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Abstract 

In this work, computationally efficient approximate methods are developed for an­

alyzing uncertain dynamical systems. Uncertainties in both the excitation and the 

modeling are considered and examples are presented illustrating the accuracy of the 

proposed approximations. 

For nonlinear systems under uncertain excitation, methods are developed to ap­

proximate the stationary probability density function and statistical quantities of 

interest. The methods are based on approximating solutions to the Fokker-Planck 

equation for the system and differ from traditional methods in which approximate so­

lutions to stochastic differential equations are found. The new methods require little 

computational effort and examples are presented for which the accuracy of the pro­

posed approximations compare favorably to results obtained by existing methods. 

The most significant improvements are made in approximating quantities related to 

the extreme values of the response, such as expected outcrossing rates, which are 

crucial for evaluating the reliability of the system. 

Laplace's method of asymptotic approximation is applied to approximate the 

probability integrals which arise when analyzing systems with modeling uncer­

tainty. The asymptotic approximation reduces the problem of evaluating a multi­

dimensional integral to solving a minimization problem and the results become 

asymptotically exact as the uncertainty in the modeling goes to zero. The method 

is found to provide good approximations for the moments and outcrossing rates 

for systems with uncertain parameters under stochastic excitation, even when there 

is a large amount of uncertainty in the parameters. The method is also applied 

to classical reliability integrals, providing approximations in both the transformed 

(independently, normally distributed) variables and the original variables. In the 

transformed variables, the asymptotic approximation yields a very simple formula 

for approximating the value of SORM integrals. In many cases, it may be computa­

tionally expensive to transform the variables, and an approximation is also developed 

in the original variables. Examples are presented illustrating the accuracy of the 

approximations and results are compared with existing approximations. 
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Chapter 1 

Introduction 

Many structural and mechanical systems experience vibratory response as a result 

of environmental loads. Examples include the response of structures to earthquake 

and wind loadings, vibration of trains and automobiles traveling over rough surfaces, 

marine structures in waves and aircraft vibration due to turbulence. In all of these 

cases, there is a great deal of uncertainty in the loads that will be placed on the 

system over the course of its life. 

While detailed knowledge of the forces the structure will be subjected to is not 

known, some information about the excitation is typically known. For example, 

measurements from previous earthquakes give engineers an estimate for the magni­

tude, and sometimes the frequency content, of ground accelerations expected during 

an earthquake. Similar knowledge is often available for other environmental loads. 

Although this type of knowledge is useful, the actual excitations are often aperiodic 

and highly irregular and are not easily characterized. In addition to the complexity 

of the excitations, the loadings are not repeatable. Time histories recorded from 

different earthquakes and wind forces measured at different times often look very 

different. 

For these reasons, the excitations are often modeled as stochastic processes and 

the analysis of systems under such excitation is referred to as random vibration 

theory. The earliest work in this area was in the 1950's in the aerospace industry. 

Since then, the methods have been applied to a number of mechanical, civil, and 
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aerospace systems. 

For systems subjected to uncertain excitation, design and performance evalu­

ation measures need to be formulated probabilistically. For example, due to the 

uncertainties in the excitation, no deterministic bounds can be placed on the mag­

nitude of the response. The main objectives in analyzing systems subjected to un­

certain excitations are to determine the probabilistic characteristics of the response 

and to calculate probabilities related to system performance, such as reliability. The 

probabilistic characteristics of the response can be determined analytically only for 

linear systems and a small class of nonlinear systems. 

Over the last 40 years, a number of approximate methods have been developed 

for determining the probabilistic characteristics for the response of nonlinear sys­

tems subjected to uncertain excitation. Several of these methods are discussed in 

chapter 3 and references containing more thorough reviews of the available methods 

are given. These methods generally provide good estimates to the mean square 

statistics for nonlinear systems, but often provide poor estimates for quantities re­

lated to extreme values of the response, such as the reliability. New approximate 

methods are presented which are capable of providing good estimates to both the 

mean square statistics and the reliability for nonlinear systems. 

In addition to the uncertainty in the excitation applied to structures, there is 

also uncertainty in the mathematical modeling of the system. Modeling uncertainty 

is inherent, as no mathematical model can completely describe the behavior of 

a physical system. The models developed are typically based on balance laws, 

experimental observations, or some combination of the two and often contain a 

number of parameters, such as elastic moduli, damping ratios, natural frequencies, 

modeshapes, etc. The values of these parameters which will give the best agreement 

between the response of the model and that of the physical system are not known 

precisely, and the resulting uncertainty is referred to as parametric uncertainty. 

One approach to dealing with parametric uncertainty is to take a worst-case 

approach. In this approach, the parameters are assumed to lie in a bounded domain, 

the parameter values in this domain giving the worst performance are determined, 
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and this worst-case performance value is used for design and analysis purposes. One 

problem with this approach is that it can be highly conservative. This is especially 

true as the number of uncertain parameters becomes large, since the likelihood of the 

parameters achieving the worst-case performance may be extremely low. Another 

difficulty with this approach is finding the bounded domain in which the parameters 

are assumed to lie. In many cases, it is difficult to put hard bounds on parameter 

values. 

Another approach for dealing with modeling uncertainty is to use probabilistic 

methods. In order to use probabilistic methods for parametric uncertainty, proba­

bility must be interpreted in a Bayesian sense, as a multi-valued logic for plausible 

reasoning subject to certain axioms (Jeffreys 1961; Box and Tiao 1973; Beck 1989; 

Beck 1996), since the relative frequency interpretation of probability does not make 

sense for parametric uncertainty. The probability density function for the param­

eters represents the relative plausibility of the parameters based on the engineer's 

knowledge, experience and judgment. One of the problems with using probabilistic 

methods is the computational difficulties that often arise. Typical problems that 

arise require computing integrals over the parameter space, which may be high 

dimensional. Straightforward numerical integration becomes computationally pro­

hibitive when there are more than a few uncertain parameters, and approximate 

methods are required. 

New asymptotic approximations are presented for evaluating the probability in­

tegrals arising in the analysis of systems with parametric uncertainty. Approxima­

tions are developed for evaluating statistical quantities for the response of systems 

with parametric uncertainty subjected to uncertain excitation and for evaluating 

classical reliability integrals. The approximations are all computationally efficient 

and the accuracy of the methods is demonstrated with a number of examples. 
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1.1 Organization of Thesis 

An overview of the mathematics of stochastic processes and stochastic differen­

tial equations is presented in chapter 2, providing the background for the material 

covered in chapters 3 and 4. The Fokker-Planck equation is introduced and there­

lationship between stochastic differential equations and the Fokker-Planck equation 

is illustrated. The concept of reliability and the classical first passage problem are 

covered, and some issues related to numerical solutions to the Fokker-Planck and 

backward Kolmogorov equation are discussed. 

Chapter 3 contains a review of a number of analytical methods available for in­

vestigating the response of structural systems under random excitation. After some 

background and historical notes on random vibration theory, the chapter begins 

with a discussion of systems for which analytical solutions can be obtained for the 

probability distribution of the response. The number of systems for which analyti­

cal solutions are available is rather limited and in the remaining sections, a number 

of approximate techniques based on approximating the stochastic differential equa­

tions are reviewed. The review is not intended to be exhaustive, but rather to review 

some of the well-known methods, with more emphasis being given to those methods 

which will be used for illustration purposes in chapter 4. 

Three new methods for approximating the response of nonlinear dynamical sys­

tems to stochastic excitation are presented in chapter 4. The new methods are based 

on approximating solutions to Fokker-Planck equations and differ from the tradi­

tional methods discussed in chapter 3, which are based on approximating solutions 

to stochastic differential equations. Some illustrative examples are presented and 

results are compared with those obtained from the methods discussed in chapter 3. 

A computationally efficient approach to including modeling uncertainty in the 

analysis is presented in chapter 5. The model uncertainty is modeled probabilisti­

cally, and simple asymptotic formulas are presented for approximating the values of 

multi-dimensional integrals which arise. Examples are presented which illustrate the 

accuracy of the asymptotic approximation for computing moments and outcrossing 

rates for uncertain systems and for evaluating classical reliability integrals. 
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Chapter 2 

Stochastic Processes, Stochastic Differential 

Equations, Fokker-Planck Equation, and 

Reliability of Stochastic Dynamical Systems 

This chapter contains a brief overview of some of the theory of stochastic processes, 

with particular emphasis on Markov processes. The Fokker-Planck equation as­

sociated with a Markov process is introduced in section 2.3. Some background on 

stochastic differential equations and stochastic integrals is presented in sections 2.4-

2.6. In section 2.7, the relationship between stochastic differential equations and the 

Fokker-Planck equation is illustrated. section 2.8 presents an introduction to relia­

bility for stochastic dynamical systems as well as the classical first passage problem. 

A review of numerical solutions to the Fokker-Planck equation is given in section 2.9 

and some concluding comments are made in section 2.10. 

2.1 Stochastic Processes 

A stochastic process is an uncertain-valued function for which the uncertainty is 

described probabilistically. The process will be denoted by x(t) with t E T C IR. 

The parameter t usually represents time and T is the time interval of interest. For 

each timet E T, x(t) E IRn is a random variable. It is assumed that for any finite set 

of times, { t 1 , ... , tm}, with ti E T, the probability density function for the random 
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variables Xi = x(ti) 

(2.1) 

exists for all n E z+. Knowledge of the probability density functions (2.1) would 

provide a complete description of the stochastic process. 

Note that the probability density functions defined by (2.1) will depend on the 

mathematical model for the stochastic process. Therefore, the probability density 

functions should technically be written as 

where M denotes the model for the stochastic process. For brevity, this dependence 

will be dropped in the notation. 

Conditional probability density functions can be deduced from (2.1) and Bayes's 

rule (Feller 1968) by 

While this definition is valid regardless of the ordering of the times, the times will 

be considered to be increasing as the index increases, i.e., 

2.2 Markov Processes 

A Markov process is a stochastic process for which the future depends only on the 

present state and not on the previous history of the process or the manner in which 

the present state was reached. A useful property of Markov processes is that the 

conditional probability density functions are determined entirely by knowledge of 

the most recent condition. That is, for all finite sets of times { t1, t2, ... , tk-l} and 
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Equation (2.2) is known as the Markov condition and it implies that all prob­

ability density functions can be written in terms of simple conditional probability 

density functions of the form p(x, t I y, s) with s < t, since given any probability 

density function p(xn, tn; ... ; x1, t1), repeated application of the Markov condition 

and Bayes' rule gives 

n-1 

p(xn,tn; ... ;x1,t1) =p(x1,t1) ITp(xk+l,tk+llxk,tk) 
k=l 

2.2.1 The Lindeberg Condition and Continuity of Stochastic Pro-

cesses 

While stochastic processes can only be described probabilistically, a question of 

interest is whether or not samples of the process are continuous. The stochastic 

processes studied in this work are the response of oscillatory systems to stochastic 

excitation, for which the sample paths are expected to be continuous. 

A conditional probability density function is said to satisfy the Lindeberg condi­

tion on a domain 1) C IRn+l if for any E > 0 

(2.3) lim ! f p(x, t + ~t 1 y, t) dx = o 
Llt--+0 ut }llx-yll>< 

for all (y, t) E V. It can be shown that if the conditional probability density function 

for a Markov process satisfies the Lindeberg condition on IRn+l, then the sample 

paths are continuous with probability one (Gihman and Skorohod 1975). 

2.3 The Fokker-Planck Equation 

The Fokker-Planck equation is a linear partial differential equation which governs 

the evolution of the conditional probability density functions of a continuous Markov 
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process. If, in addition to the Lindeberg condition (2.3), the conditional probability 

density functions of a Markov process satisfy the following for all E > 0 

(2.4a) lim : r (x- y)p(x, t + ~t I y, t) dx = a(y, t) + O(E) 
Llt-+O ut J11x-yll<< 

(2.4b) lim : r (x- y)(x- yf p(x, t + ~t I y, t) dx = D(y, t) + O(E) 
Llt-+0 ut }llx-yll<< 

uniformly in y, t and E, then the probability density functions will also satisfy the 

Fokker-Planck equation 

(2.5) ap(x,tiy,s) =L( t) ( tl ) at x, p x, y,s 

where L(x, t) is the forward Kolmogorov operator defined by 

(2.6) L(x, t) '1/J(x) = _ t a (ai(x, t)'lj;(x)) + ~ t t a2 
(Dij(x, t)'lj;(x)) 

i=l axi 2 i=l j=l axi ax j 

for all 'ljJ E C2 (1Rn). The vector a(y, t) is called the drift vector of the process and 

the matrix D(y, t) is called the diffusion matrix. 

The Fokker-Planck equation is named after the work ofFokker (1915) and Planck 

(1917) and is often called the Fokker-Planck-Kolmogorov equation due to the con­

tributions of Kolmogorov (1931). For a derivation of the Fokker-Planck equation, 

consult Gardiner (1994) or Lin and Cai (1995). Further information regarding the 

Fokker-Planck equation and applications can be found in the books by Risken (1989) 

and Soize (1994). 

2.4 Stochastic Differential Equations 

Stochastic differential equations are differential equations containing terms which 

are modeled as stochastic processes. They were first investigated by Langevin (1908) 

in the study of Brownian motion, and have since been applied to problems in a 

number of fields, including engineering, physics, economics, chemistry, and biology. 
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Stochastic differential equations are often written in the form 

(2.7) 
dx(t) dl = x(t) = f(x, t) + B(x, t)n(t) 

where x(t), f(x, t) E IRn, B(x, t) E IRnxm and n(t) E IRm is the stochastic term, 

which is often assumed to be rapidly fluctuating. The mathematical idealization of 

such a term is that for r -I 0, n(t) and n(t + r) are statistically independent. The 

mean n(t) is usually taken to be zero, since any nonzero mean can be absorbed into 

f(x, t). The requirements of zero mean and statistical independence can be written 

as 

E[n(t)] 0 

(2.8) 

where E denotes mathematical expectation and I is the m x m identity matrix. 

Choosing the identity matrix is merely for convenience since any other amplitude 

can be accounted for in B(x, t). Excitation satisfying the conditions (2.8) is known 

as white noise. 

While excitation having the properties (2.8) satisfies the requirement of sta­

tistical independence, it gives n(t) an infinite variance. A more realistic model is 

that 

where Tc is the correlation time of the excitation. This gives statistical independence 

for r » Tc· Then, white noise could be taken as the limit as Tc -+ 0. In practice, it 

is not easy to evaluate these limits (Gardiner 1994) and an alternative approach is 

to rewrite (2.7) as an integral equation 

(2.9) x(t) = x(t0 ) + {t f(x(s), s) ds + {t B(x(s), s) n(s) ds. 
ito ito 
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It can be shown (Gardiner 1994) that if n(s) satisfies the properties (2.8), then 

(2.10) lot n(s) ds = w(t) 

where w(t) is the multivariate Wiener process having properties 

(2.11a) 

(2.1lb) 

E[w(t)- w(s)] = 0 

E [(w(t)- w(s)) (w(t)- w(s))TJ = Ilt- sl 

for all t, s E IR. Equation (2.10) shows that n(t) as defined by (2.8) is like the 

derivative of the Wiener process, but the latter is not differentiable with probability 

one (Wiener 1923). Therefore, the proper interpretation of (2.7) is as the integral 

equation (2.9). Introducing 

(2.12) dw(t) = w(t + dt) - w(t) = n(t)dt 

the integral equation (2.9) can be rewritten as 

(2.13) x(t) = x(to) + {t f(x(s), s) ds + {t B(x(s), s) dw(s). 
ito ito 

The second integral in (2.13) is a stochastic integral and is defined in the section 2.5. 

2.4.1 Some Comments About White Noise 

As mentioned earlier, white noise has an infinite variance and a correlation time of 

zero, which are unrealistic properties for a model of the excitation. However, the 

assumption of white noise greatly simplifies the computations and can be thought 

of as an idealization of a model for the excitations likely to be met in practice. Ad­

ditionally, excitations for which white noise is a poor model can often be expressed 

indirectly in terms of linearly filtered white noise. Some well-known engineering 

applications using filtered white noise include the Kanai-Tajimi spectrum for seis­

mic excitation (Kanai 1957; Tajimi 1960), the Pierson-Moskowitz and JONSWAP 
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spectra for ocean waves (Hu and Zhao 1993) and Davenport's spectrum for wind 

excitation (Davenport and Novak 1976). 

2.5 Stochastic Integrals of Ito and Stratonovich 

In section 2.4, it was shown that the proper interpretation of a stochastic differential 

equation is as an integral equation, involving a term of the form 

(2.14) 1t B(x(s),s)dw(s). 
to 

Integrals of the form (2.14) are called stochastic integrals and are defined as a kind of 

Riemann-Stieltjes integral. The time interval [to, t] is partitioned into n subintervals 

[ti,tj] with 

to < t1 < · · · < tn-1 < t 

and the integral is defined as a limit of partial sums. However, due to the rapid 

fluctuations of the Wiener process, the value of the integral depends on where the 

integrand is evaluated in each subinterval. Two choices have shown to be useful in 

practice, and the resulting integrals are known as Ito and Stratonovich integrals, 

based on the work of Ito (1951) and Stratonovich (1963). 

2.5.1 The Ito Integral 

The Ito stochastic integral is defined by 

(2.15) 1t B(x(s), s) dw(s) = ms-lim t B(x(ti_l), ti-l) (w(ti)- w(ti-1)) 
to n---+oo i=l 

where ms-lim is the mean-square limit (Gardiner 1994). Notice that in each subin­

terval, b(x(t), t) is evaluated at the previous time ti-l, and, by the properties of 

the Wiener process, b(x(ti-1), ti-l) is statistically independent of the increment 

w(ti) -w(ti_1). This property makes the Ito integral easy to work with in a number 
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of applications, and it will be seen that the Fokker-Planck equation corresponding 

to a stochastic differential equation is easily obtained if the integral in (2.13) is an 

Ito integral. A drawback to the Ito integral is that some of the resulting properties, 

such as the change of variables formula, are different from ordinary calculus (Soong 

and Grigoriou 1993). 

2.5.2 The Stratonovich Integral 

The Stratonovich integral, denoted here by S J, is defined by 

(2.16) 

l. t ( ) . Ln (x(ti) + x(ti-1) ) S b(x(s), s) dw s = ms-hm B , ti-l (w(ti)- w(ti-1)). 
to n-+oo i=l 2 

Notice that the difference between the Ito integral and the Stratonovich integral is 

where the integrand is evaluated in each interval. Also notice that if b(x(s),s) is 

independent of x, the two integrals will be equivalent. The Stratonovich integral 

has the advantage that many of its properties, including the change of variables 

formula, are the same as those of ordinary calculus. 

2.6 Ito and Stratonovich Stochastic Differential Equa-

tions 

It was shown in section 2.4 that the proper interpretation of the stochastic differen­

tial equation (2. 7) is as the integral equation (2.13). The integral equation is often 

written in differential form as 

(2.17) dx(t) = f(x(t), t) dt + B(x(t), t) dw(t). 

If the integral in (2.13) is interpreted as an Ito [Stratonovich] integral, the differential 

equation (2.17) is called an Ito [Stratonovich] stochastic differential equation. 

In the remaining chapters, stochastic differential equations will be written in 

both forms (2.7) and (2.17), depending on which is more convenient for the appli-



13 

cation. 

2.6.1 Relation Between Ito and Stratonovich SDE's 

In section 2.7, it is shown that the Fokker-Planck equation corresponding to a 

stochastic differential equation can be obtained easily if the differential equation 

is thought of as an Ito equation. However, Stratonovich equations are a more nat­

ural choice for an interpretation which assumes the excitation is a physical noise 

with a finite correlation time, which is allowed to become arbitrarily small after 

calculating desired quantities (Gardiner 1994). Stratonovich equations are also pre­

ferred in some applications, since the rules of ordinary calculus can be applied to 

Stratonovich equations, while the rules of the Ito calculus are different. For these 

reasons, it is useful to be able to convert an equation of one type into the other 

type. 

