Linear and Nonlinear Acoustics
With Nonuniform Entropy
in Combustion Chambers

Thesis by
Joseph William Humphrey III

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California
1987
(Submitted September 25, 1986)



ii

©1987
Joseph W. Humphrey
All Rights Reserved



iii

Acknowledgements

I would like to take this opportunity to express my gratitude to all of
the people who have helped me to make this work possible. I cannot mention
everyone individually, but several deserve special mention.

The Office of Naval Research has supported this work through my Gradu-
ate Research Fellowship and ONR contract N00014-84-K-0434. China Lake Naval
Weapons Center supported the experimental efforts contained in Chapter 2. My
thanks to Dr. W.H. Clark and Frank_ Markarian for their guidance and assistance
at the Naval Weapons Center.

My advisor, Professor Culick, was instrumental in providing guidance, fo-
cus, encouragement, and enlightening perspectives on problems, which, at the
time, seemed almost impossible. In addition, my first advisor, Professor Mar-
ble, guided the initial phase of my research as well as providing many insightful
technical conversations. Several other professors who directly influenced my work
were Professors Zukoski, Cohen, and Knowles.

I would like to thank a very good friend who has been a source of food for
thought and encouragement for the last three years, Michael Chobotov. Thanks
also to Robert Whirley, who assisted generously in computer applications. Vigor
Yang helped with many conversations and guidance in the areas of modeling and
acoustics.

And last, I am very grateful to my family who have consistently encouraged
my educational endeavors. Thanks especially to my wife who had to endure the

trials and tribulations of being married to a graduate student.



iv

Abstract

A one-dimensional analytical model is presented for calculating the longi-
tudinal acoustic modes of idealized “dump-type” ramjet engines. The geometry
considered is the coaxial flow type with the inlet flow opening to the combustor at
a simple dump plane. Since the frequencies are very low, the dominant modes are
the one-dimensional longitudinal modes and allow the predictions to be extended
to more complicated geometries (such as side dump combustors) with good suc-
cess. A plane flame has been studied and incorporated into the combustor model
where the flame is allowed to move or oscillate in the combustor. This provides
three mechanisms of interaction at the flame sheet: change in mean temperature
in the combustor, energy conversion at the sheet due to upstream fluctuations,
and fluctuating heat release. A supersonic inlet upstream contains a shock wave
in its diffuser section while the downstream exit is terminated by a choked nozzle.
The linear coupling of the acoustic and entropy waves at the inlet shock, flame
sheet, and exit nozzle along with acoustic admittances at the inlet and exit are
combined to determine the stability of the system as well as the acoustic modes.
Since the acoustic and entropy waves travel at different velocities, the geometry
is a critical factor in determining stability. Typical values of the admittances will
produce damped solutions when the entropy is neglected, but, as the ratio of the
entropy to acoustic fluctuations is increased, the coupling can either feed acoustic
energy into or out of different modes independently. This transfer of energy has a
destabilizing or stabilizing effect on the acoustic modes of the system depending
on the relative phases between the acoustic and entropy waves.

In the linear case, the entropy and acoustics are decoupled in the flow

field. All linear coupling occurs at the boundary conditions. For cases where the



entropy fluctuations are of the same order of magnitude as the pressure oscillations
and the coupling is of comparable order, the linear stability of the acoustic field
is strongly dependent upon the entropy fluctuations. The linear acoustics are
predominantly governed by the boundary conditions; thus it is imperative that the
entire system of inlet, combustor, and exit be considered together to determine
the characteristic eigenvalues (resonant frequencies) and eigenfunctions (mode
shapes). In addition, there are two modes of acoustic pressure oscillations: the
classical acoustic mode and the entropy-induced mode of pressure oscillation. The
nonlinear case treats the quadratic nonlinear fluid mechanic interactions in the
coupling of two acoustic modes. The result is that the nonlinear acoustic-entropy
interactions are much smaller than the acoustic-acoustic interactions for this case.
Hence, the nonlinear acoustic field is influenced by the nonuniform entropy only
by its dependence upon the linear solution which can be strongly dependent upon
the entropy.

The energy in the acoustics of this model is controlled by the energy loss
(gain) at the boundaries balanced with the energy gain (loss) at the flame front.
Acoustic energy is typically lost at both the inlet and exit, but fluctuating en-
tropy waves convecting with the mean flow velocity that impinge upon a choked
nozzle generate acoustic waves that can, under the proper conditions, feed acous-
tic energy into the system. In addition, the Rayleigh condition for driving the
system with a fluctuating heat release can also contribute to the stability of the
system. The plane flame mechanism also contributes to the acoustic energy from
the interaction of entropy and acoustic waves at a flame sheet. This allows a sys-
tematic study of the influence of entropy-acoustic wave interactions on the linear

stability and modes of this combustor system.
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Chapter 1

Introduction

Renewed interest in ramjet engine applications has led to new efforts to study

_pressure oscillations in ramjet combustors. The problem of pressure oscillations
in combustion chambers is not new, nor is it restricted to ramjets. Combustors
of all sizes have exhibited pressure oscillations of some form from large indus-
trial power generation burners to small rocket thrusters. The primary reason is
the dependence of the chemical combustion processes on the local pressure and
temperature. Propulsion systems are particularly notable for having significant
pressure oscillations because these systems have very high rates of heat generation
per unit volume.

Pressure oscillations in combustion chambers are frequently called com-
bustion instabilities. This has occasionally been a misnomer, as in the case of the
Pogo instability where the oscillation is due to a dynamic instability involving
coupling between the fuel delivery hardware and the combustion chamber. The
combustion processes are indeed complex, involving turbulent flow, shear layers,
recirculating flow, turbulent mixing of fuel and oxidizer, multi-phase flow, solid
and droplet burning, and finite-rate chemical kinetics, etc. In fact, understanding

any one of the above processes in the presence of another is part of the imprecise



art of applied science and engineering. The problem remains, however, to control
the resultant pressure oscillations in many combustion chambers.

There are several practical reasons for concern over pressure oscillations.
The most obvious is the structural integrity of the chamber. Larger fluctuations
require stronger chambers with the penalty of added weight. In addition, the
oscillations produce vibrations in the hardware systems which can often be unac-
ceptable for guidance systems as well as electronic hardware. Another problem
related to pressure oscillations is the possibility of “flame out” or “unstart” due
to a pressure induced oscillating inlet shock wave. A flame out occurs when
the diffuser becomes unchoked. Usually, this is a catastrophic failure of the sys-
tem which is irreversible. Finally, the combustion efficiency may be degraded or
enhanced by certain pressure oscillations.

The acoustics of chambers plays a dominant role in most pressure oscilla-
tion problems. Any chamber has geometrically determined preferred oscillations
or resonant modes. These modes are similar to the vibration modes of a stretched
string on a violin. If it should happen that energy input occurs (from combustion
or any other process) near a preferred resonant mode then oscillation or instability
is likely to occur. In the case of combustion chambers, oscillations often grow to a
finite amplitude steady state. There are two fundamental oscillator systems that
can produce steady state oscillations: forced systems and self-excited systems.

Forced systems have an external driving mechanism. A simple example is
to have a piston (or speaker) at the end of a duct. The piston is driven by some
external source such as a motor (or magnetic coil) and acoustic pressure waves
radiate out from the piston (for sufficiently small and slow piston excursion). The
generated pressure waves are a function only of the driving. The energy input
per unit area is simply the product of the local pressure on the piston and the

piston velocity. Energy is lost at the walls (viscosity etc.) and at the boundary



conditions at the far end of the duct. A steady state is obtained since the driving
is constantly adding energy which is acoustically radiated to the far end of the
duct where it is lost through the boundary.

Self-excited systems contain driving that is a function of the oscillations
in the system. An example could be heat release in a duct where the heat release
is a function of the local acoustic state of the system. If the heat release is in
phase with a resonant mode of the system then self-excited driving could occur.
In the linear case, these systems are either damped in time, growing in time, or
neutrally stable. Practically, it is difficult to obtain a linear, neutrally stable state
so the response of the self-excited linear system only has the trivial steady state
of no oscillation. It is through nonlinear processes that these systems can exhibit
steady state oscillations.

Work in this field is by no means new. In approximately 1942, von Karman
and Summerfield first stated the combustion time lag concept to explain the low
frequency “chugging” phenomenon of liquid propellant rockets [1). This work was
continued and expanded by Summerfield [2] and also Crocco et al. [3] [4] in the
early fifties. These were low frequency bulk modes. Bulk modes are modes where
the phase distribution of the oscillation is constant; that is, the pressure fluctuates
up and down uniformly throughout the chamber. These helped to explain the
then current experimental results of systems that had oscillations primarily due
to their fuel delivery systems. Since then many people have been involved with
various aspects of the problem of pressure oscillations.

Lord Rayleigh predated all of these more current efforts in his treatment
of a duct with heat addition [5]. This fundamental understanding of driving
mechanisms and geometry, however, is still in order to better control the inherent
pressure oscillations of combustion chambers. The goal of this work is to enhance

understanding of some of these problems.



Recently, the importance and significance of entropy on the pressure oscil-
lations in combustion chambers has attracted interest. A fluctuating heat release
due to combustion instability in the chamber can produce “hot” or “cold” spots
in the gas and therefore a fluctuation of entropy. It is the primary goal here to
study those influences coupled with the acoustic pressure oscillations to determine
the stability characteristics of combustion chambers.

An experimental study of pressure oscillations in side dump ramjet com-
bustors was conducted in collaboration with China Lake Naval Weapons Center.
The steady pressure oscillations were measured at several axial positions along
the inlet and combustor for different inlet and exit boundary conditions. Chapter
2 contains the experimental part of this work and a review of other experimental
work. It is placed at the beginning of this thesis to provide some of the back-
ground and motivation for the analytical work later. The data was reduced to
produce pressure mode shape plots and phase distribution plots along the length
of the inlet and combustor. The frequencies of interest are the low frequencies
from approximately 50 to 800 Hz. Other frequencies of oscillation are discussed
in Chapter 3.

A detailed description of the conceptual motivation for the analysis is given
in Chapter 3. As a result, Chapter 3 is one of the most important chapters. It
contains many of the physical interpretations that have shaped and guided the
analysis. Chapter 3 also contains references to more recent and pertinent work.

The analysis has two phases: linear and nonlinear. The linear phase com-
bines the superposition of acoustic waves and entropy in a chamber with bound-
ary conditions at each end. For low frequency longitudinal modes, this can be
a powerful method since some elements of the acoustic system may be treated
as acoustically compact. An element is acoustically compact when its length is

short compared to the wavelength of interest. As a result, many acoustic regions



can be coupled together through their common boundaries in the form of match-
ing conditions. Specifically, a flat laminar flame is developed into an acoustically
compact element which couples the upstream cool region of the combustor with
the downstream hot region. Several modeling issues are discussed with respect
to the boundary conditions. Among the boundary conditions used are those for
inlet shock waves and choked exit nozzles. The resulting linear problem is an
eigenvalue problem where the eigenvalues are the resonant modes of the system.
Once the eigenvalues are determined, the linear problem is essentially solved in-
cluding linear stability, pressure distributions, and velocity distributions. The
linear analysis is contained in Chapters 4, 5, and 6.

The nonlinear phase utilizes the results of the linear work to find an ap-
proximate solution to the nonlinear case. The nonlinear analysis combines spatial
averaging and a Galerkin expansion of the fluctuation terms to obtain a nonlinear
oscillator equation. This equation is then time averaged and expanded to obtain
a system of first order ordinary differential equations. The first order equations
are solved numerically by a fourth order Runge-Kutta method. All nonlinear
calculations were based upon two-mode interactions. The nonlinear analysis is
contained in Chapter 7.

The results of the analysis show that in the linear case the entropy is very
important when the fluctuating entropy is proportionately similar in magnitude
to the fluctuating pressure. In addition to the classical acoustic modes of pressure
oscillation there is another series of modes herein called entropy modes. Hence,
the pressure modes contain both the acoustic and entropy induced modes. The
linear stability is greatly altered with entropy. The critical parameters are the
dimensions of the chamber, the inlet and exit reflectances, the mean flow velocity,
and the forward and rearward acoustic velocities.

In the nonlinear case, entropy influences the solution with both linear and



nonlinear contributions. The nonlinear acoustic-entropy interactions are only a
few percent of the acoustic-acoustic interactions. Thus, the nonlinear behavior
is governed predominantly by the nonlinear acoustics without entropy. However,
the amplitudes in the nonlinear limit cycles are functions of the linear damping
and growth rate of the two modes interacting. The amplitude of the limit cycle
— as well as the approach to the limit cycle — are therefore strongly dependent
on the linear contribution of entropy to stability.

These results are applicable to a broad class of combustion chamber prob-
lems beyond the immediate ramjet case. It is possible from this study to make
an assessment of the overall importance of entropy to an oscillating system if the
relative size of either the fluctuating entropy or temperature is known. A formal-
ism is also presented from which detailed calculations of a general combustor can

be made once an explicit heat release model is adopted.



Chapter 2

Experimental Work

Chapter 2 summarizes some experimental pressure oscillation studies carried out
in conjunction with China Lake Naval Weapons Center. These studies were initi-
ated by NWC to study combustion instabilities in modern integral rocket ramjets.

A more complete summary was published by Clark and Humphrey [6].

2.1 Experiments

This work is a continuation and an expansion of previous work (7] [8] dealing
with combustion instabilities. The earlier work provided tentative identification
of longitudinal acoustic modes associated with combustion-induced pressure os-
cillations in both a full-scale side dump engine and a laboratory-scale simulation
of the same engine. A relatively simple, idealistic analytical method is outlined
for predicting the longitudinal acoustic modes that may occur in a ramjet engine.
The predictions are then compared with the laboratory-scale engine.

No attempt is made to predict the actual stability characteristics of the
engine. Rather, the naturally occurring longitudinal linear acoustic modes that

may be present are calculated, and experimental evidence is used to determine if



any of these modes are excited during unsteady combustion. Success in predicting
many of the features of the excited modes which actually occur in complex, three-
dimensional, chemically reacting flows gives confidence that future, more complete
analyses will eventually result in useful design tools for predicting stability of a

specific configuration.

2.1.1 Acoustic Model

The experimental results were compared to a linear acoustic model. The model
is described here but not derived since it is actually an isentropic subset of the
linear analysis of chapters 4 and 6. The analytical model is a simplified version
of the technique described by Yang and Culick [9]. The current model does not
include the approximate treatment of the two-dimensional features of the mean
flow field in the combustor, as was done by Yang and Culick. This model is
a strictly one-dimensional treatment of the configuration depicted in Figure 2.1.
The idealized ramjet model consists of an inlet section with known, uniform mean
flow properties connected via a sudden expansion to a combustion chamber with
different, but uniform, mean flow properties. This allows for the greatly differing
temperatures and sonic velocities that would typically occur between the inlet
duct and the combustion chamber. At the dump plane (z = 0), the conditions

of pressure and mass continuity result in two matching conditions.

To obtain the mass continuity relation, it is important to use the isentropic
flow assumption. The exit from the combustor (z = L,) is a choked nozzle
with an axial length generally much shorter than the highest acoustic wavelength
of interest. The acoustic admittance, Ay, is used to determine the complex
reflectance, Bg , at the exit. The reflection coefficient is the ratio of reflected to

incident pressure waves.
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Figure 2.1: Model of Ramjet.

The inlet entrance is treated in a similar manner. The inlet admittance is
more complicated than for the exit nozzle and is a function of the particular type
of experimental setup. For instance, in some connected pipe tests the inlet can be
approximated by an ideal open end with 8y = —1. For an actual ramjet or for a
freejet test, however, a supersonic inlet operating under supercritical conditions
is typical. In this case the reflection coefficient is determined by the interactions
between upstream moving acoustic waves and the terminal normal shock system
in the inlet diffuser. The inlet admittance function can then be estimated from
the approximate theory of Culick and Rogers [10].

In the same manner as in Chapter 6, a resultant transcendental equation
is solved for the eigenfrequencies from which the linear pressure mode shapes can
be calculated. Humphrey [11] has published a more complete description of the
calculation method as well as a listing of the numerical method for solving the
equations and computing the amplitude and phase distributions. This analyti-

cal acoustic model contains no mechanisms for adding fluctuating energy to the
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flows. It does however include the steady state jump in energy level at the dump
plane. Furthermore, the Culick and Rogers theory of inlet shocks predicts that,
in general, the normal shock at the inlet will tend to absorb most of the incident
acoustic energy. Hence, all solutions obtained with the present model are stable,

(the damping coefficient, a, is less than zero).

2.1.2 Side Dump Combustor Experiments

The laboratory scale, side dump engine depicted in Figure 2.2 is described by
Clark [7]. This engine was tested in a direct connect mode with both inlets con-
nected to a large plenum via the converging-diverging nozzles shown. Liquid fuel
(RJ-4) was introduced into the inlet air flow through fixed-orifice injectors [7].
The pressure oscillations were measured with the high-frequency pressure trans-
ducers located as shown on Figure 2.2. Systematic variations about this “base-
line” configuration were made in order to evaluate the acoustic mode predictions.
In addition to the “baseline” (Configuration I), three other configurations were
tested. In each case, only one geometric parameter was varied. Briefly, in Con-
figuration II, the combustor exit nozzle area was increased in order to reduce the
combustor pressure and increase the average combustor Mach number. In this
case, a sharp-edged orifice plate was used at the combustor exit rather than a
contoured nozzle. In Configuration III, the combustor length was decreased in
order to shift the frequencies of acoustic modes. In Configuration IV, the inlet
nozzles were replaced with straight pipe sections in order to simulate an acousti-
cally open end. The pertinent test conditions for each configuration are given in
Table 2.1.

The tests with the converging-diverging inlet nozzles (Configurations I, I,
and III) indicated that the nozzles were periodically unchoked during combustion.

Hence, the application of Culick and Rogers theory is not strictly correct for the
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Figure 2.2: Baseline Combustor — Configuration I.

inlet boundary conditions. Nevertheless, reasonable results were obtained by
estimating the average Mach number upstream of the shock to be the values
shown in Table 2.1.

Results from Test 1 are plotted in Figure 2.3, which shows the pressure
amplitude spectrum obtained by digital spectral analysis of the signal from one
of the high-frequency transducers. The oscillations are dominated by the mode
at 290 Hz, but there are also significant spectral components at 130 and 590
Hz. The agreement between experimental and theoretical frequencies is very
good, as indicated. The analytical solution for the conditions of Test 1, 2, and 3
indicated that all the natural acoustic modes are highly damped. This is because
the inlet reflection coefficient is approximately zero for the nearly sonic conditions
listed in Table 2.1 and energy addition due to combustion has not been included.
In order to obtain reasonable comparisons with experimental mode shapes and
phase distributions, it was necessary to set a; = 0. This is physically reasonable
since the simple theoretical model contains no mechanism to replace the acoustic

energy lost at the anechoic inlet end, even though experimentally the oscillations
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Test No. 1 2 3 4
Configuration I II III v
Ti,, °R 1010 | 1061 | 1135 | 1065
Ti,, °R 4150 | 3680 | 3234 | 3800
M 0.23 | 0.27 | 0.28 | 0.26
Mis 101 | 1.01 | 1.1 [N/A
M, 0.37 | 0.524 | 0.37 | 0.44
P, psta 88 63 56 75
®* 0.91 | 0.93 ** 0.91
Tsm,in ~.25| 0.25 | 0.25 | N/A
We,lb/s 5 5 36 | 5.1

* RJ-4 fuel was used with stoichiometric fuel/air ratio = 0.07.

**CyH, fuel was used with unknown fuel flow rate.

Table 2.1: Test Conditions for Side Dump Combustor.
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are being driven at a constant amplitude by the combustion heat addition.
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Figure 2.3: Amplitude Spectrum at KC4 for Configuration I.

The pressure amplitude mode shapes and relative phase distribution for
experimental and theoretical values are compared in Figures 2.4 and 2.5 for the
290 Hz mode. The agreement between theory and experiment for pressure am-
plitude distributions is good in the combustor and poor in the inlet sections. The
relative phase distributions agree well throughout the engine. This is also true
for the 130 and 590 Hz modes (not shown). It is interesting that the mode at 130
Hz, which has been called a “bulk” mode has a corresponding predicted mode.
The term “bulk” mode has been used to denote the low frequency mode with
a relatively constant phase distribution so that the pressure pulsates in phase
throughout the chamber. It should be noted that these “bulk” modes are not

independent of the acoustics of the system.

Test 2 (Configuration II) was not significantly different from Test 1 and
the agreement between theory and experiment was about the same as for Test 1

(Figures 2.6 and 2.7). The experimental frequencies were 150, 255, 500 Hz while
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the predicted frequencies were 129, 272, and 566 Hz.
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Figure 2.6: Pressure Amplitude at 255 Hz for Configuration II (p * 14 = p,psi).
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Figure 2.7: Relative Phase Distribution at 255 Hz for Configuration II.

For Test 3 (Configuration III) with the short combustor, the dominant
oscillatory mode was at 223 Hz. The mode and phase plots of Figures 2.8 and 2.9

reveal that this was the same as the “bulk” mode which was present during Tests
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1 and 2 for the longer combustor. In Configuration III, however, the frequency
of the dominant mode was not in good agreement with the predicted value, nor
was the pressure mode shape in the inlet region. The relative phase distributions
(Figure 2.9) were in fair agreement. The experimental frequencies were 223, 373,

and 450 Hz while the predicted frequencies were 170, 361, and 532 H=.
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Figure 2.8: Pressure Amplitude at 223 Hz for Configuration III (p * 4.86 = p,

psi).

For Test 4 the dominant mode was at 292 Hz. For Configuration IV with
an “open” inlet as the upstream boundary condition, the ideal inlet reflection
coefficient would be —1. The pressure mode shape shown in Figure 2.10 indicates
that this change in end conditions did, indeed, have a profound influence on the
mode shapes in the inlet section. However, the results in this case ‘indicate a
considerable discrepancy between experiment and the analysis. Further study
of the boundary condition showed that the plenum chamber could no longer be
ignored. When the plenum was considered in a similar acoustic analysis consisting
of a plenum duct, inlet duct, and combustor duct; the predictions were similar to

those of Tests 1 and 3. This analysis was similar to that used by Smith [12].
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2.1.3 Summary of Experiments

From the preceding discussions it is possible to say that a simple, one-dimensional,
isentropic theory for the acoustic modes of an idealized ramjet engine is capable
of correctly predicting many of the features of longitudinal pressure oscillations
which are known to occur in actual practice. In general, the agreement between
theoretical and measured phase distributions and between theoretical and mea-
sured pressure amplitude mode shapes in the combustor region are satisfactory.
However, in the inlet sections of both the side dump and coaxial dump engines,
there was considerable discrepancy between measured and theoretical pressure
mode shapes. With a few exceptions, the agreement between experiment and
analysis is within plus or minus 20% for the test conditions examined.

The side dump engine exhibited two types of oscillations. The first type
is identified by the presence of one or more pressure node points in the com-
bustor sections. (For examples, see Figures 2.4, 2.6, and 2.10.) Each pressure
node point is associated with a rapid (approximately 180 degree) phase shift, as
demonstrated in Figures 2.5, and 2.7. The other mode is identified by compar-
atively uniform values of the pressure oscillation amplitude and relative phase
throughout the combustor section. With one exception, in the inlet section of all
the configurations considered, the relative phase distribution varied linearly with
longitudinal position and with a slope in fair agreement with the theoretical value.
Theoretically, this linear variation is due to the fact that for the upstream normal
shock the reflection coefficient is approximately zero. Hence, the inlet entrance
does not strongly reflect the upstream moving waves. An exceptional condition
arises for Configuration IV of the side dump combustor series. For this case, the
upstream end should have approximated an ideal open acoustic end for which the

reflection is approximately —1. The predicted and experimental pressure mode
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shapes in the inlet section were in qualitative agreement while the slopes of the
phase variations differed considerably. Surprisingly, the measured results show
that the same linear phase variation occurred in this open-ended inlet as in the
nearly choked inlet. Once the plenum chamber was included in the analysis and
damping in the plenum recognized, the predicted results were in a similar degree

of agreement as the other cases.

2.2 Other Experimental Work

The experiment described is only one effort of several to study longitudinal pres-
sure oscillations. Schadow et al. ([13] [14] [15] [16] [17]) have been studying several
aspects of coaxial dump combustors. This work involves quantitative studies of
two-dimensional inlet shocks, hot and cold flows, velocity measurements, vortex
visualization, and non-circular dump planes. Most of these efforts have been di-
rected toward studying the multidimensional effects in a dump combustor. The
shock response is important for two reasons. The upstream shock provides the
upstream boundary condition for the acoustic system. If the instabilities are large
enough, however, the shock position is affected sufficiently to influence the thrust
of the engine. Sajben et al. [18] [19] have conducted experiments on the unsteady
inlet shock response where the inlet shock has incoming Mach number greater
than about 1.3. This results in a separated flow regime in the inlet diffuser which
is not the case for the experiments conducted here. In addition to the experimen-
tal inlet shock studies is a numerical work by Hsieh [20] on unsteady flow fields in
inlet diffusers in an attempt to calculate the results Sajben found experimentally.

