
Three-Dimensional Superconformal Field Theory,
Chern-Simons Theory,

and Their Correspondence

Thesis by

Hee Joong Chung

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2014

(Defended May 30, 2014)



ii

c© 2014

Hee Joong Chung

All Rights Reserved



iii

Abstract

In this thesis, we discuss 3d-3d correspondence between Chern-Simons theory and three-dimensional

N = 2 superconformal field theory. In the 3d-3d correspondence proposed by Dimofte-Gaiotto-

Gukov information of abelian flat connection in Chern-Simons theory was not captured. However,

considering M-theory configuration giving the 3d-3d correspondence and also other several develop-

ments, the abelian flat connection should be taken into account in 3d-3d correspondence. With help

of the homological knot invariants, we construct 3d N = 2 theories on knot complement in 3-sphere

S3 for several simple knots. Previous theories obtained by Dimofte-Gaiotto-Gukov can be obtained

by Higgsing of the full theories. We also discuss the importance of all flat connections in the 3d-3d

correspondence by considering boundary conditions in 3d N = 2 theories and 3-manifold.
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Chapter 1

Introduction

In M-theory, there are M2-brane and M5-brane. The worldvolume theory of multiplet M2-branes is

relatively well-understood by Bagger-Lambert and Aharony-Bergman-Jafferis-Maldacena. However,

the worldvolume theory of multiple M5-brane is still very mysterious. From the string/M-theory

argument, it is known that there exist 6d (2, 0) superconformal field theory, though people don’t

know a proper description of this theory yet.

Instead, physicsists have tried to compactify 6d (2, 0) theory on manifolds whose dimension is

less than 6. For example, if one compactifies 6d (2, 0) theory on a circle, one obtains 5d maximally

supersymmetric field theory. Or if one compactify 6d (2, 0) theory on the torus T 2, 4d N = 4

superconformal theory is obtained.

This program of compactification on general punctured Riemann surfaces C was pioneered by

Gaiotto. He constructed 4d N = 2 superconformal field theory labelled by Riemann surface C.

Information of Riemann surface is realized in 4d gauge theory side, for example, mapping class group

of C is identified as S-duality group of 4d N = 2. More surprisingly, it turned out that instanton

partition function pioneered by Nekrasov is actually identified with the conformal block of Liouville

theory (or more generally Toda theory) on Riemann surface C. This surprising relation was found

by Alday-Gaiotto-Tachikawa (AGT) and often called AGT correspondence or 2d-4d correspondence.

Therefore from 2d-4d correspondence, one might expect that compactification of 6d (2, 0) theory

on a certain d-dimensional manifold Md would give a certain 6−d-dimensional superconformal field

theory.

About two years later, Dimofte-Gaiotto-Gukov (DGG) showed that it also holds for d = 3 by

using gluing ideal hyperbolic tetrahedra. The 3d-3d correspondence states that when M5 branes

are wrapped on a 3-manifold − M3 − we have 3d N = 2 superconformal field theories (SCFT)

− T [M3] − described as the IR fixed points of abelian Chern-Simons-matter theories determined by

M3 and other extra information. At the same time, physical quantities such as partition functions

of non-supersymmetric complex Chern-Simons (CS) theory on M3 are matched with those of 3d

N = 2 abelian superconformal theory.
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Though it seemed successful, actually it was not a complete correspondence as also mentioned

in the original papers. In the correspondence of DGG, abelian branch of flat connections in Chern-

Simons theory is lost. However, considering M-theory point of view and several developments, the

3d-3d correspondence should capture all branches of flat connections.

In author’s work with T. Dimofte, S. Gukov, P. Su lkowski [1], we found 3d N = 2 theories cor-

responding to knot complement in S3 for several simple knots whose partition functions are equal

to the homological knot invariants. Our examples give a full complete 3d-3d correspondence in the

sense that they capture all flat connection without anything lost. It is also possible to reproduce

theories constructed by DGG by Higgs mechanism from our theories. In addition, we see the impor-

tance of abelian flat connections by considering boundaries of 3d N = 2 theories and 3-manifold.

This thesis has following structure;

In Chapter 2, we review the basic aspects of 3d N = 2 supersymmetric theories with focus on the

necessary elements in 3d-3d correspondence.

In Chapter 3, we review the analytic continuation of Chern-Simons theory with focus on the relevant

materials for our purpose.

In Chapter 4, we summarize the 3d-3d correspondence by Dimofte-Gaiotto-Gukov obtained by gluing

ideal hyperbolic tetrahedra.

In Chapter 5, we engineer the 3d N = 2 theories corresponding to a knot complement in S3

for unknot, trefoil knot, and figure-eight knot. We discuss Higgs mechanism to reproduce knot

polynomials and the previous theories of DGG. We also see the importance of including all flat

connection in 3d-3d correspondence by considering boundaries of 3d N = 2 theories and those of

3-manifold.
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Chapter 2

3d N = 2 Superconformal Theories

In this chapter, we review topics in 3d N = 2 theories with focus on the 3d-3d correspondence.

In section 2.1, we summarize several aspects of 3d N = 2 theories including supersymmetry

algebra, supersymmetric action, parity anomaly, monopole operators, vortices, and 3d N = 2 mirror

symmetry. This section is mostly for setting up basic terminology or background for the rest of

thesis.

In section 2.2, we review aspects of compacitification of 3d N = 2 on S1. The resulting theory

becomes effective 2d N = (2, 2) theory which is characterized by twisted superpotential.

In section 2.3, we summarize results on the exact calculation for partition functions on the

squashed 3-sphere S3
b and superconformal index on S2 ×q S1 of 3d N = 2 theories.

In section 2.4, we review aspects of holomorphic block in 3dN = 2 theories with discrete, massive,

sueprsymmetric vacua. A partition function on the squashed 3-sphere S3
b and superconformal index

S2 ×q S1 can be understood as appropriate fusion of holomorphic and anti-holomorphic block. We

mainly discuss formal aspects, so discussion is a bit abstract. Examples are deferred to section 4.

In section 2.5, we summarize the Sp(2L,Z) action on 3d (super)conformal field theories. This

will be eventually related to a certain similar symplectic action in 3-manifold side.

2.1 Aspects of 3d N = 2 supersymmetric gauge theories

In this section, we review some basic aspects of 3d N = 2 supersymmetric gauge theories [2, 3].
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2.1.1 3d N = 2 supersymmetry algebra and its irreducible representations

2.1.1.1 3d N = 2 supersymmetry algebra

3d N = 2 supersymmetry algebra is obtained from the dimensional reduction of 4d N = 1 super-

symmetry algebra, and it is given by

{Qα, Qβ} = {Qα, Qβ} = 0, {Qα, Qβ} = 2σµαβPµ + 2iεαβZ. (2.1)

Here, α and β are indices for spinor which go from 1 to 2, and Z is a central charge which can be

thought as the fourth component of momentum P in 4d. There is a U(1)R symmetry which rotates

Q and Q in opposite phase, more explicitly we choose convention that Q is charged −1 and Q is

charged +1 under U(1)R.

2.1.1.2 Irreducible representations

The irreducible representation of 3d N = 2 superalgebra contains vector multiplet, chiral multiplet,

which can also be obtained from dimensional reduction of 4d N = 1 multiplets. 3d N = 2 vector

multiplet V consists of a gauge field Aµ, a complex Dirac spinor λ, a real scalar field σ, and a real

auxiliary scalar D. In superspace with Wess-Zumino gauge, vector multiplet V is given by

V = −θσµθAµ(x)− θθσ + iθθθλ(x)− iθθθλ(x) +
1

2
θθθθD(x) (2.2)

where σ can be thought as the fourth component of 4d gauge field.

As in 4d, we also have chiral/anti-chiral field strength multiplets,

Wα = −1

4
DDe−VDαe

V , Wα = −1

4
DDe−VDαe

V (2.3)

The lowest component of a field strength mutliplet is a gaugino.

It is also possible to define a multiplet whose lowest component is scalar field. This is called as

linear multiplet, which is defined as

Σ = D
α
DαV, (2.4)

satisfying

DαDαΣ = D
α
DαΣ = 0, Σ = Σ† (2.5)

3d N = 2 chiral multiplet Φ consists of a complex Dirac spinor ψ, a real scalar field φ, and a
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real auxiliary scalar field F ;

Φ = φ+
√

2θψ + θθD, (2.6)

and similarly for anti-chiral multiplet.

2.1.2 Supersymmetric actions

The classical Yang-Mills kinetic terms for vector multiplet can be written in terms of superfield;

Lkin =
1

g2

∫
d2θTrW 2

α + h.c. (2.7)

where trace is over fundamental representation in this subsection. This can be also written in terms

of linear multiplet;

Lkin =
1

g2

∫
d2θd2θ Tr

1

4
Σ2. (2.8)

The classical kinetic terms for chiral multiplets Φ in representation of gauge group is written as

Lkin,matter =
∑
i

∫
d2θd2θ Φ†ie

V Φi (2.9)

We can get mass terms in Lagrangian from non-zero vacuum expectation value (vev) of scalar

component of background vector multiplet. If a background vector multiplet contains mθθ from a

nonzero vev of an adjoint scalar and other components are turned off, we have

Lmass,matter =
∑
i

∫
d2θd2θ Φ†ie

mθθΦi, (2.10)

which gives a mass to matter multiplets. This mass is called as “real mass”.

We also have Chern-Simons therm, which is given by

LCS =
k

4π

∫
d2θd2θTr ΣV (2.11)

where k ∈ Z is a Chern-Simons level.

For U(1) factor of gauge group, we can also add Fayet-Iliopoulos (FI) term;

LFI =

∫
d2θd2θ ζ V (2.12)
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where ζ is an FI parameter. This term can also be thought as

LFI =

∫
d2θd2θ ΣV (2.13)

where a linear multiplet Σ has a scalar component σ = ζ and the rest components are turned off.

For abelian vector multiplets, more generally, CS term and FI term can be thought as a special

case of

LBF =
kij
4π

∫
d2θd2θ Σi Vj . (2.14)

For i 6= j, it is called as BF term in literature. In this thesis, we call it as mixed Chern-Simons term.

2.1.3 Parity anomaly

Unlike 4d gauge theory, in 3d there is no local anomaly. However, there is a parity anomaly, due to

the generation of Chern-Simons term upon integrating out massive charged fermions [4, 5, 6]. More

explicitly, when integrating out charged fermions, the Chern-Simons term is generated at the one

loop, and for the case of abelian gauge group (also abelian global symmetry group), the effective

Chern-Simons levels in low energy become,

(kij)eff = kij +
1

2
(qf )i(qf )j sign(Mf ) (2.15)

where f labels fermions, i, j denote U(1)i gauge or global symmetries, (qf )i denotes the charge of

f -th fermions charged under U(1)i symmetry, and Mf is the mass of f -th fermions. One can do

similarly for the nonabelian global symmetry [2].

Due to the requirement that the path integral is invariant under large gauge transformation, the

effective Chern-Simons level at the IR should be integer.1

2.1.4 Monopole operators and vortices

Monopole operator [7, 8, 9] in 3d theory is defined as a prescription of singular behavior of gauge

field;

F ∼ qJ ? d
1

|~x− ~x0|
(2.16)

In other words, insertion of a monopole operator at ~x0 creates a monopole source at that point with

flux qJ =
∫
S2 F where S2 encloses the insertion point ~x0.

1This integer condition is for dynamical gauge field. However, if we want to gauge the global symmetries, then the
integer condition also needs to be imposed on them.
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A chiral monopole operator in 3d N = 2 theories is expressed in terms of a linear mutliplet Σ;

D2Σ = 0, D
2

= qJ2πδ(3)(~x− ~x0)θ2, (2.17)

and similarly for anti-chiral monopole operator in obvious way. As seen in the definition, this is the

UV operator, which is independent of the choice of the vacua.

Though the monopole operator is a UV operator, it is related to (non-compact) Coulomb branch

of the theory; Coulomb branch exists when the monopole operator is gauge neutral. In Coulomb

branch, the linear multiplet Σ is massless and can be dualized to a chiral multiplet X, and the

scalar component of X parametrize the (non-compact) Coulomb branch. X is charged +1 under

U(1)J topological symmetry. Semi-classically, for large scalar component φ of the chiral multiplet

Φ, the Coulomb branch modulus Xj where j labels the basis of simple roots βj of gauge group G is

asymptotically Xj ∼ eχ·βj/g
2

where χ = φ+ iγ with γ being a dual photon.2 This can be regarded

as a semi-classical expression of a monopole operator.

Meanwhile, there is a vortex solution in Higgs branch of the theory. For 3d N = 2 theories, one

can have a BPS vortices under certain condition. For example, in the abelian Higgs model with an

FI parameter ζ, there is a vortex configuration;

φ ∼ ζ1/2e±θ, Aθ ∼ ±
1

r
(2.18)

with BPS mass given by m = |Z| = |qJζ|. As ζ → 0 where the Coulomb branch and Higgs branch

meet, one can smoothly move onto Coulomb branch where U(1)J is explicitly broken by the Coulomb

branch modulus charged under U(1)J .

2.1.5 3d N = 2 mirror symmetry

There is a “mirror symmetry” in 3d N = 2 theories. Since there is no invariant way to distinct

Higgs branch and Coulomb branch, which are exchanged under mirror symmetry, it is a misnomer.

But since at least for known examples in SQED and SQCD they are from 3d N = 4 where there is

actual mirror symmetry3, same term is usually used also for 3d N = 2. The simplest example of 3d

N = 2 mirror symmetry is the mirror symmetry between SQED with one flavor and XYZ model.

This will be discussed in section 4 a bit more detail.

2For abelian vector fields, it is possible to dualize it to scalar (dual photon) via Fµν = εµνρ∂ργ. Charge quantization
condition constraints the dual photon γ to live on a circle whose radius is proportional to g2 where g is a coupling
constant of the gauge theory. The current Jρ = εµνρFµν generates U(1)J symmetry which shifts γ by constant.

3For example, mirror symmetry in 3d N = 4 theories whose R-symmetry group is SU(2)R1
× SU(2)R2

exchange
SU(2)R1 and SU(2)R2 symmetries, Higgs branch and Coulomb branch, and mass term and FI term.
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2.2 Compactification of 3d N = 2 gauge theories on S1

In this section, we review reduction of 3d N = 2 theories on S1 [10, 11, 12, 13]. Reduction of

3d N = 2 theories on S1 is described by the effective 2d N = (2, 2) theories. This effective 2d

supersymmetric theory is characterized by the twisted superpotential. Here, we only consider the

case that all symmetries are abelian.

Upon reducing 3d theory on S1 with radius R, one can include a Wilson line for the (linear

combination of) U(1) global symmetry and they complexity the (linear combination of) real mass

parameter of 3d associated to the (linear combination of) global U(1) symmetry;

mi = m3d
i +

i

R

∮
S1

Ai (2.19)

where mi denotes (complexified) twisted mass or complexified FI term in 2d, which can be regarded

as the scalar component of the background twisted chiral mutliplet Mi in 2d. Similarly, the scalar

component σa of the 3d linear multiplet Σa are also complexified;

σa = σ3d
a +

i

R

∮
S1

Aa (2.20)

where a runs from 1 to r, the rank of gauge group. If the abelian symmetry is compact, the invariance

under large gauge transformation of 3d theory leads to the periodicity of σa and mi; σa ∼ σa + 2πi
R ,

mi ∼ mi + 2πi
R . This is not an intrinsic property in 2d supersymmetric effective theory itself, but

rather it is a property of the effective 2d supersymmetric theory obtained from the reduction of 3d

theory.

Upon reduction on S1, the chiral multiplet Φ in 3d gives a tower of Kaluza-Klein modes in 2d.

If Φ is charged under overall U(1) whose overall real mass parameter is m3d
Φ , the KK mode Φn with

momentum n on S1 has a twisted mass mΦn = mΦ + 2πin
R . Due to the periodicity mentioned above,

all KK modes should be included in the effective 2d theory.

The twisted superpotential gets one-loop correction from integrating out the massive charged

chiral multiplet. Taking into account all KK modes, one obtains [10, 11, 12, 13]

W̃(MΦ) =
1

R

(
1

4
M2

Φ + Li2(−e−MΦ)

)
(2.21)

There are also contributions from tree-level mixed Chern-Simons terms, which is given by

W̃CS(Σa,Mi) =
1

R

(
1

2
kabΣaΣb + kaiΣaMi +

1

2
kijMiMj

)
, (2.22)
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where in (2.21) and (2.22), we have absorbed R into MΦ and Σa to make them dimensionless.4

Given the twisted superpotential W̃, the condition for supersymmetric vacua is given by

∂W̃
∂σa

= 2πina, na ∈ Z. (2.24)

If one uses expontentiated variables valued in C∗, sa = eσa and xi = emi , we get

exp

(
sa
∂W̃
∂sa

)
= 1. (2.25)

If one gauged U(1)x symmetry associated to xi weakly and yi is the effective FI parameter for U(1)x,

one can also consider the supersymmetric conditions for xi and yi, and they are given by

exp

(
xi
∂W̃
∂xi

)
= yi. (2.26)

Here, W̃ is the twisted superpotential which was solved from (2.25), i.e. we solve (2.25) and put

the solution sa back to W̃, and the resulting twisted superpotential is the one used in (2.26). We

will call the moduli space of (2.26) as the moduli space of supersymmetric vacua or supersymmetric

parameter space.

2.3 The exact calculations in 3d N = 2 superconformal the-

ories

Since the pioneering work of Pestun [14], there has been many developments in exact calculations

in various dimensions and with various operators or defects. In this section, we quote result from

the recent development in exact calculations in 3d N = 2 theories [15, 16, 17, 18, 19, 20, 21].

4Expressions (2.21) and (2.22) are not single-valued under large gauge transformation, i.e. under the periodicity
of σa and mi. In order to remedy this, one adds∑

na∈Z
exp

[
−2πina

∫
d2θΣa

]
. (2.23)

into path integral, which ensures that
∫
Fa/2π ∈ Z that is required for the path integral to be well-defined. By adding

this term, the resulting action becomes single-valued.
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2.3.1 Supersymmetric partition function on the squashed 3-sphere

Our main interest is the partition function on squashed 3-sphere S3
b preserving U(1)×U(1) symmetry

[18]. Metric for such squashed 3-sphere S3
b is

ds2 = b2(dx2
0 + dx2

1) + b−2(dx2
2 + dx2

3), with x2
0 + x2

1 + x2
2 + x2

3 = 1 (2.27)

The partition function on S3
b takes the form

ZS3
b

=
1

|W|

∫
drσ ZclassicalZone-loop (2.28)

where |W| is the order of Weyl group and r is the rank of gauge group.

If chiral multiplet has R-charge R and gauge charge ρa under the Cartan subgroup Ha of gauge

group G, then the one-loop determinant from chiral multiplet is given by

sb

(
iQ

2
(1−R)− ρaσa

)
(2.29)

where σa is (scaled) scalar component of vector multiplet and Q = b + b−1. sb(x) is sine double

function and is given by

sb(x) =
∏

m,n∈Z≥0

mb+ nb−1 + Q
2 − ix

mb+ nb−1 + Q
2 + ix

= e−
iπ
2 x

2
∞∏
j=1

1 + e2πbx+2πib2(j− 1
2 )

1 + e2πb−1x+2πib−2( 1
2−j)

(2.30)

which is a variant of non-compact quantum dilogarithm function.

One-loop determinant from vector multiplet is trivial for abelian gauge group, but for nonabelian

gauge group G it is given by

∏
α∈∆+

sinh(πbσα) sinh(πb−1σα)

πσα
(2.31)

Here, α takes positive roots and σα denotes σα =
∑r
a=1 σaαa.

There are non-zero contributions from classical action of Chern-Simons term and FI term at

the saddle point. For Chern-Simons term with level k and FI term for U(1) gauge group with FI

parameter ζ, they are given by

exp(−ikπσaσa) (2.32)
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and

exp(4πiζσ), (2.33)

respectively.

Assuming that R-symmetry at the IR fixed point is not mixed with the accidental symmetry, it is

known that the IR superconformal R-charges are fixed by maximizing F = − log |ZS3
b=1
| [16, 22, 23].

2.3.2 Superconformal index

Superconformal index counts certain BPS operators in superconformal field theory on S2 ×q S1

[19, 20, 21]. More explicitly it is given by

I(ti; q) = tr

[
(−1)F eβHq∆+j3

∏
a

tFii

]
(2.34)

where ∆ is energy, R is R-charge, j3 is angular momentum on S2, Fi are generator for the global

(or flavor) symmetry, and H is given by

H = {Q,Q†} = ∆−R− j3 (2.35)

where Q is a certain supercharge in 3d N = 2 superconformal algebra. Since only Q and Q†-invariant

states contribute to the index, index (2.34) doesn’t depend on β, but only depends on fugacities, q, ti.

From the localization technique, one can obtain the exact result for the index. But if one

incorporates the magnetic fluxes and Wilson line for flavor symmetries, then the resulting index has

extra discrete and continuous parameters. This is called the generalized index. It is given by

I(ti, ni; q) =
∑
s

1

Sym

∫ ∏
a

dza
2πza

e−SCS(h,m)Zgauge(za,ma; q)
∏
Φ

ZΦ(za,ma; ti, ni; q) (2.36)

where

Zgauge(za = eiha ,ma; q) =
∏
α∈∆+

q−
1
2 |α(m)|

(
1− eiα(h)q|α(m)|

)
(2.37)

ZΦ(za = eiha ,ma; ti, ni, q) =
∏
ρ∈RΦ

(
q

1
2 (1−∆Φ)

∏
a

e−iρ(h)
∏
j

t
−fj(Φ)
j

) 1
2 |ρ(s)+

∑
j fj(Φ)nj |

(2.38)

×
(e−iρ(h)t

−fj(Φ)
j q|ρ(s)+

∑
j fj(Φ)nj |+1−∆Φ

2 ; q)∞

(eiρ(h)t
fj(Φ)
j q|ρ(s)+

∑
j fj(Φ)nj |+

∆Φ
2 ; q)∞

(2.39)
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and Sym is a symmetric factor arising from non-abelian gauge group generically broken by monopole,

i.e., if gauge group G is broken to its subgroup ⊗kGk by monopole then Sym =
∏
k=1 Rank(Gk)!.

Here, α is positive roots of gauge group G, h whose component is ha denotes maximal torus of

the gauge group which parametrize the Wilson line of the gauge group, and s whose component is

ma denotes the Cartan generator of the gauge group which parametrize the GNO charge of magnetic

monopole configuration of gauge field. a runs over the rank of the gauge group, and takes integer

value.

If chiral multiplet Φ is in representation R of gauge group, ρ denotes a weight vector of rep-

resentation R, R denotes R-charge of chiral multiplet, tj denotes the maximal torus of the global

symmetry under which chiral multiplets Φ are charged, nj denotes the Cartan generator of the

global symmetry group which parametrize the GNO charge of magnetic monopole configuration of

background gauge field for global symmetry, and fj(Φ) denotes the charge of chiral multiplet Φ

under U(1) subgroup of maximal torus associated to tj . j runs over the rank of the global symmetry

group, and takes integer value.

Contribution from Chern-Simons term is given by eikSCS(h,s) = exp(ik
∑
a hama) =

∏
a z

kma
a .

For the mixed Chern-Simons term with level k12 = k21 between two abelian symmetries U(1) with

Wilson line and magnetic flux being (h1,m1) and (h2,m2) is given by
(
zm2

1 zm1
2

)k12
.

2.4 Holomorphic block in 3d N = 2 theories

It turns out that above partition functions on squashed 3-sphere S3
b − ZS3

b
− and superconformal

index on S2 ×q S1 − IS2×qS1 − are factorized [24, 25], and this was systematically studied in [13].

The basic ingredients for ZS3
b

and IS2×qS1 in 3d N = 2 theory which have discrete, massive,

supersymmetric vacua (i.e. there should be enough flavor symmetries so that it completely lifts all

flat directions of the moduli space) are called as holomorphic block. Holomorphic block is defined

as a partition function on D2×q S1 which is topologically a solid torus and whose metric is given by

ds2 = dr2 + f(r)2(dϕ+ εβdθ)2 + β2dθ2 (2.40)

where local coordinate is (r, ϕ, θ) with r ∈ [0,∞), ϕ ∼ ϕ+ 2π, and θ ∼ θ+ 2π. f(r) approaches to 0

as r → 0 and ρ as r →∞. The geometry D2×q S1 can be regarded as cigar geometry parametrized

by (r, ϕ) is fibered over S1 parametrized by θ in such a way that (z, θ) ∼ (q−1z, θ + 2π) if we set

z = reiϕ and

q = e2πiεβ = e~. (2.41)
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Since it is curved, in order to preserve supersymmetry, appropriate twisting is necessary. There

are two choices of twisting, one is “topological” and another is “anti-topological”. They preserve

two different sets of two supercharges with different BPS conditions (P 0 = Z for the former and

P 0 = −Z for the latter).

