change in the measured phase.

Figure 5.6 contains a typical set of circuit parameter results com-
puted from the measured data for an input frequency of 16 MHz. This set
of data was taken with the antenna "off resonantly" matched. The first
trace in the figure is the amplitude of the reflection coefficient, and
it is calculated from the incident and reflected voltage data using equa-
(4.4.1). The phase data in trace 2 are the direct output of the phase
detector. From the complex reflection coefficient, the complex input

impedance, Z. , can be calculated from equations (2.6.6) and (2.6.7).
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The results of this calculation are shown in traces 3 and 4. When
these data are compared with the calculated values shown in the fourth
and fifth traces in Figure 2.7, the general features of the data seem
to agree well with the computed results from the circuit model. For
the experimental data in Figure 5.6, the plasma density reaches a maxi-
mum at time = 1 msec. At this time the slope of the density evolution
reverses in sign, so as stated before, both the phase and the reactance
should reverse in direction. From the second trace of Figure 5.6 one
can see that the direction of the change in phase is reversed at around
time = 1 msec. Furthermore, the direction of change in the reactance
shown in the fourth trace of Figure 5.6 is very similar to the fifth
trace in Figure 2.7. The measured reactance goes negative before pass-
ing through a resonance during the density buildup and goes positive
before passing through a resonance during the density decay. This is
the same behavior as the computed results using a similar density evolu-
tion.

The next step in the calculation is to compute the plasma loading
impedance Z = R + jX by transforming Zin across the matching network
using equations (2.5.1) and (2.5.2) and subtracting the impedance of the

antenna, Z Before making this calculation, the capacitances of the

ant”’
elements in the matching network must be measured. For this set of data

C, = 190 pf and C2 = 34 pf. The results of the computation are shown in

1
traces 5 and 6 of Figure 5.6. The maximum resistive loading is about
1.8 ohms here 1in comparison with 1.2 ohms, the value of the maximum

plasma resistive loading obtained from the power-current method. ~“From



-103-

Appendix a, the antenna resistance at 16 MHz is about .56 ohms, there-
fore the plasma loading is between two and three times the antenna
resistance. This corresponds to a wave generation efficiency n between

70% to 80%.

The ranges of the complex plasma loading impedance of the various
input frequencies are summarized in Table 5.3 in a manner similar to that
of Tables 5.1 and 5.2. The format of Table 5.3 is the same as Tables 5.1
and 5.2, except the plasma contribution to the "off resonant” 1oading‘
impedance, AR and AX, is not shown. They can be obtained by taking the
difference of the values in the two lines under columns 5 and 6. The
input frequencies of the experiments are given in column 1. The condition
under which the data were taken is shown in column 2. The capacitances
of C] and C2 needed to match the generator impedance to the antenna and
the antenna plus "off resonant" plasma are shown in two lines , columns
3 and 4, respectively. Column 7 shows the range of the peaks of the load-
ing resistance Rcur for the particular data set. It is obtained from the
input power and the antenna current in the same fashion as the data pre-
sented in the 9th column of Tables 5.1 and 5.2 (see equation (4.3.1) for
this calculation). This range of loading resistance Rcur is presented
here as a comparison to the real part of the complex loading impedance
calculated from the complex reflection coefficient measured in the exper-
iment. The complex plasma loading impedance Z  is calculated from
equation (2.8.1), where the antenna impedance has been subtracted. The

real and imaginary parts of the impedance are given as



Freq. Condition Cl(pf) CE(Pf) L( UH) R(Q) Rcur(Q) Rres(g) Xres(m
(Miz)
10 Vacuum 532 4,5 b .293
Plasma 509 46.1 57 .3k +5 to 1. .6 to 1.1 | -.52 to .6
12 Vacuum 364 34.8 k2 5300
Plasma 352 37 153 ks A to &7 .75 to 1.1 -.6 to .8
14 Vacuum 262 28.4 RIS T2
Plasma 256 32 45 .61 .T to 1.3 |.9 to 1.46| -=.7 to 1.
16 Vacuum 199 23 . Lh6 +53
Plasma 189 27 L1459 a7 1. o 1.5 | 3.2 to 1.8] -8 %o 1.2
18 Vacuum 161 20.8 43 .65
Plasma 146 oL 61 .98 .82 to 1.7| .95 to 2, | -.9 to.8
Table 5.3 The ranges of the complex plasma loading impedance, R i and X - at the
various cavity modes are given in columns 8 and 9. The resistive ioadingra% the same
cavity modes measured with the power-current method is shown in colum T. Cl and 02

are the values of the tuning capacitors.

inductance with or without plasma.

condition and the antenna is at 1.1 inches into the tokamak chamber.

R and L are the antenna resistance and
The data were taken under 'off resonant' tuning

-v0lL-
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where R and X, are given in equations (2.5.1) and (2.5.2). The range
of the complex loading impedance maxima at the various cavity resonances
are given in columns 8 and 9. The 8th column shows the range of the

plasma loading resistance maxima, R for the various cavity modes.

res”’
These ranges seem to agree generally with the data, Rcur’ measured using
the antenna current. The discrepancies between the data obtained from

these two methods as shown in columns 7 and 8 can be attributed to errors
in the calibrations of the instruments used in the measurements. Column

9 shows the range of the reactance, X for the largest resonance peak

res’
measured in the particular plasma discharge. As shown in the sixth

trace in Figure 5.6, this reactance changes sign rapidly as a cavity
resonance is passed through.