Smith [12] performed some very enlightening combustion experiments with
a two-dimensional dump combustor and flow visualization. The high speed films

showed cases where large plugs of hot and cold gases were convecting downstream.
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These were ideal entropy fluctuations but unfortunately the system was not ter-
minated by a choked nozzle and hence no coupling between entropy and acoustics
at the exit nozzle. The instabilities found were related to a two-dimensional phe-
nomena of vortex rollup and the shear flow after the dump plane.

Another series of low frequency combustor instability experiments were
conducted at the Aero Propulsion Laboratory, Air Force Wright Aeronautical
Laboratories (Davis [21]). These were also filmed and measured in several con-
figurations including with a choked exit nozzle. Abouseif et al. [22] attempted to
explain some of these results with a model that included a flame sheet and en-
tropy waves with some success. It is believed that better predictions would have
been obtained if some of the simplifying assumptions had not been used. Critical
to their model however is the assumption that the primary driving comes from
incomplete combustion and hence a fluctuating heat release. The reason for this
is that the fluctuations will result in a fluctuating residence time for a particle of
fluid to remain in the combustor. If there is incomplete combustion, then more or
less heat is released depending upon the residence time of each individual particle
of fluid. Incomplete combustion was not the case in the China Lake experiments
and oscillations were still observed. The model also neglected upstream entropy
fluctuations such as those created at the inlet shock. Unfortunately, they did not
publish any of the results of the pressure distributions and while it is useful to
predict frequencies it is a better test of an acoustic model to be able to obtain
both pressure mode shapes and phase distributions.

Craig et al. [23] conducted some experiments at the Aero Propulsion Lab-
oratory with emphasis on the low frequency modes. One interesting result was
that increasing the length to width ratio tended to promote instability which
would, according to Abouseif et al.’s model, eliminate the primary driving mech-

anism. Reardon [24] attempted to provide an analytical interpretation of those
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results. His model was based on the time lag model concept which has been de-
veloped extensively for liquid propellant rockets. Although this procedure may be
successful for the bulk modes, it is not decoupled from the longitudinal acoustic
modes, as purported by Reardon. Any analysis of stability depends upon steady
experiments to determine parameters which are then used to predict the results
of the unsteady experiment. In Reardon’s study, as he mentioned, the constants
for the time lag had to be multiplied by an arbitrary multiplier. It appears that
the characterization of the steady flow should be the source of this discrepancy.

In summary, there seems to be sufficient experimental evidence which in-
dicates that entropy could play an important role in the stability of a combustor
system. The entropy also provides a mechanism through which energy can be fed
into the acoustic system — either through boundaries or internal to the flow field
— if a model for the heat release is obtained. Hence, the emphasis of this work
is to study and predict the significance and influence of entropy in the problem

of pressure oscillations in combustion chambers.



Chapter 3

Modes of Propagation

In addition to experimental work a considerable amount of analytical work has
been accomplished. One of the earliest is obviously Rayleigh’s Criterion which
simply states
“If heat be periodically communicated to, and abstracted from, a
mass of air vibrating (for example) in a cylinder bounded by a piston,
the effect produced will depend upon the phase of the vibration at
which the transfer of heat takes place. If heat be given to the air
at the moment of greatest condensation, or be taken from it at the
moment of greatest rarefaction, the vibration is encouraged. On the
other hand, if heat be given at the moment of greatest rarefaction, or
abstracted at the moment or greatest condensation, the vibration is
discouraged [25].”

For the purposes of designing ramjet combustion systems, the processes
of pressure oscillations need to be understood with similar acuity to Rayleigh’s
Criterion for the purposes of control. It is correct to work towards control rather
than elimination because some oscillations can actually enhance the performance

of a system. A significant amount or work was done during the 1950’s, 60’s, and

22
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70’s on liquid and solid propellant rocket engines. It is upon this foundation that

the ramjet studies are based.

3.1 Typical Geometry

Figure 3.1 shows a typical coaxial dump liquid-fueled ramjet inlet and combustor
configuration. The flow through the inlet diffuser is choked. Immediately down-
stream of the throat the flow is supersonic. An upstream shock wave is contained
in the diffuser beyond which the flow throughout is subsonic. The downstream
subsonic end of the diffuser is connected to a constant area (or nearly constant
area) inlet duct. Usually the fuel is introduced into the flow by a fuel injection
mechanism in the inlet duct. Typically, a liquid droplet spray injector mixes the
fuel into the oxidizing mean flow some distance upstream of the dump plane to

allow for sufficient mixing and evaporation prior to burning [7].
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Figure 3.1: Typical Coaxial Dump Ramjet Configuration.

The inlet flow then undergoes a sudden expansion at the dump plane. The
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flow is obviously complicated by shear layers, vortex generation, and recirculation,
not to mention the combustion processes. The recirculation zone behind the inlet
dump is primarily a region of hot burned exhaust gases. This acts as a flame
holder which is one of the attractive features of the dump combustors. Typical
flame holders obstruct the flow field and hence cause a total pressure loss which
can be translated to a loss of thrust. The heat release takes place between the
dump plane and the choked exit nozzle terminating the combustor. The actual
location of the heat release is very much a function of the geometry and chemistry
of each specific combustor.

The classical acoustic resonances of the system (diffuser, inlet duct, com-
bustor, and exit nozzle) are determined by the mean flow conditions, the bound-
ary conditions, and the matching conditions. The combustion processes provide
volumetric mass sources as well as heat sources in the flow field which may or
may not tend to add acoustic energy. Although it is unlikely that a general com-
bustion model can incorporate the many flow fields along with liquid fuels, solid
fuels, and varied operating conditions, it is possible to study the basic acoustic

elements to determine the general conditions for stability.

3.2 Types of Oscillations

The pressure oscillations inside an axisymmetric duct are combinations of lon-
gitudinal, radial and transverse modes. In general, the longitudinal modes have
frequencies in the range of 100-800 Hz while the transverse and radial modes are
in the range of 2000-5000 Hz for a large range of typical combustors in tactical
missiles.

The higher frequency modes, sometimes called screech, have been studied

in the context of both liquid and solid propellant rockets [3], [4], [26], [27], [28],
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[29], [30], [31], [32], [33].

In the case of ramjets, however, the high frequency modes tend to have
smaller amplitudes [22] than the longitudinal modes or can be controlled relatively
easily by flow vanes and baffles around the perimeter of the combustor [34]. The
larger amplitude longitudinal modes and bulk modes have been the most trou-
blesome and have been the focus of much of the current research in liquid fueled
ramjets [35] [36]. The acoustics for the low frequency modes is predominantly
one-dimensional even though the flow details are two- and three-dimensional.
Hence, rather than finding multi-dimensional corrections to the one-dimensional
case, most work here has been spent working on the basic physics in one dimen-
sion. Yang presented a method of averaging the axisymmetric flow details for a
dump combustor which could then be used in one-dimensional acoustics [37].

The mean flow in most ramjet configurations is significant. The inlet Mach
number is often in the range of .35 to .5 and in the combustor from .1 to .3. This
alters the acoustic velocities somewhat but the significant contribution is in the
convection of “pockets” of gases with different thermodynamic states through the
combustor. It is convenient to define some time constants. Three are particularly
useful: the residence time, the thermal time and chemical time. The residence
time is the length of time a particle (or small pocket of gas) resides in the chamber
from dump plane to exit and is of the order of milliseconds. The thermal time
is the time required for significant change in thermal energy through conduction
and is of the order of seconds. Usually in propulsion system combustors, con-
duction is neglected since the residence time is so short compared to the thermal
time. The chemical time is the time required for complete combustion of the fuel.
Clearly, the residence time must be greater than the chemical time for complete
combustion. The chemical time is also of the order of milliseconds. Since conduc-

tion is neglected two adjacent pockets of gas that have different thermodynamic
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states can convect through the combustor without interacting (except through
mixing or radiation). Thus, if the heat release from combustion is oscillatory,
then oscillatory pockets of gas with differing thermodynamic states will convect

downstream.

3.3 Wave Equation Form of Equations

The acoustic field can be represented by the superposition of traveling pressure
waves. These waves travel, or radiate, at the acoustic velocity, which is the
sonic velocity plus or minus the mean velocity. A point source, then, radiates a
spherical pressure wave. In one dimension, the acoustic waves can travel leftward
or rightward. It is the wave characteristic of acoustics that helps to reduce an
acoustic phenomena to a physical mechanism such as a reflected traveling wave
at a boundary and the superposition of traveling waves to get standing waves in
organ pipes.

The general equations of motion can be written in wave equation form (as
is done in Chapter 4). The classical acoustic waves are recovered but a third
wave, entropy, is found. Entropy is not a wave in the acoustic sense as it does not
radiate or propagate in the same manner as the acoustic pressure or velocity. The
entropy is associated with the thermodynamic state of the particles of the gas and
is convected with the mean flow. The entropy wave then can be thought of as
pockets of fluid with different thermodynamic states convecting with the mean
flow. It is the wave form of the equations of motion that makes it mathematically
expedient to express temperature and heat release in terms of entropy and the
acoustic terms. An excellent discussion of the wave nature of the equations of

motion is given by Whitham [38].
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3.4 Fluid Mechanic Interactions

Before considering modeling it is useful to discuss in some detail the fluid mechanic
interactions. These are divided into linear and nonlinear interactions.

As mentioned in Chapter 1, the amplitudes of disturbances in linear self-
excited systems that are unstable tend to grow exponentially. For a limit cycle
to exist, a nonlinear process must occur for some finite ampiitude oscilation and
transfer some of the energy in the unstable mode either into another decaying
mode or out of a boundary [39]. For very small values of a disturbance, the
disturbance will grow exponentially. As the magnitude increases the modes will
interact through nonlinear processes to produce a finite amplitude steady oscil-
lation. These transient characteristics are often hard to measure experimentally
because the time response of the measurements generally have to be faster for the
transient behavior than for the steady state. Another way to get the transient
behavior is to initially excite the system at a magnitude greater than the limit
cycle. The oscillations should then decay to the limit cycle magnitude (presuming
the initial excitation is not too large).

In the low frequency limit, it is possible to treat some processes as acous-
tically compact elements. When this is done, the combustor can be broken into
several regions separated by elements that are simply matching conditions. Treat-
ing the source as compact elements results in the linear decoupling of the acoustic
waves from the entropy in the acoustic regions between the matching or bound-
ary conditions. This eliminates any volumetric linear interactions and leaves only
linear boundary interactions between entropy and acoustics. This method can be
used to treat many, varied geometry problems. For the geometry shown in Figure
3.2, the linear coupling of entropy with acoustic waves occuré at the upstream

shock, the plane flame matching condition, and the choked exit nozzle.
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The nonlinear interactions are predominantly volumetric although some
nonlinear boundary conditions are discussed in Chapter 7. The following dis-
cussion of interactions is a summary of work by Kovasznay [40] and Chu and
Kovasznay [41].

The equations of motion in a viscous, heat conductive, compressible
medium can be expressed in terms of density, pressure, and entropy with mass
sources, body forces, and heat sources. A standard perturbation expansion is
performed with a non-dimensional parameter, e, characterizing the intensity of
the disturbance where each of the density, pressure, entropy, and the sources are
written in a power series expansion in a. Then collecting terms with like orders
of a, a series of first, second, and nth order equations are derived where the kth
order equations are functions of the solutions to the first through (k-1)th sets of
equations.

The space-time domain considered is a small neighborhood around a point
of interest and as a result is intended “to give a “local” understanding of the

interaction phenomena up to a uniform degree of approximation in all fluctuation



29

modes [41].”

By setting the first order source terms to zero (as discussed above for linear
interactions), the higher order source terms are shown to be the “apparent” rate
of fluid injection, body forces, and rate of heat addition which are functions of
the lower order solutions to the density, pressure, and entropy. |

For o infinitesimal, the first order (linear) equations are split into three
modes: sound (acoustic), entropy, and vorticity. The equations can be split
arbitrarily in any number of ways. This particular choice splits the equations
into physically familiar modes. The results of this choice of splitting are that
the linear vorticity mode is a function of body forces; the acoustic mode is a
function of mass sources, body forces, and heat sources; and the entropy mode is
a function of the heat sources.

For flows with combustion, the volumetric body forces are usually negligi-
ble and the vorticity mode decouples completely from the acoustic and entropy
modes. (This is not to say that there may not be linear vorticity-acoustic cou-
pling at boundaries.) Conversely, the mass and heat sources are both pressure
and entropy dependent so that the acoustics and entropy modes are coupled.

In summary, the results of the linear coupling are:[41]

“The vorticity mode is the type of fluid motion most frequently en-
countered in the mechanics of viscous incompressible fluid. The sound
mode is the type of fluid motion discussed in acoustics and in the
theory of compressible fluids. The entropy mode has been the main

subject of investigation in the theory of heat transfer in fluid.”

“We thus see that the solution of (3.1 [the equations of motion]) can
always be thought of as consisting of the superposition of three basic
modes of fluctuations that are familiar to us in one or another branch

of fluid mechanics. Naturally not all the three modes of fluctuations



30

will enter significantly into a particular problem.”

In the second order case, quadratic nonlinearity, the second order “appar-
ent” sources, which are functions of the first order solutions, can be rewritten as
the bilateral products of the three linear modes. Hence, the second order equa-
tions are functions of six modes: acoustic-acoustic, entropy-entropy, vorticity-
vorticity, acoustic-entropy, acoustic-vorticity, and also entropy-vorticity. In gen-
eral, fluctuations of any of the three modes will produce fluctuations in all of
them. For flow in the absence of boundaries (as in a region containing small
scale turbulence in a large medium) Chu and Kovasznay estimated the relative
magnitude of each of the bilateral interactions which are given in Table 3.1. It is
assumed that viscous and heat conduction terms are neglected in the first order
terms (as is the case for combustion problems). In Table 3.1, € represents the local
Knudsen number and is generally less than a. The Knudsen number is the ratio
of the viscous diffusion length to the wavelength. For freely propagating acoustics
waves, the viscous diffusion length is of the order of the mean free path while the
wavelength is of the order of feet. Thus, the Knudsen number is very small. In
the low frequency, one-dimensional limit the vorticity terms are eliminated. Table
3.1 can then be reduced to Table 3.2.

In all cases the entropy-entropy mode can be neglected so that for the one-
dimensional combustor the acoustic-acoustic and acoustic-entropy interactions
are the dominant nonlinear terms.

The bilateral acoustic-acoustic interactions were studied extensively by
Awad and Culick [39] [42]. In addition to calculating limit cycles, a sufficiency
condition for the existence of two-mode limit cycles was presented. For two modes
to interact and form a limit cycle it is sufficient that one mode have a linear growth

rate that is less than half the decay rate of the other interacting mode.
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Sound Source Entropy Source Vorticity Source
“Steepening” and
“Self-Scattering”
Sound- ,
Sound O(a?) O(a’e) O(a’e)
“Generation” “Self Convection”

Vorticity-
Vorticity O(a?) O(a®e) O(a?)

Entropy-
Entropy O(a’%) O(a®e) O(a?e)

“Scattering” “Heat Convection” “Generation”

Sound-

Entropy O(a?) 0(a?) O(a?)
“Vorticity
“Scattering” Convection”

Sound-

Vorticity O(a?) O(a%) O(a?)
“Heat Convection”

Vorticity-

Entropy O(a%e) 0O(a?) O(a’e)

Table 3.1: Order of Terms for Nonlinear Interaction between Modes [41].
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Sound Source

Entropy Source

Vorticity Source

“Steepening” and
“Self-Scattering”

Sound-
Sound O(a?) O(a’) Of(c?e)
“Generation” “Self Convection”
Vorticity-
Vorticity N/A N/A N/A
Entropy-
Entropy O(c’e) O(a’e) O(a®e)
“Scattering” “Heat Convection” “Generation”
Sound-
Entropy O(a?) O(a?) O(a?)
“Yorticity
“Scattering” Convection”
Sound-
Vorticity N/A N/A N/A
“Heat Convection”
Vorticity-
Entropy N/A - N/A N/A

Table 3.2: Order of Terms for Nonlinear Interaction between 1-Dimensional
Modes.
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3.5 Modeling Considerations

Tsien developed the transfer function for a general choked nozzle [43]. Later,
Marble and Candel [44] determined that in the linear analysis, entropy waves
incident upon a choked nozzle would produce acoustic waves at the nozzle. This
is a linear transfer of energy into (or out of) the acoustics from the boundary.
This provides one of the first mechanisms by which fluctuating entropy would
interact with the acoustics in ramjet modeling. Then Culick and Rogers [10]
developed a linear inlet shock theory that accounts for an oscillating shock in
inlet diffuser. An oscillating shock will produce a source of entropy fluctuations
in the combustor flow. In the early fifties, Chu [45] [46] [47] [48] had developed
a linear plane flame matching condition. The analysis given by Chu described a
planar flame in which the heat release per unit area is related to the acoustic and
entropy fluctuations.

The plane flame matching condition is generalized in Chapter 5 for a di-
verging combustor and consideration of stability. The plane flame model also
provides for the interactions of entropy and acoustics (details in Chapter 5). The
present study combines each of the above mechanisms to model stability and
pressure oscillations in ramjet combustors.

Previous attempts to explain the low frequency oscillations have been rea-
sonably successful despite their lack of accuracy with respect to growth rates.
This illustrates that the linear problem is dominated by the boundary conditions
and geometry to determine frequencies. The growth rates, however, require an
accurate accounting of the energy transfer and generation. Several previous au-
thors have erroneously claimed that the bulk mode is not acoustic. This is usually
a result of failing to recognize the acoustics of the inlet and combustor system.

Often, the bulk mode is below the lowest classical organ pipe mode with length
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equal to the combustion chamber and this has resulted in calling the mode a bulk
mode. In general, however, the bulk mode should be one in which the pressure
oscillates in phase throughout the combustor. In most cases, when the boundary
conditions are traced thoroughly upstream and downstream, it can be shown that
the bulk mode is in fact the lowest acoustic mode of the system.

There are four primary differences between this work and previous work.
First, this work treats entropy and acoustics an a general way which allows for
both bulk mode and longitudinal modes of a combustor system in a unified ap-
proach. Second, the issue of stability of a plane flame contained in a combustion
chamber is studied with self-excitation. Third, the linear and nonlinear influence
of entropy and acoustics is studied in detail. And fourth, all the above analysis
is coupled with a formalism that permits examinations of second order nonlinear
acoustics with entropy in chambers with boundary conditions far more general

than previously.



Chapter 4

Linear Acoustics with Entropy

Chapter Four deals with the basic mathematical tools of linear acoustics that are
used in the remainder of this investigation. It also treats several basic problems
that are the foundation to understanding pressure oscillations in chambers. The
examples given consist of acoustic chambers with given boundary conditions and
that are subjected to mass sources, point sources, or entropy sources. Stability
of each example is examined to find under what conditions the oscillation is
enhanced or discouraged. The general equations are first formulated with the
introduction of entropy and the physical contributions to entropy. Then methods
of solution are given with conceptual examples.

The last section examines acoustic and entropy induced acoustic oscilla-
tions. The fundamental modes of pressure oscillation from acoustics and entropy
are determined. Two modes are found which contain the classical acoustic modes
and a newly found set of entropy modes. The important assumptions required
for the given solutions é,re that the viscosity, thermal conduction, and dissipation

are negligible.

35
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4.1 General Formulation of the Equations

In order to set up the framework for the modeling, the governing equations of
motion are formulated. These equations are formulated for more general cases
and then simplified as required. This provides an easy way to determine which
approximations are appropriate to each application. The formalism is often more
generally applicable than the specific examples and will be noted where appro-
priate.

The basic equations of motion with sources can be written in differential

vector form as

Continuity i V- (p¥) = w(z,t), (4.1)
Conservation of Momentum % =—-VP 4 uVig+ 3, -+ %uV(-) , (4.2)
Conservation of Energy p—%; =—-PO+V-(kVT)+4¢+9®, (4.3)

where
©=V-9, %—tl=-a:§t—)+ﬁ'-V(). (4.4)

In addition to the equations of motion are the equation of state and definition for
polytropic gases,

P =pRT, (4.5)

and

Pp~ 1 =¢l%, (4.6)

The choice of introducing entropy through the equation of polytropic gases is
a natural one when the equations are considered in wave form. The equations
will reduce to propagating acoustic and convected entropy waves and thus the
use of entropy greatly simplifies the algebra as well as clarifying the physical

mechanisms.
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An alternate form of the energy equation for an ideal gas is

e Sl (4.7)

which can be derived from 4.6. Another way to obtain 4.7 is to consider the first
law of thermodynamics, the ideal gas law, and the definition of specific heats. It

is convenient to define another term, ¢(Z,t),
9(Z,t) = —=; . (4'8)

The internal energy, e, is the composition of the internal, potential, and
stored chemical energies. For reversible processes the internal thermal energy in
a gas is given by

/T T codT = ¢o(T — To) (4.9)
when ¢, is a constant.

The hydrostatic position is not an important factor in most acoustics prob-
lems so the potential energy can be neglected. The chemical energy is due to the
atomic bonding of the molecules and will be denoted £ With these assumptions

the internal energy can be differentiated to give

De DT D¢
'E = C,,"b-t— B-t— . (410)

Using 4.2, 4.3, 4.7, and 4.10, along with continuity and the ideal gas law, the
definition of ¢(z,t) can be shown to be

71 . D¢
q(:z:, t) = T { V. (kVT) + \q/ + \?;, - p-B-t— .
N, i’ Ut
(4. 1 1)
change in change change due change change due
entropy due to to heat due to  to chemical
following conduction generation dissipation composition

the fluid
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The physical contributions to the entropy are evident from 4.11. The
mathematical expediency of using entropy does not obscure the physical clar-
ity of each of the processes in 4.11. It is clear from 4.11 that, in the absence
of conduction and dissipation, the heat generation and chemical change due to
combustion both contribute to the change in entropy.

Typical flow situations in combustion chambers are such that the mean
flow is relatively low (although not necessarily zero) and it is reasonable to neglect
viscous effects and dissipation. This assumption is carried throughout this work.

The nonlinear equations of motion can be rewritten to obtain

DP . 1P P Ds
oy T1PV-¥ = . w+cﬂ Dt (4.12)
Di @ .
F';+$§VP = &, (4.13)
Ds
Ft' = C.q. (4.14)

Since the longitudinal modes are to be studied the equations of motion

will be treated in one-dimension only. The one-dimensional equations become

P
Pi+uP,+qPu, = aqw+ —1'1, (4.15)
2
u; + uu, + ’7_sz = bf ’ (4.16)
8t + us, = q. (4.17)

4.1.1 Perturbation Equations

The nonlinear equations of combined acoustics and entropy will be obtained by

writing the dependent variables as sums of mean and fluctuating values,
u(z,t) = up(z) +v'(z,¢), (4.18)
P(z,t) = Py(z)+ P'(z,t), (4.19)

s(z,t) = so(z) + §'(,t), (4.20)
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where ( )o (which is equivalent to (' )) denotes the steady state mean quantities
and ( )’ (which is equivalent to ( );) denotes the perturbation quantities. The
substitution of 4.18 through 4.20 into 4.15 through 4.17 is not an approximation.
It is not until some of these terms are neglected that this expansion yields an
approximate equation for the motion. This expansion is chosen since it is expected
that there will exist a steady state condition from which the perturbation is to

be performed.

4.1.2 Steady State

The steady state (or time independent) problem can be found by letting all the
primed terms go to zero along with the time derivative terms to get

2 Fyqo

uoPo; + YPouo: = agwo + T (421)
ag

Uplgy + ’YPOz = b_f (4.22)

UoSoz = Cuo (4.23)

where ( ), stands for the partial differentiation of ( ) with respect to z, and simi-
larly for ¢. These are ordinary differential equations for functions of position only

and are assumed to have known solutions subject to given boundary conditions.