2.4.1 Holomorphic block as the BPS index

Since the theory is twisted, partition function doesn’t depend on the size of ρ. So one can equivalently

think of the theory on R2×q S1. In this setup, one can associate supersymmetric state at the origin

of R2 and also supersymmetric state |α〉 on T 2 at infinity (since asymptotically R2×q S1 approaches

to T2×R) which one-to-one corresponds to discrete, massive, supersymmetric vacua α of 3d N = 2

theories. Roughly speaking, their overlap give the BPS index. If we deform superconformal field

theory away from the superconformal fixed point, we can obtain massive theory, and the BPS

index counts BPS states in the vacuum of the massive theory. Given this setup, one can consider

holomorphic block as BPS index for each vacua α;

Bα(x; q) '
{
Zα

BPS
(x; q) |q| < 1

ZαBPS(x; q) |q| > 1
(2.42)

with

Zα
BPS

(x; q) = TrHα(−1)Re−βHq−J3+R
2 x−e |q| < 1 (anti-topological)

ZαBPS(x̃; q̃) = TrHα(−1)Re−βH̃ q̃−J3−R2 x̃−e |q̃| > 1 (topological)
(2.43)

where H = 2(P 0 + Z), H̃ = 2(P 0 − Z), and x and x̃ are certain exponential of complexfied twisted

mass parameter associated to U(1)x global symmetry. In the BPS indices, (−1)R was chosen instead

of usual choice (−1)F , but both give essentially equivalent information.

As varying x, there is an interesting stoke phenomena, which we don’t discuss here. Holomorphic

block is unique modulo the overall factor of an elliptic ratio of theta functions or exp
(
− 1

24 (~− 4π2

~ )
)

.

2.4.2 Fusion of holomorphic and anti-holomorphic block

In analogue of topological/anti-topological fusion in 2d N = 2 theories [26], one can consider fusion

of two copies of D2 ×q S1. Fusion is possible when Hilbert spaces on the each asymptotic regions

are dual [13]. Considering two infinitely long cigar geometries where D2 ×q S1 is asymptotically

T 2×R, we would like to perform fusion by gluing the two tori with opposite orientation via SL(2,Z)

action on the torus, which also induces modular action (combined with reflection) on the parameter

q. A bit more specifically, we would like to consider fusion such that if the complex structure
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τ = εβ + iβρ−1 of T 2 in infinitely long cigar geometry for anti-holomorphic block is related to an

infinitely long cigar geometry with complex structure τ̃ by τ → τ̃ = −g · τ for holomorphic block

then βε→ β̃ε̃ = −g · (βε).
Then for S-fusion one obtains q = exp(2πib2), q̃ = exp(2πib−1) and x =: exp(X) = exp(2πbµ),

x̃ =: exp(X̃) = exp(2πb−1µ) where b is squashing parameter of squashed 3-sphere S3
b mentioned

above and µ are complexified mass parameter. For id-fusion one obtains q = q̃−1 and x =: exp(X) =

q
m
2 ζ, x̃ =: exp(X̃) = q

m
2 ζ−1 where q = exp(2πεβ) and m and ζ are magnetic flux and fugacity of the

index associated to U(1) global symmetry. Along the way of obtaining these, in order to have exact

same holomorphic block for both S3
b partition function and the index, R-charges of chiral multiplets

need to be all integers.

In sum, via fusion, one obtains

Z [g]
fusion =

∑
α

Bα(x; q)Bα(x̃, q̃) =
∣∣∣∣Bα(x; q)

∣∣∣∣2
g

(2.44)

where we are interested Z [S]
fusion or Z [id]

fusion, which give the partition function on S3
b and the index on

S2 ×q S1.

2.4.3 Holomorphic block from supersymmetric quantum mechanics

The cigar geometry D2 ×q S1 can be considered as torus fiberation over half-line R+ = {t ∈ [0,∞)}
with fixed area and complex structure of torus as t → ∞. Thus, macroscopically 3d N = 2 theory

can be seen as supersymmetric quantum mechanics on R+.

From the point of view of supersymmetric quantum mechanics, one can see that path integral on

D2×qS1 becomes a finite-dimensional contour integral with the integrand determined perturbatively

all order of ~ [13]. The result is that for a discrete, massive, supersymmetric vacua labelled by

α, there is an associated integration cycle Γα, and contour integral with integrand from twisted

superpotential gives holomorphic block Bα. A bit more specifically, it turns out that the path

integral of supersymmetric quantum mechanics become a contour integral

Bα(x; q) = ZαQM '
∫

Γα

ds1

2πis1
· · · dsr

2πisr
exp

(
1

~
W̃~(sa, xi; ~)

)
(2.45)

in complex space C∗r parametrized by sa where we use the notations in section 2.2. The integration

cycle Γα should be convergent and determined by gradient flow equation with respect to ImWQM

given a choice of asymptotic boundary condition at t → ∞ labelled by the massive vacua α. Here,
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superpotential WQM of quantum mechanics is given by

WQM (Σa,Mi) = 2πρW̃(Σa,Mi) =
i

~

[∑
Φ

(
1

4
M2

Φ + Li2(−e−MΦ)

)
+

1

2
kabΣaΣb + kaiΣaMi +

1

2
kijMiMj

]
(2.46)

which is obtained from further compactification on S1
ρ of the twisted superpotential obtained in

section 2.2 modulo a certain subtlety. The term W̃~(sa,mi; ~) in the integrand is the “quantum-

corrected superpotential”

W̃~(sa, xi; ~) =
∑
Φ

(
1

4
m2

Φ + Li2(−e−mΦ− ~
2 ; ~)

)
+

1

2
kabσaσb + kaiσami +

1

2
kijmimj (2.47)

where Li2(x; ~) =
∑∞
n=0

Bn~n
n! with Bernoulli number Bn. The R-charge of chiral multiplet is set to

one here. It is also possible to have general R-charge RΦ by shifting, mΦ → mΦ +(RΦ−1)(iπ+~/2).

If we take ~→ 0 limit, quantum-corrected superpotential W̃~(sa, xi; ~) becomes ~
iWQM (σa,mi).

Though above analysis from supersymmetric quantum mechanics gives rough idea that the holo-

morphic block is expressed as certain finite-dimensional contour integral, as stated earlier this is a

perturbative analysis for both integrand and the integration cycle. With help of Ward identity of

Wilson and ’t Hooft loop operators, the exact non-perturbative integrand can be obtained. How-

ever, since the exact superpotential whose only critical points correspond to the true vacua of the

theory5, which is used in gradient flow equation to determine exact Γα, is still unknown, one can

just use approximated Γα from above perturbative argument [13]. With several conditions imposed

on the Γα in perturbative analysis, one can obtain exact non-perturbative holomorphic block. Those

conditions are that if one shifts entire Γα by q, one should be able to deform smoothly it back to

original Γ before shift. This means that the contour should be closed or end asymptotically at 0

or ∞ in each C∗r. Also, Γα should be far away at least by q from the poles of the integrand. In

addition, Γα is not allowed to path line of poles but is allowed to cross or lie on the line of zeroes.

2.5 Sp(2L,Z) action on 3d conformal field theories

For 3d conformal field theories with U(1) symmetry which one can couple to U(1) background gauge

symmetry, there is an SL(2,Z) action on them. This action is generated by S =

 0 1

−1 0

 and

T =

1 1

1 0

.

5A non-perturbative integrand Υ obtained with help of Ward identity of line operators has too many critical points
including the true vacua.



16

The generator T acts on the theory in a way that it adds Chern-Simons coupling with level 1 for

background gauge field A;

L → L+
1

4π
A ∧ dA. (2.48)

The generator S acts on the theory in a way that it gauges U(1) symmetry and introduces a new

background U(1)new gauge field Anew by coupling Anew with the current that is a Hodge star of field

strength for U(1) symmetry which is now gauged. In terms of Lagrangian, we add a mixed Chern-

Simons term of U(1) symmetry which is now gauged and newly introduced U(1)new background

gauge symmetry;

L → L+
1

2π
Anew ∧ dA (2.49)

where A is dynamical gauge field of U(1) symmetry which is now gauged. A new U(1) background

gauge symmetry whose gauge field is Anew is usually called as topological symmetry with respect to

A, because monopole operator defined from A is charged under this new U(1) symmetry.

When 3d conformal field theory is coupled to 4d free abelian theory as a boundary theory, this

SL(2,Z) action can be thought as electro-magnetic duality on a space of conformally invariant

boundary condition of a 4d free abelian theory.

If there are more than one U(1) symmetry, say L U(1) global symmetries, SL(2,Z) action can

be generalized to Sp(2L,Z) action on the 3d conformal field theory with U(1)L global symmetries.

Let ~A = (A1, A2, · · · , AL) be gauge fields for U(1)L global symmetries. For Sp(2L,Z) action,

there are three types of generators, which are called as T -type, S-type, and GL-type. More explicitly,

by representing them as L×L block matrices, they are expressed and act on Lagrangian as follows;

T -type  gT =

 I 0

B I

 : L[ ~A]→ L[ ~Anew] +
1

4π
~Anew ·B d ~Anew (2.50)

where B is a symmetric L by L matrices;

S-type  gS =

I − J −J
J I − J

 : L[ ~A]→ L[ ~A] +
1

2π
~Anew · J d ~A (2.51)

where J is a diagonal matrix J = diag(j1, j2, · · · , jL) with ji is 0 or 1. When ji = 1, we gauge U(1)

symmetry whose gauge field is Ai and introduce U(1) topological symmetry whose gauge field is
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Anew,i;

GL-type  gU =

U 0

0 U−1 t

 : L[ ~A]→ L[U−1 ~Anew] (2.52)

where U ∈ GL(N,Z) is invertible, which redefines global symmetries.

Above argument can also be extended to supersymmetric case. More explicitly, for vector mul-

tiplet ~V and linear multiplet ~Σ we have

T -type  gT =

 I 0

B I

 : L[~V ]→ L[~Vnew] +
1

4π

∫
d4θ ~Σnew ·B d~Vnew (2.53)

S-type  gS =

I − J −J
J I − J

 : L[~V ]→ L[~Vnew] +
1

2π

∫
d4θ ~Σnew · J d~V (2.54)

GL-type  gU =

 I 0

B I

 : L[~V ]→ L[U−1~Vnew] (2.55)

We will see in Chapter 4 that how Sp(2L,Z) will be related to the operation in Chern-Simons

theory.
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Chapter 3

Chern-Simons Theory

In this chapter, we review several aspects of Chern-Simons theory. We follow closely [27, 28, 29,

30, 31, 32]. Before we review analytically continued Chern-Simons theory, we briefly summarize

Chern-Simons theory which is not analytically continued.

When the gauge group is G with Lie algebra g, gauge field A is a connection on G-bundle E on

3-manifold M3, and Chern-Simons action is given by

I(A) =
k

4π

∫
M3

Tr A ∧ dA+
2

3
A ∧A ∧A (3.1)

where Tr is a trace on fundamental representation of the gauge group. If we take a proper normal-

ization for the gauge group generator Tr(TaTb) = δab, due to the requirement of invariance of the

path integral

Z(M3) =

∫
DA exp(iI(A)) (3.2)

under large gauge transformation, Chern-Simons level k should be an integer, k ∈ Z.

The observable in Chern-Simons theory is Wilson loop operator which depends on the represen-

tation of gauge group and is supported on a knotted curve (or more generally link) in M3. In the

presence of Wilson loop operators, the partition function is

Z(M3; γi, Ri) =

∫
DA exp(iI(A))

r∏
i=1

WRi(γi) (3.3)

where Wilson loop operator WRi(γi) is given by

WRi(γi) = TrRi P exp

(
i

∮
γi

A

)
. (3.4)
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where Ri is representation of gauge group G for each i-th knot in link. It turns out that Wilson

loop operator expectation value gives Jones polynomial of knot γ in M3. As a simple example, for

unknot (01) in S3, the expectation value of Wilson loop operator in r-symmetric representation of

G = SU(2) is given by

〈WSr (01)〉 =

√
2

k + 2
sin

(
(r + 1)π

2

)
, (3.5)

which agrees with Jones polynomial of unknot. Expectation value of Wilson loop operator on more

complicated knots can be calculated via surgery of 3-manifold by calculating corresponding matrix

elements in WZW model where the Hilbert space of Chern-Simons theory is equivalent to the space

of conformal block of WZW model whose level is k [31].

Later, Chern-Simons theory with complex gauge group was investigated [33], and analytic contin-

uation of Chern-Simons theory with complex gauge group was studied in [27] and also in [30, 28, 29].

These and further developments will be a main review topic of this chapter.

In section 3.1, we review the structure of analytically continued Chern-Simons theory with com-

plex gauge group GC and its real form GR and G. Mostly, we take G = SU(2), so GR = SL(2,R)

and GC = SL(2,C). We also briefly mention some aspects of Wilson loop.

In section 3.2, we review classical moduli space of Chern-Simons theory on a knot complement,

which is known as A-polynomial. This will be related to the moduli space of supersymmetric vacua

or supersymmetric parameter space of effective 3d N = 2 theories on S1 corresponding to knot

complement. Also, we discuss briefly quantum Â-polynomial, which gives recursion relation for knot

polynomials.

In section 3.3, we review some aspects of Chern-Simons theory on 3-manifold obtained from gluing

tetrahedra. An ideal tetrahedron is a basic building block of 3d-3d correspondence of Dimofte-

Gaiotto-Gukov, so we review some properties of an ideal tetrahedron and gluing procedure for

classical moduli space, quantum operator, and partition function.

3.1 Analytic continuation of Chern-Simons theory

Given gauge group GC with Lie algebra gC, let the gauge field A be a connection on GC bundle EC

on three manifold M3. We first consider a complex Chern-Simons action,

I(t, t̃) =
t

8π

∫
M3

Tr(A ∧ dA+
2

3
A ∧A ∧A) +

t̃

8π

∫
M3

Tr(A ∧ dA+
2

3
A ∧A ∧A) (3.6)
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where A is a complex conjugate of A and in order for it to be real t and t̃ should be complex

conjugate. If we denote t = k + is and t̃ = k − is and require invariance of the path integral under

the large gauge transformation then k should be integer k ∈ Z. In addition, unitarity requires s to

be real or imaginary for Euclidean action [33].

From the above action, we can analytically continue both t and t̃ and regard them separate

and independent variables. At the same time, we also analytically continue A. This leads to

(gC)C = gC ⊕ gC. So we have two copies of gauge connection, which are regarded as independent.

We denote them as A and Ã. Then the action for analytically continued complex Chern-Simons

theory is given by

IC(A, Ã; t, t̃) =
t

8π

∫
M3

Tr(A ∧ dA+
2

3
A ∧A ∧A) +

t̃

8π

∫
M3

Tr(Ã ∧ dÃ+
2

3
Ã ∧ Ã ∧ Ã) (3.7)

So we can think of analytically continued complex Chern-Simons theory as sum of two independent

Chern-Simons theory whose levels are k1 = t
2 and k2 = t̃

2 .

We can also consider the case of compact group G and non-compact real group GR. From

(3.1), we analytically continue level k to arbitrary complex number t. At the same time, we also

analytically continue the gauge field A to GC gauge field A. The resulting action becomes

I(A; t) =
t

8π

∫
M3

TrA ∧ dA+
2

3
A ∧A ∧A (3.8)

where we took 1/2 normalization to the action. We can regard (3.8) as “holomorphic half” of (3.7).

Similar argument is also applied to the case of non-compact real form GR of GC.

3.1.1 Structure of Chern-Simons partition functions

The partition function of Chern-Simons theory is obtained from path integral

ZC(M3) =

∫
C
DADÃ exp(iIC(A, Ã)). (3.9)

If s is not real, the path integral is generically not convergent, so it is desirable to find a well-

defined integration cycle such that the path integral is well-defined. In addition, when s is real such

integration cycle should be the middle dimensional cycle such that Ã = A. In [30], such integration

cycle C was analyzed via Morse theory and the steepest descent method.

Briefly summarizing, integration cycle is associated to each set of critical points of the action
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I(A, Ã). The critical points Aα of the action are given by flat GC connections on M3,

F = F̃ = 0, (3.10)

where F = dA +A ∧ A and F̃ = dÃ + Ã ∧ Ã. It is known that there are finite number of critical

points in many 3-manifolds including knot complement in 3-manifold with appropriate boundary

conditions along the knot complement and without closed incompressible surface [34, 29]. Given a

critical point, integration cycle is given by a downward gradient flow from it with Morse function

from GC Chern-Simons functional. This integration cycle Jα associated to a critical point Aα is

called Lefschetz thimbles modulo some subtleties. Then the convergent integration cycle C is given

by C =
∑
α nαJα where nα ∈ Z, which is calculated in Morse theory. Since Morse function depends

on GC Chern-Simons functional which depends on s, Lefschetz thimble Jα depends on the value of

s.

Similar argument applies for the analytic continuation of Chern-Simons theory for compact real

form G and also for non-compact real form GR. The integration cycle Ccompact for analytically

continued Chern-Simons theory for compact group G is given by Ccompact =
∑
α nαJα. For the

non-compact real form GR, the integration cycle C′ is also given by linear combination of Jα over Z

for each critical point which corresponds to critical point Aα.

In sum, for any GC, GR, and G, the downward flow cycle Jα corresponds to critical point Aα of

flat GC connection and they form a vector space over Z. But the integer coefficient nαα̃, n′α, and nα

depends on a specific integration cycle in a particular Chern-Simons theory under consideration.

Thus, given the integration cycle Jα, the form of partition function of SL(2,C), SL(2,R), and

SU(2) Chern-Simons theory has the following form

ZSU(2)(M3) =
∑
α

nαZα(M3) (3.11)

ZSL(2,R)(M3) =
∑
α

n′αZα(M3) (3.12)

ZSL(2,C)(M3) =
∑
α,α̃

nα,α̃Zα(M3)Z̃α̃(M3) (3.13)

where

Zα(M3) =

∫
Jα

exp(iI(A)). (3.14)

In (3.13), nα,α̃ is diagonal for non-anlytically-continued Chern-Simons theory where integration

cycles satisfy A = Ã, but in general it can be arbitrary.
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3.1.2 Wilson loop operator

Wilson loop operator is an observable in Chern-Simons theory. It is labeled by a knotted loop on

which the Wilson loop is supported and the representation of gauge group. We can also have Wilson

loop in analytically continued Chern-Simons theory,

WR(A; γ) = TrR P exp

(
i

∮
γ

A
)

(3.15)

There are two ways to think of Wilson loop operator. We can regard it as a path-ordered integral

of gauge field on 1-dimensional curve γ as above. However, we can also consider it as a particle

moving around γ. In this case, the particle creates defect of cusp along the trajectory and inserting

Wilson loop operator in 3-manifold can be interpreted as giving a boundary condition for gauge field

so that one has holonomy around γ. In other words, we can consider it as ’t Hooft operator, which

we also call as monodromy defect. Actually, in 3d, it was shown that ’t Hooft operator is equivalent

to Wilson operator [32]. For example, for r-dimensional irreducible representation of SU(2), the

monodromy defect gives the boundary condition for gauge field such that it has holomonyeπir/k 0

0 e−πir/k

 (3.16)

where k is a renormalized level here. This alternative interpretation is useful. For compact gauge

group, say SU(2), we can use both interpretation interchangeably. However, considering the infinite

dimensional representation of complex gauge group, for example SL(2,C), it is more natural to

consider monodromy defect.1 Detail discussion on infinite dimensional representation is summarized

in Chapter 7 of [35].

3.2 Classical moduli space, A-polynomial and quantum Â-

polynomial of knot

In this section, we review the classical vacuum moduli space of Chern-Simons theory on a knot

complement in three sphere S3, and quantization of it.

3.2.1 Classical moduli space and A-polynomial

Consider knot complement in 3-manifold, M3, for example, S3\K where K is a knot. The boundary

of a knot is a torus, T 2, so there are two curves γm and γl corresponding to meridian and longitude

curve, respectively.

1For example, it is unclear what would be Tr in above equation for infinite dimensional representation.
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K

Figure 3.1: Meridian cycle γm and longitude cycle γl on the boundary of a knot complement

Holonomies around γm and γl generate the peripheral subgroup of M3, which is π1(T 2) = Z×Z.

So SL(2,C) holonomies around γm and γl can be simultaneously taken in upper triangular matrices

ργm =

m ∗
0 m−1

 , ργl =

 l ∗
0 l−1

 (3.17)

with eigenvalues l,m ∈ C∗. The action of Weyl group Z2 of SL(2,C) on (3.17) exchanges (l,m) and

(l−1,m−1). Thus, the classical phase space for M3 with a single boundary given by a knot is

PT 2 = (C∗ × C∗)/Z2 (3.18)

We are interested in the moduli space of flat connection, and it is given by the homomorphism

from fundamental group of M3 to SL(2,C),

Mflat(SL(2,C),M3) = Hom(π1(M3), SL(2,C))/conj. =: L (3.19)

It is known that for a single torus boundary of M3, the complex dimension of L is 1. Two generators

ργm and ργl of peripheral subgroup determines embedding of L into PT 2 , and it can be shown that

L is characterized by the zero locus of a single polynomial,

L = {(l,m) ∈ PT 2 |A(l,m) = 0} (3.20)

This also can be thought as the condition that the flat connection on T 2 is extended to the flat

connection on the bulk M3. This polynomial A(l,m) is called as A-polynomial of a knot [34].

For every knot complement, there is always (l−1) factor. This corresponds to the abelian sector

of L where SL(2,C) flat connection are simultaneously diagonalized. Since H1(M3,Z) = Z for any

knot complement, there is always abelian representation in L which is generated by the holonomy

around meridian curve and holonomy around longitude curve is trivial implying that l − 1 = 0.
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As an example, A-polynomial of unknot, trefoil knot, and figure-eight knot are

A01
(l,m) = (l − 1) (3.21)

A31
(l,m) = (l − 1)(l +m6) (3.22)

A41
(l,m) = (l − 1)(l2 − (m4 +m−4 −m2 −m−2 − 2)l + 1) (3.23)

In classical phase space and also in quantum phase space, we can only specify one of l or m, but

not both. In the following, we will specify m. For a given m, i.e. the boundary condition on the

holonomy of flat SL(2,C) connection around meridian cycle on the torus boundary, the order of l

in A-polynomial is then the number of flat connection.

3.2.2 Quantization and quantum Â-polynomial

In analytically continued Chern-Simons theory, the classical phase space is given by PT 2 = (C∗ ×
C∗)/Z2 and (semi)-classical state is given by algebraic curve L ⊂ PT 2 . Considering the Hamiltonian

approach in [33], one can quantize analytically continued Chern-Simons theory [27].

The holomorphic symplectic structure on the (semi)-classical phase space PT 2 is induced from

the holomorphic Chern-Simons term

ωT 2 =
2

~
d log l ∧ d logm, (3.24)

where ~ = 2πi
k . If we introduce logarithmic variables v = log l, u = logm for l and m, ωT 2 = 2

~dv∧du.

It can be shown that the algebraic variety L given by {A(l,m) = 0} is a Lagrangian submanifold in

phase space (PT 2 , ωT 2).

Also from ωT 2 , commutation relation is given by [v̂, û] = ~/2, and this leads to

l̂m̂ = q1/2m̂l̂, (3.25)

where l̂ = ev̂, m̂ = eû, and q = e~. Correspondingly, under certain conditions, classical A-polynomial

can be quantized to quantum Â-polynomial [27, 29, 36, 37, 38],

A(l,m) Â(l̂, m̂; q) (3.26)

Upon quantization, the classical state L = {A(l,m) = 0} becomes the wavefunction in the Hilbert

space HT 2 . A wavefunction in Hilbert space is a Chern-Simons partition function (3.14), and this
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is annihilated by Â(l̂, m̂; q). û and v̂ act on the wave function f(u);

v̂f(u) =
~
2
∂uf(u), ûf(u) = uf(u). (3.27)

As classical A-polynomial A(l,m) always have (l− 1) factor, quantum Â-polynomial Â(l̂, m̂; q) also

always have (l̂ − 1) factor.

3.2.3 Recursion relation for Jones polynomial

Above discussion leads to the recursion relation of Jones polynomial. A colored Jones polynomial

Jr(K; q) is obtained from SU(2) Chern-Simons partition function on knot complement in S3 and r

denotes the dimension of the irreducible representation of SU(2). Then the holonomy around the

meridian cycle is conjugated to (3.16). So we have appropriate change of variables; u = iπr/k with

~ = 2πi/k. Thus,

ûJr(K; q) = qr/2Jr(K; q), v̂Jr(K; q) = Jr+1(K; q) (3.28)

In general, full Chern-Simons partition function such as Jones polynomial is given by linear com-

bination of partition function as in (3.11) for both abelian and non-abelian flat SL(2,C) connections.