As indicated previously, the cavity resonance effect can be seen
more readily when the complex cavity input impedance is plotted in the
complex impedance plane. When the real and imaginary parts of the imped-
ance are plotted against each other as they pass through a resonance,
the resultant curve is a circle, known as the Q circle. Figures 5.7,

5.8 and 5.9 are the experimental Q circles of the three major peaks which
occur at time = .5 msec, time = .9 msec, and time = 1.1 msec in Figure
5.6. The time between the points in the Q circle plots is 2 micro-
seconds. They are approximately circles, although there are some dis-
tortions. The distortions in the Q circles can be divided into two
classes, depending on how fast the density is changing as a function of
time. The first class is when the density is changing slowly enough with

time that the condition for meaningful impedance measurement, the .
inequality (2.4.5), is satisfied:
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Q circle for the first peak shown in Figure 5.6. The circle
is traced out counterclockwise, and the time between consecutive
points is 2 usec.
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Q circle for the second peak shown in Figure 5.6. The circle
is traced out counterclockwise, and the time between consecutive

points is 2 usec.
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Q circle for the third peak shown in Fioure 5.6. The circle
is traced out clockwise, and the time between consecutive
points is 2usec.
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T s ZQL/wO

where T is the time between the half-power points of the resonance
peaks, wg, is the resonance angular frequency, and Q is the loaded Q
of the cavity. (This inequality is examined in detail for various
cases in Section 5.6, where the Q of the cavity is calculated.) In
this case the cavity modes are swept through much slower than the re-
sponse time of the output operational amplifier of the crystal detectors,
4V per 2 usec, and the response time of the phase detector, 27 per 4usec.
The Q circles shown in Figures 5.7, 5.8, 5.9, are observed under this kind of
condition where the distortions from a circle are not large. The distorticns
of the Q circles shown in Figures 5.7 through 5.9 can be partly attributed
to errors in the calibration of the square law crystal detector, the
linear phase detector, and partly to density fluctuations. The effects
of the density fluctuations are most obviously observed in Figure 5.9
where small oscillating points are superimposed on the main circular
curve.

The second class of distortion in the Q circles is when the den-
sity changes so fast that the condition T ~n ZQ/wO is approached. In
this case the 1imits of the response times of the phase and crystal
detectors are also approached. The resultant Q circles are greatly
distorted, usually becoming a very flat ellipse. Data of these kind
are discarded, since the impedance information from them is not mean-
ingful.

As mentioned before, the direction in which the Q circles are

traced out as the cavity resonance is passed through is a function of
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the sign of the slope of the density evolution. The first two peaks shown
in Figures 5.7 and 5.8 are traced out counterclockwise as the cavity
resonance is passed through. When the time is around one millisecond in
Figure 5.6, the density reaches a maximum, so the slope of the density
evolution is reversed in sign after this point. Therefore, the resonance
shown in Figure 5.9 is traced out in the clockwise direction, opposite to
the previous two peaks. This behavior is what the circuit model has

demonstrated.

5.6 Cavity Q, Antenna Coupling Coefficient, and Antenna Efficiency

a. Cavity Q

By using the approximate density-frequency relation for the cavity
mode cutoffs, the Q of the plasma-filled cavity can be simply estimated.
The method used to estimate the cavity Q is described in Section 2.6, and

the Q is related to the density by the following equation:
Q =(2ng/8ng ) 343

As mentioned in Section 2.4, the Q obtained from the density measurements
is the loaded Q of the cavity, and the unloaded Q of the cavity can be

related to the Toaded Q by equation (2.6.11) at a cavity resonance by

Q, = Q (1 + o1P/2R R )

0 p

A11 the quantities in this equation have been measured experiment-
ally or can be calculated from experimental data. QL is derived from the
density measurements. Roff is the antenna resistance plus the resistive

contribution from the plasma when the cavity resonances are not present.
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It can be calculated from the values of the capacitors that are used in

the matching network to tune the antenna "off resonantly". Roff is de-

rived from the following equation:

) 2 2 2
Refr = RinXC]/[(XC]+ Xcz) * Ryp

where Rin is 50 ohms, and XC and XC are the capacitive reactance used

1 2
to tune the antenna "off resonantly". The quantity szZ/Rp is merely the
loading resistance measured at the resonance of one of the cavity modes.
From equation (2.2.2a) this factor can be related to the difference hetween

R, and R
a

L at the resonance frequency of one of the modes, i.e., at Qp= s

nt

202 _
W /Rp - (RL - Rant)max

The 3 dB drop-off points in the reflected voltages can be obtained from the
experimental data. As an example, the QL and Q0 for the three major reson-

ance peaks are given in the second and third column or Table 5.4, respec-

tively.
Cavity Loaded Unloaded Coupling Antenna
Resonance Cavity Q Cavity Q Coefficient Efficiency
2
Peaks [, ] [a,] [<°] [n]
1 240 470 5.6 x 107> 70 %
2 240 560 6.5 x 107° 77 %
3 170 400 8.3 x 107° 75 %

Table 5.4 The estimated loaded Q, unloaded Q, antenna coupling
coefficient, and the antenna efficiency for the three resonance
peaks shown in Figure 5.6. The antenna Qa used in the computation
is 90.
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It must be emphasized that this way to obtain the Q of the cavity
is only an estimate. Furthermore, there is an experimental error in the
measured density, as stated in Section 3.1d. That is, there is an uncer-
tainty factor of +1/4 fringe in the fringe counting method of the density
measurement with the microwave interferometer. The estimated Q for the
cavity resonances with different input frequencies does not differ
greatly. For the frequency range used in the experiment, between 10 and
16 MHz, the range of the loaded Q is between 120 and 250, and the range of
the unloaded Q is between 400 and 700.

