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ABSTRACT 

For damaging response, the force-displacement relationship of a structure is highly 

nonlinear and history-dependent. For satisfactory analysis of such behavior, it is important 

to be able to characterize and to model the phenomenon of hysteresis accurately. A number 

of models have been proposed for response studies of hysteretic structures, some of which 

are examined in detail in this thesis. There are two popular classes of models used in the 

analysis of curvilinear hysteretic systems. The first is of the distributed element or 

assemblage type, which models the physical behavior of the system by using well-known 

building blocks. The second class of models is of the differential equation type, which is 

based on the introduction of an extra variable to describe the history dependence of the 

system. 

Owing to their mathematical simplicity, the latter models have been used extensively 

for various applications in structural dynamics, most notably in the estimation of the 

response statistics of hysteretic systems subjected to stochastic excitation. But the 

fundamental characteristics of these models are still not clearly understood. A response 

analysis of systems using both the Distributed Element model and the differential equation 

model when subjected to a variety of quasi-static and dynamic loading conditions leads to 

the following conclusion: Caution must be exercised when employing the models 

belonging to the second class in structural response studies as they can produce misleading 

results. 

The Massing's hypothesis, originally proposed for steady-state loading, can be 

extended to general transient loading as well, leading to considerable simplification in the 

the analysis of the Distributed Element models. A simple, nonparametric identification 

technique is also outlined, by means of which an optimal model representation involving 

one additional state variable is determined for hysteretic systems. 
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CHAPTER 1 

INTRODUCTION 

Most structures respond inelastically when subjected to strong seismic excitations. 

Not only is the restoring force behavior of such structures highly nonlinear, it also depends 

on the previous history of the response. This history-dependence phenomenon is referred 

to as Hysteresis, the study of which has attracted considerable attention from researchers in 

earthquake engineering. 

Previous research on the earthquake records of severely shaken buildings by Iemura 

and Jennings [19], Beck [8] and McVerry [32] has clearly indicated that the response 

behavior of the structures is markedly nonlinear, the conclusion of all the researchers being 

that the use of linear models is sufficient to reproduce the actual behavior of the structures 

only up to the onset of damage. 

Several mathematical models have been proposed to describe the hysteretic behavior 

of structures excited beyond the elastic range [10,13,14,20,24,47,49,54], some of which 

are examined in detail in this thesis. These range from the simple elastoplastic model to the 

very sophisticated Takeda's model. The reason for the surfeit of models is that no single 

model has proven entirely satisfactory for the analysis of hysteretic systems for one reason 

or another. For instance, the elastoplastic model is often felt to be too simple to yield good 

approximations of actual systems when tested against experimental data, while the 

Takeda's model is so complex that there are numerous cumbersome rules to be followed, 

depending on the loading regime. 

Since earthquakes are usually modeled by a stochastic excitation, the theory of 

random vibration is often employed in conjunction with the theory of equivalent 

linearization in order to obtain approximate response statistics of nonlinear systems 
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subjected to earthquake excitation. Initially, such a technique was successfully used for 

nonhysteretic nonlinear systems. Recently, it has been extended to some piecewise-linear 

hysteretic systems [3,36,47] with the help of representations provided by Asano and I wan 

[3], and Suzuki and Minai [47], which have helped cast the systems in a purely history­

independent framework involving an expanded set of state variables. Unfortunately, there 

are only a few physically motivated hysteretic systems for which such representations are 

available, basically being restricted to systems with a piecewise linear hysteretic 

characteristic. 

Most experimentally observed hysteresis loops [39] suggest that the transition from 

the linear or elastic range into the yielding range of the deformation is not abrupt as 

modeled by piecewise-linear models, but rather is quite smooth. There are two classes of 

models that exhibit curved or rounded hysteresis loops, which are described in further 

detail in the following two paragraphs. 

The first class of models is physically motivated. A very large number of elastoplastic 

elements are combined in a certain way so as to provide curvilinear hysteretic behavior. 

One such model for hysteresis has been used by Iwan [20] to determine the steady-state 

dynamic response of a softening system subjected to trigonometric excitation and also to 

compare steady-state results predicted by the model with experimental results from an 

actual structure, namely, a single-story structure having structural steel columns. The 

ability of these models to adequately represent the nonlinear behavior of an actual steel 

structure is also demonstrated in [24]. Thus, these models can not only be constructed from 

simple, well-understood physical building blocks, but they are also quite well suited for the 

hysteretic modeling of actual steel structures. 

In the second class of models, a finite number of additional state variables (usually 

one or two) are introduced in the mathematical formulation to describe hysteretic behavior, 

with each new state variable itself satisfying a first-order, single-valued, nonlinear ordinary 
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differential equation. Typical examples of such models are (i) the model originally 

proposed by Bouc and later generalized by Wen [54], (ii) Casciyati's model [10], (iii) 

Ozdemir's model [35], etc. Even though such models have been used for various 

applications in structural dynamics, it is in the response analysis of hysteretic systems by 

the method of equivalent linearization that they have been most widely applied. The models 

belonging to this class have also been referred to in this thesis as endochronic models 

because of the similarity in the quasi-static response behavior of thesti and of the 

endochronic models [7 ,50] employed in plasticity. 

A question that has never been answered clearly so far is how appropriate the models 

in the second class are in the characterization of physical systems, being mathematically and 

not physically motivated. Certain nonphysical behavior of these models has been examined 

earlier, although briefly [24,36]. One of the main goals of this thesis is to answer this 

question by subjecting an endochronic model, namely, the Wen-Bouc model, and the 

corresponding physical Distributed Element hysteretic model, to a variety of quasi-static 

and dynamic tests and by comparing their respective responses. 

The contents of this thesis have been distributed among six relatively independent 

chapters. Chapter 1 is the introduction. Chapter 2 is a description of various mathematical 

models for hysteresis, including piecewise-linear as well as curvilinear hysteretic models. 

Special emphasis has been placed on two topics: the first, a category of models defined in 

the chapter as the differential equation category of hysteretic models; the second, the 

extension of the Massing's hypothesis, originally proposed for steady-state loading, to 

general transient loading as well. 

A non parametric identification technique is proposed in Chapter 3, by means of 

which an optimal endochronic model representation with one additional state variable is 

determined for hysteretic systems. This method is employed to identify three hysteretic 
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systems; the predicted optimal models are then evaluated in their ability to represent the 

original systems adequately. 

In Chapter 4, an endochronic model, namely, the Wen-Bouc model, and the 

corresponding Distributed Element model are subjected to various quasi-static loading 

sequences in displacement as well as in force. Comparison of the resulting responses of the 

two models clearly demonstrates the qualitative differences in their physical behavior. 

Chapter 5 undertakes a systematic investigation to determine the adequacy of the 

endochronic models to represent real physical systems when subjected to dynamic 

excitations, such as earthquakes. For this purpose, the Wen-Bouc model and the 

corresponding Distributed Element model are each subjected to a variety of dynamic 

excitations, including deterministic functions, recorded earthquakes, stochastic excitation 

and simulated earthquakes, and a quantitative comparison is made in a few typical response 

quantities. 

Some general conclusions and a few suggestions for future research are presented in 

Chapter 6. 
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CHAPTER 2 

MATHEMATICAL MODELING OF HYSTERETIC BEHAVIOR 

2.1 Introduction 

The modeling of the restoring force behavior of systems subjected to strong shaking 

has been a research area of much interest. Inelastic response behavior is highly nonlinear 

and depends not only on the instantaneous value of the deformation, but also on its past 

history. 

There are two conflicting criteria in the selection of mathematical models to describe 

hysteresis. The analysis of hysteretic systems is difficult enough when the excitation is a 

deterministic function; it becomes much more complex in the case of a stochastic excitation. 

For this reason, the mathematical models describing hysteresis have to be as simple as 

possible. However, they must be descriptive enough to represent the features of real 

hysteretic systems adequately. 

Bilinear and elastoplastic hysteretic models have been studied extensively, mainly 

because of their simplicity. One of the significant drawbacks of these models is that they 

have a sharp yield transition. Most experimentally observed hysteresis loops [39] exhibit a 

smooth transition from the linear range into the yielding range of deformation. The other 

observed phenomenon is that an assemblage composed of individual components with a 

sharp yield transition, tends itself to exhibit smooth force-deflection behavior. 

In this chapter, various nonlinear hysteretic models are discussed, covering systems 

with sharp as well as smooth yield transitions. Models belonging to the Distributed Element 

class which yield rounded hysteresis loops are seen to satisfy an extended version of the 

Massing's hypothesis; this results in considerable simplification in the evaluation of the 

restoring force of such models. 
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It will be seen that some of the models described in this chapter fall into a category of 

models with a similar mathematical representation. In this representation, the equations of 

motion describing the complete dynamical system can be expressed purely as a coupled set 

of first-order, ordinary differential equations in a finite number of state variables. These 

differential equations involve single-valued functions, depending only on the instantaneous 

values of the state variables. This results in a history-independent mathematical 

representation for the system involving an expanded number of state variables. Hysteretic 

models that can be expressed in this fashion will be referred to as the DEQ (Differential 

EQuation) type of hysteretic models. The advantage of the DEQ representation for 

hysteretic models with regard to their analytical treatment will be explained in a later section 

of this chapter. 

2.2 Piecewise-linear hysteretic (PLH) models: 

2.2.1 Introduction: 

As the name suggests, the hysteretic characteristic of this class of models is 

composed of segments, within each of which the relationship between the restoring force 

and displacement is linear. These models therefore have sharp yield transitions. The most 

well-known examples of PLH models are the Elastoplastic, Bilinear and the Polylinear 

hysteretic models. 

H k is the initial stiffness of a nonlinear system with a post-yielding stiffness a k, 

then the restoring force of the system may be expressed as: 

I= aku+ (1- a)kz (2.1) 

where u is the displacement of the system and z is the normalized hysteretic force 

component that depends on the history of u. 

Asano and I wan [3] provided an expression for i, the rate of change of z with respect 

to time, for a basic bilinear building block. Suzuki and Minai [47,48] offered similar 
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representations for z for various other PLH models. In both cases, the motivation for 

proposing the expressions was to cast the systems into the DEQ category of models in 

order that direct statistical linearization might be performed. This section describes a few 

PLHmodels. 

2.2.2 Elastoplastic and Bilinear models: 

The elastoplastic hysteretic characteristic shown in Fig. 2.1a can be thought of as 

arising from the action of two different types of elements: a linear spring element of 

stiffness k and a Coulomb slip element that slips at a force level of kuY. The configuration 

of these two elements is as shown in Fig. 2.1b. Since this system has a zero post-yielding 

stiffness, the value of a in Eqn. (2.1) is zero. 

Let z be the relative displacement of the linear spring element, and let u be 

displacement of the system. From the physical behavior of the slip element attached to the 

linear spring, the following may be written for i: 

i=it[l-H(it)H(z-u )-H(-it)H(-z-u )] 
'j 'j 

where H(u) is the Heaviside's unit step function given by 

{
1 foru~O 

H(u)= 
0 for u<O 

(2.2.1) 

(2.2.2) 

Eqn. (2.2) expresses the fact that the relative velocity of the slip element must be zero when 

-uY < z < uY and equal to it when either (i) z=uy with it >0, or (ii) z=- uY with it <0. 

The bilinear hysteretic model has a nonzero a and can be constructed from an 

elastoplastic system by the addition of a linear spring of stiffness a k in parallel to the 

spring-damper combination. The restoring force of such a system is given by Eqn. (2.1) in 

conjunction with Eqn. (2.2). 

It can be seen that these models can be cast into the DEQ category by the inclusion of 

the additional state variable z to the conventional state variables u and u to describe the 
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governing equations of motion. For example, the equations of motion of a bilinear single-

degree-of-freedom oscillator subjected to an external force F(t) can be written as 

x=h(x) (2.3.1) 

where the elements of the vector x are 

(2.3.2) 

and the vector h is given by 

h(x) = 
1 
-[F(t)- ala:1 - (1- a)kx3] (2.3.3) 
m 

x2[1- H(x2)H(x3- uY)- H( -x2)H( -x3 - u)] 

2.2.3: Polylinear hysteretic model: 

To achieve a poly linear hysteretic characteristic with an initial stiffness k and an post­

yielding stiffness a k, N blocks, each consisting of a linear spring-slip combination, are 

connected in parallel with a linear spring element as shown in Fig. 2.2. If z, is the relative 

displacement of the itJ. spring element, then the normalized hysteretic component of the 

restoring force for the poly linear model can be expressed as 

(2.4.1) 

where 

(2.4.2) 

and 

(2.4.3) 
i=l 

kj is the spring stiffness of the i'" block and k,uyi is the maximum force corresponding to 

the force level of the slip element in the i'" block. 
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In this case, N additional state variables, (zl'z2 , ••• ,z.N), are necessary in addition to u 

and u in order that this system be expressed in the DEQ representation. 

2.2.4 The Clough-Johnston hysteretic model: 

Clough and Johnston [14] presented the stiffness-degrading hysteretic model shown 

in Fig. 2.3a, which is an idealization of the hysteretic behavior of reinforced concrete 

structures. In this model, all unloading paths have the initial system stiffness, while the 

stiffness of loading paths is controlled by the previous yield point in the loading direction. 

For instance, the stiffness of the loading path 9-10 shown in Fig. 2.3a is such that the path 

"shoots" for the point 2, the previous yield point in the positive u direction. Since the yield 

strength for concrete is more in compression than in tension, kuY, < kuyc· 

The behavior of z, the normalized hysteretic component of the restoring force for the 

Clough's model is as shown in Fig. 2.3b. It can be seen that (U+ + uyc) and (U- + uy,) are 

the absolute values of the maximum and minimum displacement. u+ and u- are introduced 

therefore to keep track of the values of the current positive and negative peak deformation, 

respective! y. 

As before, Eqn. (2.1) is an expression for the total restoring force of the system,f 

Here, i satisfies 

where 

with 

i = UH(z) [A+ H(u){1- H(z -uy)} + H(-u)] 

+UH(-z) [A-H(-u){l-H(-z-uy,)}+ H(u)] 

A-= (uy,+ z) 

cu- +uy,+u) 

(r = UH(u)H(z- uyc) 

(J- = -UH( -u)H( -z- uy,) 

(2.5.1) 

(2.5.2) 

(2.5.3) 

(2.5.4) 
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Eqns. (2.5) contain all the information about the stiffnesses of the loading and unloading 

paths of the Clough's hysteretic model. It is evident that three state variables (z, u+ and 

u-) are needed in addition to the usual u and u in order to express the Clough's model in 

the DEQ representation. 

2.2.5 Other piecewise-linear hysteretic models: 

Similar expressions for i are also available [ 48] for other PLH models such as the 

origin-oriented model, the peak-oriented model, the double bilinear model, the slip model, 

etc. The consequence of the availability of these expressions is that these models can be 

included in the DEQ category of hysteretic models. 

2.3 Curvilinear hysteretic models: 

2.3.1 Massing's model: 

In a study of the material response behavior of brass rods [28], Massing proposed the 

following hysteretic model for steady-state response of the system in terms of its initial 

loading behavior. Let the initial load-deflection curve be given by 

z = (/J(u) (2.6.1) 

where 4> is an odd function of u. That is, 

(/J(-u) = -¢(u) (2.6.2) 

Then, for steady-state response behavior (or for cycling between fixed displacement 

limits) as shown in Fig. 2.4, Massing proposed the following relations. For the branch 

curve ABC, z is given by 

(2.7.1) 

and for branch CDA, z is given by 
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(2.7.2) 

where (U0,Z0) and ( -U0, -Z0) are the coordinates of the two load reversal points A and C, 

respectively. Thus there is a functional similarity between the unloading and loading 

branches, and the initial load-deflection behavior. Eqns. (2.7.1) and (2.7.2) may be 

combined to yield 

(2.7.3) 

where (UuZL) are the coordinates of the last load reversal. That is, (UL,ZL) is (U0,Z0 ) for 

ABC and (-U0,-Z0) for CDA. 

It can be seen that Eqns. (2. 7) describe a closed loop whose load reversal points lie 

on the initial loading curve. Also, if <P is a smooth function of u, then it is apparent that this 

model yields rounded hysteresis loops with a smooth yield transition. 

Massing reports that the predictions by the above hypothesis agreed very well with 

the experimentally obtained results for the unloading and compressive loading curve ABC. 

2.3.2 The parallel-series (P-S) Distributed Element (DEL) model: 

By assuming that a general hysteretic system consists of a very large number of ideal 

elastoplastic elements having different yield levels, I wan [20] constructed the model shown 

in Fig. 2.5 consisting of a set of N Jenkin's elements connected in parallel. Each such 

element consists of a linear spring with stiffness k/ N in series with a slip element of 

ultimate strength /;·IN. 

The system has a polylinear hysteretic characteristic of the type described in Sec. 

2.2.3. For example, for initial loading in the positive u direction (path OA in Fig. 2.4), the 

restoring force kz is given by: 
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k 
_ ~ f/ ku(N- n) 

z- ~-=-+ -~=--..;... 
i=t N N 

(2.8) 

where n is the total number of elements that have yielded; that is, the number of elements 

for which fi* <.ku. Eqn. (2.8) expresses a linear relationship between z and u. As n tends to 

N, the slope of the linear segment tends to zero. 

By making the number of elements Nvery large, Eqn. (2.8) may be written in its 

equivalent form 

(2.9) 

=¢(u) foru~O (2.10.1) 

where cp(j") represents the proportion of the elements of the system with strength j", and 

satisfies 

(2.10.2) 

Since the initial loading curve is symmetric about the origin, let an odd extension be made 

for the function ¢ for u<O. That is, 

t/J(u) = -¢(-u) for u < 0 (2.1 0.3) 

Then ¢ (u) as defined is an expression for the initial loading behavior of the system for 

loading in both the positive and negative u directions. If the second term vanishes in Eqn. 

(2.9) as u ~ oo, the ultimate or yield force of the system, /.
1

, is given by 

(2.11) 

If y(j")is the displacement of the linear spring element which is connected to the slip 

element with ultimate strength j", then for the initial loading curve OA shown in Fig. 2.4, 

. {!" I k for 0 ~ j" S ku 
y(f) = • 

u for ku ~ f < oo 

(2.12) 

In general, given y(j"), the normalized restoring force z can be uniquely determined by 
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(2.13) 

For a piecewise continuous distribution function cp(f*) and for a finite /Y' rounded 

hysteresis loops are shown to result [20]. 

One of the major advantages of this model is that it can be used not only for steady­

state but also for transient dynamic response by simply keeping track of the number of the 

elements in each of the yielded and unyielded states at any given instant. For example, 

consider the sequence of loading shown in Fig. 2.6. For path 01, the expression for y(f*) 

is given by Eqn. (2.12), which when used with Eqn. (2.13) yields the normalized restoring 

force z. The behavior of y(j") for path 01 is shown in Fig. 2.7a. 

Let there be a load reversal at 1 as shown in Fig. 2.6. Along path 12, the total 

restoring force results from three groups of elements: those elements that were in a positive 

yield state after initial loading and have now changed to a negative yield state; those 

elements that were in a positive yield state after initial loading but have not yet changed to a 

negative yield state; and those elements that were unyielded on initial loading and are still 

unyielded. Along path 12, the function y(f") for the system is given by 

j* £ 0 <f" < k(U1 -u) 
k or - - 2 

Y(/•) = (kU1 - j") e k(U1 -u) < /* < kU u- k 10r 
2 

_ _ 1 (2.14) 

u for kU1 ~ j* < oo 

which is true for -U1 ~ u ~ U1 , where U1 is the displacement corresponding to the load 

reversal at 1. Eqn. (2.14) in conjunction with Eqn. (2.13) yields the normalized restoring 

force z. y(/*) given by Eqn. (2.14) is shown in Fig. 2.7b. 

In a similar fashion, keeping track of the elements in various yielded and unyielded 

states, expressions for y(/*) can be obtained for each of the paths 23,34,45,56 and 67. 
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The behavior of the function along these paths is shown in Figs. 2.7c-g, respectively. The 

task of obtaining y(f*) in this manner is quite cumbersome. Also. once y(f*) is found, the 

determination of z, using Eqn (2.13), is quite laborious, involving evaluation of several 

integrals, especially when the number of nested loops gets large. However, a considerable 

simplification can be achieved in the following manner. 

Let the load reversal points also be referred to as turning points. Let a positive turning 

point be defined as one, where the loading changes from a value of u greater than 0 to a 

value of u less than 0. Similarly, let a negative turning point be one, where the loading 

changes from a value of u less than 0 to a value of u greater 0. The turning points 1, 3 and 

5 in Fig. 2.6 are positive turning points and 2, 4 and 6 are negative points. It is evident that 

the turning points occur as alternate positive and negative turning points. 

A key observation can be made from Fig. 2. 7. Every time a positive turning point is 

introduced, they- f* relationship undergoes the following change. The first linear segment, 

which was in a positive yield state before the introduction of the turning point, splits into 

two linear segments, the first one being the collection of elements that are in a negative 

yield state and the second one being the collection of elements that are not yet in a negative 

yield state. Similarly, when a negative turning point is introduced, the first negative yield 

segment splits into a positive yield segment and one that is not yet in a positive yield state. 

The slope of the restoring force-displacement relationship, dzldu, is the normalized 

stiffness of the system (that is, the stiffness divided by the initial stiffness) at any instant. 

The system stiffness has contributions from all elements that are in an unyielded state at that 

instant. From they- f* behavior in each of Figs. 2.7 a-g, it can be seen that the only 

elements in a yielded state are those in the first linear segment of the plots. Generalizing this 

observed behavior to a situation with N nested turning points, U1,U2,U3, ...... ,UN, the 

following may be written: 
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dz J- . . 
du = r.s.(u-UN)/2 qJ(f )df (2.15.1) 

valid for the last nested loop, that is, for u between UN and U N-t· s. is sgn(it), the signum 

function. That is, 

{
+1 if it~O 

sgn(u)= -1 if u<O (2.15.2) 

Thus s. is + 1 or -1 according to whether UN is a negative or a positive turning point. 

Integration of Eqn. (2.15.1), after some algebra, yields 

s.(z- ZN) = rkS.(u-UN)/2 !" rp(J")df" + Sv(u- u N) r- ({J(/")df" 
2 Jo k 2 Jr.s.(u-UN)/2 

(2.16) 

where ZN is the normalized restoring force corresponding to the Nth turning point. From 

Eqn.(2.16) and the definition of cfJ in Eqn. (2.10), the following equation is obtained for z 

in terms of the coordinates of the Nth turning point, (U N•ZN): 

(2.17) 

which is true for u between UN and UN-I' N>l. For N=1, Eqn. (2.17) holds with 

U 0=-U1 • For N=O, z=¢ (u). 