In other words,

Jr(K; q) =
∑
α

nαZα (3.29)

where α contains both abelian and non-abelian holonomy of SL(2,C) flat connections. Upon quan-

tization, this full partition function is annihilated by proper quantum Â-polynomial which always

include (l̂ − 1) factor in the left of everything else, and there are also nontrivial additional factor

corresponding to non-abelian flat SL(2,C) connections. If we take off (l̂ − 1) part and call the rest

of full quantum Â-polynomial as Ânab, Ânab cannot annihilate the full partition function. More

explicitly, for Jones polynomial,

Anab(l̂, m̂)Jr(K; q) = B(m; q) 6= 0 (3.30)

After diving by B(m; q) for both sides, multiplying (l̂ − 1) gives RHS to be zero. After some

calculation, we obtain

(
(B(m̂; q)l̂ −B(q1/2m̂; q))Ânab(l̂, m̂; q)

)
Jr(K; q) = 0, (3.31)

and the LHS is what we mean by full quantum Â-polynomial. For example, Ânab for non-abelian
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flat connections for trefoil knot, and figure-eight knot in S3 are

Ânab31
(l̂, m̂; q) = l̂ + q3/2m̂6 (3.32)

Ânab41
(l̂, m̂; q) = q5/2(1− qm̂4)m̂4 l̂2 − (1− q2m̂2)(1− qm̂− (q + q3)m̂4 − q3m̂6 + q4m̂8)l̂ + q3/2(1− q3m̂4)m̂4

(3.33)

By taking q → 1 (or ~→ 0), above Ânab(l̂, m̂; q) becomes classical A-polynomial for non-abelian flat

connection.

There are commutative deformations of classical and quantum A-polynomials. Such quantum

Â-polynomials annihilate or give recursion relation for the corresponding Poincaré polynomials of

the sl(N) knot homology or the HOMFLY homology. This will be discussed in Chapter 5.

For above two examples, it can be obtained via gluing ideal tetrahedra, which is a next topic.

3.3 Ideal hyperbolic tetrahedra and their gluing

In [29], Chern-Simons theory on 3-manifolds M3 which admits tetrahedra triangulation were con-

sidered. The purpose of this section is to give a general idea on ideal tetrahedra and gluing them.

Detail construction and relevant subtleties are explained in [29, 39, 28]. In this section, we only

consider g = su(2).

3.3.1 An ideal tetrahedron, boundary phase space, and Lagrangian sub-

manifold

It is known that one can describe flat SL(2,C) structure in terms of hyperbolic geometry.





















Figure 3.2: An ideal hyperbolic tetrahedron

A hyperbolic 3-manifold H3 is a 3-manifold if it admits a hyperbolic metric, which is a metric
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whose constant curvature −1, of finite volume. A hyperbolic 3-manifold can be regarded as inside

of 3-ball B3 with boundary ∂H3 = C ∪ {∞} which is a Riemann sphere. An ideal hyperbolic

tetrahedron is a tetrahedron whose vertices are on the boundary of hyperbolic space ∂H3 and whose

faces are geodesic surface in H3.

Its full hyperbolic structure is determined by a single cross ratio of the position of the vertices

on ∂H3, which is called the shape parameter. By using isometry group PSL(2,C) of hyperbolic

3-space which acts on the boundary as Möbius transformation, it is possible to fix three vertices at

0, 1, and ∞. Let the position of remaining vertex be z ∈ C∗\{1}. Then the opposite edge of the

ideal tetrahedron has dihedral angle arg(z), so we label those two edges as z.

Let other two edge parameters as z′ and z′′. These edge parameters are related to z;

zz′z′′ = −1 (3.34)

and any one of three equivalent forms;

z + z′−1 − 1 = 0 (3.35)

z′ + z′′−1 − 1 = 0 (3.36)

z′′ + z−1 − 1 = 0 (3.37)

where we will choose the last one. Or in logarithmic variables, Z = log z and similarly for z′ and

z′′, we have

Z + Z ′ + Z ′′ = iπ, eZ
′′

+ e−Z − 1 = 0. (3.38)

The boundary phase space is given by

P∂∆ = {(Z,Z ′, Z ′′) ∈ (C\2πiZ)3|Z + Z ′ + Z ′′ = iπ}, (3.39)

and this affine linear space is equipped with symplectic form

ω∂∆ =
1

~
dZ ′′ ∧ dZ (3.40)

where ~ is chosen as a normalization for the symplectic form. Or equivalently we have Poisson

brackets;

{Z,Z ′} = {Z ′, Z ′′} = {Z ′′, Z} = ~. (3.41)

A polarization Π∂∆ for the boundary phase space P∂∆ is about what we choose for position and
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conjugate momentum with respect to symplectic form ω∂∆. For a tetrahedron, we have three sets

of position X and conjugate momentum P ;

(X,P ) : ΠZ = (Z,Z ′′), Π′Z = (Z ′, Z), Π′′Z = (Z ′′, Z ′). (3.42)

They are related by the action of affine symplectic transformation Sp(2,Z)n(iπZ)2. More explicitly,

for example, from the relation above, one can map ΠZ to Π′Z via

Z ′
Z

 =

−1 −1

1 0

 Z

Z ′′

+

iπ
0

 . (3.43)

Above matrix is expressed as ST ∈ Sp(2,Z) ' SL(2,Z) where S =

 0 1

−1 0

 and T =

1 1

0 1

.

Since (ST )3 = I, one polarization gets back the original polarization after the action of ST three

times.

Lagrangian submanifold of P∂∆ of a tetrahedron is

L∆ = {eZ′′ + e−Z − 1 = 0} ⊂ P∂∆. (3.44)

We have seen a boundary phase space and Lagrangian submanifold of a single tetrahedron, and

we would like to see what they become upon gluing a number of tetrahedra.

3.3.2 Gluing tetrahedra and boundaries of 3-manifold

Before actually mentioning the gluing procedure, we consider the boundaries of 3-manifold from

gluing tetrahedra.

If a 3-manifold M3 obtained by gluing ideal tetrahedra, there are two kinds of boundaries,

which are geodesic boundary and cusp boundary. The geodesic boundary is a geodesic surface

of any genus possibly with punctures, and there is an induced 2d hyperbolic metric on it. 3d

triangulation determines 2d triangulation on the geodesic boundary. This comes from the unglued

faces of tetrahedra.

The cusp boundaries don’t allow such triangulation. They are knotted loci in M3 along which

hyperbolic metric has a cone angle, or around which the flat SL(2,C) connection has a monodromy.

If one replaces ideal tetrahedra participating in gluing by the ideal tetrahedra whose four vertices

are truncated or regularized, the loci are resolved to the boundary of M3 with topology of tori T 2 or

annuli S1× I where I denotes interval. The latter connects the punctures on the geodesic boundary

of M3. An induced metric on those boundaries are Euclidean.
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Going back to gluing, we want to see how we get the boundary phase space P∂M3
and Lagrangian

submanifold LM3 for M3 obtained from gluing ideal tetrahedra. Given a collection of a number of

tetrahedra, what we mean by gluing is that the faces of tetrahedra are glued such that three edges

of the each faces are also glued.

If we want to make hyperbolic metric on M3 to be smooth on the internal edge from the gluing,

the total dihedral angles around the internal edge should be 2π with zero hyperbolic torsion. More

explicitly, if CI is the internal edge from the gluing, the following should hold

CI =

L∑
i=1

(n(I, i)Zi + n′(I, i)Z ′i + n′′(I, i)Z ′′i ) = 2πi (3.45)

where L is the total number of tetrahedra and n(I, i) denotes how many edges are glued to I-th

internal edge. So n(I, i) takes value 0,1,2,2 and similar for n′(I, i) and n′′(I, i).

We are interested in the boundary phase space P∂M3
for three-manifold M3 made of gluing

tetrahedra. For this purpose, one first has the product of phase space of each tetrahedra ∆i;

P{∂∆i} =

L∏
i=1

P∂∆i
(3.46)

and Poisson brackets

{Zi, Z ′j} = {Z ′i, Z ′′j } = {Z ′′i , Zj} = ~δij . (3.47)

It is known that the parameter for the internal edges –CI – in (3.45) commute each other [40].

Among all edges in P{∂∆i}, the remaining linear combination of edge parameters which commute

with CI parametrize the boundary phase space P∂M3 of M3. Also, it is known that the map between

positions and momenta (polarization {Πi}) of product phase space P∂∆i
and polarization Π̃ of P∂M3

which we choose is the affine Sp(2L,C) transformation.3

One can regard the process to obtain P∂M3
mentioned above as a symplectic quotient of P{∂∆i}

with moment map CI ;

P∂M =

(
L∏
i=1

P∂∆i

)
// (CI = 2πi) . (3.48)

2Note that there are two edge parameters in a single tetrahedron.
3More precisely, Sp(2L,Q) with translations by rational multiples of iπ.
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Regarding Lagrangian submanifold, one can do similarly. After taking products of each La-

grangian submanifolds, one eliminates algebraically the edge parameters which don’t commute with

CI , then takes CI = 2πi. Then one obtains the Lagrangian submanifold LM3 of P∂M3 .

One can apply above techniques similarly to 3-manifold with the geodesic surfaces boundary

or the cusp boundary. If one consider a knot complement, one obtains PT 2 as a boundary phase

space and one can show that from LM3 constructed via gluing procedure gives non-abelian branch

of A-polynomial mentioned in section 3.2.

3.3.3 2-3 Pachner move

We have discussed how boundary phase space P∂M3 and Lagrangian submanifold LM3 are ob-

tained upon gluing tetrahedra. It is desirable that these quantities are independent of choice of

triangulations of M3. Meanwhile, it is known that any two triangulations of M3 which have same

triangulations on the boundary surface of M3 are related by a sequence of 2-3 Pachner moves. 2-3

Pachner move states that two tetrahedra glued along a common face is interchangeable with three

tetrahedra glued along three each faces with a common internal edge.

Figure 3.3: 2-3 Pachner move

Therefore, if one can show that P∂M3 and LM3 stay same under 2-3 Pachner move, then given

a fixed triangulation at the boundary surface of M3, P∂M3 and LM3 are independent with specific

triangulation of M3. This was actually shown in [29]

3.3.4 Quantization, wavefunction, and partition function

One can quantize above classical analysis systematically. 4 We just quote the results here.

4Actually, what we mean by quantization here is holomorphic quantization, so Hilbert space in this subsection
is not an honest Hilbert space which is from quantization of phase space with real polarization and real symplectic
form. Chern-Simons wavefunction or holomorphic block lives in the vector space of holomorphic functions which
forms representation of operator algebra. But we will just use terminology “Hilbert space”.
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Upon quantization, edge parameters Z,Z ′, Z ′′ are promoted to quantum operator Ẑ, Ẑ ′, Ẑ ′′,

[Ẑ, Ẑ ′] = [Ẑ ′, Ẑ ′′] = [Ẑ ′′, Ẑ] = ~; (3.49)

and the equation for the boundary phase space becomes

Ẑ + Ẑ ′ + Ẑ ′′ = iπ +
~
2

(3.50)

where the ~ term is regarded as a quantum correction which is determined by requiring topological

invariance of combinatorial construction of L̂ and S-duality of the operator algebra.

The Lagrangian submanifold becomes a quantum operator on Hilbert space,

L̂∆ = ẑ′′ + ẑ−1 − 1 ' 0 (3.51)

where ' is understood in the sense that it annihilates a certain wavefunction. An operator algebra

act on the space of locally holomorphic function in a way that

Ẑ ' ~Z, Ẑ ′ ' iπ +
~
2
− ~∂Z − Z, Ẑ ′′ ' ∂Z , (3.52)

Then up to normalization ambiguity, a wavefunction on a tetrahedron ψ(∆;Z) := ψ∆(Z) is

ψ∆(Z) =

∞∏
r=1

(1− qrz−1), (3.53)

where one can check L̂∆ ψ∆(Z) = 0.

One can perform quantum gluing to obtain L̂M3
from the product of a number of L̂∆ as done

in classical case. A bit more specifically, the internal edge parameter CI is lifted to operator ĈI ,

and from the product of L̂∆’s, one removes all elements which do not commute with the ĈI , and

then takes ĈI = 2πi+ ~. But it is more complicated due to noncommutativity. The coefficients for

~ in ĈI is fixed from the consideration of topological invariance of combinatorial construction of L̂M3
.

As mentioned above, in the gluing procedure, there is a map from the positions and conjugate

momenta in polarization Π of the product of phase space of each tetrahedra to the positions and

conjugate momenta in polarization Π̃ of the phase space P∂M3
, and this map is given by the affine

symplectic group ISp(2L,Q) (semiproduct of Sp(2L,Q) and affine shifts). At the quantum level, it

is similar, but there is ~ correction in affine shift. We are interested in what the wavefunction will

be upon change of polarization from Π to Π̃.
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We are interested in using

Ψ∆(Z) = Φ~/2(−Z + iπ + ~/2), (3.54)

for a single tetrahedron as a “wavefunction”, and how one can obtain the corresponding quantity

on M3 via gluing procedure from the product of Ψ∆(Z)’s. Here, Φ~/2 is the non-compact quantum

dilogarithm [41]

Φ~/2(p) =


∏∞
j=1

1+qj−1/2ep

1+q̃−j+1/2ep̃
|q| < 1∏∞

j=1
1+q̃j−1/2ep̃

1+q−j+1/2ep
|q| > 1

(3.55)

where

p̃ =
2πi

~
p, q̃ = e−

4π2

~ . (3.56)

So (3.54) can be thought as doubling of wavefunction in (3.53), which is annihilated by L̂∆ =

ẑ′′ + ẑ−1 − 1 and
̂̃L = ̂̃z′′ + ̂̃z−1 − 1 where

̂̃z = exp(
̂̃
Z), ̂̃z′′ = exp(

̂̃
Z
′′
), with

̂̃
Z =

2πi

~
Ẑ,

̂̃
Z
′′

=
2πi

~
Ẑ ′′ (3.57)

and original variables (without tilde) and dual variables (with tilde) commute each other. Dual

variables satisfy ̂̃z′′̂̃z = q̃̂̃ẑ̃z′′.
This “wavefunction” Ψ∆(Z) on a single tetrahedron is actually analytically continued SL(2,R)

Chern-Simons partition function on a single tetrahedron. Modulo some subtleties, formally it is in

Weil representation of ISp(2L,C) [42, 43, 29].

More explicitly, let ϕ be affine symplectic ISp(2L,C) action on wavefunctions

Ψ(Z1, · · · , ZL)
ϕ7→ Ψ(E1, · · · , C1, · · ·︸ ︷︷ ︸

L

) (3.58)

induced from the change of symplectic basis;

(Ẑ1, · · · , ẐL, Ẑ ′′1 , · · · , Ẑ ′′L)
ϕ∗7−−→ (Ê1, · · · , Ĉ1, · · ·︸ ︷︷ ︸

L

, Γ̂E,1, · · · , Γ̂C,1, · · ·︸ ︷︷ ︸
L

) (3.59)

where ÊK , K = 1, · · · denote the operator for external edge (or cusp holonomy) parameters which

are “positions” in polarization Π ⊂ Π̃ and commute with ĈI , and Γ’s are corresponding conjugate

operators. For convenience, we call the former set as (
~̂
Z,

~̂
Z ′′) and the latter set as (

~̂
X,

~̂
Y ).

Symplectic group Sp(2L,C) is generated by three generators and acts on the column vector
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(
~̂
Z,

~̂
Z ′′)t as a form of L by L block matrices;

ϕ∗,T =

 I 0

B I

 , ϕ∗,S =

I − J −J
J I − J

 , ϕ∗,U =

U 0

0 U−1 t

 (3.60)

where I is the identity matrix, B is symmetric matrix, J is diagonal matrices whose entries are 0 or

1, and U is invertible. Then wavefunction Ψ(~Z) transform under above ϕ∗ as

Ψ(~Z)
ϕT7−−→ Ψ′( ~X) = Ψ( ~X) e

1
2~
~Xt·B· ~X (3.61)

Ψ(~Z)
ϕS7−−→ Ψ′( ~X) '

∫
d~Z Ψ(~Z) e

1
~
~X·J ~Z (3.62)

Ψ(~Z)
ϕU7−−→ Ψ′( ~X) ' Ψ(U−1 · ~X) (3.63)

up to overall normalization. For the affine transformation

(
~̂
Z,

~̂
Z ′′)

ϕ∗,pos.7−−−−→ (
~̂
Z + ~s,

~̂
Z ′′) (3.64)

(
~̂
Z,

~̂
Z ′′)

ϕ∗,mom.7−−−−−→ (
~̂
Z,

~̂
Z ′′ + ~t), (3.65)

the wavefunction f(Z) transform as

Ψ(Z)
ϕpos.7−−−→ Ψ′( ~X) = Ψ( ~X − ~s) (3.66)

Ψ(Z)
ϕmom.7−−−−→ Ψ′( ~X) = Ψ( ~X)e

1
~
~t· ~X (3.67)

where elements in ~s or ~t are rational multiple of iπ and ~.

This looks similar Sp(2L,Z) action on 3d conformal field theories with abelian symmetries dis-

cussed in Chapter 2.



34

Chapter 4

3d-3d Correspondence from Gluing
Tetrahedra

In similar spirit of the correspondence between 4d N = 2 superconformal field theories and Liouville

(or Toda) theories on a Riemann surface [44], when 6d (2,0) theory with Lie algebra g = Lie(G)

of ADE type is wrapped on three manifold − M3 − with partial twisting, we have 3d N = 2

superconformal field theories − T [M3;G] − described as the IR fixed points of abelian Chern-

Simons-matter theories determined by M3, and if M3 has a boundary they are also determined by

a chosen polarization Π̃ of complex phase space P∂M3
of flat GC connection on ∂M3;

(M3 , Π̃ , G)  T [M3,Π;G], (4.1)

and the 3d-3d correspondence states that physical quantities such as partition functions and classical

vacua of non-supersymmetric complex Chern-Simons theory on M3 are matched with those of 3d

N = 2 abelian SCFT [39, 25, 45, 13, 46, 47, 48].

In this thesis, we are only interested in the case the number of brane is 2, i.e. the case GC =

SL(2,C), and for simplification T [M3, Π̃;G] is denoted as T [M3]. The case for higher rank of A-type

G was considered in [45].

Original 3d-3d correspondence in [39] was constructed from gluing ideal tetrahedra. As we

discussed in previous section, one can consider Chern-Simons theory on 3-manifold obtained from

gluing tetrahedra. One can also calculate classical moduli space of flat SL(2,C) vacua LM3 , and

quantization L̂M3
which annihilates non-perturbative Chern-Simons wavefunction or analytically

continued SL(2,R) partition functions. If one can find a 3d N = 2 gauge theory corresponding to

Chern-Simons theory on an ideal tetrahedron and also a proper gauge-theoretic interpretation of

gluing procedure in Chern-Simons theory side, the 3d-3d correspondence is built in the construction.

This is a basic idea in [39].

However, this construction doesn’t give a complete 3d-3d correspondence. This is because Chern-
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Simons theory on three-manifold from gluing tetrahedra always missing information of abelian flat

connection. Examples which captures all flat SL(2,C) connections will be discussed in Chapter 5.

In this chapter, we summarize the result of the 3d-3d correspondence of [39, 25, 13];

In section 4.1, we review motivations of 3d-3d correspondence from 2d-4d correspondence and

vortex partition function.

In section 4.2, we summarize dictionary between Chern-Simons theory and 3d N = 2 theories.

In section 4.3, we discuss known examples for 3d-3d correspondence.

4.1 Motivation for 3d-3d correspondence

If M5 branes are compactified on a certain d-dimensional manifold Md with an appropriate twisting

on it, one obtains 6−d dimensional supersymmetric field theory. In this perspective, when consider-

ing a Riemann surface with some number of punctures, one obtains 4d N = 2 superconformal field

theories characterized by the Riemann surface on which M5-branes are wrapped. Interestingly it was

found in [44] that when the number of M5-branes is 2 the instanton partition function of 4d N = 2

SCFT is matched with conformal block of Liouville CFT (or Toda theory for N M5-branes). Such

correspondence was extended to more general gauge group, also for superconformal index on S1×S3,

and with insertion of extended object such as Wilson loop, ’t Hooft loop, or surface operators.

Also, the domain wall in 4d N = 4 or 2∗ theory were considered in [49, 50, 51, 11]. In geometry

side, this corresponds to the mapping cylinder M3 = C ×ϕ I where the copy of a once-punctured

Riemann surface C on the one side is related to the copy of a once-punctured Riemann surface C

on the another side via mapping class group twist ϕ. In this setup, the duality kernel ZN=2
ϕ (ε1, ε2)

can be interpreted as a partition function Z3d
ϕ (ε1/ε2) of certain 3d N = 2 theory on three-sphere

S3. In addition, the 2d-4d correspondence tells us that

ZN=2
ϕ (ε1, ε2) = ZLiouvilleϕ (b) (4.2)

where the LHS is a partition function on the domain wall and the RHS is so called Moore-Seiberg

kernel in Liouville theory with b2 = ε1/ε2.

In literature, it has been well-known that ZLiouvilleϕ (b) = ZTeichϕ (ε1/ε2) = ZCS(Mϕ; ε1/ε2) where

ZTeichϕ (ε1/ε2) is a kernel in quantum Teichmüler theory associated to mapping class group ϕ and

ZCS(Mϕ; ε1/ε2) is Chern-Simons partition function on mapping cylinder Mϕ with analytically level

k = ε2/ε1.
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Therefore, one can expect with above relations,

ZCS(Mϕ; ε1/ε2) = Z3d
ϕ (ε1/ε2). (4.3)

In other words, one can expect that there is a correspondence at least for Chern-Simons theory on

mapping cylinder Mϕ and 3d N = 2 gauge theory on S3.

In addition, from the “classical” limit (~ → 0) of vortex partition function of effective 2d N =

(2, 2) theory [52], it was expected that (complex) Chern-Simons theory corresponds to 3d N = 2

theories in some way. For example, in loc. cit., it was discussed that moduli space of complex flat

connection in Chern-Simons theory on 3-manifold is equal to the moduli space of supersymmetric

vacua of effective 2d N = (2, 2) theories. So these make us to expect that there is a correspondence

between Chern-Simons theory on 3-manifold and 3d N = 2 theories.

4.2 3d-3d correspondence of Dimofte-Gaiotto-Gukov

In this section, we summarize the dictionary between 3d N = 2 theories and Chern-Simons theory

on M3 admitting tetrahedra triangulation [39, 25, 13].

4.2.1 3d-3d correspondence for a tetrahedron

We first consider a 3d N = 2 theory for a single tetrahedra. Regarding partition functions, we saw

that sine double function appeared in partition function on S3
b of 3d N = 2 theories. At the same

time, as mentioned in section 3, the non-compact quantum dilogarithm function, which is closely

related to sine double function, appeared in a partition function of SL(2,R) Chern-Simons theory.

From this observation, one can read off field contents and Chern-Simons coupling corresponding to a

single tetrahedron by matching variables between two such as a certain quantity of a chiral multiplet

and an edge parameter. At the same time, one can also check with moduli space of suerpsymmet-

ric vacua (or supersymmetric parameter space) of 3d N = 2 theories and the moduli space of flat

SL(2,C) connection of Chern-Simons theory on a single tetrahedron.

In sum, the 3d-3d correspondence for a single tetrahedron M3 = ∆,

• A 3d N = 2 theory T [∆; Π] associated to a single tetrahedron ∆ and polarization Π of P∂∆ is

a free chiral multiplet charged +1 under background U(1) gauge symmetry (i.e. flavor or global

symmetry) with Chern-simons level −1/2.

Given a tetrahedron ∆, if choosing a polarization as ΠZ = (Z,Z ′′), a free chiral Φ with U(1)Z

corresponds to an edge parameter Z of ∆, which we denote such chiral as ΦZ . Then Re(Z) and
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Im(Z)/π corresponds to the twisted mass parameter of U(1)Z background gauge symmetry or

global symmetry and R-charge of ΦZ , respectively.