The contribution to the measured cavity Q can be divided into two
parts: the damping of the wave by the plasma, and the energy losses due to
the finite conductivity of the tokamak wall which is made of stainless
steel. As noted in the introduction, there have been several theories on
the damping mechanism of the magnetosonic wave by the plasma [4,8,25].

The theories are quite involved, so it is left to the interested reader to
look up the references. It is important here to estimate the losses in
the tokamak wall to see whether the wall loss is a dominating factor. The
calculated cavity Q for a cold plasma-filled cylindrical cavity with
stainless steel wall is presented in Appendix c. The estimation is for
the m = 0 poloidal mode, the Tow radial and the axial modes. This is a
lower 1limit on the estimated cavity Q. The calculated cavity Q with wall
loss is about 1300, which is two to three times higher than the measured
cavity. Therefore, although the wall loss is not small, it is not the
dominating term in the measured cavity Q, and so a large part of the wave

energy should be absorbed by the plasma.
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Since the Q in the experiment has been obtained, it is appropri-
ate at this point to go back to the inequality (2.4.5) and see whether
the impedance measurements in our transient system are valid. Restating
{2.4.5);

T > 2Q/wO

where T is time between the half voltage points in the resonance peaks,
and W, is the resonance frequency. Every resonance datum taken in the
experiments has been substituted into this inequality to check for the
validity of the impedance measurement. Those data that do not satisfy
the inequality because the resonances are swept through too quickly by
the density are discarded. As an example, let us check the three peaks
in Figure 5.6. Since the experiment was performed with the input antenna
coupling strongly to the tokamak, the Q used in the calculation is the
loaded QL of the cavity.

For the first peak, T = 24 usec, QL = 240, and the angular frequency
Wy = 2m X 16 x 106rad/sec. Therefore, 2QL/wO = 5 psec, which is smaller
than T, and so the impedance measurement of this resonance is valid.

For the second peak, T = 30 usec, QL = 240, and the angqular fre-
quency is the same as above. Therefore, ZQL/wO = 5 usec, which is again
smaller than T.

For the third peak, T = 50 usec, QL = 170, and W, is the same as
above, therefore ZQL/w0 = 4 usec, which is smaller than T.

As one can see, all three of the peaks in this data set satisfy the
inequality, and so the impedance measurement is valid. When this test is
given to other data at various input frequencies, there are cases where

the density changes so fast that this inequality is no longer satisfied.
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These data can usually be picked out during the experiment and discarded
right away. In future experiments this constraint will not occur, because
a gas puffing system is presently being installed on the tokamak to keep
the density higher and more constant as a function of time (see Section 6.2

for details).

b. Antenna Coupling Coefficient
With the complex impedance and the Q measurements, the coupling coef-

ficient of the antenna can be calculated using equation (2.6.12)

<= (RU/R_ - 1)/0,0

where again this is for an "off-resonantly" tuned system. Since the Q of
the cavity is an estimate, the coupling coefficient should be called an
estimate as well. As mentioned in Appendix a, the coupling coefficient is
a function of the distance that the antenna protruded into the vacuum
chamber. For the different cavity modes at various input frequencies, the
coupling coefficient of the antenna when it is 1.1 inches into the tokamak

5and 1 x 1074 As an example, consider

chamber has a range between 3 x 10
again the data in Figure 5.6 which were taken with the antenna at 1.1
inches into the tokamak. The coupling coefficient, K2, for thz three peaks

shown in Figure 5.6 are given in the third column of Table 5.4.

c. Antenna Efficiency
Once both the cavity Q and the antenna coupling coefficient are es-
timated, the wave generation efficiency,  , of the present two-turn

copper loop antenna can be estimated from equation (2.7.2),

n = 20,0/ (1 + %0,0.)
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The antenna efficiency for the three resonance peaks in Figure 5.6 are
given in column 5 of Table 5.4. The efficiency for the present antenna
system has been observed as high as 80%. Possible ways to increase the

antenna efficiency are elaborated in Section 6.2.

5.7 Matching Impedances at the Cavity Resonances

For future high power experiments, it is essential to be able to
match the generator impedance at one of the cavity resonances where the
resistive loading of the cavity is high. This process is much more dif-
ficult than matching "off resonantly", because during the passage through
of a resonance both the real and imaginary parts of the impedance are
changing very fast. Very precise tuning is required to transform the re-
sistance to 50 ohms and tune out the reactance at one of the cavity
resonances. In our experiment the difficulty is compounded by the fast
density decay as a function of time. This makes tuning "on resonance"
harder because sometimes it is difficult to tell whether the tuning is
exactly on resonance or just slightly mistuned, because the resonance
peaks are so sharp. Before presenting the data in our experiment, some
improvements to the measurement system so that "on resonant" tuning will
be easier are discussed.