4.1.3 Linear Perturbation Equations

By treating the source terms as having mean and fluctuating parts and dropping
terms that are second order or higher in perturbation quantities, obtain the first

order linear equations to be

2
a’O *
—P,, = B 4.2
Uy + P 1z (4.24)
Py +vPou;, = A (4.25)

sitt+ugsi; = C° (4.26)
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where
A* = a? ! lp P, P, P, P
=ay | wy + -1—1-11)0 + "( 19 + OQ1) — Uy L0z — VL1Upz — Up L1z (4'27)
. 2 . :’ j ~ ~ I St
mass source entropy source non-uniform  mean flow
terms terms field terms term
and
2
a 1 Tl P, 1
B*'= b/ ——2(=+4 = —)Pp—uou 4.28
Y RGPk (4.28)
forces on non-uniform mean
element of mean field flow
fluid
and
C*'= ¢yq1 — UiSoz - (4.29)
—— ———
entropy non-uniform
fluctuations entropy
field

Note that 4.26 is in characteristic form and hence it is often useful to
use the method of characteristics when entropy terms ¢, and ¢, are involved.
With partial differentiation, 4.24 and 4.25 can be written in the standard form

of non-homogeneous wave equations

"

Ugs — aﬁum = —4go (4-30)
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Pyt — 3Pz = —ho". (4.31)

T1/T, , which is contained in 4.30 and 4.31, can be determined from 4.5 and 4.6

with logarithmic differentiation and linearization to get

I 1—-1P $1
_—= ——— + - . (4.32)
To v Po Cp

isentropic entropy

contribution contribution

The boundary conditions must be set to provide well-posed problems. De-

fine f and ! such that
A-VP=—f (4.33)
7V, =—1'. (4.34)
In the one-dimensional case, 7 = +7 where 7' is the unit vector in the z-direction.

Take the dot product of 4.16 with the unit surface normal to find

z=Lc

(4.35)

For the one-dimensional acoustics problem from z = 0 to z = Lo, 4.35 is the

proper boundary condition.

4.2 Separation of Variables: Approximate Meth-
ods

Section 4.2 presents the details for solving the linear equations of acoustics by
separation of variables. The method of Green’s Functions is‘ applicable in three
dimensions but is quoted here in one dimension. After presenting the solution
technique, four specific cases are solved to provide insight into the effects on

stability of different types of sources.
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The linear equations of acoustics and entropy can be solved approximately

using a separation of time and space variables to obtain a system of ordinary

differential equations in space variables which may then be solved by the approx-

imate integral method of Green’s Functions. Separation of variables is accom-

plished by substituting solutions that are periodic in time of the form

uy(z,t) = uy(z)e™*M

to get
ulzz+k2u1=g'
Plzz+k2P1=h'
where
" -1 al
M =—=—_ A} —~yP,B! Pl =] P,
a3 a3{ TS °(7Po), 1}
g -1 al al
I=_=__ B*_____Axr '_Pz -
g { TN
N .
k=— and l=w+ta.
ao

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

The procedure involves expanding the perturbation pressure (and velocity)

in a series which satisfies the homogeneous equations. The integral averaging

corrects the homogeneous solutions by successive approximations but due to the

averaging often yields good results within one or just a few iterations. Consider

the homogeneous equation

‘I’nzz + k,z.‘I’n =0

with boundary condition
2

1

An explicit solution to 4.42 and 4.43 can be given as
nm

¥, = cos (knz), k, = fc_ .

(4.42)

(4.43)

(4.44)
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The functions W,, can be used as the basis for an expansion of 4.38. The num-
ber of successive iterations required to get satisfactory results depends upon the
magnitude of the inhomogeneity A and the desired accuracy. From the theory of

Green’s Functions the solution for P, is given by

Py(z) = ff T "g) = { J[[ wav + § ., f’dS} (4.45)
Let
Ro= [[[ wkav + § w,sias (4.46)

so that

Py(z) = rn(z)(kg R,:; EZ. +§: o (z)})anz

Since the equations are linear, a normallzatlon fa,ctor can be chosen so that in

(4.47)

the limit of vanishing h and f , P reduces to ¥,,. Choose
R,

from which
k* =K% + %’;— (4.49)

Equation 4.49 can be solved for vanishingly small values of the damping coeffi-
cient, a, to get

R,,
w2 ~ aﬁ(kfn + R‘“I(E_Z))

m

a? R,
ar ﬁ (I,M, (E_fn)) . (4.51)

The linear characteristics of the system are provided in 4.50 and 4.51. The

(4.50)

and

frequency of oscillation can be determined by a frequency shift term that modifies
the frequency of the assumed form w,,. Stability can be determined by the sign
of a since t is always greater than zero. The linear stability criterion is

Stable System a < 0 (4.52)

Unstable System o« > O (4.53)
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4.2.1 Simple Problems in Linear Acoustics

The goal here is to gain insight into some basic elements that can drive an acoustic
system. Four examples are chosen, each of which could be a fundamental driving
mechanism in a combustion chamber. Case 1 studies a mass source which is
motivated by two physical processes. First, liquid fuel is usually spray-injected
into the flow in the form of small droplets. The evaporation of these droplets
acts as a volumetric mass source. Second, the fuels used are generally complex
hydrocarbons, such as RJ-4, which when oxidized form a greater quantity of
simpler molecules. For perfect gases, this change acts as a volumetric mass source.
Case 2 studies a point force and is motivated as a result of Case 1 (see Case 2).
Case 3 studies a point entropy source, the motivation for which has already been
discussed. Case 4 studies a point heat source. Heat release is the driving force in
Rayleigh’s Criterion as well as in most combustion instabilities.

The modeled system is a combustor that has given boundary conditions.
For the inlet end of the combustor the boundary condition is assumed to be
an ideal acoustic wall for which the fluctuating velocity must vanish. This is
a simplification that can be generalized if needed. The exit is terminated by
a choked nozzle that is acoustically compact, i.e., the length of the nozzle is
negligible in comparison to the wavelength of the oscillation. The exit condition

is given by
!

u v—1
= pa,— = ——M,. 5
AN Polo Ty 5 (4.54)

Understanding these acoustic driving mechanisms is essential to determin-
ing how to control more complicated driving mechanisms that arise from the
turbulent combustion in chambers. Four cases will be shown to illustrate the
method and some simpler driving mechanisms. Since the interest here is to study

the driving, the mean flow will be neglected. This is not precise because the
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energy loss through the choked nozzle is a direct consequence of the mean flow.

However, the mean flow is a minor correction to the acoustics and can be included.

Case 1.

Consider a small sinusoidally fluctuating point mass source located at z*. Pick

the mass source to be of the form
w; = mé(z — z*)e "™ (4.55)
where m is small, the flow is isentropic, and there are no forces acting on the

fluid. Use 4.46 through 4.51 to find

1
aj

R, =

cos (mrz )iﬂr‘h —tkSAN (4.56)
Lc

from which the frequency and damping coefficient can be calculated as

2 0 2((T) o %
w* =~ ag(( o s (x)) (4.57)
a~ ig_(.__ ) (4 58
a Vol K . )
where
m mnrz* 1 1+émo
K {—Egcos( I, )+ ;‘gSAN} (4.59)
and
0 m+#£0
bmo = 7ol (4.60)
1 m=0

The stability of the system can be quickly determined by examining «,

Stable System k > 0 (4.61)
Unstable System £k < 0 (4.62)

Stability Limit Kk = 0. (4.63)
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Hence it is shown that

mnz* apS A
) > 0 a N

Lc m

cos ( (4.64)

is the condition for instability.

In conclusion, a choked nozzle (where A,, > 0) always tends to stabilize the
system just as expected since acoustic energy is lost through the nozzle due to the
non-zero admittance function at the nozzle. This is true in all of the cases that
are terminated by a choked nozzle. The mass source has two aspects effecting sta-
bility: position and magnitude. As expected, the system tends toward instability
when m is increased. The position is also important. Actually, the phase between
the mass source and pressure is the important issue. This is seen by letting the
constant m be complex, i.e., letting the phase of the source be different from the
local pressure. This is the mass addition equivalent of Rayleigh’s criterion for
heat addition (which is recovered in Case 4). For instability the source should
be located so as to be in phase with a pressure antinode; for stability the source
should be located 180 degrees out of phase with a pressure antinode. The mass

source is neutralized if located at a pressure node.

Case 2.

Consider a small sinusoidally fluctuating point force located at z*. This problem
is prompted by the fact that a force is required to fix a point mass source in a
uniform flow field. Neglect entropy fluctuations, mass sources, mean flow, and

assume
by = —byb(z — z*)e (4.65)

The magnitude of the force, l;f, is considered to be complex. This allows the

fluctuating force to be “out of phase” with the local pressure fluctuation. Use R,
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to determine the frequency and damping to get

2. 2[m72 2mm . mnz* qPoR A ——a-—S'A
w" = ag (( LC) LC Vol SIH( LC ) a(z) eal( f) o N (466)
and
2 *
I PR L LL.C 0% TR
o (SANa,o Io sin ( Io ) 7 Ima,(bf)) (4.67)

where the case of m = 0 is the degenerate case of zero frequency and is not very
interesting since the influence of the force vanishes.

From 4.67 it is evident that the energy dissipation (or growth) is deter-
mined by the imaginary part of b ¢+ and the nozzle. The frequency is also altered
due to the point force. These results were found by Aaron [49] in a case where
the major driving was the result of a point force created by vortices impinging on
a barrier in the acoustic field. The imaginary part of b 7 produces energy input
because it represents a component of force in phase with the velocity. Hence a

non-zero power input proportional to force times velocity.

Case 3.

Consider the case of a fluctuating point entropy source in a uniform flow field
where the mean flow is negligible except with respect to the nozzle losses. Assume
we are primarily interested in the pressure oscillations resulting from the entropy
source and the choked nozzle. (The production of pressure waves by entropy
waves incident upon a nozzle is not considered here. This case is examined in

section 4.3.) The entropy source term is represented as
G =q6(z~— z*)e"“’(”)e""m . (4.68)

(The case of a step jump in the mean flow temperature at £ = z* is easily solved

by the use of an upstream and downstream region where the homogeneous wave



48

solution is valid in each region and coupled across the discontinuity at z = z*.)

Following the same procedure as before gives

, Py * e G0S A
Fn = (iw— a) [Zg{q_,;cos(";g )+ (1) @_I%_N}] (469)

from which the frequency can be calculated and the condition for instability is

determined from
*

cos (mrz > 1% 54y, (4.70)

LC "~ @R

As expected, increasing ¢, decreases stability and increasing Ay increases stabil-
ity. Since damping is contained in this model, sufficiently small values of §; will
always be stable. However, the position (or phase) of ¢, is also important. In the
above calculation §; is real but can be complex to allow for a phase shift between

the entropy source and the pressure. (The nature of this phenomenon is similar

to case 1.) This is actually a version of Rayleigh’s criterion which is given in case

4.

Case 4.

A sinusoidally fluctuating point heat source is located at z*. Also assume a
uniform mean flow field and isentropic conditions. It is clear from reviewing 4.11
that a pure heat source is only one term in the equation for entropy. When
conduction, dissipation, and chemical bonding energy is neglected the fluctuating
heat source is proportional and in phase to a fluctuating entropy source. As
mentioned earlier, this is the Rayleigh Criterion which is stated at the beginning
of Chapter 3. The physical principle is generally applicable to any acoustic system
that is driven and it is recognition of this that can lead to active or passive control

of driven pressure oscillations.
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4.3 Linear Acoustic and Entropy Waves

The second method (presented herein) for solving the linearized equations of
acoustics and entropy is treated in this section. This method is the classical
Sturm-Liouville eigenvalue problem and produces all of the eigenfrequencies for
the boundary value acoustics with entropy problem. This section provides the
linear solution techniques for determining the entropy modes in section 4.4 as well
as all of Chapter 6. While the boundary conditions are discussed in general, the
choked exit nozzle boundary condition is discussed in detail. The inlet boundary
conditions are discussed in more detail in section 6.1 . A new exit reflectance and
admittance are defined which incorporate both acoustic and entropy reflectance
at a choked exit nozzle.

The previous section dealt with a method of approximating solutions to
problems of quite general complexity containing all types of sources. The method
is very useful when considering problems containing volumetric contributions such
as distributed sources. Another class of problems, however, are those which
are predominantly boundary value problems such as organ pipes, ducts, and
horns [50]. The oscillations in combustion chambers are very often dominated by
the duct characteristics of the chamber. The case of low frequency longitudinal
modes can often be treated in this way since the elements of the combustor
such as the exit nozzle, inlet, and dump plane are approximately acoustically
compact. That is, the wavelength of oscillation is long compared to the length of
the element. Hence, these elements can be treated as boundary conditions. This
issue of modeling is dealt with in greater detail in section 6.1.

The linearized equations of motion can be reduced from 4.24 through 4.26.
(Recall that the major assumptions already made are that the viscosity, heat

conduction, and dissipation can be neglected.) These derivations follow those of
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Culick and Rogers [51] and Yang and Culick [9]. In the one-dimensional case of
ducts and combustors it is assumed that the flow is in a constant cross section
region. Variable area can be accounted for in some cases when necessary. Since
the flow has constant area and distributed losses are neglected, the mean flow
quantities are assumed to be constant. Finally, neglecting sources, the linearized

equations become

pu; +puul +p. = 0, (4.71)
P, + uP,+~Pu, = 0, (4.72)
s} + us, = 0. (4.73)

One major feature of ramjet combustion chambers and inlets is the significant
mean flow. The mean flow is very important for two reasons. First, the loss of
acoustic energy at the choked nozzle is a result of the mean flow entering the
nozzle. Second, from 4.73 it is clear that the mean flow is crucial to the issue
of entropy when entropy source terms are neglected. Of lesser importance is the
modification of the spatial structure of the acoustic field due to mean flow. The

solutions can be determined by assuming a periodic time dependence to get

P'(z,t) = Py [P+eiKz + P e—c'Kz] ¢~ iMoKzg-ifit (4.74)
' PO + Kz — —iKz| —iMoKz —iQlt
u(z,t):p—ao[U e+ U e ]e 0nTe (4.75)
0
' il —int
s'(z,t) = Ae'wo e M (4.76)
where
9
K=1__kMg , M0=::—3 , k=g, O=witia, (4.77)
and

Ut =Pt U =-P. (4.78)
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The solution to the acoustic pressure and velocity is the superposition of two
waves; one wave propagating upstream (leftward) and one downstream (right-
ward) where the — (+) indicates the upstream (downstream) traveling wave.
The propagation velocity is ag + M, downstream and ay — M, upstream. As the
mean flow approaches zero the solution reduces to the classical sonic velocity.
The solution for the entropy has only one wave that propagates with the mean
flow velocity. This does not require the entropy to be constant throughout the
combustor. The entropy of different particles in the flow can be different but the
entropy of each particle is constant as it moves through the duct with the mean
flow. These solutions can be written in several different forms depending on the
application. The above form will be used in these studies.

The next phase of the -linear problem is to determine the boundary con-
ditions. One boundary condition is required for each of the upstream and down-
stream ends of the duct. The entropy boundary condition at the entrance is also
required. The boundary conditions most often used for acoustics are reflectances
and admittances. The admittance is deﬁned as

!

U
A = poqu (479)

at a specific position. The reflectance, 8, is simply the ratio of the reflected
wave to the incident wave. It is not difficult to relate the admittance to the re-
flectance but care must be taken when applying these conditions that are defined
at £ = 0 to positions where z is not at the origin. The more traditional mathe-

matical boundary condition given by 4.35 can be calculated from the admittance

or reflectance if desired.
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Choked Exit Nozzle Boundary Conditions

The exit boundary conditions require special mention. Often, combustion cham-
bers are terminated by choked nozzles. Marble and Candel [44] showed that
incident entropy waves impinging on a choked nozzle would reflect a pressure
wave. Hence, a choked exit nozzle has an entropy reflectance as well as an acous-
tic reflectance. By defining an acoustic entropy reflectance, Bgg, the reflected

pressure wave can be given by

Reflected Pressure Wave = ,BEEﬂAei%L (4.80)
Cp
where
-M,

= . 4.81
Pes 2+ (v-1)M, (481)

This result is similar to the acoustic reflectance, Sz, where

2—(v—1)M,

= . 4.82
Pe 2+ (v - 1)M, (4.82)

These results are linear and thus it is proper simply to add the reflected acoustic

pressure wave and the reflected entropy pressure wave. Therefore,

_ s _: . s 'YPO ;0
PoP e |KLe tMuKL — ﬂEP0P+etKLe tMoKL+ﬂEE Ae"o
c

P

(4.83)

where P, is dimensional and P* and P~ are nondimensional terms. The following
manipulations with 4.83 were not the obvious choice until the end of work on
the following chapters. It is presented here since it is convenient to use these
definitions in later derivations as well as here. In modeling the linear acoustics,
it is useful to define the linear reflectance as the ratio of the reflected wave to
the incident wave. That is, given the incident wave, the reflected wave is simply
the product of the reflectance and the incident wave. (It should be observed that
this definition results in a slightly different form for the inlet and exit.) Often the

reflectance is given for the case where the boundary is chosen to be at the origin,
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(i.e., z = 0) and care must be taken when applying reflectances at locations other

than the origin. Define an exit reflectance, Bgxir , such that

P-
Bexir = 57 - (4.84)
As a direct consequence of 4.83 and 4.84
_ ﬂE e:‘KL
BexIiT = KL _ g1 };A_ EL oKL (4.85)
cp
It is also common to define the admittance as
ul
AN = poaoF . (486)
Using 4.85 with 4.74 and 4.75, 4.86 becomes
K — BE
An = 4.87
EXIT = g (4.87)
where
A 071 irr
K=1- ﬂEEg'P_ ¢ s LKL gMoKL (4.88)
P

It should be emphasized that these definitions assume that the acoustic exit
reflectance (defined at z = L), Bg, does not vanish. When the acoustic exit
reflectance vanishes, P* is undetermined in 4.83. In this case, the reflectance

Bex1r should be defined in terms of A/P~. Another convenient way to write the

reflectance is
B =|Ble?®. (4.89)
Returning to 4.74-4.76 with 4.78, there are four unknowns P*, P~, A, and
(1. The inlet boundary condition on entropy can be of two forms. If the inlet
entropy is a function of the local pressure then A = A(P*,P~). If not, then
A/P~ is an input parameter. Use the inlet and exit reflectances (or admittances)
to eliminate P* and P~ from 4.74-4.76. If A = A(P*,P~), then A can also be

eliminated to give a transcendental equation for the eigenfrequencies, 0,

F(Q) =0. (4.90)
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If A is an input parameter, then F(f2) = 0 contains the parameter A/P~ and is

solved for the eigenfrequencies subject to the input parameter.

4.4 Simple Entropy and Acoustic Modes

To illustrate the modes of oscillation in simple problems of acoustics and entropy-
induced acoustics, consider a constant area burner that is initiated by an acoustic
wall with leakage and terminated by a choked nozzle. The acoustic wall with
leakage condition does not restrict the generality of this analysis which will be
clear from the derivation. It is desired to find the fundamental acoustic modes
with and without entropy. The acoustic equations are 4.71 and 4.72 while the
entropy is given by

8 +ups, +0s' =0 (4.91)

where o has been included for generality. The geometry for this case is shown
in Figure 4.1. The solutions to 4.71 and 4.72 are given in 4.74 and 4.75. The
solution to 4.91 is

s'(z,t) = Se v eivetemint (4.92)

The boundary conditions to accompany the equations require some expla-
nation. At the inlet, the entropy fluctuation is assumed to be pressure-induced.
For example, the case of an oscillating shock wave in an inlet diffuser is a pressure-
induced fluctuating entropy source. The entropy fluctuation at the inlet, z = 0, is
related to the pressure fluctuation at £ = 0 by a constant Ay. Ao can be complex
to allow for a phase shift between the pressure and the resultant entropy. The

inlet acoustic boundary condition is the reflectance, f; , such that

+
Br = -gj . (4.93)

The exit reflectance is given by 4.85.
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Figure 4.1: Geometry for Illustration of Entropy and Acoustic Modes in a Con-

stant Area Burner.

It cannot be overemphasized that this acoustic problem is a boundary
value problem and that as a result the application of the boundary conditions is
extremely important. This is especially true when mean flow is considered. To

illustrate, consider the condition for a rigid wall,
v =0. (4.94)

Without mean flow it is equivalent to require

dpP’
'—d; - 0 . (4.95)

However, with mean flow, these two conditions are not equivalent. In fact, to pick
4.95 requires that energy be added at the boundary. In other words, an active
boundary is required to satisfy 4.95. An acoustic wall, on the other hand, neither

generates nor absorbs energy.
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4.4.1 Application of Boundary Conditions

The boundary conditions 8;, B, and Bgg can be used with 4.74-4.78 to eliminate
the linear constants P* and P~. The resulting equation is

B1Bre? KL _ 1 + ﬂE‘E% % e s LKL ~iMKL _ ( 4'96)
This is a transcendental equation for the eigenfrequencies or resonant modes of
the acoustic-entropy system. This is a very useful form of 4.96 for studying the
oscillatory modes of the system. The solutions of 4.96 are for the linearized (or
infinitesimal) pressure oscillations and in this sense are acoustic pressure oscilla-
tions. However, it is convenient to reserve the use of the term acoustic modes
to mean the classical acoustic modes in the absence of entropy fluctuation. The
term entropy-induced modes will be used to describe the modes in which pres-
sure oscillations are a result of the presence of entropy waves. Also, these entropy
waves are not entirely arbitrary; rather they are a consequence of existing pres-
sure fluctuations (through the inlet coupling) and are of the same frequency (not
necessarily same phase) as the linear eigenfrequency found by solving 4.96.

The reason that equation 4.96 is in a convenient form is that the two modes
can be seen directly in the absence of the other. The purely classical acoustics
mode can be seen by letting Sgg = 0, and is simply a balance of the first two
terms in 4.96. A pure entropy-induced oscillation can be generated by setting
Br = 0, that is to say that the only waves present are the entropy wave moving
downstream and the reflected upstream moving pressure wave from the entropy
wave impinging on the choked exit nozzle at £ = L. The entropy-induced modes
can be obtained by neglecting 1 with respect to the first and third terms in 4.96.
For typical values of the reflectances and very small entropy coupling, this is the

correct balance of terms.
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4.4.2 Limiting Cases

Three limiting cases are presented here to illustrate first the procedure of solution
and second the physical significance of the modes of oscillation. The first case
neglects entropy and recovers the pure classical acoustics as it should. The second
case neglects the acoustic reflectances of the inlet and exit to obtain a series of
oscillatory modes resulting from entropy. These modes are due to the entropy-
acoustic coupling at the exit and the acoustic-entropy coupling at the inlet. This
case also illustrates the dependence of the mode on the combustor length, the
upstream traveling acoustic velocity, and the mean flow velocity. The third case
is the most interesting since it retains the acoustic reflectances and entropy to
determine a series of oscillatory modes herein defined as the entropy modes of
the acoustic system. Typical values for each case are given in the calculations
section following the three cases. The interpretation of these cases is given in the

Summary of Acoustics and Entropy Modes which follows the calculations.

Case 1 — No Entropy

The case of no entropy is treated in two parts. The first illustrates the case of
no entropy and no acoustic losses. The second illustrates no entropy but retains

acoustic losses (or gains) at the inlet and exit boundaries.

Case la. No Acoustic Losses

This is the case where there is no entropy and no acoustic energy
loss at the boundary conditions. When there is no energy loss the
magnitude of the reflectance is unity. With these assumptions, 4.96

is the balancing of the first two terms to give

SUKL+E+85) _ (4.97)
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where
Br=B1]¢™®  and  Bg = |Bg|e?®". (4.98)
Solving yields = w + 1 to be

w = ao(l —Mg)

L (m7r - QI - QE) (4.99)

where by definition w is greater than zero and by the calculation
a=0. (4.100)

It is natural to find a = 0 in the absence of damping and driving. The
frequencies, wy,, are simply the classical acoustics organ pipe modes

of a one-dimensional chamber with mean flow.

Case 1b. Acoustic Losses (Gains) at the Boundary

Case 1b relaxes the constraint in 1a that the reflectances have mag-

nitude unity, so that

|B1||BE|e2 K+ ert8e) — 1 (4.101)

Hence,
w= a—()(—li#ﬁ(mn _ &, - g) (H.) (4.102)
a=SL=M) 1 (5,6, (7). (1109)

The frequencies are the organ pipe modes while the damping, a, can
be greater than, less than, or equal to zero depending on whether

the product of |B;||8g| is greater than, less than, or equal to one

respectively.
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Case 2 |B;| Vanishes

Choosing |8r| = 0 will generate pure entropy-induced oscillations and balance the

last two terms in 4.96, giving

2 1 LeikLe—aMokL =1.