It can be shown (Gardiner 1994) that the Ito SDE 

dx(t) = f 1 (x(t), t) dt + B(x(t), t) dw(t) 

is equivalent to the Stratonovich SDE 

dx(t) = f 8 (x(t), t) dt + B(x(t), t) dw(t) 

where 

(2.18) f s = J! _! ~~ Bk·f)Bij 
~ ~ 2 L.,; L.,; J ax . 

j=lk=l k 

The terms appearing in the summation in equation (2.18) are known as the Wong­

Zakai correction terms (Wong and Zakai 1965) and provide a simple conversion 

between Ito and Stratonovich equations. The formula also shows that if B is inde-

pendent of x, the two equations are equivalent, as mentioned in section 2.5.2. 
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2. 7 Connection between Stochastic Differential Equa­

tions and the Fokker-Planck Equation 

An ordinary differential equation is said to be memoryless if the solution for fu­

ture times can be obtained from the present state independently of the manner in 

which the present state was reached. The solution, x(t), to a memoryless stochas­

tic differential equation of the form (2.17) is a Markov process. Intuitively this is 

clear since the future response depends only on the present state and not on past 

values, therefore the state-transition probability density functions should also be 

independent of the previous state values. A rigorous proof of this result can be 

found in Arnold (1974). Since the solution to the differential equation is a Markov 

process, the state-transition probability density functions for x(t) are governed by a 

Fokker-Planck equation. It is easiest to determine the corresponding Fokker-Planck 

equation if the differential equation is interpreted as an Ito equation. Stratonovich 

equations can be handled by converting to the equivalent Ito equation using the 

Wong-Zakai correction terms (2.18). 

It can be shown (Gardiner 1994; Lin and Cai 1995; Caughey 1971) that the 

response x(t) to an Ito equation 

dx(t) = f(x(t), t) dt + B(x(t), t) dw(t), 

is a Markov process with drift vector a(x, t) = f(x(t), t) and diffusion matrix 

D(x, t) = B(x(t), t)BT(x(t), t). Therefore, from (2.5) and (2.6), the state-transition 

probability density function p(x, t I y, s) satisfies the following Fokker-Planck equa-

tion 

(2.19) 

ap(x, t 1 y, s) = _ t a (fi(x, t)p(x, t 1 y, s)) 

at i=l axi 

+ ~ ~ ~ ~ 82 (Bik(x, t)Bkj(x, t)p(x, t I y, s)). 
2 L.._.. L.._.. L.._.. ax . ax . 

i=l j=l k=l 2 J 

As discussed in chapter 3, the time-dependent Fokker-Planck equation is very 
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difficult to solve, and often the long-term, or steady-state response of the system 

is of interest. If f(x, t) and B(x, t) do not depend explicitly on t, the steady-state 

probability density function p(x) satisfies the stationary, or reduced, Fokker-Planck 

equation 

(2.20) 
_ ~ & (fi(x)p(x)) +! ~ ~ ~ &2 (Bik(x)Bkj(x)p(x)) = O. 

L.....J ax· 2 L.....J L.....J L.....J &x·&x. 
i=l z i=l j=l k=l z J 

In terms of the forward Kolmogorov operator defined by (2.6) with a(x) = f(x) and 

D(x) = B(x)BT(x), the stationary Fokker-Planck equation can be written in the 

simple form 

(2.21) L(x)p(x) = 0. 

Even for the stationary Fokker-Planck equation (2.21), there are very few known 

solutions for nonlinear systems, as discussed in section 3.1. Some comments on 

numerical solutions to the Fokker-Planck equation are given in section 2.9 and a 

number of new methods for approximating solutions to the stationary Fokker-Planck 

equation are given in chapter 4. 

2.7.1 Differential Equations with Memory 

While memoryless differential equations can be used to model many physical sys­

tems, many systems of engineering interest are hysteretic, i.e., future response de­

pends not only on the present state, but also on what happened to the system 

in the past. Since analysis of differential equations with memory is much more 

difficult, a number of higher-order memory less differential equations have been pro­

posed to model hysteretic behavior, see e.g., Visintin (1994). These models typically 

introduce auxiliary variables such that when the solutions are projected onto the 

variables of interest, the response displays some hysteretic qualities. A well-known 

example in earthquake engineering is the Bouc-Wen model (Bouc 1967; Wen 1980) 

for hysteresis. Only memoryless differential equations will be studied in this work. 
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2.8 Reliability and the First Passage Time 

One of the most important properties of a dynamical system subjected to stochastic 

excitation is its reliability. Due to the uncertainty in the excitation, no deterministic 

bounds can be set on the response amplitude, but the probability that the states 

remain in a "safe" or "acceptable" domain is often of interest. Typically, a safe set, 

S, and a failure set, F, are defined such that the system performance is acceptable 

if x E S and unacceptable if x E F. The reliability is then defined by 

R(xo, T) = P( x(t) E S lx(O) = xo) for all t E [0, T] 

where R is the reliability, P( ·) denotes probability and [0, T] is the time interval of 

interest. Associated with the reliability is the failure probability, Pf, which is given 

by 

Pt(xo, T) = P( x(t) E F lx(O) = xo) for some t E [0, T]. 

Clearly, Pt(xo, T) = 1- R(xo, T), provided that the sets Sand Fare complements, 

as usually defined. 

A classical problem associated with reliability theory is the first passage problem. 

Letting T be the time at which x(t) first leaves S, the first passage problem is to 

determine the probability distribution forT, i.e., to determine P(T ~ t) for all times 

t > 0. From the above definitions, it can easily be seen that P(T ~ t) given that 

x(O) = xo is equal to R(xo, t). 

It can be shown (Gardiner 1994) that R(xo, t) satisfies the backward Kolmogorov 

equation 

(2.22) BR~t t) = L*(xo, t)R(xo, t) 

where L*(x0 , t), the adjoint of the forward Kolmogorov operator, is the backward 

Kolmogorov operator. If a(x, t) is the drift vector and D(x, t) is the diffusion matrix 

for the Markov process x(t), the backward Kolmogorov operator is defined for all 
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(2.23) 

Assuming that S is a simply connected region with boundary aS, the initial condi­

tion for the backward Kolmogorov equation (2.22) is 

(2.24) R(xo,O) = 1 for X0 E S 

and the boundary condition is 

R(xo, t) = 0 for Xo E aS for all t > . 

The first passage problem for second-order systems subjected to white noise exci­

tation was first posed by Yang and Shinozuka (1970) as an initial-boundary value 

problem for the backward Kolmogorov equation and by Crandall (1970) for the 

Fokker-Planck equation. Fischera (1960) proved the well-posedness of these prob­

lems. 

Unfortunately, analytical solutions of the backward Kolmogorov equation exist 

only for the simplest scalar systems as illustrated by Darling and Siegert (1953). 

Therefore, even for linear systems, approximate methods are required for estimating 

the reliability. Approximate methods based on outcrossing rates are discussed in 

section 3.2.2. 

2.9 Numerical Solution of the Fokker-Planck and Back-

ward Kolmogorov Equations 

Due to the limited number of analytical solutions available for the Fokker-Planck 

and backward Kolmogorov equations, a number of approaches have been made to 

obtain numerical solutions to these equations. 

Some of the first numerical solutions obtained were for the first passage time of 
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a second-order linear oscillator (Chandiramani 1964; Crandall et al. 1966). In their 

method, the safe region in the state space was divided into cells, and the probability 

was diffused from cell to cell in each time based on the analytical solution for the 

state-transition probability density function for the linear oscillator. Later, Sun and 

Hsu (1988, 1990) developed a generalized cell mapping method to obtain solutions 

to the first passage problem for nonlinear second-order oscillators. Here, short-time 

simulations were used to map the probability from cell to cell in each time step. 

Another approach to obtaining approximate solutions is based on Galerkin's 

method. Atkinson (1973) used this method to investigate stationary solutions of the 

Fokker-Planck for second-order nonlinear systems. The trial functions were based 

on the eigenfunctions of the forward Kolmogorov operator for the linear systems. 

The method was extended to investigate nonstationary response (Wen 1975) and 

Bouc-Wen type hysteretic systems (Wen 1976). A Galerkin approach using locally 

defined Gaussian probability density functions was developed by Kunert (1991). 

One of the difficulties in applying this approach is obtaining good trial functions, 

as discussed in Wen (1975). 

Finite element solutions to the stationary Fokker-Planck equation for second­

order nonlinear systems have been obtained by Langley (1985) and Langatangen 

(1991). One of the main difficulties associated with numerically solving the sta­

tionary Fokker-Planck equation is satisfying the global normalization condition for 

the probability density function. An alternative approach based on solution of the 

Chapman-Kolmogorov equation has been developed by Naess and Johnsen (1991). 

A Petrov-Galerkin finite element method has been used by Spencer, Bergman 

and colleagues to obtain numerical solutions to both the Fokker-Planck equation and 

the backward Kolmogorov equation for second-order linear and nonlinear oscillators 

(Spencer and Bergman 1991; Bergman and Spencer 1992; Spencer and Bergman 

1993; Bergman et al. 1996) and for some three-dimensional systems (Wojtkiewicz 

et al. 1995). These methods have been able to obtain accurate solutions for two 

and three dimensional problems, but a significant amount of supercomputer time is 

required in order to obtain the solutions. 
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All of the numerical methods so far proposed require a significant amount of 

computational time. In addition, the solutions obtained for the probability density 

function are not typically in a convenient form for calculating statistical quantities 

of interest, such as moments and stationary outcrossing rates. In chapter 4, efficient 

methods for approximating the solutions to the stationary Fokker-Planck equation 

are developed. 

2.10 Final Remarks 

It has been shown that given any stochastic ordinary differential equation, the 

Fokker-Planck equation is a (deterministic) partial differential equation governing 

the evolution of the state transition probability density function. Both stochastic 

differential equations and the Fokker-Planck equation have been shown to be useful 

in practice; the following quotation is from Gardiner (1994) 

There are many techniques associated with the use of Fokker-Planck 

equations which lead to results more directly than by direct use of the 

corresponding stochastic differential equation; the reverse is also true. 

To obtain a full picture of the nature of diffusion processes, one must 

study both points of view. 

Much of the past research in approximating the response of nonlinear oscillators 

to stochastic excitation has been focused on obtaining approximate solutions to 

stochastic differential equations. Analysis methods based on approximating the 

stochastic differential equations are reviewed in chapter 3 and new methods based 

on approximate solutions to the Fokker-Planck equation are presented in chapter 4. 
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Chapter 3 

Random Vibration Theory 

Random vibration theory is the study of the vibrational response of mechanical 

and structural oscillatory systems under uncertain dynamic excitation. The uncer­

tain excitations, for example wind or earthquake loads, are typically modeled as 

stochastic processes, leading to stochastic differential equations for the response. 

Vibration response due to stochastic excitation was first studied in the mid 

1950's in the aerospace industry. Fuselage panels near jet engines were experiencing 

fatigue cracks due to the acoustic excitation from the jet exhausts. When the 

excitation from the engines was studied, it was found to be rapidly fluctuating, 

aperiodic, and lacked repeatability from one experiment to the next (Clarkson and 

Mead 1972). Some other early problems studied were the effects of atmospheric 

turbulence on aircraft (Press and Houboult 1955) and the reliability of payloads in 

rocket-propelled vehicles (Bendat et al. 1962). In all of these cases, the response 

was sufficiently complex and irregular that a probabilistic or statistical approach 

was found to be much more useful than traditional deterministic approaches. 

In the last few decades, random vibration theory has spread from the aerospace 

industry into a number of engineering fields. Some examples include the response 

of ships and offshore structures to wave excitation (Grigoriu and Allbe 1986; Leira 

1987; Hamamoto 1995; Hijawi et al. 1997), response of civil structures to wind 

(Davenport and Novak 1976; Kareem 1992; Islam et al. 1992; Chen 1994; Feng 

and Zhang 1997) and to seismic excitation (Tajimi 1960; Iwan 1974; Wen 1975; 
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Vanmarcke 1976; Park 1992; Papadimitriou and Beck 1994; Schueller et al. 1994) 

and vibration of vehicles traveling over bumpy surfaces (Newland 1986; Schiehlen 

1986; Ushkalov 1986; Hunt 1996). Several textbooks giving a good overview of the 

subject have been written, e.g., (Crandall and Mark 1963; Lin 1967; Nigam 1983; 

Roberts and Spanos 1990; Newland 1993; Soong and Grigoriou 1993; Lin and Cai 

1995; Lutes and Sarkani 1997). 

In random vibration studies, the system response is a stochastic process, and the 

goal of the engineer is to determine as much probabilistic and/or statistical infor­

mation about the process as is possible. If the state-transition probability density 

functions p(x, tixo, to) could be obtained for all times t > to, all probabilistic and 

statistical information about the system could be determined from the probability 

density functions and the system's initial conditions. Unfortunately, for most non­

linear systems of interest, there is no known way to determine the state-transition 

probability density function, or even the stationary probability density function 

p(x). A summary of systems for which analytical solutions to the Fokker-Planck 

equation are known is given in section 3.1. Often, statistical parameters for the 

response, such as moments and expected outcrossing rates, are of interest, as dis­

cussed in section 3.2. section 3.3 presents some approximate methods which have 

been developed based on approximating the stochastic differential equations. 

3.1 Exact Solutions in Random Vibration Theory 

For some dynamical systems, it is possible to obtain an analytical solution to the 

Fokker-Planck equation for the system. The solution to the nonstationary Fokker­

Planck equation can be obtained for linear systems of any dimension subjected to 

additive Gaussian white noise excitation. For nonlinear systems, analytical solu­

tions are known only for some special systems in one state variable (Risken 1989). 

Solutions to the stationary Fokker-Planck equation are known for a limited class of 

nonlinear single degree-of-freedom oscillators. Some solutions are available for non­

linear multi-degree-of-freedom oscillators, but the solutions typically require special 
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relationships between the system and excitation parameters which are unlikely to 

be met in practice. A more complete review of the known solutions can be found in 

Lin and Cai (1995). 

3.1.1 Linear Systems with Gaussian White Noise Excitation 

The state-transition probability density function can be obtained for time-invariant 

linear systems of any dimension subjected to additive Gaussian white noise (or lin­

early filtered Gaussian white noise). Such linear dynamical systems under additive 

stochastic excitation can be written in the form 

dx(t) = Ax(t) dt + B dw(t) 

where A E IRnxn, BE IRnxm and w(t) E IRm is the standard Wiener process having 

the properties in (2.11a) and (2.11b). In this case, the state-transition probability 

density function p( x, tixo, to) can be obtained by solving a (deterministic) Lyapunov 

matrix differential equation (Lin 1967). 

Without loss of generality, to can be taken to be zero and the transition proba­

bility density function is given by 

p(x, tixo) = 12 
1 

exp (-!(x- xo)T p-1 (t)(x- xo)) 
(21rt y'detP(t) 2 

where P(t) is the solution to the differential Lyapunov equation 

P(O) Po. 

Here, Po = E[xox~] is the covariance matrix for the initial state x0 . If the linear 

ordinary differential equation x = Ax is stable, then the solution of the Lyapunov 

differential equantion approaches a steady-state value P as t --+ oo. The stationary 
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covariance matrix P can be obtained by solving the algebraic Lyapunov equation 

and the stationary probability density function is given by 

3.1.2 Stationary Solutions for Nonlinear Systems 

Exact solutions to the stationary Fokker-Planck equation have been obtained for 

a number of single degree-of-freedom nonlinear oscillators. The first solutions ob­

tained (Andronov et al. 1933) were for single degree-of-freedom oscillators with 

linear damping and nonlinear stiffness. Solutions for more general nonlinear sin­

gle degree-of-freedom oscillators, including systems with energy-dependent damp­

ing were obtained by Caughey and Ma (1982). The class of systems with known 

solutions was extended through the concept of detailed balance by Yong and Lin 

(1987) and further generalized by Lin and Cai (1988) through a generalization of 

Stratonovich's method of stationary potential. 

The single degree-of-freedom systems with energy-dependent damping that will 

be of interest in later sections can be written in the form 

(3.1) x + f(H)x + g(x) = JWn(t) 

where 

(3.2) 
·2 r 

H(x, x) = ~ + Jo g(~) d~ 

is the Hamiltonian and n(t) is Gaussian white noise. If the following techni­

cal conditions are met: H(x,x), j(H) E C2 , H(x,x) > 0, 3H0 such that 

H 2:: H0 =? f(H) > 0, and f'(H)/ f 2 (H) -+ 0 as H-+ oo, then the solution to 
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the stationary Fokker-Planck equation associated with (3.1) is 

(3.3) 
( 

1 {H(x,x) ) 
p(x,x) = aexp - D lo f('T!)d'T! 

where a is a normalization constant (Caughey and Ma 1982). 

There are very few solutions to the stationary Fokker-Planck equation for multi­

degree-of-freedom systems. Even for multi-degree-of-freedom analogs of single degree­

of-freedom systems with known solutions, solutions cannot typically be found, and in 

the few cases where analytical solutions are known, these solutions typically require 

restrictive relationships between the system and excitation parameters unlikely to be 

met in practice. Further information on known solutions for multi-degree-of-freedom 

systems can be found in the books by Soize (1994) and Lin and Cai (1995). 

Unfortunately, even for single degree-of-freedom nonlinear oscillators, many of 

the systems of interest are not of the solvable form. Although the known solutions 

are not directly applicable to these systems, they have been very helpful in testing 

the accuracy of proposed approximation methods. Additionally, these solutions can 

be used to approximate the solution of other nonlinear systems, as in sections 3.3.2, 

4.3 and 4.4. 

3.2 Statistical Parameters of Interest 

3.2.1 Moments 

Some of the most important properties of a stochastic process are characterized 

by its moments, particularly the first and second moments. If x(t) is a scalar 

stochastic process with probability density function p(x, t), the nth_order moment 

of x(t), denoted mn(t) is defined by 
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Similarly, for vector processes, joint moments can defined by 

. . k 
mijk ... = E[xix~x3 .. . ]. 

Much of the information about a stochastic process is contained in the first 

and second order moments. For example, for Gaussian distributed processes, all 

probabilistic and statistical information can be determined from knowledge of the 

first and second-order moments. The first moments give the mean values of the 

response and the second moments give the mean square values, which typically 

provide a measure of the average energy in the system. Additionally, knowledge of 

the first two moments of a stochastic process enable upper bounds to be placed on 

the reliability of the response through the generalized Tchebycheff's inequality. If 

the random process x(t) has mean ftx(t) and variance O";(t) and the derivative of 

x(t) has variance O"~(t), the generalized Tchebycheff's inequality (Lin 1967) gives 

(3.4) 

1 11T P( lx(t)- J.tx(t)l 2:: E for some t E [0, T]) :S: - 2 (O";(o) + O";(r)) + 2 O"x(t)O"x(t)dt 
2€ E 0 

for all E > 0. The left-hand side in (3.4) is the probability offailure associated with 

the safe set S(t) = {x E IR : lx- J.tx(t)i < E}. While (3.4) is useful as an upper 

bound, it is often highly conservative in practice. 

3.2.2 Expected Outcrossing Rates and Reliability Estimation 

While mean square values provide a lot of information about the response, often 

the primary goal is to determine the reliability of the system. As discussed in 

section 2.8, reliability is the probability that the response variables remain in a safe 

or acceptable domain during a time interval of interest. In vibration applications, 

the safe domain is often chosen to be a region where displacements stay within some 

prescribed limits. 

For a given safe region, the expected outcrossing rate is the mean rate at which 

the response leaves the safe region into the unsafe region. For second-order os-
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cillatory systems subjected to stationary random excitation, there are well-known 

methods for estimating the reliability based on expected outcrossing rates. The 

original work in this area was done by Rice (1944) and a number of extensions have 

been developed since then. 

Consider a single degree-of-freedom oscillator subjected to stationary white noise 

excitation 

x + f(x,x) + g(x) = v2Dn(t). 

In one of the simplest cases, the safe domain is the regionS= {(x,x) E IR2 : x < b} 

for a given b > 0. Letting p(x,x) be the stationary probability density function for 

the Markov process x(t), the expected crossing rate of the threshold b is given by 

Rice's formula {Rice 1944) 

{3.5) v = fooo xp(b, x)dx. 

Typically, b » JE1X2T so that threshold crossings are rare and the resulting failure 

probability is low. If the threshold crossings are assumed to arrive independently, 

it follows that the threshold crossings are Poisson distributed in time and the prob­

ability of failure is given by 

{3.6) Pj(t) = 1- exp(-vt) 

from which the reliability is given by R = exp( -vt). Equation {3.6) was first 

suggested by Coleman (1959) for the reliability of structures against first-excursion 

failures. 