First, if the change in the density is slower, the tuning process
would be easier. Recently, a gas puffing system has been installed on our
tokamak to puff neutral gas, which can diffuse across the confinement
magnetic field, into the tokamak plasma. The neutral gas is ionized in
the plasma, thus increasing the plasma density. By puffing the gas at
the appropriate time in the plasma discharge, the fast decay in thé den-

sity after the initial buildup as shown in Figure 3.3 can be compensated,
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and the density evolution can be kept constant to about 10% for a sub-
stantial portion of the discharge. This way the cavity modes are swept
through much slower by the density evolution, and so the resonant peaks
appear broader. Second, the better procedure for "on resonant" tuning, as
mentioned in Section 2.5, is first to match the impedance of the generator
at the "off resonant" condition, which is an easier process than "on
resonance" tuning. If an on-line computer system is available, the plasma
loading impedance ZL at a cavity resonance can be calculated from the mea-
sured complex reflection coefficient, p = Vref/vinc ei¢, where ¢ is the
phase difference between the incident and the reflected waves. By using
equations (2.5.1) and (2.5.2), the input impedance at the antenna, ZL’ can
be calculated from the input impedance at the impedance matching circuit,
Zin’ and the values of the capacitors, C] and C2, used to "off resonantly"
tune the antenna. Once the values of ZL at the various cavity resonances
are known, the capacitances C] and C2 can be recalculated for matching to
one of the cavity modes. Recently, a minicomputer was acquired for on-line
operation with our tokamak. With the aid of the computer, "on resonant”
matching will be easier for future experiments.

The actual "on resonant" tuning reported in this thesis was done by
minimizing the reflected voltage from the directional coupler at one of
the cavity modes through trial and error. The experimental data of the
reflected voltage and r.f. current for the "on resonant" matching experi-
ment appear just opposite to the data from the "off resonant" tuning ex-
periment. Under the "off resonant" matching condition, the reflected
voltage is minimized and the antenna current is maximized between the

cavity modes; whereas for the "on resonant" matching condition, the
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reflected voltage is minimized and the antenna current is maximized at
one of the cavity modes. For the "on resonant" matching condition, the
reflected voltage is high and the antenna current is low between the
cavity modes, because the antenna is mismatched to the generator without
the cavity modes. Since the matching conditions for the various cavity
modes are different, only one mode can be exactly matched for a given
and C,.

1 2
Two of the "on resonantly" tuned cases are given in Figures 5.10

setting of C

and 5.11. As indicated before, only one mode is properly matched for
each case. For the data in Figure 5.10, the tuning capacitances needed

to tune "on resonantly" are C] = 210 pf and C, = 38 pf, and for the

2

traces in Figure 5.11, C] = 336 pf and C, = 49.5 pf.

2
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VI. CONCLUSIONS

6.1 Summary

This thesis has presented the results of some low power experiments
in the propagation of the fast magnetosonic cavity modes in a research
tokamak. A great deal of attention has been given to the study of the
complex input impedance of the antenna, the antenna design, and the de-
sign of the impedance matching network. These measurements are of great
importance to future high power experiments where efficient ccupling of
power to the plasma is essential. Through the high power heating experi-
ments the feasibility of using magnetosonic waves as a method to heat the
plasma to fusion ignition can be evaluated.

The toroidal cavity modes could be readily observed in transmission
measurements, where they appeared as a series of maxima in the transmis-
sion amplitude. The measured eigenmode dispersion relation seemed to
agree qualitatively with the results from the simple theory for a cold
cylindrical uniform plasma cavity. Although mode numbers were not deter-
mined, the manner in which the phase between the transmitting and the
receiving signal changed indicated that when passing through & cavity
resonance the received amplitude peaks were due to cavity rescnances.

After carefully designing a lTow-loss transmitting antenra and a
low-loss matching network, the cavity resonances were seen in the input
impedance of the cavity. When the antenna was "off resonantly” matched,
the cavity modes appeared as maxima in the reflected voltage detected by
the input directional coupler, and as minima in the antenna current. By

dividing the input power by the antenna current squared, the loading
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resistance of the plasma was calculated. The loading resistance at the
various resonances was observed to be as high as three to four times the
basic antenna resistance.

The phase difference between the incident and the reflected input
voltages has been investigated. The phase information, along with the
amplitude of the incident and reflected waves, gives the complex reflec-
tion coefficient. The complex input impedance was derived from the complex
reflection coefficient. The real part of the complex impedance determined
this way agrees well with the results from the loading resistance from
power-current measurements. The complex impedance followed the predicted
characteristics of a circuit model often used in microwave cavity theory.
The model, along with a set of reasonable assumptions, gave the general
features of the measured impedance function. The measurement of the com-
plex plasma loading impedance is crucial to the understanding of how to
match the generator impedance to one of the cavity modes.

In order to deliver the maximum amount of power at resonance, it is
necessary to match the antenna impedance plus the plasma loading imped-
ance to the generator impedance at one of the resonance peaks. This way
the maximum amount of power can be fed into the tokamak when the plasma
loading is high. Although this was a difficult experimental task, due to
the fast changing nature of the impedance near resonance because of rapid
decay of the plasma density, we were able to match impedances at a few of
the resonances. In future experiments the "on résonant" matching of the
generator could be aided by improvements recently acquired. First, an
on-line computer has been acquired so that once the complex plasma loading

impedance of the cavity modes is measured under the "off resonant"” matched
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condition, the required values of the circuit elements in the matching
network can be readily computed. By resetting the matching circuit ele-
ments to the new values, the generator impedance can be matched to the
antenna impedance at one of the cavity modes. Second, the density of
the plasma can be held more constant by gas puffing, so that resonances

would be swept through much more slowly.