ﬂEE;FC vo (4.104)
Let
A Al ;
7)-: = %8'2{,‘ and ,BEE = lﬂEEleaz‘bEE (4105)
SO
_ agMy(1 — M) A v
a= = In { |Bzsll 5= - (4.106)
and
2aoMy(1 — M,
W= %o 01(I'L 0) (m7r - QA - QEE) . (4.107)

Several important observations can be made. Since the inlet reflectance is
zero, the only important times are the convective transport time from the inlet
to exit and the acoustic travel time from the exit to the inlet. This is directly

apparent in the above calculations from the term

(;1: + ;.%AJ%[OT)) L (4.108)
in the exponential of 4.104. Also, as the term A/P~ is diminished, the entropy
induced oscillation never reduces to the acoustics mode. These modes are separate
and distinct in the limiting cases. As A/P~ is reduced to zero the entropy induced
oscillation simply becomes so highly damped as to vanish and does not approach
classical acoustics.

It is also clear in this derivation that the frequency of the pure entropy-

induced oscillation is inversely proportional to the chamber length L.
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Case 3 |A|/P~ Small and |6;| # 0

This case is more interesting than case 2 since ; is seldom identically zero as in
the case of an inlet shock and dump plane and will be referred to as the entropy-
induced mode throughout the remainder of the text. In this limiting case, neglect
the second term, 1, and balance the first and third terms in 4.96. Then, to check
the validity of the balance, the magnitude of the first term is compared to one

and should be very much greater than one. Balancing the first and third terms

gives
12mr
'ﬂl' lﬁEl: _ eaoM;(o;iMo) e'.ﬂoMo%f'*'m 2 (2ept8s—0p-21+%) (4.109)
|Beel|lg= X
from which
2aoMy(1 + M,
w= 2% oL+ 0)(m7r+<I>I+<I’E—‘I>EE—‘I’A—Zr') (4.110)
L 2
—aoMo(1 + M) |8:||BE|
o In | —PHPEL 4.111
27L Beell |2 —

and m is any integer which keeps w greater than 0.
The magnitude of the first term is

—~2al

|B1||BE|e 0~ (4.112)

and should be checked when calculations are made with 4.110 and 4.111 to verify

that one is negligible compared to the first term.

4.4.3 Calculations

The following calculations illustrate the three limiting cases and are based upon
typical parameters for a ramjet combustor. Case 1 has 8; = 1 with upﬁl_u = 0.
Case 2 has f; = 0 with ]}l,fll = 10"? and Case 3 has f; = 1 with ﬂpil_u =107, The
equations used were 4.102, 4.103, 4.106, 4.107, 4.110, 4.111, and 4.112.
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ao = 3000 ft/sec ¢, =.3 BTU/lbm °R
My,=.3 ~=1.28
Based on { L = 4.0 ft &,=0
| |Bee| = 144 Opg =3
Case 1b |5 =1, leé_ll =0
w ~ 0, 341.25, 682.5, 1024, ... Hz
a ~ -4.564 Hz

Case 2 |§;| =0, HPA_H =10"?

w =~ 78.8, 236, 394, 551, ... Hz
o~ -416.24 Hz

Case 3 |§/| =1, 1};—‘;“ =107
w ~ 0, 292.5, 585, 877, ... Hz
a =~ -769.1 Hz
By calculation the first term in 4.96 is of order 10°, which is much

greater than 1 for verification of the initial assumption.

To illustrate the acoustic modes (Case 1) relative to the entropy-induced

modes (Case 3), the eigenfrequencies are plotted relative to each other in Figure

4.2.

4.4.4 Summary of Acoustic and Entropy Modes

Several important observations can be made from this section. Case 1 recovers

classical acoustics from the acoustics with entropy formulation. These modes are
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OSCILLATION FREQUENCIES
ACOUSTIC AND ENTROPY MODES

short — Entropy Modes

tall — Acoustic Modes

= — Both Modes
+ ] ] L 1 ] { L } L { | 1 | |l
0N 300 600 900 1200

Hz.

Figure 4.2: Eigenfrequencies for the Acoustic Modes (Case 1) and the En-
tropy-induced Modes (Case 3).
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called the classical acoustic modes or acoustic modes of the system. Case 3 is
solved to give a new mode of oscillation which is called the entropy-induced mode
of acoustic pressure oscillations. When 4.96 is solved with sufficiently small en-
tropy fluctuations the classical acoustic modes are only slightly modified by the
entropy, and likewise the entropy mode is only slightly modified by the acoustic
mode. As long as the entropy is small enough that the entropy mode damping,
a, is more negative than approximately — 200 radians per second, then the inter-
actions between the two modes is less than about one percent. For larger values
of entropy, the eigenfrequencies of 4.96 can be solved numerically to show the
level of interaction between the two modes. This procedure is used in Chapter
6. Both modes will continue to coexist even for very strong interactions between

the modes.



Chapter 5

Acoustic Response of a Plane

Flame

In this chapter we study the response of a plane flame in a general combustor,
specifically, the response of the flame to impinging pressure and entropy waves is
determined in the limit of infinitesimally small disturbances. The general issues
are (1) conditions for the stable location of a flame, (2) the response to forward
and rearward running acoustic waves, (3) the response to incident fluctuating
entropy waves, (4) the resulting motion of the flame sheet due to these perturba-
tions, and (5) the effect on the stability of pressure oscillations in a combustion
chamber containing a planar flame sheet. The last two of these are addressed in
Chapter 6.

The response of the plane flame is determined by treating the flame as
a matching condition in a flow field in the same manner as Chu [41]. The use
of a plane flame is a crude approximation to the actual flame contained in the
combustor. In the low frequency limit the wavelengths are often much longer than
the combustion zone even though the combustion zone may have finite thickness.

In these cases it can be useful to consider the approximate case of an infinitesimal

64
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flame sheet.

5.1 Problem and Geometry

The goal of studying the plane flame is to obtain a modeling unit to use in
combustion chambers. The issues of boundary conditions at the ends of the
combustor will be discussed in later sections of Chapter 5 and in Chapter 6.
Consider a plane flame that is situated in a combustor (or duct, for that matter)
where the area, S, is an arbitrary function of position, z ,as in Figure 5.1. The
incoming flow is also given an imposed fluctuating entropy such that at z = 0
the entropy consists of a steady state term and a given small periodic fluctuation
term, so that

s(z,t) = 8o+ Aet (5.1)

where A may be a complex constant (and possibly a function of frequency w).

x=0
X

j—— Xf—bl .
DIVERGING

CHANNEL

PLANE
FLAME

Figure 5.1: Variable Area Combustor - S = S(z).

It is assumed that certain characteristics of the flame are known. Typically,

these are determined from experimental data from the literature. The important
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characteristics are the dependence of flame speed, S;, on changes in pressure and
temperature, or rather the partial derivatives of the flame speed with respect to
the pressure and temperature of the incoming mixture. The mixture is assumed
to be thoroughly mixed fuel and oxidizer, and any equivalence ratio dependence
is assumed to be contained in the flame speed, its derivatives, and the heat of
combustion.

Two issues are critically important in developing this model which deter-
mine whether or not the model can have any practical importance. The first
is stability. The geometry of many combustion chambers consists of slightly di-
verging cross-sectional areas. It needs to be shown that, with the introduction
of fluctuations, a plane flame will reach a stable location. Certainly it is unac-
ceptable to have a non-stationary or unstable mean flame position. This issue of
stability will be addressed in the next section. The second concern is whether
or not it is possible to generate a periodic oscillation that is neutrally stable.
Should it be that the position of the flame is self-accelerating, that is, if the flame
is perturbed it tends to move and its fluctuation further accelerates the flame,
then the model would be useless. This motion is determined by both the flame

response and the boundary conditions and is discussed later in this chapter.

5.2 Stability of a Flat Laminar Flame

This section will show the condition for which an idealized flat laminar flame will
be stable in a changing area duct. Consider a changing area duct with a stationary
laminar flame having infinitesimal thickness. Assume that the ideal gas law holds
and that the fluid properties, v, ¢,, and R are constant throughout. For a typical
low speed deflagration, the flow everywhere in the duct has low Mach number

and thus the O(M?) contributions to the equations of motion are negligible. The
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flame is regarded as an infinitesimally thin heat addition zone. The pressure
is essentially constant (to O(M?) ) and the heat addition causes primarily a
temperature and thus density discontinuity at the flame. From continuity, the
velocity must suffer a discontinuity at the flame to accommodate the density
discontinuity. The steady state equations of motion give the following matching

conditions across the flame

pruy = P2z, - (5.2)
P]_ = Pz 3 (53)
cpTl = CpTz — Q . (5.4)

Define a constant, A, to be temperature ratio so that

__Tl__ Q - M,? _ U
o T2 - Tlcp - M]_ )_ Uy (5.5)

where the speed of sound is a; = \/7RT; .

22 1+

Suppose that the flame is subjected to a disturbance of velocity, u?, , in-
cident from the downstream direction. In response the flame moves z' from its
average position positive in the downstream direction, with a fluctuation of ve-
locity v} = dz'/dt, also positive in the downstream direction. In subsonic flow
the motion will produce a disturbance, u), , upstream of the flame. In the pres-
ence of a nonuniform mean flow, the flame is also exposed to fluctuations due to
its motion along the gradients of the mean flow proportional to z'dg, /dz, etc.

Hence, the fluctuations to which the flame is exposed are

d—
u, = —vp+2a (Ti%l_) + uy, (5.6)
dF
P =1 (—5) + Py, (5.7)

and

di
u; = —vj+7 (—(g) + uy, (5.8)
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dP 2
! ! !
Pz =z (—) + P2e (59)

where the bar denotes mean quantities.

It is assumed that the flame responds quasi-statically to a small distur-
bance so that 5.2 through 5.4 will apply at all times in a reference frame attached
to the flame. Substituting the mean quantities plus the fluctuating quantities 5.7

and 5.9 into 5.3 gives

F d
Pl +2 (%%) +P)=P+ ( sz) +P,. (5.10)

In steady flow, P, = P, and dP, /dz = dP,/dz so that 5.10 becomes
P,=PF,. (5.11)

From 5.5, after dropping the steady terms, we find

—vy+2 ('Z )+ up, = A?(—v} + o' (‘fl_ ) +u},). (5.12)

Use vy = dz'/dt and di,/dz = du;/dz to find

dz' du 2 .
o (dm) o )(A ul, — uy,). (5.13)
Let 7 = —1/(da/dz). Then the solution to the position of the flame can be
written as
1 =t ft ¢
! — - = 2.1 — ! !
()= /o e (A2u!, — ul,)dt'. (5.14)

This result is analogous to the case of stability of a shock wave in a supercritical
diffuser [52]. In the case of the shock wave, stability occurs when supersonic flow
downstream of the choked throat in a diverging flow undergoes a shock.
Whatever the form of the imposed disturbance, as long as it lasts for a
finite time, the transient motion will decay only if 7 > 0 . Hence stability requires

that

du ds
—_— _ 5.
= < 0 or = 0 (5.15)
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where S is the cross-sectional area. Thus the flame is stable in a diverging duct

in which the speed decreases in the flow direction.

5.3 Matching Conditions for a Plane Flame in
General Combustor

In this section three matching conditions of continuity, momentum, and energy
are derived for matching two acoustic regions across an acoustically compact
plane flame. These matching conditions form the basis from which the acoustic
and entropy response of a plane flame are determined in the next three sections.
these matching conditions are also used to study the oscillating flame inside a
combustor system in Chapter 6.

The combustor given has two boundary conditions. These are set at the
inlet and exit of the combustor. In addition the two regions are matched at
z = z* across a plane flame. The matching at the flame is carried out in the
spirit of Chu’s work [46] [47] on plane flames from region 1 to region 2. (Chu’s
work did not include divergent flows nor considerations of stability.) The method
is also similar to that used by Culick and Rogers [10] on shock waves in diffusers.

Actually, this is an extension of Chu’s work to a diverging duct and then
a specific application. The arguments presented by Culick and Rogers on the
quasi-steady behavior of the flow can be applied to the flame case just as they are
in the shock case; hence, we treat the flow as quasi-steady and one-dimensional.
The constant area case will be presented along with the divergent flow case at the
beginning. Then not all of the constant area case will be shown. This is because
it can be recovered from the divergent flow case when the change in area with
respect to position vanishes (just as it should).

The procedure is to treat each of the flow quantities as a time independent
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mean term (indicated by subscript 0) and a fluctuating term (superscript prime).
Place these into the equations of motion to recover the mean flow conditions and
the first order perturbation equations. The equations to be used are continuity,
momentum, energy, and the ideal gas equation of state. In both cases the flame

is located at z = z* + 7'

Constant Area Duct Divergent Duct
p =p+op p=ﬁ+z'%z-+p' (5.16)
u =u+u+5] u=ﬁ+z'-Z—Z+u'+Sg (5.17)
Sy =8 +8! S;=5+S5; (5.18)
Q =Q+¢ Q=Q+Q (5.19)
P =P+P P=P+z'%—§-+P' (5.20)
T =T+T T=T+z’%§-+T' (5.21)
S, =—u\+ 8! S, =—ui+ 8 (5.22)

All of these equations have been corrected to allow the flame speed to change.
The apparent flame speed, S,, has been introduced to correct the steady state
equations. Terms that correct for the changes in the flow quantities due to the
change in area are contained in the divergent case. This allows the use of the

1-dimensional steady equations of motion which are

p1¥1 = pauz, (5.23)
Pi+piul = P+ pul, (5.24)
1 1

Q1 = cpTe+ -2—u§ —enTy — Euf (5.25)

for continuity, momentum, and energy respectively with Q defined as the heat

of combustion per mass burned. After substitution of 5.16-5.22 into 5.23 and
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elimination of the steady state terms the equation of continuity becomes

1 1 1 1 = ]
A (1+S) + ‘—_91—"2(1+ (G+S))—¥l<a+§)=
P 31 Uy P2 U Uy Uz u;

w2 [ () e () S
o ol )
L IO ()
(5.26)
where G is defined for convenience to be
)
G="22 - %, (5.27)

and S is the duct area.

Continue with the same procedure for the momentum equation and invoke
low mean Mach number of the flow. This is not required but significantly reduces
the algebra. This is to say that we will neglect terms of O(M?). (It is worthwhile
to point out that this is not always the case and care must be taken later in
neglecting higher order terms to realize that certain assumptions have already
been imposed.) Assume that the flame is infinitesimally thin and subtract the

mean flow terms to get the equation for conservation of momentum

_  ,dP ,dP;
(P, + z’—d;‘ +P)=(P+=z d—’ +P). (5.28)

Since P;/P, = 1 (neglecting O(M?) terms) the mean flow terms vanish to give
the simple relation ' :

% - % . (5.29)
This is a nice result since there is no difference between the constant area case

and the divergent case (to O(M?)).
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Repeat these manipulations on the energy equation, neglect the O(M?)

terms, and neglect second order terms involving ¢;, and ¢}, to find

e _ (c_zc_zﬁ__>+(9_z§£ Ti)

Cp1 Cp2 Tl Cp1 Cp1 T1 Tz Tl
+z,dlnS’ fg_g_zzdlnTz_dlnTl
dz \c¢p1T1dlnS dlhS )~

cplTl

(5.30)

The above equation was written with the mean flow bar dropped but assumed

nonetheless wherever there is no prime. This notation is continued throughout.

The perfect gas law P = pRT becomes, to first order

P T 4 .
P T o,

E(lnT+lnp—lnP).

The mean flow terms in 5.31 can be written as

d d 1
I’B(lnT + lnp -— lnP) = %(ln E) =0
to give the familiar first order result
Pl TI !
p_T s
P T »p
For a polytropic gas
T & a-1P
T ¢ v P
and
pl _ lP' B s_l
p 1P ¢
To simplify some of the equations define C, and E, as
o ding, A dlIn (7.)
C, = —|=4+1) —— = 4+1) ——=
(pl + ) dins T\z T m(s)
dln (ﬁl) ,d In (1_1,1) S;
dIn (S) 1+ iz T uy

() (i) 8 (g, 8

din(S) dz Uy uy

)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)
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and
ggzﬁdlnTz _ dinT
¢1TidlnS  dinS°

These terms, C, and E,, contain the area change contributions that will enter the

E, =

(5.37)

general matching condition.

5.4 Summary of Equations

This section summarizes the equations of matching in the previous section and
introduces specific simplifications used to solve examples presented later. These
simplifications include a consistent Taylor series expansion of denominator terms;
distinction between constant area and divergent area contributions; harmonic
motion of the flame; consideration of all terms to O(M?); elimination of S} and
Q' in favor of acoustic terms; and small flame speed fluctuation with respect to
the mean flow velocity.

In summary, the equations of motion are

Continuity
P} [ ,1dS
Ay +—=A — Ay ——As=2=-—C .
2+p1 1— Ayg pzAs 25 5-Ce (5.38)
Momentum
P _ B
-1_ 22 5.3
Pl Pz 4 ( 9)
and Energy
Q' (sz C;,z Tz C;, ) (sz Tz Té Tl') ' 1dS
el B [ e e e I ot /78 5.40
CP1T1 Cp1 Cp2 T]_ Cp1 Cp1 T]_ Tz T1 Sd s ( )
The gas law gives
P4 T P T
———=——==0 and =2-2_22_9. 5.41
A pp Ty P, pp T (5.41)
The following definitions are used in 5.38
Sl
A =141, (5.42)

u;
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Az = u—:, (5.43)
Sl
A3=1+31(G+ :i) ) (5.44)
U2 Uy
~ and
Sl
Ag=2 (G + _—‘) : (5.45)
U2 U
Also,
L s, nm-1h (5.46)
Ty Cp1 n P
and
! 1 PI !
Az 5 (5.47)

5.4.1 Solving for G

This section simplifies some of the terms in 5.38 in order to solve for G. When

considering linear acoustics, the following terms are small:

PR s T T3 uw
— =, =, ==, =<1 5.48
P]_’ cpl’ Tl’ Tz, al’ asg ? ( )

while no restrictions are placed on G, S}/u;, and z'. More will be said about
these terms later. Using a Taylor expansion, define D such that

1 1P s T T

————— &1 —=L +>2=D. (5.49)
1 Pl 8 T] T2 P :l‘ 1'
(1 * v P; p1 I T T2) N cPl 1 2

With higher order acoustics terms neglected, and after considerable manipula-

tions, G can be found to be

G =~ (B_I)ﬂ_{_gz_(l_'_ﬂ) (E_ﬂ)_i_

Uy Ui Uy Uy T2 Tl
S
z'-;—%;C,D . (5.50)

G=G+H (5.51)
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where @ is the same term that would have been found by substituting the con-
stant area version of 5.16-5.22 into 5.25. (Verified by actual calculation.) Use
equations 5.50 and 5.51 to show
1dS T; S|
Hrxd |o—|(cD-B221% (14 %)) (5.52)
S dzx Uy L3 Cp2 Uy

For the motion of the flame to be harmonic it is assumed that

S! = —ing' (5.53)
and
8!~ u\ = —iNz'  (5.54)
which gives
T = %‘i (5.55)

This gives a relation to eliminate z' in favor of S} and u) .

Steady State Equations of Motion: Divergent Channel

The divergent channel contributions have been lumped into the terms C,and E,.
The evaluation of the terms C, and E, requires an analysis of the steady state
quantities in a divergent combustion chamber. Start with the control volume
given in Figure 5.2. In the limit that Az — infinitesimal, we find that

Continuity gives

dp du dA
7+7+7——0, (5.56)

Momentum gives
d(P +pu?) dA
—_ 57
(P + pu?) A 0, (5:57)
and Energy gives
d((e+2)pu) 44 A,

(+2)m A"+

(5.58)
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Figure 5.2: Control Volume for Flame in Changing Area Channel.

where Ah, is the heat release inside the control volume.

Neglect terms of O(M?) and treat ¢, as constant to find

din(p) +dln(v) + dln(4) =0, (5.59)
dln(P)+dn(4) =0, (5.60)
and
Ah,
din (T) - of = 0. (5.61)
The gas law yields
din(P) —dln(p) —dIn(T) =0. (5.62)

Using equations 5.59 and 5.62 to eliminate P with 5.60 and 5.61 we find

Ah,
T

din(u) =dIn(T) = (5.63)

To evaluate E, , consider region 1 and 2 separately. In each case Ak, = 0 and

hence

dln(T}) =dln(T3) =0 (5.64)
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from which it follows that

E, =0+ 0(M?%). (5.65)
From 5.63 it follows that
dln (u) = 0+ O(M?) (5.66)
and
dln (p) = —dIn (4). (5.67)
Evaluate C, to get
)
C,=-22 (G + (1 - ﬁ) i) + O(M?). (5.68)
U2 Ui/ Uy

Then use 5.65 and 5.52 with C, to find

) '
Ha L1985 (ﬂ_“;) e (G+( _ﬂ) i) D. (5.69)

~ Sdz -0l Uz U/ uy
Define a reduced (or dimensionless) frequency such that

9

5.70
ig 10

=

in the same manner as Culick and Rogers [10]. It is also convenient to define
S —u\ .
R=-— (—‘——"i) i2p. (5.71)
Incorporate 5.70 and 5.71 into 5.69 to get

(]
HN%(G+(1—1‘3)§£)R. (5.72)

Evaluation of the Constant Area Contribution — ¢

Now that the term H in G that contains the contributions due to area change

has been considered, return to 5.51 to find

]
= (G + (1 - -“—’) i) R. (5.73)
N uy/ uy

[y

G=G+
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Rewrite 5.73 to get

ﬁ ~ R U2 St'}
G | —— |G+ =(1——) L} . .
(Q—R){ + 0 ( u1) u; (5.74)

Clearly, if dS/dz = 0, then 2 — oo while R remains finite, and G reduces to G2.
Consider G. From equation 5.40 where E, = 0 it can be shown that

L _enhT (mﬂil_ iz) comTh @r

. 5.75
T, ¢ Th cp2T3¢cp1  cpy cp2 T3 ¢ Th (575)

Eliminate T} from G and after several rearrangements it can be shown that

! ! !
G = (Eﬁ,\— )§+-&(§i+1) 9

R, u; Ry \u p2 Ty
_E (:?1'“) (cﬂ,\_l) L
Rl Uy cpl sz
_n—1 (ﬂ+1) (‘:?JA_l) B
Y2 Uy Cp1 Py
2—1(5 ) (Rz Y 8! )
+ —+1]{=A - . 5.76
@) ety ) e
This result is equivalent to that found by Chu [53] When S!/u; << 1 then

~ R2 St, Rz Q, R2 (C 2 ) S;
G = (—,\—1)—+— -=|Fx-1]+
R, u; R szTl R, Cp1 Cp2

——-—"’_I(EBZA—1)5+"2_1[53,\ 0 S ]
Yz Cp1 P, Y2 R (12+1)?2 (y+1)2

(5.77)

Evaluating the Magnitude of H

In order to evaluate the importance of the area changes, it is convenient to study

the magnitude of H. From 5.74

R S!
X =—

u

H (5.78)

and

1
Roc =M (5.79)

a; Uz
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In the case that Sj/u; is << 1 then H becomes second order for typical

from which

values of the mean parameters. For these cases it is consistent to neglect H.

5.4.2 Steady State Conditions to O(M?)

To keep the expansions consistent to O(M?), the steady state terms are evaluated.
The steady state of the flame is given in a coordinate system where the flame is
stationary. For the flame to remain stationary, then u; = S; where S; is the mean
flame speed. The equations of motion are given in 5.23-5.25. When neglecting

O(M?) terms these equations can be solved to give

B 1o, (5.81)
P,
pr _ Bi 2
o = R + O(M;), (5.82)
= =X+0(M}), (5.83)
Ty
2 _ Ry 2
o Rlz\ + O(M7), (5.84)
and
M22 71 Ry )
—= = =)+ O(MH). 5.85
M12 ~o Rl ( 1) ( )

Elimination of S/ and Q'

The acoustic field is described in terms of u', P, and s'. The matching condition
for G contains §] and Q'. It is preferable to express S! and Q' in terms of the

acoustic field quantities. The flame speed, S;, can be written as

St = St(Pl,Tl) (5.86)
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where P, and T refer to the incoming (or upstream) quantities.

5.86 to find
_ 95
Y )

and eliminate 7] with 5.34 to find

3
P{+—§1T1',

S oTy

[ gannot) p, [onr

!
St - 3P1 aTl P]_ T 1 6T1 cpl 51
Define
B.S't 65, T1 M- 1
W1 - -
6P1 6T1 P1 T
and
STy
W2 - 6T1 Cp1
to get

‘St' = WIP{ + WzS'l .

Differentiate

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

The term Q' in this formulation is identical to Ah!. (Q was used to

conform to Chu’s formulation.) It is possible to work on a model for fuel mixture

or composition fluctuation. It is here that such considerations would be included.

Just as for W; and W;, another two constants can be defined as Wy and W,. In

this study, the fuel mixture is considered ideal; hence ARl is zero as well as Wy

and W,.