The relationship in Eqn. (2.17) can be seen to be very similar to the Massing's 

hypothesis for steady-state response. Basically, Eqn. (2.17) says that the restoring force­

displacement relationships for all paths are geometrically similar to the initial loading curve, 

and this observation provides an impetus for the definition of an extended version of 

Massing's hypothesis to hold for the modeling of transient response behavior as well. 

The loading sequence shown in Fig. 2.6 is considered now, with a few changes in 

order that it may be easier to understand the variation of y(f") with the history of u. 

Consider the situation of path 23 being continued past 3 without a load reversal at 3. The 

y(f") behavior is given by Fig. 2.7c, and (U2,Z2) is used in Eqn. (2.17) to obtain z. 

Substituting u=U1 in the end points of the piecewise linear segments of Fig. 2.7c yields 
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Fig. 2.7a for u=U1• Thus the extension of path 23 passes through 1. For any further 

loading in the positive u direction, y(f*) behavior is as in Fig. 2.7a. For purposes of 

determination of z from this instant on, it as if the loop 1231 never happened at all. 

Consider a different situation wherein path 56 is continued in decreasing u direction 

past U6 • The y(f*) behavior is given by Fig. 2. 7f, and (U5, Z5) is used in Eqn. (2.17) to 

obtain z until the path reaches 4, after which Fig. 2.7d controls the behavior of y(f.); for 

purposes of determination of z from this instant on, the fact that the loop 4564 occurred is 

of absolutely no consequence. If u continues to decrease past U4 , Fig. 2.7d controls y(f*), 

and (U3, Z3) is used in Eqn. (2.17) until the path reaches 2, when Fig. 2. 7b comes into 

effect. On the other hand, if there is a load reversal at some point between U1 and U4 , the 

y(f*) is governed by Fig. 2. 7e, and the values of u and z corresponding to that load 

reversal are used in Eqn. (2.17) in the determination of z until the path reaches 3, and so 

on. 

It must be mentioned here that the result of Eqn. (2.17) was derived for the case 

where the largest excursion is to the positive u direction (that is, U1>0). In exactly the same 

manner, the result can be shown to be true also for the case where the largest excursion is 

to the negative u direction (U1<0). 

2.3.3 The Extended Massing's hypothesis: 

From the similarity between the relations expressed by Eqns. (2.7) and (2.17), it is 

possible to extend the Massing's hypothesis originally proposed for steady-state response 

to transient dynamic response as well. In his work on the determination of optimal 

nonlinear models by applying system identification techniques to inelastic pseudo-dynamic 

test data, Jayakumar [24] originally proposed this extension of the Massing's hypothesis 

by stipulating the following two rules for the system behavior during complete and 

incomplete loops: 



-17-

• Rule 1: Incomplete loops 

The equation of any hysteretic response curve, irrespective of steady-state or transient 

response, can be obtained simply by applying the original Massing rule to the virgin 

loading curve using the latest point of loading reversal. 

• Rule 2: Completed loops 

The ultimate fate of an interior curve under continued loading or unloading can be 

determined as follows: Once an interior curve crosses a curve from a previous load cycle, 

the load-deformation curve then follows that of the previous cycle. 

By showing that these two rules could be used to predict the behavior of the parallel­

series Distributed Element model for paths 12 and 23 of Fig. 2.6, he concluded that the two 

rules could be used to completely describe the transient hysteretic behavior of the said 

model [24]. The following representation for the same rules is felt to be in a form more 

amenable to numerical implementation. 

Let z=t/1 (u) be an expression for the initial loading behavior of a system where tP is 

an odd function of u. Let the derivative of the function tP be 'fl, i.e., 'fl(u) = tP '(u), and let 

U = {Ul'U2,U3, ...... ,uNr be the array of N nested turning points, which is continually 

updated in a manner described below. As before, Ui and Zi are the displacement and 

normalized restoring force corresponding to the itA load reversal (i= 1 ,2, ... ,N). Thus, UN is 

the displacement corresponding to the last load reversal up to the instant under 

consideration. Let the next load reversal be at a displacement of U0 • If there are no load 

reversals after UN, then the following hypothesis holds with U0 ....:;ooSv, i.e., +oo or -oo 

according to whether u>O or u<O. As u moves from UN to U0 , the following rules express 

the manner in which (i) the normalized restoring force, z, is determined and (ii) the array U 

is updated: 



(1) If N=O: 

In differential form, 

(2) If N¢0: 

let S1 =sgn(U1). 

(a) If SvS1=1: 
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z=¢> (u) 

dz 
- = 1{/(U) 
du 

or if U2 j+1S1 :5: uS1 < U2 j_1S1 , j = 1,2, .... ,( ~ -1). new N=2j. 

If SvS1=-1: 

(2.18.1) 

(2.18.2) 

(2.19.1) 

(2.19.2) 

and if uS, :5: -U1Sp new N=O, (2.20.1) 

or if -U1S1 < uS1 :5: U2S1 , new N= 1, (2.20.2) 

or if U2jS1 < uS1 :5: U2 j+2S1 , j = 1,2, ....• ( N; 
3

} new N=2j+ 1. (2.20.3) 

(b) If new updated N=O, z is given by Eqn. (2.18). 

z-z (u-u) If new updated N¢ 0, T = t/J 
2 

N (2.21.1) 

In differential form, 

dz = 1{/(u- uN) 
du 2 

(2.21.2) 

(3) If u=U0 , N is increased by 1 and the size of array U is increased by the addition of U0 

to the end of the array. 

Rules (2)(a) and (3) perform a continuous updating of the array so as to yield the 

right branch of the hysteretic curve. Rules (1) and (2)(b) yield the normalized restoring 
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force z corresponding to the displacement u. Even though all the branches of the restoring 

force diagram obey the same relationship given by Eqn. (2.21) (for N#O), since the array 

is being updated continually depending on the history of u, the values of UN and ZN that 

are used in the equation are different, thus yielding the appropriate hysteretic branch. 

One point of interest here is in the nondependence of the differential formulation on 

the quantity ZN as evidenced in Eqn. (2.18.2) and Eqn. (2.21.2). Use of the differential 

formulation does not involve memorizing the array of the values of z corresponding to the 

nested turning points. However, an integration needs to be done to obtain z. In dynamical 

systems, the equations of motion frequently involve writing expressions for the derivatives 

of the state variables. The differential formulation of the Extended Massing's hypothesis is 

very convenient for the purpose. 

2.3.4 Other DEL models satisfying the Extended Massing's hypothesis: 

2.3.4.1 Two other parallel-series models: 

Two other P-S DEL models can be constructed by (i) varying the stiffness of each 

linear spring in the individual elements while keeping the slip force level constant for the 

slip damper in all the elements, and (ii) varying both the stiffness and slip level in the 

elements. 

In the first model, the physical configuration of the springs and dampers remains the 

same as in Fig. 2.5. However, in this case, all the slip elements have the same maximum 

allowable force fY, but the springs have stiffnesses k* varying continuously. If qJ(k*) 

represents the distribution function of the proportion of the system with stiffness k •, then 

(2.22.1) 

Let k be the initial stiffness of the system. That is, 

(2.22.2) 
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For initial loading in the positive direction (u >0), there are two groups of elements 

that contribute to the normalized restoring force z: one in an unyielded state as yet, and 

another in a state of positive yield. Adding their respective contributions, the following can 

be written: 

(2.23.1) 

= cp(u) for u ~ 0 (2.23.2) 

Again, an odd extension is made for the function cp for values of u less than zero. As 

u~ oo, it can be seen that z ~ fY I k, the normalized yield strength or ultimate strength of 

the system. In a manner similar to that in Sec. 2.3.2, it can be shown that this model 

satisfies the Extended Massing's hypothesis for cp as defined in Eqn. (2.23.2). 

The second P-S model which is considered is the one in which a very large number 

of elements are connected in parallel such that each element consists of a linear spring of 

stiffness k • in series with a slip element of maximum allowable force f*, where both k • 

and f* may range continuously from 0 to oo. 

Let qJ(j*,k*) be the distribution function of the proportion of elements with properties 

!* and k • such that 

(2.24.1) 

and 

(2.24.2) 

where k is the initial stiffness of the system. 

Upon initial loading in the positive direction (u >0), two groups of elements, one in a 

state of positive yield and the other in an unyielded state as yet, contribute to z such that 

(2.25.1) 

= ¢(u) for u ~ 0 (2.25.2) 
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where, again, an odd extension is made for ¢J . As u ~ oo, if the second term in Eqn. 

(2.25.1) vanishes, z --7 fY I k, where fY is the ultimate strength of the system given by 

(2.26) 

For each value of k*, this system is exactly the same as the one treated in Sec. 2.3.2, 

and the analysis of this system can thus be carried out in a strictly analogous fashion to 

show that this model also satisfies the Extended Massing's hypothesis with 4> as defined in 

Eqn. (2.25.2). 

2.3.4.2 The series-parallel (S-P) model: 

In this model, the basic building blocks are connected in series to form the system as 

shown in Fig. 2.8a. Each basic block consists of a spring of stiffness N k in parallel to a 

slip element with a maximum allowable force of f". The basic block thus has a restoring 

force characteristic as shown in Fig. 2.8b. Let fJ be made very large with f{J(/"), 

representing the distribution function of the the proportion of the elements with maximum 

allowable force f" such that 

(2.27) 

In the configuration of this system, the normalized force z is the same in each of the 

building blocks, but each block has a different displacement y(f*), with both the individual 

components of the block having this displacement. The total displacement of the system, u, 

is given by 

(2.28) 

Upon initial loading in the positive direction (u >0), there are two groups of elements 

that contribute to the response of the system. One group, with f* /k>z, does not have any 

movement in the slip elements, and the corresponding spring elements are hence "inactive," 

meaning that they do not contribute to the system displacement. The other group with 
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1• /k<z has slipping elements and "active" springs, meaning that the springs have relative 

displacements and contribute to the system displacement. Hence, 

u= f,'"(z- {}4w' (2.29.1) 

= ~ ( z) for z ~ 0 (2.29.2) 

Let an odd extension of ~ be made for z<O. The initial loading curve here expresses u as a 

function of z. Let the inverse function of ~ be ¢> • That is, the initial loading cmve may also 

be expressed as: 

z=lf> (u) (2.29.3) 

The restoring force characteristic of the S-P model has two significant differences 

from the P-S model. By differentiating Eqn. (2.29.1), it may be shown that dz!du ~ oo as 

u ~o. and ~k as u ~ oo. That is, this system has an infinite initial stiffness and an 

asymptotic stiffness k at large deformations. It does not have an ultimate force level as did 

the P-S model in Sec. 2.3.2. 

By observing the y(j*) behavior of a few nested loops as was done for the case of 

the P-S model in Fig. 2. 7, it can be shown that the active elements of the system 

contributing to the system compliance (where the compliance is the inverse of the stiffness) 

satisfy the following inequality: 

(2.30.1) 

Since the springs in the active elements are connected in series, the compliances of the 

elements add to give the total system compliance, duldz. Hence, 

dU iS.Ic(:-ZN)/2 • • 
- = fP(f XI! 
dz o 

(2.30.2) 

is true for the last nested loop. Integration of Eqn. (2.30.2), after some algebra, and 

making use of the odd propeny of ~ yields 
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(2.31) 

Using the inverse function of¢, namely, <P , the following may be written 

(2.32) 

which is true for the last nested loop. 

It is thus seen that the S-P system also satisfies the relations of the Extended 

Massing's hypothesis. 

2.3.4.3 Stiffness· and strength·degrading model: 

The physical configuration of this model is of the P-S type considered in Sec. 2.3.2. 

The only difference is in the behavior of the slip element in each building block. In the 

model considered here, the slip element "breaks," once it has slipped a certain specified 

displacement. For subsequent loading, the system cannot recover the stiffness and strength 

of this building block. This results in a stiffness- and strength- degrading model. Cifuentes 

[13] used such a model for the identification of reinforced concrete structures. A typical 

restoring force diagram of this model for a structure has been reproduced from his work 

[13] in Fig. 2.9. The deterioration in both system stiffness and strength as the deformation 

increases is evident from the figure. 

Assume that the elastoplastic unit of stiffness k and ultimate strength f* breaks when 

the relative displacement of the slip element reaches an absolute value equal to A times the 

yield displacement t• /k, A (>0) being the same for all the elastoplastic units. The behavior 

of such an elastoplastic unit may be used for the modeling of the failure of concrete because 

of spalling in the compressive loading direction and because of cracking in the tensile 

loading direction. 
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Let a be the largest absolute value of the displacement until the instant under 

consideration. Then those elements that have broken thus far satisfy the inequality 

(2.33) 

To account for the removal of the broken elements, the updated ip (f*) is defined as 

follows: 

l 
. ka 

0 for 0 S. f S. --
ip(f*) = A+ 1 

• • ka 
({J (f ) for f > ~ 

Jl, + 1 

(2.34) 

where q>(f*) is the distribution function of the proportion of the system with strength t• 

(Os.f* <oo) in the virgin state of the system. 

Let lfJ(u) be defmed as 

(2.35.1) 

~(u)=-~(-u) foru<O (2.35.2) 

For all nested loops of u within [-a,a], the system essentially behaves as the P-S 

model discussed in Sec. 2.3.2 with a distribution function ip(f*) as in Eqn. (2.34). Thus, 

this model satisfies the Extended Massing's hypothesis, and z may be obtained from 

(2.36) 

for N:#O. If N=O, z is given by ~(u). 

There is one qualifying remark that must be made here about the function lfJ • The 

function lfJ in Eqn. (2.17) does not vary with the history of u. The corresponding function 

~ for this model used in Eqn. (2.36) changes, depending on the history of u (actually, on 

a, the largest absolute value of the displacement). There is thus an implicit memory-

dependence which is described by Eqns. (2.34) and (2.35). 
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Once u passes ± a, the parameter a assumes the value of the new maximum of lui, if> 

changes as per Eqn. (2.34), ¢ changes as per Eqn. (2.35) and the normalized restoring 

force z is given by Eqn. (2.36). 

A remark that may be made here regards a difference in the two memory parameters 

U and a. U is an array of nested turning points that can be completely "forgotten" (that is, 

disregarded) once the system displacement passes either ±U1• The fact that the nested loops 

occurred has no future significance in the determination of z. In contrast, a represents an 

effect that cannot be recovered since once the elements are broken, they cannot contribute to 

the system response behavior any more. a is a cumulative damage parameter, and cannot be 

"forgotten." This property of a ensures that the system has a permanent degradation of 

system properties. 

2.3.5 Curvilinear models with one or two hidden state variables: 

2.3.5.1 The endochronic models: 

Endochronic theories of material behavior were introduced and employed by V alanis 

[50] to develop a constitutive law for metals which characterizes strain-hardening, 

unloading behavior, cross-hardening (for example, the effect of pretwist on axial 

behavior), the alteration of hysteresis loops with continued cyclic straining and sensitivity 

to strain rate. Bazant and Bhat further developed the theory to describe the liquefaction of 

sand, and the failure of concrete [7]. 

Fundamentally, the endochronic models do not make use of a yield condition as do 

most classical theories of plasticity, but instead use a quantity referred to as the intrinsic 

time. This quantity is introduced into the constitutive laws of viscoelasticity in place of the 

real time. By starting with a one-dimensional Maxwell model, Bazant and Bhat [7] 

constructed the following version of a simple endochronic model: 
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1 
da = Ede-- rrldel z (2.37.1) 

where a is the stress, e is the strain, E is the Young's modulus and Z is the relaxation 

time of the material. Equivalently, 

. E' 1 1'1 a= £--a£ z 
(2.37.2) 

where, as usual, the dot superscript refers to the derivative with respect to time. 

The model in Eqn. (2.37) is rate-independent, and the stress approaches the limit ZE 

asymptotically for large strains. It can be seen that Eqn. (2.37) is a complete description of 

the material behavior. There are no yield conditions, hardening rules, etc. However, having 

a representation as simple as this does have its price. The behavior of such models can be 

quite nonphysical. More will be said about this in Chapter 4. 

2.3.5.2 The Wen-Bouc model and the Casciyati models: 

A differential equation model for hysteresis originally proposed by Bouc was later 

generalized by Wen [53,54]. The model is widely used in structural dynamics, especially in 

the stochastic response analysis of hysteretic systems. Essentially, the model requires that 

the normalized hysteretic restoring force satisfy the flrst-order, nonlinear differential 

equation 

(2.38) 

where the parameters A, f3 , y, 1J, v and n govern the amplitude, shape of the hysteresis 

loop and the smoothness of transition into the inelastic range. The total restoring force of 

the system,/, is again given by Eqn. (2.1). The ability of this model to depict curvilinear 

hysteretic behavior has been shown for the case n=1 in [54]. In the same paper, Wen 

extended the above model to include stiffness- and/or strength-degradation of the restoring 
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force. A hysteretic energy dissipation, which is a measure of the cumulative effect of the 

severe response and repeated oscillations, is defined as follows: 

£(~) = (1- a)k t z( -r)u( -r)d-r (2.39) 

where k and a are, as usual, the initial stiffness and the post-yielding stiffness ratio of the 

system. Stiffness- and strength-degradation can be jointly introduced by prescribing A as a 

degrading function of E(t). That is, 

A(t) = Ao- 8 AE(t) (2.40.1) 

where 8 A is the deterioration rate and Ao is the value of A at the commencement of loading. 

Similarly, strength-degradation can be introduced by 

v(t)= Vo+8vE(t) (2.40.2) 

and stiffness-degradation by 

1](t) = 1]0 + 8
11
E(t) (2.40.3) 

where 8v and 8
11 

control the degradation rates, and v0 and 1]0 are the initial values of v 

and 1], respectively, at the commencement of loading. 

In the case n=1, 1]= v=1, A=E, f3 =liZ, r =0, it can be seen that the z-u relationship 

as per Eqn. (2.38) is exactly the same as the u-e relationship expressed by Eqn. (2.37.2) 

for the simple endochronic model. The similarity in the initial loading behavior of these 

models was noted first by Jayakumar [24]. Thus, even though the endochronic model and 

the Wen-Bouc model were motivated by different reasons and for application to different 

fields of research, their behavior is very similar. For this reason, it is felt that it will not be 

inappropriate to refer to the group of models included in this section as the endochronic 

group of models. 

The family of endochronic models exhibit certain unrealistic characteristics that are 

quite inconsistent with observed physical behavior. These will be enumerated in detail in 

Chapter 4. In an effort to minimize one such unrealistic feature of the Wen-Bouc model, 
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namely, the possible nonclosure of hysteresis loops, Casciyati [10] proposed the following 

amendment for the case n=l: 

i =Au.:._ j3jujz + yujzj + ojujsgn(z) 

where o is a parameter intended to control loop closure. 

(2.41) 

As a final remark, it may be mentioned that the endochronic models can be easily cast 

in the DEQ category described in Sec. 2.1. For nondegrading systems, this is achieved by 

the addition of the hidden state variable, z, to the conventional state variables u and u to 

describe the system response. For degrading models, the inclusion of z as well as E(t) can 

be done to formulate the system in a purely history-independent fashion involving an 

expanded number of state variables. 

2.4 The DEQ category of hysteretic models: 

Random vibration studies of linear systems have been used very successfully to 

determine various statistical measures of the response of single- and multi-degree-of­

freedom systems subjected to random excitation. Unfortunately, to date there are no 

systematic analytical methods to obtain closed-form solutions to the stochastic response of 

a general nonlinear dynamical system. The scarcity of exact solutions has necessitated the 

analytical development of approximate solution techniques. 

One of the most promising of such approximate analysis techniques is the method of 

equivalent linearization. In the case of random excitation, this method approximates the 

original set of nonlinear stochastic differential equations with a more tractable linear set 

which are easily analyzed. The general results of I wan [22], Atalik and Utku [4], Caughey 

[12], Spanos and I wan [45] provide a sound foundation for this method. As of now, this 

method is capable of satisfactorily handling nonlinear systems that can be described by a set 

of finite number of single-valued, possibly nonlinear, ordinary differential equations. The 

keyword is "single-valued," meaning that the equations cannot be history-dependent. 
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Caughey [11] used the additional Krylov-Bogoliubov (K-B) approximation to examine the 

random response of a bilinear hysteretic system subjected to white noise excitation. 

However, it has been shown that this method does not produce wholly satisfactory results 

when the response is wide band (as in the case of elastoplastic or nearly elastoplastic 

systems). 

If, in some manner, the history dependence of the system could be "removed" by the 

addition of one or more state variables, rendering the expanded system description history­

independent, then the theory of equivalent linearization could be used in the analysis of 

hysteretic systems as well. It is precisely with this point in mind that several of the models 

described in this chapter have been proposed. The hysteretic behavior of these systems is 

controlled by the behavior of the instantaneous values of the newly included state variables, 

which are "internal" or "hidden" in the system. This is not to say that all physical hysteretic 

systems can be formulated in such a representation; the Distributed Element models with a 

continuous hysteretic characteristic have not yet been shown to have such a representation. 

But for systems that do, for example, the piecewise-linear hysteretic models, the 

endochronic models, etc., the method has been used to calculate the stochastic response of 

the systems when subjected to random excitations [3,48,53]. Being able to perform the 

approximate analysis of hysteretic systems in this fashion has been the driving force behind 

the quest of the DEQ representation for the systems. 

2.5 A history-independent representation for a Distributed Element model: 

It may be mentioned here that it is possible to derive a history-independent 

representation even for the Distributed Element models; for instance, the equations of 

motion of a single-degree-of-freedom system whose restoring force behavior is described 

by the parallel-series model (Sec. 2.3.2) can be written as 
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mu + k s: y(f.,t) q>(/•) df• = F(t) (2.42.1) 

~ y(f.,t) = U [ 1- H(U)H(y- ~·)-H( -U)H( -y- ~·)] (2.42.2) 

where m is the mass, k is the initial stiffness, H is the Heaviside's unit step function and 

F(t) is the external force. u, y, q> and j* have the same meaning as in Sec. 2.3.2. These 

equations are obtained by starting with Eqn. (2.4) for the polylinear hysteretic model and 

letting N become very large. 

