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ABSTRACT 

A complete understanding of the deformation mechanisms of BMGs and their composites 

requires investigation of the microstructural changes and their interplay with the mechanical 

behavior.  In this dissertation, the deformation mechanisms of a series of Vitreloy glasses and 

their composites are experimentally investigated over a wide range of strain rates and 

temperatures, with focus on the supercooled liquid regime, by combining uniaxial mechanical 

testing with calorimetric and microscopic examinations.  Various theories of deformation of 

metallic glasses and the composites are examined in light of the experimental data. 

A comparative structural relaxation study was performed on two closely related Vitreloy 

alloys, Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1) and Zr46.7Ti8.3Cu7.5Ni10Be27.5 (Vit 4).  Differential 

scanning calorimetric studies on the specimens deformed in compression at constant-strain-

rate in supercooled liquid regime showed that mechanical loading accelerated the spinodal 

phase separation and nanocrystallization process in Vit 1, while the relaxation in Vit 4 

featured local chemical composition fluctuation accompanied by annealing out of free volume.  

The effect of the structural relaxation on their mechanical behavior was further studied via 

single and multiple jump-in-strain-rate tests. 

The deformation and viscosity of a new Vitreloy alloy were characterized using uniaxial 

compression tests in its supercooled liquid regime.  A new theoretical model named 

Cooperative Shear Model, which correlates the evolution of the macroscopic 

mechanical/thermal variables such as shear modulus and viscosity with the configurational 

energies of atom clusters in an amorphous alloy, was critically examined in this investigation.  

The model was successful in predicting the Newtonian and non-Newtonian viscosities of the 

material, as well as the shear moduli of the deformed specimens, in a self-consistent manner. 

The plastic flow of an in-situ metallic glass composite, β-Vitreloy, was investigated under 

uniaxial compression in its supercooled liquid regime and at various strain rates 
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( 410− ~ 1110 −− s ).  The composite, with ~ %25  volume fraction of crystalline β-phase 

dendrites exhibited superplastic behavior similar to that of amorphous Vit 1.  Significant strain 

hardening was observed when the material was deformed at high temperatures and low strain 

rates.  A dual-phase composite model was employed in finite element simulations to 

understand the effect of the composite microstructure on its mechanical behavior. 
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