Case of S{/u; Small in G

When S;/u, is sufficiently small then G is given by 5.77. Neglect for now ~y and

~; - Using 5.91 in 5.77 results in

~ Ry ) 1 . ' R, 1
G = [=A-1)—(WP +W. —
(R1A ul( St 231) + R, cp2Ty

R, Cp1 Cp2 Y2 Cp1 P,

_B (f?l,\—1) L1y 21 (ﬁ'ﬁ,\—l) Lp

(W3P1’ -+ W48’1)

(5.92)
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Define
Rz W1 Rz W3 Yo — 1 (sz ) 1
W=(—/\--1)—'+— - ——A—-1] = 5.93
5 R, u;  RycpTy Yz Cp1 Py (5.93)
and
R2 Wz R2 W4 R2 (C 2 ) 1

W—-(—A—l)——!—— - ={Fxrx-1]— 5.94
¢ R, L51 R, szTl R, Cp1 Cp2 ( )

to get
G ~ WPl + Wes', . (5.95)

5.4.3 Combustor Considerations

The combustor consists of two regions which are matched across the flame as in
Figure 5.3. Each of the two regions (0 < z < z; and z; < z < L) are linearly
acoustic and governed by 4.71-4.73. To determine the response of the flame in the

combustor one has only to match the acoustic regions 1 and 2 across the flame.

ENTROPY GENERATION

DUE TO
ACOUSTIC- ENTROPY
COUPLING
A > INCIDENT - TRANSMITLED
P_I_ ENTROPY ENTROPY
REFLECTED{ TRANSMITTED
“'f‘ ‘—/—\J A~
P (Py) (P)
A —

~

X4

Figure 5.3: Combustor Containing a Plane Flame.
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Matching Conditions

The matching conditions at the flame are continuity, momentum, and energy
across the flame sheet. Hence, apply 5.39, 5.40, and 5.95 at £ = z* + z' with the
definitions of W;. Define

1 [Mm—11 Ws )
! Cp2A ( M P oy (5.96)
and
Cp1 1 W4
W= 2| —+ 5.97
’ Cp2A (cpl cplTl) ( )
to get (from 5.40)
/]
% = W-,P{ + WgS’l . (598)
2

There is no contribution from change of area in 5.98. There are two reasons
for this: neglecting O(M?) terms, and treating the divergence of the duct to be

small. Then T in 5.98 can be eliminated in favor of P} and s}. Define

Wo = ¢, (W7 - ”2’; 1 %;) (5.99)
and
Wio = cp2Ws (5.100)
to get (from 5.98)
8y = WP + Wyes) . (5.101)

The solution of the governing equations in regions 1 and 2 can be solved

directly to get

Pi(z,t) = Py [P;fe"‘ =y P;e“‘Klz]e”"MmKl’e-‘“‘ . (5.102)
uy(z,t) = Lo [Pl'"e"K“c + Ul‘e"'K”] e~ MoKz —ifit (5.103)
P10a10

si(z,t) = Ae'hio%e i (5.104)
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and
P,y (z,t) = Py [P;' efar Pz"e_‘K”] e *MaoKaz p—ifit (5.105)
P. . . . .
uh(z, t) = —2— [P ez 4 Uy e~ a7| gmiMaoKaz ittt (5.106)
P20020
8y(z,t) = Be'vas®e—i0t (5.107)
where
k 1, .
Kn = T:nwz”-; ’ kn = ;—; s n,, = Wy + 10, (5.108)

and the constant for the magnitude of the upstream entropy is A and for the
downstream entropy is B. The unknowns constants are P, Pr, P, Py, B, .
Use the inlet and exit boundary conditions along with 5.39, 5.95, and 5.101 at

z = z* + 2’ to eliminate the first five of these constants to give
F(Q)=o0, (5.109)

a transcendental equation for the eigenvalues ,, .

In the elimination, it is necessary to point out that the ratio of A/P[ is
required. This is due to the lack of a boundary condition thus far for the entropy.
If a model for the entropy generation is chosen (such as the fluctuating shock
in the inlet diffuser) then A/P~ can be eliminated. This will be discussed in

Chapter 6. Here, the term A/P{ is simply treated as a given parameter.

Summary of Section 5.4

In summary, Section 5.3 developed the equations of matching for an acoustically
compact plane flame in an acoustic medium. Section 5.4 simplified these results
as applied to a typical ramjet combustor environment. In addition, the general
procedure for solving the linear eigenfrequencies is outlined. This analysis will be

used in the next two sections of this chapter and in the modeling of Chapter 6.
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5.5 Response to Acoustic Waves

Before showing the mathematics of the complete combustor, it is important to
verify that the process of pressure wave interaction with the flame sheet can in
fact produce a periodic process. Consider two cases where only the pressure waves
and downstream entropy are included and no boundaries.

The equations are first given for Case 1 and Case 2. Then these are
used and discussed in an example. The results are generalized in the Results of

Acoustic Response, Section 5.5.3.

5.5.1 Case 1. Incident Pressure Wave from Down-
stream
Consider a flame, Figure 5.4, situated at z* = 0 with no upstream incident

entropy and constant area combustor located in an infinite duct. The matching

conditions at £ = z* = 0 become

P =P, (5.110)
G =W;P!, (5.111)

and
sy = WyP;. (5.112)

Substitute the linear acoustic solutions from 5.102-5.107 and 5.110-5.112

along with P;" = 0 to get

Pl =Pf + P, (5.113)
a
Ay %(—P{) = paaqu,Ws Py, (5.114)

and

B =W,P[P,. (5.115)
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TRANSMITTED (P") $~3 <~ INCIDENT (P3) INCIDENT (P 1) ~>$ ~> TRANSMITTED (P})
~->REFLECTED(P$) REFLECTED (P|)&—

GENERATED —>GENERATED
ENTROPY ENTROPY
INCIDENT PRESSURE WAVE INCIDENT PRESSURE WAVE

FROM DOWNSTREAM FROM UPSTREAM

Figure 5.4: Flame Geometry for Case 1 and Case 2.

Solve P, to find

Pf = (%‘;—“_L—i) Py (5.116)
where .
Wsa = (p2a2u1W5 - —Z%:) . (5.117)
Then P; becomes
P[ = (Wzszv—”_"-l-) - (5.118)
and B becomes
B = PW, (%v‘%) Py (5.119)

Hence, the reflected and transmitted waves along with the generated entropy wave
can be calculated from the mean conditions and the magnitude of the incident

wave.

5.5.2 Case 2. Incident Pressure Wave from Upstream

Similar to Case 1 the case of an incident pressure wave from upstream is consid-

ered in Figure 5.4. Then with P;” = 0 and solving in the same manner as before
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find
Py =Wy P}, (5.120)
P =W, Py, (5.121)
and
B = WP}, (5.122)
where
1— 8% 5,q,u,W,
Ws = — P A (5.123)
1+ 222 — prayu Wi
a a
Wy = P22 4 p2a2u W5 + (—p—zl + Pzazulws) War, (5.124)
P10 p1a,
and
Wag = PoWg(]. + W31) . (5.125)
Example

Now we are in a position to determine the reflected and transmitted pressure
waves from a plane flame given an incident pressure wave from either upstream
(cold region) or downstream (hot region). Assume, for example, that v; = ~,
and ¢,; = ¢,y are placed into the relations. Then relations for P, and P;" can be

found as a function of A. Assume that My ~ .2, A =4, = 1.3, and P, = 75pst.

Case 1
- 6 __
Pl =~ —5—P2 (5.126)
P ~ -;-P; (5.127)
B 1
— &~ —=PS 5.128
Case I1
+ 3+
Py = §P1 (5.129)
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_ 2
NS —ng' (5.130)
B 1

~ P 5.131
—P; (5.131)

5.5.3 Results of Acoustic Response

The results of these calculations summarized as follows where X is the temperature

ratio (to paraphrase Chu’s comments):

Case 1

A compression (or expansion) wave approaching the flame from down-
stream (the hot region) is transmitted as another compression (expan-
sion) wave and is amplified. The reflected wave has the same sign as

the incident wave and is always weaker in strength.

When A = 1 the amplification of the transmitted wave is 1 ; if A — oo
the amplification never exceeds a maximum of 2. For A = 1 the reflected wave

vanishes and as A — oo it reaches a strength of 1.

Case I1

A compression (expansion) wave approaching the flame from upstream
(the cold region) is transmitted as another compression (expansion)
wave that is weaker. The reflected wave is a weak expansion (com-

pression) wave.

When A = 1 the amplitude of the transmitted wave is 1 and as A — oo
the transmitted wave vanishes. Hence there exists an optimum A for maximum
transmitted amplitude. The amplitude of the reflected wave is 1 for A = 1 and -1
for A — o0 .

The entropy term, B, is nonzero when 4; = 4, and Ah!, = 0 as long as

A # 1. Hence, the entropy generation at the flame has three contributions:
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1. the contribution due to the temperature discontinuity and constant specific

heats (considered above),
2. the contribution due to the nonisentropic changes in specific heats, and
3. the contribution due to the fluctuations in the flame speed.

The dominant influence is from the first contribution, the temperature disconti-

nuity.

5.5.4 Application of Acoustic Response in a Chamber

Here, the conceptual possibility of an oscillatory flame in the combustor with
boundaries is examined. It is convenient to consider the combustor in the z —
t coordinate system. For this purpose, we will assume that both ends of the
combustor are ideal closed ends, (i.e., no energy loss). The goal is to determine
whether or not a disturbance can configure itself in the combustor to produce
periodic oscillations. Starting with an unperturbed combustor, a pressure pulse
from downstream is introduced externally (upstream works just as well). Consider
the special case where the flame is in the combustor so that the acoustic path
is identical in each the cold and hot regions. Using Case I and Case II at each
interaction of the flame with a pulse as necessary, see if the pulse will reach a
periodic existence.

The z —t diagram in Figure 5.5 shows how the process is initiated in time
and progresses through successive interactions. Figure 5.6 shows the steady state
that occurs after approximately 25 interactions. Any acoustic pulse will settle

out to this periodic oscillation.

The same pattern results regardless of whether P is incident from upstream
or downstream. Certainly, the computation is more lengthy when S, @', Si,

v}, and 45 and boundary conditions are included but the concept is the same.
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Figure 5.5: Initial z — ¢t Diagram for Pressure Pulse Initiation in a Chamber.
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Actually, when these are considered, it is possible to have growth or decay but
the periodicity should remain if the pulse is not damped out too rapidly.

In conclusion, placing a plane flame in a combustor and introducing acous-
tic fluctuations can produce an oscillatory configuration. This is applied in the
next chapter to determine the stability of several combustor configurations. These
calculations show that without boundary losses and in the absence of entropy re-
flection at the exit the acoustic response is neutrally stable. Including the entropy
reflectance at the exit nozzle can either add or remove energy from the oscillation
to cause decay or growth. It is this energy source that provides a source of driving

in the combustor and is studied in Chapter 6.

5.6 Response to Entropy Waves

This section examines the response of the plane flame to a fluctuating entropy
source upstream. This is of interest because an oscillating upstream shock will
produce a fluctuating entropy source.

It is of practical interest to determine the response of a plane flame to
incident entropy waves (obviously from upstream). This case is illustrated in
Figure 5.7. Again the matching conditions can be used with Pl =Py =0to

find

T =WyA, (5.132)
P =WyA, (5.133)
B = (W9POW40 + Wlo)A ) (5.134)

and

W,
__ P2aUy Vg (1 + P20z

-1
- pzazuIWS) . (5.135)
pi1ay
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INCIDENT > TRANSMITTED
ENTROPY - ENTROPY
REFLECTED TRANSMITTED
TN~ r———
PY PZ

Figure 5.7: Illustration of Incident Upstream Entropy on a Plane Flame.

To illustrate, let vy =43 , ¢py = ¢ and A =4, v, = 1.3 , M, = 2, P =175
psi and a; = 1500 ft/sec. Consider also an input fluctuating entropy that is 1%

of the mean specific heat. Hence, A = .0lc;;. By calculation, we find

P[ =~ —.00274, (5.136)
P} ~ —.00274, (5.137)
and
BTU

B ~ (.003)(.3) (5.138)

lbm degR

From these results it is obvious that some of the energy contained in the
incoming entropy wave is converted into acoustic energy in the form of pressure
waves. For this example a 1% fluctuation in incoming entropy will transmit
through the flame .3% downstream entropy fluctuation. A 1% incident entropy
fluctuation will produce .27% fluctuation transmitted pressure wave and reflected
pressure wave each of which are 180 degrees out of phase with the local entropy.

The real issue of phase is whether the pressure generated by entropy is in phase
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with the classical acoustics pressure. If so, then a significant driving can occur.
Conversely, if out of phase with the pressure, then damping is the result.

In conclusion, an upstream entropy fluctuation incident on a plane flame
will transfer some of the energy in the entropy fluctuation to acoustic energy
while transmitting the remainder of energy as downstream fluctuating entropy.
Whether or not this transfer tends to drive the system is dependent on the phase
relationship of the pressure and entropy which is determined from the geometry

and mean conditions.

5.7 Summary

The general matching conditions for a thin flame are formulated for a diverging
duct. These are simplified for the case of a slightly diverging combustion chamber.
Two cases are treated which illustrate the processes occurring at the flame in a
constant area chamber. Case I illustrates the response of the flame as a result
of incident pressure oscillations. This process produces entropy oscillations that
are convected downstream. Physically, the fluctuating entropy is produced by the
fluctuating heat release or more fundamentally the fluctuating mass flux across the
flame [46]. Case II illustrates how energy can be transferred from the entropy field
to the acoustic field at the flame when there exists upstream entropy fluctuations.

Physically, the dominant flame response can be divided into two parts: the
flame response to acoustic excitation and the flame response to entropy excita-
tion. The flame response to acoustic excitation is dominated not by the flame
characteristics but by a simple step discontinuity in temperature without mean
flow. This is analogous to the simple duct acoustics problem where a step tem-
perature change occurs in the medium. The acoustic flame response to entropy

disturbances (that is, the acoustic waves generated at the flame due to incident
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entropy) is a direct consequence and proportional to the mean flow Mach num-
ber into the flame. (This dependence on the Mach number will become more
significant in the combustor modeling of Chapter 6.) The entropy disturbance
generation or transmission at the flame is determined by the local pressure and
entropy field.

The plane flame can be used as a tool in the modeling of heat release
in combustors with low frequency oscillations. The previous work on this topic
has been expanded to include conditions of stability in a channel flow, divergent
channel flows, and specific application to chamber acoustics with reflectance and

arbitrary inlet thermodynamic fluctuations.



Chapter 6

Acoustics with Nonuniform

Entropy Models

Chapter Six incorporates the previous two chapters along with boundary condi-
tions to begin modeling combustors linearly. Chapter Four dealt with the methods
of solving the linear boundary value acoustics with entropy problems. Chapter
Five developed the conditions of a plane flame in the combustor. Here we com-
bine these to determine the conditions of stability of combustors and inlets with
entropy. Stability will be shown to be dependent on the phase of the entropy rel-
ative to pressure at each of the three coupling points. The three coupling points
are the inlet shock, the flame, and the exit nozzle. When the geometry produces
“in phase” coupling, then driving will occur which can sometimes overcome losses
and result in linear instability. Similarly, “out of phase” coupling will remove en-
ergy from the oscillation. The phase relationships are discussed in the Section 6.2,

Linear Results. The first section deals with modeling while the second presents

some results of the modeling.

95
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6.1 Linear Modeling of Combustion Chambers

The mathematical tools developed can be assembled in many ways. The goal is
to find a suitable combination which will contain the most important features of
the actual problem. When successful, the model will contain the major features
and predict with reasonable accuracy the results when the problems parameters
are changed.

As stated earlier, the acoustic chamber problem is predominantly a bound-
ary value problem. That is not to say that the combustion processes are not im-
portant. The combustion processes are, however, a function of the acoustic field
in which they take place despite how complex and poorly understood the func-
tional relationship might be. In addition, any acoustic disturbances generated by
the combustion processes are themselves subject to the boundary conditions. For
these reasons it is essential that the boundary conditions be carefully applied.

The advantage of the importance of boundary conditions is that a large
class of problems can be treated in a similar way even though the geometry is
significantly different. It is more precise to refer to the problem as a system. The
acoustics of the system is the critical issue not the combustor. The combustor
alone without the inlet and exit boundary conditions is not a system. The exit
boundary condition is usually a choked exit nozzle for high-performance propul-
sion systems such as rockets and ramjets. The boundary condition for a choked
exit nozzle for both acoustics and entropy were discussed in detail in Section 4.3.
Section 6.1.2 deals with the inlet boundary conditions.

In order to add some continuity to the following sections, the goals of each
section is outlined here.

§ 6.1.1 — The linearized equations of acoustics are discussed in cases where

the channel has area change. This is applicable to the inlet diffuser section
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where flow through a sonic throat expands supersonically, undergoes a nor-
mal shock, and then expands subsonically to the area of the inlet duct. It
is the region downstream of the shock and prior to the constant area inlet

thét is of interest in this section.

6.1.2 — The application of the inlet boundary conditions is treated in both
a general methodology and in a specific application for the ramjet combustor

problem. The specific inlet details addressed are:

o Details of the different geometries considered.

¢ Calculation of the reflection of acoustic waves from an inlet shock.
e Shock, diffuser, and inlet duct considerations.

e Dump plane considerations.

e Calculation of entropy generation at shock.

6.1.3 — The combustor modeling section treats the combustor as five dis-
tinct elements: a compact inlet, a cold flow constant area combustor section,
a compact plane flame, a hot flow constant area combustor section, and a
compact exit nozzle. These elements are combined to make the combustor

model.

6.1.4 — The linear solution combines the above model elements to obtain
the characteristic equation for the eigenvalues of the linear system. The
determination of the eigenvalues essentially solves the linear problem since
the pressure magnitude mode shapes and phase distributions can be calcu-
lated from the eigenfunctions once the eigenfrequencies are known. These
eigenfrequencies are the resonant modes of the system (like the tones from

an organ pipe).
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6.1.1 Consideration of P* and P~ with Area Change

In one-dimensional linear acoustics, three constants (possibly a function of z) are
required to specify the acoustic field in one region: P*, P, and A. This section
discusses the linearized equations of acoustics with area change. The values of
P* and P~ are constant in the case of a constant area duct (actually for uniform
mean flow). In the case of a duct with nonuniform area, however, these constants
are functions of . With area change the differential equations of acoustics are
modified and are, in general, difficult to solve. (Ref. Morse, Vibration and Sound,
Section 24 : Propagation of sound in horns [54].) However, there are some simple
results for the case of no mean flow and either conical or hyperbolic horns. In
the case of a conical horn (axisymmetric) then we can simply replace

+ ——
Pt - %—- and P~ — L (6.1)

A

z
where % is the axial position (z-position) measured from the apex of the cone.
The entropy constants A and B from 5.102 and 5.107 will remain constant
as long as the expansion is isentropic. This is typically the case for gradual area
changes. Gradual area changes are also required to keep the flow essentially one-
dimensional. It is not the intent to consider flow separation, recirculation, etc.
in the model treated here.

The variable % in 6.1 can be replaced with
T=z4 1z (6.2)

where 1, is the distance to the apex of the cone from z = 0. (If zo >> L then
we can neglect the area change effects in Pt and P~ .)
Rewrite equations 5.102 and 5.103 with M, — 0 and a conical area change

to get
1
x4+ xo

Pi(z,t) = ( ) {P{*e"“" + Pl"e_"“’} et (6.3)
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1 1 . . .
ul z,t — ( ) P+eiklz_P-—e—|klz e—cﬂt 6.4
(2t) = — () {& reihe] (6.4)

while 5.105 and 5.106 become

1 : . .
! — + tkaz - —ik —iflt
Py(z,t) = (:c+zo) {P2 e + Pye 2z} e’ (6.5)
ul(z,t) = 1 ( 1 ) {P;eihz _ z—-e—ikzz} e—i0t (6.6)
P20z \T -+ I

and 5.104 and 5.107 for entropy are unchanged.

In the case of negligible area change zo >> z and 1/(z + zo) — 1/z.
which can be incorporated into P* and P~ to recover the equations for constant
area.

The area of the opening of a cone is given by

S = S, (z : z°) (6.7)
Zo
which may be differentiated to get
1dS 2
54 27 7 (6.8)

Recall that z = 0 at a distance z, from the apex. When the area change
becomes negligible it is equivalent to stating that z, becomes large and 1/S dS/dz

becomes 0.

6.1.2 Inlet Boundary Conditions

This section investigates the application of the inlet boundary conditions. There
are two components of the inlet boundary condition: an acoustic reflectance
and an acoustic-entropy coupling relation. The treatment of the inlet boundary
condition is the way in which many systems can be studied. If the inlet reflectance
(that is, the reflectance of a leftward traveling acoustic wave in the combustor at

the inlet end of the combustor) is known, then it can simply be used. The inlet,
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however, may be a dump plane, which is then connected to an inlet duct. The
inlet duct may in turn be terminated with a choked inlet diffuser as in a missile
application. In a connected pipe experiment, however, the inlet duct may be
connected by another dump plane to a plenum chamber and so on back upstream.
Since this flow is subsonic, it is not decoupled and is part of the acoustic system.
It is the resonance of this system which is important.

The inlet duct is treated as an acoustic region and is coupled to the com-
bustor acoustic region by matching conditions. Typically the matching condition
at a dump plane is given to be continuity of mass and pressure, while the expan-
sion is treated as nearly isentropic. Thus the inlet boundary condition is replaced
by matching conditions and an upstream inlet duct boundary condition. This
process can be repeated until each acoustic element has been accounted for with
matching conditions and a new boundary condition.

The specific geometries of interest are shown in Figure 6.1. The first two
are useful in analyzing experimental tests that are not terminated by an inlet
diffuser shock. The third geometry is useful in analyzing actual applications as
well as experimental tests which have inlet shock waves. The shock wave plays
an important role in defining the acoustic system because it clearly defines the
upstream boundary. No acoustic waves can penetrate a shock wave since the

acoustic velocity is less than the flow entering the shock.

The shock wave also has characteristics which are significantly different
from the geometry shown in Figure 6.1 (Geometry 1). The acoustic energy is
not dissipated by the acoustic wall, plenum, plenum-inlet dump, inlet duct, and
inlet-combustor dump of Geometry 1. Also, no significant entropy fluctuation is
generated upstream of the combustor in this geometry. The inlet shock on the
other hand, absorbs about ninety percent of the incident acoustic energy and

generates an upstream fluctuating entropy. As a result, the system acoustics are
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Figure 6.1: Three Modeling Geometries for One-Dimensional Ramjets.
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signiﬁcantly different.

Since the equations are linear, it is possible to define a reflectance at the
combustor inlet that contains all of the upstream conditions. This is the procedure
adopted here. The following sections develop the inlet conditions required for

Geometry 3 in Figure 6.1, which will be used in the combustor modeling.

Calculation of Reflectance

Calculate f;y = P;"/P{ and A/P[ for the geometry shown in F igure 6.2. The
inlet shock, diffuser, inlet duct, and inlet-combustor dump plane are used to

determine the combustor inlet reflectance 8; and entropy A/ Py .

Region D
Pi(z,t) = Py {Pfete 4 preiie} gmint (6.9)
P, . . .
wy(z,t) = ——_plzl {Pfetm — preitiz) gt (6.10)
Region C
Fiz,t) = PR——{Pre™= 4 prethie} gmitt (6.11)
v
[} PO 1 + ik z - —tkiz -0t
u(z,t) = Py {Pc eM® — Pt } e (6.12)
141 v

The shock reflectance can be calculated from the shock admittance which

is calculated from the linear results of Culick and Rogers:

_ 1+ A%,  Plethe
T 1-— A, Preikize

Bisn (6.13)

The shock reflectance is given for the shock location at £ = 0. The exponential
terms in (above) contain the correction for the shock located at z = —z, rather
than £ = 0.

The matching at £ = —L; is simply

Pt
Ty — L]

P = (6.14)
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and

Py =—¢ (6.15)

REGION |
f_/;'ﬂ
REGIONc REGIONd |
— — -~
p+
Xo—.L L LI L SC
X Xg b__,x
. 0
S1=INLET AREA S¢c=COMBUSTOR
AREA

AXISYMMETRIC

Figure 6.2: Geometry of Inlet Diffuser and Inlet with Shock.