The integra-differential nature of Eqn. (2.42) calls to mind the following quote from 

Picard [38] in 1907,who also gave hereditary mechanics its name: 

" In all this study (of classical mechanics), the laws which express our ideas of 

motion have ben condensed into differential equations, that is to say, relations between 

variables and their derivatives. We must not forget that we have, in fact, formulated a 

principle of nonheredity, when we suppose that the future of a system depends at a given 

moment only on its actual state, or in a more general manner, if we regard the forces as 

depending also on velocities, that the future depends on the actual state and the infinitely 

neighboring state which precedes. This is a restrictive hypothesis and one which, in 

appearance at least, is contradicted by the facts. Examples are numerous where the future of 

a system seems to depend upon former states. Here we have heredity. In some complex 

cases, one sees that it is necessary, perhaps, to abandon differential equations and consider 

functional equations in which there appear integrals taken from a distant time to the present, 

integrals that will be, in fact, this hereditary part." 

Even though Eqn. (2.42) is a history-independent representation for the system in u, 

u andy, this representation does not admit the inclusion of the model in the DEQ category, 

because the additional state variable y is not a scalar but a continuous function of an 

independent variable j*, and also, a partial differential equation rather than an ordinary one 
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is involved. Currently, there are no techniques that can help perform a direct linearization of 

this system of equations. An extension of the theory of equivalent linearization to include 

representations such as this would prove very beneficial in the analysis of curvilinear 

hysteretic systems. 
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Figure 2.4: A typical hysteredc loop for steady-state system response. 
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Figure 2.6: A loading sequence with nested loops subjected on the Distributed 
Element model. 
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Figure 2.7: The function y{f•) for (a) path 01 (b) path 12 (c) path 23 (d) path 34 of 
the loading sequence shown in Fig. 2.6. 
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Figure 2.7: (Continued) The function y(f*) for (e) path 45 (f) path 56 (g) path 67 of 
the loading sequence shown in Fig. 2.6. 
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CHAPTER 3 

AN IDENTIFICATION METHOD FOR HYSTERETIC SYSTEMS 

3.1 Introduction 

The identification of dynamic models through the use of experimental data is a 

problem of considerable importance in earthquake engineering. The major goal of the 

identification process is to characterize or to "identify" accurately the response behavior of a 

structure subjected to strong ground shaking. Considerable effort has been devoted to 

determining algorithms and techniques for estimating optimal models from data. 

Generally speaking, most of the identification techniques in the past have been 

parametric; that is, they seek to determine the value of the parameters in an assumed model 

of the system to be identified. By contrast, nonparametric methods, for example, those by 

Masri and Caughey [31], Volterra [52], et al., seek the best functional representation of the 

system without any a priori assumptions about the model. 

The identification method outlined in this chapter determines a model representation 

for nonlinear systems in which the slopes of the loading and unloading paths depend only 

on the instantaneous value of the restoring force. The endochronic models described in 

Chapter 2 with one additional state variable, for example, the Wen-Bouc hysteretic model, 

have such a representation. So does the bilinear system. The method involves a search in 

function space to determine an optimal representation of the system. For this reason, the 

method can be thought of as a nonparametric identification technique. 

The following section describes the technique used for identifying the nonlinear 

behavior of a system. Examples of the identification of three different hysteretic systems 

are then enumerated. In each case, the adequacy of the optimal model to describe the 

original system is examined by comparing their respective responses to a second excitation. 
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Some of the significant advantages of the identification method are listed in the final 

section. 

3.2 The identification procedure: 

Let the equation of motion of a single-degree-of-freedom oscillator be given by the 

following equations 

mii. + cu + aku+ (1- a)kz = -ma(t) (3.1) 

(3.2) 

where u is the relative displacement of the oscillator subjected to the base excitation a(t), z 

is the normalized hysteretic restoring force, m is the mass, k is the initial stiffness, a k is 

the post-yielding stiffness, cis the viscous damping coefficient, His the Heaviside's unit 

step function, and / 1 and / 2 are single-valued functions of z. For a given value of z, it may 

be noted that kf1 (z) and kf2(z) are the instantaneous system stiffnesses when u>O and 

u<O, respectively. 

The endochronic models with one additional state variable described in Chapter 2 can 

be represented in the above fashion. For instance, for the Wen-Bouc hysteretic model 

(Eqn. 2.38), the functions / 1 and / 2 are given by 

/ 1(z) =_!_[A- vjzj"-1(.8z- rlzj)] 
17 

fz(z) =_!_[A+ vlzl"-1(.8 z + rlzi)J 
11 

where A, {3 , r, v, 17 and n have the same meaning as in Eqn. (2.38). 

(3.3.1) 

(3.3.2) 

Similarly, for the bilinear model (Eqn. 2.2), the functions / 1 and / 2 are given by 

/ 1(z) = 1-H(z- uY) 

/ 2(z)=1-H(-z-u) 

(3.4.1) 

(3.4.2) 
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Assume that the measurements for a(t) and u are available over a certain time interval 

[0,11. The corresponding displacement, u, and the velocity, u, can be found either by 

direct measurement or by integration of u. Assume also that the values of m, c, k and a 

have already been obtained by other measurements. For instance, the values of k and a 

may be determined by performing a monotonic loading test. Eqn. (3.1) can be rearranged 

to write 

ma(t)+mu+cu+ aku z = __ ....;....;.. _____ _ 
(1- a)k 

(3.5) 

which yields ion differentiation. Eqn. (3.2) can be used to obtain / 1 and / 2 , as follows: 

(3.6.1) 

/ 2(z) = ~ H(-u) 
u 

(3.6.2) 

Let the normalized value of z, namely~, be defined as: 

(3.7.1) 

where 

(3.7.2) 

zmin and zmax being the minimum and maximum measured values of z. Thus, ~ varies from 

-1 to +1. 

Let the normalized functions g1 (~)and g2(~) corresponding to / 1 (z) and / 2(z) be 

defined as 

(3.8) 

where ~ and z are related as in Eqn. (3. 7). 

The main idea behind the identification methodology used in this chapter is to estimate 

the functions g1 and g2 (and hence / 1 and / 2 ) by approximate functions g1 and g2, 

respectively, where g1 and g2 are expressed in terms of a set of orthogonal polynomials. 
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Without loss of generality, the set of Legendre polynomials, P,(~), will be used for the 

remainder of this chapter. Thus, 

N 

g~(~) = g~(~) = LaJ~(~) (3.9.1) 
•=0 

N 

g2<~) = i2<~) = IbJ~<~) (3.9.2) 
i=O 

The Legendre polynomials, P,( ~), which are solutions of the Legendre's differential 

equation, are given by Rodrigues' formula to be 

P(;;)- 1 d" (;; 2 1)" 
""=' - 2"n! d~" "=' -

(3.10) 

and they satisfy the following orthogonal property with respect to the weighting function of 

unity, 

if m'¢:n 

if m=n 
(3.11) 

The next step is to estimate the coefficients, a; and b;, using some error-minimization 

criteria. Once these coefficients are determined from the measurements, the system is 

completely identified for subsequent analysis. Let the error functions be defined as 

E;<N> = f
1 
[g;(~)- g;(~ )]2 d~ fori= 1,2 (3.12) 

In order that the optimum choice of the coefficients minimize the errors E1<N> and 

Et', the following relations must be satisfied: 

()£<N> 
-

1
- = 0 for j = 0,1,2, ..... ,N 

dai 

()E<N> 
-

2
- = 0 for j = 0,1,2, ..... ,N 

i:Jbj 

Use of Eqn. (3.12) in Eqn. (3.13) yields 

(3.13.1) 

(3.13.2) 
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fori= 0,1,2, ..... ,N 

1 Jt b;=- gi~)P;(~)d~ fori=0,1,2, ..... ,N 
h; -t 

h,. = -
2

- fori= 0,1,2, ..... ,N 
2i +1 

(3.14.1) 

(3.14.2) 

(3.14.3) 

Either because the data are available only at discrete points and/or because the 

computation of the coefficients is done on a digital computer, the trapezoidal algorithm may 

have to be used to replace the integrals in Eqn. (3.14) by finite sums. 

In summary, given an identification excitation a(t) and the corresponding acceleration, 

u, of a single-degree-of-freedom system, a model representation of the type described by 

Eqns. (3.1) and (3.2) can be identified by the optimal choice of the coefficients a; and b; 
A A 

given by Eqn. (3.14). For this choice of coefficients, the functions It and 12 are the best 

approximation in the least-squares sense to the functions It and 12 , respectively. Using 

Eqns. (3.7) and (3.8), it is possible to write 

(3.15.1) 

(3.15.2) 

with i and Z
4

, as in Eqn. (3.7.2). 

It may be mentioned here that the identification data for It and lz need not be 

obtained necessarily from the response of the system to a dynamic excitation. It could also 

be obtained from the slopes of the restoring force diagram when the system is subjected to 

quasi-static loading. Once the data are obtained, the method of identification of the 
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nonlinear restoring force behavior of the system using orthogonal polynomials is 

unchanged. 

3.3 Identification examples 

In this section, three examples of the identification of hysteretic systems by the 

method described above are illustrated. The three systems considered are the Wen-Bouc, 

the Bilinear and the Distributed Element hysteretic systems. In each case, the system 

response to two base excitations is determined. The first of these base excitations, ~ (t), 

shown in Fig. 3.1 is a sinusoidal function with a linearly increasing amplitude and serves 

as the identification excitation. The response of the system to this excitation is used to 
A A 

obtain the coefficients aj and bi, and hence the functions / 1 and / 2 which define the 

optimal model. 

The second base excitation, ~(t), shown in Fig. 3.2, is the N-S component of the 

1940 El Centro earthquake, which serves as the verification excitation. The response of the 

optimal model to this excitation is compared with that of the original system to the same 

excitation. A favorable comparison is an indication that the optimal model is an adequate 

mathematical representation for the original system. 

3.3.1 Example 1: The Wen-Bouc hysteretic system 

A system whose hysteretic behavior is governed by the Wen-Bouc model (Eqn. 2.38) 

is considered with the following values of the parameters: the ratio k/m=lO.O, post-yielding 

stiffness ratio a=O.IO, viscous damping coefficient c=O.O, A=l.O, {3=30.0, r=-20.0, 

n=l.5. For these values of the parameters, the maximum or yield value of z is about 0.074. 

When this system is subjected to the identification excitation ~ (t), its response 

displacement and velocity are as shown in Fig. 3.3. Substitution of u and u in Eqn. (3.5) 
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yields z and hence i. Eqn. (3.6) can then be used to obtain the identification data for / 1 and 

/ 2 , which are used in the determination of the coefficients a; and b;. 

The identification data for / 1 thus obtained are shown in Fig. 3.4; also shown in the 

figure is Jl' the optimal polynomial fit for / 1 when N=3 (third-order polynomial). 
~ 

Similarly, the identification data for / 2 and the corresponding best fit, / 2 , are shown in 
~ ~ 

Fig. 3.5. / 1 and / 2 are found to be 

f1(z) = 0.975- 4.660z -76.647z2 -726.313z3 

fiz) = 0.976+ 4.598z-76.800z2 + 738.973z3 

(3.16.1) 

(3.16.2) 

e, a measure of the goodness-of-fit between the actual function, /;, and the 

approximate one, ]; , can be obtained in the following manner. Define e 1 and e 2 as 

(3.17.1) 

and let 

(3.17.2) 

where zj,j=1,2,3, .... ,n are then data points at which the identification data are available. 

In this example, e is found to equal 0.043. 

To determine how satisfactorily the optimal model predicts the response behavior of 

the original Wen-Bouc system, the optimal model and the original system are subjected to 

the verification excitation, a2 (t), and the displacement, velocity and hysteretic restoring 

force diagram are plotted in Figs. 3.6, 3.7 and 3.8, respectively. It can be seen that the 

prediction by the optimal model of the response of the original system is very good. 
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3.3.2 Example 2: The Bilinear hysteretic system 

The bilinear hysteretic system (Eqn. 2.2) is considered next with the following values 

of the parameters: the ratio k/m=10.0, post-yielding stiffness ratio a=O.lO, viscous 

damping coefficient c=O.O and the slip level uY=0.08. The maximum or yield value of z is 

thus 0.08. 

When subjected to the identification excitation, ~ (t), the displacement and velocity of 

this system are as shown in Fig. 3.9. As in Example 1, the identification data for f 1 and f 2 

are evaluated, and the results shown in Figs. 3.10 and 3.11, respectively. The functions, 

] 1 and ] 2 , the optimal polynomial fits for f 1 and f 2 , are also shown in the corresponding 

figures for N=6 (sixth-order polynomial). A higher-order polynomial is required here in 

order to capture the step discontinuity in the functions f 1 and f 2 • The goodness-of-fit 

parameter, e, is found to equal 0.374. 

If a further reduction in the value of e is desired, N would have to be increased. 

There are three reasons why a large N is undesirable. Firstly, as N becomes very large, the 

number of parameters required to describe the optimal model becomes large as well. Since 

the objective of the identification process is to obtain simple optimal models, which can be 

described by as few parameters as possible, N should be kept small. Secondly, the higher 

the order of a polynomial, the more rapidly it oscillates within any interval, and the 

polynomial interpolation between data points may lead to misleading values of the target 

function. Thirdly, when N is large, noise in the data can significantly alter the optimal 

polynomial. 

The displacement and velocity prediction of the optimal model when subjected to the 

verification excitation, ~(t), are compared with the displacement and velocity of the 

original bilinear system to the same excitation in Figs 3.12 and 3.13, respectively. It can be 

seen that agreement is very good, even though the value of e is relatively large when 

compared to Example 1. 
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The hysteretic restoring force diagrams for the bilinear system and the corresponding 

optimal model are as shown in Fig. 3.14. The agreement in the hysteretic behavior is quite 

satisfactory. A couple of remarks may be made here regarding the hysteresis loops of the 

optimal model. The approximation of the functions It and 12 by their polynomial 

counterparts ft and ] 2 causes the following two effects: 

(1) The transition to yield occurs smoothly, unlike the case of the bilinear system, which 

has a sharp yield transition. 

(2) The maximum or yield value of z is about 0.09, while that of the bilinear system is 

0.08. This is because, in the case of the bilinear system, It is zero for z~0.08. But the 
A 

corresponding polynomial It is zero only for z greater than about 0.09. For values of z 
A 

between 0.08 and 0.09, the extrapolation of It yields nonzero slopes of the restoring 

force loops. 

As the value of N becomes large, the extent of these two effects is likely to increase. 

3.3.3 Example 3: The Distributed Element hysteretic system 

Unlike the Wen-Bouc and the Bilinear hysteretic systems, the slopes of the hysteretic 

branches in the response of the Distributed Element system do not depend only on z, the 

normalized hysteretic force, but also on the previous history of the response. That is, the 

Distributed Element hysteretic systems do not have a representation of the type described 

by Eqns. (3.1) and (3.2). Given this, it will be interesting to examine how well the 

identification method works in this case. 

Consider the Distributed Element system whose initial loading curve is given by 

z = z,(l- e _ .. ,..,) for u ~ 0 (3.17) 

Once the initial loading curve is known, the hysteretic behavior of the system for 

subsequent loading is given by the Extended Massing's hypothesis. For this example, the 

values of the system parameters are: the ratio k/m=10.0, post-yielding stiffness ratio 
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a =0.10, viscous damping coefficient c=O.O and uY =zy=0.03. The maximum or yield value 

of z is thus 0.03. 

When subjected to the identification function ~ (t), the displacement and velocity of 

the system are as shown in Fig. 3.15. As in the previous examples, u, u and i are used to 

obtain the identification data for / 1 and / 2 , which are then plotted against z in Figs. 3.16 
A A 

and 3.17, respectively. The functions / 1 and / 2 , the best polynomial fits for / 1 and / 2 , 

respectively, for N=3 are also shown in the figures. The goodness-of-fit parameter, e, for 

this example is 0.198. As discussed in the previous example, e may be reduced by 

increasing N, but a large N is considered undesirable for reasons already explained. 

The Distributed Element system and the corresponding optimal model are subjected to 

the verification excitation llz(t), and the response displacement and velocity are plotted in 

Figs. 3.18 and 3.19, respectively. It can be seen that the essential features of the 

displacement response are preserved by the optimal model, but the agreement is not as 

good as in previous examples. In contrast, the velocity prediction by the optimal model is 

very good; it will be seen from the results of later chapters that the velocity prediction of an 

endochronic model is usually more reliable than the displacement prediction. 

The restoring force diagrams of the Distributed Element model and the corresponding 

optimal model are shown in Fig. 3.20. Two distinct features may be observed in the 

behavior of the optimal model. Firstly, the restoring force behavior of the optimal model 

sometimes exhibits partial closure as well as nonclosure of loops, and secondly, its 

hysteresis loops enclose larger areas, indicating larger energy dissipation. Such features in 

the hysteretic behavior of these models will be examined in greater detail in Chapters 4 and 

5. 

The identification method can be thought of as yielding the optimal or best fit 

endochronic representation for the Distributed Element system. Similarly, the identification 

method proposed in this chapter yields optimal endochronic model representations for real 
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systems for which data measurements are available. It must be realized that the original 

Distributed Element system is only approximately represented by the optimal model 

obtained by the identification procedure. However, the representation so obtained is the 

optimal or the "best-fit" endochronic model for the original system in the least-squares 

sense. 

3.4 Conclusion 

A relatively straightforward method has been proposed for the identification of single­

degree-of-freedom, nonlinear dynamical systems. Some of the significant advantages of 

this method are as follows: 

(1) Parametric identification techniques usually evaluate the optimal system parameters by 

minimizing an error that is defined in terms of the time history of the structure's 

response. This approach has a numerical disadvantage in that it requires the solution of 

a differential equation each time the error is calculated. The method described in this 

chapter has a computational advantage since the minimization is based on the restoring 

force behavior of the structure. Therefore, the execution time requirements of the 

method are relatively modest. 

(2) Even though the identification data may be available only over a certain range of the 

system response, the extrapolation of the polynomials determined serves as a rational 

method for the extension of the model to a wider range of the response. 

(3) There is no restriction on the type of excitation that can be used for the purposes of 

identification. For best results, however, the identification excitation must be such that 

the identification data on / 1 and / 2 must be available over most of the range of values 

that the normalized restoring force, z, can assume. 

(4) The procedure is also applicable to nonlinear, nonhysteretic systems, for example, the 

Duffing's oscillator. In this case, the technique is simplified if the information of the 
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nonhysteretic nature is known a priori, because the fact that / 1 = / 2 implies that only one 

of these functions needs to be identified. 

(5) The method has a fast convergence property, and a small value of N is usually enough 

to provide satisfactory results. 

(6) The identification technique used to determine the coefficients a; and b, are not very 

sensitive to the noise in the data because a minor scatter in the data does not drastically 

alter the optimal polynomial fit to the data when N is small. 

(7) This method offers a simple means for determining the optimal endochronic 

representation to hysteretic systems. For instance, Example 3 showed how such a 

representation can be obtained for the Distributed Element hysteretic system. 

(8) Once the optimal model representation is obtained for a hysteretic system, it can be used 

in conjunction with the theory of equivalent linearization to yield approximate statistics 

on the response of the original hysteretic system when subjected to stochastic 

excitation. 
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The identification base excitation at(t), which is a sinusoidal function 
with a linearly increasing amplitude . 
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The verification base excitation a:z(t), which is the N-S component of the 
1940 El Centro earthquake. 
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The displacement and velocity of the Wen-Bouc hysteretic system when 
subjected to the idenlificatioo exciultion. at(t). 
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Figure 3.4: The identifacation data for ft and the optimal polynomial fit for the data 
when the Wen-Boac hysleietic system is subjected to the identifiCation 
excilation, a1 (t). 
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Figure 3.6: The displacement response of the Wen-Bouc hysteretic system and the 
corresponding optimal model when subjected to the verification 
excitation,iJl(t). 
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Figure 3.8: The hysteretic restoring force diagram for (a) the Wcn-Bouc hysteretic 
system (b) the COD'l'8pODding optimal model when each is subjected to the 
verification cxciWion. a'lf...t). 
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The displacement and velocity of the bilinear hysteretic system when 
subjected to the identification excitation. a 1(t). 
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Figure 3.10: The identification data for ft and the optimal polynomial fit for the data 
when the bilinear hysteretic system is subjected to the identification 
excitation, at (t). 
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Figure 3.12: The displacement response of the bilinear hysteretic system and the 
corresponding optimal model when subjected to the verification 
excitation, az(t). 
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Timet 

The displacement and velocity of the Distributed Element hysteretic 
system when subjected to the identification excitation. at(l). 
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Figure 3.18: The displacement response of the Distributed Element hysteretic system 
and the corresponding optimal model when subjected to the verification 
excitation. a2(t). 
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Figure 3.19: The velocity response of the Distributed Element hysteretic system and 
the corresponding optimal model when subjected to the verification 
excitation. a2(t). 
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Displacement u 

(a) 

Displacement u 

(b) 

Figure 3.20: The hysteretic restoring force diagram for (a) the Distributed Element 
hysteretic system (b) the corresponding optimal model when each is 
subjected to the verification excitation. a2(t). 
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CHAPTER 4 

COMPARATIVE STUDY OF THE QUASI-STATIC 

PERFORMANCE OF TWO HYSTERETIC MODELS 

4.1 Introduction: 

In Chapter 2, two classes of curvilinear hysteretic models were described. The first is 

of the distributed element or assemblage type and the second is of the differential equation 

type where one additional state variable is introduced in the formulation along with a first­

order, nonlinear differential equation that this state variable satisfies. The models belonging 

to the latter class are also referred to as endochronic models on account of their behavior's 

being similar to that of the endochronic models used in plasticity. For this reason, the 

second class of models is herein interchangeably referred to as the endochronic class of 

hysteretic models. 

Certain undesirable behavior exhibited by the endochronic models has been pointed 

out previously [24,36,44]. However, Wen, Ang, Baber, Casciyati and others have used 

these models extensively for various applications such as: 

• Response analysis by the method of equivalent linearization [10,54], 

• Damage evaluation of buildings and the supporting soil systems [54], 

• Liquefaction of sand deposits [54], 

• System identification of deteriorating systems [46], 

• Random vibration of hysteretic systems under bidirectional ground motion [37], 

• Nonzero mean random vibrations [5], etc. 