The most questionable aspect of these results is the assumption that the cross­

ings arrive independently, see, for example, Bogdanoff and Kozin (1961). It has been 

shown by Cramer {1966) that if xis normally distributed, then the threshold cross­

ings are asymptotically Poisson distributed as b -+ oo, and there is some evidence to 

suggest that this is true for non-Gaussian distributed variables as well (Dunne and 
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Wright 1985; Roberts 1978a; Roberts 1978b). However, for finite values of b, it is 

well-known that the threshold crossings do not arrive independently, and that they 

tend to occur in "clusters" (Lin 1967). Despite this shortcoming, equation (3.6) 

is still useful as efficient way to get an order-of-magnitude estimate of the failure 

probability. 

3.3 Approximate Methods Based on Stochastic Differ­

ential Equations 

Due to the limited number of analytical solutions available for nonlinear systems 

under stochastic excitation, a number of approximate methods have been devel­

oped. In this section, some of the well-known methods based on approximation 

of the stochastic differential equations are presented, with more attention given to 

those methods which are used later for illustrating the new approximate methods 

developed in chapter 4. 

3.3.1 The Method of Equivalent Linearization 

The most popular method used in the analysis of nonlinear systems is the method of 

equivalent linearization. It was originally developed by Booton (1954) and Caughey 

(1959a, 1959b) for single degree-of-freedom systems and was later generalized for 

multi degree-of-freedom systems (Foster 1968; Iwan and Yang 1972; Iwan 1973; 

Atalik and Utku 1976). 

Single Degree-of-Freedom Systems 

In the method of equivalent linearization, the response of the nonlinear stochastic 

differential equation of interest 

(3.7) 
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is approximated by that of a linear system 

(3.8) 

The parameters of the linear system (3.8) are selected to provide the best approx­

imation to the nonlinear system (3. 7). To do this, the mean square equation error 

is minimized, i.e. /3eq and w;q solve 

(3.9) 

Performing the minimization, the optimal parameters are found to be 

(3.10a) 

(3.10b) 

If n(t) is modeled as Gaussian white noise with properties given by (2.8), the sta­

tionary probability density function for the linear system can easily be obtained 

as 

( 
. ) /3eq Weq ( /3eq W~q 2 /3eq . 2 ) 

p X lin, X[in = 27r D exp - 2D X tin - 2D X tin . 

The probability density function for the nonlinear system is then approximated by 

that of the linear system. 

Multi Degree-of-Freedom Systems 

The multi degree-of-freedom analog of (3.7) is 

(3.11) 

where x(t) E IRn, n(t) E IRm, BE IRnxm, M is a symmetric, positive-definite n x n 

matrix, and f(x,x) E IRn. As in the single degree-of-freedom case, the nonlinear 
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equation is replaced by a linear system 

(3.12) 

so that the mean square equation error is minimized. To minimize the error, the 

n x n matrices Ceq and Keq are chosen to solve 

(3.13) 

where II · II is the Euclidean norm on IRn. Using the identity that for x, y E IRn and 

A E IRnxn, 

a r 
aA (Ax,y) = xy 

and differentiating (3.13) with respect to Ceq and Keq gives 

(3.14) 

where 

Since Pis a function of Keq and Ceq, equation (3.14) contains 2n2 coupled, nonlinear 

equations for the unknown elements of Keq and Ceq· A simple iterative procedure 

is available in the case of Gaussian white noise excitation. 

Iterative Procedure for Multi Degree-of-Freedom Systems 

When n(t) is modeled as Gaussian white noise, P can be obtained as the solution 

of the algebraic Lyapunov equation 

(3.15) 
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where 

) 
The iterative procedure is as follows 

1. Start with an initial estimate of P 

2. Use this Pin (3.14) to obtain Keq and Ceq (and hence Aeq) 

3. Use Aeq from step 2 and solve (3.15) for P 

4. Repeat steps 2 and 3 until convergence 

The probability density function for the nonlinear system is again approximated 

by that of the linear system. Letting Ynl = (x;:1, x;:1)T, the stationary probabil­

ity density function is given by the multidimensional Gaussian probability density 

function with covariance matrix P 

~ ex -- T p-1 1 ( 1 ) 
P(Ynl) (21r)n vdet p P 2 Ynl Ynl · 

Note that in the iteration procedure, step 2 involves evaluating expectations 

and matrix multiplication and step 3 requires solution of a linear equation. Both of 

these steps can be done efficiently, and, except for simulation methods (discussed 

in section 3.3.4), this is basically the only method that has been able to obtain 

approximations for nonlinear systems in many dimensions. 

3.3.2 Approximation by Nonlinear Systems 

The equivalent linearization method can be easily and efficiently applied to many 

nonlinear systems of interest. The method generally gives reasonably good approx­

imations to mean square values, even for systems with large nonlinearities. How­

ever, the approximate probability density function obtained is Gaussian, while the 

response of nonlinear systems is known to be non-Gaussian. This can lead to large 
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errors when approximating quantities related to extreme values of the process, such 

as reliability or stationary outcrossing rates. 

In an effort to obtain better accuracy than that obtained by the method of equiv­

alent linearization, some equivalent nonlinearization methods have been developed. 

The basic idea for equivalent nonlinearization was originally suggested by Caughey 

and particular problems have been investigated by Lutes (1970), Kirk (1974), and 

Caughey (1986). A special case of equivalent nonlinearization in which computa­

tions can be done rather efficiently, termed partial linearization (Elishakoff and Cai 

1993), has since been developed. In these methods, the nonlinear differential equa­

tion is approximated by a different nonlinear system which has a known stationary 

probability density function. Since the approximate system is nonlinear, the approx­

imate probability density function obtained will be non-Gaussian, and the hope is 

that this will lead to better approximations, particularly for reliability. The appli­

cability of these methods is primarily limited to single degree-of-freedom systems, 

since the approximate system must be one for which the stationary Fokker-Planck 

equation can be solved. 

Partial Linearization 

In the method of partial linearization (Elishakoff and Cai 1993), the response of the 

nonlinear single degree-of-freedom system 

(3.16) 

is approximated by the response of the nonlinear system with linear damping 

(3.17) Xplin + f3eqXplin + g(xplin) = v'2f5n(t). 
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If the excitation, n(t), is modeled as Gaussian white noise, the stationary probability 

density function for the response of (3.17) is 

(3.18) ( · ) _ ( f3eq G( ) f3eq . 2 ) P Xplin, Xplin - a exp - D Xplin -
2
D Xplin 

where a is a normalization constant and 

(3.19) 

As in the case of equivalent linearization, the equivalent damping parameter, f3eq is 

given by minimizing the mean square equation error 

Performing the minimization gives 

(3.20) (3 
_ E[xplin f(xplin, Xplin)] 

eq- E[ ·2 ] 
xplin 

and the probability density function for the nonlinear system is approximated by 

(3.18) with f3eq as given by (3.20). 

For single degree-of-freedom systems, this method can be applied efficiently, 

since obtaining the optimal parameter only requires computing expectations. Also 

notice that the formula (3.20) for the optimal damping parameter is the same as 

the formula obtained by the method of equivalent linearization (3.10a). 

Equivalent Nonlinearization 

In the method of equivalent nonlinearization, the nonlinear system chosen to ap­

proximate (3.16) is of the form 

(3.21) Xeqnl + feqnz(H)±eqnl + g(Xeqnl) = V2J5 n(t) 
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where His the Hamiltonian as given in (3.2) and feqnt(H) is a specified function of 

the Hamiltonian. Note that the partial linearization method is a special case of this 

method, obtained by choosing feqnt(H) = /3eq· The stationary probability density 

function for the equivalent nonlinear system (3.21) is 

Typically, feqnl(H) is taken to be a polynomial in H and the coefficients of the 

polynomial are chosen to minimize the mean square equation error. For example, if 

feqnl(H) = L::f=l (}iHi-l, then the minimization condition is 

(3.22) 

This results in a set of nonlinear algebraic equations for the parameters which usu­

ally need to be evaluated numerically. Note that the expectations which need to 

be evaluated are with respect to the probability density function for the equiva­

lent nonlinear system, and numerical integration is often required to evaluate the 

expectations. Thus, at each iteration in the minimization procedure, numerical 

integration is required to evaluate the expectations, making this method more com­

putationally expensive than either the method of equivalent linearization or the 

method of partial linearization. 

3.3.3 Closure Techniques 

It can be shown (Soong and Grigoriou 1993) that a system of (deterministic) ordi­

nary differential equations can be written for the moments of a Markov process which 

satisfies a Fokker-Planck equation. These equations cannot generally be solved, since 

they form an infinite hierarchy and solution of any finite set of these equations in­

volves too many unknowns to be solved. Therefore, a number of methods have been 

developed to approximate the relationship between higher moments and lower mo­

ments in order to obtain a finite set of equations which can be solved. Such methods 
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are referred to as closure methods. 

In one of these methods, Gaussian closure, only second-order moments are de­

termined, and the relationship between higher-order and lower-order moments is 

assumed to be the same as for Gaussian probability density functions. It can be 

shown that this method gives the same results as equivalent linearization. Non­

Gaussian closure techniques were first introduced by Crandall (1980). One of the 

most frequently used non-Gaussian closure techniques is the cumulant-neglect clo­

sure method. Here, the equations for the cumulants are obtained, and all cumulants 

above a certain order are assumed to be zero. This yields a system of nonlinear, 

algebraic equations for the unknown moments, which can be solved numerically. 

The number of equations to solve grows very rapidly as the dimension of the state is 

increased as well as when the order of the approximation is increased, making this 

method computationally expensive for multi-degree-of-freedom systems. 

While these methods are often able to provide better estimates to the moments 

than the method of equivalent linearization, the methods do not provide any esti­

mate of the probability density function for the system, and hence provide no way 

to approximate outcrossing rates or reliability. Some methods have been proposed 

to determine an approximate probability density function based on the moments, 

including Edgeworth series (see, e.g., Roberts and Spanos (1990)) and the principle 

of maximum entropy (Trebicki and Sobczyk 1996), but little work has been done to 

determine the accuracy of such methods for determining reliability. 

A similar approach is to take a parameterized Gram-Charlier series, consisting of 

a series of Hermite polynomials multiplying a Gaussian probability density function, 

and determine the parameters to satisfy a certain number of moment equations 

(Soong and Grigoriou 1993). This approach is especially unfavorable for computing 

reliability estimates, as the approximation can result in negative probabilities over 

regions of the response. 
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3.3.4 Other Methods 

A number of other approximate methods based on approximating the stochastic dif­

ferential equations have been developed, including perturbation methods, stochastic 

averaging, and dissipation energy balancing. More details on these methods can be 

found in the books by Lin and Cai (1995), Soong and Grigoriou (1993), and Roberts 

and Spanos (1990). 

Another very important class of methods used in the analysis of stochastic dy­

namical systems are simulation methods, including Monte Carlo simulation, impor­

tance sampling, and other related methods. In these methods, the response of the 

system is computed for a large number of samples of the excitation and the desired 

statistics are computed based on the samples. Although the methods generally 

require a considerable amount of computation time, they are very useful for approx­

imating the response statistics of multi-degree-of-freedom systems, since, although 

the computational time for each sample increases with the number of degrees of 

freedom, the number of samples required is virtually independent of the dimension 

of the system. However, in order to obtain accurate estimates for statistics related 

to extreme values, such as outcrossing rates, the required number of samples is often 

very large. 
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Chapter 4 

Approximate Methods for Random Vibrations 

Based on the Fokker-Planck Equation 

All of the methods presented in chapter 3 were based on writing stochastic dif­

ferential equations for the response variables of interest and approximating these 

equations with other equations for which known solutions to the corresponding 

Fokker-Planck equation exist. In this chapter, approximate methods are developed 

based on approximating the Fokker-Planck equation directly. 

In the first two methods presented, equivalent systems are found whose station­

ary probability density functions provide the best fit to the Fokker-Planck equation 

for the nonlinear system of interest. In the third method, the approximate probabil­

ity density functions are chosen based on the given system and do not correspond to 

any "equivalent system". Examples are presented to illustrate each of the methods. 

4.1 Overview of the Methods 

The goal of the methods presented in this chapter is to obtain probabilistic and/or 

statistical quantities of interest for a system governed by a nonlinear stochastic 

differential equation of the form 

(4.1) dx(t) = f(x) dt + B dw(t). 
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While the methods developed in this chapter are applicable to systems with para­

metric excitation (where B = B(x)), all of the examples considered will have only 

additive excitation. One reason for this is that for systems under parametric ex­

citation, the main concern is typically stochastic stability or bifurcation and it is 

generally accepted that linearization techniques are unsuitable for studying these 

aspects of dynamic response (Roberts and Spanos 1990). Another reason is that 

the approximate probability density functions chosen are all based on solutions to 

systems under additive excitation, and are not expected to provide good approxi­

mations for systems with parametric excitation. For more details on systems with 

parametric excitation, see (Ibrahim 1985; Falsone 1992; Yoon and Ibrahim 1995; 

Katafygiotis et al. 1997; DiPaola and Falsone 1997). 

The state-transition probability density function for the response of the system 

(4.1) satisfies the Fokker-Planck equation 

(4.2) op(x, tlxo, to) - L ( ) ( I ) {)t - nlXpx,txo,to 

where Lnl(x) is the forward Kolmogorov operator associated with the nonlinear 

system (4.1). Note that Lnl(x) is a linear operator; the "nl" subscript is used 

to denote that Lnl(x) is the Kolmogorov operator corresponding to the nonlinear 

system (4.1). If (4.2) could be solved for the state-transition probability density 

function p(x, tlxo, to), all probabilistic and statistical information could be obtained 

from the probability density function. Unfortunately, solving the time dependent 

Fokker-Planck equation is extremely difficult and there are no known solutions for 

nonlinear systems in more than one state variable, as discussed in section 3.1. There 

have been some numerical solutions to ( 4.2) in two and three dimensions, but the 

solutions require substantial computational time, as discussed in section 2.9. 

This work will be restricted to finding approximations to stationary probabil­

ity density functions and associated quantities of interest, such as moments and 
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expected outcrossing rates. The stationary Fokker-Planck equation is given by 

(4.3) Lnz(x)p(x) = 0. 

In addition to the Fokker-Planck equation (4.3), the stationary probability density 

function must satisfy the boundary condition 

and normalization condition 

p(x)--+ 0 as llxll --+ oo 

r p(x)dx = 1. 
}IRn 

Even for the stationary Fokker-Planck equation, there are very few nonlinear systems 

for which known solutions exist. In addition, the boundary condition and the global 

normalization condition are not particularly amenable for numerical solutions. 

Since there is no known way to solve the stationary Fokker-Planck equation 

( 4.3) for general nonlinear systems, approximate methods will be developed. The 

approximate methods presented herein are based on finding a probability density 

function p(x) for which 

Lnz(x)p(x) ~ 0 

in some sense. 

To do this, a set of parameterized probability density functions 

is chosen, where C2 is the space of twice continuously differentiable functions and 

p(xiO) is a probability density function parameterized by 0 E e c IRP. For example, 

in a one-dimensional problem, P could be taken to be the set of Gaussian probability 
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density functions with zero mean and variance (]2 

P = {1 E C2 (R): j(x) = ~B exp (- ;;2 ), BE R+}. 

The criterion for making Lnl(x)p(xjB) ~ 0 is chosen as 

or, equivalently, 

(4.4) 

min IILnl(x)f(x)ll 
/EP 

min IILnl(x)p(xiB)II 
0E8 

where II · II is a norm on C2 (Rn). The various methods will differ primarily in the 

set P of probability density functions used and the choice of the norm. 

4.1.1 Selection of the Set P 

While there is a lot of freedom in selecting the set of approximate probability density 

functions, there are some natural choices. There are some major ideas to keep in 

mind when selecting the set P. First, the approximate probability density functions 

should attempt to model the behavior of the system. For example, if the system is 

known to have limit cycle behavior, the approximate probability density functions 

p(xiB) should model that. The probability density functions should also be cho­

sen based on knowledge obtained from systems which have known solutions to the 

Fokker-Planck equation. Additionally, the probability density functions should be 

chosen so that computations can be done efficiently. 

In the first method that will be presented, the approximate probability density 

functions are chosen to be Gaussian probability density functions with unknown 

variances. Since the true probability density function for the response of linear 

system is Gaussian, the Gaussian approximation is expected to work well for sys­

tems with mild nonlinearities. Additionally, Gaussian probability density functions 

enable computations to be done efficiently, especially in the case of polynomial non-
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linearities, as simple relations exist for the moments of Gaussian probability density 

functions. 

For highly nonlinear systems, Gaussian probability density functions may pro­

vide a poor approximation to the true probability density function of the system. 

Standard Gaussian approximations become especially poor when trying to compute 

quantities that are sensitive to the tails of the distribution, such as reliability. In 

these cases, non-Gaussian probability density functions can be chosen to approx­

imate the probability density function for the nonlinear system. In sections 4.3 

and 4.4 two different methods are presented for selecting non-Gaussian probability 

density functions to obtain approximate solutions to the Fokker-Planck equation. 

4.1.2 Comments About the Norm 

Two main ideas are considered when selecting the norm to be used in (4.4). First, 

the norm should be chosen so that the cost function 

(4.5) J(O) = IILnl(x)p(xiO)II 

is a quantity which, if minimized, should result in a good estimate to the quantities 

of interest. Additionally, as in the case of selecting the set P, the norm should be 

chosen so that evaluations of the cost function (4.5) can be efficiently computed. 

To illustrate these ideas, consider the Lebesgue norms (Rudin 1987). The £} 

norm, defined by 

IILnl(x)p(xiO)IIcl = r I Lnl(x)p(xiO) I dx }[Rn 

provides a good measure of the error in the Fokker-Planck equation, but is not 

particularly easy to work with. Alternatively, the £ 00 norm 

IILnl(x)p(xiO)IIcoo = sup ILnl(x)p(xiO)I 
xErRn 

is relatively easy to work with, but does not provide a good estimate to the overall 



41 

error in the Fokker-Planck equation. 

A norm which satisfies both conditions is the .C2 norm defined by 

Weighted .C2 norms can also be defined by 

IILnl(x)p(xiB)II~2(p) = r ( Lnl(x)p(xiB) )2 p(x) dx 
}IRn 

where p(x) is a weighting function with p(x) > 0 Vx. The weighting functions will be 

chosen to provide more emphasis where desired, while not substantially increasing 

computational difficulty. More comments on the weighting functions will be made 

later. 

4.2 Probabilistic Linearization 

The first method developed along these lines (Polidori and Beck 1996) approximates 

the nonlinear system ( 4.1) with a linear system whose corresponding probability den­

sity function best solves the Fokker-Planck equation associated with the nonlinear 

system (4.1). 

The linear system chosen to approximate (4.1) is 

(4.6) dx(t) = Aeqx(t) dt + B dw(t) 

where Aeq is a matrix to be determined such that the probability density function 

for the response of the linear system ( 4.6) provides the best approximation to the 

Fokker-Planck equation for the nonlinear system (4.1). 

While the matrix Aeq can be determined, it is easier to work with the probability 

density function associated with the linear system ( 4.6) directly. Since ( 4.6) is a 

linear system, the probability density function for the response will be Gaussian. 
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Therefore, the probability density functions will be chosen to be of the form 

(4.7) 

where p = E[xxT] is the covariance matrix, and the parameters e are the elements 

of P(O) which need to be determined. The set Pis taken as 

The approximating probability density function is chosen to solve 

or, equivalently 

(4.8) 

min IILnz(x)p(x)ll 
pEPzin 

min IILnz(x)Plin(xiO)II· 
0E9 

For reasons discussed in section 4.1.2, the norm is taken to be either the standard 

£ 2 norm or a weighted £ 2 norm. 

4.2.1 Example 1: Linearly Damped Du:ffing Oscillator 

To illustrate the method, a stochastically excited Duffing oscillator is considered. 

There is a known solution to the stationary Fokker-Planck equation associated with 

the Duffing oscillator, and the system has been extensively studied in the past by a 

variety of methods (e.g., Crandall1963; Caughey 1963; Jahedi and Ahmadi 1983; 

Redhorse and Spanos 1992; Dunne 1996; Wojtkiewicz et al. 1996). Results of the 

probabilistic linearization method are compared with those obtained from equivalent 

linearization and the more computationally expensive sixth-order cumulant neglect 

closure technique. 