Dump Plane

One of the advantageous features of ramjet combustors is the abrupt area change
between the inlet and the combustor. In the coaxial dump plane version of ramjet
configurations, the sudden area change will produce a recirculation zone in the
flow field. In combustion flows this region fills with hot Burned exhaust gases and
acts as a strong flame holder at the inlet to the combustor. Although there are
losses associated with sudden expansions, the total pressure loss for the dump
plane is less than for conventional wedge-type flame holders often employed in

gas turbine afterburners.
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A simple dump plane area change is a nonisentropic process unless the

areas are equal, St = S¢. However, for a first approximation, an isentropic area

change is assumed even though Sy # S¢. More important than the assumption

that the expansion be isentropic is that entropy generation be non-fluctuating.

This is generally a good assumption since the geometry is fixed. Matching across

the dump plane involves mass .and pressure continuity. Pressure continuity gives

Pt+P =P+ P;.

The mass continuity is

S
u'd— ,pl C
Y04 51

or

Pf — Py = (P} - P)2%2

(6.16)

(6.17)

(6.18)

where this form of mass continuity requires that the fluctuating entropy not

change across the dump plane. (This is the same approximation as used in the

above paragraph.) Let

Bisa = Pispe’trr®

and then
_PY Pf
Bise = - P
Define
Brsa — 1
Ars = Bisa +1
to find
pr 3 S: F+ Arse

Br = Brcarc = == = .
P 482 Ay

Substitute 24 from the isentropic expansion equations to get

<ad2) 1+ M7
a; 1 + j;—lMg

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)
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d
- P1 1+ LAME G
o (—__1 : ngle) (6.24)
From continuity find
vy [1+ M2 T Sc
ur (1 n 1;—1M12) St (6:25)
and hence,
M (LM s (629
M, \1+ M2 St '

Calculation of Entropy Generation at Shock

The presence of an acoustic disturbance downstream of the inlet shock will change
the equilibrium position of shock in the diffuser. This adjustment in the shock
position changes the shock conditions and thus the entropy generation across the
shock. For a stationary shock, the entropy generation is constant, but, if the
shock wave oscillates then there is generation of a fluctuating entropy also. In

this section we will calculate the fluctuating entropy source.

The linear shock position is given by z, = —%, + z,, and from Culick and
Rogers [10]
C
' __ "=
¢ (1 - z'w'r) F(-2.) (6.27)
-1 (1dS\7' (v+1)? +1_,\7!
= —-— —— |1+ —— M? 2
¢ Popst (S dz) 27(y-1) + N—1 "1 (6:28)
1 (1dS\ 7' 2(y+1)M,, e W
-1 (Les) 200+1)M,, 6.
T e (de) =1 1+ —lMl’ (6.29)

where all terms are calculated at the mean shock location. Here, S represents

the area at the shock. Also, from 6.11-6.26 we find

P(-z,) (z.— L 1 —ik12, | LikaZ,
P = (ib'u — fa) (1 n ﬂlsn) (Br +1)(Brsue + e ™) PR, (6.30)

To determine the fluctuating entropy wave generated at the oscillating

shock in a polytropic gas (i.e. s = ¢,In(P/p")), look at the shock wave in terms
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of the strength parameter Z (Ref. Whitham “Linear and Nonlinear Waves” [38])

_Pg—P1_2'y(M2—1)

V4 = , 6.3
P T7+1 ( 1)
m=Y=u (6.32)
a1
and
2280 _plasz)(1+2217) (142505 (6.33)
co 2 27 '

where the subscript 1 is for entering the shock wave and 2 is for leaving the shock.
M is the mach number of the flow ahead of the shock relative to the shock.

Consider the shock strength, Z, where P, is the mean pressure upstream
of the shock and P, is the mean pressure downstream of the shock. When the
inlet flow is uniform (i.e. P, = P, ) then

_ P;(z,t) + Py(z) — Py(z)

z Pi(a)

(6.34)

and for longer wavelengths treat P(z,t) ~ P(Z,t) where z = Z + ' to give

_ P&+ P(2+2)— P(z+2)

Z Pzt ) (6.35)
As long as z' is small then
P(z+z') = P(z) + d—ljz—a(f—)z’ + H.O.T. . (6.36)
In steady state,
5 _ P2o(Z) — P1,(2)
Z=-=2 2 . 6.37
P (627
If 2’ is small then
15> —L_9Pu(@) (6.38)

Plo (.'l_:) dz
Define Z' so

Z=2+27 (6.39)
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and
Z' = FISE {Pz'(z,t) + (%@ -1+ Z)-d%-l“;(i—)) a:'} . (6.40)

Return to the inlet notation to get

P!(-z,) 1dS/ C
' [ 8
Z= Poput {” NPupig s (1 —iw'r)} (6-41)
where
YM3s \ Pas o [_YMis
= -(1+2) | —=-] . .
After rearrangement and the expansion of In(1 + z) for small =
I
c—° =Z' Zpam (6.43)
where
1 8] g}
Z 6.44
BaRL = 1+Z+—7-+Z iz (6.44)

Then, assuming the expansion in the diffuser from the shock to the inlet duct is

isentropic, it can be shown that

A _ P'(:z:,) 1 i2(z,)
Py TP, B orlpame (6.49)
where
1 dS C
a-frandS(). ow
To calculate this, use
= P, —P
VA 2 e, 6.47
o (647
P.(-z,) 5 P
upat(_fc) P25 ( )
U—
M=-"54 (6.49)
a
and
z=-2_ (a2, —1). (6.50)

Y+1
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The result here is that an inlet shock, inlet duct, and dump plane have
been reduced to boundary conditions applied at the upstream end of the com-
bustor channel. The boundary conditions are given by 6.22 and 6.45. Reducing
these components of the inlet to combustor boundary conditions simplifies the

characteristic equation for the eigenfrequencies.

6.1.3 Combustor Modeling

This section formulates a five element combustor that uses as one element the
compact inlet information developed in the previous sections. The combustor
is modeled as two acoustic regions divided by the plane flame of Chapter 5 as
shown in Figure 6.2. The inlet and exit boundary conditions are used to terminate
the acoustic regions upstream and downstream of the flame. The only available

experimental data [6] [15] are for constant area, so that is the case treated here.

The reflectance, §;, can be coupled with the combustor region from z = 0
to £ = z; and the flame matching conditions to determine a new reflectance
Brfiame at £ = zy. The procedure is similar to defining the inlet reflectance. Also
recall that A is the entropy constant in region 1 (the acoustic region upstream of
the flame) and B for region 2 (the acoustic region downstream of the flame). It
is assumed that 8 and A/P~ are known from 6.1.1. The equations of P, u, and

s in regions 1 and 2 are

Py = Py (Pfe® 4 Preihiz) gt (6.51)

U = Lo (P;‘e"‘l*’ + P{e‘”‘“’) et (6.52)
p1ay

sy = Ae'/(u)zg—int, (6.53)

and

Py = Py (Pfetsm + Pyeihiz) gmit, (6.54)
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Figure 6.3: Combustor Model Geometry.
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Py . ) .
u; = —— (P et + Py emkaz) g~ 6.55
2 pa2as ( 2 2 ) ’ ( )

83 = Beff/(ua)zg—i0t (6.56)

where A and B are the constants which specify the magnitude of the entropy in

regions 1 and 2 respectively. Define By, such that

Py
ame — - * 6.57
Brp P; (6.57)
The flame matching conditions at z = z; are
P =P}, (6.58)
G = WsP! + Wes',, (6.59)
8; = WgPl' + Wms'l , (6.60)
and Pjp = Py since the flame is flat and not curved. Define I; to be :
Ty = fre*rr 4 ¢~th1zs | (6.61)
Ty = Bretrer — ¢~thazr | (6.62)
I‘3 = (I‘l(l - pza,zu,le) - Pzpz—ag) e""”f ’ (663)
pi1ay
Iy= (1‘1(1 + paaau,Ws) + I‘,”—’fi) e~tkazr | (6.64)
P1ay
W, i, A
T's = paazu Ty P:,e v 2!7-71? ) (6.65)
Ie = I'sT; — Tgetfa®s (6.66)
1“-, = F4P1 + I‘se—ikzzf ) (667)
Ts = Wo Py (Br11ame€™*%/ + e~Fa%s )e_'."?z'” , (6.68)

and

I‘g = Wloei%zfe""%z’ . (669)
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After some manipulation find

P Iy
Pz_ = ﬂIflame - FG (6'70)
and
B A Pf
P{ =Tg+ FQPI_ P{ . (6.71)

To avoid confusion we call the reflectance a condensed reflectance when
it contains more than just a reflectance and is generally applied at a position
other than where the original reflectance occurred. The procedure of this section
compresses again the already condensed inlet reflectance at the upstream end of
the combustor, BrcaLc, the section of the combustor upstream of the flame, and
the flame matching conditions to a new combustor reflectance, Brfiame; applied at
z = zy. This sets the boundaries for the combustor to be used in the frequency
calculation of the next section. The application of the condensed reflectance does

not influence the generality of the linear formulation.

6.1.4 Linear Frequency Calculation

The previous sections reduce the inlet with the inlet shock, the dump plane,
and the plane flame to a single set of boundary conditions for the inlet to the
combustor. With equations 6.54 and 6.56 and the boundary conditions Br1siame

and Bgxir, eliminating P;* and P; gives

F(Q) =1 - BriameBrxir =0. (6.72)

Equation 6.72 gives a transcendental equation for the linear eigenfrequen-
cies which are the acoustic resonant modes of the system. Recall that B/P; is
required to calculate Bgx;7 . The eigenfrequencies, 11, are found by solving for
the zeroes of 6.72. For simple cases this can be done analytically but for more typ-

ical geometries, 6.72 is solved numerically. Once the eigenfrequencies are known,
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they can be used to calculate the eigenfunctions and hence the pressure and veloc-
ity mode shapes. These calculations are done in the following section for several

different cases.

6.1.5 Summary of Linear Modeling

As shown in the previous sections, important aspects of a ramjet combustor (such
as the inlet shock, dump plane, heat release across a flame sheet, and the choked
exit nozzle) have been assembled into the linear model. Many of the actual
processes can be accounted for in a simple and realistic way. Two important
items that can be studied are the energy contributions due to entropy coupling
and the compilation of both acoustic and entropy contributions into one stability
model. Specific cases will be presented to assess stability as well as the physical

consequences of the individual components in the next section.

6.2 Linear Results

The results of calculations using the analysis of this chapter are presented in this
section for six cases. The six cases were chosen to either verify the procedure, or to
illustrate physical processes. The six cases are called Runs 1 through 6. The first
two cases, Runs 1 and 2 were chosen primarily to compare with other analytical
solutions. Run 3 studies the response of the flame to incident entropy fluctuations
(from upstream). Runs 3 through 5 all treat the upstream entropy magnitude and
phase as an input parameter. The entropy magnitude is specified for the linear
acoustic-entropy coupling upstream (that is, the upstream entropy is generated
as a linear function of pressure). Run 4 studies the stability of a combustor with
no flame but upstream fluctuating entropy and exit entropy reflectance. Run 5

combines the exit entropy reflectance and the plane flame. Again, the upstream
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entropy coupling is parametrically varied in the stability study. Run 6 uses the
linear inlet shock theory to determine the upstream acoustic-entropy coupling. It

is convenient to define the notation

A

= e——
¢, Py

X (6.73)

where ¥ is the nondimensional measure of the magnitude (and phase) of the

acoustic-entropy coupling specified at the origin.

6.2.1 Run 1 - Verification

Figure 6.4: Geometry for Analytical Solution.

Run 1 is used to verify that the calculations match those of a previous
linear acoustic eigenvalue code. The example contains a constant area duct,
no flame, and complex boundary conditions of magnitude different from 1. An

analytical solution was shown by Humphrey [11] to be

1= B fge?KLatla) (6.74)
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The geometry is shown in Figure 6.4. The conditions used for Run 1 were:
e a = 1500 ft/sec
o My=.25
o L1+ L,=17171
o B = (.25,.25)

e B =(1,6)

The frequencies calculated from 6.72 are given in Table 6.1. The calcu-
lated results were identical to the analytical results obtained from 6.74. This is
not too surprising since the calculated results are also analytical as opposed to
numerical. Since the boundary conditions are independent of frequency and there

is no entropy, the damping (or growth) is the same for all modes.

solution w a
1 -31.84 | 11.129
59.47 | 11.129

150.79 | 11.129

333.42 | 11.129

2
3
4 242.10 | 11.129
5
6

424.73 | 11.129

Table 6.1: Run 1 - Calculated Eigenfrequencies (Hz).

The energy loss or gain is determined by the product of the magnitude of
the inlet and exit reflectance. If the magnitude is greater than one, the oscillation
grows exponentially due to the net flux of energy into the duct at the boundaries.
When the magnitude is less than 1, the oscillation decays exponentially due to
energy loss at the boundaries. If the magnitude is identically one, then the

oscillation is neutrally stable.
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6.2.2 Run 2 - Verification

Run 2 is an example of a simple organ pipe mode with one end open and one end

closed with mean flow (hence §; = 1 and Sg = —1). The analytical frequencies

are solved from 6.74 to be
Wy = §(1 — M?*)™(2n +1) (6.75)

where a is the sonic velocity and X is the first fundamental wave length. Hence, the
frequency is approximately (2n+1) 87.89Hz. The analytical damping coefficient
is identically zero when both reflectances have magnitude 1. Table 6.2 summarizes
the eigenvalues and contains the frequency and damping coefficient for both the
analytical solution 6.75 and the calculated solution from 6.72 with 8 flame = Pr

and Bgxir = PBe. The analytical results were identical to the calculated results.

mode | n | analytical | calculated

1 O} 8789 (0| 87.80|.000
2 1(263.67 | 0| 263.67 | .000
3 21 439.45 | 0 | 439.45 | .000
4 31615.23 | 0 | 615.23 | .000
5 41791.02 | 0 | 791.02 | .000
6 5 | 966.80 | 0 | 966.80 | .000

Table 6.2: Run 2 - Eigenfrequency Calculations.

6.2.3 Run 3 — Response of Flame to Entropy

Run 3 studies the response of a plane flame to incident entropy waves. The values

for the flame conditions used to determine the response of the flame to incident
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entropy fluctuations are:

o T), =950 °R

Py, = T5pst .

¢, =.3 BTU/Ibm R

Two cases are considered. Run 3a studies the flame response in the absence of
inlet and exit reflectances. Run 3b studies the flame response with conditions
similar to Run 3a with the addition of an acoustic wall at the exit plane. Run 3b

will provide a comparison basis for Run 4.

Run 3a

Run 3a uses the given values for the flame conditions with all of the
duct reflectances set to zero. This simulates a flame in an infinite
medium where no boundary conditions are present. This is similar to
the entropy response of the plane flame presented in Section 5.6. If a
constant fluctuating entropy is applied from upstream, then the ﬂﬁme
will respond so as to reflect and transmit a constant pressure wave as
well as transmit an entropy wave. Thus, the only significant value of
X (which is the ratio of the magnitude of the entropy wave over the
reflected pressure wave, or coupling factor, in Table 6.3) is the one

which produces a neutrally stable wave (growth rate, a, is zero).

The neutrally stable value of X can be calculated from the results of

Chapter 5. Consider the response of a plane flame (with no reflec-
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tions). Figure 6.5 shows the configuration of the flame. Solving (from
momentum, energy, and mass conservation) the matching conditions
5.39, 5.95, and 5.101 across the flame from Section 5.4.3, it is possible

to find
y = P13 + p2az — p1p2aia,u W
p1p2a1a2u;Wecy

Substitute the values of the known constants and proper unit conver-

(6.76)

sions into 6.76 and nondimensionalize to get ¥* ~ 3.202, where the *
represents the neutrally stable value. The value calculated from 6.72

was identical to the analytical value from 6.76.

bY] 0, 0, 0 N

W o W a w a w o

2.5%107° | 141 | -526 | 422 | -526 | 703 | -526 | 984 | -526

2.5+107* | 141 | -423 | 422 | -423 | 703 | -423 | 984 | -423

2.5%1073 [ 141 | -320 | 422 | -320 | 703 | -320 | 984 | -320

2.5%107% | 141 | -217 | 422 | -217 | 703 | -217 | 984 | -217

2.5%1071 | 141 [ -114 | 422 | -114 | 703 | -114 | 984 | -114

2.5 141 | -11 (422 | -11 {703 | -11 {984 | -11

2.5%10' | 141 92 | 422 92 | 703 92 | 984 92

Table 6.3: Run 3a — Dependence of Frequency, w, and Damping, o, on Entropy.

The entropy, ¥, is the only driving mechanism in this case. Thus, to
get a neutrally stable reflected pressure wave of 1 psi then an entropy

wave must be applied of magnitude .0128 BTU/lbm/ °R.
This example is convenient in terms of describing physically the pro-
cesses which are occurring. When ¥ ~ 3.202, the upstream entropy

can be treated as either supplied (arbitrary) or coupling generated.
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z(ft) 0, 0, s 2, H
w |a w |a w |e w |a

1 141 | .001 | 422 |.001 {703 |.001 | 984 | .001

2 70 |.0004 | 211 | .0004 | 352 | .0004 | 492 | .0004

Table 6.4: Run 3a — Flame Position Dependence for ¥ = 3.202.

ENTROPY GENERATION

DUE TO
ACOUSTIC- ENTROPY
COUPLING
A > INCIDENT - TRANSMITTED
‘E‘l: ENTROPY ENTROPY
REFLECTED{ TRANSMITTED
- — (—~
P) (P]) (P3)
A\ ~ J
X¢

Figure 6.5: Run 3a - Flame and Inlet Configuration.
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The transfer of energy from the entropy fluctuations to the acoustic
fluctuations at the flame and from the acoustic field to entropy at the
inlet produces a net energy into the acoustic field. This is obvious
since the steady process generates two acoustic traveling waves which
radiate acoustic energy out of the region upstream and downstream.

The energy is supplied by the the response of the flame.

In this simple example it is easy to calculate the frequency from purely
conceptual terms. The important time scales in this problem are the
acoustic travel time from the flame to the inlet (at z = 0)

24

Tacoustic = m s (677)

and the convective time for the entropy wave to travel from the inlet

to the flame
T, ive — o
convective ao MO .

There are phase relationships between the pressure and entropy at

(6.78)

each of the coupling locations. These can be converted into equivalent
time delays. At the inlet we let the phase between the pressure and

generated entropy be ¢; so that the associated time delay is

_ 91
Tinlet = 2w (6.79)

where w is in Hertz. Similarly, for the flame

P1ia
Tflame — % . (680)
For this specific example, ¢; is zero and
Tflame = (1 - 2n)7r . (681)

For this choice of @iy, the reflected pressure wave is 180 degrees

out of phase with the incident entropy wave as in the case of a choked



120
exit nozzle. The period for a cycle is given by the sum of these to be

T = Tacoustic + Teonvective T Tinlet T Tflame - (682)

The frequency can be solved to find

W = (1 + 2n)a0(1 - Mo)Mo
" 2.'Ef )

(6.83)

This precisely reproduces the frequencies calculated in Table 6.3.

Figure 6.6 is a plot of the magnitude and phase distribution for the
pressure and entropy. The drop in entropy magnitude at z/Lc =
.25 indicates a conversion of energy from the entropy to acoustics.
The constant value in pressure magnitude indicate that the traveling
pressure waves radiated from the flame travel without losses with
changes in position and without interacting with other traveling waves
to form standing wave patterns. The phase distribution has a positive
slope downstream of the flame and negative slope upstream. Hence,
two pressure waves are produced and travel in opposite directions.
The difference in slope reflects that the acoustic velocity upstream is
ao(1—Mo) and downstream is ag(1+ Mp). The slope of the entropy is
always positive since the mean flow (convective velocity) is positive.
The change in the slope across the flame is due to the change in the

mean flow due to the mean heat addition.

Although the flame oscillates about its mean position, the motion is
very small. Typical magnitudes of flame displacement are of the order
10~° ft. This justifies the analytical approximation that the acoustic
terms into and out of the flame can be evaluated at the mean flame

position.

Run 3b
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Figure 6.6: Run 3a — Magnitude and Phase Distribution for 141 Hz.
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Run 3b is similar to 3b except that the exit acoustic reflectance is set
to one. This would be the zeroth order approximation to the choked
exit nozzle (without entropy reflectance). This simulates a flame in a
chamber where there is acoustic reflectance at the exit but no entropy
reflectance. The inlet with no reflectance looks similar to an inlet
shock in that a shock usually absorbs most of the incident acoustic
energy. The frequency will be dependent upon the distance from the
flame to the inlet only because the phase of the entropy is set to zero
at this position. Thus, adjusting the length between the inlet and the
flame will change the phase of the entropy fluctuations into the flame.
In this case we find that ¥* ~ 1.35 for neutrally stable oscillations. It
is expected that when less acoustic energy is lost (compared to Run
3a) the required energy input from entropy is less to obtain a stable
oscillation and hence a smaller value of ¥. Table 6.5 summarizes the
eigenfrequencies. We see that the frequencies are not all damped at
the same rate. This is due to the contribution of both the reflected
acoustic wave at the flame and the incident entropy wave and their

relative phase in determining the stability.

6.2.4 Run 4 — Response of Exit Nozzle to Entropy

Run 4 studies the influence on the linear stability due to entropy waves impinging
on a choked nozzle. This case is similar to Run 3b because the inlet acoustic
reflectance is set to zero and the exit acoustic reflectance is set to one. Again,
we solve 6.72 with Bfiame = Br = 0 and the acoustic contribution to BexIT 1s
1. The coupling interactions occur at the inlet and exit (none at the flame yet).

The frequency results are summarized in Tables 6.6 and 6.7. There is a definite
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n 0,

w a
1) 89.2|-15.6
212328 | -37.8
3 | 404.9 0.2
415625 |-474
5| 1720.1 0.2
6 | 8922 |-37.8

Table 6.5: Run 3b - Eigenfrequencies for ¥* = 1.35.

selection of frequencies that becomes unstable while others become more stable.
The first unstable frequencies are 176, 527, 879 Hz and become unstable for ¥
> .50 (at ¥ = .50, a ~ —.26).

When ¥ = .5, the energy input into the modes 176, 527, and 879 H z from
the entropy-acoustic coupling at the choked nozzle is offset by the acoustic energy
loss through the nozzle (since the inlet neither adds nor absorbs energy in this
case). The entropy-acoustic reflectance is real and less than zero so that driving
will occur when the impinging entropy is 180 degrees out of phase with the local
pressure (at the exit nozzle). Thus, the driving is “in phase” when the pressure
and entropy are 180 out of phase. Similarly, the oscillation is discouraged when
the entropy is in phase with the pressure.

The tendency of the entropy to drive or dampen the oscillation is deter-
mined by the phase of the entropy relative to the pressure. In this example the
phase of the entropy relative to the pressure is dependent on two time scales and
the phase of the acoustic-entropy coupling at the inlet. The time scales are the

acoustic travel time upstream from the exit to the inlet and second the convective
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) 1R 0, s 0, s 6
wy | o | we | ag | ws | as | we | ag | ws | a5 | we | ag
25%107*| 0 |-2.6 (176 |-2.6 | 352 | -2.6 | 527 | -2.6 | 703 | -2.6 | 879 | -2.6
25x107%| 0 |-2.6|176|-2.6|352|-2.6|527|-2.6|703|-2.6|879|-2.6
2.5%1072| 0 |-2.8 176 |-2.5|352|-2.8 527 (-2.5]703|-2.8]|879|-2.5
1 2.5%x1071 | 0 |-4.3|176|-1.3|352|-4.3|527|-1.3 |703|-4.3|879 |-1.3
1.0%107° 176 | 1.6 527 | 1.6 879 | 1.6
2.5%107° 176 | 5.5 527 | 5.5 879 | 5.5
Table 6.6: Run 4 — Eigenfrequencies 1-6 for a Combustor with Entropy Re-

flectance at the exit and No Flame. ¥* ~ .3.

X 9% (g 0 o 43N 2

wr| a7 | Ws Qg | Wy Qg |Wio | Q0 { Wi | Qg1 | W12 | Qg2
2.5%107* | O |-187 | 117 | -187 | 234 | -187 | 352 | -187 | 469 | -187 | 586 | -187
2.5%1073 117 | -144 | 234 | -144 | 352 | -144 | 469 | -144 | 586 | -144
2.5%10°%2 ] 0 |-100 | 117 | -101 | 235 | -101 | 352 | -100 | 468 | -101 | 586 | -101
25%1071 || O | -55 [ 115 | -59 | 236 | -59 | 352 | -55 | 467 [ -59 | 588 | -59
1.0%107° 113 | -35 | 238 | -35 465 | -35 | 590 | -35
2.5%107° 112 | -21 [240| -21 463 | -21 [ 591 | -21

Table 6.7: Run 4 — Eigenfrequencies 7-12 for a Combustor with Entropy Re-

flectance at the exit and No Flame. ¥* ~ .3.
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travel time for the entropy generated at the inlet to convect downstream to the
exit. (This is identical to the case for Run 3b where the flame coupling is replaced
by the exit coupling and the dimensions have changed.)