The above list is by no means comprehensive: It is given here merely to serve as an 

indication of how widely used the endochronic formulation has been in structural 

dynamics. 
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This chapter performs a comparison of the hysteretic restoring force behavior of the 

two classes of curvilinear models by carrying out a set of quasi-static tests. These tests 

pertain to cycling between fixed displacement limits as well as cycling between fixed force 

limits. This is similar to the cycling of a specimen between fixed strain and stress limits, 

respectively, in a physical experiment. The results of these tests show some decidedly 

nonphysical behavior on the part of the endochronic models. 

In carrying out these analyses, the two models are adjusted to have identical initial 

loading curves so as to facilitate direct comparison. For the Distributed Element model, the 

extended Massing's hypothesis formulation is used because of the relative ease of 

numerical implementation. 

4.2 Hysteretic model representations: 

The history dependence of the restoring force behavior of a system is characterized by 

the z-u diagrams, where z is the normalized hysteretic force as in Chapter 2 and u is the 

displacement of the system. The z-u relationship for various hysteretic models is given in 

Chapter 2. In the case of the Wen-Bouc differential equation model, Eqn. (2.38) for n=l, 

v=l.O, 7]=1.0 may be written in the following form: 

dz 
- = A- {3zsgn(du) + yz 
du 

(4.1) 

where f3 , y , A are parameters that control the nature of the hysteretic loops. Given a 

variation in u or z, the corresponding variation in the other may be obtained in closed form 

by integration of this equation. 

In the case of the Distributed Element model in its extended Massing's formulation, z 

is obtained by 

z-ZN =¢(u-UN) forN;eO 
2 2 

(4.2.1) 

z = <fJ(u) for N = 0 (4.2.2) 
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where U = {U1,U2,U3, ....... ,UNf is an array of N nested turning points which is updated 

continuously depending on the history of u in a manner described in Chapter 2 and where 

{Z1,Z2,Z3, ••••••• ,ZNf is the array of the normalized restoring force values at the 

corresponding turning points. Let z=¢ (u) be the initial loading curve for the model. In 

order to have the initial loading curve identical to the model in Eqn. ( 4.1 ), ¢ is defined as 

follows: 

where 

¢(u) = zy(l-e-utu,) for u;;:: 0 

¢(u)=-¢(-u) foru<O 

z., = A I (/3 - y) , u., = I I (/3 - y) 

(4.3.1) 

(4.3.2) 

(4.3.3) 

Given a variation in u or z, the corresponding variation in the other may be determined by 

means of a simple functional evaluation in Eqn. (4.2). 

In all the examples of this chapter, the following values are used for the model 

parameters: A=l.O, f3 =0.6, r=-0.4. For these values of the parameters, z.,=u.,=l.O. The 

initial loading curve has a slope of unity at the origin and rises exponentially to a maximum 

or yield value of unity. 

The hysteretic energy dissipated by the models, E, is defined as: 

E= J zdu (4.4) 

Thus, for a closed loop in the z-u plane, the value of E equals the area enclosed by the 

loop. 

In what follows, the Wen-Bouc differential equation model is referred to as the W-B 

model and the Distributed ELement model with the identical initial loading curve, as the 

DEL model. 
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4.3 Cyclic loading between fixed displacement limits: 

As noted earlier, the cyclic loading of the models between fixed displacement limits 

simulates the displacement-controlled testing of the corresponding specimens between fixed 

displacement (or strain) limits in a physical experiment. Two different cases are examined 

here, one in which the loading is between symmetric limits and another in which the 

loading is between asymmetric limits. 

4.3.1 Symmetric cyclic loading: 

The following loading sequence is carried out on the two models, which are both 

assumed to be in the virgin state: Each model is loaded until the displacement has a value of 

1.5, and then is cycled between the displacement values of 1.5 and -1.5. 

Fig. 4.1 shows the manner in which the normalized restoring force, z, of the two 

hysteretic models behaves for this loading pattern. The following remarks can be made 

regarding the hysteretic behavior of the two models: 

(1) From Fig. 4.la, it is seen that the DEL model settles to a stable, closed loop after just 

one load cycle. In the case of the W-B model, since the system returns to 3 instead of to 

1 after one cycle, there is a nonclosure of the loop. However, after one more cycle, the 

loop is essentially closed. For further cycling, the system settles to the stable loop 343. 

Thus, for displacement loading between fixed symmetric limits, the W-B model 

exhibits curvilinear, closed hysteresis loops in the steady state. 

(2)Unlike the case of the DEL model, it may be noted that the turning points of the stable 

loop for the W-B model do not lie on the initial loading curve. For cyclic loading 

between the displacement limits ±uA, the normalized restoring force values 

corresponding to the turning points of the stable cycle, ± z A, can be shown to satisfy 

the equation 
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1 z 1 z 
--log[1+....d.(,B + y)]- log[1-....d.(,B- y)] for r * p 
(/3 + y) A (.8 - y) A 

2uA = 
1 R Z, Z ~ f R (4 5) -log[l + 2p ....!!. J + -"' or r = 1-' • 

2/3 A A 

Let the locus of points, (uA,z11 ), be defined to be the turning point curve for the W-B 

hysteretic model, with an odd extension being made about the origin as in the case of 

the initial loading curve. The turning points or the load reversal points of the W-B 

model for cycling between fixed, symmetric displacement limits lie on the turning point 

curve in the steady state. As uA becomes very large, the turning point curve tends to zY, 

the same value as the initial loading curve. The turning point curve for A=l.O, f3 =0.6, 

y=-0.4, is shown in Fig. 4.lb. 

(3) It can be seen that the W-B model exhibits a stiffness-increase or stiffening, which is 

apparent from the rotation of the initial loops to a stiffer stable loop. Such a stiffening 

feature is not present in the DEL model. Thus, for the same displacement, the W-B 

model has a larger effective stiffness than the DEL model. This stiffening occurs for the 

the W-B model for all values of f3 and r, that is, for both softening and hardening 

systems. This claim can be verified in the following fashion. The slope of the initial 

loading curve satisfies 

dz 
-=A-z(.B-r) 
du 

(4.6.1) 

By differentiating Eqn. (4.5), the following expression can be obtained for the slope of 

the turning point curve: 

dz 2 
-=A+zy+O(z) 
du 

(4.6.2) 

At z=O, the slopes of both curves is A. For very small values of z, the turning point 

curve has a slope larger then the initial loading curve if f3 >0. The condition f3 >0 is 

essential in the W-B model because it alone ensures that the unloading stiffness is larger 
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than the loading stiffness at a load reversal point. Thus, the turning point curve has a 

larger slope than the initial loading curve for small values of z and u. Recalling that both 

curves tend to zY for large displacements, it can be seen that the turning point curve 

rises faster to its asymptotic value than the initial loading curve. Therefore, for the same 

displacement, the turning point curve has a larger vertical ordinate than the initial 

loading curve. This causes a rotation in the counter-clockwise direction from the initial 

loops to the stable closed loop for cycling between symmetric displacement limits, thus 

resulting in the stiffening. 

Such stiffening is not very commonly observed in physical systems. The W-B 

model cannot be used satisfactorily to model systems that do not stiffen in the fashion 

that the mathematical model does. 

(4) The next observation from Fig. 4.1 pertains to the energy-dissipation characteristics of 

the two systems on repeated cyclic loading. The area enclosed by the stable loops, 

which yields the energy dissipated by the hysteretic systems, is evidently larger in the 

case of the W-B model. Evaluation of E for the two models shows that the W-B model 

dissipates 1.67 times as much energy per cycle as does the DEL model. Fig. 4.2 shows 

the ratio of the energy dissipated by the W-B model to that dissipated by the DEL model 

plotted against the amplitude of the displacement cycle, uA. The ratio has a peak at a 

value of uA of about 1.5, drops sharply to 1.2 as uA tends to 0 and drops gradually to 1 

as u ... becomes very large. Using Eqns. (4.1) and (4.5), it can be shown that the energy 

ratio tends to 2/3 I ({3- y) as UA tends to 0, which is 1.2 for {3 =0.6, r=-0.4. As UA 

becomes very large, the ratio tends to 1 because the stable loops of both models tend to 

a parallelogram with two parallel sides that are of length 2u A, the distance between them 

being 2. 

There are two factors that contribute to the overestimation of energy dissipated 

by the W-B model. The first factor is that for the ratio of {3 I y =-1.5 selected for the 
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present analysis, the W-B model has unloading stiffnesses that are larger than those for 

the DEL model. The second factor is that the W-B model exhibits stiffening, the 

amount of which is proponional to the vertical distance between the turning point and 

initial loading curves for the same displacement. As uA moves from 0 to a very large 

value, this distance varies from 0 to a maximum value and back to 0 (Fig. 4.lb), which 

may account for the similar variation of the ratio of energy dissipated. Such an 

overestimation, though not to the same magnitude, will be shown in Chapter 5 to occur 

in dynamic problems as well. 

4.3.2 Asymmetric cyclic loading: 

Consider the following loading sequence carried out on the two models, which are 

again assumed to be initially in a virgin state: Each model is loaded along the initial loading 

curve until the displacement has a value of 1.5, and is then cycled between the displacement 

values 1.5 and 1.0. 

Fig. 4.3 shows the behavior of the restoring force of the DEL and W-B models when 

subjected to the above loading sequence. The following remarks can be made regarding the 

hysteretic behavior of the two models: 

(1) The DEL model settles to a stable loop after just one load cycle, while the W-B model 

requires many cycles before it settles to its stable loop. 

(2) One of the most significant differences in the response of the two models is in the 

observed force relaxation in the case of the W-B model. While the average value of the 

normalized force of the DEL model for one load cycle is about 0.556 for the loading 

sequence considered, the corresponding value for the W-B model is 0. The fact that 

there is a force relaxation in the W-B model is itself not a matter of great concern; this 

phenomenon has been reported during high cyclic fatigue by Morrow and Sinclair [33]. 

However, there are two major differences between the W-B model and normally 
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observed force relaxation. Firstly, the experimentally observed loops close partially 

during the asymmetric cycling, whereas this is not always so for the W-B model; for 

instance, loop 123 does not close at 2 at all. Secondly, the physical systems that do 

exhibit force (or stress) relaxation do not necessarily settle to a zero mean force value. 

One serious disadvantage in the use of the W-B mcxiel can therefore be seen to be 

the in built tendency of the model to cause a force relaxation. For physical systems that 

do not exhibit the phenomenon, the use of the W-B model may result in inaccurate 

analysis. 

(3) During the first cycle of loading, the DEL model moves from 1 to 2 and back to 1 

(Fig.4.3a), dissipating positive energy equal to the area enclosed by the closed loop. In 

comparison, the W-B model moves from 1 to 2 to 3 (Fig. 4.3b) during the same 

displacement cycle, dissipating negative energy in the process. The amount of negative 

energy dissipated equals the area of the hatched region in Fig. 4.3b. This is a direct 

violation of the Ilyushin's postulate, which stipulates that positive energy be dissipated 

in any displacement (or strain) cycle. More discussion of this violation follows later in 

this chapter. 

It may be noted, however, that the Ilyushin's postulate is violated only for the 

first few cycles and that the W-B model dissipates positive energy in the steady state 

(after a large number of cycles). 

(4) The stable loop in the W-B model has a larger average stiffness than the loop in the 

DEL model. This is not readily apparent for the loading case considered, but becomes 

clearer for larger amplitudes of the load cycle. For instance, Fig. 4.4 shows the stable 

loops of the two models when cycled between the displacement limits of 2 and 4. The 

larger average stiffness of the stable loop of the W-B model is readily apparent. 

Similarly, it can be observed from the areas enclosed by the loops in Fig. 4.4 that the 

W-B model also dissipates more energy than the DEL mcxiel. 
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(5) As a final remark, the values of the normalized restoring force of the W -B model 

corresponding to the load reversal points of the stable loop, ± z A., for cycling between 

the displacement limits ~ and ~ can be obtained by substituting uA. = ~~ - Uzl I 2 in 

Eqn. (4.5). That is, the steady-state loops of the W-B model for cycling between the 

displacement limits ±I~ - Uzl I 2, and for cycling between the limits u.. and ~, are 

identical except for a translation in the horizontal direction by (~ +~)I 2. 

4.4 Cyclic loading between fixed force limits: 

The cyclic loading of the models between fixed force limits simulates the force­

controlled testing of the corresponding specimens between fixed force (or stress) limits in a 

physical experiment. Two different cases are examined here, one in which the loading is 

between symmetric limits and another in which the loading is between asymmetric limits. 

4.4.1 Symmetric cyclic loading: 

The following loading sequence is carried out in the two models that are assumed to 

be initially in the virgin state: Each model is loaded along the initial loading curve until the 

normalized force level is 0.75 and then is cycled between the force levels of 0.75 and 

-0.75. 

Figure 4.5 shows the behavior of the hysteresis loops of the two models. The 

following observations may be made about the hysteretic behavior of the two models: 

(1) Both models settle to a closed, stable loop after only one load cycle. This is unlike the 

case of cycling between symmetric displacement limits, where the W-B model took a 

few cycles to settle to the stable loop. 

(2) The stiffness of the stable loop of the W-B model is, on an average, larger than that of 

the DEL model. 
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(3) The amplitude of the displacement cycle for the W-Rmodel, ut\, can be obtained by 

substituting the value of the amplitude of the force cycles, zt\, in Eqn. ( 4.5). For the 

loading sequence considered, zA =0.75, and uA from Eqn. (4.5) is 1.04. 

( 4) The average value of the displacement of the DEL model for each load cycle is 0. This 

is not so for the W-B model. If the average value of the displacement of the W-B model 

for each load cycle is il, and u A is the value of the amplitude of the displacement cycle, 

then il is given by 

il = -u A - uY log(l - z A) 
zY 

(4.7) 

There is thus a "drift" with respect to the origin in the displacement of the W-B model 

that is not observed in the DEL model. It is clear that the W-B model is not suitable for 

the modeling of a system when the displacement response of the system is expected to 

respond cyclically between symmetric limits when the system is subjected to force load 

cycles between symmetric limits. 

(5) The energy dissipated by the W-B model is only 0.82 times that dissipated by the DEL 

model when the models are cycled between the z limits of ±0.75. 

Fig. 4.6 shows the ratio of the energy dissipated by the W-B model to that 

dissipated by the DEL model plotted against the amplitude of the force cycle. This ratio, 

as in Sec. 4.3.1, can be seen to tend to 1.2 for very small values of zA. For values of 

ZA tending to 1, the ratio tends to 0.5 for all values of f3 and r. This is because, as UA 

becomes very large, the stable loop of the W-B model tends to a parallelogram with two 

parallel sides that are of length 2uA, the distance between them being 2; the 

corresponding quantities of the DEL model being 4uA and 2 where the value of uA is 

obtained by substituting z A in Eqn. ( 4.5). For f3 I r =-1.5, there is an interval where the 

energy dissipated is overestimated by the W-B model and one where it is 
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underestimated. For amplitudes of the force-load cycles tending to unity, the energy 

dissipation of the W-B model is quite inadequate. 

4.4.2 Asymmetric cyclic loading: 

It is when the W-B model is subjected to cyclic loading between asymmetric force 

limits that one of the most nonphysical features of the W-B model becomes most evident. 

Consider the following loading sequence on the two models: Each model is loaded along 

the initial loading curve until the normalized force level reaches a value of0.75, and is then 

subjected to cycles between the force levels of 0.75 and 0.25. 

Figure 4. 7 shows the manner in which the hysteresis loops behave for the two 

models. The following observations may be made about the hysteretic behavior of the two 

models: 

(1) The DEL model in Fig. 4.7a settles to a stable loop after just one load cycle, while the 

W-B model in Fig. 4.7b never does. As a matter of fact, there is no stable loop for 

W-B model for such a loading situation. 

The reason for the absence of the stable loop in the case of the W-B model can be 

explained in the following manner: Firstly, the W-B model, by its very formulation, 

namely Eqn. (4.1), does not distinguish between initial loading and reloading. That is, 

the stiffness of the model during reloading is precisely the same as during initial 

loading, for the same value of z, the normalized force. In Fig. 4.7b, for instance, the 

initial loading path AB and the reloading path CE have the same value of the slope, 

dzldu. Secondly, f3 >0 ensures that the W-B model has a larger slope for unloading 

than for reloading or unloading at any z. For instance, at Bin Fig. 4.7b, the slope of 

the initial loading path OAB is less than that of the unloading path BC. 

The combined effect of these two factors is to cause a loop nonclosure at C. The 

slope of the reloading path CE at C is the same as the slope of AB at A, and this is less 
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than the slope of the unloading path BC at C. Thus, there is not even a partial closure of 

the loop. It can be seen that on completion of one load cycle, the system returns to E 

instead of to B, thus resulting in a "drift" d per cycle with respect to the displacement of 

the system at the stan of the load cycle, as shown in the figure. The curves CE and AB 

are identical except for a translation in the horizontal direction by d. Similarly, the 

unloading paths EF and BC are identical except for the same translation. The larger the 

number of such cycles the W-B model is subjected to, the larger, will be the 

displacement of the system, since the drift increases by d for each additional load cycle. 

(2) The stiffness of the reloading paths (when z goes from 0.25 to 0.75) is less for theW­

B model than for the DEL model, resulting in a stiffness deterioration. 

(3) Fig. 4.8 shows the hysteretic behavior of the W-B model for one load cycle between 

arbitrary, fixed, asymmetric force limits of z1 and z2 (where z1 > z2 ~ 0). It can be seen 

that as in the case of the cycling between asymmetric displacement limits, the Ilyushin's 

postulate is violated by the model for the path BCD, during which the displacement 

executes one cycle. The energy dissipated during this cycle is -A1 (where ~ is the area 

of the region i, i=l ,2 ,3 ,4), which is less than 0. The DEL model undergoes a closed 

loop during the same displacement cycle, and dissipates energy equal to the area 

enclosed by the loop. Therefore, the DEL model satisfies the ilyushin's postulate. 

The Drucker's postulate requires that the following inequality be satisfied for 

every force (stress) cycle from z1 to z2 and back to z1: 

J (z- z1)du ~ 0 (4.8) 

A simple geometric evaluation of the integral in the above inequality for the path BCE in 

Fig. 4.8 yields the value of the integral to be-(~ +Az), which is less than 0. Thus, the 

Drucker's postulate is violated. More discussion on this will follow later in this chapter. 
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In the case of the DEL model, the integral in inequality (4.8) equals the area 

enclosed by the stable loop in Fig. 4.7a. Thus, the DEL model satisfies the Drucker's 

postulate. 

The violation of these two postulates by the W-B model does not necessarily 

mean that the model will have a negative value of E, the energy dissipated as defmed in 

Eqn. (4.4), during each force-load cycle. This is so because the value of E for the path 

BCE, corresponding to the behavior of the system during one force-load cycle, is (A4 -

A1 ), which is not necessarily negative. For instance, for the loading sequence BCE, the 

value of E for the W-B model is 0.373 and for the DEL model is 0.014 (the area 

enclosed by the closed loop in Fig. 4.7a). 

For the case n=l of the W-B model, the value of d, the drift per cycle for a force-load 

cycle from z1 to z2 and back to z1 (where z1>z2 ) can be obtained by the following equation: 

d= 

(4.9) 

This equation is derived from an integration in closed form of Eqn. (4.1) for the force-load 

cycle. Fig. 4.9 is a three-dimensional representation of the absolute value of d plotted 

against jz1j and jz2j for A=l.O, /3=0.6, r=-0.4. The following observations can be made 

with the help of the figure and the equation: 

(1) d=O when jz1l=lz21, that is, either when z2=z1 (trivial case) or when z2=-z1• Therefore, as 

was observed in Sec. 4.4.1, symmetric loading in z causes no drift. 

(2) There is a nonzero value of d for every asymmetric load cycle in z. 

(3) The value of d for a cycle between z' and z" ( z'> z" ~0) is the same as the value of d for 

a cycle between z' and -z". For instance, the behavior of theW -B model for z' =0.5, 
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z" =0.3, shown in Fig. 4.10, clearly illustrates this point. For the load cycle between 

the z values of 0.5 and -0.3, the path of the model is ABCBD, while for the load cycle 

between the z values of 0.5 and 0.3, the path is ABD. In both cases, the system has the 

same drift d, equalling the distance AD. 

(4) For a given value of z2 , it can be seen from Fig. 4.9 that d tends to very large values as 

z1 tends to 1. Thus, the W-B model yields very large displacement drift values when 

subjected to a nonzero mean force-load cycle if one of the limits tends to the yield level 

of the system. 

(5) For values of jz1j and jzJ between 0 and 0.15, it can be seen that the drift surface is quite 

flat. Thus, for loading between fixed force limits that are small when compared to the 

yield level, the values of d are also small. 

In an effort to make the W-B model satisfy the Drucker's postulate and to minimize 

the associated drifting, Casciyati [10] has proposed the model described by Eqn. (2.41), 

wherein a term oldulsgn(z) is added to the right-hand side of Eqn. (4.1), o being a 

parameter intended to control loop closure. Let z0 be defmed as follows: 

0 
z =-

0 f3 (4.10) 

Figure 4.11 shows the behavior of the hysteresis loops of the Casciyati model 

(A=O. 7 ,{3 =0.6, r =-0.6,8 =0.3 => Zo = 0.5) when subjected to load cycles between fixed, 

asymmetric, normalized force limits, z1 and z2 (z1 > z2 ). The following features may be 

observed from the figure: 

(1) For z1> z0 >z2 , it can be seen that the loops indeed do close, albeit partially. However, 

the partial loop closure does not necessarily guarantee that the Drucker's postulate will 

not be violated. To demonstrate this, the Drucker's integral in inequality (4.8) is 

evaluated by fixing z1=0.75, and letting z2 vary from 0 to z1, the result is plotted 

against z2 in Fig. 4.12a. It can be observed that for z2 less than about 0.35, the value of 
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the integral is greater than 0 and thus the Drucker's postulate is satisfied. However, for 

0.35<z2<0.50, the Drucker's postulate is violated even though the loops do close 

partially. 

For purposes of comparison, the Drucker's integral is also plotted for the W-B 

model in Fig. 4.12b for z2 between 0 and z1• This plot shows that the Drucker's 

integral is violated for the entire interval of z2 • 

(2) Consider the loading situation wherein each of the limits, z1 and z2 , is greater than z0 • 

In this case, the behavior of the Casciyati model shown in Fig. 4.11 is exactly the same 

as the W-B model and the added term,8JduJsgn(z), has no effect on cycles in z when 

both limits are above z0 (and by symmetry, below -z0 ) • 

(3) For z0 >z1>z2>0, it is seen that the loading-unloading behavior is quite nonphysical, 

with the unloading slopes being less than the loading and reloading slopes at load 

reversal points. This actually results in the model's yielding negative displacements 

when cycled between positive force limits, which is quite unrealistic. 