Duffing's equation can be nondimensionalized and put in the form (Crandall 
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1980) 

(4.9) 

where E, f3 > 0. The stationary Fokker-Planck equation associated with (4.9) is 

(4.10) 

The exact solution to (4.10) is (Caughey and Ma 1982) 

(4.11) 

where K 1; 4 (·) is a modified Bessel function (Abramowitz and Stegun 1964). 

As in ( 4. 7), the approximate probability density functions are chosen as 

(4.12) 

because the cross-variance E[x1x2] = E[x1±1] = 0 in the stationary case. Since the 

damping in (4.9) is linear, the exact probability density function for x2 is Gaussian, 

and, for the parameters of (4.9), O"x2 = 1. Therefore, to simplify the algebra, the 

approximate probability density functions (4.12) are reduced to 

1 ( x2) ( x2) Plin(xiO") = 
2

1TO" exp - 2: 2 exp - 2
2 

. 

The error in the Fokker-Planck equation is given by 

Computation of the norm involves integrating polynomials multiplied by a Gaussian 

probability density function, i.e., computing moments. Simple analytical relations 

exist for the moments of a Gaussian probability density function, enabling the norm 

to be computed analytically. Using Mathematica (Wolfram 1991) to evaluate the 
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integral gives 

To minimize the error with respect to (J, set 

Letting s = {]"2 , the above equation can be written as 

(4.14) 

It is easily verified that ( 4.14) has only one positive real root for all E ~ 0 and 

that this root gives a minimum of IILnl(x)Plin(xiB)II· An analytic expression for 

this root can be obtained, but, as this is the solution of a quartic equation, the 

resulting expression is rather long and is not presented here. The results are shown 

graphically in Figures 4.3 and 4.4, for E[xr] = {]"2
. 

An alternative approach to solving the quartic equation (4.14) is to numerically 

minimize the Fokker-Planck error (4.13) for the desired values of E. For systems 

with more complicated nonlinearities, this approach is typically much easier than 

trying to obtain an analytic expression for the optimal variances. 

Comparison with Equivalent Linearization 

Applying the method of equivalent linearization to the Duffing equation (4.9) gives 

/3eq f3 

2 
weq 1 + 3w;

1 

2 f3 
(JXl 

/3eqW~q 

2 f3 
(JX2 

/3eq 
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which can be combined to give 

(4.15) 
J1 + 12E -1 

6E 

Figure 4.1 shows the approximate probability density functions obtained by the 

probabilistic and equivalent linearization methods compared with the exact solution 

(4.11) for E = 0.3. The errors in the Fokker-Planck equation for the two approxi­

mation methods are shown in Figure 4.2 forE ranging from 0 to 3. 
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equiv. lin. 

Figure 4.1 Probability density functions for the linearly damped Duffing 
oscillator, E = 0.3 

Mean Square Estimation 

As discussed in section 3.2, the mean square values of a process are often of interest. 

The exact mean square value for the response of the Duffing oscillator (4.9) can be 
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Figure 4.2 Fokker-Planck equation error for the linearly damped Duff­
ing oscillator 

obtained from the known probability density function ( 4.11) as 

where L~1~\) is a Laguerre polynomial, 1F1 ( ·) is the Kummer confluent hyperge­

ometric function and r(-) is the Gamma function (Abramowitz and Stegun 1964). 

From equation (4.15), the method of equivalent linearization gives the approxi-

mat ion 

E[xiJ = v1 + 12E - 1 
6E 

and for the probabilistic linearization method, E[xi] is obtained as the positive, real 

root of (4.14). As mentioned earlier, the resulting expression is long, and the results 

are presented graphically. 

It was found that the mean square approximations obtained by the method of 

probabilistic linearization could be improved by using a simple weighting function. 
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The weighting function p(x) = 1 + xf was used in the norm. Although the choice 

of a weighting function is somewhat arbitrary, this particular function was chosen 

for the following reasons: 

1. To provide more weight to the tails of the distribution in the norm. From 

Figure 4.1, it can be seen that with no weighting function, a good fit to the 

actual probability density function is obtained for small values of lx1l (where 

p(x1) is large), while the approximation over-predicts the probability for large 

values of lx1l (where p(x1) is small). Obtaining a good approximation to the 

probability density function for small values of lx1l is not as important when 

trying to estimate the mean square value. 

2. The weighting function did not significantly increase any computational effort. 

3. It seems reasonable to include a xr term if trying to approximate E[xr]. In 

this case, the cost function ( 4.5) is given by 

so that an attempt is made to keep both LntP and xr(LntP) "small". This idea 

is further illustrated later in Figure 4.5 where similar weighting functions are 

used to approximate the higher moments. 

Using this weighting function, the error in the Fokker-Planck equation is com­

puted as 

IILnz(x)Plin(xla)il.c2(P) = sa-3
- 4a-l- (16 + 24t)a + (12- 36t)a3 + 

(60t + 30t2)a5 + 105E2a 7 

The above expression can be easily minimized with respect to a. 

The mean square values obtained by the various methods are plotted in Fig­

ure 4.3 for 0 ~ E ~ 3. For larger values of E, the results are plotted in Figure 4.4, 

along with results obtained by the sixth-order cumulant-neglect closure scheme. 
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The cumulant-neglect results were obtained by Papadimitriou and Lutes (1996). It 

is seen that the probabilistic linearization method makes conservative predictions, 

while the equivalent linearization method under-predicts the response. In addition, 

it is observed that by using the simple weighting function p = 1 +xi, the mean square 

values predicted are almost identical to the exact values; the accuracy obtained in 

this way is even better than the results obtained by the much more computationally 

expensive sixth-order cumulant-neglect closure method. 

-w 

0.4 

-exact 

-- prob.lin 

·- - prob. lin.; wtd. norm 

equiv. lin. 

0.3L__ ______ .L_ ______ ..l.._ ____ ____:~'""' 

0 2 3 
£ 

Figure 4.3 E[xi] for the linearly damped Duffing oscillator. 0 :S E :S 3 

The method was also used to try to approximate some of the higher moments 

for the response of the Duffing oscillator (4.9). Based on the results of the mean 

square approximation, the weighting function 

Pn(x) = 1 +X~ 

was used in the norm to approximate the nth_order moment, E[x~]. Results are 

shown in Figure 4.5 for the fourth, sixth, and eighth moments. It is seen that with 

these simple weighting functions a good approximation is obtained to the higher 

-- ----------- ------ ---~ ...... , .._......,. ....... ..., ............ .._....- ...,_.....,..._,. ........... ...,.'-"........__..J '-'6."-AA.L.L..L.t''-''LL ~LL.L.L.L.L.J.C, VUV.L.L.LUliV.L \-:::t:at:IJ 

with the safe set defined as the region 

S = {x E IR 2
: XI E (-b,b)}. 

The estimates of the stationary outcrossing rates out of the region S for the lin­

earization methods can be easily computed from the approximate probability density 
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Figure 4.5 Approximations for some of the higher moments of there­
sponse for the linearly damped Duffing oscillator. For the probabilistic 
linearization method, the weighting function Pn ( x) = 1 + x'j' was used 
in the norm. 
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functions and the formula (3.5), giving 

(4.16) 

The exact value of the outcrossing rate can be computed from the probability density 

function (4.11) and the formula (3.5) to be 

(4.17) 

The values obtained by the linearization methods are compared with the exact value 

in Figure 4.6. The associated failure probabilities, assuming that the outcrossings 

are a Poisson process, are shown in Figure 4. 7 for the time interval 0 ~ t ~ 20 when 

the threshold level is b = 2. 75. 

· .. : .... 

1.5 
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equiv.lin. 
prob.lin. 

·.:..: -
·..:..· 

·.....:.-. 

prob. lin., p = 1 +>t, 

2 
Threshold level, b 

:...:.·.· ·..:..·. 
- ...... :-. 

· ... ::: . 
.....::~ · . 

........ ......... 

2.5 3 

Figure 4.6 Stationary outcrossing rate estimation for the linearly 
damped Duffing oscillator. E = ~ 

Notice that both equivalent and probabilistic linearization drastically over-predict 

the outcrossing rate and hence the probability of failure. The reason for this is that 
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Figure 4. 7 Estimation of the failure probability for the linearly damped 
Duffing oscillator. € = ~' b = 2.75. 

the value of the stationary outcrossing rate is highly dependent on the tails of the 

probability density function, which are known to be non-Gaussian for the nonlinear 

system. This shortcoming of linearization methods is well known, and a number 

of equivalent non-linearization methods have been developed to try to improve the 

results, as discussed in chapter 3. 

The probabilistic linearization method can be used to obtain accurate estimates 

for the outcrossing rate, and hence the reliability, provided that different weighting 

functions are used in the norm. Recall from Rice's formula (3.5) that for a single 

degree-of-freedom oscillator, the stationary outcrossing rate of the threshold XI = b 

is given by 

(4.18) 

from which it is seen that the stationary outcrossing rate depends only values of 

the probability density function for XI = b. Similarly, outcrossing of the threshold 
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x 1 = -b depends only on values of the probability density function for x1 = -b. 

For this reason, emphasis should be placed on the regions near x1 = b and x1 = -b 

when minimizing IILnzPII· To do this, the weighting function 

(4.19) 

was used in the norm. The variance of the weighting function, a~, is kept small to 

focus the emphasis near x1 = ±b. This weighting function is illustrated in Figure 4.8 

for the case of b = 2.75 and a~ = k· 

1\ 
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x1 

Figure 4.8 Weighting function p(xt) used in the method of probabilistic 
linearization to estimate the stationary outcrossing rate 

As with the weighting functions chosen to estimate the moments, this weight­

ing function was chosen to provide emphasis where desired, while not significantly 

increasing computational difficulty. It is clear from Figure 4.8 that the weighting 

function is such that the emphasis is placed on the regions near x1 =band x1 = -b. 

Additionally, since p is the sum of two Gaussians, the norm can still be written in 
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terms of polynomials times Gaussians, and can therefore be evaluated analytically. 

With this choice of a weighting function, the method of probabilistic linearization 

can be easily applied as before. The set of approximate probability density functions 

is taken to be 

and the probabilistic linearization criterion is 

( 4.20) 

where pis as in (4.19). Once the minimization in (4.20) has been performed to give 

the optimal parameter 8-xu the estimate to the outcrossing rate is given by (4.16) 

as 

(4.21) 

Estimates to the outcrossing rate obtained by this method are shown in Figure 4.9 

for several values of the variance of the weighting function, a~. As expected, the 

results improve as a~ decreases and for a~ = k the results are much better than 

the equivalent linearization results given in Figure 4.6. However, if a~ is made too 

small, a~ < k for this example, good estimates cannot be obtained by this method 

for large values of b. The reason for this can be seen by examining the minimization 

criterion in ( 4.20). The norm is given by 

For most values of a~ the above integral is minimized by selecting O"x 1 so that 
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over the regions near x1 =±b. But, as O"~ becomes small small and b becomes large, 

the minimum achieved by having O" x 1 satisfy the above condition becomes a local 

minimum, and a global minimum is achieved at a value of O"x1 very near zero. In 

this case, the local minimum can still be found by standard minimization techniques 

and is of use, but the global minimum, which gives a corresponding outcrossing rate 

approximation very near zero, is of no use. In order to obtain the most accurate 

estimates for the outcrossing rate, O"~ should be kept small so that emphasis is given 

to regions near x1 = ±b, but not so small that the optimal value of O" x 1 goes to zero. 

Such a value of O"~ can be found by starting with a relatively large value for O"~ and 

reducing O"~ until no reasonable results can be obtained. 
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Figure 4.9 Stationary outcrossing rate estimation for the linearly 
damped Duffing oscillator using weighted norm, where the weighting 
function is as in (4.19). t: = ~· 
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4.2.2 Other Interpretations of the Probabilistic Linearization Cri­

terion 

In the probabilistic linearization method outlined in section 4.2, a linear system 

is found whose corresponding probability density function best approximates the 

Fokker-Planck equation corresponding to the nonlinear equation. Letting Lnz(x) 

and Ltin(x) be the forward Kolmogorov operators for the nonlinear system (4.1) 

and the linear system (4.6), respectively, the associated stationary Fokker-Planck 

equations are 

(4.23) 

(4.24) 

Lnz(x)pnz(x) 

Ltin(x )Plin(xiB) 

0 

0. 

The probabilistic linearization criterion ( 4.8) can then be written as 

min IILnz(x)Plin(xiB) - Ltin(x)Plin(xiB) II 
I:IE6 

which is in a form similar to the equivalent linearization criterion (3.9). 

Also, by choosing a different norm, this approach can be viewed as minimizing 

the solution error. Define a norm on P by 

(4.25) lifliL~zLnl = { f(x)L~z(x)Lnz(x)f(x) dx }fRn 

;here L~1 , the adjoint of Lnz, is the backward Kolmogorov operator defined by 

(2.23). The norm in (4.25) is just £} norm weighted with the operator L~zLnl· 

The operator L~zLnz is self-adjoint and is positive definite on P (provided the exact 

solution to the Fokker-Planck equation is not in P, in which case it is only positive 

semi-definite), so that (4.25) actually defines a norm. 

In this norm, the criterion ( 4.8) is equivalent to 

min IIPnz(x)- Plin(xiB)IIL* L 
I:IE6 nl nl 
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IIPnl- Pliniii~1 Lnl = ((Pnl- Plin), L~lLnl (Pnl- Plin)) £_2 

= (Lnl (Pnl - Plin) , Lnl (pnl - Plin)) £_2 

where(·, ·)c_2 is the standard inner product on £ 2 . 

(eq. 4.25) 

(eq. 4.23) 

This shows that in the norm defined by ( 4.25), the probabilistic linearization 

criterion can be viewed as minimizing the difference between the approximate prob­

ability density function and the exact (unknown) probability density function. 

4.2.3 Comments on Applicability to Multi-Degree-Of-Freedom Sys-

terns 

Example 1 illustrated the applicability of the method of probabilistic linearization 

to a single degree-of-freedom oscillator. The method is also applicable to multi­

degree-of-freedom systems. As in the case of the single degree-of-freedom oscillator, 

for polynomial-type nonlinearities, the norms can be evaluated analytically since 

they will still involve computing moments of a Gaussian process. The problem is 

then to obtain the elements of the covariance matrix which minimizes the norm, i.e. 

to solve a p-dimensional minimization problem. The dimension p is the number of 

elements in the covariance matrix. For a general n-dimensional nonlinear system, 

this would yield 

n(n + 1) p = ___:__ _ ___:_ 
2 

unknown elements of P, since P is symmetric. In many cases, this number can be 

reduced since some of the elements of P are usually known; for example, E[xixi] = 0 

for all i. Thus, obtaining an approximate stationary probability density function 

by the method of probabilistic linearization for an n-dimensional nonlinear system 
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requires solving a minimization problem in at most n(n
2
+1

) dimensions. 

4.3 Probabilistic Nonlinearization 

In the previous section, the probability density function for the nonlinear system of 

interest was approximated by the probability density function for a linear system. 

For linear systems, the probability density function is known to be Gaussian, and 

the Fokker-Planck equation associated with the linear system can easily be solved 

for the probability density function. Since the response of nonlinear systems is 

known to be non-Gaussian, it is of interest to see what type of improvement can 

be obtained by approximating the solution to the Fokker-Planck equation with a 

non-Gaussian probability density function. In this section, the nonlinear system of 

interest will be replaced by a different nonlinear system having a known solution to 

the Fokker-Planck equation. The probability density function for the response of 

the "simpler" nonlinear system will then be taken as the approximate probability 

density function for the nonlinear system of interest. 

As mentioned earlier, there are very few nonlinear systems in more than two 

dimensions having known solutions to the stationary Fokker-Planck equation. For 

this reason, the method presented in this section will be limited to approximating 

the probability density function for single degree-of-freedom nonlinear oscillators of 

the form 

(4.26) 

The stationary Fokker-Planck equation associated with (4.26) is 

( 4.27) 

As discussed in section 3.1, for nonlinear systems subjected to additive stochastic 

excitation, many of the known solutions to the Fokker-Planck equation are for single 

degree-of-freedom oscillators with energy-dependent damping. As in the method of 
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equivalent nonlinearization (section 3.3.2) the probabilistic nonlinearization method 

approximates the nonlinear system of interest ( 4.26) by a system of the form 

( 4.28) 
(

dxl(t)) ( x2 ) ( 0 ) = dt + dw(t) 
dx2(t) - feqnl(H) X2- g(xl) ../2J5 

where His the Hamiltonian, defined by (3.2). The solution to the stationary Fokker­

Planck equation associated with (4.28) is, from (3.3), 

While the equivalent nonlinear function feqnl(H) can be chosen to be of any 

form, a simple choice is to choose a power series in H 

for some p E z+, giving 

p 

feqnl(HIO) = L eiHi-l 
i=l 

( 
1 P Hi(x)) 

Peqnl(xiO) = aexp - D ?=ei -z-.- . 
z=l 

The number of terms included in the power series is chosen based on the properties 

of the function f(xl, X2)· The parameters, e, of feqnl(HIO) can then be determined 

so that the probability density function associated with the nonlinear system (4.28) 

minimizes the Fokker-Planck equation error 

min II Lnl(X)Peqnl(xiO) II· 

As in the probabilistic linearization method, the step of finding the equivalent non­

linear system (4.28) will be bypassed and the probability density functions will be 

approximated directly. The set of approximate probability density functions is cho-



60 

sen as 

- 2 2 . - 1 H~ (X) p 

{ ( 

p . ) } (4.29) PH - Peqnl E C (lR ) . Peqnz(xJO) - aexp - D t; Oi -
2
-. - , 0 E lR . 

Note that given any Peqnl E PH, Peqnz(xJO) is only a function of H(x) and can 

be therefore be written in the form Peqnz(xJO) = h(H(x)JO), giving 

8peqnl = 8h 8H =g(xi) 8h 
8x1 8H 8x1 8H 

8peqnl 8h 8H 8h 
ax2 aH ax2 x 2 aH 

so that 

and the error in the stationary Fokker-Planck equation (4.27) is reduced to 

(4.30) 

The probabilistic nonlinearization criterion is then 

or, 

(4.31) 

min II Lnz(x)p(x) II 
pEPH 

min II Lnz(x)Peqnz(xJO) II. 
OEIRP 

While (4.31) is a valid criterion, finding the optimal parameters would require 

a significant amount of computation since evaluating the norm requires a two­

dimensional numerical integration, and performing the minimization would require 

computing the norm several times. In the next section, some simplifications to 

(4.31) will be made which will significantly reduce the computational burden. 
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4.3.1 Simplifications of the Probabilistic Nonlinearization Crite-

rion 

It was mentioned above that finding the optimal parameters for the probabilistic 

nonlinearization criterion (4.31) requires a number of two-dimensional numerical 

integrations. To enable computations to be done efficiently, two simplifications will 

be made. 

First, a somewhat simpler expression than IILnzPeqnlll is minimized. Substituting 

(4.30) into (4.31) gives the criterion 

( 4.32) 

The first simplification made is that instead of minimizing the derivative of the 

quantity in parenthesis, the quantity itself is minimized, i.e. 

( 4.33) . II ( ) ( IB) apeqnz(xiB) II mm f XI' X2 Peqnl X + D a 0 

BE~P X2 

The derivative of Peqnl with respect to x2 can easily be evaluated, giving 

apeqnl(xiB) __ ...!._ (~ B·Hi-1) ( IB) a - D L.J ~ X2 Peqnl X 0 

X2 i=l 

Substituting into ( 4.33) gives 

which, using the standard £ 2 norm, is 

( 4.34) 

Notice that this criterion is virtually identical to the criterion used by the method of 

equivalent nonlinearization (section 3.3.2); the equivalent nonlinearization criterion 

(3.22) is the same as (4.34) withp;qnl replaced by Peqnl· While this first simplification 
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has simplified the form of the criterion from (4.32) to (4.34), the resulting integral 

still cannot be evaluated analytically for most systems. 

The second simplification comes in evaluating the integral in ( 4.34). As it is 

written, evaluating the integral requires a two-dimensional numerical integration. To 

allow analytical computation of the integral, Peqnz(xiO) is replaced in the integral by 

Plin(x1,x2) obtained by the method of probabilistic linearization. This is equivalent 

to using the weighting function 

in the norm. The probabilistic linearization method can be very efficiently applied, 

and making this substitution will enable the optimal parameters to be computed 

very efficiently. 