From the approximate cut-off relation of the cavity modes in cold
plasma theory, the loaded QL of the cavity could be estimated. The un-
loaded Qo of the cavity could be derived from the QL by a circuit trans-
formation. The measured unloaded Q0 of the various cavity modes ranges
from 400 to 700. Finally, the antenna coupling coefficient K2 was ob-
tained from the plasma loading impedance and the estimated cavity Q. The
range coupling coefficients for the various cavity modes are between

5 and 1 x 10'4

3x 107 for the 2-turn antenna.

The general conclusions for these experiments are that the possibil-
ity for efficient power coupling into the plasma-filled cavity looks very
encouraging because of the reasonable plasma loading resistance found at
the cavity resonances. The matching of the generator impedance to the
antenna impedance at resonance does not seem to be a serious problem. The
loading resistance at the cavity modes has been observed to be as high as
three to four times the antenna resistance, and the generator impedance
has been matched to a few of the cavity modes, if only briefly due to
the changing density. This means that with the present antenna design,
as much as 80% of the power can be delivered into the tokamak via the

cavity resonances, and only 20% of the input power will be lost in the

antenna.
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6.2 Future High Power Heating Experiments

From the results of the low power experiments, one can see that a
few improvements of the experimental setup must be made before an effi-
cient high power heating experiment can be performed.

First, in order to improve the efficiency of the wave generation in
the tokamak, the antenna design can be improved in the following ways.

Looking back at the equation of the antenna efficiency, n
e ol 2
n =K Qan/U +K Qan)

Since the cavity Qp is not a controllable quantity, to increase n the
product KZQa must be maximized. The coupling coefficient, « , can be in-
creased by increasing the length of the antenna. The ultimate size is
limited by the size of the tokamak chamber and the locations of the ports.

The antenna Q, Qa = wL can be increased in two ways, i.e., de-

ant/Rant
crease the antenna resistance or increase the antenna inductance. To
decrease the antenna resistance, a bigger conductor for the antenna should
be used. The Timit on the size of the conductor is the size of the ports
on the tokamak. The inductance of the antenna can be increased by in-
creasing the number of turns on the loop antenna. Since the inductance
increases approximately as the number of turns squared and the antenna
resistance increases linearly as the number of turns, the antenna Q
should increase 11near1y'with the number of turns.

For the heating experiment it is essential to be able to couple
to one of the cavity modes for a substantial amount of time. The present

plasma condition in the Caltech tokamak makes the heating experiment dif-

ficult because of the fast density decay causing the cavity modes to be
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swept through very quickly. To improve the situation, the plasma density
must be kept as constant as possible. This can be done by gas puffing,
where during the discharge a small amount of neutral gas is introduced
into the tokamak. The gas is ionized, thus increasing the plasma density.
By programming how the gas is puffed into the system, the plasma density
can be tailored to specification.

Moreover, from the approximate cut-off relation of the magneto-

sonic wave, f v 1/¢ﬁ;} one can see that the input frequency can be

2mn
swept to compensate for the change in the density. There are several
ways to track the modes by frequency modulation. One way is to use a
phase locked loop, i.e., by using the phase information from the trans-
mission measurement as the control signal for a voltage controlled
oscillator. As the density moves away from the required value for a
cavity resonance, the phase of the transmitted signal would shift. This
shift in phase can be used to change the input frequency so as to return
to the resonance condition. Another method is to use positive feedback,
i.e., to use the transmitted signal picked up by a receiving probe as
the input for a broad-band amplifier driving the antenna, thus making
the cavity resonance the frequency determining element of the oscilla-
tion system. If the gain of the amplifier is higher than the loss
through the cavity, positive oscillation is excited. This oscillation
will adjust its own frequency in order to stay on the cavity resonance.
At first sight the high Q nature of the ihput antenna might appear
as a limitation for mode tracking because of the narrow bandwidth of the
antenna with its tuning network. However, at the cavity resonancés the

plasma loading resistance increases substantially, and so the loading
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resistance on the antenna will decrease the input Q. In the Tow power
experiments, plasma resistive loading was observed as high as four times
the antenna resistance. Thus for an antenna with Q = 100, the loaded (
at the cavity resonance is only 20. To compensate a change in the plasma
density of 10%, a 5% change in the input frequency is required, or an

antenna Q (Q ~ 2ne/Ane) of 20 is needed at the cavity resonance.
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Appendix a
TRANSMITTING ANTENNA AND MATCHING NETWORK CCONSTRUCTION

The transmitting antenna is a two turn loop made of 1/8 inch
copper tubing. The copper tubing is enclosed in a 1/32 inch thick
layer of pyrex insulator. The functions of the glass are to protect
the copper from plasma damage and to insulate the antenna from the
plasma electrically. The approximate loop area of the antenna
is 3.5 inches by 1 inch. Because of the glass coating, the antenna
never intrudes more than 1.25 inches into the tokamak vacuum chamber.
(Figure a.l)

The glass coating surrounding the copper is joined to a 1/2-inch
0D Cajon (G304-8-GM-3) stainless steel-to-glass transition tube. The
transition tube provides the mechanical feed-through for the
antenna to go from vacuum to the outside. The glass portion is needed
to give the antenna electrical insulation from the stainless steel
wall of the tokamak. The transition tube goes through a vacuum o-ring
and attaches to a 5/8" OD copper tubing. Finally, an Amphonel twin axial

connector is screwed on the copper tubing to make the connection to the

matching network.