Based on the same physical arguments as Run 3b, the conditions for the
incident entropy to be out of phase can be determined from the acoustic field.
One important observation that can be made is that the exit nozzle seems to be
more efficient in converting energy in the entropy wave to energy in the acoustics.
The reason for this is quite important. The coupling at the exit and the flame
are proportional to the mean Mach number, however, the mean Mach number is
always higher in the hot region of the combustor. The mean Mach number into
the flame is for cold flow and thus is less than the mean Mach number into the

nozzle. It is for this reason that the values of ¥* were less for Run 4 than for Run

3b.

6.2.5 Run 5 — Study of the Influence of ¥ on Stability

with a Flame

Run 5 models a typical combustor with an acoustic wall for an inlet, a plane
flame with a temperature ratio of 4, and a choked exit nozzle to study the effects
on stability of various values of ¥. Here, the contributions of both the flame and
exit coupling influence the stability. The equation solved is 6.72 where Br in 6.61
and 6.62 is set to 1. A summary of the eigenvalues is given in Table 6.8. The first
frequency that is observed to become unstable is 705 Hz for ¥ > .475. Other

frequencies to become unstable for larger X are 977, 422, and 232 Hz.

It is not so easy to make general comments for Run 5 as it was for the
simpler cases of Runs 3 and 4 due the contributions from several processes whose

relative phases are frequency dependent. There are two classes of modes as de-
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X 0, 0, 3 0, s 95

Wi Qg | w2 Qz | wg O3 | Wy a4 | Ws Qg We Qg
25%107%| 0|-11.0 | 256 |-7.5 | 447 | -8.8 | 706 | -11.3 | 961 | -6.5 | 323 | -310
25%x1072 | 0 |-11.7 | 256 | -7.4 | 446 | -8.7 | 706 | -10.6 | 961 | -6.5 | 323 | -251
25%1071 | 0|-19.9 |256 |-7.3|441 | -7.7| 706 | -4.8 | 967 |-5.6 | 327 | -175
4.7%107'| 0|-33.8 (256 |-6.4(437|-59|706| -.02|972|-3.4|336|-156
7.5%1071 | 31 -49 | 256 | -4.7 | 432 | -2.6 | 705 5.0 | 977 | 0.6 | 343 | -146
1.5%¥107°| 59| -30|256| 0.1|422| 82|705| 15.0|880| -62 | 356 | -137
2.5%x107° | 72 -16 | 256 | 5.7 | 417 | 21.0 | 705 | 26.0 | 876 | -46 | 362 | -134

Table 6.8: Run 5 - Eigenfrequencies 1-6 for a Combustor with Entropy Re-

flectance at the exit and Plane Flame. ¥* &~ .475.

scribed in Chapter 4 — the acoustic modes and the entropy-induced modes. The
entropy-induced modes are very highly damped for small entropy fluctuations.
The damping changes rapidly for the entropy-induced modes as the entropy fluc-
tuations increase in magnitude. The frequency is a stronger function of entropy
for the entropy-induced modes than for the acoustic modes. The stability of the
acoustic modes is strongly dependent upon the entropy. The frequency of the
acoustic modes is only slightly dependent upon the entropy.

Figure 6.7 is a plot of the magnitude and phase distribution for the pressure
and entropy. The leftward and rightward running acoustic waves superimpose to
form a standing wave pattern that is distorted due to the effects of entropy and
mean flow. The phase distribution has the characteristic 180 degree phase shift
across pressure nodes; the linear variation of phase between nodes is due to the
mean flow. Larger values of the mean flow Mach number will increase the tilt

of the phase distribution. The entropy has little effect on the magnitude, mode
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shape, or frequency but does influence the damping coefficient.

A

6.2.6 Run 6 — Study of the Influence of =

on Stability
with an Inlet Shock.

Run 6 uses the linear shock theory applied to an inlet duct terminated by an
inlet shock to determine the value of the combustor reflectance at z = 0. Recall
that -;?: is the coupling factor which gives the magnitude of entropy generation
at the inlet relative to the pressure oscillation. The equation solved is 6.72 where
the inlet shock is used to calculate B;carc = B; from 6.22. The intent is to

approximate a realistic combustor inlet configuration. The results are tabulated

in Table 6.9.

Frequency | Reflectance 8y N
w a || Real Imag Real Imag
0|-14.0 || .6577 .0000 || -.0006068 | .0000000
315 | -23.5 || .6157 .0209 || -.0006004 | .0003414
612 | -28.9 || .5967 0111 || .0004766 | .0003502
925 | -21.7 || .5943 .0096 || .0002163 | -.0001738
377 | -64.3 || .6045 | -.0044 || .0063566 | .0002277

Table 6.9: Run 6 - Frequency Dependence of the Inlet Reflectance and Entropy
of an Oscillating Shock.

From Runs 4 and 5, we see that the magnitude of ¥ is sufficient to drive
the system more vigorously than the decay rates in Table 6.9 would imply. This
suggests that the driving is “out-of-phase” in this case. However, the inlet acous-
tic reflectance is =

2/3 where in Runs 4 and 5 it was 1. This implies much

stronger acoustic damping. A study of ¥ and §; (at z = 0) might prove useful in
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determining the stability of this system. Another way to study this is to change

the inlet length. The results of changing the inlet length are given in Table 6.10.

Inlet Duct 0, 0, Qs A Qs
Length wy | o3 || ws Qy ws| ag || wy| ag| ws| op
1.0 0|-15 204 | -113 || 317 | -30 || 607 | -29 || 923 | -22
2.5 0|-14 315 | -24 || 612 | -29 || 925 | -22
4.0 0[-13 || 228 | -59 || 303 | -28 || 594 | -35 || 925 | -20
Inlet Duct s Q,
Length we | ag || wr azy
1.0 736 | -129
2.5 377 | -64
4.0

Table 6.10: Run 6 - Frequency Dependence on Inlet Duct Length Length (ft).

This particular choice of inlet lengths shows that the eigenvalues are de-
pendent on geometry and frequency. But the driving is never sufficient to push
the system into instability. This implies that the linear oscillating shock does not
produce a sufficiently large entropy fluctuation to force instability.

Figures 6.8 and 6.9 are plots of the magnitude and phase distribution
for the pressure and entropy. These two plots show the differences between the
acoustic mode and the entropy-induced mode. The leftward and rightward run-
ning acoustic waves superimpose to form a standing wave pattern that is distorted
due to the effects of entropy and mean flow. In Figure 6.8, the pressure phase

distribution has the characteristic 180 degree phase shift across pressure nodes
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and the tilt is due to the mean flow. Larger values of the mean flow Mach number
will increase the linear variation of the phase distribution. The entropy has little
effect on the magnitude, mode shape, or frequency but does influence the damp-
ing coefficient. In Figure 6.9, the entropy can strongly change the mode shape as
seen by the change in slope of the pressure magnitude at the flame (z/L¢c = .025).
The larger damping also modifies the mode shape and can be seen by the different
value of the pressure magnitude peak between z/Ls =~ .1 and z/Lc =~ .9. This

is the spatial exponential decay that is a part of the linear solution.

6.3 Summary

The linear stability of acoustics with entropy is strongly a function of the entropy
for geometries with sufficient coupling at the boundaries. This is true even for
cases where the frequencies are only slightly affected, as the case is for the acoustic
modes. The boundary conditions are extremely important, as expected, and
can significantly alter both the stability and the frequencies of oscillation. The
application of an inlet shock to the entropy coupling at the inlet is derived and
shown to be insufficient to produce instabilities in the system having the geometry
assumed here. This is probably due to an underestimation of the oscillating heat
release at the plane flame. It is suggested that the plane flame matching condition
be used to develop a variable area multi-dimensional flame sheet. This could
greatly enhance the driving at the flame. Then the results with enhanced heat
release can be applied to the one-dimensional acoustics.

The differences between acoustic and entropy-induced modes are signifi-
cant and in general, the entropy alters the growth rate more than the frequency.
The dependence of frequency and mode shape upon entropy is more pronounced

for the entropy-induced modes than for the acoustic modes. The primary differ-
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ences (other than the physics) between the acoustic modes and entropy-induced

modes are the frequencies and the mode shapes.



Chapter 7

Nonlinear Acoustics with

Nonuniform Entropy

In this chapter we investigate the nonlinear aspects of acoustics with entropy.
The main reason to extend the work to nonlinear effects is to capture the charac-
teristics of the limit cycles that are seen experimentally and the transition from
the linear growth and decay to the nonlinear limit cycle. The procedure that
follows is based on the model developed in Chapter 6, the general equations of
Chapter 4, and the solution techniques outlined below. In general, the procedure
is similar to that used by Culick to study solid propellant rocket motors [26] [27].

The nonlinear fluid-mechanic interactions were discussed in Section 3.4.
The quadratic nonlinearity is investigated with respect to acoustic-acoustic and
acoustic-entropy interactions for the case of acoustic mode interactions. The
goal is to gain insight into the nonlinear acoustic-entropy interactions, to study
stability of the system, and to find nonlinear steady limit cycles. It is not sufficient
to consider only acoustic-entropy interactions because as shown in this chapter,
the acoustic-entropy interaction terms are less than one percent of the acoustic-

acoustic terms for the acoustic mode interactions. Hence, it is shown that the

134
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nonlinearities are dominated by the acoustic-acoustic interactions and not by the
acoustic-entropy interactions.

The solution techniques involve a Galerkin expansion in normal modes to
obtain a spatial approximation through spatial averaging. Then, time averaging is
used to reduce the second order equations to first order equations. The resulting
time averaged equations govern the time evolution and stability of the solution.
The linear solutions are determined and used as input information in the nonlinear

analysis.

7.1 Formulation and Approximate Methods of
Solution

The general formalism is presented and described before applying the simplifying
assumptions required to work through an actual example. The example was
chosen to obtain basic physical insight into the problem.

The problem studied is a one-dimensional (constant area) combustor that
contains a plane flame at z = z; and specified boundary conditions at £ = 0
and £ = L. The influence of mean flow is retained and is discussed in detail
later. The upstream mean flow in the one-dimensional case must match the mean
steady flame speed for the steady plane flame to remain at a fixed mean position,
z = zy. This limitation can be relaxed in the limit of low frequencies. The crucial
issue is that the flame zone be acoustically compact. Hence, it would be possible
to formulate an oblique flame in the framework of the one-dimensional analysis
subject to the low frequency considerations and some type of spatial averaging of
the mean flow (such as suggested by Yang [37]). In addition, the position of z;
must be given. (In many cases, flame holders may be present to fix z;.)

The general equations are given by 4.13 - 4.14. In one-dimension, the
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equations of motion can be summarized as

P+ uP, +yPu, = @, (7.1)
2 —
u; + uu, + 713-P’ = Q2 (7.2)
St + us, = Qs (7.3)
where

Q1 = d*w(z,t) + %z’t) (7.4)

Qs = by(z,1) (7.5)

Qs = cuq(z,1) (7.6)

and ¢(z,t) is the entropy term defined in Chapter 4. Often, when acoustic dom-
inated phenomena are studied, it is convenient to write the governing equations
in a second order wave equation form. Performing the second partial derivatives

and rearranging in one-dimension, the acoustic equations become

Py—a*P,; =H,+ H.+ H, (7.7)
and
Uy — azuu = K“ + Ke + Ky . (7.8)
In these two equations
H, = —-u,P, — uP,; + yPu,u, + yPuu,,, (7.9)
a?
Ky = —uuy — uttyy + —(u Py + uPy,), (7.10)
AP
a?
H, = ('y_P) ] ~APP, — yPu,, (7.11)
i) 7= (35)
K.=|\—|"Pu,—|—| P,, 7.12
(5 %), (1.12)

H,=Qyu— YPQ::, (713)
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and
2

Ky, = Q- j:"'I;Qu . (7.14)

The equations 7.7 and 7.8 are nonlinear. The left hand side of the equa-

tions are the homogeneous parts of the nonlinear wave equation. The boundary
condition can be obtained by use of the momentum equation at each end. The

boundary condition is

P,

2 Ju 2 2
L= <—p—a—t— —pu- uz) |1 + Fl1 (7.15)

at the boundary surface.

Consider flows which are perturbations of a mean flow. In these cases,

choose
P=PFP+P (7.16)
u=1uo+u (7.17)
a®=al+al. (7.18)

Assume that a mean flow exists and is determined by an unperturbed steady

state. This implies that
Por = Pou = uot = uos = 0. (7.19)

After considerable manipulation and some new definitions, the acoustic equations

become
P, —a}Pl, = —a}(hy+ he + hs + h,), (7.20)
uj; — agul, = —af(ku + ke + kg + k) , (7.21)
and
ﬂ:=4h+ﬂ+h+h) (7.22)

where the h’s are

— a2h, = —uoPl, + 7Pyuoul, (7.23)
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—alhy = a’Posy — utPos +v(Po + P')(ud, + 2uoztl + totoss + u'uoss)

+ (:—;) ] v(Po + P')Po; — 1 P{uo, (7.24)
—aghe = —wP, —u' Py +~(Po+ P')((u;)* + v'uy,)
+qP'uoul, + (:—;) 4(Po + P')P, — 4Pju,, + alP., (7.25)
— aghy = Q}, + Q1 — ¥(Po + P') (@}, + Q3.) (7.26)
and the f’s are
fu = po(uou; + w) ]: , (7.27)
fo = (60 + #) (o + 4oz + Pos). (7.28)
Je = (' (uo + v')ul, + pou'ul, + p’u;)lj , (7.29)
and
fo =~ (7.30)
Similar equations can be found for the k’s to be
a?
—alk, = —uou’, + 'yTuOP;" , (7.31)

2 Pl 2
—alks = —uoup + — P (1 -5t —;) (vozPoz + %oz Py + 4, Poz + 1o Pozs
710 0o 4

2 Pl
+'u"POzz + '7P0zu0== + quP; + POzu;) - & ( + (‘:1) ) PO:: a(7 32)
0

1P, Po
a? P 4
—alk, = —ulul —u'ul, + ’1}0)0 (1 ~ + ;) (u,P, +u'PL,)
2 ' 2
ay P ("'1)t '
— 2= | uoP .33
’YPO ( PO + a(2) zz ) (7 3 )

and

az PI 2
- a’gkv = let + ta - —";;To (1 - E "%') (le + le) (7-34)
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The subscripts denote the physical importance of the particular terms.

The subscript u denotes mean flow contribution, # denotes the gradients in the

mean flow contributions, € denotes the strictly nonlinear terms (although § and

v terms are both linear and nonlinear), and v denotes source contributions from

mass, force, and entropy sources.

7.1.1 Linear Sturm-Liouville Problem

Consider the linearized acoustics equations and boundary conditions for a duct

from [; to I, where boundary conditions are given at I; and l;. Then 7.20 and

7.21 can be put in the form
P, — o3P, = —ahun

and

[} 2.1 2
Uy — QU = __a'Ok“”

with boundary conditions
P;(ll) + al(w)P'(ll) =0 )

P;(I2) + az(w)P'(i5) =0,
u;(ll) + ﬂl(W)ul(h) =0 )
and

up(l2) + Bz (w)u'(lz) = 0.

General Sturm-Liouville Problem

The general form of the Sturm-Liouville equation is

d [ do; _
iz (p dz) + g + Airg; =0

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)
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where p, q, and r are functions of z. When p(z) = r(z) = 1 and ¢(z) =0, the

S-L problem becomes
d?
—d.'r,z (¢.) + A,‘(ﬁ,‘ =0 (7.42)

which is identical to 7.35 and 7.36 for the acoustics problem above where hy;,, and

ki, both vanish. Consider

Gizz + Xihi =0 (7.43)

and

Gizz + Aj; =0, (7.44)

and multiply 7.43 by ¢;, 7.44 by ¢;. Then subtract to get
(Aj - Ai)¢i¢j = ¢j¢izz - ¢i¢jzz . (745)

Integrate over the volume, or spatially average, to get

=2 [ 69507 = [ gigiesav - [ ' 6ibiaadV (7.46)
but,
[ $:812edV = $italt — itials + [ bicatsa (7.47)
Then
b b b
(A — )‘i)_/; $id;dV = ¢;diz|, — bibizl, » (7.48)

so that the right-hand side of 7.48 is

R.HS. = ((aiz)J - (aiz)) 6:(8);(b) + ((i) - (al),) :(a)d;(a) . (7.49)

Hence, the proper result is obtained that the functions ¢; are orthogonal

to each other under the inner products defined by

< dirdi >= (A — \) /  birsdV (7.50)
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as long as the boundary conditions are not a function of frequency. Similarly, one
can show that if ¢; is a solution, then éS.- is also a solution and thus < g.b.-,ciSj > is
also orthogonal.

Hence, for the special case of constant boundary conditions, it is easy to
get simple orthogonal eigenfunctions. For the case h;;,, and k;;,, # 0 due to mean

flow or sources, then the eigenfunctions will in general not be orthogonal.

7.1.2 Galerkin Expansion of P' and v’

The following section sets up the formalism required to solve the nonlinear acous-
tics in a constant area duct with arbitrary boundary conditions at each end. As
shown in Chapter 6, the hot section of the combustor (z; < z < L¢) is termi-
nated by reflectances that are not ideal (real and of magnitude 1). To actually
calculate a general combustor problem similar to Runs 3 through 6 of Chapter
6, a general formulation with arbitrary boundaries is required. The actual non-
linear problem to be solved in this chapter , however, is one of ideal boundary
conditions. The results of the problem solved indicate that for the coupling of
the classical acoustic modes, the acoustic-entropy interactions are relatively small
compared to the acoustic-acoustic interactions. Thus, it is not necessary to use
all of the capability of the more general formalism. More will be said about use
of the general formalism in Section 7.2.

To summarize, the procedure for obtaining an approximate solution in-
volves the following steps:

1. solve the linear eigenvalue problem;

2. express the fluctuation pressure and velocity as an expansion in the linear

modes;

3. spatially average to obtain the nonlinear second order oscillator equation;



142

4. time average to obtain an approximate first order set of equations which

govern the slow time scale evolution;

5. solve the first order slow time evolution equations with a fourth order
Runge-Kutta method.

In the linear problem as posed in Section 4.3, 8r, the inlet boundary con-
dition, and Bz, the exit boundary condition, are needed to find the eigenvalues,
0, = w,+1ta,. The linear solution is used as the foundation from which the non-
linear problem is formulated. The fluctuation pressure and velocity are expressed
as a summation of modes which are based on the linear separation of variables

techniques to get

Pls,8) = Py i 7 (£) ¥ (2) (7.51)
and
HEUEDD #12)”(2:) . (7.52)

This choice of u'(z,t) is chosen so that the momentum equation is exactly satisfied
for the case of

o' ,
po-aT = —Pz . (753)

For 7.53 to be true, the influences of the mean flow and of the body forces must
be ignored.
Retaining the condition of accounting for complex boundary conditions

that can be frequency dependent in the zeroth order problem, consider
P, — Pl = —alh (7.54)

where

ul = %%(A(')Pt' - .(}).A(f)pt't) at z=uz; (7.55)

Po w
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This includes the approximation that ¢ times the pressure, tP', is replaced by

(-1/w)F;.

The zeroth order problem used will also be required to satisfy the nonho-

mogeneous boundary conditions. Then the zeroth order problem is
¢tt - a(2)¢4u: =0

where

o = ——(AVy; - %A(i)'ptt) at z=uzy,

a

ag

¢z = —l(B(r)th - lB(')d)ﬁ) at z=1L.
(/1) w

Hence P' and ¢ satisfy the same boundary conditions

d | P o P! _
E{¢}_£,{¢} & ms,
d | P P
d—z{¢}=£f{¢} at z=1L

and

(7.57)

(7.58)

(7.59)

(7.60)

(7.61)

where L} and L£? are differential operators defined by 7.60 and 7.61. Choose

Y, = Pn(z)e %kt from which
‘bnzz + k:‘Pn =0
and
Pnz = 1NknAp,  at z=1z{
Pnz = 17kn By, at z=0L.

Expand P’ as
P' 2 Ponm(t)Pm(z) -

(7.62)

(7.63)

(7.64)

(7.65)
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Return to the original partial differential equation 7.35 with 7.65, multiply

by @, and spatially average from z = z; to £ = L. Use Green’s theorem and

integration by parts to get

L L
(im +istm) [ Gubmdz = [ oohde = [puPL = puPy.  (T66)
z z
It is here that the issue of orthogonality appears. It can be shown that

L
(K3~ k2) [ Pubmds = [PriknBnbm — BmiknBabulecs

_[‘AbnikmAmém - ‘bmiknAnén]z=z; . (767)

When the right-hand side of 7.67 vanishes the eigenfunctions $, are or-
thogonal. Since ks , Bm , and A,, are generally functions of frequency, the right
hand side will not vanish and the functions @, are not orthogonal. A,, is depen-
dent upon the geometry of the inlet duct, inlet shock, dump plane, and the plane
flame. Since the shock response is frequency dependent it is inevitable that A,,
be a function of frequency. B,, is also frequency dependent since the reflectance
of entropy waves as pressure waves at the exit nozzle is a frequency dependent
process. From the work on entropy modes in Chapter 4 it is apparent that the
set ¢ includes both the acoustic modes and the entropy modes.

When (,, are not orthogonal, however, the Gramm-Schmidt Orthogonal-

ization theorem guarantees that an orthogonal set, ©;, can be constructed where

P11 = §b1 ) (768)
P2 =Pz — cnpi, (7.69)
and
1 L, |
C21 = -E-?/zf gochld:c (770)

and so on for all modes of the system. If only a few modes are to be considered

then only a few orthogonal functions p,, need be generated.
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Recall that each of the @, are complex; choose P' so that

P' =Py nixi (7.71)
where
Xi = @i + & (7.72)
and the ( )* denotes the complex conjugate. Then
L
/;fxmx,,dz = b &l (7.73)

and compute
n<y

= Pnz — ) CniPja - (7.74)

Then 7.74 can be rewritten using 7.64 to get

n<m
©Pnz = t17knAnPn — z: cnmi'ykmAmémz at z= Xy (775)
and
n<m
©nz = 1VknBrPn — E CramtVkm Bm®Pmz at z=1. (776)

This produces a set of real, orthogonal functions that are suitable for determin-
ing the nonlinear response of problems with arbitrary boundaries that are not
approximately ideal. Although not done here, the real functions are used in the
time averaging and Runge-Kutta solution technique just as the simpler set of real

functions considered next.

Example Problem

The actual problem treated is a combustor that originates at £ = z; and ter-
minates at £ = L. The inlet reflectance (at z = z;) is taken to be one (a rigid
wall). The exit reflectance is taken to be Bgxsr as defined by 4.85. The set of

eigenfunctions are given by

wizz - a(z)tpzz =0 (777)
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where
%i: =0 at z=uz; (7.78)
and

Yi; =0 at z=1L (7.79)

This is the set of classical acoustics eigenfunctions. For\typical values of the
entropy magnitude, the entropy modes are highly damped and are not included
in the set of eigenfunctions used in this expansion.

The nonlinear entropy will be present in the fluid mechanic terms between
z = zy and z = L. The quadratic nonlinear terms consist of acoustic-acoustic
interactions and acoustic-entropy interactions. Hence, the problem treated is the
nonlinear interaction of the acoustic modes with contributions from entropy. It
is possible to study the nonlinear acoustic mode and entropy mode with entropy
contributions if an orthogonal set of eigenfunctions is constructed. This mode of
nonlinear interaction is not treated here.

The actual problem to be done ,however, will use ideal boundary condi-
tions at z = zy and z = L to give orthogonal eigenfunctions directly and prevent
the need to construct orthogonal functions. In this way the original set of eigen-

functions will be an orthogonal set.

Spatial Averaging

Spatial averaging uses the linear solution as an approximation to the spatial dis-
tributions. These are then averaged to reduce the influence of small discrepancies
between the exact solution and the linear solution. The resulting set of equations
has only one variable — time.

Again consider 7.77-7.79 where 1), satisfies the homogeneous boundary
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conditions at £ = z; and z = L, is real, and

¥n = cos (%%—5—3%) ) (7.80)

where 1, is the orthogonal set of eigenfunctions. Assuming a, is not a function
of position (with the exception of step change across z;) spatially average and

use Green’s Theorem to find

fim + WhAm = P:g.. { / / /¢,.th + f z,b,,fdA} . (7.81)

Then with the definitions in 7.1.2, this equation can be written in the form given

by Culick [10] to be
fin + w:nn =F, (782)

and

2
- _ 9% )
B = P,E? {/// YphudV + f ¢nfpdA} linear terms

{// Yn(he + hg)dV + f Yn(fe + fp)dA} nonlinear terms

P0E2 {// Ynh,dV +f¢,.f,,dA}source terms . (7.83)

Time Averaging

There are three obvious possible ways to solve the nonlinear problem:
1. Two-timing
2. Method of Time Averaging
3. Numerical Calculation.