Considering the behavior of the Casciyati model in these three cases, it is arguable 

whether the model is really an improvement over the W-B model. Even though it does 

provide partial loop closure in certain loading situations, general dynamic loading is likely 

to contain other loading situations where the model is not as satisfactory. 

4.5 The Drucker's and Ilyushin's postulates: 

In earlier sections, it was seen that the W-B model may sometimes violate the 

Drucker's and Ilyushin's postulates. The implication of the Drucker's postulate's not being 

satisfied is that the W-B model is unstable in the sense that it can be disturbed from an 

equilibrium state by an external agency that does negative work. This point can be 

explained in the following manner: Consider the loading situation where the W-B model, 

initially in the virgin state, is loaded to an equilibrium state (ue,ze). This state corresponds 
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to the point B in Fig. 4. 7b. An external agency that causes the model to be disturbed from 

point B to point E via the path BCE has disturbed the equilibrium state of the system but 

has done negative work in the process. The fact that the ilyushin's postulate is not satisfied 

means that negative energy is dissipated by the system during certain displacement cycles. 

Rice points out that these postulates are separate from and do not arise as a 

consequence of the second law of thermodynamics [41]. He notes that they are instead 

nothing more than reasonable classifications of behavior for metals[ 40]. Even though it is 

true that these postulates are not strict physical or thermomechanical requirements for the 

behavior of real materials, it is arguable [44] that they play an important role in the 

construction of rational theories or models of material behavior for use in general dynamic 

problems. Sandler [44] performed a stability and uniqueness analysis of the simple 

endochronic model described in Sec. 2.3.5.1. It may be recalled that this model was 

constructed by starting with a one-dimensional Maxwell model and that its mathematical 

description is similar to the W-B model. Sandler raises serious doubts about the model by 

presenting examples of situations where 

(a) the Drucker's and ilyushin's postulates are violated 

(b) multiple numerical solutions exist for what should be a reasonable physical problem 

with a unique solution 

(c) introduction of small errors in initial and/or boundary conditions leads to rapid 

deterioration in the accuracy of the numerical solutions for subsequent computations. 

Sandler uses the fact that the model does not distinguish between initial loading and 

reloading to demonstrate an example of situation (b) and the tendency of the model to drift 

in displacement when subjected to nonzero mean stress cycles to illustrate an example of 

situation (c). It was seen earlier in this chapter how these same features in the response 

behavior of the W-B model also lead to the violation of the Drucker's and Ilyushin's 
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postulates. Violation of the postulates may thus be used to serve as an indication that other 

nonphysical behavior may also occur. 

TheW-Band Casciyati models, being similar in behavior to the model analyzed by 

Sandler, may also exhibit instances of (b) and (c) in certain loading situations. The 

presence of nonunique solutions may not be considered to be a matter of grave concern 

because there are physical systems that exhibit bifurcation and multiple solutions. Bardet 

[6] provides an example of dense sand which often switches in the triaxial test fr~m an 

uniform mode of deformation to a localized deformation along a shear plane. In this case, 

he points out that the Drucker's postulate must not be satisfied, because it is known from 

classical plasticity that the inequality being satisfied is a sufficient condition to guarantee a 

unique solution. However, in structural dynamics, unique solutions are expected to exist 

for reasonable physical problems and hence the possibility that the endochronic models 

may yield nonunique solutions is alarming. 

In summary, it may be concluded that the violation of the postulates by a hysteretic 

model is an indication that the model may have the tendency to exhibit nonphysical 

behavior in certain loading situations. The satisfaction of the postulates could be used as a 

rational basis in the construction of mathematical models for hysteretic behavior. It may be 

mentioned here that even the widely used Clough-Johnston hysteretic model [14] also 

violates the Drucker's postulate in certain loading situations. 

4.6 Conclusion: 

The quasi-static loading situations considered in this chapter clearly demonstrate 

certain differences in the response of the endochronic models from observed physical 

behavior of hysteretic systems. The W-B model, which was chosen as characteristic of the 

class of endochronic models, exhibits a tendency to drift, to have unclosed or partially 

closed hysteretic loops, to cause a force or stress relaxation, and to have a different energy-
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dissipation behavior. In addition, the models may not obey the Drucker's and Ilyushin's 

postulates, thereby possibly yielding inaccurate numerical solutions and/or nonunique 

solutions. It may be mentioned here that the quantitative results of this chapter have been 

established only for A=l.O,,B =0.6, r=-0.4. The qualitative nature of the discussions 

regarding the behavior of the models for other values of the parameters is not expected to 

be much different. 

The tendency of the W-B model to drift may actually be beneficial in the modeling of 

certain physical behavior, for example, in the portrayal of cyclic creep behavior for cyclic 

loading with nonzero mean stress, or in the characterization of the settling of sand during 

cyclic loading. But for structural systems, the instability of the models leading to drifting 

and to the prediction of unusually large displacements is quite undesirable. Even though an 

ideal elastoplastic model can also lead to nonunique displacements under a yield load, it 

cannot be said that the endochronic model is no more unstable than the elastoplastic model 

for the following reasons. The first reason is that the perfectly elastoplastic model has the 

instability only at the limit or yield load (which is quite consistent with physical systems), 

but the endochronic model exhibits the feature at all loads. The second difference is that 

small amplitude, displacement-controlled cycles cause a force relaxation eventually to a zero 

mean value in the case of the endochronic model, while they cause well-behaved, stable 

force levels in the elastoplastic system. 

Further analysis on the suitability of the endochronic model for physical systems is 

examined in the next chapter where a dynamic analysis is conducted. 
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The hyste~etic restoring force behavior of (a) the DEL model (b) the W-B 
model when cycled between fiXed. symmetric displacement limits. 
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Amplitude of displacement cycles 

Ratio of the energy dissipated by the W-B model to that dissipated by the 
DEL model for cyclic loading between fixed. symmetric displacement 
limits. 
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Figure 4.3: The restoring force behavior of (a) the DEL model (b) the W-B model 
when cycled between fixed. asymmetric displacement limits. 1 and 1.5. 
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Displacement u 

/ 

The stable loops corresponding to the two hysteretic models when cycled 
between the ftxed. asymmeuic displacement limits, 2 and 4. 

---DEL Model 
---W-B Model 

Displacement u 

The hysteretic behavior of the two models when subjected to cycling 
between fixed, symmeuic force limits. 
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Amplitude of force cycles 

Ratio of the energy dissipated by the W-B model to that dissipated by the 
DEL model for cyclic loading between fixed, symmetric force limits. 
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A 

Displacement u 

(a} 

H the drift per cycle 

B E z, 

Displacement u 

(b) 

The hysteretic behavior of (a) the DEL model (b) the W-B model when 
subjected to cycling between fiXed. asymmetric force limits. 
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E 

--- z~--

Displacement u 

Figure 4.8; The hysteretic behavior of the W-B model when subjected to one load 
cycle between fvted. asymmetric force limits. 
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Figute 4.9: nuee--ion>l plot of \d\, the alJsOI.utO value of drift per non=<l 
mean cycle betWeen the fu.ed funits z1 and zz. 
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Figure 4.10: The behavior of the drift of the W-B model when subjected to one load 
cycle between fixed, asymmetric force limits. 
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The hysteretic behavior of the Casciyati model when subjected to load 
cycles between fued, asymmetric force limits. 
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Figure 4.12: The Drucker's integral for (a) the Casciyati model (b) the W-B model 
when subjected to a load cycle in z from zt to z2 and back to zt. The 
value of Zt is 0.75. 
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CHAPTER 5 

COMPARATIVE STUDY OF THE DYNAMIC PERFORMANCE 

OF TWO HYSTERETIC MODELS 

5.1 Introduction: 

In Chapter 4, a set of quasi-static tests was performed on two classes of curvilinear 

hysteretic models, namely, the Distributed Element type and the endochronic type. The 

results presented indicated the difference in the behavior of the hysteretic restoring force 

diagrams for the two classes of models in such features as loop closure, force relaxation, 

energy dissipation and drift. In addition, it was shown that the endochronic models may 

sometimes violate the Drucker's and Ilyushin's postulates. Such decidedly nonphysical 

behavior exhibited by these models has also been pointed out previously [24,36,44]. 

However, these models have been used extensively for various applications in dynamics, a 

few of which were listed in Chapter 4, with the most significant application being in the 

response analysis of hysteretic systems by the method of equivalent linearization [10,54]. 

So far, no systematic investigation has been undertaken to determine how 

appropriately the endochronic models represent real physical systems when subjected to 

dynamic excitations such as earthquakes. Most comparisons so far, including those in 

Chapter 4, have been carried out in a quasi-static manner and not dynamically where 

inertial, viscous and other effects are present. This chapter compares the two model 

responses when they are subjected to a variety of dynamic excitations, including 

deterministic functions, recorded earthquake time histories, stochastic excitation, and 

simulated earthquakes. The differences in some of the characteristic response quantities 

serve as a measure of how satisfactory the endochronic model representation is for physical 

systems. 
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In carrying out these analyses, the two models are adjusted to have identical initial 

loading curves so as to facilitate direct comparison. For the Distributed Element model, the 

extended Massing's hypothesis formulation is used because of the relative ease of 

numerical implementation. 

5.2 Hysteretic model representations: 

Let f(u,u,Z) be the total restoring force in a system (Fig. 5.1) because of u, the 

instantaneous relative displacement at instant t, u , the instantaneous relative velocity at 

instant t, and Z, a vector that accounts for the dependence off on the history of u up to 

the instant t. 

For a linear system, 

f(u,u,Z) = cu + ku (5.1) 

where c is the viscous damping coefficient, and k is the stiffness of the system. Since the 

restoring force is dependent only on instantaneous quantities in the case of a linear system, 

Z is the null vector. 

In the case of the Wen-Bouc differential equation model, 

f(u,u,Z) = aku + (1- a)kz + cu (5.2) 

where k is the initial stiffness of the system, cis the viscous damping coefficient and a is 

the ratio of the post-yielding stiffness to the initial stiffness. The only quantity accounting 

for history dependence is the instantaneous value of z, which itself satisfies 

i = Au - f3lu1z + ,Ulzl (5.3) 

Thus, Z = {z}. Eqn. (5.3) is obtained by setting n=l, V=1]=1.0 in Eqn. (2.38). 

The initial loading behavior in the positive direction (i.e., u > 0) is given by the 

equation 

(1 -N/U) z=z -e ' ., (5.4) 



-96-

where 

A 1 
u =---

y (/3- y) 
(5.5) 

zY = (/3- y) ' 

For (/3- y) > 0, the initial loading behavior as shown in Fig. 5.2 has a limiting value of zY 

and an initial slope of A, i.e., dzL =A. 
du =o 

The ductility factor of the response, f.1. , may be defmed with respect to uY as 

u 
f.l. = -.!!!. 

u>' 
(5.6) 

where u,. is the maximum absolute value of u, the response displacement to an excitation. 

To be capable of withstanding an excitation without failing, a structure must be designed to 

meet the ductility demand of the response that is due to the excitation. Generally speaking, 

the larger the value of f.1. that a structure can withstand without failing, the more ductile it 

is. This factor plays a dominant role in the seismic design of a structure. 

Popov [39] has reviewed experimental hysteresis loops for different structural 

members and subassemblages constructed from different materials like steel, reinforced 

concrete, etc. Maximum ductility demands of about 6.0 could be met by a steel cantilever 

beam with welded connections as well as by an eccentrically braced steel frame. A 

reinforced concrete cantilever beam and a framed reinforced concrete wall could meet 

maximum ductility demands of about 4.0 and 3.5, respectively. A ductility ratio of 4.0 is 

often used in design and analysis of structures, and this value has been adopted for several 

examples in this chapter. 

For the Distributed Element model in its extended Massing's hypothesis formulation 

(Differential form),/ satisfies Eqn. (5.2); i.e., 

f(u,it,Z) = aku + (1- a)kz +cit (5.2) 

where a , k and c have the same meaning as in Eqn. (5.2), and 
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. . [ (')(u-UN)] z=uljlsgnu 
2 

(5.7.1) 

U = {UpU2, ......... ,UNf is an array. of N nested turning points, which is updated 

continuously depending on the history of u in a manner set forth in Chapter 2. ljl is 

defined as 
-u/u 

Vf(u)=Ae ', ue(O,co) (5.7.2) 

In this case, Z ={z,U1,U2, ...... ,UNr. 

It may be recalled that if U is the null vector, as in the case of virgin loading, 

dz = Vf[usgn(u)], ue(-co,co) 
du 

(5.7.3) 

It can be seen that for initial loading in the positive direction ( u > 0), the two hysteretic 

models have the value of dz given by V' as defined in Eqn. (5.7 .2), leading to identical 
du 

initial loading behavior. 

In what follows, the Wen-Bouc differential equation model will be referred to as 

the W -B model, and the corresponding Distributed ELement model with the same initial 

loading curve as the DEL model. 

5.3: Simple structural models: 

5.3.1: Single-Degree-of-Freedom (SDOF) system: 

Consider the simple structural model as shown in Fig. 5.3. This model consists of a 

concentrated mass m in a gravitational field g at a height h above the ground. Assume that 

the restoring force in the horizontal direction, J, can be described as in Sec. 5.2, and that 

there is an external force F(t) acting on the mass. Assume also that there is a horizontal 

excitation a(t) applied to the base of the structure. Let u andy be the horizontal and vertical 

displacements of the mass, respectively. The equation of motion for u can be derived in the 

following manner: 



-98-

The Lagrangian of the system, L, can be written as: 

L = .!.m[(u + a
8

)
2 + YJ- mg(h- y) 2 . 

(5.8.1) 

where a, is the displacement of the ground; that is, ii
1
(t) = a(t). From the Lagrange's 

equations, 

!!... ( fJL) - fJL = net force in the horizontal direction, 
dr au au 

= F(t)- f(u,u,Z) (5.8.2) 

If () is the angle of rotation of the concentrated mass, the following relations can be written 

for u andy: 

u=hSin9, y=h(l-Cos9) (5.8.3) 

For small angles 9 , 

u = h9 and y = h92 I 2 => y = u2 I 2h (5.8.4) 

Using this result in the Lagrange's equation yields the following equation of motion for u, 

the horizontal displacement of the mass with respect to the ground: 

with 

mu + f(u,u,Z)- mg u = F(t)- ma(t) 
h 

f(u,u,Z) = aku + (1- a)kz +cit 

(5.9.1) 

(5.9.2) 

and z satisfies either Eqn. (5.3) or Eqn. (5.7), depending on the hysteretic model used. 

The first-order effect of the gravitational field is to cause a reduction in stiffness. 

There is thus a toppling effect, which may have a significant effect on the stability of the 

system. More will be said about this in Sec. 5.5.2. 

5.3.2 The Multi-Degree-of-Freedom (MDOF) system: 

A model for a multistory structure is shown in Fig. 5.4. Here the mass of the 

structure is concentrated at only a few characteristic points along its height, usually at each 
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floor. Neglecting gravity, and assuming that there is a horizontal base excitation a(t), the 

equations of motion for the interstory displacements ~.Uz, ...... ,u,. can be written as: 

j 

mi(a + IJii) + /j(uj,uj,Zj)- /i+1(ui+l•ui+t•Zi+l) = 0 for i=l ,2,3, .. ,(n-1) (5.10.1) 
j=l 

" 
m,.(a+ I,.u)+ /,.(u,.,u,.,Z,.) = o (5.10.2) 

j=l 

with each restoring force, fi , satisfying 

(5.10.3) 

zi satisfies either Eqn. (5.3) or Eqn. (5.7), and mj is the mass of the i""story. 

The equations of motion can also be expressed as: 

~ + _!__ /,(~ ~.Z1)- _!__ / 2(Uz il.z,Z2) = -a(t) (5.11.1) 
nit . m, . 

ui --
1
-fj-](uj_,,U.;_,,Zj_,) + C-

1
-+J_)/j(u;.ii.;,ZJ _ _!__ /i+l(ui+l•ui+l•zi+t) = 0 

mi-l mi-l mi mi 

for i=2,3, .... (n-l) (5.11.2) 

(5.11.3) 

where 

(5.11.4) 

5.4 Time integration procedure 

The time integration of the equations of motion is accomplished by writing these 

equations as a set of three frrst-order, ordinary differential equations (ODE) in the quantities 

u, u and z for each degree of freedom and then performing a fourth-order Runge-Kutta 

integration with adaptive stepsize control. The technique employed is best explained in the 

case of one independent variable, y, and one dependent variable, x. 



-100-

Let the system be 

~ =f(x,y) (5.12) 

where fis a known function of x andy. If y(x,.) = y,., then the function y at x,.+1 = x,. + h is 

estimated as follows: 

k, = hf(x,.,y,.) 

Is= hf(x,. + ~ ,y,. + ~) 

k:, = hf(x,. + ~ ,y,. + i) 
k4 = hf(x,. + h,y,. +k3) 

1 
Y,.+1 = Y,. + 6 (/s + 2k2 + 2k:, + k4) + O(h

5
) 

(5.13.1) 

(5.13.2) 

(5.13.3) 

(5.13.4) 

(5.13.5) 

In the case of a vector of unknown functions, a similar representation holds [17]. The 

fourth-order Runge-Kutta is very commonly used in ODE integration. 

Quite often, the step size h may be too large, and the truncation errors introduced may 

be unacceptable. In dynamics, this may occur, for example, when finding the response of 

an oscillator with a very short natural period compared to the integration time step h. A 

good ODE integrator should exercise some adaptive control over its own progress, making 

changes in step size, h, so as to keep the truncation error within bounds. The most 

straightforward technique for the control of h is step-doubling. Each step is traversed 

twice, once as a full step, and once as two consecutive half-steps. The following procedure 

is then used to determine whether the step size should be reduced. 

Let y(x+2h) be the exact solution for an advance from x to (x+2h), )i the approximate 

solution from Eqn. (5.13) for one step of size 2h, and y2 the approximate solution from 

Eqn. (5.13) for 2 steps of size h. Then, 
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y(x + 2h) = )i + (2h)5 4> + O(h6
) 

y(x + 2h) = ~ + 2h5 ¢ + O(h6
) 

(5.14.1) 

(5.14.2) 

The difference of the two numerical estimates, !1, is a convenient indicator of the 

truncation error 

(5.15) 

This error, !1, must be kept less than some specified tolerance by adjusting h. Since !lis 

proportional to h5 and a step 2 h results in an error !1, the required step size 2 flo for an 

acceptable error /10 can be estimated by 

(5.16) 

For /1 0 <11, Eqn. (5.16) provides an estimate of how much to decrease the step size when 

the present step is repeated. For /10 > !1, there is no need to decrease the present step size 

2h. 

For a system of first-order ODEs, the quantity !10 is actually a vector of desired 

accuracies, one for each dependent variable. Eqn. (5.16) is used to get an estimate for 2ho 

for each dependent variable, and the step size is decreased according to the smallest of the 

estimates. 

5.5 Example 1: SDOF Structure with a suddenly applied external load: 

5.5.1 Gravitational effects neglected: 

Consider an SDOF oscillator of the type described in Sec. 5.3.1 with a kim ratio 

corresponding to a nominal natural frequency of 1 Hz, no viscous damping and a value of 

a of 0.05. The parameters of the nonlinear system, A, f3, r are taken to be 1.0, 0.12 

cm-1, and -0.08 cm-1, respectively. The ratio of f3 lr =-1.5 is a typical value for the W-B 

model, the parameter A=l.O means dzldu =1.0 at u=O, and f3 is chosen such that u.r,. the 
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nominal static displacement of the oscillator because of its self-weight mg, corresponds to a 

ductility ratio of 5.0. That is, u .. , = 5. 0, where u>' = f3 
1 

and u .. , = mg. 
Uy ( - y) k 

In the absence of a base excitation and neglecting gravitational effects, the equation of 

motion becomes 

.. 1 /( . Z) F(t) u+- U,U, =-- (5.17) 
m m 

where j(u,u,Z) has the usual meaning. The objective is to compare the response of the 

two hysteretic models to a suddenly applied load. Such a situation could arise, for example, 

when a steady gust of wind starts acting on a structure, or because of a sudden current on 

ocean structures. 

The increase in static pressure p that is due to a steady gust of wind may be expressed 

as [1,43]: 

(5.18.1) 

where p is the mass density of air, V is the wind velocity, c. is the exposure factor 

depending on the height of the building, c, is the gust factor, and cp is the shape factor for 

the building as a whole. Assuming p=l.26 kg/m3, C.=1.5, C
1
=2.0, CP=1.3, it can be 

shown that an 80 kmph wind causes an equivalent pressure of about 1250 N/m2. That is, 

(5.18.2) 

where V is the wind speed in kmph. Assuming a 10 story structure with a plan area of 20 

m by 20m, a height of 35m, a mass density for the structure of 1000 kg/m2/story, and a 

wind velocity of 80 kmph, the wind force per unit mass F(t)lm is found to be equal to be 

about 0.02 g. This wind force might be assumed to be a step function in time acting on the 

structure that is initially quiescent . 
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The two models respond quite differently when subjected to the step forcing function. 

Fig. 5.5 compares the displacements of the two models relative to the ground. The drifting 

characteristic in the displacement of the W-B model is clearly evident. After 140 seconds, 

the displacement for the W-B model is about 6 times that of the DEL model. 

In Fig. 5.6, a comparison is made of the hysteretic restoring force diagrams. The 

same drifting is again quite evident in the response of theW -B model. By comparison, the 

DEL model settles down to a stable closed loop. The distinguishing feature noticeable in 

Fig. 5.6 is that there is a gradual hysteretic force relaxation in the W-B model. As a matter 

of fact, if the motion is observed for a long enough time, the mean hysteretic restoring 

force in the W-B model will settle down to a zero value. If ii and z are the steady-state 

mean values of u and z, then on neglecting inertial effects, the equation of motion yields 

akii + (1- a)ld = 0.02mg (5.19) 

Since z=O for the W-B model, ii=0.50633 I a. For a =0.05, Eqn. (5.19) is satisfied in 

the case of the W-B model by z=O, ii=10.127 em. By comparison, in the case of the DEL 

model, the equation is satisfied in steady state by z=0.503 em and ii=0.570 em as seen in 

Fig. 5.6. 