A copper inner 1lining of 0.25 inch thick is pressed inside the 3
inches of Cajon stainless tubing to minimize the eddy current losses
due to image currents produced inside the feed-through. The length
of the entire antenna is kept to a minimum so that the antenna resis-
tance can be reduced below the plasma loading resistance. The entire an-

tenna measures 12 inches. The extra length is due toa mechanical carriage
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made for the antenna to move it smoothly in and out of the plasma.
The ultimate limitation on the antenna size and the feed-through
Tength is determined by the tokamak port size which is 4 x 6 x 1 inch.

The antenna resistance and inductance are a function of the dis-
tance that the antenna protrudes into the vacuum chamber of the tokamak.
The reason for this dependence on the distance into the vacuum chamber
is because of the 6 x 4 x 1 inch stainless steel port where the antenna
sits when it is completely outside the tokamak vacuum chamber. The
effect of the stainless steel port is to lower the antenna inductance
and increase the antenna resistance through eddy current losses in the
port wall. Therefore, as the antenna moves out of the port and into
the vacuum chamber, the antenna inductance should show an increase
with distance, and the antenna resistance should show a decrease of
the distance. Data for the antenna impedance as function of the dis-
tance into the tokamak chamber are shown in Figure a.2. In Figure

a.2, r = 0 corresponds to the case where the antenna sits just out-
side the tokamak chamber and completely inside the port; thus, r is
the distance that the front surface of the antenna is inside the
tokamak.

The antenna inductance measured in the experiment is approxi-
mately independent of the input frequency, and the antenna resistance
increases with an increase in the input frequency. The frequency
dependence of the antenna resistance is shown in Figure a.3. The

data were taken with the antenna at 1.5 inches into the tokamak chamber
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radial position into the vacuum chamber. r = 0 is the
position that the antenna is just outside the chamber.
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thus minimizing the effects of the stainless steel port. Superimposed
on the exﬁerimenta1 data is an'Rant mf1/2 dependence fit, which is the
expected frequency dependence from skin effect calculations.

The matching network is a two capacitor arrangement shown in Figure
2.4. Because of the Tow resistance and accurate tuning capability
required, fifteen-turn Jennings vacuum variable capacitors are used.
For tuning the antenna in the frequency range between 6 and 20 MHz,
the capacitor in parallel with the antenna, C], ranges between 30 to
2000 picofarads, and the capacitor in series with the generator
impedance ranges between 15 to 300 picofarads. The values of C] and

C2 for various tuning conditions are shown in Tables 5.1, 5.2, and 5.3.
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Appendix b
COLD PLASMA THEORY OF THE MAGNETOSONIC CAVITY MODES
(based on unpublished memorandum by R. W. Gould, 1960)

Consider a uniform cold collisionless plasma, axially magnetized
in a cylindrical geometry (Figure b.1). The axial magretic field
makes the plasma anistropic; thus, the dielectric property of the
plasma must be expressed as a tensor quantity.

Define a general displacement, D, with ejwt time dependence for
the plasma [16].

jwd = juwE + Z;Qn = juwe'E (b.1)

\ : th : .
= [
where gﬂ %qnznlﬂ is the current density of the n~ species of particles,
Zn is the jonic charge, q, is the sign of the charge, and g is the
dielectric tensor. Subtituting into equation b.1 the momentum equation

where yn has ert time dependence,

o

Yy ,
My €~ anne(E Y, X Ee) (b.2)

into the current desnity Qn’ the dielectric tensor becomes the following

€, jex 0
£ = |-le, = 0 (b.3)
0 0

where
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Figure b.1

Plasma filled cylindrical cavity with conducting wall. Periodic boundary
condition is imposed in the z direction to simulate the closing of the
torus. R = the tokamak major radius, and a = the tokamak minor radius.
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In the tensor, two frequencies, ®on and Wep have been defined as

follows

=
1

- Igolzne/mn

2

1]

w ez/somn)

Pn (nnzn

where Wep and wpn are the cyclotron and plasma frequencies respectively.
With the dielectric tensor, Maxwell's equations are cast in the

following form

(b.4)

<

x
|=

1l
Q)’QJ
e
i
ke

VxE= g (uH) (b.5)

|
vl
=

jlwt - me - kz)

When e dependence of the fields is assumed in the

cylindrical geometry, the following set of equations are obtained:
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m &
kEG - F-EZ = Wy, Hr (b.6)
2 ok,
JkEr * '5?— = quo He (b.7)
15 Jm _ s
% (Y‘Ee) + 5 B, = -duyg H, (b.8)
m - .
k HB - H, == w(e_LEr %3 exEQ) (b.9)
. oH, i B
Jk'Hr + Fraialie JUJ('IElEr - EXEZ) (b.10)
19 gy
T (r He) % Hr = \]we“EZ (b.11)

After some manipulation, the above equations can be reduced to two
second order differential equations involving only the longitudinal
components of the fields, HZ and Ez' Following the notations used

by R. W. Gould [17].

2 Jou
139 3 m 0 _
(F3rr 39 - D4 * e ae tr 7 O (b.12)
L2 (ply - EEQ + ffEQ_____¢ =0 (b.13)
r ar ar r2 ¢2 jd + 0,C 2 :

where EZ = ¢] + ¢2, and HZ = a]¢1 o a2¢2. Here oy and a, are constants.

