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ABSTRACT 

 The diterpenoid constituents of the Isodon plants have attracted reasearchers 

interested in both their chemical structures and biological properties for more than a half-

century. In recent years, the isolations of new members displaying previously 

unprecedented ring systems and highly selective biological properties have piqued 

interest from the synthetic community in this class of natural products. 

 Reported herein is the first total synthesis of such a recently isolated diterpenoid, (–)-

maoecrystal Z. The principal transformations implemented in this synthesis include two 

highly diastereoselective radical cyclization reactions: a SmII-mediated reductive cascade 

cyclization, which forms two rings and establishes four new stereocenters in a single step, 

and a TiIII-mediated reductive epoxide-acrylate coupling that yields a functionalized 

spirolactone product, which forms a core bicycle of maoecrystal Z. 

 The preparation of two additional ent-kauranoid natural products, (–)-trichorabdal A 

and (–)-longikaurin E, is also described from a derivative of this key spirolactone. These 

syntheses are additionally enabled by the palladium-mediated oxidative cyclization 

reaction of a silyl ketene acetal precursor that is used to install the bridgehead all-carbon 

quaternary stereocenter and bicyclo[3.2.1]octane present in each natural product. These 

studies have established a synthetic relationship among three architecturally distinct ent-

kaurane diterpenoids and have forged a path for the preparation of interesting unnatural 

ent-kauranoid structural analogs for more thorough biological study. 
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