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The impact theory applies a single process to the entire series,correlating size variation with form

variation in a rational way... In fine, it unites and organizes as a rational and coherent whole the

varied strange appearances whose assemblage on our neighbor’s face cannot have been fortuitous.

—G. K. Gilbert, 1893

She died early, but thus saved upon herself the marks of youth. She is not an aged, decrepit world,

since the dead do not age; she is an embalmed mummy, and by her outer appearance we can judge

the appearance of other worlds at the beginning of Creation.

—E. J. Öpik, 1916

The origin of the principal morphological features on the lunar surface—the circular or subcircular

craters ranging from centimeters to hundreds of kilometers in diameter—remains a controversial

subject. On the one hand the countless number of craters attests to an intense bombardment of the

moon by interplanetary debris over eons of time. But on the other hand there is ample evidence for

extensive volcanic activity that many workers argue has been active either directly or indirectly as a

major crater-forming process. Undoubtedly, both exogenic and endogenic processes have been in

action and the controversy now revolves around the relative significance of the two agents for crater

formation.

—D. E. Gault, 1970
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Abstract

This work seeks to understand past and present surface conditions on the Moon using two differ-

ent but complementary approaches: topographic analysis using high-resolution elevation data from

recent spacecraft missions and forward modeling of the dominant agent of lunar surface modifica-

tion, impact cratering. The first investigation focuses on global surface roughness of the Moon,

using a variety of statistical parameters to explore slopes at different scales and their relation to

competing geological processes. We find that highlands topography behaves as a nearly self-similar

fractal system on scales of order 100 meters, and there is a distinct change in this behavior above

and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lu-

nar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the

Moon. In particular, we find that differential slope, a statistical measure of roughness related to

the curvature of a topographic profile, is extremely useful in distinguishing between geologic units.

Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of

characteristic shape geometrically, allowing for tracking of both the topography and surviving rim

fragments over time. The power spectral density of cratered terrains is estimated numerically from

model results and benchmarked against a 1-dimensional analytic model. The power spectral slope,

β, is observed to vary predictably with the size-frequency distribution of craters, as well as the crater

shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze

the evolving size-frequency distribution of craters under different criteria for identifying “visible”

craters from surviving rim fragments. A geometric bias exists that systematically over counts large

or small craters, depending on the rim fraction required to count a given feature as either visible or

erased.
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