Thus, after the two simplifications, the probabilistic nonlinearization criterion 

becomes 

(4.35) 

Now, (4.35) can be easily minimized with respect to e. To find the minimum, set 

k = 1, 2, ... ,p. 

Evaluating the derivatives gives a linear equation for the optimal parameters 0 

( 4.36) AB= b. 

The matrix A E iRPXP and vector bE !RP are given by 

Aij (Hi-lx2, Hi-lx2) 

bi (!, Hi-lx2) 
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where the inner product is defined by 

(4.37) 

With the optimal parameters known, the approximate probability density function 

is then given by 

( 4.38) 
( 

1 P ~Hi(x)) 
Peqnz(x) = aexp - D '?=Bi-~-·- . 

t=l 

A chart outlining the steps for the method of probabilistic nonlinearization is 

given in Figure 4.10. Notice that before obtaining the approximation Peqnz(x), the 

probabilistic linearization approximation Plin(x) is obtained. The relative accu­

racy of the two approximations can be compared by computing IILnz(x)Plin(x)ll and 

IILnz (x)Peqnz(x) II· 

4.3.2 Example 2: Nonlinearly Damped Duffing Oscillator 

To illustrate the method, a nonlinearly damped Duffing oscillator is considered. 

This oscillator has been previously studied by Elishakoff and Cai (1993). 

(4.39) = dt + dw(t) 
(

dxl(t)) ( x2 ) ( 0 ) 
dx2 ( t) - f3x2 - ax~ - '}'Xl - cxi VW 

In the notation of ( 4.26), 

giving 

f3x2 +ax~ 
. 3 

'}'Xl + EX1 
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Given nonlinear system 

x + f(x,x) + g(x) = v'2i5n(t) 

Obtain approximate pdf Plin 
by probabilistic linearization 

Select equivalent damping force 
feqnl(H) = l:f=l (}iHi-l 

Solve the linear equation ( 4.36) 

for the optimal parameters iJ 

Obtain approximate pdf Peqnl 
from equation (4.38) 

Figure 4.10 Flow chart illustrating steps in probabilistic nonlineariza­
tion method 
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As in (4.29), the equivalent system is chosen by replacing f(xl, x2) with feqnl(HjO)x2 

where feqnl(HIO) is a power series in H. Since 

it seems reasonable to approximate this function by the following power series 

The series is truncated at order H so that the highest power of x2 in the equivalent 

damping term feqnz(H)x2 is the same as the highest power in the original system 

The set of approximate probability density functions is then 

The set of linear equations ( 4.36) for the optimal parameters is given by 

(4.40) 

where the inner product is as in ( 4.37). 

All of the quantities in ( 4.40) involving ( ·, ·) can be evaluated once Plin has been 

computed by the probabilistic linearization method. With these quantities known, 

(4.40) is a linear system of equations in the two unknowns fh and {h, which can 

be easily solved. Once iJ1 and iJ2 are known, the approximate probability density 

function is given by 

A ( fjl {h 2 ) Peqnl(xiO) = aexp - DH(x)-
2
DH (x) . 

All of the integrals up to this point can be done analytically. Evaluating the normal­

ization constant a and other quantities such as moments and expected outcrossing 
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rates requires numerical integration. 

In order to compare this method with some of the other methods presented 

earlier, two different cases are considered. First, all of the parameters except for the 

coefficient E of the nonlinear stiffness term are fixed, and the approximate probability 

density function are computed for various values of E. The resulting mean square 

values are shown in 4.11 and the errors in the Fokker-Planck equation are shown in 

Figure 4.13. In the other case, all of the parameters except for the coefficient a of 

the nonlinear damping term are kept fixed, and the approximate probability density 

functions are obtained for various values of a. The mean square values are shown 

in Figure 4.12 and the Fokker-Planck equation error in Figure 4.14. In all cases, it 

is seen that the probabilistic nonlinearization provides more accurate results than 

the linearization or partial linearization results. The simulation results presented in 

Figures 4.11 and 4.12 are from Elishakoff and Cai (1993). 

The approximate probability density functions obtained by the methods are also 

plotted. Figures 4.15-4.18 show the probability density functions as both surface 

plots and contour plots. The marginal probability density functions for XI and x2 

defined by 

p(xi) I: p(xi, x2) dx2 

I: p(xi,x2) dxi 

are shown in Figures 4.19 and 4.20. In these plots, the marginal probability density 

functions for various approximate methods are compared with histograms of the 

response obtained by numerical simulation of the system; 400,000 points were used 

to make the histograms. Although the probabilistic nonlinearization method gives 

good approximations to the mean square values and provides a good approxima­

tion to the probability density function p(x2), it is seen that the probability density 

function p( XI) obtained by the method of probabilistic nonlinearization decays much 

more rapidly as lxii increases than the simulation results or the other approximate 

methods. It will be seen in section 4.4.3 that this leads to large errors when ap-
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Figure 4.11 Mean square values as a function of the stiffness nonlinear­
ity for the nonlinearly damped Duffing oscillator ( 4.39). D = n, a = 

0.5, ,B = 0.1, ')' = 1. 
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Figure 4.12 Mean square values as a function of the damping nonlinear­
ity for the nonlinearly damped Duffing oscillator ( 4.39). D = 1r, j3 = 
0.1, E = 1, f' = 1 
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Figure 4.14 Error in the Fokker-Planck equation as a function of damp­
ing nonlinearity for the nonlinearly damped Duffing oscillator ( 4.39). 
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proximating the outcrossing rate for this system. Further results for this example, 

including outcrossing rate estimates, will be given in section 4.4.3. 
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Figure 4.15 Stationary probability density function approximation ob­
tained by the method of equivalent linearization for the nonlinearly 
damped Duffing oscillator. a= 0.5, ,8 = 0.1, 'Y = 1, E = 1. 

4.4 Direct Approximation of the Probability Density 

Function 

The previous methods presented approximated the nonlinear system of interest with 

a different system for which the corresponding Fokker-Planck equation function can 

be solved. As discussed earlier, there are relatively few systems which have a known 
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Figure 4.16 Stationary probability density function approximation ob­
tained by the method of partial linearization for the nonlinearly 
damped Duffing oscillator. a = 0.5, f3 = 0.1, 'Y = 1, E = 1 
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Figure 4.17 Stationary probability density function approximation ob­
tained by the method of probabilistic linearization for the nonlinearly 
damped Duffing oscillator. a: = 0.5, ,B = 0.1, 'Y = 1, € = 1. 
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Figure 4.19 Probability density function p(xl) for the nonlinearly 
damped Duffing oscillator for the various approximation methods. 
The histogram shows results from numerical simulation of the sys­
tem. 
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damped Duffing oscillator for the various approximation methods. 
The methods of equivalent and partial linearization give the same 
approximation to p(x2). The histogram shows results from numerical 
simulation of the system. 
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solution to the Fokker-Planck equation, and a given nonlinear system may not be 

well approximated by any of the solvable nonlinear systems. In this case, the set of 

approximate probability density functions can be chosen to be of a different form, 

where the form is chosen based on knowledge of the system. 

In this section, another method is presented for obtaining non-Gaussian proba­

bility density functions to approximate the solutions to the stationary Fokker-Planck 

equation for a given nonlinear system. Unlike section 4.3, the approximate prob­

ability density functions are not chosen to correspond to solutions of "equivalent" 

systems with energy-dependent damping. In fact, the approximate probability den­

sity functions chosen are such that no equivalent system 

may exist whose stationary probability density function is of the form of the ap­

proximate probability density functions. 

4.4.1 Selecting the Approximate Probability Density Functions 

This section presents a method for selecting the set of approximate probability 

density functions for single degree-of-freedom systems. The approximate probability 

density functions are chosen with two objectives in mind. First, the approximate 

solutions are chosen so that some of the terms in the Fokker-Planck equation error 

are identically zero. Additionally, the form of the approximate solutions is chosen so 

that if the given system is one of the systems having a known solution to the Fokker­

Planck equation, the approximate method will actually give the exact solution. 

For a given nonlinear dynamical system 
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the associated stationary Fokker-Planck equation is 

which can be rearranged as 

ap ap a( ap) -x2-a +g(xi)-a +-a J(xi,x2)p+D-a =0. 
XI X2 X2 X2 

The term in parenthesis will be identically zero if 

which is accomplished by choosing 

( 4.41) 

where Q(xi) is an arbitrary function of XI, ()is a parameter to be determined, a is 

a normalization constant and 

The form of the function Q(xi) is chosen based on systems having known so­

lutions to the Fokker-Planck equation. A desirable property for an approximation 

method is to be able to give the exact solution for systems having known solutions. 

An attempt is made to choose Q(x1) so that the approximate method will actu­

ally yield the exact solution for systems with known solutions to the Fokker-Planck 

equation. With this in mind, one of the simplest choices for Q(xi) is to choose 

(4.42) 

which would yield the exact solution in the case of linear damping. This is the 

choice considered in the examples. A slightly more complicated choice for Q(x1) 
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can be chosen which will yield the exact solution for any system having energy­

dependent damping, as explained in appendix A. For the examples considered in 

this work, in which j(x1, x2) is independent of x1, this alternative choice also gives 

Q(x1) = G(x1). 

With Q(xl) given by (4.42), the set of approximate probability density functions 

is given by 

and the criterion for obtaining the best approximation is given as 

( 4.43) 

As in the case of probabilistic nonlinearization, this provides a valid criterion for 

measuring the error, but can be computationally expensive to work with. For typical 

systems, computing the norm requires numerical integration, and to find the optimal 

parameters, the integration needs to be performed many times. 

To simplify the criterion, recall that the set Pp was chosen so that 

Therefore, the Fokker-Planck equation error reduces to 

Part of the difficulty in minimizing the norm of the above expression is that the 

normalization constant for the probability density function pp(xiB) is a complicated 

function of 0. To simplify the computations, the following criterion is adopted 

(4.44) 
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Differentiating with respect to (} to obtain the minimum gives 

(4.45) 
(} = E[g2(x1) j(x1, X2) X2- g(xi) X2 Bf;J 

E[g2 (xt) x~] 

Although this criterion seems different than the other methods presented in this 

chapter, it can be thought of as minimizing the weighted £ 2 norm of the Fokker­

Planck equation error where the weighting function is 1jpp(xl0). An interesting 

relationship between the criterion ( 4.45) and those suggested by the methods of 

equivalent and partial linearization is presented in section 4.5. 

Notice that if j(x1, x2) is independent of x1, the criterion reduces to 

(4.46) (} = E[x2 j(x2)] 
E[x~] 

which is the same as the criterion proposed in the methods of equivalent linearization 

(3.10a) and partial linearization (3.20). The only difference in the criteria is that 

different probability density functions are used to evaluate the expectations. 

4.4.2 Example 3: Rolling Ship 

For small angles, the equation of motion for a rolling ship is given by (Roberts 1982; 

Gawthrop et al. 1988) 

where ¢ is the angle from the vertical, w is the undamped natural frequency for 

roll, f3 is the linear damping ratio, n1 and n2 are nonlinear damping and stiffness 

coefficients, respectively, I roll is the effective roll inertia of the ship, and M ( t) is the 

applied moment from the waves. The equation contains a quadratic damping term 

commonly found in applications involving fluid flow or fluid dampers as well as a 
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cubic hardening term. Modeling M(t) as Gaussian white noise leads to 

(4.47) 

where x1 = ¢, x2 = ¢ and D is the amplitude of the excitation. 

For the system ( 4.4 7), 

giving 
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The approximate probability density function is taken as 

where, from ( 4.46), 

(4.48) 
() _ E[x2 j(x2)] 

- E[x§] 

The effects of the cubic stiffness nonlinearity have already been investigated, 

and in to obtain some simple analytical results for the nonlinear damping term, the 

first case considered is {3 = n2 = 0 and w = 1 so that the system reduces to the 

quadratically damped oscillator 

(4.49) 

The more general case will be studied in section 5.2.2. For the quadratically damped 

oscillator (4.49), the approximate probability density function is 

(4.50) ( ) ( 
()xi n1x§lx2l) 

p F x = a exp -- - ---==-----'-
2D 3D 

and, from ( 4.48), () is given by 

(4.51) 

where r(-) is the Gamma function. 

The mean square values can easily be determined from the probability density 

function 

2 2 (3D) ~ 1 ( D ) ~ E[x1] = E[x2] = - -(1 ) = 0.776 - . 
nl r 3 nl 

The error in the Fokker-Planck equation can also be computed analytically; in 
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the case of D = 1, the error is 

1 

IILnlPF llc2 = 0.0625n{. 

Comparison with Equivalent Linearization 

For the parameter values considered in ( 4.49), the method of equivalent linearization 

gives 

( 4.52) 

Equation (4.52) is the same as the previous formula for (} (4.51). The resulting 

values will be different though, since the expectations are taken with respect to 

different probability density functions. 

Evaluating ( 4.52) gives 

from which the mean square values are computed 

The error in the Fokker-Planck equation can also be calculated; forD= 1, the error 

is given by 

IILnlPeqlinll = 0.28n1. 

Notice that the mean square values for the method of equivalent linearization 

are about 6% lower than those predicted by the non-Gaussian approximate prob­

ability density function for all values of the nonlinearity parameter, n1. However, 

the error in the Fokker-Planck equation grows much faster in n1 for the Gaussian 
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approximation than for the non-Gaussian approximation. 

Comparison with Equivalent N onlinearization 

The quadratically damped oscillator is one of the systems for which the integrals 

arising in the equivalent nonlinearization method can be analytically evaluated, and 

the results can be presented in a simple form. The solution presented here is taken 

from Roberts and Spanos (1990). The nonlinear damping term j(x2) = n1lx2lx2 is 

replaced with an "equivalent" nonlinear damping given by 

where H =~(xi+ x~) and a is chosen to solve 

In Roberts and Spanos (1990), the optimal value for a is determined and the 

corresponding probability density function for the equivalent nonlinear system is 

given by 

( 4.53) 
_ 3 8n1 8n1 3/2 

( )
2/3 ( ) 

Peqnl(x) - 27!T(~) 97r exp - 97r (2H(x)) . 

The mean square values can be computed from (4.53) and are given by 

which are a little more than 1% lower than those predicted by the probability density 

function in equation ( 4.50). The mean square values for the various methods are 

plotted in Figure 4.22 along with values obtained by numerical simulation. 

The error in the Fokker-Planck equation is computed by numerical integration 

and is plotted in Figure 4.21. While the equivalent nonlinearization method provides 

a better fit than equivalent linearization, the error still grows much faster in n 1 for 
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the equivalent nonlinearization method than the new method. 

The marginal probability density functions p(xl) and p(x2) for the various meth­

ods are shown in Figures 4.23 and 4.24, along with histograms obtained from nu­

merical simulation of the system. Eight hundred thousand data points were used to 

make the histograms. From both figures, it is seen that the non-Gaussian probabil­

ity density functions provide a better fit to the simulated data than the equivalent 

linearization results, and it appears as though the best fit to the simulated data is 

obtained by using the direct approximation of the probability density function. 
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·· · · · equiv.lin 

0.5 - - equiv. nonlin. 
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Figure 4.21 Fokker-Planck equation error for the quadratically damped 
oscillator with D = 1. 

Reliability Estimates for the Various Methods 

The mean square values and Fokker-Planck equation errors for the various methods 

were presented in Figures 4.21 and 4.22. It was seen that all of the methods gave 

quite good accuracy for the mean square values for all values of n1, but that the 
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Figure 4.23 Probability density function p(xl) for the quadratically 
damped oscillator, D = 1, n1 = 1. The histograms shows results 
from numerical simulation. 
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error in the Fokker-Planck equation was much smaller for the probability density 

function PF than for the equivalent linearization or nonlinearization methods. In 

this section, the outcrossing rates for the various methods are compared. 

In addition to the previously described methods, results are presented from a 

weighted norm minimization. In this case, the probability density function is chosen 

as 

as in (4.50), but rather than choosing e according to (4.46), e is chosen to minimize 

the weighted £ 2 norm of the Fokker-Planck equation error. As in the reliability 

estimation for probabilistic linearization, the weighting function is chosen as 

As in example 1, the value of O"p was reduced until the results suddenly became 

unreasonable, corresponding to the optimal value of 0 going to oo. The smallest 

value of O"p which could be used in this example is O"~ = ~-

The results for the various methods are shown in Figure 4.25, along with results 

obtained from numerical simulation of the system. It is seen that the equivalent 

nonlinearization method predicts the outcrossing rate to be much lower than what 

is predicted by the other methods. The reason for this is that the outcrossing rate 

decays as e-c1 b
3 

for some constant c1 for the equivalent nonlinearization method 

whereas the outcrossing rate for the other methods decay as e-c2 b
2

• 

Note that these results illustrate an important point about equivalent nonlin­

earization methods. The results obtained by equivalent nonlinearization may be 

less accurate than those obtained by equivalent linearization if the approximate 

nonlinear system has sufficiently different behavior than the original nonlinear sys­

tem. This can be seen in Figure 4.25, where the method of equivalent linearization 

gives considerably better estimates to the outcrossing rates than those obtained by 

equivalent nonlinearization for this system. 
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Figure 4.25 Expected outcrossing rates for the quadratically damped 
oscillator. n 1 = 1, D = 1. 
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4.4.3 Application of the Method to Example 2 

It was seen in section 4.3 that the probability density function obtained by the 

method of probabilistic nonlinearization provided a considerably better fit to the 

stationary Fokker-Planck equation for the nonlinearly damped Duffing oscillator 

than either the method of equivalent linearization or probabilistic linearization. It is 

interesting to see how the results obtained by probabilistic nonlinearization compare 

with the results obtained by approximation the probability density function as in 

section 4.4.1. 

For the nonlinearly damped Duffing oscillator given by ( 4.39), 

j(x2) f3x2 +ax~ 

g(xr) = ')'XI + EXf 

giving 

G(x1) 

The probability density function is given by 

(4.54) 

where, from (4.46), 

which can be evaluated as 

O = 8aD K ~ ( sfo) + (32 
( K ~ ( sfo) - K! ( sfo)) 

2(3 ( K ~ ( 8~~) - K i ( /ln)) 

where Kn(·) are modified Bessel functions. The Fokker-Planck equation error, 
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IILnz(x)p(xiO)II is compared with the error for the methods presented earlier in 

Figures 4.26 and 4.27. It is seen that the direct approximation of the probabil­

ity density function provides a better fit to the Fokker-Planck equation than any 

of the other methods. The mean square values obtained by the various methods 

are shown in Figures 4.28 and 4.29. From these plots, it is seen that both of the 

nonlinearization methods do considerably better than the linearization methods. 

The stationary probability density function PF is shown in Figure 4.30 and can be 

compared to those obtained from the various other methods, which are shown in 

Figures 4.15-4.18. The marginal probability density functions, p(x1 ) and p(x2 ), are 

shown in Figures 4.31 and 4.32. The approximate probability density functions are 

compared with results from numerical simulation, as in Figures 4.19 and 4.20. 
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Figure 4.26 Error in the Fokker-Planck equation as a function of stiff­
ness nonlinearity for the nonlinearly damped Duffi.ng oscillator (4.39). 
D = 1r,o: = 0.5,,8 = 0.1,')' = 1 

The most striking difference between the method of probabilistic nonlineariza­

tion and the direct probability density function approximation method appears when 
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ity for the nonlinearly damped Duffi.ng oscillator (4.39). D = 1r,a = 
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Figure 4.29 Mean square values as a function of the damping nonlinear­
ity for the nonlinearly damped Duffing oscillator (4.39). D = 1r,{3 = 
O.l,E = l,'"'f = 1 
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computing outcrossing rates. The outcrossing rates for the safe set 

{ S = X E IR2 
: X1 E ( -b, b)} 

computed by the various methods are shown in Figure 4.33. Also shown are esti­

mates obtained by using the method of probabilistic linearization and minimizing 

the weighted £ 2 norm of the Fokker-Planck equation error, where the weighting 

function is chosen as in the earlier sections on outcrossing rate estimation to place 

emphasis near x1 = ±b. The value of the variance parameter in the weighting 

function is a-~ = £ . 
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Figure 4.33 Outcrossing rate estimation for the nonlinearly damped 
Duffing oscillator. D = 1r, a = 0.5, (3 = 0.1, 'Y = 1, t: = 0.5 

As in example 3, it is observed that the outcrossing rates predicted by prob­

abilistic nonlinearization are far less than those predicted by the other methods. 