• Lagrangian submanifold L∆ in classical phase space P∂∆, which is classical moduli space of flat

SL(2,C) connections, corresponds to supersymmetric parameter space of T [∆] on R2 × S1;

Mflat(∆;SL(2,C)) = {z′′ + z−1 − 1 = 0} =MSUSY(∆) (4.4)

• Partition function on squashed 3-sphere S3
b , superconformal index on S2 ×q S1, and holomorphic

block D2×q S1 of T [∆] are equal to partition function of SL(2,R) Chern-Simons theory, partition

function of SL(2,C) Chern-Simons theory, and analytically continued Chern-Simons wavefunction

on ∆, respectively;

ZS3
b
(T [∆]) =

∏∞
r=0

1−qr+1z−1

1−(Lq)r(Lz)−1 = ZCS(∆;SL(2,R))

ZS2×qS1(T [∆]) =
∏∞
r=0

1−qr+1z−1

1−qrz = ZCS(∆;SL(2,C))

ZD2×qS1(T [∆]) =
∏∞
r=0(1− qr+1z−1) = ψCS(∆)

(4.5)

where q = e~. For the S3
b partition function, ~ = 2πib, L~ = 2πib−1 with Lq = e

L~, and b is a

squash parameter of S3
b ; Lz = z2πi/~ with z = eZ and Z = 2πbmZ +

(
iπ + ~

2

)
RZ where mZ and

RZ are real mass and R-charge of ΦZ . For the index, z = qm/2ζ, z = qm/2ζ−1 with m and ζ

being magnetic flux and fugacity (also called as chemical potential) for U(1)Z symmetry.

In addition, quantum operator L̂∆ discussed in section 3.3 is interpreted as Ward identity for

line operators in a 4d theory coupled to the boundary theory T [∆]. A bit more explicitly, if M3 has

geodesic boundary C = ∂M3, T [M3] provide a half-BPS boundary condition of N = 2 abelian theory

on Coulomb branch of 4d N = 2 T [C, su(2)] theory, i.e. Seiberg-Witten theory of T [C, su(2)]. Then

line operators in 4d N = 2 abelian theory, which are brought into the 3d boundary where T [M3]

live, satisfy Ward identity. For example, when M3 = ∆ with polarization ΠZ , z′′ + z−1 − 1 ' 0 is

interpreted as Ward identity H +W−1− 1 ' 0 of Wilson (W) and ’t Hooft (H) line operator satisfy

where z, z′, and z′′ correspond to Wilson, Wilson-’t Hooft, and ’t Hooft line operator, respectively

[39].

We have seen how 3d-3d correspondence works for a single tetrahedra. In order to have the

correspondence for general 3-manifold M3 obtained by gluing tetrahedra, we also need to match

gluing procedures of both sides. This is successful [39, 25, 13] as we will review in next subsection,

so 3d-3d correspondence holds for general 3-manifold obtained by gluing tetrahedra.



38

4.2.2 Gluing procedures

Given a correspondence above, one can expect that (affine) SL(2,Z) action on 3d N = 2 super-

conformal field theories with an abelian symmetry correspond to (affine) SL(2,Z) action on the

polarization Π of P∂∆. More generally, (affine) Sp(2L,Z) action on 3d N = 2 superconformal field

theories with U(1)L symmetries is expected to correspond to (affine) Sp(2L,Z) action which maps

the polarization Π1×· · ·×ΠL of P{∂∆i} to polarization Π̃ of P∂M3
. It turns out that one can match

each other. More specifically, gluing procedure for 3d N = 2 theories T [∆i; Π], i = 1, · · ·L for L

tetrahedra is constructed as follows;

1. One first takes a product of theories T [∆i,Πi]; T [{∆i}, {Πi}] = T [∆1,Π1]⊗· · ·⊗T [∆L,ΠL]. The

resulting theory T [{∆i}, {Πi}] consists of L chiral multiplets Φi corresponding to edge parameter

Zi of product polarization Π1 × · · ·ΠL of product boundary phase space P∂∆1
× · · · × P∂∆L

, and

each of which are charged +1 under U(1)L := U(1)× · · · × U(1)︸ ︷︷ ︸
L

global symmetries. There are

also Chern-Simons term with level − 1
2 for each U(1)L.

2. One chooses a new polarization Π̃ for the boundary phase space P∂M3
of M3 such that positions

and momenta in Π = Π1×· · ·×ΠL maps to positions and momenta in Π̃ and in a new polarization

the internal edge CI is given by linear combinations of positions of Π̃. Quantization of positions

and momenta in Π̃ are related to those in Π1 × · · · × ΠL by affine symplectic transformation

Sp(2L,Z) n
[(

(iπ + ~
2 )Z

)2L]
also acting on 2L column vector (Ẑ1, · · · , ẐL, Ẑ ′′1 , · · · Ẑ ′′L)T of Π1 ×

· · · ×ΠL.

3. One applies the affine symplectic action g ∈ Sp(2L,Z) n
[(

(iπ + ~
2 )Z

)2L]
on product theories

T [∆i], which also appeared in Chern-Simons theory as Weil transformation

3a. GL-type action gU =

U 0

0 U−1 t

 with invertible U ∈ GL(L,Z) act on U(1)L vector

multiplets by linear transformation so that it refines U(1)L global symmetries.

3b. T -type action gT =

 I 0

B I

 with symmetric matrix B add (mixed) Chern-Simons term for

background vector multiplet with level kij = Bij .

3c. S-type action gS =

I − J −J
J I − J

 with a diagonal matrix J = diag(j1, · · · , jL) with ji

is 0 or 1 gauge background U(1)i symmetry and introduce topological U(1) symmetry with

respect to U(1)i for i such that ji = 1.

3d. Affine shifts are relevant for the theories on compactified spaces such as D2 ×q S1, S3
b , or

S2 ×q S1, but not on R3. Affine shifts on the positions add a unit of flavor symmetry to
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R-symmetry. In terms of holomorphic block, it shifts Wilson line for flavor symmetry by

−iπ − ~
2 = log(−q 1

2 ).

Affine shifts on the momenta add mixed Chern-Simons term between the background U(1)R

symmetry and global symmetry.

4. We add a superpotential W =
∑
I OI where each operator OCI is a product of chiral fields, which

comes from the internal edge parameter CI given by linear combination of edge parameters for

positions. This breaks all U(1) global symmetries associated to CI for each I, and U(1)
1
2 dimP∂M

are left.

Thus from above gluing procedure, one can construct 3d N = 2 theories corresponding to Chern-

Simons theory on M3 admitting tetrahedra triangulations. Also, as the quantities are matched in

the case of a tetrahedron and gluing procedure is identified, one can calculate a supersymmetric

parameter space, Ward identity of line operators, partition function on S3
b , index on S2 ×q S1, and

holomorphic block of T [M3] via gluing procedure as done in section 3.3 for Chern-Simons theory1

and by construction they correspond, respectively, to classical moduli space of flat SL(2,C) con-

nections LM3 , quantum operator L̂M3 obtained by quantization of LM3 , SL(2,R) partition function

ZCS(M3;SL(2,R)), full SL(2,C) partition function ZCS(M3;SL(2,C)), and analytically continued

Chern-Simons wavefunction ψCS(M3).

4.3 Examples

We would like to provide briefly some known examples from [39, 25, 13].

4.3.1 SQED with Nf = 1, XYZ model, and 3d N = 2 mirror symmetry

The SQED with one flavor (Nf = 1) in 3d N = 2 theory is U(1) gauge theory with two chiral

mulitplets charged oppositely under gauge group. They have same charge under axial U(1) global

symmetry. For the XYZ model, there is no gauge symmetry, and there are three chiral multiplets

with superpotential given by product of three chirals. Firstly, we would like to see how they arise

from gluing tetrahedra.

4.3.1.1 SQED Nf = 1 and XYZ model from gluing tetrahedra

XYZ model is made from gluing three tetrahedra with two adjacent faces of each three tetra-

hedra are glued in a way that they have a common internal edge. One choose a polarization

1The full SL(2,C) Chern-Simons partition function on M3 via gluing procedure was not discussed in section 3.3,
but it can be done similarly and was discussed in detail in section 6.2 of [25].
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(a) XYZ model: gluing 3 tetrahedra (b) SQED Nf = 1: gluing 2 tetrahedra

Figure 4.1: Gluing tetrahedra

Π̃ = (X1, X2, C;P1, P2,Γ) which are related to position-momentum (Z,Z ′′), (W,W ′′), and (Y, Y ′′)

of Π1 ×Π2 ×Π3 by

X1

X2

C

P1

P2

Γ


=



1 0 0 0 0 0

0 1 0 0 0 0

1 1 1 0 0 0

0 0 0 1 0 −1

0 0 0 0 1 −1

0 0 0 0 0 1





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 1





Z

W

Y

Z ′′

W

Y ′′


+



0

0

0

iπ + ~
2

iπ + ~
2

−iπ − ~
2


(4.6)

where the matrix on the right is GL-type and the one on the left is T -type. From the product of

three Lagrangian (in flat spacetime)

L{Πi}[VZ , VW , VY ] =
1

4π

∫
d4θ

(
−1

2
ΣZVZ −

1

2
ΣWVW −

1

2
ΣY VY

)
+

∫
d4θ

(
Φ†Ze

VZΦZ + Φ†W e
VW ΦW + Φ†Y e

VY ΦY

)
(4.7)

By applying the dictionary, adding Chern-Simons term for VY (T -type) and redefining VZ = VX1
,

VW = VX2
, and VY = VC − VX1

− VX2
, one obtains

LΠ̃[VX1 , VX2 , VC ] = L{Πi}[VX1 , VX2 , VC − VX1 − VX2 ] +
1

4π

∫
d4θ(ΣC − ΣX1 − ΣX2)(VC − VX1 − VX2)

(4.8)

From VY = VC − VX1 − VX2 , there is a superpotential W = µΦXΦY ΦZ .

One can do similarly for SQED with Nf = 1 which is obtained from gluing two tetrahedra glued

along one face, but we don’t discuss it further.

Summarizing the field contents and Chern-Simons levels, with relabeling parameters for later use



41

[13], theory TXY Z of XYZ model is

charges :

Φ1 Φ2 Φ3

U(1)x 1 0 −1

U(1)y 0 1 −1

U(1)R 0 0 2

CS levels :

U(1)x U(1)y U(1)R

U(1)x 0 1/2 0

U(1)y 1/2 0 0

U(1)R 0 0 −1/2

(4.9)

with a superpotential

W = µΦ1Φ2Φ3. (4.10)

U(1)x and U(1)y are flavor symmetries whose complexified twisted mass parameters are X = log x

and Y = log y, respectively. Above Chern-Simons level above are UV Chern-Simons level.

For SQED with Nf = 1,

charges :

ϕ1 ϕ2 v+ v−

U(1)s 1 −1 0 0

U(1)x 0 1 0 −1

U(1)y 0 0 1 −1

U(1)R 0 0 0 2

CS levels :

U(1)s U(1)x U(1)y U(1)R

U(1)s 0 1/2 1 −1

U(1)x 1/2 −1/2 0 1/2

U(1)y 1 0 0 0

U(1)R −1 1/2 0 −1

(4.11)

without superpotential. U(1)s denotes gauge symmetry, and U(1)x is flavor symmetry and U(1)y is

a topological symmetry where this notation with label x and y is chosen because they are related to

those of XYZ model via 3d N = 2 mirror symmetry. Here, v+ and v− are gauge invariant monopole

operators.

4.3.1.2 Holomorphic block, partition function on S3
b , and index

For general R-charge of chiral multiplet, a tetrahedron theory TR∆ charged under U(1)y global flavor

symmetry has the following charges and Chern-Simons level;

charges :

Φ

U(1)y +1

U(1)R R

U(1)y U(1)R

U(1)y −1/2 (1−R)/2

U(1)R (1−R)/2 −(1−R)2/2

(4.12)
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Holomorphic block of TR∆ is given by

B
(R)
∆ (y; q) = ((−q1/2)2−Ry−1; q)∞ (4.13)

Chern-Simons term of U(1)y gauge multiplet with level −1 are encoded in theta function

θ(x; q) = (−q1/2x; q)∞(−q1/2x−1; q)∞. (4.14)

More generally, if we have theory with Chern-Simons level matrix kij , i, j = 1, · · · p of U(1)p

gauge/global symmetries and mixed Chern-Simons level σi, i = 1, · · · p with U(1)p symmetries

and U(1)R symmetry, then mixed CS levels kij and σi are encoded in product of theta functions;

∏
h

θ
(

(−q1/2)bh~y ~ah ; q
)nh

(4.15)

where bh and nh are integers for each h, ~y = (y1, · · · , yp), and ~ah = (ah,1, · · · , ah,p) are vectors of p

integers for each h.

When performing fusion, for S-fusion

∣∣∣∣θ((−q1/2)bya; q)
∣∣∣∣2
S

= i]C[ exp

[
− 1

2~

(
(a ·X)2 + (iπ +

~
2

) b (a ·X)

)]
(4.16)

where x = expX, x̃ = exp 2πi
~ X and ] and [ are certain number. For id-fusion,

∣∣∣∣θ((−q1/2)bya; q)
∣∣∣∣2
id

= (−q1/2)−(a·m)bζ−(a·m)a (4.17)

where x = qm/2ζ and x̃ = qm/2ζ−1.

From this information, holomorphic block of TXY Z is given by

BXY Z(x, y; q) =
(qx−1; q)∞(qy−1; q)∞(xy; q)∞

θ(−q−1/2xy; q)
(4.18)

Holomorphic block of SQED with Nf = 1 is

BSQED(x, y; q) =

∫
Γ

ds

2πis
ΥSQED(s, x, y; q) (4.19)

=

∫
Γ

ds

2πis

θ((−q−1/2)y; q)

θ((−q−1/2)sy; q)
(qs−1; q)∞(qx−1s; q)∞ (4.20)

where Γ is an integration cycle we would like to find. There is only one critical point of twisted



43

superpotential ~ log ΥSQED(s, x, y; q), which is s(1) = (y − x−1)/(y − 1).

Appropriate integration cycle Γ depends on the sign of ~ and value of x and y. We don’t cover

all possibilities here, but for example when ~ > 0 (i.e. |q| > 1) and for certain value of x and y, we

can choose a contour enclosing poles from (qs−1; q)∞ or (qx−1s; q)∞. 2

For either |~| > 0 or |~| < 0, it can be shown that exactly or numerically [13] that two holomorphic

blocks from XYZ model and SQED with Nf = 1 are same up to overall q-dependent factors. Modulo

q-dependent factor for S-fusion, partition function on S3
b or index agree;

∣∣∣∣BXY Z∣∣∣∣2 =

∫
R
dS
∣∣∣∣ΥSQED

∣∣∣∣2
S

=
∣∣∣∣BSQED∣∣∣∣2S (4.21)∣∣∣∣BXY Z∣∣∣∣2 =

∫
S1

dσ

2πiσ

∣∣∣∣ΥSQED

∣∣∣∣2
id

=
∣∣∣∣BSQED∣∣∣∣2id (4.22)

where S = log s for S-fusion and s = qm/2ζ for id-fusion. This checks that XYZ model and SQED

with Nf = 1 are 3d N = 2 mirror dual.

4.3.1.3 Supersymmetric parameter space

After solving ∂W̃SQED/∂σ = 0 for σ, putting the solution σ = σ(1) back to W̃SQED, and by solving

P1 = ∂W̃SQED(σ(1))/∂X1, P2 = ∂W̃SQED(σ(1))/∂X2, we obtain the supersymmetric parameter

space

(
p1 +

p2

x1
− 1

)
= 0,

(
p2 +

p1

x2
− 1

)
= 0 (4.23)

Meanwhile, for XYZ model with the twisted superpotential W̃XY Z , one obtains

γp1 +
1

x1
− 1 = 0, γp2 +

1

x2
− 1 = 0, −γx1x2

c
+
x1x2

c
− 1 = 0 (4.24)

from P1 = ∂W̃XY Z/∂X1, P2 = ∂W̃XY Z/∂X2, and Pγ = ∂W̃XY Z/∂Γ where upper case letter is

log of lower case letter and P1, P2, and Γ are interpreted as effective FI parameters with respect

to U(1)X1
, U(1)X2

, and U(1)C . The condition C = 2πi gives c = 1. Eliminating γ, we obtain the

moduli space of supersymmetric vacua

(x1 − 1)

(
p1 +

p2

x1
− 1

)
= 0, (x2 − 1)

(
p2 +

p1

x2
− 1

)
= 0. (4.25)

Here, x1 = 1 or x2 = 1 i.e. X1 = 0 or X2 = 0 corresponds to singular locus since they mean that

the mass of chiral multiplets are zero, which we should not integrate out. So for x1, x2 6= 1, they are

equivalent.

2Note that these expression is valid for |q| < 1. For |q| > 1 one has 1/(s−1; q−1)∞ and 1/(x−1s; q−1)∞, respectively.
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4.3.2 Trefoil knot and figure-eight knot

In this subsection, we quote results from trefoil knot (31) and figure-eight knot (41) complement in

S3 [39, 25, 13].

One can glue two tetrahedra to make trefoil knot complement in S3. By similar way above, one

obtains TDGG[31]

TDGG[31] :

Φ1 Φ2

U(1)s 0 0

U(1)x 1 −1

U(1)R 2 0

, CS :

U(1)x U(1)R

U(1)x 3 3

U(1)R 3 ∗

. (4.26)

Thus, holomorphic block of TDGG[31] is simple and is given by θ(x; q)−3. So partition functions

on S3
b and index are readily calculated. The moduli space of supersymmetric vacua is

y + x3 = 0 (4.27)

which is A-polynomial of trefoil knot for irreducible flat SL(2,C) connection.3

Actually, above TDGG[31] is simplified theory, because we don’t have enough superpotential to

break a flavor symmetry, which is turned off by hand in above gluing ([25, Section 4.3] for detail).

But since partition functions on S3
b , index, and moduli space of supersymmetric vacua are insensitive

to superpotential, above theory is good enough for calculating them.

For figure-eight complement,

TDGG[41] :

Φ1 Φ2

U(1)s 1 1

U(1)x 1 −1

U(1)R 0 0

. (4.29)

and there is no UV Chern-Simons term. This is also a simplified theory, but there is refined trian-

gulations with 6 tetrahedra, which have enough superperpotential to break flavor symmetries ([39,

Section 4.6] for detail).

One can calculate holomorphic block, partition function on S3
b , and superconformal index, which

3Notation l and m for longitude and meridian eigenvalues are related to y and x as

l↔ y , m2 ↔ x (4.28)
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we don’t calculate here. The moduli space of supersymmetric vacua is

y2 − (x2 − x− 2− x−1 − x−2)y + 1 = 0, (4.30)

which is A-polynomial of 41 for non-abelian flat SL(2,C) connection.
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Chapter 5

Toward a Complete 3d-3d
Correspondence

5.1 3d-3d correspondence revisited

So far we have summarized each side of the correspondence and discussed dictionary between Chern-

Simons theory and 3d N = 2 theory. However, as we have mentioned, Chern-Simons theories on

3-manifold obtained from gluing ideal hyperbolic tetrahedra do not capture abelian branch. Thus,

the corresponding 3d N = 2 theories corresponding to gluing tetrahedra do not capture such branch.

This can be seen in supersymmetric parameter space, partition functions, or superconformal index.

5.1.1 M-theory perspective

To better understand the problem, it is useful to consider M5-brane systems giving 3d-3d correspon-

dence. When N M5 branes are wrapped on 3-manifold M3, we obtain the theory T [M3] on R3 part

(or S2 × R, D2 × R) of M5 branes worldvolume in the following M5-brane system;

space-time: R5 × CY3

∪ ∪
N M5-branes: R3 × M3

(5.1)

where M3 is embedded in a Calabi-Yau 3-fold CY3 as a special Lagrangian submanifold. In order

to make T [M3] be supersymmetric, there should be appropriate topological twisting on M3.

There are usually two choices on Calabi-yau 3-fold. One is a cotangent bundle of M3, T ∗M3,

and another is resolved conifold X which is O(−1)⊕O(−1) bundle over CP1. The latter is relevant

to physical realization of knot homologies. In the study of knot homologies for knot complement in
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S3, M5-brane system is

space-time: R5 × X

∪ ∪
M5-brane: R3 × L̃K

(5.2)

Here, L̃K is a Lagrangian submanifold in resolved conifold X.

In the standard 3d-3d correspondence, we are more interested in the case where Calabi-Yau 3-

fold is a cotangent bundle T ∗M3 of M3 in (5.1). More specifically, in this thesis we are interested in

a knot complement in S3 − S3\K − and the number of M5-branes is two. Therefore we take M3

in as 3-sphere S3, so we consider CY3 = T ∗S3. In addition, in order to incorporate knot K, we also

introduce a single M5-brane. The resulting M5-brane system is

space-time: R5 × T ∗S3

∪ ∪
N M5-branes: R3 × S3

M5-brane: R3 × LK

(5.3)

where LK is a conormal bundle to the knot K [53], which is a lagrangian submanifold in T ∗S3 such

that

LK ∩ S3 = K (5.4)

Here, a single M5-brane corresponds to knot in S3, and we can regard that LK creates a monodromy

defect along K in S3. So in this setup 3d-3d correspondence is about SL(2,C) Chern-Simons theory

on a knot complement in S3 − S3\K − and 3d N = 2 theory T [S3\K]. For partition function

on squashed 3-sphere S3
b , superconformal index on S2 ×q S1, and holomorphic block on R2

q × S1 of

T [S3\K], R3 in above M5-brane system can be taken as S3
b , S2 ×q S1, or R2

q × S1.

As a side remark, M5-brane system for knot homologies in (5.2) can be thought as large N dual

of M5-brane system in (5.3); for example, under geometric transition, Lagrangian submanifold LK

in T ∗S3 maps to Lagrangian submanifold L̃K in a resolve conifold X [54].

5.1.1.1 Symmetries of T [M3] from the perspective of M5-brane system

Back to the most general M-theory system, we would like to symmetries in (5.1). There are at

least three U(1) symmetries which are independent of the specific choice of M3. One is a Cartan

subgroup of the SO(3) rotation symmetry of R3. Another is a rotation symmetry in two-dimensional

transverse space of R3 in R5. We also have U(1) R-symmetry. Certain linear combinations of these
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three U(1) symmetries give three conserved charges of the gauge theories. This is familiar to the case

of surface operator in 4d N = 2 gauge theory where there are three fugacities in the superconformal

index in the presence of surface operator whose nature is independent of specific choice of surface

operators and the theory that surface operator is present.

These three U(1) symmetries should appear in 3d theory T [M3] as T [M3] should exhibit all

properties the M5-brane system. Firstly, U(1) rotational symmetry on R3 is obviously a part of

Lorentz symmetry. And certain linear combination of other two U(1) symmetries become U(1)R

symmetry of T [M3]. Another linear combination gives non-R global symmetry which we called as

U(1)t. This U(1)t symmetry has not appeared in the previous 3d-3d correspondence, or usual 3d

N = 2 theories. However, since this is a symmetry of M5-brane system (5.1), theories T [M3] should

have it as well. Actually, this U(1)t symmetry plays a key role in the 3d-3d correspondence as we

will see soon.

5.1.1.2 Supersymmetric parameter space

As mentioned in section 4.1, in [52], by compactifying M5-brane system on M-theory circle of R2
q×S1

(instead of “R3” and similarly for R5 in (5.1)), it was shown that with appropriate twist on M3 the

supersymmetric parameter space of effective 3d N = 2 theory which is regarded as 2d N = (2, 2)

theory on R2
q is the moduli space of GC flat connection on M3;

MSUSY(T [M3;G]) = Mflat(M3;GC) (5.5)

What we have seen above for the previous 3d-3d correspondence by Dimofte-Gaiotto-Gukov was

that

MSUSY(TDGG[M3;G]) 6= Mflat(M3;GC) (5.6)

That is because abelian flat GC connection on M3 is captured via gluing tetrahedra. So, more

precisely,

MDGG
flat (M3;GC) 6=Mflat(M3;GC) =MSUSY(T [M3;G]) 6=MDGG

SUSY(T [M3;G]) (5.7)

where MDGG
flat (M3;GC) = MDGG

SUSY(T [M3;G]). What we would like to do is to find several simple

examples such that (5.5) actually hold for G = SU(2).

5.1.2 Brief comments on recent developments in 3d-3d correspondence

There also have been some number of developments in 3d-3d correspondence, and they all imply

that the gauge theory T [M3] should realize all GC flat connections on M3. They include
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• The recent proof [47, 48] of the 3d-3d correspondence indicates that all complex flat connections

on M3 should be treated democratically and, therefore, no one should be left behind.

• Various deformations / refinements of (5.5) necessarily require taking a proper account of

all branches [37, 55, 56, 57], and can serve as a useful tool in identifying T [M3] even in the

undeformed case. This will be our approach in this thesis.

• The correspondence [58] between 4-manifolds and 2d N = (0, 2) theories T [M4;G] represents

gluing 4-manifolds along M3 as a sequence of domain walls and boundary conditions in 3d

N = 2 theory T [M3;G]. Much like the other developments, it works only if all GC flat

connections on M3 are realized in T [M3;G].

5.2 Goal and strategy

5.2.1 T [M3] from homological knot invariants and Higssing

We would like to construct some theories T [M3;G] with all expected flavor symmetries and with

vacua corresponding to all flat connections on M3, and to investigate their relation to theories

TDGG[M3;G] . We will mainly focus on the case G = SU(2), and on knot complements M3 = S3\K.