Fig. 5.7 compares the relative velocity response of the two models for a =0.05. 

The agreement is very good. For the first 25 seconds, the behavior is almost identical. For 

the next 50 seconds, a slight elongation in the period of the system is observed for the W-B 

model, but is otherwise satisfactory. 

Fig. 5.8 shows the displacement response of the W-B model for different values of 

a, namely, 0.0, 0.05, 0.25 and 0.50. The corresponding steady-state values, ii, are oo, 

10.127, 2.025 and 1.013 em., respectively. 

In summary, for suddenly applied loads, it can be said that there is good agreement in 

response quantities like relative velocity (Fig. 5.7) and maximum hysteretic force (Fig. 

5.6), but there can be large discrepancies in relative displacement and ductility. Whether the 
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use of the Wen-Bouc model is appropriate therefore depends on what response quantity is 

being elicited from the model. 

5.5.2 Gravitational effects included: 

In the presence of a gravitational field, a structure of the type described by Sec. 

5.3.1 has a term -mgulh on the left-hand side of the equation of motion (Eqn. 5.9). This 

results in a reduced system stiffness that introduces a negative restoring force tending to 

topple the structure, a phenomenon often described as the P- o effect. This tendency to 

collapse is not due to the deterioration of the mechanical properties of the members, but 

rather is due to the large geometrical changes that take place. For large displacements, the 

experimental hysteresis loops for subassemblages in [39] display negative slopes 

associated with the motion of the subassemblage as a mechanism aided by the P-o 
effect. 

In the absence of a base excitation, the equation of motion can be written as: 

.. 1 /( . C"r) k F(t) u+- U,U,...> -1]-U =-- (5.20) 
m m m 

where/ has the usual meaning, and where 17!. =g. As in Sec. 5.5.1, let the nominal 
m h 

natural frequency=l.O Hz, A=l.O, /3=0.12 cm-1, r=-0.08 cm-1, F(t)lm=0.02 g, h=35 

m. Thus, 11 =0.071. There is assumed to be no viscous damping. 

For a> 17, no change is expected from the results in Sec. 5.5.1, since the post­

yielding stiffness is reduced but is still greater than 0. However, for a < 17, the post-

yielding stiffness has a negative value. Given the manner in which the displacement drift of 

the W-B model increased when the post-yielding stiffness was decreased in Sec. 5.5.1 

(Fig. 5.8), the drift for the system with negative post-yielding stiffness may be expected to 

be even larger. Figs. 5.9 and 5.10 compare the displacements and restoring force diagrams 

respectively, for the case a =0.05. Mter 140 seconds, the displacement of the W-B model 
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is about 8 times that of the DEL model. As a matter of fact, u for the W-B model will keep 

increasing as the time of observation increases. The other difference observed is that the W­

B model does not exhibit the hysteretic force relaxation in Fig. 5.10 as was noted in Fig. 

5.6. Actually, to counter the decrease in the restoring force that is due to the P-o effect, z 

and therefore the hysteretic force increase. This will go on until the increase of z will no 

longer be enough to offset the destabilizing force, 17ku, and the W-B model will predict 

catastrophic failure, even though from the DEL model, it is seen that a constant force of 

0.02 g per unit mass of the structure does not, in fact, lead to the failure of the structure. 

These features are more evident for larger values of 11. For example, Figs. 5.11 and 

5.12 compare the relative displacement history and restoring force diagram for 11 =0.25. It 

can be seen that the W-B model predicts collapse at about 90 seconds after the load is first 

applied. This is not the case with the DEL model, which has a steady-state mean offset of 

about 1 em. From a physical viewpoint, it seems highly unlikely that a 80 kmph wind 

would lead to the collapse of the structure. Hence, the failure predicted by the W-B model 

can be attributed to the instability of the mathematical representation of the model rather 

than to the inability of the structure to withstand the load. 

It is concluded that extreme caution must be exercised when the Wen-Bouc model is 

used to study the response of structures exhibiting unstable behavior. If the Wen-Bouc 

model is used to describe the hysteretic nature of a system and the ensuing analysis predicts 

failure, it might not be possible to tell whether the result is spurious, arising from the 

inherent instability of the mathematical representation of the model, or whether the structure 

actually failed because of excessive loading. It may be prudent not to employ the Wen­

Bouc model representation for any nonlinear hysteretic system with a negative post­

yielding stiffness. 
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5.6 Example 2: Structure subjected to earthquake excitation: 

5.6.1 SDOF system: 

Consider an SDOF oscillator of the type described in Sec. 5.3.1 with a kim ratio 

corresponding to a nominal natural frequency of 1.0 Hz, c such that the viscous damping 

coefficient is 5% of critical, and a value of a of 0.05. The parameters describing the 

nonlinear behavior, A, f3 and r are 1.0, 25.25 m-1 and -18.15 m-1 (i.e.,f3fr =-1.5), 

respectively. The value of f3 is such that the maximum displacement of the oscillator with 

the hysteresis described by the DEL model corresponds to a ductility value of 4.0 when 

subjected to the NS component of 1940 El Centro earthquake (Fig. 5.13). For the selected 

values of A, f3 and r, uy=zy=0.022 m. There is no external force F(t), gravitational 

effects are neglected and the structure is assumed to be initially quiescent. The response of 

the two models is numerically computed for a duration ofT=50 seconds. 

Figs. 5.14-5.17 show the hysteretic restoring force diagrams, u vs. t, z vs. t and u 
vs. t, respectively. The following observations may be noted: 

(1) The restoring force diagrams are qualitatively and quantitatively different as seen from 

Fig. 5.14. Firstly, nonclosure of some loops is quite evident in the W-B model. 

Secondly, it is observed that the unloading branches are stiffer for the W-B model than 

for the DEL model. The consequence of the first difference is that there may be portions 

of the response where negative energy is dissipated by the W-B model, while that of 

the second difference is that the loops in the W-B model enclose larger areas and hence 

result in a larger dissipation of energy. 

(2) The basic nature of the displacement response time histories for the W-B and DEL 

models is quite similar (Fig. 5.15). There is close agreement in the absolute value of the 

maximum displacement (0.087 and 0.088 m, respectively), and in the dynamic 

amplitude, which is the difference between the largest and smallest values of the 
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displacement (0.1219 and 0.1218 m, respectively). Some features are different: 

Notably, the final offsets for the W-B and DEL models are 0.034 and 0.025 m, 

respective! y. 

(3) The time histories of z and u (Figs. 5.16 and 5.17) match very well, especially in the 

maximum values. For instance, the maximum values of the relative velocity for the W­

B and DEL models are 0.359 and 0.362 m/sec, respectively. Even in the later stages of 

the excitation (t>30 seconds), when the displacement of the W-B model drifts away 

from the displacement of the DEL model, the agreement in the velocity response is very 

good. Generally, the agreement in the velocity response of the two models can be 

expected to be better than that in the displacement response. 

It is instructive to carry out a comparison of the time histories of the system response 

for the duration of interest [O,T] as in Figs. 5.14-5.17. Such a comparison is, however, an 

inefficient way to compare the performance of the two models, for two reasons. Firstly, the 

volume of data involved in such a comparison is large and secondly, it is not so easy to see 

the most important features to facilitate the comparison. Comparison of a few important 

quantities characterizing the response yields useful information on the differences in the 

response behavior of the two models. Listed below are eight quantities that have been 

selected for comparison purposes henceforth: 

(1) u,., the maximum relative displacement (absolute value) in [O,T] 

(2) J.L , the ductility factor of the response displacement that is due to the excitation 

(3) (umax- umin), the dynamic amplitude, which is the difference between the largest and 

smallest values of the relative displacement in [O,T] 

( 4) tmax, the instant in time at which u,. occurs 

(5) u,., the maximum relative velocity (absolute value) in [O,T] 

(6) Cb, the base shear coefficient. This is the maximum absolute acceleration of the 

oscillator in [O,T] expressed as a fraction of g, the acceleration due to gravity 
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(7) uo.ff' the fmal displacement offset 

(8) E(D, the hysteretic energy dissipated during the time period T normalized by 

(1- a)k. That is, 

T 

E(T) = f zit dt (5.21) 
0 

The maximum displacement, velocity and acceleration are often used to compute 

response spectra; the dynamic amplitude is a quantity used in damage evaluation; the time 

of maximum displacement is a useful quantity in random vibration for purposes of 

reliability calculations; the base shear coefficient is used to determine the maximum force 

that the structure must withstand during the excitation and hence is necessary in the 

selection of member sizes; the energy dissipated plays a dominant role in reducing the 

vibration of the structure; the fmal offset serves as an indication of the residual drift or tilt 

of the structure; and the ductility factor is an indication of the maximum deformation that 

the structure should be able to undergo without failing during the excitation. Individual 

members will have to be detailed in a manner that allows for this deformation. 

Table 5.1 presents a comparison of these eight quantities for the two hysteretic 

models. Most of the entries may be inferred from Figs. 5.14-5.17. The relative error 

shown in the table is defined as follows: If q" and qb are the values corresponding to the 

W-B and DEL models, respectively, for a particular quantity, then 

(5.22) 

From the table, it can be seen that five quantities (four of which are independent) have 

errors less than 2%. This is quite remarkable. It remains to be seen how well this holds up 

for cases with different levels of nonlinearity. It will be seen that the agreement in um noted 

here is not observed for most of the cases considered later in this chapter. Another 

observation that may be made here is that it appears that the agreement in the response 
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behavior of the two models subjected to a zero mean earthquake excitation is much better 

than in Example 1, where the models were subjected to a nonzero load. 

The analysis presented so far in this section has been for a ductility ratio of 4.0 in the 

response of the DEL model. In order to carry out a comparison in the eight characteristic 

quantities for a range of ductilities of the DEL model, the yield level z, of the nonlinear 

model is varied so as to achieve a variation of the ductility ratio in the response of the DEL 

model. For each z,, both models with the same initial loading curve are then subjected to 

the 1940 El Centro earthquake. Keeping A=l.O and /3/r=-1.5, f3 is changed such that z, 

varies from 0.005 to 0.90 m; the ductilities in the case of the response of the DEL model 

vary from 0.10 to about 30. 

Figs. 5.18-5.25 show the eight characteristic quantities defined earlier in this section 

plotted against the normalized hysteretic force yield level, z,. The case z,=0.022 was the 

one treated in detail in Figs. 5.14-5.17. As z, decreases, the ductility ratio of the response 

increases for both models (Fig. 5.19) and hence the nonlinearity increases. For very large 

values of z, (i.e., for very small values of f3 and r ), the response of both models will tend 

to the linear model response. The following observations may be made from Figs. 5.18-

5.25: 

(1) For most of the range of z
1
under consideration, the maximum displacement of the W-B 

model is less than that of the DEL model (Fig. 5.18). This means that the predicted 

ductilities are also lower for the W-B model (Fig. 5.19). The difference in the ductilities 

becomes more noticeable as the nonlinearity increases. For z
1
=0.005, the largest 

nonlinearity considered, the relative error in ductility is as much as 15% (compared to 

about 2% for the case z,=0.022). 

(2) The behavior of dynamic amplitude (Fig. 5.20), um (Fig. 5.21) and Cb (Fig. 5.22) of 

the two models is similar, and the relative errors for the three quantities at z
1
=0.005 are 

each less than 6%. 
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(3) The agreement of the models in tmax• the instant in time at which u,.. occurs, is very poor 

at large nonlinearities (Fig. 5.23).This is also true for the final offset, uoff (Fig. 5.24). 

At zY=0.005, the final offsets for theW-Band DEL models are about 0.005 and -0.045 

m, respectively. 

(4) The energy dissipated, E(T), is larger for the W-B model for the entire range of 

ductilities under consideration (Fig. 5.25). At a value of zY=0.022 (corresponding to a 

ductility of about about 4.0 for both models), the relative error in E(Dis about 70%. 

This may be because the unloading stiffnesses are larger in the case of the W-B model. 

(5) It is interesting that the quantities u,.., dynamic amplitude, tmax, uoff, E(D do not vary 

monotonically with respect to z)'. For example, from Fig. 5.25, it can be seen that there 

is a certain level of nonlinearity (at zY =0.031 m) where maximum energy is dissipated. 

That is, lowering the value of zY may lead to larger levels of ductility but not 

necessarily to larger levels of energy dissipation. 

In summary, it may be stated that the response of the W-B model when subjected 

to a zero mean earthquake excitation is not in complete agreement with that of the DEL 

model, especially in the response quantities displacement, ductility and final offset, 

even though it must be said that the agreement is much better than in the case when the 

two models were subjected to a nonzero mean load. Generally speaking, it seems as 

though the prediction of the base shear, velocity and dynamic amplitude by the W-B 

model can be expected to be better than its displacement prediction. 

5.6.2: MDOF system: 

It was seen in Chapter 4 how any nonzero mean cycle in z causes a drift in the 

displacement of the W-B model, resulting in a nonclosure of the loop. In an SDOF 

oscillator, the response is essentially at one predominant frequency, while in the case of an 

MDOF system, the response is likely to have significant components at the first few natural 
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frequencies of the system. A similar situation may also arise in the case of an SDOF 

oscillator when the excitation is predominantly at a frequency different from that of the 

natural frequency of the oscillator, resulting in a response with two peaks in its frequency 

spectrum. In either case, the tendency of the W-B model to drift, have nonclosure of loops, 

etc., may be more pronounced because the response will have high-frequency components 

superposed over a low-frequency component, and these high-frequency components cause 

additional cycles in z over a nonzero mean. A hysteretic restoring force is frequency­

independent; thus, a nonzero mean cycle in z will result in the same amount of drift 

irrespective of the frequency associated with that cycle. Therefore, in an MDOF system, the 

drift in the displacement of the W-B model is likely to be larger than in an SDOF system. 

To demonstrate this qualitatively, the two-story structure shown in Fig. 5.26 is 

considered. The initial stiffness-to-mass ratios are such that the nominal natural frequencies 

of the system are 0.5 and 1.5 Hz. There is assumed to be no viscous damping, and the 

post-yielding stiffness ratio a equals 0. The nonlinear parameters describing the nonlinear 

behavior are: A1 = ~ = 1.0, /3 2 / r 2 = {31 I r 1 = -1.5, /32 = /31 = 18.00 m-1.The f3 s are 

chosen such that the maximum displacement of the first story of the DEL model to the El 

Centro earthquake corresponds to a ductility of about 4. For the purposes of this 

comparison, gravity effects are neglected, and there are no external forces acting on the 

structure. 

Figs. 5.27 and 5.28 compare the interstory displacements of the first and second 

stories, respectively. The maximum displacement in the first story is 0.130 m (a ductility 

ratio of 3.90) in the case of the DEL model and is 0.180 m (a ductility ratio of 5.40) in the 

case of the W-B model. 

It is also interesting to compare the first story's restoring force diagrams of the two 

models (Fig. 5.29). In Fig. 5.29a, two segments in the restoring force diagram of the W-B 

model associated with drift and nonclosure of loops are shown in dashed lines. These 
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occur at about 3 seconds and 12 seconds after the earthquake commences. By observing 

the displacement of the first story (Fig. 5.27) at these instants in time, it can be seen that the 

segments are due to the high-frequency component of the response. In addition, the usual 

contribution to drift due to the nonzero mean cycling corresponding to the low frequency 

component is also present, as in the case of the SDOF system. 

It may be noted that the discussions in this section are for one specific base excitation. 

While useful information can be gathered about the nature of the responses of the two 

hysteretic models to earthquake excitations from the example considered, for more 

quantitative comparisons, a stochastic analysis will be performed in the next section with 

ensembles belonging to different families of excitations. 

S. 7 Stochastic excitation: 

S. 7.1 Introduction: 

If the state of stress, the material properties, location and history of fractures and 

other requisite details are known, and the tectonic mechanisms causing earthquakes are 

completely understood, the ground motion a(t) at a given site can be theoretically computed 

in advance. Since all the required information is rarely available, engineers and scientists 

must accept a certain level of uncertainty or randomness in describing the earthquake 

ground motion. For this reason, earthquake motion is often represented by a stochastic 

process. Use of a stochastic model to describe earthquake motion is appropriate in much 

the same way as the use of probabilistic models in the characterizations of errors in 

measurements of physical quantities such as structural stiffnesses. 

One suitable approach in the selection of stochastic models to describe earthquake 

motion is in defining the excitation as belonging to a general class of time histories. The 

class of time histories should have time- and frequency-domain properties that will 

realistically reflect the features of an actual earthquake, like the frequency content, duration 
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of shaking, peak acceleration, etc. The larger the number of features the earthquake model 

has to include, the larger will be the number of parameters to describe the model. The only 

limitation in the selection of the complexity of the stochastic models is that the analytical 

methods for the analysis of nonlinear systems subjected to random excitation are much 

more complex than in the case of a simple deterministic input. Therefore, the stochastic 

model description for earthquake motion must be as simple as possible. Also, from the 

point of view of numerical simulation analysis such as carried out here, the stochastic 

models need to be simple enough so that only a small computational effort is spent in 

generating the ensemble of excitation time histories. 

In this section, two classes of stochastic excitation are chosen for. which a 

comparative response study is performed of the eight characteristic quantities defined in 

Sec. 5.6. The two types of random processes are stationary white noise and response 

spectrum-consistent time histories. The following two sections explain the manner in which 

the ensembles are generated and compare the response of the two hysteretic models to the 

ensembles. 

5.7.2 Example 3: SDOF system with stationary white noise base excitation: 

One of the simplest random processes is a zero mean, Gaussian stationary process. 

Because stationary processes are well understood and the theory is well developed, much 

effort has been devoted in earthquake engineering research to model earthquakes as 

stationary processes. One such approach has been to use stationary white noise; Housner 

[18] suggested a model that was essentially white noise- a large number of impulses 

arriving at random times. The white noise model has been used extensively to investigate 

structural behavior during earthquakes [9,42]. Clearly, stationary excitations can be used 

only to represent the strong shaking portion of an earthquake record, not for the buildup or 
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tail of the ground motion. The simplicity of the white noise random process has ensured its 

continued use in current research as a stochastic model to describe earthquake motion. 

Let the base excitation n(t) be a zero mean, stationary, Gaussian white noise with a 

spectral density S0 • Let there also be a constant external force per unit mass F on the 

structure and let gravitational effects be neglected. For the purpose of carrying out a Monte 

Carlo simulation with white noise, an ensemble of N sample functions is generated for 

n(t). Each sample function is constructed in the following manner: A sequence of 

independent Gaussian distributed numbers with a zero mean and unit variance is generated. 

The numbers are used as ordinates of the function at equally spaced intervals in time, At. 

The function is then assumed to vary linearly within each time interval. On multiplying the 

function by (21tS'0 I &i12
, it can be shown [15] that the power spectral density of the 

function approaches S0 as the roAt approaches zero and remains within 5% of S0 for 

ml1t<0.57, ro being the frequency. Therefore, to approximate a white noise process to 

within a given tolerance up to a desired frequency, the time interval chosen must be 

appropriately small. In this example, A.t=0.02 seconds. 

Most digital computers have only a library subroutine that generates pseudo-random 

numbers uniformly distributed on [0,1]. From two such numbers x1 and x2 , two 

independent numbers, z1 and z2 , belonging to a Gaussian distribution with zero mean and 

unit variance can be generated using the following relations [15]: 

(5.23) 

In this manner, N samples of zero mean. stationary, Gaussian white noise, each 

lasting 20 seconds, are generated, this time period being a typical earthquake duration. A 

simulation analysis is performed for each of the six cases listed in Table 5.2. For each case, 

a comparison is made between the two models of the eight characteristic response quantities 

described in Sec. 5.6. For all six cases, the following are kept constant: nominal natural 
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frequency of 1 Hz, viscous damping as a fraction of critical 5%, the ratio f3 /y of 

-1.5 and A=l.O. The parameters that are varied in the six cases of Table 5.2 are a, F, and 

f3. In Cases I, II and III, there is no post-yielding stiffness, there is no external force 

( F =0), and f3 is changed so as to vary the level of nonlinearity; for the three values of [3 

considered, the mean values of the predicted ductilities in the response of the DEL model 

are about 2.0, 4.0 and 8.0. Thus, the manner in which the response statistics of the two 

hysteretic models vary over a range of ductilities may be observed. The motivation behind 

the choices of the remaining cases listed in Table 5.2, namely, Cases IV, V and VI is to 

study the effect of positive post-yielding stiffness, nonzero mean loading, and combined 

positive post-yielding stiffness and nonzero mean loading, respectively. 

To examine the convergence rate of the mean and standard deviation of um in Case 

III, statistics are obtained for a variation of the number of samples, FJ, from 5 to 1000. For 

both models, the means converge faster than the standard deviations, as should be 

expected. After 250 simulations, the standard deviations for theW-Band DEL models are 

within 3% and 8% of their respective values after 1000. For the remainder of this section, 

N =250 samples are considered large enough for the calculation of the response statistics. 

For each case listed in Table 5.2, the two systems with hysteresis described by the 

W-B and DEL models and initially at rest with zero velocity are subjected to the ensemble 

of ground acceleration and external force F, and the responses are computed for a time 

duration of T=30 seconds. From the respective responses, statistics of the eight 

characteristic response quantities under consideration are calculated and tabulated in detail 

in Tables 5.3 through 5.8, respectively, for the six cases. The statistics displayed for each 

quantity are the mean, the standard deviation and the median. For a symmetric distribution, 

the mean and the median are the same. Also recorded in the tables are the statistics of the 

relative error for all eight quantities except uoff' This is because the final offset for zero 
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mean loading has a zero mean, and the values of uoff close to zero will cause a large relative 

error in Eqn. (5.22), leading to misleading figures. 

Values from Tables 5.3, 5.4 and 5.5 are used to plot Figs. 5.30-5.35, which show 

u,, f.1, u,., Cb, uoff and E(T), respectively, vs. the yield level of the normalized hysteretic 

force,i.e., zY. The three values of zY corresponding to Cases I, II and III, are 7.82, 5.00 

and 3.42 ems, respectively. The smaller the value of zY, the larger is the ductility (Fig. 

5.31) and hence larger the nonlinearity. In Figs. 5.30-5.35, three curves are drawn for 

each hysteretic model, corresponding to the values of (i) mean minus one standard 

deviation, (ii) mean, and (iii) mean plus one standard deviation of the response quantity. 