Also, notice that the best agreement with the simulation results is obtained by the 
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direct approximation of the probability density function. For this example, the out­

crossing rate for probabilistic nonlinearization decays as e-Cib
8 

while for the direct 

probability density function approximation, pp, the outcrossing rate goes as e-c2b
4

, 

and as e-c3 b
2 

for the method of equivalent linearization. 

4.5 Equivalent and Partial Linearization Revisited 

Although the methods of equivalent and partial linearization were developed by 

approximating the stochastic differential equation, it is interesting to see how these 

methods could be derived from the Fokker-Planck equation and how they compare 

with the proposed methods. 

Consider the single degree-of-freedom oscillator 

(4.55) 

with the associated stationary Fokker-Planck equation 

4.5.1 Equivalent Linearization 

In the method of equivalent linearization, (4.55) is replaced by a linear system. The 

corresponding probability density function for the system response is given by 

Substituting Plin into the Fokker-Planck equation (4.56) gives 
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Minimizing the mean-square value of each term in parenthesis, i.e. solving 

gives 

which are the variances given by the method of equivalent linearization. 

4.5.2 Partial Linearization 

In the method of partial linearization, the nonlinear system ( 4.55) is replaced by a 

linearly damped system 

=( x
2 )dt+( 0 )dw(t) 

-f3eqX2- g(xl) v'2J5 

which has the corresponding stationary probability density function 

( 1(3 ) _ (-f3eqG(xi) _ f3eqX~) 
Ppl x eq - c exp D 2D 

where G(x1 ) = J;1 g(e) de and cis a normalization constant. 

Notice that 

so that error in the stationary Fokker-Planck equation (4.56) reduces to 
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Minimizing the mean square value of the term in parenthesis with respect to f3eq 

gives 

which is the partial linearization criterion (3.20). 

4.6 Summary 

Three new methods have been presented for analyzing nonlinear dynamical systems 

under additive stochastic excitation and several examples were presented illustrating 

the accuracy of the methods. The first method presented, probabilistic linearization, 

finds the Gaussian probability density function that minimizes the Fokker-Planck 

equation error. Since the probability density function for the response of linear 

systems is Gaussian, this method is expected to work well for systems with small 

nonlinearities. In addition, it was shown that simple weighting functions can be used 

to improve the estimates for mean square values and outcrossing rates. The second 

method presented, probabilistic nonlinearization, finds a non-Gaussian approxima­

tion to the stationary probability density function for the response of the system. 

For the example considered, this method gave a smaller error in the Fokker-Planck 

equation error than probabilistic linearization and provided better estimates to the 

mean square values for the response, but provided poor estimates for outcrossing 

rates. In the third method presented, a different set of approximate non-Gaussian 

probability density functions than those chosen by the method of probabilistic non­

linearization is used. For the examples considered, this method provided good 

estimates to both mean square values and outcrossing rates, as well as having the 

smallest error in the Fokker-Planck equation. 
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Chapter 5 

Modeling Uncertainty 

In previous chapters, methods for predicting the response of dynamical systems 

subjected to uncertain excitation were presented. No uncertainty in the modeling 

of the system was considered. In this chapter, modeling uncertainties will also be 

included in the analysis. 

The response of dynamical systems is often modeled by a system of ordinary 

or partial differential equations. The equations are usually obtained from balance 

laws, experimental observations, or some combination of the two. One source of 

modeling uncertainty, prediction-error uncertainty, is present in any model, as no 

mathematical model can fully describe the behavior of a physical system. A sec­

ond source of modeling uncertainty is parameter uncertainty. The models typically 

contain a number of parameters and the values of the parameters that will give the 

best fit between the response of the model and the physical system are uncertain. 

The uncertainty in the parameters will be modeled probabilistically, and typ­

ical problems arising when including modeling uncertainty in the analysis involve 

computing integrals of the form 

(5.1) I= fe j(O)p(O) dO 

where f ( 0) and p( 0) are sufficiently smooth, 8 C !Rn, f ( 0) > 0 for all 0 E 8, and 

p( 0) is a probability density function. Two applications in which integrals of the 

form ( 5.1) arise are 
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1. Computing the statistical quantities of interest for an uncertain dynamical 

system under stochastic excitation. For example, computing the expected 

out crossing rate for an uncertain dynamical system is done by choosing f ( 0) = 

v(O) where v(O) represents the conditional outcrossing rate for the system given 

the parameters 0. 

2. Classical reliability integrals. Classical reliability integrals arise in a number of 

applications; see Madsen et al. (1986) for a number of examples and references. 

For these integrals, regions of the parameter space (the safe set) are determined 

to give acceptable performance, while other regions (the unsafe, or failure, 

set) give unacceptable performance. In this case, it is desired to determine 

the probability of acceptable [unacceptable] performance. This is done by 

choosing f(O) = 1 and 8 to be the safe [failure] set. 

In almost all cases where these integrals arise, the integrals cannot be evaluated 

analytically. Numerical integration can be done to evaluate the integrals, but this 

is often computationally expensive for a small number of uncertain parameters, and 

usually prohibitive in more than six or seven dimensions. Another approach is to 

use Monte Carlo-type methods. Although these methods typically require a large 

number of samples, the computational cost is virtually independent of the number 

of uncertain parameters, enabling the methods to be used for large problems. These 

methods become especially expensive if the function f ( 0) is costly to evaluate or 

when trying to determine failure probabilities, where the actual value of the integral 

is often very low, in which case an exceptionally large number of samples is often 

required. 

Another method for approximating integrals of the form (5.1) is to obtain an 

asymptotic expansion for the integral. This approach has recently been used to 

determine the outcrossing rates, reliability, and moments for uncertain linear dy­

namical systems (Papadimitriou et al. 1995, 1997; May 1997) and has shown to give 

accurate results in a number of examples. The general theory for the asymptotic 

expansions is given in the next section and the expansion is applied to determine 

moments and outcrossing rates for nonlinear dynamical systems in section 5.2 and 
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to evaluate classical reliability integrals in sections 5.4.3 and 5.5. 

5.1 Asymptotic Approximation For A Class Of Proba­

bility Integrals 

Consider the general class of multidimensional integrals of the form ( 5.1). Papadim­

itriou, Beck, and Katafygiotis (1995, 1997) have derived an asymptotic approxima­

tion based on an expansion of the logarithm of the integrand about the point that 

corresponds to the maximum of the integrand. The idea is to rewrite the integral 

(5.1) as 

I= fe exp (P(O)) dO 

where 

P(O) = lnj(O) + lnp(O). 

Note that since exp(·) is a monotonic function, the maxima of P(O) are the same as 

the maxima of the integrand. Consider first the case for which P(O) has only one 

maximum, (:}*, located in the interior of 8. Expanding P(O) in a Taylor series about 

(:}* and using VP(O*) = 0 gives 

P(O) = P(O*) - (0- O*)T L(O*)(O- (:}*) + e(O) 

where L(O) = -VVP(O) and e(O) = 0 (IIO- 0*11 3). Substituting the series expansion 

into the integral (5.1) gives 

I exp(P(O*)) fe exp ( -({:}- O*f L(O*)((:}- (:}*)) exp(e(O)) d(:} 

f ( O*)p( 0*) fe exp ( -( (:} - O*)T L( (:}*)( (:} - (:}*)) exp( e( 0)) dO. 



105 

Applying Laplace's method of asymptotic expansion (Bleistein and Handelsman 

1986) to the above integral yields 

(5.2) 
I()* (27r)n/2 j(()*)p(()*) 

( ) "' Jdet L({)*) · 

Letting A be the minimum eigenvalue of L(()*), it can be shown that the approx­

imation becomes asymptotically correct as A -+ oo. Thus, it is expected that the 

accuracy of the approximation increases as A increases, which corresponds to the 

integrand becoming more "peaked" around the maximum. 

If there are a finite number of global maxima of the integrand in e, the above 

procedure can still be applied by summing the contributions from each maximum. 

Letting the maxima be e;, i = 1, ... k, the approximation for the integral is given 

by 

k 

I= LJ(ei). 
i=l 

A method which can be used to locate the multiple maxima has been developed by 

Yang and Beck (1998). 

5.2 Moments and Outcrossing Rates for Uncertain Non­

linear Dynamical Systems 

To determine the moments and outcrossing rates for nonlinear dynamical systems 

with uncertain parameters, it is first necessary to be able to determine the con­

ditional moments and outcrossing rates for given parameters. The values can be 

determined exactly only for certain nonlinear systems, as discussed in chapter 3, 

but they can be determined approximately by the methods of chapter 4 for other 

nonlinear systems. 

Letting () E IRm be the uncertain parameters with probability density function 

p(()), E[xil()] be the conditional moments and v(()) the conditional outcrossing rate, 
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the moments and outcrossing rate for the uncertain system are 

(5.3a) E[xf] = { E[xf!O]p(O) dO 
}fRm 

(5.3b) v= { v(O)p(O)dO. 
}fRm 

5.2.1 Example 1: Uncertain Duffing Oscillator 

In this section, the accuracy of the asymptotic approximation for computing the 

moments and outcrossing rates for the uncertain, linearly damped Duffing oscillator 

will be investigated. The Duffing oscillator considered is 

(5.4) 

where (,wn,E, and Dare all uncertain and n(t) is zero-mean, Gaussian white noise 

with E[n(t)n(t+r)] = o(r). The uncertain variables are taken to be independently, 

lognormally distributed. The lognormal probability density function with mean 

parameter me and variance parameter ao is given by 

(5.5) (e)- 1 ( (ln0-mo)2) forall0>0. Po - '2= ll exp - 2 2 
VL.1fUa() a() 

The mean parameters for the probability density functions are chosen as 

mwn= ln 1 

mv = ln 0.75 

me.= ln 0.5 

me= ln 0.25. 

The mean values for the uncertain variables vary slightly with the variance param­

eter for the probability density function, but using the above parameters gives 

E[wn]:::::: 1 

E[D] :::::::0.75 

E[(]::::::: 0.5 

E[t]::::::: 0.25. 

The value of the variance parameter, a, in the lognormal probability density function 

is approximately the coefficient of variation for the uncertain variable. A common 
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value of (} will be taken for this parameter and the dependence of the results on (} 

will be investigated. 

The stationary probability density function for the Duffing oscillator (5.4) given 

the parameters (} is 

where a((, Wn, E, D) is the normalization constant for the probability density func­

tion. The conditional moments and outcrossing rates can easily be computed from 

the probability density function and the moments and outcrossing rate for the un­

certain system are given by the integrals (5.3a,5.3b). 

The effect of parameter uncertainty on both mean square values and expected 

outcrossing rates for the Duffing oscillator is illustrated in Tables 5.1-5.5 and Fig­

ure 5.1. In order to investigate the sensitivity of the results to the parameters, 

results are presented for cases when only one or two of the variables are considered 

to be uncertain, as well as for cases when all of the variables are uncertain. When 

only some of the variables are considered uncertain, the variables which are not 

considered to be uncertain are set to their mean values. 

Results obtained by the asymptotic approximation are compared with those ob­

tained by evaluating the integrals numerically. For one or two uncertain parameters, 

the numerical integration is done directly. For more than two uncertain variables, di­

rect numerical integration becomes too computationally expensive, and the method 

of importance sampling (Schueller and Stix 1987; Bucher 1988) is used to compute 

the integrals. Importance sampling is a Monte Carlo-type method in which most of 

the samples are generated in the region where the integrand is largest. The weight­

ing functions used in the importance sampling computations are the same as those 

used in Papadimitriou et al. (1995). 

The results illustrate several points. First, the asymptotic approximation pro­

vides good estimates for the integrals even when there is large uncertainty in the 

parameters. Additionally, it is observed that the outcrossing rate, and hence the 
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probability of failure, is much more sensitive to parametric uncertainty than the 

mean square values are. Even for coefficients of variation of 10% on the parameters, 

the expected outcrossing rate is more than an order of magnitude greater than the 

outcrossing rate obtained by using the mean values of the parameters. It is also 

observed that both the mean square values and the outcrossing rates are most sen­

sitive to uncertainty in the natural frequency and least sensitive to uncertainty in 

the nonlinear stiffness term, E. 

Uncertain variable ( D E Wn 
Numerical integration 0.54 0.52 0.53 0.57 

Asymptotic approximation 0.53 0.51 0.52 0.56 

Table 5.1 Mean square values, E[x2], for the linearly damped Duffing 
oscillator with one uncertain variable with variance parameter a = 
0.2. The variables which are not considered as uncertain are set to 
their mean values. The mean square value with all of the variables 
set to their mean values, E[x2 IB], is 0.53. 

Uncertain variables E,( (,D E,Wn Wn,( Wn,D 
Numerical integration 0.54 0.54 0.57 0.58 0.56 

Asymptotic approximation 0.52 0.52 0.55 0.56 0.54 

Table 5.2 Mean square values, E[x2], for the linearly damped Duffing 
oscillator with two uncertain variables with variance parameter a = 
0.2. The variables which are not considered as uncertain are set to 
their mean values. The mean square value with all of the variables 
set to their mean values, E[x2 !BJ, is 0.53. 

Variance parameter, a 0.05 0.10 0.15 0.20 
Importance sampling 0.55 0.56 0.57 0.58 

Asymptotic approximation 0.55 0.55 0.54 0.54 

Table 5.3 Mean square values, E[x2], for the linearly damped Duffing 
oscillator when all of the variables are uncertain with variance param­
eter a. 
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Figure 5.1 Expected outcrossing rates for the Duffing oscillator when 
all of the variables are uncertain with variance parameter CT. The plot 
shows the ratio of the expected outcrossing rate v obtained by eval­
uating the integral (5.3b) to the outcrossing rate obtained by setting 
all of the parameters to their mean values, v(iJ). 
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Uncertain variable ( D E Wn 
Numerical integration 7.10 X 10 -6 4.88 X 10 -6 1.34 X 10 -o 6.46 X 10 -t> 

Asymptotic approximation 7.02 X 10 -o 4.80 X 10-o 1.21 x 10-6 6.48 x 10-5 

Table 5.4 Outcrossing rates for the linearly damped Duffing oscillator 
with one uncertain variable with variance parameter a = 0.2. The 
variables which are not considered as uncertain are set to their mean 
values. The outcrossing rate with all of the parameters set to their 
mean values is v(O) = 6.07 x 10-7 . 

Uncertain 
variables E,( (,D E,Wn Wn,( Wn,D 
Num. int. 1.08 X 10 -t> 2.14 X 10 -t> 9.42 X 10 -t> 1.40 X 10 -4 1.12 X 10 -4 

Asymptotic 1.06 x 10-5 2.05 x 10-5 9.35 X 10 -5 1.40 X 10 -4 1.09 x 10-4 

Table 5.5 Outcrossing rates for the linearly damped Duffing oscillator 
with two uncertain variables with variance parameter a = 0.2. The 
variables which are not considered as uncertain are set to their mean 
values. The outcrossing rate with all of the parameters set to their 
mean values is v(iJ) = 6.07 x 10-7 • 

5.2.2 Example 2: Rolling Ship with Uncertain Parameters 

The second example is the rolling ship, which was considered earlier is section 4.4.2 

x + 2(wnx + a!x!x + w~x + Ex
3 = V2i5 n(t). 

The uncertain parameters for the system are taken to be(}= ((,a,wn,E,D). 

In this case, the stationary Fokker-Planck equation cannot be solved exactly 

and the stationary probability density function must be determined approximately 

to determine the conditional moments and outcrossing rates. It was seen in the 

previous example that the outcrossing rates are much more sensitive to uncertainty 

in the parameters than the mean square values are, and for this example, only 

outcrossing rates will be considered. It was shown in chapter 4 that the outcrossing 

rates for nonlinear systems can be approximated either by using a weighted norm 

in the method of probabilistic linearization or by using the direct approximation of 

the probability density function with a non-Gaussian probability density function, 

as in section 4.4. For this example, a non-Gaussian probability density function is 



111 

chosen as in 4.4.2. The approximate probability density function chosen is 

where ¢ is the parameter of the approximate probability density function which was 

called in 0 in section 4.4 and a(O) is a normalization constant. Equation {4.48) gives 

The expected values in the above equation can be computed analytically, but the 

resulting expressions are rather complicated and are not presented here. The ex­

pected outcrossing rate for the threshold x = b and the system parameters 0 is given 

by 

{5.7) v(O) = fooo xp(b, xi¢(0), 0) dx. 

The above integral can also be evaluated analytically, again yielding a rather com­

plicated expression. Accounting for the uncertainty, the expected outcrossing rate 

is 

v = { v( O)p( 0) dO 
}IRs 

where p(O) is the probability density function for the uncertain variables. The 

variables are assumed to be independently, lognormally distributed with parameters 

mwn = ln 21!" 

ffi( = ln 0.05 

ma ln 0.5 

mE = ln 0.25 

ffiD ln 100. 
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First, the effects of uncertainty in each of the variables individually is investi­

gated. One variable is assumed to be uncertain, while all of the others are set to their 

mean values. Results obtained with the asymptotic approximation are compared 

with those obtained by numerical integration in Tables 5.6 and 5. 7 for variance pa­

rameters of 0.1 and 0.2, respectively. As in the case of the linearly damped Duffing 

oscillator, it is seen that the asymptotic approximation gives a very good approx­

imation to the integrals. Additionally, it is seen that the outcrossing rate is again 

most sensitive to uncertainty in the natural frequency, Wn. 

Uncertain 
variable ( a D € Wn 

Num. int. 2.33 x w-5 2.84 x w-5 2.85 x w-5 2.32 x w-5 9.91 x w-5 

Asymptotic 2.32 X 10 -o 2.83 X 10 -o 2.85 X 10 -o 2.31 X 10 -o 9.90 X 10 -o 

Table 5.6 Expected outcrossing rates, v, for the rolling ship with one 
uncertain variable with variance parameter u = 0.1. The variables 
which are not considered as uncertain are set to their mean values. 
The outcrossing rate with all of the parameters set to their mean 
values is v( 0) = 2.32 X 10-5• 

Uncertain 
variable ( a D € Wn 

Num. int. 1.73 X 10 -b 3.64 X 10 -b 3.67 X 10 -b 1.68 X 10 -5 5.91 x w-4 

Asymptotic 1.70 X 10 -5 3.58 X 10 -5 3.61 X 10 -5 1.65 X 10 -o 5.91 X 10 -'± 

Table 5. 7 Expected outcrossing rates, v, for one uncertain variable with 
variance parameter u = 0.2. The variables which are not considered 
as uncertain are set to their mean values. The outcrossing rate with 
all of the parameters set to their mean values is v( 0) = 1.68 x w-5 • 

Results for the case when all of the variables are considered uncertain are shown 

in Figure 5.2. As in the case of the linearly damped Duffing oscillator, it is seen that 

the asymptotic approximation provides good estimates to the value of the integral, 

even when there is large uncertainty in all of the parameters. 
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Figure 5.2 Expected outcrossing rates for the rolling ship when all of 
the variables are uncertain with variance parameter a. The plot shows 
the ratio of the expected outcrossing rate v obtained by evaluating 
the integral (5.7) to the outcrossing rate obtained by setting all of the 
parameters to their mean values, v(iJ). 
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5.3 Classical Reliability Integrals 

In classical reliability integrals, the parameter space is divided into two regions, 

the safe region, S and the unsafe, or failure, region, :F. If the parameter values 

are in the safe region, the system will have acceptable performance, whereas for 

parameter values in the unsafe region, the system performance will be unacceptable. 

The probability density function for the parameters is given by p( 0) and the goal is 

to assess the probability of failure, which can be obtained from the integral 

(5.8) pf = L p(O) dO. 

Integrals of the form (5.8) cannot typically be evaluated analytically and nu­

merical evaluation becomes computationally prohibitive as the number of unknown 

parameters increases. In order to evaluate these integrals, some approximate tech­

niques have been developed. The FORM and SORM methods are reviewed in the 

next section. 

5.4 FORM and SORM Approaches 

Two of the most common methods for approximating reliability integrals are the first 

and second order reliability methods (FORM and SORM, respectively). The first 

step in either of the methods is to make a transformation of coordinates from the 

original parameters 0 to new variables x so that the new variables are independently, 

normally distributed, i.e., 

1 ( 1 2) p(x) = <P(x) = (21r)n/2 exp -211xll . 

One such transformation which is applicable to any original distribution p( 0) is the 

Rosenblatt transformation (Rosenblatt 1952), as discussed in Madsen et al. (1986). 