A knot-complement theory T [M3] := T [M3;SU(2)] is defined by compactification of the 6d (2,0)

theory on S3 with a codimension-two defect wrapping the knot K ⊂ S3. In this case T [M3] should

gain a U(1)x flavor symmetry, part of the SU(2)x flavor symmetry of the defect, in addition to U(1)t

and U(1)R. What we find can be then summarized by the following diagram:

T [M3]

〈∂rOx〉6=0 ↙ ↘〈Ot〉6=0

Tpoly[M3; r]U(1)x——- TDGG[M3]U(1)t——-

(5.8)

In particular, the theory TDGG[M3] is a particular subsector of T [M3] obtained by Higgsing the

U(1)t symmetry.

The left-hand side of the diagram (5.8) indicates an expected relation between T [M3] and a

theory Tpoly[M3; r] whose partition functions compute the Poincaré polynomials of r-colored SU(2)

knot homology for K. Indeed, our practical approach to constructing T [M3] will be to identify a 3d

N = 2 theory with U(1)x×U(1)t symmetry whose partition functions reduce to the desired Poincaré

polynomials in a special limit. Physically this limit corresponds to another Higgsing procedure, this

time breaking the U(1)x symmetry of T [M3] while creating a line defect or vortex, similar to scenarios

studied in [59, 60, 61].

An important feature of (5.8) is that the two arrows corresponding to Higgsing do not commute.

In particular, while it is easy to obtain Jones polynomials of knots from the Poincaré polynomials
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on the left-hand side by ignoring U(1)t fugacities, it is (seemingly) impossible to do this from

TDGG[M3] on the right-hand side. Jones polynomials include a crucial contribution from the abelian

flat connection on a knot complement M3 as discussed in section 3, and vacua corresponding to the

abelian flat connection are lost during the Higgsing of U(1)t.

5.2.2 Boundary of M3 and T [M3]

Later, in section 5.6 we discuss gluing of knot and link-complement theories to form closed M3,

in particular 3d N = 2 theories for lens spaces, and Brieskorn spheres. The importance of such

gluing or surgery operations is two-fold. First, it will give us another clear illustration why all

flat connections need to be accounted by 3d N = 2 theories T [M3] in order for cutting and gluing

operations to work. Moreover, it will help us to understand half-BPS boundary conditions that one

needs to choose in order to compute the half-index of T [M3]. As explained in [58], a large class

(“class H”) of boundary conditions can be associated to 4-manifolds bounded by M3,

4-manifold M4

bounded by M3
 

boundary condition for

3d N = 2 theory T [M3]
(5.9)

therefore making the half-index of T [M3] naturally labeled by 4-manifolds.
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Figure 5.1: The index of 3d N = 2 theories can be generalized to include domain walls and bound-
ary conditions [62]. It is obtained from two copies of the half-index IS1×qD±(T±) ' Zvortex(T±)

convoluted via the index (flavored elliptic genus) of the wall supported on S1 × S1
eq, where D± is

the disk covering right (resp. left) hemisphere of the S2 and S1
eq := ∂D+ = −∂D− is the equator of

the S2.
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5.3 Contour integrals for Poincaré polynomials

Even though our main goal is to identify all symmetries and flat connections in the 3d N = 2 theory

T [M3], one of the intermediate steps is of mathematical value on its own. Namely, the point of this

section will be to show that Poincaré polynomials of homological link invariants can be expressed as

contour integrals

PK(q, t . . .) =

∫
Γ

ds

2πis
Υ(s, q, t, . . .) (5.10)

in complex space C∗m parametrized by (multi-)variable s. Here, PK(q, t . . .) stands for the Poincaré

polynomial of a doubly-graded [63, 64, 65, 66] or triply-graded [67, 68, 69] homology theory H(K)

of a link K:

PK(q, t . . .) =
∑
i,j,...

qitj . . . dimHi,j(K) (5.11)

that categorifies either quantum sl(N) invariant [31] or colored HOMFLY polynomial [70], respec-

tively. Depending on the context and the homology theory in question, the sum runs over all available

gradings, among which two universal ones — manifest in (5.11) — are the homological grading and

the so-called q-grading. In the case of HOMFLY homology, there is at least one extra grading and,

correspondingly, the Poincaré polynomial depends on one extra variable a, whose specialization to

a = qN makes contact with sl(N) invariants. The Poincaré polynomials of triply-graded HOMFLY

homology theories are often called superpolynomials. In general, such invariants are also labeled

by a representation / Young diagram R and referred to as colored, unless R = � in which case the

adjective ‘colored’ is often omitted.

In this section we will write the Poincaré polynomials of colored knot homologies in the form

(5.10) of contour integrals, whose physical interpretation will be discussed in the later sections. Our

basic examples here and the rest part of this thesis will be the unknot, trefoil, and figure-eight knot

complements.

In general, superpolynomials or Poincaré polynomials are expressed as finite sums of products

of q-Pochhammer symbols

(z; q)n :=

n−1∏
i=0

(1− qiz) (5.12)

and monomials. For instance, the unnormalized superpolynomial1 of the trefoil 31 is [38] (see also

[69, 71, 72, 73]):

PS
r

31
(a, q, t) =

r∑
k=0

(a(−t)3; q)r(−aq−1t; q)k
(q; q)k(q; q)r−k

a
r
2 q−

r
2 q(r+1)k(−t)2k− 3r

2 . (5.13)

1We can proceed with normalized superpolynomial, which is obtained from dividing unnormalized superpolynomial
by superpolynomial of unknot. However, since physical interpretation of unnormalized superpolynomial is clearer than
than normalized one, so we focus on unnormalized superpolynomial.
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This is the Poincaré polynomial of the HOMFLY homology (5.11) colored by the r-th symmetric

power of the fundamental representation of SU(N) or, in the language of Young diagrams, by a

Young tableau with a single row and r boxes. For our applications here, we specialize to SU(2)

homology2 by setting a = q2. It is further convenient to renormalize the SU(2) polynomial by a

factor (−1)r, defining3

P r31
(t; q) := (−1)r PS

r

31
(a = q2, q, t)

=

r∑
k=0

(q2(−t)3; q)r(q(−t); q)k
(q; q)k(q; q)r−k

(−q 1
2 )2rk+2k+r(−t)2k−2r . (5.14)

We remark that the following steps could also be carried out for generic a, though for our applications

we specialize from SU(N) to SU(2).

Let us suppose that |q| > 1 (for reasons that will become clear momentarily), and define

(z)−∞ := (z; q−1)∞ =

∞∏
i=0

(1− q−iz) , θ−(z) := θ(z; q−1) = (−q− 1
2 z)−∞(−q− 1

2 z−1)−∞ , (5.15)

as well as

θ−(z1, ..., zn) := θ−(z1) · · · θ−(zn) . (5.16)

Then, by using identities such as (qrz)−∞/(z)
−
∞ = (qz; q)r = (−1)rq

r(r+1)
2 zr(q−1z−1; q−1)r and

θ−(qnz)/θ−(z) = q
n2

2 zn, we may rewrite

P r31
(t; q) =

(−1/(q2t3))−∞(−1/(qt))−∞
(q−1)−∞(−1/(q2xt3))−∞

∞∑
k=0

(s/(qx))−∞
(q; q)k(−1/(qst))−∞

θ−(q
3
2 sxt3,−q 1

2x,−q 3
2x(−t) 3

2 , 1)

θ−(q
3
2xt3,−q 1

2x/s,−q 3
2 (−t) 3

2 , x)

∣∣∣∣
x=qr, s=qk

=:

∞∑
k=0

1

(q; q)k(q−1)−∞
Υ

(0)
31

(s, x, t; q)
∣∣
x=qr, s=qk

. (5.17)

Note in particular that upon setting x = qr and s = qk the term (s/(qx))−∞ in the numerator on the

LHS vanishes unless k ≤ r. Thus the sum naturally truncates to the one in (5.14).

Going further, we observe that the sum in (5.17) may be rewritten as a sum of residues

P r31
(t; q) =

[ ∞∑
k=0

Ress=qk
1

2πis

1

(s)−∞
Υ

(0)
31

(s, x, t; q)

]
x=qr

, (5.18)

since Υ
(0)
31

is smooth at s = qk, while the residue of 1/[2πis(s)−∞] at s = qk is precisely 1/[(q; q)k(q−1)−∞].

It was the initial choice |q| > 1 that allowed us to write the sum as residues like this. Therefore, at

2Specialization a = q2 leads to Poincaré polynomials of colored SU(2) knot homologies for a certain class of knots,
which include unknot, trefoil, and figure-8 knot considered in this thesis. In general and for more complicated knots,
specialization of superpolynomials to Poincaré polynomials of SU(N) knot homologies requires taking into account a
nontrivial action of differentials [67, 69, 37].

3In the next section, the rescaling by (−1)r leads to a convenient choice of fermion-number twist when identifying
P r31

(t; q) with a partition function of T [31] on R2 ×q S1.
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least formally,

P r31
(t; q) =

∫
ΓI

ds

2πis
Υ31(s, x, t; q)

∣∣∣∣
x=qr

(5.19)

with

Υ31(s, x, t; q) :=
1

(s)−∞
Υ

(0)
31

(s, x, t; q) (5.20)

=
θ−(−q 1

2x,−q 3
2x(−t) 3

2 , 1)

θ−(q
3
2xt3,−q 3

2 (−t) 3
2 , x)

(−1/(q2t3))−∞(−1/(qt))−∞
(−1/(q2xt3))−∞

× θ−(q
3
2 sxt3)

(s)−∞(−1/(qst))−∞(x/s)−∞
,

where the contour ΓI is shown in Figure 5.2. (We have put all s-dependent terms in Υ31 on the

right.) This is now the form of a contour integral (5.10).

x → qr1

x

1/(qt)
ΓI

ΓII

ΓIII

1/(xt3)

log |s|

arg s

1

1/(qt)

qr

1/(xt3)

ΓII

ΓIII

ΓI

Figure 5.2: Possible integration contours for the trefoil, drawn on the cylinder parametrized
by log s. There are three half-lines of poles in the integrand Υ31(s, x, t; q), coming from

(s)−∞, (−1/(qst))−∞, (x/s)−∞ in the denominator; and a full line of zeroes from θ−(q
3
2 sxt3) in the

numerator. On the right, we demonstrate a pinching of contours as x→ qr.

Note that the three terms (s)−∞, (−1/(qst))−∞, and (x/s)−∞ each contribute a half-line of poles to

Υ31 . If we take q > 1 to be real, then the asymptotics of the integrand are given by

Υ31 ∼

exp 1
log q

[
(log x+ 3 log(−t)) log s+ . . .

]
log |s| → ∞

exp 1
log q

[
(− 1

2 (log s)2 + . . .
]

log |s| → −∞ ,

(5.21)

so the integral along ΓI does converge in a suitable range of x and t (namely, if |xt3| < 1). In contrast,

the integrals along the other obvious cycles here, ΓII and ΓIII , always converge. Moreover, a little

thought shows that upon setting x = qr the integral along ΓI must equal the integral along ΓIII ;

indeed, as x→ qr, some r + 1 pairs of poles in the lines surrounded by ΓI and ΓIII collide, and all

contributions to the integrals along either ΓI and ΓIII come from the r+1 points where the contours

get pinched by colliding poles. (Such pinching would usually cause integrals to diverge, but here the
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divergence is cancelled by one of the s-independent theta-functions in Υ31 .) Therefore, letting

B31
∗ (x, t; q) :=

∫
Γ∗

ds

2πis
Υ31(s, x, t; q) , (5.22)

(with the obvious relation BI +BII +BIII = 0), we find

P r31
(t; q) = B31

I (x, t; q)
∣∣
x=qr

= B31

III(x, t; q)
∣∣
x=qr

. (5.23)

We can repeat the analysis for the unknot U = 01 and figure-eight knot 41. The superpolynomials

of these knots are given by [74, 72, 75, 38]:

PS
r

01
(a, q, t) = a−

r
2 q

r
2 (−t)− 3

2 r
(a(−t)3; q)r

(q; q)r
(5.24)

PS
r

41
(a, q, t) =

r∑
k=0

(a(−t)3; q)r
(q; q)k(q; q)r−k

(aq−1(−t); q)k(aqr(−t)3; q)ka
−k− r2 q

r
2 +k(1−r)(−t)−2k− 3

2 r , (5.25)

and Poincaré polynomials for G = SU(2), i.e. specializations to a = q2, normalized by (−1)r, are

given by

P r01
(t; q) = (−q 1

2 )−r(−t)− 3
2 r

(q2(−t)3; q)r
(q; q)r

(5.26)

P r41
(t; q) =

r∑
k=0

(q2(−t)3; q)r
(q; q)k(q; q)r−k

(q(−t); q)k(q2qr(−t)3; q)k(−q 1
2 )−r−2k(1+r)(−t)−2k− 3

2 r , (5.27)

respectively. Repeating the above procedure, we find

P r01
(t; q) = B01(x, t; q)

∣∣
x=qr

, B01(x, t; q) :=
θ−(1,−q 1

2x(−t) 3
2 )

θ−(x,−q 1
2 (−t) 3

2 )

(q−1/x)−∞(−q−2/t3)−∞
(q−1)−∞(−q−2/(xt3))−∞

(5.28)

for the unknot, and

Υ41(s, x, t; q) :=
θ−(−q 1

2x, q
1
2 tx, (−t)− 1

2 )

θ−(q, t2, q
1
2 t, x(−t)− 1

2 )
θ−(qs, t2s)

(−1/(q2t3))−∞(−1/(qt))−∞
(s)−∞(−1/(qts))−∞(x/s)−∞(−1/(q2xt3s))−∞

.

(5.29)

for the figure-eight knot. In the latter case, the integrand Υ41 has four half-lines of poles in the s-

plane, coming from the four factors (s)−∞, (−1/(qts))−∞, (x/s)−∞, (−1/(q2xt3s))−∞ in the denominator

of (5.29). Let ΓI ,ΓII ,ΓIII ,ΓIV be contours encircling these respective half-lines of poles. A formal
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sum of residues along poles in the first half-line, evaluated at x = qr, most directly gives P r41
(t; q);

but the actual integral along ΓI does not converge for generic x. In contrast, the integrals along

ΓII ,ΓIII ,ΓIV always converge, and

P r41
(t; q) = B41

III(x, t; q)
∣∣
x=qr

= “B41

I (x, t; q)
∣∣
x=qr

” , (5.30)

where

B41
∗ (x, t; q) :=

∫
Γ∗

ds

2πis
Υ41(s, x, t; q) . (5.31)

These examples indicate how the analysis may be extended to other knots and links (for example,

those whose superpolynomials are found in [56, 57]), and to Poincaré polynomials of other homo-

logical invariants. In general, the required integrals will not be one-dimensional, but will require

higher-dimensional integration cycles. Generalizations of some results in this chapter to other knots

and links are also discussed in section 5.5.4.

5.4 Knot polynomials as partition functions of T [M3]

In this section, we construct some examples of 3d N = 2 theories T [M3] for knot complements M3

(and G = SU(2)) with the properties outlined above. In particular, we would like the vacua of

T [M3] on R2 × S1 to match all flat connections on M3.

Although our strategy will be a little indirect, it is based on a simple key observation: the

contour integral (5.10) for colored Poincaré polynomials has the form of localization integrals in

supersymmetric 3d N = 2 theories as well as in Chern-Simons theory on certain 3-manifolds. Indeed,

powerful localization techniques reduce the computation of Chern-Simons partition functions to finite

dimensional integrals of the form (5.10), where the choice of the contour is related to the choice of

the classical vacuum [76, 77, 78, 79, 80], as we briefly reviewed in section 5.6.

Similar — and, in fact, closer to our immediate interest — contour integrals of the form (5.10)

appear as a result of localization in supersymmetric partition functions of 3d N = 2 theories, such

as the (squashed) sphere partition function [15, 18], the index [19, 20, 21], and the vortex partition

function [39] or the half-index [25]. Since in the last case the space-time is non-compact it requires a

choice of the asymptotic boundary condition or vacuum of the theory on R2 ×q S1, which manifests

as a choice of the integration contour in the localization calculation. (The integrand is completely

determined by the Lagrangian of 3d N = 2 theory.) This has to be compared with the first two

cases, where localization of 3-sphere partition function and index lead to a contour integral with

canonical choices of the integration contour.

Therefore, in order to interpret (5.10) as a suitable partition function of 3d N = 2 theory

in this thesis we mainly focus on half-indices, vortex partition functions, and their IR variants
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called holomorphic blocks [13] that do not necessarily come from localization. This gives us enough

flexibility to interpret (5.10) and we generically expect that the full set of blocks for T [M3], labelled

by a full set of vacua, corresponds to a complete basis of independent convergent contours for the

integrals of section 5.3. On the other hand, we also expect that a basis of convergent contours is in

1–1 correspondence with flat connections on M3:

vacua of T [M3] ↔ hol’c blocks ↔ convergent contours ↔ flat conn’s . (5.32)

The reason to expect these correspondences to hold was discussed in the case without U(1)t in

[39, 25, 13]. Similar idea is expected to hold with U(1)t symmetry and is outlined more carefully in

section 5.4.1. In order to capture all flat connections, it turns out to be crucial that we start with

Poincaré polynomials for knot homology rather than unrefined Jones polynomials. In section 5.4.2

we then demonstrate the construction of T [M3] in a few examples.

In section 5.4.3 we examine the physical meaning of the limit x → qr that recovers Poincaré

polynomials from T [M3]. We argue that it is a combination of Higgsing and creation of a line

operator in T [M3], as on the left-hand side of (5.8). We also show that Poincaré polynomials can

be obtained by directly taking residues of S2 ×q S1 indices and S3
b partition functions of T [M3],

bypassing holomorphic blocks.

5.4.1 Recursion relations for Poincaré polynomials

One understanding of why contour integrals as in section 5.3 should capture all flat connections on

a knot complement follows from looking at the q-difference relations that the integrals satisfy.

Let us start with the Poincaré polynomials P rK(t; q) for colored SU(2) knot homology of a knot

K. As found in [37, 38, 56], the sequence of Poincaré polynomials obeys a recursion relation of the

form

Âref(x̂, ŷ; t; q) · P rK(t; q) = 0 , (5.33)

where Âref(x̂, ŷ; t; q) is a polynomial operator in which x̂, ŷ act as x̂P rK = qrP rK and ŷP rK = P r+1
K .4

The limit q → 1 of Âref(x̂, ŷ; t; q) is a classical polynomial Aref(x, y; t), whose subsequent t → −1

limit contains the classical A-polynomial of K [34] as a factor,

Âref(x̂, ŷ; t; q)
q→1→ Aref(x, y; t)

t→−1→ A(x, y) . (5.35)

The physical interpretation of the classical A-polynomial A(x, y) goes back to [27]. Its roots at fixed

4As mentioned before, notation l and m for longitude and meridian eigenvalues are related to y and x as

l↔ y , m2 ↔ x (5.34)

and similarly at the level of operator.
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x are in 1-1 correspondence with all flat connections on M (with fixed boundary conditions at K),

but the root corresponding to the abelian flat connection is distinguished because it comes from a

universal factor (y − 1) in A(x, y) as discussed in section 3.2. However, the t-deformed polynomial

Aref(x, y; t) is irreducible (at least in simple examples5) in the sense that (y − 1) is not factorized,

and none of its roots is more or less important than the others.

Alternatively, note that the t→ −1 limit of Aref(x̂, ŷ; t; q) leads to a shift operator known as the

quantum A-polynomial, Â(x̂, ŷ; q), which annihilates colored Jones polynomials [27, 81] as discussed

in section 3.2. One can also consider a–deformations of these shift operators. Such a deformation

of the quantum A-polynomial was called Q-deformed A-polynomial in [82], and it agrees with the

mathematically defined augmentation polynomial of [83, 84]. More generally, one can consider shift

operators Âsuper(x̂, ŷ; a; t; q) depending on both a and t, which annihilate colored superpolynomials,

and which were called super-A-polynomials in [38] (for a concise review see [85]). However, as

mentioned above, we are only interested here in a = q2 specializations.

Now, in section 5.3 we expressed

P rK(t; q) =

[ ∫
ΓP

ds

2πis
ΥK(s, x, t; q)

]
x=qr

= BP (x, t; q)
∣∣
x=qr

(5.36)

for a suitable integrand ΥK and a choice of integration contour ΓP . It is easy to see that BP (x, t; q)

satisfies a q-difference equation

Âref(x̂, ŷ; t; q) ·BP (x, t; q) = 0 (5.37)

even before setting x = qr, with x̂, ŷ acting as x̂BP (x, ...) = xBP (x, ...) and ŷBP (x, ...) = BP (qx, ...).

More so, the integral Bα =
∫

Γα
ds/sΥK for any convergent integration contour Γα (that stays

sufficiently far away from poles) should provide a solution to the q-difference equation Âref ·B = 0,

and one generally expects that a maximal independent set of integration contours generates the full

vector space of solutions.6

If we fix the values of x, t, and q, the convergent integration cycles Γα can be labelled by the

roots y(α)(x, t) of the classical equation Aref(x, y; t) = 0 — i.e. by the flat connections on M3

with boundary conditions (meridian holonomy) fixed by x. The correspondence follows roughly by

identifying the solutions to Aref(x, y; t) = 0 with critical points of the integrand ΥK(s, x, t; q) at

q ≈ 1, then using downward gradient flow with respect to log |ΥK(s, x, t; q)| to extend the critical

5To be more precise, both Aref(x, y; t) and A(x, y), obtained as appropriate limits of super-A-polynomials, may
contain some additional factors. As explained in [29, 36] (for t = −1) and [37, 38] (for general t), these factors are
necessary for quantization but are not associated to classical flat connections. For knots considered in this thesis these
factors are independent of y, they do not affect the structure of roots of Aref(x, y; t) or A(x, y) at generic fixed x, and
therefore they do not modify our discussion here.

6This is technically a vector space over modular elliptic functions of (x, q), on which q-shifts acts trivially, as
discussed in greater detail in [13].
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points into integration cycles Γα.

We have claimed that by writing one solution of Âref · B = 0 as a contour integral (5.36),

we can actually reproduce all other solutions from integrals on a full basis of contours Γα. This

reasoning relies on an important assumption: that the quantum Âref (and hence the classical Aref)

is irreducible. Otherwise, we may only get solutions corresponding to one irreducible component.

For this reason, it is crucial that we use refined knot polynomials and recursion relations rather

than Jones polynomials and the quantum A-polynomial. See [86, 85] for further details as well as

pedagogical introduction.

To complete the chain of correspondences (5.32), we simply use [52, 51, 87, 11, 39, 46, 37, 56,

13, 88, 45] to translate the above observations to the language of gauge theory. Momentarily we

will engineer gauge theories T [M3] for which the integrals
∫
∗ ds/sΥK compute various partition

functions on R2 × S1 annihilated by Âref and labelled by vacua of T [M3] on R2 × S1, i.e. classical

solutions of A(x, y; t) = 0.

5.4.2 3d N = 2 gauge theories for unknot, trefoil knot, and figure-eight

knot

Having rewritten the Poincaré polynomials of colored SU(2) knot homologies as special values of

a contour integral, we try to engineer T [M3] so that the contour integral computes its partition

function. In particular, by examining the integrand ΥK and from discussion in Chapter 2 and 4 we

associate

fugacities x, (−t), q  flavor and R symmetries

fugacity s  U(1)s gauge symmetry

(∗)−∞ factors  chiral multiplets

θ− functions  (mixed) Chern-Simons couplings

(5.38)

Then we can construct a putative UV description for T [M3] as an abelian Chern-Simons-matter

theory.

This approach is almost successful, and good enough for our present purposes, though we should

mention an important caveat. In general, one must also specify relevant superpotential couplings for

a UV description of T [M3], which are crucial for attaining the right superconformal theory in the IR;

but it is very difficult to specify such couplings just by looking at partition functions. At the very

least one would like to find superpotential couplings that break all “extraneous” flavor symmetries

whose fugacities don’t appear in supersymmetric partition functions, and are not expected for the

true T [M3]. Even this is difficult, because the naive prescription (5.38) leads to theories that simply

don’t have chiral operators charged only under the extraneous symmetries. This problem was briefly

discussed in Chapter 4, and solved by finding “resolved” theories with the same partition functions
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as the naive ones, but with all necessary symmetry-breaking operators present [39, Section 4].