Numerical analysis gives solutions to specific examples but, in general, often
provides little insight into the mechanics of the solution. The method of two-
timing is very attractive but, due to the large number of terms in Fy, can be

a formidable bookkeeping problem. In the cases treated to date, two-timing
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and time-averaging have given the same results; however, they were simple cases
where w, = nw;. The method used here is the method of time averaging. In
the past, questions have been raised as to the general validity of time averaging
[55]. These issues have usually resulted from either the incorrect application of
time-averaging or a failure to recognize its limitations.

From previous experience with nonlinear limit cycles [56] we expect that
two time scales will be important. The fast time scale, which is associated with
the oscillation frequency, is dominated by the linear characteristics. The slow
time scale, which may contain linear damping or growth, contains the effect of
the nonlinearity and controls the magnitude envelope of the fast time oscillations.

The method of averaging will average out the fast time oscillations and
leave an ordinary differential equation for the slow time evolution of the slow time
varying variables. In addition, the time averaging will reduce each second order
ordinary differential equation to two first order ordinary differential equations.

Consider the oscillator equation

ﬁn + wyzzﬂn = Fn . (784)
Multiply by 7, to get
d 1 . 2 1 2 2 -
'd_t (5’7" + Ewnnn) = ﬂnFn (7'85)

from which an acoustic energy, &, , is defined to be

(1., 1, 2)
én = (277,, + 5Wnfn ) - (7.86)
The time average is given by
1 rt+r
<QE)>=- / Q(t)dt'. (7.87)
t

Since the linear time dependence is sinusoidal, try 7, of the form

Nn = An(7) sin (wat) + By (r) cos (wnt) (7.88)
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where the functions A,(7) and B,(7) are slowly varying functions of time with

respect to sin (w,t) . Differentiate 7, to get

n = WA, cos(wnt) — wpBpsin (wnt)

+ A, sin (w,t) + B, cos (wpt) . (7.89)

Since the unknown function 7, is replaced by two functions, A, and B,, it is not

an approximation but a valid requirement that
A, sin (wnt) + By, cos (wat) =0. (7.90)
Thus the acoustic energy, £, , can be written as

_1'2 lzz)_(lz 122)
an_(znn_*_zwnnn - 2An+2wan . (791)

Calculating 7, it is easy to get
F,=w, (}1,, cos (wnt) — B, sin (w,,t)) (7.92)
which when combined with 7.84 gives
. 1
A, = —F, cos (wnt) (7.93)
Wn
and
- |
B,, = —F,sin (w,t). (7.94)
Wn
The equations for A,, and B, are first order ordinary differential equations
and can be solved numerically by a fourth order Runge-Kutta stepping procedure.
No time averaging has been done. To save computational efforts these equations
can be time averaged over the fast time scale of the period of the first longitudinal

mode. The errors produced by the time averaging will be small as long as the

change in A, and B, with respect to time. In other words, the slope in an A, vs.
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time plot should not to be very large. The steady state limit cycle should have

little error due to the averaging. The time averaged equations are

. 1 t+r
"= — w(t' nt')dt' .
A ol Fo(t") cos (wyt') (7.95)
and
B.= 2 ["F (') sin (wat')dt’ (7.96
n= ot e n(t') sin (w, . .96)

Specific Problem

The specific problem to be studied allows an assessment of the influence of en-
tropy on steady limit cycles. The first attempt was to consider a case where the
mean flow was neglected in the acoustics (but not the entropy), no sources were
included, and mean flow gradients were assumed zero. After completing this,
one factor obviously required special attention. The mean flow in the acoustics
cannot be neglected since this contribution is of the same order as the nonlinear
terms to be studied.

There are two ways the mean flow can be included. It is possible to solve
the linear equations with mean flow and to use these results as the input to
the approximate integral equations to determine the nonlinear behavior. This
procedure is not used because: (1) the non-orthogonality of the linear terms (see
section on Sturm-Liouville problem), and (2) this results in retaining terms in the
approximate solution of the same order as ones already neglected. The correct
way to retain the mean flow terms is to use the correction perturbation terms in
F,, while using solutions with no mean flow as the basis functions in the Qalerkin
expansion,

P' =P Nthm. (7.97)

The form of the final oscillator equation should look like

ﬁn + wyzgﬂn = QpmNm + fnmﬁm + ﬂnm;’m
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+Anmi T + Bumt Tt + Crmit N
+Dnmi Ml + Epmi 1m Tt - (7.98)
Consider the case where gradients in the mean flow and sources are neglected.
Then,
hg=h, =fg=f, =0. (7.99)
The following assumptions are useful in calculating the above coefficient

matrices.

e Neglect terms where the order is higher than 3.
(i.e. P'P'P'w'u'P', u's'P' etc.)
e Neglect terms of second order and containing mean flow.
(i.e. uot'P' upu'v',ups'u’, etc.)
e Use the exit reflectances as defined in the simple entropy case section in

any surface boundary conditions and not in volume integrals.

The terms f,, fe,hu,he need to be calculated. The expansions for the

acoustic pressure and velocity are

P =P udm (7.100)
and ]
u'=> b (7.101)
m Yk

As mentioned earlier, the boundary conditions can be given in terms of an inlet

and an exit admittance of the form

o
Anr = poaoF at z=uzy (7.102)

and

ul

ANEXIT = poaop at z= LC . (7103)
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Whenever a u' or P' is encountered in a surface area calculation the admittance
and the opposite term should be substituted. This is the way the linear boundary
perturbations are incorporated into the spatial averaging formulation.

The entropy is assumed to be proportional to the pressure since the entropy
at the inlet shock is proportional to the pressure. This is a convenient case for
choosing the form of the entropy. The method could handle other functional
forms of entropy but would require some development. Since the entropy is taken

as proportional to the pressure then

s'(z,t) = Bt ®m (7.104)
where
W
®,, = cos (—z). (7.105)
Ug

After calculating the spatial averages of the terms f. , f,, k¢, h, , the perturbation

term F,, is
Fn = OpmMm t+ enm’:’m. + ﬂnmﬁm + Anml ﬁmi]l
+ Bt 1M + Domt it + Epmt it (7.106)

where the standard summation convention has been employed. Substituting for

7, from 7.88 it can be shown that
An = M: A, + M2 B, + N, AnA
+N2  BnAi+ N2  AnBi+ Ni. BnB (7.107)
and
B, = O Am+ O Bn+ Pl AnA
+P? BnAi+ P> AnB + P. B.B;. (7.108)

where the time averages and spatial averages are incorporated into the coeffi-

cient matrices. The superscripts denote different coefficient matrices which are
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explicitly given in Appendix I. The coefficients M}, and O!_ govern the linear
behavior while N}, and P:_, govern the nonlinear behavior. In the absence of

entropy, 7.107 and 7.108 reduce to

A= 0nAn+ 0uBot 15 5 [Ai(Anci — Aicn = Auss) = Bi(Baci + Becn + Busi)]
=1
(7.109)

and

B = 0By~ OnAu + 05 3 [4(Buci 4 i = Boid) + Bl Anci = v+ Aas)]

= (7.110)
as given by Awad and Culick [42]. In their notation, ay, is the growth constant,
0, is the frequency shift (from the value used in the Galerkin expansion), and S

is the only nonlinear gasdynamic parameter where

~N+1
8y

B = wi . (7.111)

7.2 Results of Calculations

A computer program was written to actually calculate the coefficient matrices
and to perform the Runge-Kutta solution of 7.107 and 7.108. The Runge-Kutta
method was identical to that given by White [57]. The first obvious case was
to set the entropy to zero and reproduce the results given by Awad and Culick
[42]. The examples given by Awad were reproducible. Two sample acoustic-
acoustic nonlinear limit cycles are shown in Figures 7.1 and 7.2. The first shows
a case where the initial disturbance is smaller than the resultant limit cycle and
for the second the initial disturbance was larger. The actual magnitudes of the
limit cycles are dependent upon the initial linear damping coefficients, a; and a,.
Also, the approach to the limit cycle is dependent upon the damping coefficients.

Figure 7.3 shows a case where a; > —2a;. There is a definite overshoot as the
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solution approaches the limit cycle. Figure 7.4 is a case where a; =~ —4qa;. In

this case, the solution has no overshoot at all in its approach to the limit cycle.
7.0

wy = 426 Hz a, = 7.8 rad/sec

6.0F w,=853Hz a,=-79.5 rad/sec

5.0

4.0

Magnitude (% of mean)

0 ] l
-0 0.10 0.20 0.30

Time (seconds)
Figure 7.1: Acoustic-Acoustic Nonlinear Limit Cycles - Small Initial Distur-

bance.

For the case with entropy, the same procedure was executed. The magni-
tude of the acoustic-entropy terms in the coefficient matrices were very much
smaller than the acoustic-acoustic terms. Even for cases where ¥ =~ 3, the
acoustic-entropy interaction terms were less than one percent in magnitude of
the acoustic-acoustic interaction terms. Since the acoustic-entropy terms are
much smaller than the acoustic-acoustic terms in 7.107 and 7.108, it is not sur-
prising that the nonlinear results are strongly dominated by the acoustic-acoustic

interactions.
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Figure 7.2: Acoustic-Acoustic Nonlinear Limit Cycles - Large Initial Distur-

bance. 7.0
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Figure 7.3: Acoustic-Acoustic Nonlinear Limit Cycles - Small Amount of Damp-

ing.
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wy = 422 Hz a, = 32.6 rad/sec

12 w,=853Hz  a,=-210 rad/sec

Magnitude (% of mean)

0 ] 1

0 0.05 0.10 . 0.5

Time (seconds)
Figure 7.4: Acoustic-Acoustic Nonlinear Limit Cycles - Large Initial of Damp-

ing.
7.3 Discussion of Results

These results are very interesting. As shown in Chapters 4 through 6, the linear
solutions are strongly dependent on entropy for the cases where ¥ > .5. Two
important observations can be made about the linear eigenvalues (solutions):

1. The linear solutions are dependent upon entropy fluctuations.

2. The nonlinear behavior is strongly affected by linear solutions.

In general, the entropy will destabilize the linear solution when “in phase”
driving occurs. Conversely, the entropy fluctuations will stabilize the linear solu-
tion when the driving is “out of phase”. The phase of the driving is determined
fluctuations will stabilize the linear solution when the driving is “out of phase”.
The phase of the driving is determined by the geometry and mean flow condi-

tions. Hence, the linear coefficients in 7.107 and 7.108 (which are M} and O )
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are dependent upon the entropy fluctuations.

The quadratic nonlinear processes are can be divided into four types:

1. Acoustic mode — acoustic mode coupling with

(a) acoustic-acoustic interactions.

(b) acoustic-entropy interactions.
2. Acoustic mode — entropy-induced mode coupling with

(a) acoustic-acoustic interactions.

(b) acoustic-entropy interactions.

The case studied is the acoustic mode — acoustic mode coupling. It is shown
that the solution is dominated by the acoustic-acoustic interactions and not the
acoustic-entropy interactions. Thus, the nonlinear coefficients, N:,, and P:_,,
are not significantly influenced by the entropy fluctuations.

It is possible that the entropy contribution will be most significant to
the nonlinear analysis when the acoustic modes and entropy-induced modes are
interacting. This case was not investigated, but is the only remaining quadratic
interaction between acoustics and entropy to be studied. It is expected that
the influence of the acoustic-entropy interactions will be stronger than the case
studied, but only for large values of linear interaction.

The coupling between two acoustic modes has the convenient result that
the contribution of entropy is relatively easy to assess since the linear influence of
entropy is easy to obtain from simple linear solutions. The nonlinear analysis can
be done without entropy (while using the linear solutions with entropy). These

observations apply only to the coupling between two acoustic modes and not for

coupling between acoustic and entropy modes.



Chapter 8

Summary and Conclusions

There are several important conclusions which can be drawn from the previous
chapters. Each of these will be discussed separately and are based on the low
frequency assumptions. The low frequency assumptions require that the wave-
lengths of the oscillations be large with respect to the characteristic length of each
compact element. The physical nature of the acoustic waves is propagation from
any acoustic source with the acoustic velocity. The entropy waves on the other
hand must be convected (or conducted which is not considered herein) away from
its source with the mean flow.

A set of linearized equations of acoustics with entropy are developed in
Section 4.3 for acoustic regions connected by compact acoustic elements. These
were used in Section 4.4 to show that with entropy there are two distinct modes
of acoustic oscillation: the acoustic mode and the entropy-induced mode. An
acoustic mode reduces to classical acoustics in the absence of entropy. An entropy-
induced mode is distinctly different and never reduces to an acoustic mode. The
only reason that the entropy-induced mode exists is due to the coupling — a
transfer of energy between fluctuating entropy waves and pressure (or velocity)

waves. For small levels of entropy fluctuation and coupling, an entropy mode is

158
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highly damped. For larger levels of entropy fluctuation, the entropy modes tend
to be damped about the same as acoustic modes. It would be useful to set up
an experiment where the entropy fluctuations are very large so that it would be
easier to distinguish the acoustic mode and entropy-induced mode in the pressure
oscillations. For the larger levels of entropy (¥ > .5) the geometry determines
which modes are “in phase” and thus driven.

In Chapter 5, a previous treatment of a plane flame is expanded and ap-
plied to an acoustic combustor system. It is shown that the condition for a stable
deflagration in subsonic flow is that the flow be in a diverging channel (in the
absence of viscosity, heat conduction, and dissipation). This is analogous to the
case of shock wave stability in a diverging diffuser. The acoustic and entropy
response of a flame is examined in detail. Of primary interest is the coupling of
a flame to the acoustics upstream and downstream. The motion of the flame is
part of the acoustic solution. It is significant to note that for the cases studied,
the dominant response was due to the temperature discontinuity. The motion of
the flame and the fluctuating heat release were minor influences. The important
characteristic of the flow on the response of the flame to entropy is the mean
flow Mach number into the flame which is usually small for the cold flow into the
flame.

In Chapter 6, the compact acoustic elements of a plane flame, exit noz-
zle and inlet section are assembled into a combustor-inlet system model. For
these linear boundary value problems, the geometry and mean conditions play
the dominant role in determining the stability of the system. It is very important
to include in the model all components which are acoustically coupled to the com-
bustor. That is to say: it is incorrect to neglect the coupling of the inlet shock,
inlet duct, and dump plane when determining the acoustic modes of the combus-

tor. The flow is subsonic through the inlet and combustor and thus acoustically
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coupled. For an experimental apparatus that does not have an upstream shock,
the upstream ducting and plenum chambers which are acoustically coupled to the
combustor must be included in determining the acoustic modes of the system.

When the nondimensionalized inlet entropy coupling term, characterized
by X, is greater than approximately .1, entropy plays a significant role in the
linear stability. Some modes may be damped while others are amplified. In
general, the entropy modes are damped more than the acoustic modes, but for
values of entropy fluctuation proportional to pressure fluctuation, the entropy
modes should not be ignored.

The contribution of the plane flame to the combustor model is to essentially
act as a fluctuating heat release term proportional to the fluctuating mass flux
across the flame. This heat release manifests itself in two physical mechanisms.
First, the heat release changes the density and produces a pressure wave similar
to a mass source. Second, a fluctuating entropy convecting downstream is created
which is similar to an entropy source. The actual motion of the flame is several
orders of magnitude smaller than the wavelength and for calculations can be
treated as fixed at the mean position. The fluctuating entropy downstream of the
flame will interact at the exit nozzle to produce pressure oscillations. The stability
of the combustor system is determined by each of the contributing processes and
their phase relationships. Hence, each frequency generally has a distinct damping
coefficient.

The magnitude of the inlet shock reflectance is much less than 1 and hence,
tends to damp out the driving produced by the coupling of entropy and pressure
downstream. As seen from the examples, the driving from the shock is insufficient
even when the acoustic reflectance is high. This implies that there is still an
important driving mechanism in the combustion process which is not contained

in the present model. It is the belief of the author that the fluctuating heat release
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at the flame is still underestimated due to the one-dimensional assumptions. A
two-dimensional model of an axisymmetric flame should be worked out while still
using one-dimensional acoustics (as done by Yang [37]). The flame may still be
treated as very thin, but flame sheet stretching due to vortex rollup and growth
could greatly amplify the fluctuating heat releases. (This is due to the larger
surface area and the fluctuating surface area of the flame.) It is not expected
that such a two-dimensional flame model is easy to formulate but it could be
applicable to many combustion flows with significant shear layers.

The nonlinear results of Chapter 7 apply only to coupling between two
acoustic modes with acoustics and entropy contributions to the interactions. The
entropy is shown to be insignificant in these nonlinear processes. The nonlinear
solutions are dependent on the linear solutions and to this extent are significantly
dependent upon the linear contributions of entropy. This is a direct consequence
of the dependence of the nonlinear solution on the linear coefficients M?_ and
O:,.. These coefficients reduce to linear coefficients given by Awad and Culick,
a, and 0,, in the absence of entropy fluctuations and mean flow [42]. Further
study is suggested to extend this work to the case of coupling between acoustic
modes and entropy-induced modes of acoustics with entropy, since this is the last
remaining fundamental issue of acoustics with fluctuating entropy.

The importance of the small influence of entropy in the nonlinear acoustic
mode interactions is that the influence of entropy can be determined entirely from
the linear analysis of entropy. This is a nice result since the linear analysis is,
in general, much easier to perform and generalize for the purposes of design and
prediction.

The practical application of this work should be apparent from the specific
examples chosen to illustrate the processes. With renewed emphasis on airbreath-

ing propulsion systems to increase range, specific impulse, and reduced size, the
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issues of pressure oscillation stability may be crucial to feasibility and reliability.
It is hoped that this work will help to dispel some confusion as to the importance

of entropy with respect to pressure oscillations in combustion chambers.
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Appendix 1

The time averaged equations for A4, and B, (7.107 and 7.108) are

A, = M} Ap+ M2 B, +N. AnA

+N2 BnAi+ N2, AuBi+ N2, BB,

and

B, = O An+ 0% B, +P! A.A

+P?  BnAi+ P2, AnB,+ P B.B.

The coefficient matrices can be calculated directly with the use of time averaging.

The time average is defined in the usual way as
1 t+7
<QW)>== / Q(t")dt'.
t
Apply time averaging to

A, = lF,. cos (wpt)

Wn
and
] -1 .
B, = —F, sin (wyt)
Wy
where

—-F, = P:?E'ﬁ {/// Yph,dV +ft/)nf,‘dA}linear terms

sy {[[[ 9ottt 531V + § 605+ £7)aA} monlinear terms

P0E2 {/f YnhydV + f ¢nfudA} source terms.
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By defining several coefficients, — F,, can be rewritten as

F, = CpmMm + Enmﬁm + ﬂnmﬁm + Apma i]mﬁl

+Bnm1 NmM + Dnml nmﬁl + Enml ﬁmﬁl

Using the expansion in 7.88, 7.89, and 7.90 for the time dependent variable, 7,,
obtain F, as a function of A,, and B,,. With these, one can find

A, = M,{,,,A,,, + M,mem + NL  AnA

and
B, = o},mA,,. + Omem + P! AnA
where
1Wrn
M:m T {anmCCnm WinnmS Cnm} ’
1Wn
Nim = v {+An,,,1wmw;CCC,,m¢ + BnszSCnm; + CnmlmeSCnml} ,
1%n
Nom = — (At SCCom + BumiC'S Cami — ComiomSSCrmi} ,
1Wn
Nr?m = o { A,,m,wmeC’SC,,,,u + B wmiS CCrmi + CnmlmeCCnml} ,
1Wn
N = ——{+ Anmi0m1S S Crumt + BamiCCComi — ComitomSCCona}

TiWn
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O}.m = T {anmssnm + wmfnmCSnm}
1Wn

2
Onm

{anmCSnm wmfnmssnm} 9
len

T " {+A,.,,uwmw,CCS,.m¢ -+ .Bm,uSSSnmz + C,,mzmeSSnml}
1Wn

T w { A m.lwmwlSCSnml +B mlCSSnmI CnmlmeSSnml}y
1%n

le { AnmlwmwlCSSnmI + BnmlSCSnml + CnmlmeCSnnd}

{+An,,dwmw,SS.S',.m, + BrmiCCSpmi — CrmtwmSC Spmi} -

Tl Wn

The following definitions were used in the above equations. For w, # wn

2 m n t m — Wn t
SCnm =/1 sin(wmt') cos(wnt')dt' = (_cos(w +wn)t  cos(wm — wn) ) |2,

2
CSpum = / cos(wpt') sin(wpt')dt’ =
1

2(wm + wn) 2(wm — wp)

_cos(wm +wn)t | cos(wm — wn)t |
wm + wn) Z(wm - w"

2(wm + wy) 2(wm - w,,

+s1n W + wn)t sm(wm — w,,)t

2
CCpm = / cos(wyt') cos(wnt')dt’ =
1

2(wm + wn) wm - wﬂ

For w, = wn,

2 1 2
SCpn = /1 sin(wpt') cos(wnt')dt' = - cos(2:.u,,t')’1 ,
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2 . 1 ,
CSan = [ conlunt) sin(unt ) =~ cos(2unt)
2 1 1,2
§8um = [ sin®(wnt)a =~ sin(2unt) + 571,

Wn

2 1 1,2
CC, = /; cos?(w,t')dt' = +E sin(2wnt') + Et'll .

In addition,
1| cos(twm+wi+wp)t cos(+wm —wi +wy,)t
588um = —= |-
4 (+wm + wp +wy) (+wm — wy + wy,)
cos(+wm + wp — wp)t  cos(—wm + wp + wp)t 2
(+wm + wi — wy) (—wm+wtwd) ],°
1[ cos(+wpm +w+wy)t = cos(+wp —wp +wy)t
SCCppu = —-
4 (+wm + w + wy,) (Hwm — wy + wy)
+cos(+wm + w — wp)t _cos(-—wm 4wy + t.u,,)t]2
(+wm + w — wy) (~wm+w+ws) |,
1| cos(twm +w+wy)t  cos(+wm — wy + wy)t
CSCppqp = —— —
4 (+wm + wi + wp) (+wm — wi + wy)
cos(+wy + wp — wy)t  cos(—wy, +wy + w,,)t]2
(+wm + W — wn) (_wm + Wy + wn) 1 ’
CCSumy = 1 cos(+wm + wy + wy)t + cos(+wm — wy + wy)t
4 (+wm + wi + wn) (+wm — wi + wn)
cos(+wm + wy — wp)t  cos(—wm + Wy + wy)t]?
(+wm + W — wn) (—wm + wy + wn) 1 ’

1| sin(twm+wi+wp)t  sin(+wp, —w + wy)t
CSS,",,J = +4-=|-
4 (+wm + wi + wp) (twm — w + wy)
sin(+wp, + w; — wy)t _sin(—wm + wy + wn)t] 2
(+wm + Wi — wn) (~wm +wi +wy)

’
1
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Although not listed here, care must be taken in the above 8 equations to consider

S5CSnm

SSChmi

CCCrm

il
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1 [_ sin(+wm + wi + wp)t B sin(+wm — wi + wy)t

4 (+wm + wi + wn) (+wm — wi + wy)
sin(+wy, + w; — wyp)t  sin(—wp, + w; + wy,)t 2
(+wm + wi — wa) (—wm+witwy) |,

1 [_sin(—{—w,,. +w +wp)t | sin(+wpy, — w + wy)t

4 (+wm + Wy +wy) (+wm — wp + wy,)

_sin(+wm +wp—wp)t  sin(—wm +w + wn)t] 2
1

(+wm + wi — wp) (—wm + wi + wn)

+l [ sin(+wp, + w; + wu )t sin(+wpy — wy + wy)t
4

(+wm +w + wn) (+wm —w + wn)
Sin(+Wm + Wy — wo)t  SiN(—wm + w1 + wy)t]?
(+wm + w — wp) (—wm +Fwitws) |,

n=m=1,n=10=1,and m =1 =1 just as above for SS,,,, where n = m.

integrals of 7.83. To calculate the spatial integrals, one substitutes the assumed
forms of ' and P' from 7.51 and 7.52 into the spatial integrals of 7.83 using 7.23
through 7.34. Since the time variable 7, is slowly varying, it is moved outside of

the spatial integration. Then the integration is performed with ,, where in the

The matrices ;1,.,,.1, I~3,.m;, é’,,m;, Onm, €nm are determined from the spatial

special case chosen (from 7.80)

¥n(z) = cos (M) .

LC—Zf
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