The second step in the FORM and SORM methods is to approximate the bound­

ary between the safe and unsafe regions by either a first or second order surface. 

First, consider the case where there is a single surface separating the safe and unsafe 
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regions in the new variables x. This surface, termed the failure surface, is typically 

given in the implicit form g(x) = 0 and the safe and unsafe sets are the regions 

S {x E IRn : g(x) < 0} 

F {x E IRn : g(x) > 0}. 

The probability of failure integral becomes 

Pf = { ¢(x) dx. 
}g(x)>O 

This integral can be evaluated analytically only when the failure surface is a hyper­

plane. In the FORM and SORM methods, the failure surface is approximated by 

either a first or second order surface in the vicinity of the point on g(x) = 0 with 

minimal distance to the origin. The idea behind these approximations is that ¢( x) 

decays rapidly as llxll increases, so the major contributions to the integral come 

from the regions in F closest to the origin. The point on the failure surface closest 

to the origin in the transformed x-space is called the design point and the distance 

from this point to the origin is often denoted by j3. 

If there is more than one surface separating the safe and unsafe regions, the 

surface approximations are made at the design point on each surface, and the integral 

can be approximated by summing the contributions from each surface, provided that 

the contribution from the overlapping failure domains is insignificant. A more formal 

study of system reliability issues can be found in the books by Madsen et al. (1986) 

and Thoft-Christensen and Murotsu (1986). 

5.4.1 FORM 

In first-order reliability methods, the failure surface is approximated by a hyperplane 

tangent to the surface at the point on the surface closest to the origin, as illustrated 

in Figure 5.3. The approximating hyperplane can be written in the form 

9Jorm(x) = (x, n)- f3 = 0 
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Figure 5.3 FORM approximation to the failure surface 

where n is the unit normal to the hyperplane. With this approximation to the failure 

surface, the integral can be evaluated analytically (Madsen et al. 1986), giving 

(5.9) r ¢(x)dx = <I>(-,6) 
}9form(x)>O 

where <I>(·) is the standard normal cumulative distribution function. This is the 

value used by the FORM approach to obtain estimates of the failure probability, 

i.e., 

Pf ~ <I>( -,6). 

5.4.2 SORM 

In the second-order reliability methods, the curvature of the failure surface at the 

design point is also accounted for. In this case, a second-order surface is used to 

approximate the failure surface in the vicinity of the design point, as shown in 

Figure 5.4. 

After a rotation of coordinates, the paraboloid approximation to the failure 
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Figure 5.4 SORM approximation to the failure surface 

surface can be written in the form 

(5.10) 
n-1 
1~ 2 

Ysorm(x) = Xn- 2 ~ aiXi - f3 = 0 
i=l 

where the ai's are the principal surface curvatures at the design point and the Xn axis 

is along the line through the origin and the design point. An alternative procedure 

for obtaining a second order approximation based on a point-fitting method rather 

than curvature fitting has been given by Der Kiureghian et al. (1987). In either 

case, the probability of failure is then approximated by the following integral 

(5.11) Pt ~ { <f;(x) dx. 
} 9sorm(x)>O 

Unlike the FORM case, the above integral cannot be evaluated analytically, and a 

further approximation is required. A few different asymptotic approximations have 

been previously developed for approximating integrals of the form (5.11) (Tvedt 

1983; Breitung 1984; Ki::iyliioglu and Nielsen 1994). In Breitung's approximation, 



118 

the asymptotic expansion obtained is 

(5.12) 

This approximation is valid for f3ai > -1 for all i and becomes asymptotically exact 

as (3 --+ oo. Tvedt's approximation consists of a sum of three terms, the first of 

which is Breitung's formula (5.12) and the second and third terms are somewhat 

more complicated expressions. Koyliioglu and Nielsen used asymptotic expansions 

of the cumulative distribution function to obtain a number of different approxima­

tions, depending on the signs of the surface curvatures and the order of derivatives 

which were matched in the expansion. In the next section, the asymptotic expan­

sion discussed in section 5.1 is used to give a simple derivation for an alternative 

asymptotic expansion to SORM integrals. 

5.4.3 A New Asymptotic Expansion for SORM Integrals 

The asymptotic method described in section 5.1, provides a very simple means for 

obtaining an asymptotic expansion for SORM integrals. The expansion differs from 

Breitung's formula, although the two formulas become asymptotically equivalent as 

(3--+ 00. 

The SORM integral is written as 

where F = {x E !Rn : 9sorm(x) > 0}. The approximation described in section 5.1 

is not directly applicable to this integral, since the point maximizing the integrand 

(the design point) is on the boundary of F. Recall from (5.10) that the failure 

surface is given by Xn = (3 + ~ I:~;/ aixt. In order to simplify the notation in 

the following, let y = (x1, ... Xn-I), m = n- 1, and order the curvatures so that 
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a1 ::::; a2 ::::; ... ::::; am. With this notation, the integral can be rewritten as 

(5.13) 

J.m ( l:! L'z:;, a;yf <P(xn) dxn) ,P(y) dy 

J.m <1> ( -fJ - ~ ~ a;yi) ,P(y) dy. 

The integral (5.13) is over all of !Rm, ensuring the maxima of the integrand will 

be in the interior and that the asymptotic expansion (5.2) can be applied. For 

most cases of engineering interest, this is especially easy, as given by the following 

theorem. 

Theorem 5.1 Applying the asymptotic expansion (5.2) to the integral in (5.13), 

and considering separately the three cases of system parameters which are distin­

guished by the number of maxima of the integrand, gives the following: 

Case 1: If a1 :~ =~~ > -1, 

(5.14) 

(5.15) 

p <P( -,B) 
f rv nm v <P( -{3) . 

i=1 1 + ai ~( -!3) 

( ( 
~)) <P ( -.e- a1 'YI /2) exp ( -')'r /2) 

Pf "' 2 1 - <P -')'1 y hn 
Jdet L(y*) 

where hn = ,Ba1 + ahr /2 + 1, ')'1 is the unique positive solution of 

and 

(5.16) 

1 + a1 ¢( -,8- anU2) = 0 
<P( -,8- anU2) 

det L(y*) = 'YI hn IT (1 -:i) . 
i=2 1 
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(5.17) 

where h = f3a1 + a 1 "(
2 /2 + 1, 'Y is the unique positive solution of 

and 

(5.18) 

Proof: 

The proof of case 1 is presented here and the proofs for cases 2 and 3 are given 

in appendix B. The first step in the asymptotic method is to find the point(s) 

maximizing the integrand. In this case, there is a unique maximum, as given by the 

following lemma, which is proved in appendix B. 

Lemma 5.1 If a1 :~=~~ > -1, then the integrand in (5.13) possesses a unzque 

maximum, y* = 0. 

The next step is to compute the determinant of the Hessian matrix at y*. Letting 

f(y) = ln<I>(-/3- ~ L~=l aky~) + ln¢(y) and L(y) = -'\1'\lf(y), as in section 5.1, 

the determinant of L(y*) can be easily evaluated from the following lemma, which 

is also proved in appendix B. 

Lemma 5.2 Ifal:~=~~ > -1, then the determinant of the Hessian matrix L(y*) is 

given by 

* lim ( ¢(-/3)) 
det L(y ) = i=l 1 + ai <I>( -{3) · 
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Thus, from equation (5.2), the asymptotic expansion is given by 

(5.19) 
p * (27r)m/2 J(y*)cp(y*) 

J(Y ) "' yfdet L(y*) 

where f(y) = ip( -(3- ~ 2:'.:~=l aky~). Using y* = 0, the following results are easily 

obtained 

f(y*) = ip(-(3) 

cp(y*) (27r)-m/2. 

Substituting the above quantities into (5.19) proves case 1 of the theorem. • 

Note that, except for the correction factor of (1 - ip( --y1hn)) discussed in ap­

pendix B, equation (5.17) reduces to equation (5.15) in the special case of k = 1. 

Also notice that as a2 ---+ a1 in equation (5.15), Pf becomes unbounded and for 

a2 close to a1 the smaller of (5.15) and (5.17) with k = 2 should be used as the 

approximation. Similarly, if a3 and a2 are close to a1, (5.17) can be used with k = 3, 

and so on for more curvatures close to a1. 

Some comments about the new asymptotic expansion 

The formula (5.14) was obtained by a different approach based on a McLaurin series 

expansion of the cumulative distribution function which was valid only for ai > 0 

for all i by Koyliioglu and Nielsen (1994). Koyliioglu and Nielsen used a different 

asymptotic expansion for cases when all of the ai < 0 and a third expansion in the 

case of some ai > 0 and some ai < 0. Formula (5.14) also appeared in a derivation 

of an importance sampling expression given by Hohenbichler and Rackwitz (1988). 

The expansion developed for case 1 is valid as long as ai :~=~~ > -1. For large (3, 

this is similar to the condition that aif3 > -1, since :t =~~ "' (3 as (3 ---+ oo. This 

latter condition is usually satisfied in practice, since no point on the failure surface 

can be inside a hypersphere of radius (3 if (3 is the shortest distance from the failure 

surface to the origin. Thus, for concave failure surfaces, the magnitude of the surface 

curvatures at the design point must be less than the curvature of the hypersphere of 
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radius {3, giving the condition aif3 > -1. However, for finite values of {3, there exists 

a range of curvatures for which ai :~ =~~ < -1 but aif3 > -1. For these parameter 

values, the expansions developed for cases 2 and 3 should be used. 

Notice that the new formula given by (5.14) is very similar to Breitung's formula 

(5.12). The only difference is that the terms (1 + aif3) in Breitung's formula become 

replaced with 1 + ai :t =~~. Additionally, since :t =~~ "' f3 as f3 --t oo, it is seen that 

the two formulas are asymptotically equivalent in the limit as f3 --too. However, for 

finite values of {3, values obtained by the two approximations will differ. Numerical 

comparisons of the two approaches are presented later in Tables 5.8-5.10. 

It is of interest to compare the two approximations (5.12) and (5.14) for small 

values of surface curvatures. In order to do this, consider the asymptotic approxi­

mations to the probability of failure as a function of the surface curvatures 

In the case where all of the surface curvatures are zero, i.e., ai = 0 for all 

i = 1, ... , m, both approximations give Pj(O) = <I>( -{3), which is the FORM ap­

proximation. Note that this is also the exact answer since with all ai = 0, the failure 

surface is a hyperplane. In order to investigate the approximations for small cur­

vatures, consider the rate of change of Pj with respect to the curvatures, ~~f la=O· 
The exact value can be computed from 

a:, (J.m g; ( -~- ~ t, a,y~) ¢(y) dy) 
a=O 

l y~ 
_ __!_¢( -(3)¢(y) dy 

IRm 2 

1 i 2 --¢( -{3) Yi ¢(y) dy 
2 IRm 

¢( -{3) 
2 
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For Breitung's approximation, the derivatives are computed as 

whereas for the new approximation, 

j3if!(- !3) 
2 

Notice that the new approximation provides the correct derivative, and thus for 

small curvatures, the error in Pt(a) is of order ar, while the error in Breitung's 

approximation is of the order lail· 

Numerical Results 

The following tables compare results obtained by the different approximations for 

various values of j3 and surface curvatures. The formulas obtained by the new 

approach, Breitung's approximation, and Koyliioglu and Nielsen's one term ap­

proximation are all very simple. The results obtained by the new approximation 

are often more accurate than those obtained from these approximations. Tvedt's 

approximation and Koyliioglu and Nielsen's three term approximation tend to give 

more accurate results than the new approximation, but the formulas for these ap­

proximations are also considerably more difficult. The exact values presented in 

Tables 5.8, 5.9 and 5.11 were obtained by Koyliioglu and Nielsen (1994) using a 

Gaussian quadrature numerical integration scheme and the values in Table 5.10 

were obtained using numerical integration in Mathematica. 

All of the tables are for the case when n = 3. Table 5.8 is for the case when both 

surface curvatures of the failure surface are positive. In this case, Koyliioglu and 

Nielsen's one term approximation is the same as the formula for the new approx­

imation. In Table 5.9, both surface curvatures are negative, but small enough so 

that ai:~:::~1 > -1. In Table 5.10, the case is considered when one of the negative 

curvatures is large enough so that a1 :~ :::_~~ < -1 but small enough so that a1/3 > -1. 

In this case, the formulas (B.8) and (B.10) are used for the new approximation. For 
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this case, the results from the new approximation are seen to be considerably better 

than Breitung's approach, and of comparable or better accuracy to Koyliioglu and 

Nielsen's approximation. 

In Table 5.11, the results of the approximations are investigated when there is 

a large negative surface curvature. For the cases considered, a1 ¢(-(3) / ifJ (-(3) < -1 

and a1f3 < -1. While these cases are unlikely to occur in practice, it is interesting to 

note that the new approximations provide much better (several orders of magnitude 

for large (3) results than the other approximations in this case. 

5.5 Application of Asymptotic Approximation in Orig­

inal Variables 

As mentioned in section 5.4, the first step in either the FORM or SORM methods is 

to make a transformation of variables from the original variables, (), to new variables 

x, so that the new variables are independently normally distributed. While this can 

always be done in principle through the Rosenblatt transformation, in many cases 

the transformation cannot be performed analytically and must be done numerically, 

which greatly increases the computational requirements. Additionally, by making 

the transformation of variables, the sensitivity of results to changes in the original 

parameters is not clear. For these reasons, it is desirable to be able to obtain 

approximations in the original variables. Breitung (1989) has developed one such 

formula, but the resulting expression is rather complicated. In this section, an 

approximation is obtained by the same method used earlier for the transformed 

variables, yielding a formula much simpler than Breitung's formula. 

In the original variables, the probability of failure is given by 

(5.20) 

where p(O) is the probability density function for (). Letting m n- 1, '1/J 



(3 
5 
4 
3 
2 
1 

K and N, K and N, I 
Exact New Approx. Brei tung Tvedt 1 term 3 term 

4.52 X 10 I 4.63 X 10 I 4.78 X 10 7 4.51 X 10 -I 4.63 X 10 -7 4.53 X 10 I 

5.87 x 10-5 6.06 x 10-5 6.33 x 10-5 5.82 x w-5 6.06 x w-5 5.88 x 10-5 

3.01 x 10-4 3.15 x 10-4 3.38 x 10-4 3.oo x w-4 3.15 x w-4 3.02 x 10-4 

6.31 x 10-3 6.74 x 10_3 7.58 x 10-3 6.03 x 10-3 6.74 x 10-3 6.35 x 10-3 

5.67 x w-2 6.28 x 10-2 7.93 x 10-2 4.88 x 10-2 6.28 x w-2 5.74 x 10-2 

Table 5.8 Comparison of new approximation with Breitung's asymp­
totic formula, Tvedt's three term expansion, and Koyliioglu and 
Nielsen's one and three term approximations. a1 = a2 = 1. 

f-.< 

~ 



(3 
5 
4 
3 
2 
1 

K and N, K and N, 
Exact New Approx. Brei tung Tvedt 1 term 3 term 

5.73 X 10 f 5.95 x w-'r 5.73 X 10 f 5.75 x w- 7 4.35 X 10 f 5.45 x w-7 

5.34 x w-5 5.49 x w-5 5.28 x w-5 5.36 x w-5 4.06 x w-5 5.23 x w-5 

1.97 x w-3 2.01 x w-3 1.93 x w-3 1.98 x w-3 1.79 x w-3 1.95 x w-3 

2.94 x w-2 2.98 x w-2 2.84 x w-2 2.95 x w-2 2.81 x w-2 2.93 x w-2 

1.85 x w-1 1.87 x w-1 1.76 x w-1 1.86 x w-1 1.81 x w-1 1.85 x w-1 
-----------------

Table 5.9 Comparison of new approximation with Breitung's asymp­
totic formula, Tvedt's three term expansion, and Koyliioglu and 
Nielsen's one and three term approximations. a1 = a2 = -0.1 

f.-< 
~ 
0:, 



K and N, K and N, 
a2 Exact New Approx. Brei tung Tvedt 1 term 3 term 

-0.48 0.086 0.091 0.569 0.571 0.048 0.052 
-0.10 0.055 0.075 0.127 n/a 0.038 0.039 
0.50 0.035 0.047 0.080 n/a 0.023 0.036 

Table 5.10 Comparison of SORM approximations when (3 = 2, a1 = 
-0.48. Tvedt's approximation gives complex numbers for the cases 
where "n/a" is given. 

..... 
l;.,j 

'""" 
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K and N, K and N, 
(3 Exact New Approx. 1 term 3 term 
5 0.0020 0.0019 5.07 X 10-7 6.64 X 10-ti 
4 0.0061 0.0059 5.18 X 10-5 0.0004 
3 0.0200 0.0187 0.0020 0.0067 
2 0.0693 0.0640 0.0063 0.0495 
1 0.2185 0.2389 0.1789 0.2012 

Table 5.11 Comparison of new approximation with Koyliioglu and 
Nielsen's one and three term approximations. a1 = -l,a2 = 1 

(01, ... , Om) and a= On, the probability density function for 0 can be rewritten as 

and the failure surface is g('ljJ, a) = 0. In terms of a and 7/J, the above integral can 

be rewritten as 

{ [ { p(ai1/J)da] P7f;(1/J)d'ljJ 
}'J?_m }g(7j;,o.)>O 

(5.21) ~m J ( 1/J )P7f; ( 1/J )d'ljJ 

where 

(5.22) f('ljJ) = { Pa(ai1/J) da. 
}g(7j;,o.)>O 

Applying the asymptotic approximation (5.2) to the integral (5.21) gives 

(5.23) 

where 7/J* is the point maximizing the integrand in (5.21), £(7/J) = lnf('ljJ) +lnp7f;(7/J) 

and L('ljJ) = -\1\1£(7/J). If there is more than one maxima of the integrand, the prob­

ability of failure can be obtained by summing the contributions from each maximum. 

A simpler formula than (5.23) can be obtained if the following two conditions 
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are satisfied 

1. One of the parameters, say On, is independently distributed from the others. 

In this situation, the probability density function for the parameters becomes 

Po(O) = P'l/J('l/J)Pa(a), where a= On. 

2. The failure surface g(O) = g('lj;, a) = 0 can be written as a = h('lj;), and the 

safe region is the region a > h('lj;). Note that the implicit function theorem 

guarantees that this can always be done locally provided that ~ f:. 0. 

Under these conditions, the probability of failure becomes 

Pf = { P'l/J ( '1/J) Pa (a) da d'lj; 
}g('l/J,a)>O 

~ L (L:) Pa(a) da) P>!(¢) d,P 

(5.24) km Pa(h('lj;))P'!jJ('l/J) d'lj; 

where Pa(·) is the cumulative distribution function for a. Laplace's method of 

asymptotic expansion can be applied to the integral (5.24). Letting '1/J* be the value 

of 'lj; which maximizes the integrand (assuming there is only one maximum), the 

asymptotic approximation is given by 

(5.25) 
p (27r)mf2 Pa(h('lj;*)) P'!jJ('l/J*) 
f"' vfdetL('lj;*) 

where L('lj;) = -\7\lf('l/;) and f('l/;) = lnPa(h('l/;)) + lnp'I/J('lj;). As usual, multiple 

maxima can be handled by summing the contributions from each maximum. 
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5.6 Example: Uncertain Single Degree-Of-Freedom Os­

cillator 

To illustrate the approximation in the original variables, consider the following single 

degree-of-freedom linear oscillator under stochastic excitation 

(5.26) 

where n(t) is zero-mean, stationary Gaussian white noise with E[n(t)n(t+T)] = 8(T). 

The parameters (, wn, and D are uncertain, and probability density functions will 

be specified for the parameters. 

The system performance will be judged based on two different criteria. In the 

first case, the system performance is taken to be acceptable if the mean square 

displacement of the response stays below some specified limit, a~ax· The mean 

square displacement for the oscillator (5.26) is 

and the unsafe region in the parameter space is given by 

{ 
a D 2 } F = (D, Wn, () E IR : g(D, Wn, () = 2(w~ - O"max > 0 · 

In the second case, the system performance is taken to be acceptable if the stationary 

outcrossing rate for the oscillator is below a specified limit, Vmax. For the oscillator 

(5.26), the outcrossing rate past the threshold x = b is given by 

and the unsafe region is 
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5.6.1 Probability of exceeding mean square limit 

First, consider the case where there only two uncertain parameters, Wn and (, so 

that the methods can be easily visualized. These parameters are assumed to be 

independently distributed and the probability density functions are chosen to be 

lognormal distributions. The mean and variance parameters for the probability 

density functions are chosen to be ffi( = ln0.05, mwn = ln27r, 0'( = 0.15, and O'wn = 

0.05. The probability density functions are shown in Figure 5.5. The parameter D 

is assumed to be known, with D = 2. 