We also note that, while it is possible to construct the space of holomorphic blocks for a number

of examples considered here, the construction is not always systematic, even in the simplest 3dN = 2

theories such as pure super-Chern-Simons theory. For this reason, it may be more convenient to

work with other partition functions of theories T [M3] that include half-indices, i.e. UV counterparts

of holomorphic blocks that are labeled by boundary conditions on R2×S1. A large class of boundary

conditions in 3d N = 2 theories comes from 4-manifolds and will be discussed in section 5.6. It

is expected that all holomorphic blocks can be reproduced (via RG flow) from suitable choice of

boundary conditions in the UV. Other prominent examples of partition functions include the index

(or, S2 ×q S1 partition function) [19, 20, 21] and the S3
b partition function [15, 18], both of which

will be discussed in section 5.4.3.

Presently, we will follow the naive approach to obtain simple UV descriptions for putative

T [M3]’s, where some but not all symmetry-breaking superpotential couplings are present. We ex-

pect that these theories are limits of the “true” superconformal knot-complement theories T [M3],

where some marginal couplings have been sent to infinity. Thus, any observables of T [M3] that

are insensitive to marginal deformations — such as holomorphic blocks, supersymmetric indices,

massive vacua on S1, etc. — can be calculated just as well in our naive descriptions as in the true

theories, as long as masses or fugacities corresponding to extraneous flavor symmetries are turned

off by hand. This is sufficient for testing many of the properties we are interested in.

Theory for unknot, T [01]

The theory for the unknot that gives (5.28) was already discussed in [38] and has four chirals

Φi, corresponding to the terms (q−1/x)−∞, (q−2/t3)−∞, (q−1)−∞, (q−2/(xt3))−∞. Letting x and (−t)
be fugacities for flavor symmetries U(1)x and U(1)t, we use the rules discussed in section 4 of

[52, 51, 87, 11, 39, 46, 37, 56, 13, 88, 45] to read off the precise charge assignments and levels of

(mixed) background Chern-Simons couplings

T [01] :

Φ1 Φ2 Φ3 Φ4

U(1)x −1 0 0 1

U(1)t 0 −3 0 3

U(1)R 0 −2 2 4

CS:

U(1)x U(1)t U(1)R

U(1)x 0 0 0

U(1)t 0 0 0

U(1)R 0 0 0

(5.39)
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(Here all background Chern-Simons couplings simply vanish.7). In this case, we can add an obvious

superpotential

W01 = µΦ1Φ2Φ4 (5.40)

that breaks most extraneous flavor symmetries and preserves U(1)x, U(1)t, and U(1)R (note that

the operator in (5.40) has R-charge two). The chiral Φ3 is completely decoupled from the rest of

the theory and rotated by an extraneous U(1) symmetry. We could break this U(1) by adding

Φ3 to the superpotential (5.40), but prefer not to do this as it would forbid T [01] from having a

supersymmetric vacuum. Ignoring the Φ3 sector, the putative unknot theory looks just like the 3d

N = 2 XYZ model.

Similarly, if we follow [37] and compactify T [01] on a circle turning on masses (i.e. complexified

scalars in background gauge multiplets) for U(1)x and U(1)t, we find that the theory is governed by

an effective twisted superpotential

W̃01 = Li2(x) + Li2(−t3) + Li2(−x−1t−3) +
1

2

[
(log x)2 + 3 log x log(−t) + 9(log(−t))2

]
. (5.41)

(We have removed from W̃01 an infinite contribution from the massless Φ3; this could be regularized

by turning on a mass for the U(1) symmetry rotating Φ3.) The equation for the supersymmetric

parameter space,8

exp

(
x
∂W̃01

∂x

)
= −y , (5.42)

becomes the refined A-polynomial equation

(−t) 3
2 y =

1 + t3x

1− x , (5.43)

which further reduces to the unknot A-polynomial y − 1 = 0 at t → −1. Equation (5.43) has a

unique solution in y at generic fixed x, t, corresponding to the unique, abelian flat connection on the

unknot complement (with fixed holonomy eigenvalue x on a cycle linking the unknot).

7We can multiply an extra normalization factor to SU(2) Poincaré polynomials to make the mixed IR CS levels
for U(1)t to be integers, but we will work formally without such an extra normalization.

8On the RHS we define an effective FI parameter as −y rather than y in order to match the knot-theoretic
A-polynomial below. This is correlated with the renormalization of Poincaré polynomials above by (−1)r.
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Theory for trefoil knot, T [31]

In this case, the integrand (5.20) suggests a theory with six chirals, with charges and Chern-Simons

levels

T [31] :

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 V−

U(1)s −1 1 1 0 0 0 0

U(1)x 0 −1 0 0 0 1 −1

U(1)t 0 0 1 −1 −3 3 −3

U(1)R 0 0 2 0 −2 4 −2

, CS :

U(1)s U(1)x U(1)t U(1)R

U(1)s −1/2 3/2 5/2 5/2

U(1)x 3/2 0 0 2

U(1)t 5/2 0 0 0

U(1)R 5/2 2 0 0

.

(5.44)

This is now a gauge symmetry with a dynamical U(1)s symmetry in addition to U(1)x and U(1)t fla-

vor symmetries. Standard analysis of [2] shows that this theory has a gauge-invariant anti-monopole

operator V− formed from the dual photon, with charges as indicated in the table. Altogether we

can write a superpotential

W31 = µ1 Φ1Φ2Φ5Φ6 + µ2 Φ1Φ3Φ4 + µ3 Φ6V− (5.45)

that preserves all symmetries we want to keep, and breaks almost all other flavor symmetry. There

remains a single extraneous U(1), just like in the unknot theory, which plays (roughly) the role of a

topological symmetry dual to U(1)s.

When compactifying the theory on a circle with generic twisted masses x and (−t) for U(1)x and

U(1)t, and scalar s in the U(1)s gauge multiplet, we obtain the effective twisted superpotential

W̃31 = Li2(s) + Li2(−1/(st)) + Li2(x/s) + Li2(−t3) + Li2(−t) + Li2(−1/(t3x)) (5.46)

+ 1
2

(
(log s)2 + log s(6 log t+ 2 log x) + log x(log x+ 3 log(−t)) + 10(log t)2

)
.

The critical-point equation exp
(
s ∂W̃31/∂s) = 1, namely

t2(1 + st)(s− x)x

s(1− s) = 1 (5.47)

determines two solutions in s at generic values of x and t; plugging these into the SUSY-parameter-

space equation

−y = exp
(
x ∂W̃31/∂x) = −s2(−t)−3/2 1 + t3x

s− x (5.48)

then determines two values of y. More directly, they are solutions of the quadratic

Aref
31

(x, y; t) = (1− x)t2y2 − (1− t2x+ 2t2x2 + 2t3x2 + t5x3 + t6x4)(−t) 1
2 y + t3(x3 + t3x4) = 0 ,
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which collapses to the Aref
31

(x, y;−1) = (x − 1)(y − 1)(y + x3), the trefoil’s A-polynomial (with an

extra (x − 1) factor) as t → −1. Thus T [31] has vacua corresponding to both of the flat SL(2,C)

connections on the trefoil complement, one irreducible, and one abelian. The two independent

holomorphic blocks BII and BIII of (5.22) (or, more precisely, some linear combinations of these

blocks) are in 1-1 correspondence with the two flat connections.

Theory for figure-eight knot, T [41]

Finally, for the figure-eight knot, the integrand (5.29) suggests a theory with U(1)s gauge symmetry,

U(1)x × U(1)t flavor symmetry, and six chirals of charges

T [41] :

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6

U(1)s −1 1 1 0 1 0

U(1)x 0 −1 0 0 1 0

U(1)t 0 0 1 −1 3 −3

U(1)R 0 0 2 0 4 −2

(5.49)

The net Chern-Simons couplings all turn out to vanish. This particular theory does not admit

gauge-invariant monopole or anti-monopole operators. We can introduce a superpotential

W41
= µ1 Φ1Φ3Φ4 + µ2 Φ2

1Φ2Φ5Φ6 , (5.50)

which breaks flavor symmetry to U(1)4, including U(1)x × U(1)t. Thus there are two extraneous

U(1)’s, including the topological symmetry of the theory.

As before, we can find an effective twisted superpotential on R2 × S1 of the form

W̃41 = Li2(s) + Li2(x/s) + Li2(−1/(st)) + Li2(−1/(sxt3)) + Li2(−t) + Li2(−t3) + log’s , (5.51)

whose critical point equation

exp

(
s
∂W̃41

∂s

)
=

(1 + st)(s− x)(1 + st3x)

(1− s)st2x = 1 (5.52)

generically has three solutions in s — which in turn determine

y = − exp
(
x ∂W̃41/∂x

)
∼ 1 + st3x

s− x . (5.53)
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More directly, the solutions in y are roots of the cubic

Aref
41

= (x3 − x2)(−t) 9
2 y3 − (1 + tx− t2x+ 2t2x2 + 2t3x2 + 2t4x3 + 2t5x3 − t5x4 + t6x4 + t7x5)ty2

+ (−1− tx+ t2x− 2t3x2 − 2t4x2 + 2t4x3 + 2t5x3 − t6x4 + t7x4 + t8x5)(−t) 1
2 y − (x2 + t3x)t3 ,

which deforms the standard figure-eight A-polynomial Aref
41

(x, y; t = −1) = (x−1)(y−1)(x2−(1−x−
2x2−x3 +x4)y+x2y2) . Thus T [41] has massive vacua on S1 corresponding to all three flat SL(2,C)

connections on the figure-eight knot complement, two irreducible and one abelian. Again, these flat

connections label linear combinations of the three independent holomorphic blocks B41

II , B
41

III , B
41

IV

in (5.31).

5.4.3 Vortices in S2 ×q S1 and S3
b

Having obtained a theory T [M3] whose vacua on R2 × S1 match flat connections on the knot

complement M3, it is interesting to probe its other protected observables. Here we focus on the

S2×qS1 indices of T [M3], and make some preliminary observations as to the nature of the “Poincaré

polynomial theories” Tpoly[M3; r] on the left-hand side of the flow diagram (5.8).

The 3d index [19, 20, 21] of a knot-complement theory, or equivalently a partition function on

S2 ×q S1, depends on three fugacities q, ξ, τ and two integer monopole numbers n, p :

fugacity monopole # symmetry

q − combo of U(1)J ⊂ SO(3)Lorentz and U(1)R

ξ n U(1)x

τ p U(1)t

(5.54)

We’ll consider “twisted” indices I(ζ, n; τ, p; q) = TrHn,p(S2)e
iπRq

R
2 −Jζexτep as in [25, 13], in which

case it’s convenient to regroup fugacities into pairs of holomorphic and anti-holomorphic variables

q = q , q̃ = q−1 ; x = q
n
2 ξ , x̃ = q

n
2 ξ−1 ; −t = q

p
2 τ , −t̃ = q

p
2 τ−1 . (5.55)

Then we find in examples below that the indices I[M3] of T [M3] develop poles at n = r and ξ = q
r
2 ,

or (x, x̃) = (qr, 1), whose (logarithmic) residue is the r-th Poincaré polynomial of the colored SU(2)

knot homology,

Res
(x,
∼
x)→(qr,1)

I[M3] = lim
ξ→qr/2

(1− q r2 ξ−1) · I[M3](ξ, n; τ, p; q)
∣∣∣
n=r

= P rK(t; q) . (5.56)

A similar statement holds for S3
b partition functions. The S3

b partition function Zb [15, 18]

of a knot-complement theory depends on the ellipsoid deformation b as well as two dimensionless
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complexified masses mx, mt for U(1)x, U(1)t, which are conveniently grouped into holomorphic and

anti-holomorphic parameters

q = e2πib2 , q̃ = e2πi/b2 ; x = e2πbmx , x̃ = e2πmx/b ; −t = e2πbmt , −t̃ = e2πmt/b . (5.57)

Then the S3
b partition function has poles at mx = ibr, or (x, x̃) = (qr, 1), with

Res
(x,
∼
x)→(qr,1)

Zb[M3] = lim
mx→ibr

(mx − ibr) · Zb[M3](mx,mt; b) = P rK(t; q) . (5.58)

As discussed in section 2.4, both I[M3] and Zb[M3] take the form of a sum of products of

holomorphic blocks [13] ,

I[M3], Zb[M3] ∼
∑
α

Bα(x, t; q)B̃α(x̃, t̃; q̃) , (5.59)

and our theory T [M3] was engineered so that the x → qr specialization of a specific linear com-

bination of blocks BP would reproduce Poincaré polynomials. Below we will choose a convenient

basis of blocks so that BP is one of the Bα’s, and manifestly gives the only contribution to the

residues (5.56), (5.58). (Nevertheless, in the natural basis of blocks labelled by flat connections at

fixed (x, t ≈ −1, q = 1), BP may easily correspond to a sum over multiple flat connections, including

the abelian one.)

Taking the residue of a pole in an index such as (5.56) has an important physical interpretation,

which was discussed in [59] in the context of 4d indices and, closer to our present subject, in [60, 61]

in the context of 3d indices. Let us suppose that I[M3] is a superconformal index — i.e. that

we have adjusted R-charges to take their superconformal values. Then the index counts chiral

operators at the origin in R3, and a pole signals the presence of an unconstrained operator O whose

vev can parametrize a flat direction in the moduli space of T [M3]. Taking the residue of the pole is

equivalent to giving a large vev to O, thus Higgsing any flavor symmetries under which O transforms,

and decoupling massless excitations of T [M3] around this vev.

Consider, for example, the pole at (x, x̃) = (1, 1), or (ξ, n) = (1, 0). The pole suggests the

presence of an operator Ox, of charge +1 under U(1)x, in the zero-th U(1)x monopole sector. The

contribution of this operator and its powers to the index is

(1 + ξ + ξ2 + . . .)× I ′ =
1

1− ξ × I
′ . (5.60)

Taking the residue I ′ amounts to giving a vev to Ox and decoupling massless excitations around

it, thereby Higgsing U(1)x symmetry. One can interpret I ′ as the index of a new superconformal

theory, the IR fixed point of a flow triggered by the vev 〈Ox〉.
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More generally, taking a residue at (x, x̃) = (qr, 1) or (ξ, n) = (q
r
2 , r) gives a space-dependent vev

(with nontrivial spin) to an operator in the r-th monopole sector. This not only Higgses the U(1)x

symmetry of T [M3] but creates a vortex defect. We therefore expect that the residue of I[M3] at

(x, x̃) = (qr, 1) is the index of a new 3d theory Tpoly[M3, r] in the presence of a (complicated) line

operator.

In the context of 4d theories T [C;G] coming from compactification of the 6d (2, 0) theory on

a punctured Riemann surface C, taking the residue at a pole in the index amounted to removing

a puncture from C — or more generally replacing the codimension-two defect at the puncture by

a dimension-two defect in a finite-dimensional representation of G. Similarly, we expect here that

taking a residue replaces the codimension-two defect along a knot K ⊂M by a dimension-two defect

in the (r+1)-dimensional representation of SU(2). We hope to elucidate this interpretation in future

work.

We proceed to examples of (5.56). Our conventions for indices follow [25, 13]. Below, all indices

depend on fugacities from (5.55) as well as the pair

s = q
k
2 σ , s̃ = q

k
2 σ−1 , (5.61)

which is used for summations/integrations. We assume |q| < 1, as is physically sensible for the

index. Thus, the convergent q-Pochhammer symbols are

(z)∞ := (z; q)∞ =
∏∞
i=1(1− qiz) , (5.62)

and theta-functions are

θ(z1, ..., zn) := θ(z1; q) · · · θ(zn; q) , θ(z; q) := (−q 1
2 z)∞(−q 1

2 z−1)∞ . (5.63)

Since we do our calculations while maintaining a manifest factorization into holomorphic blocks,

results for S3
b follow immediately from their index analogues, by reinterpreting the meaning of x̃, t̃,

etc.
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Unknot

The index of the unknot theory T [01] from (5.39) is given equivalently by

I[01] = (−q 1
2 )nξ

3
2pτ

3
2n

(q/x̃)∞(−q2/t̃3)∞(−1/(qxt3))∞

(x−1)∞(−q−1/t3)∞(−q2/(x̃t̃3))∞
(5.64)

=

∣∣∣∣∣∣∣∣ θ(x,−q 1
2 (−t) 3

2 )

θ(1,−q 1
2x(−t) 3

2 )

(−1/(qxt3))∞
(x−1)∞(−1/(qt3))∞

∣∣∣∣∣∣∣∣2
id

=
θ(x,−q 1

2 (−t) 3
2 ,−q− 1

2 x̃(−t̃) 3
2 )

θ(x̃,−q− 1
2 (−t̃) 3

2 ,−q 1
2x(−t) 3

2 )
× (q/x̃)∞(−q2/t̃3)∞(−1/(qxt3))∞

(x−1)∞(−q−1/t3)∞(−q2/(x̃t̃3))∞
.

In the first line, we simply write down the index as defined by the theory — with the massless

chiral Φ3 decoupled in order to remove an otherwise infinite factor. In the second line, we show that

this index comes from a fusion norm
∣∣∣∣B01(x, t; q)

∣∣∣∣2
id

of the holomorphic block (5.28), with (q−1)−∞

removed. Since we are working at |q| < 1, we replace all q-Pochhammer symbols and theta-functions

(z)−∞ →
1

(q−1z)∞
, θ−(z)→ 1

θ(z)
(5.65)

in the definition of the block. In the third line, we explicitly write out what the fusion product

means, following [13].

We could take the limit (ξ, n)→ (q
r
2 , r) in the first line of (5.64); after setting n = r, we would

find a pole at ξ → q
r
2 whose residue is the Poincare polynomial P rU (t, q). But it is more illustrative

to take the equivalent limit (x, x̃) → (qr, 1) in the factorized expression on the last line. Setting

x̃ = 1 produces no divergence. The pole we are looking for comes from (x−1)∞ in the denominator.

We get

lim
(x,
∼
x)→(qr,1)

(1− q−rx) I[U ] =
θ(qr,−q 1

2 (−t) 3
2 ,−q− 1

2 (−t̃) 3
2 )

θ(1,−q− 1
2 (−t̃) 3

2 ,−q 1
2 +r(−t) 3

2 )
× (q)∞(−q2/t̃3)∞(−q−r−1/t3)∞

(q−1; q−1)r(q)∞(−q−1/t3)∞(−q2/t̃3)∞

= (−q 1
2 )−r(−t)− 3r

2
(−q2t3)r

(q)r
= P rU (t; q) . (5.66)

Note how the t̃ dependence completely cancelled out of the problem. If we had taken a more general

limit (x, x̃) → (qr, qr
′
), we would have found a similar pole, with residue P rU (t; q)P r

′

U (t̃; q−1). The

fact that the t̃ dependence cancels out follows from the simple identity P r
′=0

U (t̃; q−1) = 1.

Trefoil

For the trefoil, the theory T [31] of (5.44) leads to an integral formula for the index,

I[31] = I0

∑
k∈Z

∮
dσ

2πiσ

θ(−q− 3
2 s̃x̃(−t̃)3)

θ(−q 3
2 sx(−t)3)

(qs)∞(1/(−st))∞(qx/s)∞

(s̃)∞(q/(−s̃t̃))∞(x̃/s̃)∞
, (5.67)
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where

I0 =
θ(−q− 1

2 x̃,−q− 3
2 x̃(−t̃) 3

2 ,−q 3
2x(−t)3,−q 3

2 (−t) 3
2 , x)

θ(−q 1
2x,−q 3

2x(−t) 3
2 ,−q− 3

2 x̃(−t̃)3,−q− 3
2 (−t̃) 3

2 , x̃)
× (−1/(qxt3))∞(−q2/t̃3)∞(−q/t̃)∞

(−q2/(x̃t̃3))∞(−1/(qt3))∞(−1/t)∞
(5.68)

Again, we have chosen to regroup Chern-Simons contributions into ratios of theta-functions, sepa-

rating out the x and x̃ dependence. The integrand in (5.67) has three pairs of half-lines of zeroes

and poles in the σ-plane, coming from the three terms ( )∞/( )∞. They lie at

I (qs)∞/(s̃)∞ II (−1/st)∞/(−q/s̃t̃)∞ III (qx/s)∞/(x̃/s̃)∞

zeroes σ = q−
k
2−1−m σ = q−

k+p
2 +mτ−1 σ = q−

k−n
2 +1+mξ

poles σ = q
k
2 +m σ = q

k+p
2 −1−mτ−1 σ = q

k−n
2 −mξ

m ≥ max(−k, 0) m ≥ max(k + p, 0) m ≥ max(k − n, 0)

(5.69)

The real, physical contour in (5.67) should lie on or around the unit circle, separating each half-line

of zeroes from its corresponding half-line of poles.

We also observe that the integrand of (5.67) vanishes as |σ| → ∞, if we stay away from half-lines

of poles. Thus we can attempt to deform the contour outwards, closing it around σ =∞. We pick

up the poles in lines II and III, obtaining an expression of the form

I[31] = I0

(
||BII ||2id + ||BIII ||2id

)
, (5.70)

where9

||BII ||2id =
∑
k,m≥0

θ(−q− 1
2 +mx̃t̃2)

θ(−q 1
2−kxt2)

1

(q)k(q−1; q−1)m

(−q−kt−1)∞(−q2+ktx)∞

(−qm+1t̃−1)∞(−q−1−mt̃x̃)∞
, (5.71a)

||BIII ||2id =
∑
k,m≥0

θ(q−
3
2 +mx̃2t̃3)

θ(q
3
2−kx2t3)

1

(q)k(q−1; q−1)m

(q1−kx)∞(−qk/(xt))∞
(qmx̃)∞(−q1−m/(x̃t̃))∞

. (5.71b)

The holomorphic blocks BII and BIII here correspond to integrals along contours ΓII and ΓIII in

Figure 5.2, with substitutions of the form (x)−∞ → 1/(qx)∞ to account for |q| < 1.

Now, if we send (x, x̃) → (qr, 1), the leading pole in line I can collide with the leading pole

in line III, pinching the integration contour in the σ-plane, and leading to a divergence of the the

index. We see this explicitly in the evaluated expression (5.70): while the prefactor I0 and the

blocks ||BII ||2id are finite in this limit, the blocks ||BIII ||2id have the expected divergence. It comes

from the denominator (qmx̃)∞ in (5.71b), and occurs only for m = 0. The related factor (q1−kx)∞

9A redefinition of summation indices turns the sum over k ∈ Z into sums k ≥ 0.
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in the numerator vanishes as x = qr unless k ≤ r. Therefore, we find a residue

lim
(x,
∼
x)→(qr,1)

(1− x̃) I[31] = lim
(x,
∼
x)→(qr,1)

(1− x̃) I0 ||BIII ||2id

= I0(x = qr, x̃ = 1; t, t̃; q)

r∑
k=0

θ(q−
3
2 t̃3)

θ(q
3
2−kt3)

(q1−k+r)∞(−qk−rt−1)∞

(q)k(q)∞(−q/t̃)∞

= P r31
(t; q) P 0

31
(t̃; q−1) = P r31

(t; q) , (5.72)

reproducing the superpolynomial after some straightforward manipulations.

Figure-eight knot

The setup for the figure-eight knot is almost identical to that for the trefoil. Now the index is given

by

I[41] = I0

∑
k∈Z

∮
dσ

2πiσ

θ(q−1s̃, t̃2s̃)

θ(qs, t2s)

(qs)∞(−1/(ts))∞(qx/s)∞(−1/(qxt3s))∞

(s̃)∞(−q/(t̃s̃))∞(x̃/s̃)∞(−q2/(x̃t̃3s̃))∞
, (5.73)

with

I0 =
θ(t2, q

1
2 t, x(−t)− 1

2 ,−q− 1
2 x̃, q−

1
2 t̃x̃, (−t̃)− 1

2 )

θ(t̃2, q−
1
2 t̃, x̃(−t̃)− 1

2 ,−q 1
2x, q

1
2 tx, (−t)− 1

2 )
× (−q2/t̃3)∞(−q/t̃)∞

(−1/qt3)∞(−1/t)∞
. (5.74)

There are four pairs of half-lines of zeroes and poles in the integrand; three are identical to those in

the trefoil integrand above, which we denote I, II, III as in (5.69), and there is one new pair

IV :
zeroes σ = q−

k+n+3p
2 −1+sξ−1τ−3

poles σ = q
k+n+3p

2 −2+sξ−1τ−3
, for m ≥ max(k + n+ 3p, 0) . (5.75)

We close the contour around σ =∞ (where the integrand generically vanishes), picking up the poles

in lines II, III, and IV, to give

I[41] = I0

(
||BII ||2id + ||BIII ||2id + ||BIV ||2id

)
, (5.76)
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with

||BII ||2id =
∑
k,m≥0

θ(−qm/t̃,−qm+1t̃)

θ(−q−k/t,−q−k−1t)

1

(q)k(q−1, q−1)m

(−q−k/t)∞(−q2+kxt)∞(qk/(xt2))∞

(−qm+1/t̃)∞(−q−m−1x̃t̃)∞(q1−m/(x̃t̃2))∞
,

(5.77a)

||BIII ||2id =
∑
k,m≥0

θ(qm−1x̃, qmt̃2x̃)

θ(q1−kx, q−kt2x)

1

(q)k(q−1, q−1)m

(q1−kx)∞(−qk/(xt))∞(−qk−1/(x2t3))∞

(qmx̃)∞(−q1−m/(t̃x̃))∞(−q2−m/(x̃2t̃3))∞
,

(5.77b)

||BIV ||2id =
∑
k,m≥0

θ
(
−qm+1

∼
x
∼
t

3 , −q
m+2

∼
x
∼
t

)
θ
(
−q−k−1

xt3 , −q
−k−2

xt

) 1

(q)k(q−1, q−1)m

(−q−k−1/(xt3))∞(q2+kxt2)∞(−qk+3x2t3)∞

(−qm+2/(x̃t̃3))∞(q−m−1x̃t̃2)∞(−q−m−2x̃2t̃3)∞
,

(5.77c)

The holomorphic blocks in these expressions correspond to the integration cycles discussed above

(5.31) (with the usual translation from |q| > 1 to |q| < 1).