Thus, an idea can be obtained not only of the mean value comparison but also of the 

standard deviation. The following observations may be made from Figs. 5.30-5.35 and 

Tables 5.3, 5.4 and 5.5: 

(1) From Figs. 5.30 and 5.31, it is seen that the values of u, and ductility are likely to be 

larger for the W-B model. For both models, the standard deviation increases as the 

nonlinearity increases. The mean and standard deviation in u,. for the W-B model are 

about 1.25 and 1.75 times that of the DEL model for Case II, and the mean relative 

error is 27%. The use of the W-B model would therefore lead to a more conservative 

design with structures designed for larger ductilities than would be necessary according 

to the DEL model. 

(2) The relative error in the dynamic amplitude for Case IT has a mean value of about 7%, 

meaning that on an average, the W-B model overestimates the dynamic amplitude value 

of the DEL model by about that amount. In specific instances, however, the estimation 

may be more or less since the error has a standard deviation of about 22%. 

(3) The relative errors involved in the estimation of tmaxby the W-B model are very large 

(mean of 76% and standard deviation of 222% for Case II). This means that the use of 

the W-B model in reliability calculations will lead to erroneous results. 
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(4) The maximum velocity (um ) values for the W-B model are somewhat less than for the 

DEL model (Fig. 5.32). For Case IT, the mean and standard deviation of um are about 

60 ems/sec and 7 ems/sec, respectively, for the W-B model and 65 ems/sec and 8 

ems/sec respectively for the DEL model, and the mean relative error is about -7.5%. 

Given this information, one may make the decision that um predictions by the W-B 

model are quite acceptable, but this is a subjective matter requiring some consensus on 

what is "acceptable" error. 

(5) Among the eight quantities under discussion, the one in which by far the best agreement 

is observed among the two hysteretic models is in Cb, the base shear coefficient (Fig. 

5.33). The means of Cb for Case II are 0.214 and 0.216, respectively, for theW-Band 

the DEL models, and the mean relative error is about -1%. 

(6) The final offset is a quantity that should be expected to have a zero mean and from Fig. 

5.34, this is seen to be essentially true for both models. However, the standard 

deviations are much larger for the W-B model than for the DEL model, especially at 

higher levels of nonlinearity. For Case II, the standard deviation of the W-B model is 

more than 2.25 times that of the DEL model; i.e., the final offset value is likely to be 

larger for the W-B model, and that would imply that larger damage has occurred than 

actually did according to the DEL model. 

(7) The values of the energy dissipated, E(T), for the W-B model are consistently larger 

than those for the DEL model (Fig. 5.35). This overestimation by the W-B model was 

observed in Sec. 5.6, too. In Fig. 5.36, it appears that there is only a translational shift 

in curves: for the three values of z., considered, the means differ by a constant value, 

while the standard deviations are essentially the same. For Case II, the mean value 

estimate of E(T) by the W-B model is 1.07 times that of the DEL model. 

On the basis of these observations, a few remarks may be made here. For systems 

with no post-yielding stiffness, the W-B model provides an excellent estimate of the value 
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of the base shear coefficient Cb, while estimates by the W-B model of the maximum 

velocity u,, the dynamic amplitude and the energy dissipated E(T), appear to be adequate. 

But the estimates by the W-B model of the maximum displacement, u, (and hence of the 

ductilities), the final offset, uoff' and the time of maximum displacement, tmax' are much 

less reliable. It is not immediately apparent if the trends noted here are unchanged for 

systems with different nonlinear parameters (different f3 /y, A, etc.), but the analysis 

performed here gives an idea of how the two models compare. 

For complete information on the statistical nature of each response quantity, it would 

be necessary to know the probability density function. For Case III, a comparison of the 

probability density functions for a few quantities is carried out. Fig. 5.36 shows the 

probability density function of u,, the maximum absolute value of the relative 

displacement. The two models exhibit similar behavior in the probability density, but it can 

be seen that the mean value and standard deviation for the W-B model (about 34 ems and 

14.5 ems, respectively) are larger than for the DEL model (about 28 ems and 11 ems, 

respectively). The density functions resemble Rayleigh distributions even though there is 

not enough information on the behavior for values of u,. less than 15 ems. 

H u,. for each hysteretic model is normalized by subtracting the respective mean and 

dividing by the respective standard deviation and the probability density functions plotted 

as in Fig. 5.37, it can be seen that they follow the same basic distribution. This would 

seem to suggest that the differences in the means and standard deviations of the two models 

are adequate to characterize the differences in their probability densities. 

Fig. 5.38 shows the cumulative probability function (the integral of the probability 

density function) of u,. The medians for theW-Band DEL models are about 31 ems and 

25.5 ems, respectively. In random vibration, the reliability function W(T) is defined as the 

probability that the magnitude of u does not exceed a specified level b throughout the time 

interval [O,T] . Fig. 5.38 is therefore also the plot of W(30) for values of b on the 
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horizontal axis from 0 to 100 ems. Thus, the reliability function used in the first passage 

problem is different for the two hysteretic models, and the probability that u ... is less than 

any specified value b (also called the "safe" probability) is larger for the DEL model than 

for the W-B model. 

Figs. 5.39 and 5.40 show the probability density functions for Case III of the 

maximum relative velocity, u ... , and the base shear coefficient, Cb, respectively. These 

probability densities are more symmetric than u ... , and the predictions of Cb by the two 

models match very closely. For u.,., the mean relative error is about -7%; this accuracy may 

or may not be enough depending on the allowable error tolerance. 

Fig. 5.41 is the probability density function of uoff' the final offset which is almost 

zero mean for both hysteretic models, but the spread or standard deviation for the W-B 

model is 1.5 times that of the DEL model. The final offset of the W-B model is therefore 

likely to be larger than that of the DEL model. For example, it can be seen from Fig. 5.41 

that the probability that uoff will between 49 and 51 ems is larger for the W-B model. 

Case IV is the same as Case II in every aspect except that a is 0.05 for Case IV 

instead of 0 as in Case II; i.e., the system has a post-yielding stiffness equal to 5% of the 

initial stiffness and thus there is a positive linear restoring force. The effect of such a linear 

spring is to control the displacement drift of the W-B model, and one should therefore 

expect that u ... (and J1.) values of the W-B model for this case should be closer to those of 

the DEL model than in Case II. This indeed is true. From Tables 5.4 and 5.6, it is seen that 

though there is some marginal improvement in most of the eight quantities, the most 

dramatic is in u"'. The mean and standard deviation of this quantity are about 18 ems and 

4.5 ems, respectively, for both models. This would suggest that for systems with positive 

post-yielding stiffnesses (a >0), the W-B model may be a more suitable description of 

hysteresis than for systems without (a =0). 



-120-

In Case V, an external static load (F -:F- 0) is added to the zero mean white noise 

ensemble in order to study the effect of nonzero mean loading. F is 2% g which, as was 

seen in Sec. 5.5.1 would correspond approximately to a 80 kmph wind on a 10 story 

structure. Cases II and V have the same parameters; the only difference is that Case V has a 

nonzero F. Direct comparison of Tables 5.4 and 5.7 will thus show the effect of the static 

load. From the example in Sec. 5.5.1, one should expect the u,. differences to be much 

larger for Case V than for Case II. A look at Table 5. 7 confirms this. For Case V, the q1ean 

and standard deviation in u,. of the W-B model are almost 1.75 and 2.25 times that of the 

DEL model (compared to the corresponding factors 1.25 and 1.75 for Case II). The 

external static load has the effect of increasing the mean value of the ductility J1 from 3.94 

to 4.42 for the DEL model and from 4.93 to 7.59 for the W-B model. The following 

conclusion may therefore be drawn: The hysteretic representation given by the W-B model 

provides unreliable estimates of the response statistics of systems with no post-yielding 

stiffness subjected to a nonzero mean loading. The case of nonzero mean loading is not a 

favorable one for the use of theW -B model as description of system hysteresis. 

Case VI involves having a nonzero mean loading as well as a positive a (a=5%). 

This enables the combined effect of having a nonzero mean loading condition (unfavorable 

for the W-B model) and a positive post-yielding stiffness (favorable for the W-B model). 

Considering Tables 5.4, 5.7 and 5.8, it can be seen that the effect of a >0 not only reduces 

the detrimental effect of the nonzero mean loading in the response of the W-B model, but 

actually provides a better agreement in the response statistics than in Case II (but not as 

good as in Case IV). 

5.7.3 Example 4: Comparison of inelastic response spectra: 

The response spectrum is a common means of specifying earthquake ground motion 

for structural response studies. It is appealing because it gives some of the most important 
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features of the response without requiring knowledge of the time history of the excitation. 

In spite of its advantages, the response spectrum has one glaring shortcoming as a design 

specification. It is normally defined only in relationship to linear systems. This can be a 

severe limitation because most modern building structures are designed to behave in a 

nonlinear, ductile manner during a major earthquake. One way to overcome this difficulty 

may be in the definition of an inelastic response spectrum associated with a given elastic 

response spectrum. It is believed that for many buildings, satisfactory approximations to 

the design forces and deformations can be obtained from the modal method by using the 

corresponding inelastic response spectrum. Veletsos and Newmark [51] , Iwan [23] and 

others have given methods for estimation of inelastic response spectra from their elastic 

counterparts for simple piecewise-linear hysteretic models. 

Because it is desired to determine the inelastic response spectra of the two models 

corresponding to a linear elastic spectrum, an ensemble of histories consistent with the 

specified elastic response spectrum should be generated. The NRC Reg. Guide 1.60 

horizontal mean response spectrum [34] for a damping value of 2% (Fig. 5.42) is chosen 

to be the specified design spectrum. The theory used for the generation of response 

spectrum-consistent histories established by Mason and Iwan [29,30], is briefly 

summarized below. 

The mathematical model of the earthquake process is that of a zero mean, stationary, 

Gaussian random process n(t) modulated by a deterministic envelope B(t). One such 

envelope is shown in Fig. 5.43. The quadratic time-dependence phase, the constant phase 

and the exponentially decaying phase model the buildup, strong shaking and tail parts of 

earthquakes. The base excitation a(t)can therefore be written as 

a(t) = 6(t)n(t) (5.24) 
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Given a displacement response spectrum SD( (J),;, P) and an excitation envelope 

function fJ(t), the spectral density S""((J)) of n(t) is found such that the response of a linear 

SDOF oscillator satisfies the equation: 

Prob{ u,((J),;) ~ SD((J),; ,P)} = ~ for romin ~ (J) ~ (J)max (5.25) 

where (J) is the natural frequency of the oscillator, ; is the damping ratio, u,.((J),;) is the 

maximum value of the relative displacement of the system that is due to the acceleration 

a(t), SD((J), g.~) is the specified displacement response spectrum value at frequency (J), 

and ~ is the safe probability or the confidence level, i.e., the probability of not exceeding 

the target spectrum. The procedure to find S,,..((J)) involves the application of the two-state 

Markov process approach to compute first passage probabilities and is clearly explained in 

[27,29]. 

The second step in the generation of N time histories, aA:(t), uses the formula [55]: 

M 

aA:(t) = fJ(t) 'L{IA;Cos(ii5f + l/J iA:) 'v't e [O,T] (5.26) 
j=l 

k = 1,2, .... ,fJ 

where 

(J)j = (J)min + (} -1)((J)max- (J)min)/ M, j = 1,2, ... ,(M + 1) 

Ai = the area under the one-sided spectral density function S..,.((JJ) in the interval 

( (J) i' (l) j+l) 

M =the number of intervals ((J)min, lOmax) is divided into 

ii5 i = ( m i + co i+) I 2 =the central frequency of the interval (co i' m i+l) 

l/J iA: =a random phase uniformly distributed on [0,27t] 

The following values of the parameters are used in the generation of 250 (N =250) 

samples comprising the ensemble: g =2%, ~=50%, mmin I 2n=0.10 Hz, romaJ 2n=33 

Hz, the number of divisions M=250, earthquake duration T=30 seconds; the envelope 

parameters are t0=4 seconds, t1 =15 seconds, t2=30 seconds, and the exponential rate of 



-123-

decay is 0.10. For these envelope parameter values, the modulating envelope O(t) is 

similar to the Caltech B-type earthquake envelope [26], which was designed to represent 

shaking close to the fault of an earthquake of a Richter magnitude of7.0 or greater. 

Assume that there are no external forces, and neglect gravitational effects. The system 

parameters are: viscous damping as a fraction of critica1=2%, a =0, A=l.O, f3 I r=-1.5, 

and kim is varied so as to achieve a range of nominal natural frequencies/ from 0.1 to 9.0 

Hz. For each value of kim, the yield level z
1 

is varied until a mean ductility value of about 

4.0 is achieved in the response of the DEL model to the generated ensemble of earthquake 

excitations. Then the W-B model with the same yield level z 
1 

is subjected to the ensemble. 

In this way, the pseudovelocity (PSV), velocity (SV) and acceleration (SA) spectra of the 

two models are determined and plotted vs. the natural frequency on a log-log scale in Figs. 

5.44, 5.45 and 5.46, respectively. The quantities spectral displacement (SD), spectral 

velocity (SV), spectral acceleration (SA), pseudovelocity (PSV) and pseudoacceleration are 

defined in the following manner: 

SD = u,., SV = u,., SA= gCb, PSV = (27if)SD, PSA = (21rj)2SD (5.27) 

The three curves shown for each model in these figures correspond to the values of (i) the 

mean minus one standard deviation, (ii) the mean and (iii) the mean plus one standard 

deviation. In Fig. 5.46, only the mean values of SA are shown because in this case, the 

standard deviations are only about 5% of the mean values. It may be mentioned here that 

since the elastic NRC spectrum in Fig. 5.42 is scaled to a maximum ground acceleration of 

1 g, the inelastic response spectra shown in Figs. 5.44-5.46 are also normalized to a 

maximum ground acceleration level of 1 g. For other excitation levels, these spectra can be 

scaled accordingly. For instance, for a maximum ground acceleration level of 0.40 g, the 

normalized inelastic spectra are to be multiplied by a scale factor of 0.40. 
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The following observations can be made from Figs. 5.44-5.46: 

(1) For both models, the SV curves shown in Fig. 5.45 are similar in shape to the NRC 

elastic spectrum (Fig. 5.42), whereas the PSV curves shown in Fig. 5.44 have shapes 

quite different from that of the NRC spectrum. For values off of about 0.10 Hz, for 

example, the P SV values are smaller than the corresponding SV values by a factor of 

about 2.0. Using the SV spectrum as the design criterion may thus lead to a more 

conservative design for tall structures than the PSV spectrum. In the frequency range of 

0.30 to 9.0 Hz, the PSV values are larger than the corresponding SV values by a factor 

of almost 2.0. For instance, the mean values of PSV and SV for the DEL model at a 

natural frequency of 1 Hz are about 141 and 73 in/sec, respectively. Thus, unlike a 

linear system where PSV=SV, in the case of nonlinear systems, the spectral velocity 

and pseudovelocity are quite different from one another. 

(2) From Fig. 5.44, it is seen how the two hysteretic systems compare with each other in 

the pseudovelocity, PSV. For values of the frequency of about 0.10 Hz, and larger 

than about 1.50 Hz, the mean PSV values of the DEL model are less than those of the 

W-B model, which means that the W-B model leads to a more conservative design than 

the DEL model. But in the intermediate range of0.25 to 1.50 Hz, the W-B model with 

smaller PSV values than the DEL model, leads to a nonconservative design when 

compared to the DEL model. Therefore, caution must be exercised while using the 

inelastic PSV design spectrum produced by the W-B model. 

(3) Consistent with a trend observed in the white noise simulations (Sec. 5.7.1), the SV 

values for the W-B model are lesser than those for the DEL model (Fig. 5.45). If a 

design procedure should entail use of the spectral velocity as a design parameter, then 

the lower SV values of the W -B model will lead to nonconservative designs. 

(4) The mean SA curves for the two models shown in Fig. 5.46 agree quite well over the 

entire range off under consideration. This may have been expected from earlier 
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observations. It would seem from this observation that either hysteretic model may be 

used to produce the inelastic SA response spectrum for design purposes. 

The ATC 3-06 recommendations for the procedures to be used in the analysis of 

forces and deformations in buildings subjected to earthquake ground motion are listed in 

[2] in the order of increasing rigor and expected accuracy. These procedures range from an 

equivalent lateral force procedure to an inelastic response history analysis involving step­

by-step integration of the equations of motion. A comparison of the design base shear 

values from (i) the A TC 3-06 lateral force procedure, (ii) the elastic NRC spectrum, (iii) the 

W-B model and (iv) the DEL model will now be offered. 

The ATC 3-06 prescription for the base shear coefficient, Cb (also called the seismic 

design coefficient), is given by the lesser of the two following values [2]: 

where 

C = 1.2A.,S 
b RT213 .. 

C = 2.5A,. 
b R 

(5.28.1) 

(5.28.2) 

Av= the coefficient representing Effective Peak Velocity (EPV)-related acceleration 

A,.= the seismic coefficient representing the Effective Peak Acceleration (EPA) 

S = the site coefficient depending on the soil proflle characteristics of the site 

R = the response modification factor and 

T,. = the fundamental natural period of the structure. 

A.. and A,. are two parameters used to characterize the intensity of design ground 

shaking and they are representative of the EPV and EPA, respectively. The EPA and EPV 

are determined in the following manner from the elastic PSV response spectrum. The EPA 

is proportional to the PSA ordinates for periods in the range of 0.1 to 0.5 seconds, while 

the EPV is proportional to the P SV ordinates at a period of 1 second. (The proportionality 
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constant in both cases is 2.50.) Sites with the largest seismic exposure have values of Aa 

and A.. of 0.4 each, corresponding to a EPA and EPV of 0.4 g and 12 in/sec, respectively. 

In the response modification factor R, the ATC provisions recognize the fact that 

structures have a reserve capacity to absorb energy beyond the elastic strain energy at 

significant yield. R thus takes into account the ductility of the structural system. The value 

of R depends on the structural system and on the kind of mechanism used to resist seismic 

forces. It ranges from a value of 1.25 for a bearing wall system of unreinforced masonry 

walls to a value of 8 for a moment-resisting frame system with special steel moment 

frames. 

Assuming Aa=A..=OA, a site with shallow, stiff soil over rock (S=l.O) and an 

ordinary moment-frame-resisting system made of steel (R=4.5), the design coefficient is 

determined from Eqn. (5.28). 

To facilitate direct comparison of the values of Cb for the elastic and inelastic spectra 

with the code values, scaling of the spectra needs to be performed. The normalized NRC 

spectrum (Fig. 5.42) has PSA ordinates of about 4 gin the period range 0.1 to 0.5 seconds 

and a PSV ordinate of about 120 in/sec at a period of 1 second. Using the normalizing 

factor of 2.5, the corresponding EPA and EPV values are 1.6 g and 48 in/sec. Thus, to be 

consistent with the ATC 3-06 values 0.4 g and 12 in/sec respectively, a scaling factor of 

0.25 is applied for the elastic spectrum and the inelastic spectra associated with the elastic 

spectrum. For the elastic NRC spectrum, 

Cb = PSA I g = (21rj)PSV I g (5.29) 

where f= 1/T,.. For the inelastic models, the base shear coefficient Cb is the maximum 

absolute acceleration of the system (SA) expressed as a fraction of g. 

Fig. 5.47 shows the design base shear coefficient as given by the elastic NRC 

spectrum, the inelastic spectrum corresponding to theW-Band DEL models, and the ATC 

3-06 recommendation as a function of the fundamental natural period of the structure. It is 
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immediately apparent why it is beneficial to design structures with an ability to perform in a 

ductile manner. The values of Cb according to a linear elastic design are quite high and will 

lead to expensive designs. For example, at a natural period of 1.0 Hz, designing the 

structure to deform elastically when subjected to strong ground motion will require a 

seismic design coefficient of about 0.48. But a structure detailed in a manner to meet a 

ductility demand of about 4 needs to be designed only for a value of the seismic coefficient 

of about 0.14. 

The second observation that may be made is that even the least rigorous of the A TC 

3-06 recommended analysis procedures yields design coefficients that are quite comparable 

to those predicted by a stochastic analysis of the dynamic behavior of the two .nonlinear 

models. It must be kept in mind that there is some flexibility in the choice of R, the 

response modification factor, and the foregoing discussions must be viewed in that context. 

A good choice of the factor involves a lot of experience on the part of the designer. 

The A TC 3-06 determines the value of the design displacement drift, 8 (for an SDOF 

system, o is the displacement of the mass relative to the ground), as follows: 

o = Cdoe (5.30) 

where 

Cd= the deflection amplification factor, which, like R, depends on the structural system 

0 e = the deflections determined from an elastic analysis. 

For an ordinary moment-frame-resisting system made of steel, Cd=4.0. Taking o. to be the 

SD value of the elastic NRC spectrum, the ATC 3-06 values for design drift can be 

determined from Eqn. (5.30). These values are plotted in Fig. 5.48 along with the mean 

values of u,. for the two hysteretic models. For almost the entire range of the natural 

periods under consideration, the design values of the displacement drift for the W-B model 

are less than those for the DEL model. In this context, the A TC 3-06 values are slightly on 

the high side, especially at longer natural periods. 
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5.7.4 A note on the maximum displacement prediction by the two models: 

In the six cases of Example 3 where an SDOF structural model was subjected to 

white noise base excitation, the maximum displacement and ductility values of the W-B 

model are generally higher than those of the DEL model. On the other hand, in Example 4 

where the SDOF model was subjected to simulated earthquake base excitations, the values 

of the said quantities of the W-B model are general! y lower than the corresponding values 

of the DEL model. The reason for this may perhaps be explained thus. One of the 

differences in the two ensembles is in the duration of strong shaking, with the durations for 

the white noise and spectrum-consistent ensembles being 20 seconds and 11 seconds, 

respectively. Keeping in mind that the W-B model tends to cause. larger permanent offsets, 

it is likely that at the end of 11 seconds of white noise excitation in Example 3, the residual 

offset for the W-B model is larger than for the DEL model. The additional 9 seconds of 

strong shaking is likely to bias the displacement in the direction of the residual offset, thus 

causing larger displacements in the case of the W-B model. 

It may be concluded that increasing the duration of strong shaking (i.e., increasing 

the likely number of severe excitation pulses) may have the effect of increasing the 

displacement of the Wen-Bouc model more than the corresponding Distributed Element 

model. 