2 2 2 2
Also d = - wu y1/9s € = Ky,/9, 9 = 747 = v, 5 and yy= k™ - wney,
ey = wzuoex. If a radial component of the wave vector, T, is defined as
T2 = muO/(d—jac), then equations (b.12) and (b.13) are just the Bessel's

equation, and the solution of ¢n’ where n can be 1 or 2, is as follows
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jlkz + mo - wt)

¢ = % Jm(an) e

where $y is a constant. The dispersion relation can be expressed as
follows
2 -

7 2 2 2
[Y'I - Y2 St Y]T ] - 2 [Y'I = 'Y2 &5 Y]T
@ HE T

2 By, + 1= 0

(b.14)
As indicated in this equation, for every value of T2 there exist four
possible solutions of k.
Since only frequencies near the ion cyclotron frequency are of
interest the dispersion relation can be simplified by the following

approximations. For w 0(wci)’ B, =4 kG(fci = 6 MHz), density =

12 _ -3

5x 10~ cm™, Z =1 for hydrogen, then

o™ 1.5 x 101] rad/sec

“p

i 3 x ]09 rad/sec

“p

10

W ¥ 7 x 10 rad/sec

7

Wi ™ 4 x 10 rad/sec

where Wpe and W i are the electron and ion plasma frequencies, w__ and

ce
wey are the electron and ion cyclotron frequencies. Therefore, Wea >> Weqs
wpe >> W Let Qi = w/wci‘ The components of the dielectric tensor

can be simplified as follows
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Lo (b.16)

For € . very large compared to the other terms in the dispersicn relation

(equation b.14), one can make the following approximation

€ == o0

By substituting this approximation into equation b.14, the simplified
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dispersion relation is as follows:

2 2 2
Y1 - Yoty =0 (b.17)
Substituting the values of Y1 and Yo the solution of k2 in terms of T2
is
Z o 2 7" v (P12t (B e ) e
Swe Uy - W HoEy :
2 _ 2 T A Y
k™ = w E by * Ti-j//(T /2)"+ {w uoex) (b.19)

A consequence of eH being Targe compared to the various other
quantities in the differential equation, is that EZ is small (see equa-
tion (b.11)). In our approximation we will take EZ = 0.

As mentioned before, the magnetosonic wave is right circularly
polarized; thus, it has no resonance at the ion cyclotron frequency.
Since there are two branches of the dispersion relation (b.17), one can
check the polarization of the waves propagating along the longitudinal
d.c. magnetic field by letting T - 0. It is easier to find the polari-
zation of the wave in rectangular coordinates. As T -+ 0, the cylindri-
cal solution should reduce to the same solution.

The polarization of an electromagnetic wave can be expressed

as follows:
JE
X

E
b

where +1 corresponds to a right circularly polarized wave, and -1 cor-

responds to a left circularly polarized wave. The polarization of an

oblique wave propagating in a cold magnetized plasma is
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5 (b.20)

where the d.c. magnetic field is in the z direction, n = kc/w is the
index of refraction, S = ;L/go, D = —ex/eo. For propacation along the

d.c. magnetic field, there are two solutions:

n? = R (b.21)

— (b.22)

When these solutions are substituted into equation (b.20) and the defi-
nition of the dielectric tensor (b.3) is used, the following polariza-

tions are found for the two branches.

JEy Rs 35 s
g o ¢ ’ B -1
¥ b j
n2 = R is a right circularly polarized wave and n2 = L is a left circu-

larly polarized wave.

For frequencies near the ion cyclotron frequency, the following
simplification to the dispersion relation can be made. For w ~ Wes the
frequency is small compared to the electron cyclotron frequency and to

the electron plasma frequency. Therefore, R can be approximated as

follows:
2
C 1
"2 ey
A i

where VA = Bo//“onimi is the Alfven velocity, and BO is the d.c. mag-

netic field. Thus for the right circularly polarized wave

L w 1
k- = V—_ Y (b.23)
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and so there is no resonance at the ion cyclotron frequency, i.e.,

Qi = 1. For the left circularly polarized wave
2
. € 1
A
and (b.24)
2o 1

so for this wave there is a resonance at the ion cyclotron frequency.

As T > 0 in equations (b.18) and (b.19), we have

2 _ 2 o’

km = w UO[E_L+EX] = -c—z‘- L (b.18a)
2 _ 2 W’
km = w ]Jo[EJ- = EX] = *;?- R (b. 19a)

And so equation (b.19) is the magnetosonic branch that is of interest.
Since the tokamak has a conducting wall, consider the solution of
the magnetosonic wave in a cylindrical cavity. To simulate the closing
of the tokamak on itself, periodic boundary condition in the axial
direction is imposed (i.e., k = N/R where R = major radius of the

tokamak, see Fig. b.1). At r

a, a perfectly conducting wall is as-
sumed; thus the tangential electric field Et and the normal magnetic
field H must vanish. Since the approximation of ¢ > e implies that

Ez = 0, all the remaining fields can be written in terms of HZ.