Now as (x, x̃) → (qr, 1), the prefactor I0 along with ||BII ||2id and ||BV I ||2id all have finite limits;

while ||BIII ||2id has a pole due 1/(qmx̃)∞ at m = 0, and is nonvanishing for k ≤ r. As in the case of

the trefoil, the divergence can be attributed to the poles of lines I and III pinching the contour of

the integrand (5.73). We then find

lim
(x,
∼
x)→(qr,1)

(1− x̃) I[41] = lim
(x,
∼
x)→(qr,1)

(1− x̃) I0 ||BIII ||2id

= P r41
(t; q) P 0

41
(t̃; q−1) = P r41

(t; q) . (5.78)

5.5 The t = −1 limit and DGG theories

Above, we saw that sending x → qr in partition functions of T [M3] (and perhaps discarding an

overall divergence) produced finite Poincaré polynomials of colored SU(2) knot homologies. Once

the Poincaré polynomials are obtained, we are free to send t → −1 to directly recover the colored

Jones polynomials. No further divergences are encountered. Physically, we proposed an identification

of the regularized x → qr limit with a physical “Higgsing” process, by which an operator in T [M3]

charged under U(1)x is given a space-dependent vev, initiating an RG flow to a new theory in the

presence of a line defect. Subsequently sending t→ −1 should not correspond to any further flow.

One may wonder what would happen if we sent t → −1 before x → qr. We present evidence in

this section that this initiates a different RG flow in T [M3], which ends at a DGG theory TDGG[M3].

In particular, an operator Ot is given a (constant) vev, breaking the U(1)t symmetry characteristic of

T [M3]. Moreover, vacua of T [M3] on R2×S1 that correspond to abelian or reducible flat connections

on M3 are lost.

As above, our analysis will be largely example-driven. In section 5.5.1 we examine how the trefoil
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and figure-eight knot theories of section 5.4.2 flow to DGG theories. We verify in section 5.5.2 that

t → −1 limits induce divergences in S2 ×q S1 indices, indicative of Higgsing. Then in section 5.5.3

we use effective twisted superpotentials on R2 × S1 to better understand how vacua corresponding

to abelian flat connections decouple.

5.5.1 The DGG theories

We can see an explicit example of the proposed DGG flow by considering the trefoil theory T [31] of

(5.44). If we turn off the real mass for the flavor symmetry U(1)t, then the chiral operator Ot = Φ4

can get a vev,

〈Φ4〉 = Λ . (5.79)

The vev breaks U(1)t, but no other symmetries. Moreover, it induces a complex mass for Φ1 and

Φ3 due to the superpotential

W31 = µ1 Φ1Φ2Φ5Φ6 + µ2Λ Φ1Φ3 + µ3Φ6V− . (5.80)

Therefore, taking Λ→∞, we may decouple fluctuations of Φ4 and integrate out Φ1 and Φ3, arriving

at

T ′[31] :

Φ2 Φ5 Φ6 V−

U(1)s 1 0 0 0

U(1)x −1 0 1 −1

U(1)R 0 −2 4 −2

, CS :

U(1)s U(1)x U(1)R

U(1)s −1/2 3/2 5/2

U(1)x 3/2 0 2

U(1)R 5/2 2 0

. (5.81)

with superpotential

W ′31
= µ′3 Φ6V− . (5.82)

At this point, we observe that T [31] has a sector containing a U(1)s gauge theory with a single

charged chiral Φ2, together with minus half a unit of background Chern-Simons coupling. This

sector can be dualized to an ungauged chiral ϕ as in [39, Sec 3.3], a consequence of a basic 3d mirror

symmetry [89, 3]. Indeed, the dual ungauged chiral is identified with the (anti-)monopole operator

ϕ = V− of U(1)s ! Thus, T ′[31] is dual to

T ′′[31] :

Φ5 Φ6 ϕ

U(1)s 0 0 0

U(1)x 0 1 −1

U(1)R −2 4 −2

, CS :

U(1)x U(1)R

U(1)x 3 6

U(1)R 6 ∗

. (5.83)
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with W ′′31
= µ′′3 Φ6ϕ. The superpotential lets us integrate out Φ6 and ϕ, leaving behind

T ′′[31]  TDGG[31]⊗ TΦ5
. (5.84)

Here Φ5 is a fully decoupled free chiral, while TDGG[31] is a slightly degenerate description of the

DGG trefoil theory.

Namely, TDGG[31] here is a “theory” consisting only of a background Chern-Simons coupling at

level 3 for the flavor symmetry U(1)x, and some flavor-R contact terms given by the matrix on the

RHS of (5.83). A similar “theory” was obtained by DGG methods in section 4.3 ([25, Section 4.3] for

detail), using a degenerate triangulation of the trefoil knot complement into two ideal tetrahedra. It

was interpreted as an extreme limit of the true DGG theory TDGG[31] in marginal parameter space.

It is not surprising that we have hit such a limit, since, as discussed at the beginning of section 5.4.2,

we are ignoring some marginal deformations.

Our TDGG[31] becomes identical to that in section 4.3 upon shifting R-charges by minus two

units of U(1)x charge. The shift is due to difference of conventions: we initially set x = qr in

Poincaré polynomials whereas the equivalent choice for [39, 25] would be x = qr+1.

We can repeat this exercise for the figure-eight knot. The theory T [41] of (5.49) again has a

chiral operator Ot = Φ4 that is charged only under U(1)t, and can get a vev when the real mass

corresponding to U(1)t is turned off,

〈Φ4〉 = Λ . (5.85)

Then the effective superpotential

W41 = µ1Λ Φ1Φ3 + µ2 Φ2
1Φ2Φ5Φ6 (5.86)

lets us integrate out Φ1 and Φ3. We flow directly to a theory

T [41]  TDGG[41]⊗ TΦ6 , (5.87)

where Φ6 is a decoupled chiral and

TDGG[41] :

Φ2 Φ5

U(1)s 1 1

U(1)x −1 1

U(1)R 0 4

, (CS vanishing) (5.88)

is basically the GLSM description of the CP1 sigma-model. It is equivalent (after shifting R-charges

by minus two units of U(1)x charge) to the DGG theory in section 4.3 obtained from a triangulation
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of the figure-eight knot complement into two tetrahedra.10 Again, this triangulation is a little

degenerate as discussed in section 4.3 ([39, Section 4.6] for detail), so (5.88) should be viewed as a

limit of the true TDGG[41], which has the same protected partition functions (index, half-indices,

and holomorphic blocks).

5.5.2 Indices and residues

The S2 ×q S1 indices of theories T [M3] help us to further illustrate the breaking of U(1)t by “Hig-

gsing” and the flow to TDGG[M3]. As discussed in section 5.4.3, Higgsing corresponds to taking

residues in an index. In particular, we expect here to find the indices IDGG[M3] of DGG theories

as residues of I[M3] at (t, t̃)→ (−1,−1).

Consider, for example, the index I[31] of the trefoil theory as given by (5.70). Sending t→ −1,

the prefactor I0 develops a pole due to the factor 1/(−1/t)∞. This factor comes directly from the

chiral Φ4 in T [31]. (The factor 1/(−1/(qt3))∞ in I0, coming from the chiral Φ4, also develops a

pole, but it is not relevant for the Higgsing we want to do.) In addition, we see that ||BIII ||2id has

a finite limit as (t, t̃)→ (−1,−1), whereas ||BIII ||2id vanishes due to (−q−kt−1)∞ in the numerator.

One way to understand this vanishing is to observe that the zeroes in line I of the index integrand

perfectly cancel all poles in line II when (t, t̃) = (−1,−1). Therefore,

lim
t,
∼
t→−1

(1− t)I[31] = lim
t,
∼
t→−1

(1− t) I0 ||BIII ||2id (5.89)

=
“ (−q2/t̃3)∞

(−1/(qt3))∞

”θ(−q− 1
2 x̃, x)(1/(qx))∞

θ(−q 1
2x, x̃)(q2/x̃)∞

∑
k,m≥0

1

(q)k(q−1; q−1)m

θ(−qm− 3
2 x̃2,−q 1

2−kx)

θ(−q 3
2−kx2,−qm− 1

2 x̃)

=
“ (−q2/t̃3)∞

(−1/(qt3))∞

” θ(x, q−
3
2 x̃2)

θ(x̃,−q 3
2x2)

=
“ (−q2/t̃3)∞

(−1/(qt3))∞

”
q3nξ3n

=
“ (−q2/t̃3)∞

(−1/(qt3))∞

”
IDGG[31] .

The resummation in the third line captures the duality between a charged chiral (Φ2) and a free chiral

(ϕ = V−) discussed in section 5.5.1. Then the expression q3nξ3n matches the DGG trefoil index of

[25], modulo a redefinition of R-charges ξ → q−1ξ. The infinite prefactor (−q2/t̃3)∞/(−1/(qt3))∞ →
(q2)∞/(q

−1)∞ is the contribution of the decoupled chiral Φ5.

When considering the t, t̃ → −1 limit of the figure-eight index I[41] from (5.76), the prefactor

I0 has the same divergent term (−1/t)−1
∞ that appeared for the trefoil. Moreover, the contribution

||BII ||2id to the figure-eight index vanishes, because poles of the index integrand in line II are cancelled

10The equivalence is most directly seen using the polarization discussed in Appendix B and section 6.3 of [13]. The
“degenerate” DGG theory for the figure-eight knot, a.k.a. the CP1 sigma-model, has three standard duality frames
that are analyzed in section 5.1 of [13], and the most symmetric of these duality frames agrees with (5.88). Another
frame matches section 4.6 of [39].
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by zeroes in line I. Thus, following a short calculation, the figure-eight index takes the form

lim
t,
∼
t→−1

(1− t)I[41] = lim
t,
∼
t→−1

(1− t) I0

(
||BIII ||2id + ||BIV ||2id

)
(5.90)

=
“ (−q2/t̃3)∞

(−1/(qt3))∞

”
(qξ)2n

[
(−q 1

2 )n
∑
k,m≥0

(qx)k(q−1x̃)m

(q−1; q−1)k(q)m

(qk+1(qx)2)∞
(q−m(q−1x̃)2)∞

+ (n, qξ)↔ (−n, 1/(qξ))
]

=
“ (−q2/t̃3)∞

(−1/(qt3))∞

”
IDGG[41] .

We recognize in this the DGG index of the figure-eight knot, already split into two holomorphic

blocks. For proper comparison to [25] or [13], we should again rescale ξ → q−1ξ, or (x, x̃) →
(q−1x, qx̃).

5.5.3 Critical points and missing vacua

We saw in section 5.5.2 that in the limit t, t̃ → −1, some parts of indices I[M3] vanished, while

others contributed to IDGG[M3]. This is a reflection of the fact that the DGG theories TDGG[M3]

don’t capture all information about flat connections on M3, and in particular don’t have massive

vacua on R2 × S1 corresponding to abelian or reducible flat SL(2,C) connections.

We can make this idea much more precise by considering the effective twisted superpotentials

that govern theories T [M3] on R2 × S1. For example, for the trefoil, this was given by (5.46):

W̃31(s;x, t) = Li2(s) + Li2(−1/(st)) + Li2(x/s) + Li2(−t3) + Li2(−t) + Li2(−1/(t3x))

+ 1
2

(
(log s)2 + log s(6 log t+ 2 log x) + log x(log x+ 3 log(−t)) + 10(log t)2

)
. (5.91)

It is important to note that this function on C∗ (parametrized by the dynamic variable s) has branch

cuts coming from integrating out chiral matter that at some points in the s-plane becomes massless.

In particular, each term Li2(f(s)) has a cut along a half-line starting at the branch point f(s) = 1

and running to zero or infinity. Such cuts and their consequences have been discussed from various

perspectives in e.g. [12, 10, 90, 62]. Often one writes the vacuum or critical-point equations as

exp
(
s ∂W̃31/∂s

)
= 1 , (5.92)

because in this form they are algebraic in s. However, when analyzing vacua of T [M3] on R2 × S1,

one must remember to lift solutions of (5.92) back to the cover of the s-plane defined by W̃ — and

to make sure they are actual critical points on some sheets of the cover.

Now consider what happens if we send t → −1. The branch points of Li2(s) and Li2(−1/(st)),
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located at s = 1 and s = −1/t, collide. (These branch points came directly from the chirals Φ1

and Φ3, which we integrated out of T [31] in (5.81).) In the process, the half-line cuts originating at

these branch points coalesce into a full cut running from s = 0 to s = ∞; this is easy to see from

the inversion formula

Li2(s) + Li2(1/s) = −π2

6 − 1
2 log(−s)2 (s /∈ [0, 1) ) . (5.93)

Moreover, one of the solutions s∗ to (5.92), or rather its lift(s) to the covering of the s-plane, gets

trapped between the colliding branch points and ceases to be a critical point as t→ −1. One can see

this from the explicit form of the critical-point equations (5.47), which are reduced from quadratic

to linear order in s by a cancellation at t = −1. However, to properly interpret this limit, it is

helpful to think about the branched cover of the s-plane as we have done.

Physically, each solution of (5.92) is a vacuum of T [M3] on R2 × S1. As t → −1, the vacuum

at s∗ is lost. This is possible precisely because the t → −1 limit is singular. Indeed, we know that

t→ −1 corresponds to making T [M3] massless, so that the reduction on R2 × S1 is no longer fully

described by an effective twisted superpotential. The specialized superpotential W̃ (s;x, t = −1)

does not describe T [M3] itself at the massless point, but rather the Higgsed TDGG[M ] as found in

section 5.5.1.

In the case of the trefoil, the vacuum at s∗ close to t = −1 is labelled (via the 3d-3d correspon-

dence) by the abelian flat connection on M3 = S3\K. Indeed, if we substitute the limiting t→ −1

value of s∗ (namely s∗ = 1) into the SUSY-parameter-space equation exp
(
x ∂W̃/∂x

)
= y, we find

y∗ := exp
(
x ∂W̃/∂x

)∣∣
s∗

= 1 at t = −1 , (5.94)

corresponding to the abelian factor y − 1 = 0 of the trefoil’s classical A-polynomial. Thus we

see explicitly that the DGG theory TDGG[31] loses a vacuum corresponding to the abelian flat

connection.

We may also perform this analysis at the level of holomorphic blocks. Holomorphic blocks are

labelled by (q-deformed) critical points of W̃ — or more precisely by integration cycles Γα obtained

by starting at a critical point of W̃ and approximately following gradient flow with respect to

Re 1
log q W̃ . For the trefoil we can choose a basis of integration cycles given by ΓII and ΓIII in Figure

5.2. The precise correspondence with critical points depends on x, t, q. Close to t = −1, however,

it is clear that ΓII corresponds to the “abelian” critical point s∗. As t→ −1, the contour ΓII gets

trapped crossing a full line of poles (resolutions of the classical branch cuts described above), and

ceases to be a good holomorphic-block integration cycle in the sense of [13].11 Most importantly, it

11Of course, ΓII is still a reasonable integration cycle, mathematically, at t = −1 and any finite q. The integral
along it does reproduce a Jones polynomial as x → qr. It is tempting to wonder whether one could engineer such a
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no longer flows from any classical critical point. Beautifully, the remaining contour ΓIII is isolated

away from the point s∗ where half-lines of poles merge. The t→ −1 limit of the corresponding block

BIII(x, t; q) is precisely the holomorphic block of TDGG[31], labelled by the irreducible flat SL(2,C)

connection, and contributing to the index (5.89).

Analogous remarks apply to the figure-eight example. The 3d Higgsing and integrating out

of Φ1,Φ3 in T [41] translates on R2 × S1 to branch points of Li2(s) and Li2(−1/(st)) colliding in

(5.51), and trapping a critical point between them. Thus, as t → −1, T [41] looses one of its three

massive vacua on R2 × S1 — the one labeled by the abelian connection on the figure-eight knot

complement. The TDGG[41] only has two massive vacua, labelled by irreducible flat connections.

The remaining vacua correspond to the holomorphic blocks BIII and BIV , which at t→ −1 become

the holomorphic blocks of TDGG[41].

5.5.4 Relation to colored differentials

We expect that the Higgsing procedure found to relate T [M3] to TDGG[M3] in the examples above

holds much more generally. We can actually recognize some key signatures of the reduction in

a much larger family of examples, which include so-called thin knots. The phenomena described

above follow from the structure of colored Poincaré polynomials for these knots. The structure

of the Poincaré polynomials is highly constrained by the properties of colored differentials whose

existence in Sr-colored homologies was postulated in [69, 91], as well as by the so-called exponential

growth. Using these properties, in [56] colored Poincaré polynomials of many thin knots, including

the infinite series of (2, 2p + 1) torus knots and twist knots with 2n + 2 crossings, were uniquely

determined.

More precisely, colored differentials enable transitions between homology theories labeled by the

r-th and k-th symmetric-power representations Sr and Sk. The existence of these differentials implies

that Poincaré polynomials take the form of a summation (over k = 0, . . . , r), with the summand

involving a factor (−aq−1t; q)k. On the other hand, the exponential growth is the statement that

for q = 1 (normalized) colored Poincaré polynomials (superpolynomials) satisfy the relation

PSrK (a, q = 1, t) =
(
PS1

K (a, q = 1, t)
)r
. (5.95)

If the uncolored superpolynomial on the right hand side is a sum of a few terms, its r’th power can

be written as a (multiple) summation involving Newton binomials, which for arbitrary q turn out to

be replaced by q-binomials [56, 57]. This structure can be clearly seen in the example of (2, 2p+ 1)

“Jones” cycle starting directly with TDGG[M3], with no prior knowledge of the full T [M3] — and what the physical
meaning of this cycle might be.
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torus knots considered in [56, 57], whose (normalized) colored superpolynomials take the form

PSrT 2,2p+1(a, q, t) = aprq−pr
∑

0≤kp≤...≤k2≤k1≤r

 r

k1

 k1

k2

 · · ·
 kp−1

kp

× (5.96)

× q(2r+1)(k1+k2+...+kp)−Σpi=1ki−1kit2(k1+k2+...+kp)
k1∏
i=1

(1 + aqi−2t).

Here the last product originating from the structure of differentials, as well as a series of q-binomials

originating from the exponential growth, are manifest (in this formula k0 = r). Poincaré polynomials

for infinite families of twist knots derived in [56, 57] share analogous features.

It becomes clear now that various properties of trefoil and figure-8 knots, discussed earlier, should

also be present for other knots, such as thin knots discussed above. For example, as discussed in

section 5.5.2, the divergence at t → −1 in the trefoil and figure-8 indices, I[31] and I[41], is a

manifestation of a pole due to the factor 1/(−1/t)∞. This factor originates from the q-Pochhammer

symbol (−aq−1t; q)k in corresponding Poincaré polynomials (5.13) and (5.25), after setting a = q2

and rewriting this term in the denominator. As follows from the discussion above, such a factor is

present in general for other thin knots (and represents the action of colored differentials), so for such

knots an analogous pole at t → −1 should develop. We postulate that the residue at this pole in

general reproduces indices IDGG[M ] for theories dual to other (thin) knots.

Similarly, a decoupling of the abelian branch for more general knots is a consequence of the

structure of superpolynomials described above. From this perspective, let us recall once more how

this works for trefoil and figure-8 knot, just on the level of critical point equations (5.47) and (5.48),

or (5.52) and (5.53). If we set t = −1 in (5.47) or (5.52), the ratio 1+st
1−s on the left hand side drops out

of the equation (this is a manifestation of the cancelation (5.93) at the level of twisted superpotential

). In this ratio the numerator 1 + st has its origin in the (−aq−1t; q)k term in superpolynomials

(5.13) and (5.25), while the denominator 1 − s originates from q-Pochhamer (q; q)k being a part

of the q-binomial in those superpolynomials. As explained above, such terms appear universally

in superpolynomials for thin knots. Similarly, for t = −1 the equations (5.48) and (5.53) reduce

to y = 1 (which represents the abelian branch that drops out when t → −1 is set first) due to a

cancellation between the term in their numerator and s−x in denominator. The terms in numerator

have the origin in (a(−t)3; q)r from unknot normalization (5.24), possibly combined with another

term (aqr(−t)3; q)k representing colored differentials for figure-8 knot (5.25). The term s − x in

denominator has its origin in (q; q)r−k ingredient of q-binomial. Analogous terms, responsible for

cancellations, are also universally present in superpolynomials for other knots. The analysis is

slightly more involved if Poincaré polynomials include multiple summations — e.g. for (2, 2p + 1)

torus knots (5.96) — however one can check that similar cancellations between “universal” terms

decrease the degree of saddle equations and result in the decoupling of the abelian branch.
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5.6 Boundaries in three dimensions

In this section we discuss the gluing along boundaries of M3 and the boundary conditions in 3d

N = 2 theories T [M3].

In particular, understanding the operations of cutting and gluing M3 along a Riemann surface

C opens a new window into the world of closed 3-manifolds. The basic idea of how such operations

should manifest in 3d N = 2 theory T [M3] was already discussed e.g. in [51, 11] and will be reviewed

below. The details, however, cannot work unless T [M3] accounts for all flat connections on M3. This

was recently emphasized in [58] where the general method of building T [M3] via gluing was carried

out for certain homology spheres.

After constructing 3d N = 2 theories T [M3] for certain homology spheres, we turn our attention

to boundary conditions in such theories. Incorporating boundary conditions and domain walls in

general 3d N = 2 theories was discussed in [62] and involves the contribution of the 2d index of the

theory on the boundary / wall that is a “flavored” generalization of the elliptic genus. For theories

of class R that come from 3-manifolds, many such boundary conditions come from 4-manifolds as

illustrated in (5.9). In this case, the flavored elliptic genus of a boundary condition / domain wall

is equal to the Vafa-Witten partition function of the corresponding 4-manifold [58].

5.6.1 Cutting and gluing along boundaries of M3

It is believed that a 3-manifold with boundary C gives rise to a boundary condition in 4d N = 2

theory of class S, see Figure 2 in [39] or Figure 6 in [58]. This system can be understood as a result

of 6d (2, 0) theory compactified on a 3-manifold with cylindrical end R+×C and to some extent was

studied previously.12 For example, when C = T 2 is a 2-torus (with puncture) the corresponding 4d

N = 2 theory is actually N = 4 super-Yang Mills (resp. N = 2∗ theory).

A simple class of 3-manifolds bounded by C includes handlebodies, which for a genus-g Rie-

mann surface C is determined by a choice of g pairwise disjoint simple closed curves on C (that

are contractible in the handlebody 3-manifold). For example, if C = T 2, then the corresponding

handlebody is a solid torus:

M3
∼= S1 ×D2 . (5.97)

It is labeled by a choice (p, q) of the 1-cycle that becomes contractible in M3. In the basic case of

(p, q) = (0, 1) the Chern-Simons path integral on M3 defines a state (in the Hilbert space HT 2) that

is usually denoted |0〉, so that we conclude

|0〉 = |solid torus〉 (5.98)

12See e.g. [51, 87, 11, 39, 92] for a sample of earlier work; unfortunately the methods of these papers cannot be
used to recover all flat connections for general 3-manifolds, even in the simplest cases of knot complements.
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It was proposed in [58] that the corresponding boundary condition in 4d theory T [C] is Nahm pole

boundary condition [93, 94] that can be described by a system of D3-branes ending on D5-branes13

|0〉 = |Nahm〉 = |D5〉 (5.99)

More generally, for M3
∼= S1 × D2 obtained by filling in the cycle in homology class (p, q) the

corresponding boundary condition is defined by a system of D3-branes ending on IIB five-branes of

type (p, q).