5.8 Conclusion: 

Several examples have been considered in this chapter in which the relative dynamic 

performance of two curvilinear hysteretic models has been evaluated. Depending on the 

type of loading (zero mean, static loading, gravity, earthquake-like excitations, etc.), the 

type of system (nature of post-yielding stiffness, number of degrees of freedom, etc.), the 

adequacy of the endochronic model to depict real hysteretic systems varies. For earthquake-
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like excitations, the agreement between the W-B and DEL models is favorable in such 

response quantities as base shear, maximum velocity, energy dissipated and dynamic 

amplitude, but not as reliable in displacement quantities such as ductility, final offset, etc. 

The agreement is usually enhanced as the post-yielding stiffness becomes larger. Indeed, 

given the differences in the behavior of the two models quasi-statically, the degree of 

agreement in some of the dynamic response quantities is quite surprising. 

In the final analysis, the decision as to which hysteretic model to employ rests with 

the individual user. The relative simplicity of the mathematical description of the W-B 

model has to be weighed against the deviation in the values of predicted response quantities 

from true behavior. Given the large memory capacities and high speeds of today's 

computers, the more physical DEL model in its Extended Massing's formulation could be 

used, at least for moderate-sized systems. In the modeling of hysteretic systems with large 

numbers of degrees of freedom, it may be tempting to use the endochronic models, owing 

to their simplicity. But there are at least two reasons why this may not be advisable. Firstly, 

it has been shown that increasing the number of degrees of freedom may introduce 

additional sources of nonphysical behavior. Secondly, it may be recalled that the W-B 

model may predict spurious instabilities. In a multi-degree-of-freedom system, the use of 

such models may cause a local instability in a member, leading to false prediction of the 

eventual collapse of the entire system. 
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Response Quantity The Wen-Bouc The Distributed Relative Error 
model Element model 

u,, Maximum 0.0865 0.0880 -1.72% 
displacement in m 

J1 , Ductility 3.93 3.995 -1.72% 

(umax- umin), 0.1219 0.1218 0.08% 
Dynamic 

displacement in rn 

tm•x, Time of 
maximum 3.12 5.54 -43.68% 

displacement in 
seconds 

u,., Maximum 
0.359 0.362 -0.83% 

velocity in m/sec 

Cb, Base shear 0.0977 0.0966 1.13% 
coeffecient 

uoff, Final offset in 0.0342 0.0253 35.52% 
m 

E(T), Hysteretic 
0.8403 E-02 0.7007 E-02 19.92% energy dissipated 

(normalized) in m2 

Table 5.1: Comparison of eight characteristic quantities in the response of the Wen­
Bouc and the Distributed Element models to the 1940 El Centro earthquake. 
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Post-yielding Value of Value of 
stiffness ratio constant parameter in Comment 

external force m-1 
in%g 

a F f3 

No post-yielding stiffness; 
zero mean loading; f3 is such 

Case! 0.0 0.0 7.67 that mean ductility in the 
response of the DEL model 

is about 2.0 

No post-yielding stiffness; 
zero mean loading; f3 is such 

Case II 0.0 0.0 12.00 that mean ductility in the 
response of the DEL model 

is about 4.0 

No post-yielding stiffness; 
zero mean loading; f3 is such 

Case Til 0.0 0.0 17.53 that mean ductility in the 
response of the DEL model 

is about 8.0 

Effect of positive post-
Case IV 0.05 0.0 12.00 yielding stiffness on system 

in Case II 

Effect of nonzero mean 
CaseY 0.0 2.0 12.00 loading on system in 

Case II 

Combined effect of nonzero 
Case VI 0.05 2.0 12.00 mean loading and postive 

post -yielding stiffness ratio 
on Case II 

Table 5.2: System parameters for the cases for which comparison is made of the response 
statistics of the two models when subjected to white noise excitation. In all 
cases, the following are kept constant: nominal natural frequency= 1Hz, viscous 
damping as a fraction of critical=5%, A= 1.0 and the ratiofJ/r-=-1.5 



The Wen-Bouc The Distributed 
model Element model Relative error (%) 

Response 
quantity 

Mean Standard Median Mean Standard Median Mean Standanl Median 
deviation deviation deviation 

um 18.65 5.92 17.57 16.03 3.54 15.53 17.47% 30.96% 13.54% 
in em 

J.1 2.38 0.76 2.24 2.05 0.45 1.98 17.47% 30.96% 13.54% 

(umu- umin 27.04 6.27 25.87 27.72 4.97 27.26 -1.81% 17.70% -4.65% 
in em 

fmu 13.52 5.59 14.59 10.81 5.84 10.96 93.06% 244.96% 191.78% 
in sees 

Um 64.49 7.45 63.88 69.76 8.80 69.08 -7.09% 7.77% -6.69% 
in em/sec 

cb 0.281 0.021 0.281 0.283 0.022 0.283 -0.49% 4.07% -0.81% 

uoff 0.62 10.63 0.98 0.38 2.84 0.15 - - -
in em 

E(T) 
340.85 91.17 334.16 315.07 90.16 305.71 9.59% 12.70% 10.49% 

inem2 
- -- ~ - ~---···- - -~~ 

Table 5.3: Statistics of eight response quantities for the two hysteretic models subjected to white noise base excitation for Case I 
listed in Table 5.2 
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The Wen-Bouc The Distributed 
model Element model Relative error (%) 

Response 
quantity 

Mean Standard Median Mean Standanl Median Mean Standanl Median 
deviation deviation deviation 

u,. 24.56 9.39 23.48 19.60 5.57 18.57 27.06% 37.83% 24.65% 
in em 

J1 4.93 1.89 4.72 3.94 1.12 3.73 27.06% 37.83% 24.65% 

(umax - uminJ 33.10 9.37 31.67 31.03 6.61 30.49 7.26% 22.42% '3.31% 
in em 

tmax 13.99 5.40 14.91 11.78 5.81 12.50 75.68% 221.59% 4.89% 
in sees 

u,. 59.91 7.23 59.42 65.08 8.26 64.78 -7.59% 7.18% -8.17% 
in em/sec 

cb 0.214 0.012 0.214 0.216 0.012 0.216 -0.74% 3.23% -0.74% 

uo.f! 1.03 17.06 1.40 1.12 7.44 0.37 - - -
in em 

E(T) 
369.51 85.00 362.94 346.83 87.36 341.55 7.62% 10.40%. 7.96% 

incm2 
- -

Table 5.4: Statistics of eight response quantities for the two hysteretic models subjected to white noise base excitation for Case II 
listed in Table 5.2 
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The Wen-Bouc The Distributed 
model Element model Relative error (%) 

Response 
quantity 

Mean Standard Median Mean Standard Median Mean Standard Median 
deviation deviation deviation 

u,. 34.03 14.65 31.05 28.04 
in em 

11.16 25.56 23.99% 36.06% 21.66% 

p. 9.94 4.28 9.07 8.19 3.26 7.47 23.99% 36.06& 21.66% 

(uma• -umin 43.61 13.99 40.79 39.52 11.29 37.36 11.80% 23.39% ·s.65% 
in em 

tmu 14.47 5.28 15.82 13.18 5.55 13.94 44.78% 161.47% -4.29% 
in sees 

u,. 58.29 7.71 57.65 62.89 8.28 62.18 -7.05% 6.89% -7.51% 
in em/sec 

cb 0.167 0.009 0.167 0.168 0.009 0.168 -0.55% 2.71% -0.69% 

uoff -1.24 27.04 -0.49 -0.64 18.20 -0.05 - - -
in em 

E(T) 
382.24 78.94 378.99 359.93 80.67 358.09 6.91% 7.77% 5.93% I 

inem2 
-1..---

Table 5.5: Statistics of eight response quantities for the two hysteretic models subjected to white noise base excitation for Case III 
listed in Table 5.2 
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The Wen-Bouc The Distributed 
model Element model Relative error (%) 

Response 
quantity 

Mean Standard Median Mean Standard Median Mean Standard Median 
deviation deviation deviation 

um 17.97 4.46 17.70 18.07 4.44 17.41 1.00% 18.78% 0.05% 
in em 

J.L 3.61 0.90 3.55 3.63 0.89 3.50 1.00% 18.78% 0.05% 

(umax- umin 28.54 6.08 28.13 30.14 5.96 29.53 -4.68% 12.79% -5.17% 
in em 

(max 11.56 5.53 11.57 11.39 5.69 11.78 31.86% 139.93% -9.58% 
in sees 

l.im 60.96 7.37 60.43 66.53 8.55 66.13 -8.02% 6.83% -8.57% 
in em/sec 

c, 0.229 0.017 0.229 0.235 0.017 0.235 -2.22% 3.70% -2.50% 

uoff 0.34 5.40 0.27 0.63 4.11 0.32 - - -
in em 

E(T) 
383.64 90.35 375.41 358.04 92.12 348.38 8.57% 10.40% 8.78% 

inem2 
-

Table 5.6: Statistics of eight response quantities for the two hysteretic models subjected to white noise base excitation for Case IV 
listed in Table 5.2 
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The Wen-Bone The Distributed 
model Element model Relative error (%) 

Response 
quantity 

Mean Standard Median Mean Standard Median Mean Standard Median 
deviation deviation deviation 

u'" 37.80 15.58 36.03 22.02 7.14 20.91 74.20% 54.01% 71.84% 
in em 

JL 7.59 3.13 7.24 4.42 1.43 4.20 74.20% 54.01% 71.84% 

(uma.- umin 43.76 14.32 41.02 31.88 7.23 30.95 38.83% 37.74% 36.56% 
in em 

tmax 17.05 4.45 18.95 13.00 5.59 13.79 90.06% 235.21% 217.71% 
in sees 

u'" 60.12 7.31 59.80 64.99 8.08 65.00 -7.16% 7.41% -7.57% 
in em/sec 

cb 0.215 0.012 0.216 0.218 0.012 0.219 -1.32% 2.97% -1.33% 

uoff -29.32 17.58 -28.61 -7.39 8.44 -6.62 - - -
in em 

E(T) 
383.52 88.59 379.85 351.21 88.74 341.29 10.31% 10.79% 10.41% 

inem2 

Table 5.7: Statistics of eight response quantities for the two hysteretic models subjected to white noise base excitation for Case V 
listed in Table 5.2 
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The Wen-Bouc The Distributed 
model Element model Relative error (%) 

Response 
quantity 

Mean Standard Median Mean Standanl Median Mean Standard Median 
deviation deviation deviation 

um 22.03 5.57 21.34 19.24 4.78 18.80 16.74% 23.64% 16.87% 
in em 

J.l 4.42 1.12 4.29 3.86 0.96 3.78 16.74% 23.64% 16.87% 

(umu -umin 29.88 5.91 28.95 30.17 5.91 29.54 0.14% 14.87% '-0.65% 
in em 

(max 12.57 5.47 13.12 11.63 5.87 11.76 48.66% 182.06% -0.31% 
in sees 

um 61.03 7.32 60.77 66.52 8.42 66.24 -7.92% 6.88% -8.46% 
in em/sec 

cb 0.236 0.018 0.235 0.238 0.018 0.240 -1.03% 3.59% -1.09% 

uoff -7.34 5.38 -7.36 -3.41 4.18 -3.45 - - -
in em 

E(T) 
387.14 90.58 380.36 359.48 93.31 352.95 8.82% 10.38% 8.87% 

inem2 

Table 5.8: Statistics of eight response quantities for the two hysteretic models subjected to white noise base excitation for Case VI 
listed in Table 5.2 
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Figure 5.1: Schematic representation of a restoring force system. 
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Figure 5.2: Initial loading curve for the hysteretic models. 
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Model for a single-degree-of-freedom structure in a gravitational field 
subjected to an earthquake ground motioo and a horizontal external force. 
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Figure 5.4: Model for a multi-degree-of-llcedom stnJCtute subjected to earthqualte 
ground motion. 
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---DEL Model 
----- W-B Model 

Timet 

The displacement response of the two hysteretic models when subjected to 
a sudden external load. The post-yielding stiffness ratio is 0.05 and 
gravitational effects are neglected. 

DEL Model 
W-BModel 

4 

Relative displacement u 

The hysteretic restoring force-displacement diagrams for the two hysteretic 
models when subjected to a sudden external load. The post-yielding 
stiffness ratio is 0.05 and gravitational effects are neglected. 
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(b) 

----DEL Model 
·---W-B Model 

---DEL Model 
·---W-B Model 

The velocity response of the two hysteretic models when subjected to a 
sudden external load for (a) the first 25 seconds after firSt application of 
the load (b) the next 50 seconds. The post-yielding stiffness ratio is 0.05 
and gravitational effects are neglected. 
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a.=0.25 

a=0.50 

Timet 

The displacement response of the W-B model when subjected to a sudden 
external load for different values of a, the post-yielding stiffness ratio. 

---DEL Model 
-----W-B Model 

Timet 

The displacement response of the two hysteretic models when subjected to 
a sudden external load. The post-yielding stiffness ratio is 0.05 and 
gravitational effects are included ('Tj-0.071). 
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Figure 5.10: The hysteretic restoring force-displacement diagrams for the two hysteretic 
models when subjected to a sudden external load. The post-yielding 
stiffness ratio is 0.05 and gravitational effects are included (Tt=(l071) . 

.. 
c 
(!) 

E 
(!) 
0 
Ill 
a. 
Ill 
"0 
Q) 

-~ ; 
Qj 
a: 

. . . . 
' . . 

J ........ --···· ... 

_,. 
J" .... ..... 

~··,...,. 
,...._.,.---

.,:./~~ 
,.,~ ... 

Timet 

---DEL Model 
---W-BModel 

Figure 5.11: The displacement response of the two hysteretic models when subjected to 
a sudden external load. The post-yielding stiffness ratio is 0.05 and 
gravitational effects are included (Tt=0.250). 
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---DEL Model 
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Relative displacement 

Figure 5.12: The hysteretic restoring force-displacement diagrams for the two hysteretic 
models when subjected to a sudden external load. The post-yielding 
stiffness ratio is 0.05 and gravitational effects are included (11=0.250). 
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Figure 5.13: The N-S component of the 1940 EJ Centro earthquake· 
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Figure 5.19: The ductility factor, J.l, of the two models when subjected to the El 
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Figure 5.22: The base shear coefficient, Cb, of the two models when subjected to the 

El Centro earthquake. for a range of yield levels. 
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subjected to the El Centro earthquake, for a range of yield levels. 
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Figure 5.40: The probability density function of Cb, the base shear coefficient of the 

two models for Case III listed in Table 5.2. 
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Figure 5.44: The inelastic pseudovelocity (PSV) response spectrum of the two 
hysteretic models corresponding to the Reg. Guide 1.60 elastic spectrum 
shown in Fig. 5.42. These spectra correspond to a mean value of about 4 
in the response of the DEL model. 
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Figure 5.45: The inelastic spectral velocity (SV) response spectrum of the two 
hysteretic models corresponding to the Reg. Guide 1.60 elastic spectrum 
shown in Fig. 5.42. These spectra correspond to a mean value of about 4 
in the response of the DEL model. 
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CHAPTER 6 

SUMMARY. AND CONCLUSIONS 

Based on the first five chapters of this thesis, a concluding summary on the analysis 

carried out and the results obtained may be presented as follows: 

(1) Recently proposed mathematical representations for certain piecewise-linear hysteretic 

models have been beneficial in the sense that they have helped cast the models in a 

history-independent framework. thus enabling a stochastic linearization to determine the 

approximate response statistics. Such representations are available for the elastoplastic 

and bilinear models, the polylinear model, the double-bilinear model, the Clough­

Johnston model, the slip model, the origin-oriented model, the peak-oriented model, 

etc. Unfortunately, there are no curvilinear hysteretic models for which these 

representations are currently available; as a matter of fact, it is not clear whether such 

representations involving only a small number of additional state variables exist at all 

for curvilinear models. 

(2) When subjected to transient loading, the models belonging to the Distributed Element 

class of curvilinear hysteretic models satisfy an extended version of the Massing's 

hypothesis [24], which was originally proposed by Massing for steady-state behavior. 

This fact does not help in the equivalent linearization of the hysteretic models. 

However, it does simplify significantly the numerical implementation of the models 

when they are used to describe the hysteretic behavior of a system subjected to an 

arbitrary transient loading. This simplification, combined with the ability of these 

models to reproduce a wide range of hysteretic behavior, including both degrading and 

nondegrading systems, makes the Distributed Element class of models an excellent 

choice for the mathematical modeling of physical systems. 
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(3) A relatively simple identification procedure for nonlinear systems has been proposed in 

Chapter 3, which is based on matching the slopes of the hysteretic branches of the 

restoring force diagram rather than on the time history of the response. This procedure 

can be applied to hysteretic as well as to nonhysteretic systems. Examples shown in the 

same chapter indicate that the method is satisfactory for systems whose hysteretic 

behavior is governed by the bilinear model or by the endochronic model, for instance, 

the Wen-Bouc model. 

(4) The response behavior of endochronic models, such as that of the Wen-Bouc model 

examined in Chapters 4 and 5, raises serious questions about the applicability of these 

models to represent physical hysteretic structures. The Wen-Bouc model, when 

subjected to certain quasi-static loading sequences, exhibits some inconsistent response 

behavior, for instance, displacement drift, loop nonclosure, stiffening, force relaxation 

to a zero mean value, etc. Also, these models violate the Drucker's and Ilyushin's 

stability postulates, calling to attention the possibility of inaccurate numerical solutions 

and/or nonunique solutions. 

The instability of the endochronic models becomes quite apparent in Chapter 5 

when the Wen-Bouc model is used to model a structure exhibiting the P-8 

phenomenon. In this case, a suddenly applied external load on a structure causes very 

large response deformations, leading to its eventual collapse. This tendency to predict 

unusually large displacements is especially pronounced for very small values of the 

post-yielding system stiffness, and/or when the external load has a nonzero mean 

value. The possibility of the spurious instability predictions by these models raises the 

concern that it may not be possible to determine whether a failure predicted during 

analysis is due to the mathematical modeling, or to the actual failure of the structure to 

withstand excessive loading. 
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It may be recalled that one of the most prominent applications of the endochronic 

models has been in the estimation of the approximate response statistics of hysteretic 

systems subjected to stochastic exCitation. With this in mind, a simulation analysis was 

performed with the Wen-Bouc model and the physically based Distributed Element 

model with identical initial loading behavior, in order to evaluate the ability of the 

endochronic model to predict satisfactorily the stochastic response of physical systems. 

The difference in the response statistics of the two models varies widely depending on 

the response quantity being extracted and the type of system (value of post-yielding 

stiffness, number of degrees of freedom, etc.). In one case with nonzero mean, white 

noise base excitation, the mean of the absolute value of the response displacement 

predicted by the W-B model is about 1.72 times the corresponding value provided by 

the Distributed Element model. In this context, a remark needs to be made. Generally 

speaking, it is observed that velocity predictions by the Wen-Bouc model are better than 

displacement and displacement-related quantities like ductility and final offset. By the 

same token, estimates of the acceleration-related quantities like the base shear 

coefficient seem to be even better than those of the velocity. 

In view of the observed differences in the predicted values of certain response 

quantities in the simulation analysis, the following observation may be made. Even 

though the mathematical structure of the endochronic models is quite elegant and rather 

readily affords a direct stochastic linearization, it is a moot point as to how relevant the 

approximate response statistics obtained by the use of such models are in the analysis 

of physical hysteretic systems, because, simply put, these models are capable of 

behaving in a fashion quite inconsistent with realistic structural behavior. Caution must 

therefore be exercised in interpreting the estimates of response statistics obtained with 

the use of these models in the description of hysteretic behavior of nonlinear systems. 
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In light of the above conclusions, a few suggestions for continued research in the 

analysis of hysteretic structures may be made here. There are basically two broad avenues 

where further study would be profitabie. The first is in improved mathematical modeling of 

hysteretic systems. An ideal mathematical model should satisfy the following properties: 

(a) the model should be able to capture most of the important attributes of the response 

behavior of physical systems, 

(b) the model should not exhibit abnormal characteristics that are not usually observed in 

physical systems, and 

(c) the model representation should be simple enough to readily facilitate deterministic and 

stochastic analysis, including linearization. 

It is clear that the piecewise-linear models satisfy (b) and (c) but not (a), the endochronic 

models satisfies (a) and (c) but not (b), and the Distributed Element models satisfy (a) and 

(b) but not (c), since they cannot be easily linearized in order to obtain approximate 

response statistics. Whether or not a model satisfying (a), (b) and (c) exists remains to be 

seen. 

One possible model for hysteresis, containing some features of both the endochronic 

and the Distributed Element models, may be proposed as follows. It may be recalled that in 

the case of the endochronic models, the slopes of the restoring force diagram depend only 

on the instantaneous value of the restoring force, while in the case of the Distributed 

Element models, they depend not only on the instantaneous value of the restoring force, but 

also on all of the nested turning points. As in the case of the bounding-surface model 

proposed by Dafalias [16], the slopes of the restoring force diagram for the suggested 

model depend only on the most recent turning point in addition to the usual dependence on 

the instantaneous value of the restoring force. The slope of any loading/reloading 

/unloading path is assumed to vary linearly from the value of the initial system stiffness at 

the point of load reversal to an asymptotic value of zero at the maximum or yielding value 
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of the force. By its very formulation, the hysteresis loops are guaranteed to close at least 

partially. The hysteretic behavior of this model is similar to that reported by Jennings in 

[25]. 

In the search for improved mathematical models, one interesting field of investigation 

may lie in the possibility of extending the Massing's hypothesis to two and three 

dimensions. Iwan [21] has extended the hysteretic restoring force behavior of the one­

dimensional class of Distributed Element models to three dimensions by introducing the 

concept of nested yield surfaces. It will be instructive to determine whether the Massing's 

hypothesis can in some way be extended to this three-dimensional class of models. 

The second area of considerable research potential is in the possible generalization of 

the theory of equivalent linearization so as to include the class of Distributed Element 

models. For this purpose, it may be helpful to start with the history-independent 

representation for the parallel-series model indicated by Eqn. (2.42). Investigations may 

also be undertaken to examine the feasibility of linearizing the Dafalias-like model 

suggested earlier. 

It is evident that the modeling and analysis of hysteretic systems is an area of 

immense research potential and challenge. Every effort must be made to facilitate clear 

understanding of the hysteretic nature of nonlinear response behavior, considering its 

crucial importance in structural dynamics. 
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