: oH Y
ik gz, 2m
Hr T2 L ar % Yy r Hz:| (b.25)
Y, oH
Hg = —k—z[—an ¥ b 2] (b.26)

B G2 ¥y ar



WU Y, oH
_ o rm 2 Z
Er T T2 [F-Hz " Y Br] (b.27)
1
Jwu_ 9H Y
_ 0 Z 2m
Bo=—2 L "y v 1y 58}
T 1
Note that
=
Er ® T My He | (b.29)
e |
Eg = = Mo Hr (b.30)

The solution of (b.12) is the integer Bessel's function. Thus, HZ is

_ j(wt-mé-kz)
HZ HoJm(TP)e (b.31)
The boundary condition is Eg = H_ =0 at r = a, or from (b.25) we have
. 12
Ta Jm(Ta) o ;;—m Jm(Ta) = 0 (b.32)

[For more details on the fast magnetosonic cavity modes see references

31 to 35].
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Appendix c
RESISTIVITY LOADING OF THE R.F. WAVE BY TOKAMAK WALL

The r.f. energy generated in the tokamak by the transmitting
antenna can be assumed to be either dissipated in the plasma, or lost
in the tokamak wall which has a finite conductivity. It is important
to estimate the resistive loading of the wave due to the finite conduc-
tivity of the tokamak wall, and to compare the calculated value with the
measured resistivity loading in the Tow power experiment. If the esti-
mated Toss in the tokamak wall can account for most of the resistive
loading effects measured in the Tow power experiments, then the validity
of the high power experiment becomes questionable, because the r.f. wave
will tend to heat the tokamak wall more than the plasma.

The most convenient method to study the effect of the tokamak wall
loading is to compare the estimated Q of the cavity, due to wall losses
alone, with the measured Q of the cavity. If the estimated Q due to the
wall, denoted by Qw’ is comparable to the measured Q, then the wall load-
ing is the dominating dissipation factor in the tokamak.

One approach to estimate Qw is to calculate the damping decrement,
v, of the cavity modes due to the finite resistivity of the cavity wall.
The damping decrement is defined as the attenuation per unit time of the
electromagnetic wave in the cavity. If the time dependence of the jth

Jw.t

5 . 1
eigenmode is assumed to be e , where W= Wy

y * jwz, then the damping

decrement Y is just Wy - The cavity Qw can be related to the damping

decrement as

Q, = wpi/2Y; {c.1)
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vhere Wy is the 1th eigenmode frequency of the cavity. The damping
decrement due to the cavity wall can be calculated for the various modes
by using a finite conducting wall boundary condition at the cavity wall.

The new boundary condition is

. e
E=n x H(1+j) [—-

where o is the conductivity of the wall and 8 is the outer normal to the
wall [36]. If the tokamak is again approximated by a cylinder with

periodic boundary in the axial direction, then the boundary can be writ-

ten in terms of E6 and Hz’

EO/HZ = (1 +j),/wu0/20 (&.2)

The real part of the term on the right is the wall resistance, and the
imaginary part is the additional reactance from the wall. From Appendix

b, the solution of HZ for a plasma-filled cylindrical cavity is as follows:

_ j(wt-me-kz)
H = HOJm(Tr) e

4 {c.3)
Ee is related to HZ in the following manner (b.28)
E, = (jw /TZ)[aH (Tr)/ar + Ig-mH (Tr)] (c.8)
0 Mo 4 Yy r oz :

where T is the radial wave number, k is the axial wave number, and m is
the azimuthal mode number. For the perfectly conducting wall E6 =0 at

r = a. Now the boundary condition at r = a is

Jou  HZ oy
© [£+ 2 1y (1+ ) vou /20 - (c.5)
T HZ Y1 ' 0
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where Ta is replaced by g, and Hé = BHZ/Bg. Rearranging the abhove

equation, obtain a dimensionless equation,

[¥+Em=mq)
Z

Y1 ¢ a ; ZquO

(c.6)

a
Thus, the wall resistance contributes a small imaginary term to ¢ and

For a highly conducting wall, the term on the right side, l'/?Eiﬁ_ w1,
0

the wall reactance adds a small real term to z. If ¢ is written as

z = co+ Jj6, where § << [ then the wall resistance adds a damping term

to the radial wave number T, and the wall reactance will shift the reson-

ance frequency w; by a small amount. To find the damping decrement,

solve the complex T = g/a and substitute into the dispersion relation

(b.11):

2 2
K2 = By wey _ i _ V/(T2 2 By o
2 2 2 2 2 .
VA(] - Q) VA(] - Q3)

For the purpose of this section where only an estimated damping decrement
is needed, the approximate dispersion relation can be used. For the
Towest few axial mode numbers N, where k = N/R and R is the major radius

of the torus, the dispersion relation can be approximated in the following

way:
w; = wy *dvg = Va T + k (c.7)

where VA is the Alfven velocity. The simplest mode to estimate is the
k = 0, m= 0, and the lowest T mode. From equaﬁion (b.32), one can see

that the lowest radial mode for m = 0 corresponds to the first zero of

the first integer order Bessel's function, J]. Equation (c.7) can be

reduced to the following:
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wy; tvs = VT = VA(TO + j&/a) (c.8)

where T0 = co/a. The following parameters for the Caltech tokamak are

substituted into equations (c.6) and (c.8):

o = conductivity of stainless steel = 1 x 106 mho m—]
a = minor radius = .15 m

R = major radius = .45 m

f = input frequency = 12 MHz

Co = first zero of J] = 3.83
The following value of QW is obtained

Qw = 1300
which is two to three times the various measured cavity Q in the exp-
eriment.

For the higher radial and axial modes, both TO and k will be larger,
which means that QW should be higher. Therefore, this estimated QW for
m= 0, k =0, and Towest radial mode is a lower 1imit for the higher
modes. Although the wall loading is not negligible, it does not

account for all the measured loading in the tokamak; thus, r.f. energy

should be dissipated in the plasma.
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