This class of boundary conditions can be easily generalized to other Riemann surfaces C and

3-manifolds with several boundary components. The latter correspond to domain walls in 4d N = 2

theories T [C], see e.g. [39, 58, 92] for details. For example, each element φ of the mapping class

group of C corresponds, on the one hand, to a mapping cylinder M3 (with two boundary components

identified via φ) and, on the other hand, to a duality wall of type φ in the 4d theory T [C]. In the

case C = T 2 we have the familiar walls that correspond to the generators φ = S and φ = T of the

SL(2,Z) duality group of N = 4 super-Yang-Mills, and the general “solid torus boundary condition”

described above can be viewed as the IR limit of a concatenation of S- and T -walls with the basic

Nahm pole boundary condition, see [58, pp.20-21] for details. For instance,

S|0〉 = |Neumann〉 = |NS5〉 (5.100)

Clearly, there are still many details to work out, but we have outlined the key elements necessary

to glue 3-manifolds along a common boundary and, in particular, to illustrate why (5.5) must hold

in a proper 3d N = 2 theory T [M3]. Suppose C = ±∂M±3 is a common boundary component of

3-manifolds M+
3 and M−3 , which in general may have other boundary components, besides C. As

we reviewed earlier, appropriately defined 3d N = 2 theories T [M+
3 ] and T [M−3 ] naturally couple to

a 4d N = 2 theory T [C], which becomes dynamical upon the gluing process

M3 = M−3 ∪φM+
3 (5.101)

Note, in the identification of the two boundaries here we included an element φ of the mapping class

group of C that corresponds to duality wall in T [C]. Hence, the resulting theory T [M3] consists of

a φ-duality wall in 4d N = 2 theory T [C] sandwiched between T [M+
3 ] and T [M−3 ]. At the level of

partition functions,

ZT [M3] = ZCS(M3) = 〈M−3 |φ|M+
3 〉 (5.102)

A particularly simple and useful operation that involves (re)gluing solid tori a la (5.97)–(5.101)

13Whether we identify the state |0〉 with D5 or NS5 is a matter of conventions. Here we follow the conventions of
[58, 62].
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is called surgery. In fact, it is also the most general one in a sense that, according to a theorem

of Lickorish and Wallace, every closed oriented 3-manifold can be represented by (integral) surgery

along a link K ⊂ S3. Since the operation is defined in the same way on any component of the link L

it suffices to explain it in the case when K has only one component, i.e. when K is a knot. Then, for

a pair of relatively prime integers p, q ∈ Z, the result of q/p Dehn surgery along K is the 3-manifold:

S3
q/p(K) := (S3 −N(K)) ∪φ (S1 ×D2) (5.103)

where N(K) is the tubular neighborhood of the knot, and S1 ×D2 is attached to its boundary by

a diffeomorphism φ : S1 × ∂D2 → ∂N(K) that takes the meridian µ of the knot to a curve in the

homology class

q[µ] + p[λ] (5.104)

The ratio q/p ∈ Q ∪ {∞} is called the surgery coefficient.

In what follows we discuss various aspects of cutting, gluing, and surgery operations. In par-

ticular, we shall see how the operations (5.102) and (5.103) manifest at various levels in 3d N = 2

theory T [M3] — at the level of SUSY vacua, at the level of twisted superpotential, and at the level

of quantum partition functions — thereby illustrating the important role of abelian flat connections.

Needless to say, there are many directions in which one could extend this analysis, e.g. to various

classes of 3-manifolds not considered in this thesis, as well as more detailed analysis of the ones

presented here, to higher rank groups G and to relation with known properties of homological knot

invariants.

5.6.1.1 Compactification on S1 and branes on the Hitchin moduli space

A useful perspective on our 3d-4d system can be obtained by compactification on S1 and studying

the space of SUSY vacua. Thus, a compactification of 4d N = 2 theory T [C] on a circle yields a 3d

N = 4 sigma-model whose target is the hyper-Kähler manifold

MSUSY (T [C], G) =MH(G,C) (5.105)

while a 3-manifold bounded by C defines a half-BPS boundary condition, i.e. a brane in the sigma-

model language.

More precisely, a 3-manifold M3 with C = ∂M3 gives rise to a brane of type (A,B,A) with respect

to the hyper-Kähler structure on MH(G,C). It is supported on a mid-dimensional submanifold of

MH(G,C) which can be identified with the moduli space of flat GC connections on M3:

Mflat(M3, GC) ⊂ MH(G,C) (5.106)
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Note, according to (5.5), the space of flat GC connections on M3 is precisely the space of SUSY

vacua (parameters) of the 3d N = 2 theory T [M3] on a circle. When combined with (5.105) this

gives

MSUSY(T [M3], G) ⊂MSUSY(T [C], G) (5.107)

In this description, the mapping class group of the Riemann surface C (which we already identified

with the duality group of T [C]) acts by autoequivalences on branes in the sigma-model with the

target space MH(G,C). See [95, 11] for various examples of the mapping class group action on

(A,B,A) branes in the Hitchin moduli space.

In particular, when G = SU(2) and C = T 2 is a 2-torus, the Hitchin moduli space is a flat hyper-

Kähler spaceMH(G,C) ∼= (C∗ ×C∗)/Z2 parametrized by C∗-valued holonomy eigenvalues x and y

modulo the Weyl group action. This is also the space of vacua of T [C,G] after dimensional reduction

on a circle. Each 3-manifold with a toral boundary defines a middle-dimensional submanifold or an

(A,B,A) brane. Thus, when translated to language of geometry, the boundary conditions (5.99)

and (5.100) correspond to (A,B,A) branes supported on x = 1 and y = 1, respectively:

|x = 1〉 = |D5〉 (5.108)

|y = 1〉 = |NS5〉

Similarly, the duality wall of type φ = S is a “correspondence” Mflat(M3, GC) ⊂ MH(G,C) ×
MH(G,C) associated with the mapping cylinder M3

∼= C × I,

x+
1

x
= y′ +

1

y′
, y +

1

y
= x′ +

1

x′
(5.109)

that exchanges the SL(2,C) holonomies on a- and b-cycles of C = T 2. Note, these relations are

deformed in MSUSY(T [M3], G) ⊂ MSUSY(T [C], G) ×MSUSY(T [C], G) for a generic value of the

fugacity t.

5.6.1.2 Lens space theories and matrix models

In the above discussion we used the solid torus (5.97)–(5.98) as a simple example of a handlebody,

in this case bounded by C = T 2. Likewise, the simplest example of a closed 3-manifold obtained by

gluing two solid tori is the Lens space

L(p, 1) = 〈0|ST pS|0〉 ∼= S3/Zp (5.110)
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Using the dictionary (5.99) and (5.100), we can identify the corresponding 3dN = 2 theory T [L(p, 1)]

as the theory on D3-branes suspended between a NS5-brane and a (p, 1)-fivebrane:

T [L(p, 1);G] = SUSY G−p Chern-Simons theory (5.111)

Following [58], here we assumed that the gauge group G is of Cartan type A, i.e. G = U(N) or

G = SU(N). It would be interesting, however, to test the conjecture (5.111) for other groups G.

Now, let us discuss this gluing more carefully, first from the viewpoint of flat connections (= SUSY

vacua) and then from the viewpoint of partition functions. According to (5.100) and (5.108), the

solid torus boundary condition S|0〉 in N = 4 super-Yang-Mills T [C] imposes a Neumann boundary

condition on x and a Dirichlet boundary condition on y. In fact, the solid torus theory here is

basically the theory of the unknot, T [01], discussed in section 5.4.2. Its supersymmetric parameter

space (5.43) is a linear subspace ofMSUSY(T [C], G) defined by y = 1. Note, the equation y− 1 = 0

is precisely the defining equation of the abelian branch, which in our present example is the entire

moduli space Mflat(M3, GC) =MSUSY(T [M3], G). Therefore, had we ignored this component, the

space of SUSY vacua would be completely empty, both for the solid torus theory T [S1 × D2] and

for everything else that can be obtained from it by gluing!

A concatenation of the T p duality wall with this boundary condition adds a supersymmetric

Chern-Simons term at level p for the global U(1)x symmetry of the theory T [01]. If we are only

interested in SUSY vacua and parameters of a theory T [M3] (= flat connections on M3) we need

to know how this operation affects the effective twisted superpotential, which for a general theory

T [M3] has a simple form:

T p : W̃ → W̃ +
p

2
(log x)2 (5.112)

For the case at hand, the result of this operation modifies the space of SUSY parameters from y = 1

to y = xp. Finally, gluing 〈0|S and T pS|0〉 in (5.110) means sandwiching N = 4 super-Yang-Mills

between the corresponding boundary conditions. In our IR description of the boundary conditions,

this makes U(1)x dynamical, so that all critical points of the effective twisted superpotential [58]:

W̃T [M3] = W̃T [M−3 ] − W̃φ ◦T [M+
3 ] (5.113)

become SUSY vacua (= flat connections) of the theory T [M3] associated with the gluing (5.101).

For the Lens space (5.110), we get a set of points {y = 1} ∪ {y = xp} in (C∗ ×C∗)/Z2, which are in

one-to-one correspondence with massive SUSY vacua of the Lens space theory T [L(p, 1);SU(2)].14

More generally, for G = U(N) the flat connections on L(p, 1) or, equivalently, the SUSY vacua

of (5.111) are labeled by Young diagrams ρ with at most p − 1 rows and N columns, i.e. Young

14In section 5.6.1.3, we will take a look at a more complicated gluing operation where this simple analysis of vacua
encounters some subtleties.
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diagrams that fit in a rectangle of size N×(p−1). Note, these are in one-to-one correspondence with

integrable representations of ŝu(p)N (equivalently, of û(N)p), the fact that plays an important role

[96, 97, 98, 99] in the study of Vafa-Witten partition function on ALE spaces bounded by L(p, 1).

Next, let us consider the gluing (5.110) at the level of partition functions. The partition function

of the theory (5.111) on the ellipsoid S3
b is given by (see e.g. [100]):

ZS3
b

=
1

|W|

∫ r∏
i=1

dσi e
−iπpσ·σ

∏
α∈Λ+

rt

4 sinh(πbσ · α) sinh(πb−1σ · α) (5.114)

= exp

(
iπ

4
dimG− iπ

12p
(b2 + b−2)hdimG

)
pr/2

∏
α∈Λ+

rt

2 sin

(
πα · ρ
p

)

where r = rank(G), W is the Weyl group of G, h is the dual Coxeter number of G, Λ+
rt is the set

of positive roots of G, and ρ is the Weyl vector (half the sum of the positive roots). Furthermore,

turning on a FI parameter ζ contributes an extra term e4πiζTrσ into the integral (5.114). As usual,

the S3
b partition function of T [L(p, 1);G] should have the following structure

ZS3
b

=
∑
ρ

||Bρ(q)||2S (5.115)

where q = e~ = e2πib2 and each block Bρ(q) ∼ ZρCS(L(p, 1);G) is expected to represent the Chern-

Simons partition function computed in the background of a flat connection labeled by ρ. (Recall

from our earlier discussion that classical solutions in Chern-Simons theory on M3 = L(p, 1) are

labeled by certain Young diagrams ρ.)

Unfortunately, there is no systematic algorithm to define holomorphic blocks in general 3d N = 2

theories and, as a result, the factorization (5.115) is not known at present for the N = 2 super-

Chern-Simons theory (5.111). However, the integral form of the partition function (5.114) does share

many key features with the Chern-Simons partition function on the Lens space that will be discussed

in the next section (and extended to more general Seifert manifolds). Here, let us just note that

logZS3
b

in (5.114) has the form of a power series in ~ = 2πib2 that starts with the leading 1
~ term

and terminates at the order O(~). This is indeed the property of Chern-Simons partition function

on L(p, 1): according to a famous result of Lawrence and Rozansky [101], higher loop corrections to

ZρCS(L(p, 1);G) all vanish.

Finally, we propose a “lift” of the gluing formula (5.113) to a similar formula at the level of

partition functions, cf. (5.102):

ZT [M3] =

∫
[dU(x)] ZT [M−3 ](x) · Zφ ◦T [M+

3 ](x
−1) (5.116)

where the integration measure [dU ] = ZT [C]dx is determined by the 4d N = 2 theory T [C;G]
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associated with the Riemann surface C = ∂M+
3 = −∂M−3 . It would be interesting to test this

gluing formula in concrete examples, including the Lens spaces and Seifert manifolds discussed here.

Note that with the t-variable that keeps track of homological grading, (5.116) basically is a surgery

formula for homological knot invariants. Such formulas are indeed known in the context of knot

Floer homology and its version for general 3-manifolds, the Heegaard Floer homology.

As explained around (5.101), we can construct closed 3-manifolds by gluing open 3-manifolds

along their boundaries. The Chern-Simons partition functions on manifolds with torus boundary

depend on a parameter x, which should be integrated out upon gluing. For a particular class of

3-manifolds, the resulting Chern-Simons partition functions can be represented as matrix integrals,

much like (5.114), where the integration measure is responsible for integrating out the parameters

x. The integrands of such matrix models take the form

exp
(
− 1

~
V (x)

)
, (5.117)

where V (x) is usually called potential and 2πi
~ = 2πi

log q is called the “level”. Let us note that in the case

of 3-manifolds with boundary, when the parameters x are not integrated out, the same representation

of partition functions ZCS ∼ exp( 1
~W̃ + . . .) was used to read off the twisted superpotentials of dual

N = 2 theories, such as (5.46) or (5.51). One is therefore tempted to postulate, that a matrix model

potential V (x) might encode information about the twisted superpotential and field content of the

dual N = 2 theory T [M3] associated to a closed 3-manifold M3. Let us demonstrate that this is

indeed the case.

For non-abelian Chern-Simons theories it is convenient to a write matrix model representation of

their partition functions in terms of eigenvalues σi = log xi. A very well known example is a matrix

model representation of the U(N) Chern-Simons partition function on M3 = S3 [76, 102], whose

measure takes the form of a trigonometric deformation of the Vandermonde determinant, and the

potential V (σ) = σ2/2 is Gaussian in σ = log x. More generally, the matrix model potential for

M3 = L(p, 1) and G = U(N) takes the form V (σ) = pσ2/2. More involved integral representations of

Chern-Simons partition functions on other Lens spaces and Seifert homology spheres can be found in

[101, 76, 102]. Various other matrix integral representations of Chern-Simons or related topological

string partition functions, including the refined setting, were constructed in [103, 104, 105, 106, 107,

72, 108, 109].

Let us now consider more seriously the proposal that the potential of a Chern-Simons matrix

model determines the dual 3d N = 2 theory T [M3]. For example, as reviewed above, the potential

for a theory of the Lens space L(p, 1) takes the form V (σ) = pσ2/2. Taking into account a minus

sign in (5.117), and using by now familiar 3d-3d dictionary, we might conclude that the dual theory

is N = 2 theory at level −p, at least in the abelian case. Due to the universal form of the matrix
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integral, we might also be tempted to declare that in the nonabelian case the dual theory is U(N)

theory at level −p. This is precisely the dual theory (5.111) which was originally constructed by

other means. We also emphasize that the form of the matrix model reflects the structure of the

gluing (5.101), namely the fact that the resulting Lens space (5.110) is constructed from two solid

tori (unknot complements), glued with a suitable SL(2,Z) twist φ. Indeed, in this case the potential

factor (5.117) represents the gluing SL(2,Z) element φ, while the information about two solid tori

is encoded in the matrix model measure. This construction is discussed in detail e.g. in [102].

We can do similarly for Seifert manifold M3 at least G = U(1) [1].

5.6.1.3 Dehn surgery

As a final simple illustration of the necessity of accounting for all flat connections, we return to the

basic Dehn surgery operation (5.103). Suppose that the knot K = 31 is the trefoil. As we know

well from section 5.4.2, the A-polynomial15 for the trefoil, parametrizing MSUSY(T [31], SU(2)) for

the full trefoil-complement theory T [31, SU(2)], is

A(x, y) = (y − 1)(y + x6) ⊂ (C∗ × C∗)/Z2 . (5.118)

Here x and y are the C∗-valued eigenvalues of longitude and meridian SL(2,C) holonomies on

the torus boundary of the knot complement, well defined up to the Weyl-group action (x, y) 7→
(x−1, y−1). We recall that the (y−1) component of the A-polynomial corresponds to an abelian flat

connection on the knot complement, while the (y+x6) component corresponds to an irreducible flat

connection.

Suppose that we perform Dehn surgery with q/p = ±1 on the trefoil knot complement. The

result is a Brieskorn sphere Σ[2, 3, 5] and Σ[2, 3, 7];

S3
p/q(31) =

Σ[2, 3, 5] p/q = +1

Σ[2, 3, 7] p/q = −1

(5.119)

The Brieskorn sphere is a closed 3-manifold and is defined as

Σ[a, b, c] := {(x, y, z) ∈ C3|xa + yb + zc = 0} ∩ S5 (5.120)

where a, b, and c are coprime.

In each case, the moduli space of flat SL(2,C) connections on S3
p/q(31), consists of isolated

15In contrast to the rest in this chapter, we take care in this section to write A-polynomials in terms of actual
SL(2,C) meridian and longitude eigenvalues rather than their squares. Thus, for the trefoil, the non-abelian A-
polynomial is written as y + x6 rather than y + x3. The distinction is important for consistently counting SL(2,C)
(as opposed to PSL(2,C), etc.) flat connections resulting from surgery.
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points. It is easy to count them directly from a presentation of the fundamental groups of the

Brieskorn spheres,

π1(Σ[2, 3, 5]) = 〈a, b | a3 = b5 = (ab)2〉 , π1(Σ[2, 3, 7]) = 〈a, b | a3 = b7 = (ab)2〉 . (5.121)

We find |Mflat(S
3
+1(31), SL(2,C))| = 3 and |Mflat(S

3
−1(31), SL(2,C))| = 4. These counts must

equal the numbers of isolated vacua of the theories T [S3
±1(31), SU(2)] on R2 × S1.

Now compare the count of flat connections on the Brieskorn spheres with the intersection points

of the varieties

(xpyq = 1) ∩ (A(x, y) = 0) =

4 points p/q = 1

5 points p/q = −1 .

(5.122)

This does not quite match the count of flat connections on the Brieskorn spheres: in each case,

there is one extra intersection point in (5.122). In particular, in each case, the intersection point

(x, y) = (−1,−1) corresponds to flat connections on the knot complement S3\31 and the solid

surgery torus whose eigenvalues match at the T 2 surgery interface, but whose full holonomies do

not. Namely, the flat connection on the solid surgery torus with eigenvalues (−1,−1) is trivial, while

the flat connection on the trefoil knot complement with eigenvalues (−1,−1) is parabolic, meaning

the full holonomy matrix is
(−1 1

0 −1

)
. This is not unexpected, since (x, y) = (−1,−1) lies on the

nonabelian branch y+x6 = 0 of the trefoil’s A-polynomial. After subtracting the “false” intersection

point from the counts in (5.122), we recover the expected number of flat connections on S3
+1(31)

and S3
−1(31).

Physically, (5.122) is the (naively) expected count of vacua when gluing the trefoil theory to an

unknot theory with the appropriate element φ ∈ SL(2,Z) corresponding to the Dehn surgery. The

presence of a “false” intersection point (x, y) = (−1,−1) suggests that the corresponding vacuum

in the glued theory must be lifted. It would be interesting to uncover the mechanism behind this.

The remaining vacua match the count of flat connections on the Brieskorn spheres (i.e. vacua of

T [S3
±1(31), SU(2)]), as they should. Crucially the vacuum corresponding to the intersection point

(x, y) = (1, 1) must be included in order for the count to work out; this intersection point sits on

the abelian branch (y− 1) of the trefoil A-polynomial, and labels the trivial flat connection on S3
±1.

A similar phenomenon occurs when considering simple surgeries on the figure-eight knot com-

plement S3\41. For example, the Brieskorn sphere Σ[2, 3, 7] may be constructed from +1 or −1

surgeries on S3\41. (The two different surgeries produce opposite orientations on Σ[2, 3, 7].) The in-

tersection of the full figure-eight A-polynomial A(x, y) = (y−1)
(
x4−(1−x2−2x4−x6 +x8)y+x4y2

)
with the surgery conditions xy±1 = 1 yield

(xy±1 = 1) ∩ (A(x, y) = 0) = 5 points . (5.123)
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Four of these five intersection points, including the point on the abelian branch y−1 = 0, correspond

to the expected flat SL(2,C) connections on Σ[2, 3, 7]. The fifth intersection point, at (x, y) =

(−1,−1), does not correspond to any flat connection on Σ[2, 3, 7], because the connection with

eigenvalues (x, y) = (−1,−1) on the knot complement is parabolic, while on the solid surgery torus

it would have to be trivial. Explicitly, the meridian and longitude holonomies of the connections

on S3\41 with (x, y) = (−1,−1) are conjugate to µ =
(−1 1

0 −1

)
, λ =

(
−1 ±2i

√
3

0 −1

)
, which will never

satisfy µpλq = I for any p, q.

5.6.2 Boundary conditions in 3d N = 2 theories

So far we discussed what happens when 3-manifolds have boundaries, along which they can be

glued, cf. (5.101). Now let us briefly discuss what happens when the space-time of 3d N = 2 theory

T [M3;G] has a boundary.

(0,2) multiplet contribution to half-index

chiral θ(−q R−1
2 x; q)−1

Fermi θ(−q R2 x; q)

U(N) gauge (q; q)2N
∞
∏
i 6=j θ(−q−

1
2σi/σj ; q)

Table 5.1: Building blocks of 2d boundary theories and their contributions to the half-index.

Much like in Chern-Simons theory on M3 the presence of non-trivial boundary requires spec-

ifying boundary conditions, the same is true in the case of 3d N = 2 theories. One important

novelty, though, is that some boundary conditions are now distinguished if they preserve part of

supersymmetry, such as half-BPS boundary conditions that preserve N = (0, 2) supersymmetry on

the boundary. These “B-type” boundary conditions have been studied only recently in [62] and then

in [110].

In the presence of a boundary (or, more generally, a domain wall) one can define a generalization

of the index as a partition function on S1×qD with a prescribed B-type boundary condition on the

boundary torus S1 ×q S1 ∼= T 2 of modulus τ , as illustrated in Figure 5.1. The resulting half-index

IS1×qD is essentially a convolution of the flavored elliptic genus of the 2d N = (0, 2) boundary

theory with the index of a 3d N = 2 theory on S1×qD. The contribution of (0, 2) boundary degrees

of freedom is summarized in Table 5.1 where, as usual, gauge symmetries result in integrals over the

corresponding variables σi.

The half-index IS1×qD labeled by a particular choice of the boundary condition can be viewed

as a UV counterpart of a holomorphic block labeled by a choice of the massive vacuum in the IR.
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Moreover, since the half-index is invariant under the RG flow, it makes sense to identify some of

massive vacua and integration contours in the IR theory with specific boundary conditions in the

UV. The latter, in turn, can sometimes be identified with 4-manifolds via (5.9), which altogether

leads to an interesting correspondence between certain holomorphic blocks and 4-manifolds.

Note, that for theories T [M3;G] labeled by closed 3-manifolds, supersymmetric vacua ρ ∈
MSUSY(T [M3;G]) specify boundary conditions for the Vafa-Witten topological gauge theory on

a 4-manifold bounded by M3. Therefore, had we missed any of the vacua in constructing T [M3;G]

there would be no hope to relate supersymmetric boundary and 4-manifolds in (5.9).

For instance, let us consider one of the simplest 3d N = 2 theories, namely the super-Chern-

Simons theory with gauge group G = U(N) that in (5.111) we identified with the Lens space theory.

As we mentioned earlier, the holomorphic blocks for this theory are not known. However, their

UV counterparts IS1×qD are easy to write down by choosing various B-type boundary conditions

constructed in [62, 58, 110]. Thus, a simple boundary condition involves pN Fermi multiplets on

the boundary. According to the rules in Table 5.1, its flavored elliptic genus can be interpreted as

the half-index of 3d N = 2 super-Chern-Simons theory (5.111) with gauge group G = U(N):

IS1×qD = q−
pN
24

p∏
i=1

N∏
j=1

θ(xizj ; q) (5.124)

Moreover, it can be identified with the Vafa-Witten partition function of the ALE space

Ap−1 = M4(su(p)) = M4(−2•− · · · −−2•︸ ︷︷ ︸
p−1

) (5.125)

written in the “continuous basis”

Z
U(N)
VW [Ap−1](q, x|z) :=

∑
ρ

χ
û(N)p
ρt (q, z)Z

U(N)
VW [Ap−1]ρ(q, x) (5.126)

where

Z
U(N)
VW [Ap−1]ρ(q, x) = χŝu(p)N

ρ (q, x) (5.127)

is the well known form of the Vafa-Witten partition function on the ALE space (5.125) written in the

“discrete basis” [96, 97, 98, 99]. Here, ρ is a Young diagram with at most p− 1 rows and N columns

that in the previous section we identified with the choice of flat connection on M3 = ∂M4 = L(p, 1).
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