50 
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Figure 5.5 Lognormal probability density functions for (and Wn· 

For computing the probability that the mean square displacement is below a 

specified limit, a~ax' the unsafe region is 

{ 
2 D 3 } :F = (wn,() E IR : g(wn,() = -

2 2 - (wn > 0 
O'max 

which is shown in Figure 5.6 for the case of a~ax = 0.15. The probability of fail­

ure is given by (5.20) with () = ((, wn) and p(O) = Pd()Pwn (wn)· Letting a = (, 

'ljJ = Wn and h ( 'ljJ) = D / ( 2a'?nax 'ljJ3 ), the unsafe region is given by a < h ( 'ljJ) and 
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Figure 5.6 Safe and unsafe regions for a; < 0.15 

the failure probability can be obtained from (5.25), where Pa(-) is the cumulative 

distribution function for (. The approximation can be easily obtained by solving a 

one-dimensional unconstrained minimization problem to find the value of Wn maxi­

mizing the integrand. 

Note that a different approximation can be obtained by applying (5.25) with 

a= Wn, '1/J = (and h('lj.;) = (D/(2'1j.;O"~ax)) 113 • In the examples considered, it was 

found that similar results were obtained by using either a = ( or a = Wn and results 

are presented only for the asymptotic expansion applied to the integral when a = (. 

Results are compared with those obtained by Breitung's method and the exact 

values in Table 5.12 for various values of O"~ax· Breitung's method requires solving a 

two-dimensional constrained minimization problem and then performing a number 

of algebraic computations. Since the variables (wn, () are independently, lognormally 

distributed, the transformation of variables to independent normal variables ( x1, x2) 
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Probability of failure 
,2 

C!max New method Breitung's formula Exact 
0.10 1.54 X 10 -l 2.72 X 10 ·l 1.55 X 10 -l 

0.15 1.11 x 10-3 1.97 x 10-3 1.11 x 10-3 

0.20 9.23 x 10-6 1.00 x w-5 9.24 x w-6 

0.25 4.79 X 10-S 5.07 X 10-S 4.79 X 10-S 

Table 5.12 Probability of mean square displacement exceeding cr~ax 
when Wn and ( are lognormally distributed. 

can be easily performed. The transformation is given by 

XI = _1_ln Wn 
C!wn 27r 
1 ( 

x2 -ln-
CF( .05 

where cr wn and cr ( are the variance parameters of the lognormal distributions Pwn ( Wn) 

and P(((). After a little algebra, the unsafe region can be written in terms of the 

new variables as 

Notice that in the transformed variables, the failure surface is a line; therefore, the 

exact answer can be determined to be 

A second case is also considered for which ( is lognormally distributed as before, 

but the probability density function for Wn is as shown in Figure 5. 7. In this case, the 

transformation of variables is not as easy as when Wn was lognormally distributed, 

and the FORM approach will not yield the exact answer. The failure surface in the 

transformed variables is computed numerically and is shown in Figure 5.8 for the 

case of cr~ax = 0.20. Results obtained by the various methods are shown in Ta-
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Figure 5. 7 Probability density function Pwn (wn) 

7.2 

ble 5.13, along with the exact answers obtained by numerical integration. For both 

of the probability density functions investigated, it is seen that the new approxima­

tion gives more accurate results than those obtained by Breitung's approximation, 

especially for relatively large failure probabilities. The FORM approach gives the 

exact result when Wn is lognormally distributed, but less accurate results than the 

proposed approximation when Wn is distributed as in Figure 5.7. 

Next, uncertainty in the excitation amplitude, D, is also considered. The param­

eter Dis taken to be lognormally distributed, with mv = ln2 and av = 0.1 and the 

probability density function is illustrated in Figure 5.9. Results will be presented 

only for the case when Wn and ( are lognormally distributed, as in Figure 5.5. The 

resulting estimates for the probability of exceeding various bounds on the mean 

square amplitude are shown in Table 5.14. As in the case when only Wn and ( 

were uncertain, the failure surface in the transformed variables is a plane, and the 

exact answer can be obtained. The new approximation again gives more accurate 

results than those obtained by Breitung's approximation, especially for relatively 
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Figure 5.8 Safe and unsafe regions in the transformed variables when 
Wn is distributed as in Figure 5. 7 

Probability of failure 

O"~ax New method Breitung's formula FORM Exact 
0.10 1.56 X 10 1 2.92 X 10 -1 1.41 X 10 -1 1.38 X 10 -1 

0.15 5.49 X 10-3 7.50 X 10-3 7.46 X 10-3 5.58 X 10-3 

0.20 3.87 X 10-7 4.56 X 10-7 6.38 X 10-7 4.08 X 10-7 

0.25 1.59 X 10-10 1.70 X 10-10 2.80 X 10-10 1.64 X 10-10 

Table 5.13 Probability of mean square displacement exceeding a;;.,ax 
when ( is lognormally distributed and Wn is distributed as in Fig­
ure 5.7. 



1.8 

1.6 

1.4 

1.2 

e.1 
c. 

0.8 

0.6 

0.4 

0.2 

136 

OL-~~~~~---L---L--~--~--~~~~ 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 

D 

Figure 5.9 Probability density function for D. 

large failure probabilities. 

5.6.2 Probability of exceeding outcrossing rate limits 

The first case considered is when only Wn and ( are uncertain and lognormally dis­

tributed, as shown in Figure 5.5. For computing the probability that the outcrossing 

Probability of failure 

O"~ax New method Breitung's formula Exact 
0.10 1.76 x w-1 3.10 x w-1 1.so x w- 1 

0.15 4.02 x w-3 4.62 x w-3 4.06 x w-3 

0.20 5.32 X 10-5 5.73 X 10-5 5.36 X 10-5 

0.25 6.94 X 10-7 7.31 X 10-7 6.99 X 10-7 

Table 5.14 Probability of mean square displacement exceeding a~ax 
when D, Wn, and (are lognormally distributed. 
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rate exceeds a specified limit, Vmax, the unsafe region is 

which is illustrated in Figure 5.10 for the case when the threshold b = 2 and Vmax = 
w-5. 
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Figure 5.10 Safe and unsafe regions for Vmax = w-5 . 

The probability of failure can again be approximated by (5.25) with a = (, 'ljJ = 

Wn, and h('lj;) = D/(b2'lj;3 ) ln(wn/(27rVmax)). Results are compared with Breitung's 

formula and the FORM approach in Tables 5.15 and 5.16. It is again seen that 

the new approximation gives more accurate results than Breitung's approximation. 

In applying the FORM approach for this example with both variables lognormally 

distributed, the failure surface is not a line, but can be very well approximated by a 

line in the vicinity of the design point, as illustrated in Figure 5.11. For this reason, 

the FORM approach gives very accurate estimates, as seen in Table 5.15. However, 

the FORM results are not as accurate when Wn is distributed as in Figure 5.7, as 

illustrated by the results in Table 5.16. 
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Figure 5.11 Safe and unsafe regions in the transformed variables for 
Vmax = 10-5 

Probability of failure 
Vmax New method Breitung's formula FORM Exact 
10 -S 7.81 X 10 -2 1.15 X 10 -l 7.85 X 10 -2 7.85 X 10 -:.: 
w-7 2.oo x w-2 2.53 x w-2 2.oo x w-2 2.oo x w-2 
w-6 2.61 x w-3 3.04 x w-3 2.62 x w-3 2.61 x w-3 
w-s 1.20 x w-4 1.33 x w-4 1.21 x w-4 1.20 x w-4 
w-4 9.85 x w-7 1.06 x w-6 9.86 x w-7 9.86 x w-7 

Table 5.15 Probability of outcrossing rate exceeding specified limit Vmax 

when ( and Wn are lognormally distributed. 
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Probability of failure 

I/ max New method Breitung's formula FORM Exact 
10-~ 6.90 X 10 -~ 1.25 X 10 -1 7.37 x 10-~ 6.37 x 10-~ 
10-7 1.31 x 10-2 2.11 x 10-2 1.45 x 10-2 1.21 x 10-2 

10-6 1.00 x 10-3 1.39 x 10-3 1.21 x 10-3 1.01 x 10-3 

10-5 1.66 x 10-5 2.01 x 10-4 2.30 x 10-5 1.73 x 10-5 
10-4 1.99 x 10-8 2.28 x 10-8 3.39 x 10-8 2.10 x 10-8 

Table 5.16 Probability of outcrossing rate exceeding specified limit Vmax 

when ( is lognormally distributed and Wn is distributed as in Fig­
ure 5.7. 

Probability of failure 

I/ max New method Breitung's formula FORM Exact 
10 -~ 9.90 X 10 -~ 1.46 X 10 -1 1.01 X 10 -1 1.01 X 10 .1 

10-7 3.14 x 10-2 3.99 x 10-2 3.19 x 10-2 3.19 x 10-2 

10-6 5.80 x 10-3 6.75 x 10-3 5.86 x 10_3 5.86 x 10-3 

10-5 4.59 x 10-4 5.06 x 10-4 4.63 x 10-4 4.63 x 10-4 
10-4 8.96 x 10-6 9.53 x 10-6 9.03 x 10-6 9.03 x 10-6 

Table 5.17 Probability of outcrossing rate exceeding Vmax when D, Wn, 

and ( are lognormally distributed. 

Next, uncertainty in D is also considered and the probability function for D is 

shown in Figure 5.9. Results obtained by the various methods are compared with 

the exact answer obtained by numerical integration in Table 5.17. Again, the failure 

surface in the transformed variables is very nearly a line, and the FORM approach 

gives very accurate estimates. The new asymptotic approximation again gives very 

good results, even for large failure probabilities. 
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Chapter 6 

Conclusions 

Several methods have been presented for analyzing uncertain dynamical systems. 

Computationally efficient methods have been developed for analyzing nonlinear dy­

namical systems under stochastic excitation and for evaluating the multi-dimensional 

integrals which arise when studying systems with modeling uncertainties. All of the 

methods give approximate solutions and examples have been presented illustrating 

the accuracy of the approximations. 

In chapter 4, three new methods were developed for estimating the stationary 

probability density function and statistical quantities of interest for the response 

of nonlinear dynamical systems under uncertain excitation. The methods are all 

based on obtaining approximate solutions to the Fokker-Planck equation for the 

system and differ from traditional methods, which are based on finding approximate 

solutions to the stochastic differential equations for the system. 

In the first method presented, probabilistic linearization, the Gaussian probabil­

ity density function which best solves the Fokker-Planck equation for the nonlinear 

system of interest is found and taken as an approximation for the probability density 

function for the nonlinear system. For systems with polynomial-type nonlinearities, 

the method can be very efficiently applied. Additionally, it was shown that by using 

simple weighting functions, good approximations could be obtained for both the 

moments and outcrossing rates of nonlinear systems. 

The second method presented, probabilistic nonlinearization, finds a nonlinear 
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system having a known solution to its Fokker-Planck equation whose probability 

density function provides the best fit to the Fokker-Planck equation for the nonlin­

ear system of interest. The probability density function for the approximate non­

linear system is non-Gaussian. Since the probability density function for nonlinear 

systems is known to be non-Gaussian, the hope is that the non-Gaussian approxi­

mation will provide a better fit to the tails of the distribution than that obtained 

by Gaussian approximations. For the example considered, the probabilistic nonlin­

earization method was able to provide good approximations to mean square values 

for the response as well as obtaining a better fit to the Fokker-Planck equation than 

what could be obtained by Gaussian probability density functions. However, the 

approximation did not do a good job in approximating the tails of the probability 

density function or the stationary outcrossing rate, as illustrated in Figures 4.31 

and 4.33. 

In order to improve the estimates of the tails of the probability density function 

and the outcrossing rates, a third approximation method was developed. In this 

method, the probability density function was directly approximated, without trying 

to find an "equivalent system." The approximate probability density functions are 

non-Gaussian, can be easily and efficiently determined, and yield the exact answer 

for nonlinear systems that have known solutions to the Fokker-Planck equation. 

For the examples considered, this method gave accurate results for mean square 

values and outcrossing rates, as well as providing the best fit to the Fokker-Planck 

equation. 

In chapter 5, approximate methods were developed for analyzing systems with 

modeling uncertainty. The uncertainty is modeled probabilistically and a simple 

asymptotic approximation is used to approximate the multi-dimensional integrals 

which arise. The accuracy of the asymptotic expansion was illustrated with several 

examples. 

In section 5.2, the asymptotic method is applied to determine the second mo­

ments and outcrossing rates of uncertain nonlinear systems under uncertain ex­

citation. Two examples are given which illustrate the accuracy of the proposed 
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approximation. It is also observed that the modeling uncertainties have little effect 

on the mean square values, but a very significant effect on the outcrossing rates, 

and hence the probability of failure. 

The asymptotic approximation is applied to classical reliability integrals in sec­

tions 5.4.3 and 5.5. One approach to approximating classical reliability integrals, 

the SORM approach, is to first transform the variables to independent standard 

normal variables, then approximate the failure surface in the transformed variables 

by a paraboloid, and finally approximate the resulting integral in the transformed 

variables. In section 5.4.3, the asymptotic approximation is shown to yield a simple 

and accurate formula for approximating the integral in the transformed variables. 

The main disadvantage with the SORM approach is that the variables need 

to be transformed to standard normal variables. While this can always be done 

in principle, in many cases the transformation can only be done numerically, in 

which case a substantial computational effort may be required. Additionally, by 

transforming the variables, the sensitivity of the results to the original variables is 

not often clear. In order to avoid these difficulties, the asymptotic approximation 

was applied in the original variables in section 5.5. The approximation developed is 

considerably simpler than an existing approximation, and an example is presented 

for which the accuracy of the new approximation compares favorably to that of the 

existing approximation. 

6.1 Future Work 

Another area of future research is to try to develop efficient methods for approx­

imating the stationary probability density function for nonlinear multi-degree-of­

freedom systems under additive stochastic excitation. In order to do this, a method 

for determining a good set of approximate probability density functions for multi­

degree-of-freedom systems needs to be developed. In addition, computing the norm 

of the Fokker-Planck equation error can become computationally expensive for non­

linear multi-degree-of-freedom systems, making it difficult to determine the optimal 
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parameters for the approximate probability density functions. Since computing the 

norm of the Fokker-Planck equation error requires evaluating a probability inte­

gral similar to those studied in chapter 5, the asymptotic approximations developed 

could be used to efficiently evaluate the norm and thus enable the optimal param­

eters to be found. A further area of research is finding approximate probability 

density functions for systems under parametric excitation. 

Future work is also required to investigate the accuracy of the asymptotic ap­

proximations for integrals in many dimensions. The approximations showed good 

accuracy for all of the examples studied in this work, but the largest problem con­

sidered involved only a five-dimensional integral. Further testing needs to be done 

to examine how the accuracy of the approximations changes with the dimension of 

the integral to be approximated. 
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Appendix A 

Another Choice for the Function Q(x1) 

This appendix contains an alternative choice for the function Q(xi) used in the 

direct probability density function approximation method discussed in section 4.4. 

The goal is to select Q(xi) so that the approximate method presented in section 4.4 

is capable of producing the the exact answer for systems for which an exact answer 

is known. 

It was shown that choosing 

gives the exact answer if the system is linearly damped. However, this approach 

will not give the exact answer for other cases for which solutions are known. Here, a 

different choice of Q(x1) is made which will give the exact solution to a more general 

set of nonlinear systems with known solutions of the form 

(A.l) 

where 

Note that (A.l) includes the linearly damped case by selecting j(H) = constant. 
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For the general second-order nonlinear oscillator of the form 

(A.2) 

the approximate probability density functions can be chosen as 

where 

(A.4) 

(A.5) 

The following lemma proves that if the approximate probability density functions 

are chosen as above and the system is of the solvable type (A.l), then the method 

will yield the exact solution for the stationary Fokker-Planck equation. 

Lemma A.l If the nonlinear system (A.2} is of the form (A.l}, i.e. 

then the probability density function given by (A.3), (A.4) and (A.5) gives the exact 

solution to the stationary Fokker-Planck equation when () = 1. 

Proof: 

It will be shown that p(x1, x2 1()) satisfies the stationary Fokker-Planck equation 

corresponding to the nonlinear system (A.l). First, recall from section 4.4 that 

(A.6) 
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Evaluating the derivatives of p(x1, x2IO) gives 

1 
= =-Dj(x1, x2)p(x1, x2IO) 

(A.7) - ](H(xl, x2)) x2 p(x1, x2IO) 

and 

and 

so that 

(A.8) 
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Combining (A.6), (A.7), and (A.8), and setting()= 1 gives 

i.e., p(x1, x2IO = 1) satisfies the stationary Fokker-Planck equation. • 
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Appendix B 

Some Technical Results 

B.l Proof of Lemma 5.1 

The integrand is given by 

and a necessary condition for a maximum of h(y) is that 

{B.l) 

for all i = 1, ... , m. One solution is clearly y = 0. Assuming that ai -I aj for all 

i -I j and noting that h(y) > 0 for ally E IRn, any other solution of {B.l) must be 

of the form 

f) = {0, ... , ±:iJr, ... , 0) 

where Yr is such that 

{B.2) 
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Note that this clearly requires ar < 0. In the statement of Lemma 5.1, it was given 

that 

(B.3) 
¢( -{3) 

ar<P(-,8) >-1forallr=1, ... ,m 

and for {3 ~ 0 it can be shown that V z > 0 

¢( -{3 + z) ¢( -{3) 
<P( -,8 + z) < <P( -,8)" 

Combining the above expression with (B.3) and setting z = -!ariJ; gives 

for all Yr E IR. Therefore, there can be no solutions to (B.2), and the only stationary 

point is y = 0. In the proof of Lemma 5.2, it is verified that y = 0 is actually a 

maximum. 

In the case where ai · = aj for some i -=f. j, additional solutions to (B.1) could 

exist in the form 

y= (0, ... ,O,yi,Yj,O, ... ,0) 

where y[ + YJ = "(2 and 

It was shown above that there can be no solutions to the above equation, since 

ai :~ =~~ > -1, and hence y = 0 is the only stationary point in this case as well. 
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B.2 Proof of Lemma 5.2 

The function £(y) is given by 

l(y) In <1\ ( -/3- ~ ~ aw~) + ln¢(y) 

( 
1 ~ 2 ) 1 2 m lncl> -/3-2 L.-takYk - 2IIYII - 2ln27r. 

k=l 

Straightforward computations yield 

which, when evaluated at y = 0, simplifies to 

(B.4) 

Thus, \7\7 £(y*) is a diagonal matrix and each of the diagonal elements is negative, 

i.e., V'V'£(y*) is negative definite. Therefore, y* = 0 is a maximum of the integrand, 

and the determinant of L(y*) = - \7\7£(y*) can be determined by inspection of (B.4) 

to be 

* rrm ( ¢(-/3)) 
det L(y ) = i=l 1 + ai cl>( -{3) · 

B.3 Proof of Case 2 of Theorem 5.1 

In this case, y = 0 is still a stationary point of the integrand, and there are additional 

stationary points at y = (0, 0, ±/k, 0, ... , 0) for all k such that ak :t ::::~~ < -1, where 

/k is the unique positive solution of 

(B.5) ak ¢( -{3- ak!V2) = -cl>( -{3- ak!V2). 
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It is easily verified that y* = (±'n, 0, ... , 0) are the only stationary points which are 

maxima. Evaluating the determinant of the Hessian matrix, L(y*) = -\7\7f(y*), 

gives (5.16) and the asymptotic expansion is given by 

(B.6) 
<P ( -!3- ~ant) exp ( -~ l't) 

Pp rv 2 , 
Jdet L(y*) 

where the factor of 2 arises from summing the contributions from each maximum. 

However, in many cases, the contributions from each maximum overlap as shown in 

Figure B.1 and summing the contributions from each results in overestimating the 

probability of failure. For the one dimensional case illustrated in Figure B.l, it can 

be seen that this problem can be accounted for by only integrating the contribution 

from the peak near Y1 = +1'1 from Y1 = 0 to Y1 = oo and integrating the contribution 

near the peak Y1 = /'1 from Y1 = -oo to Yl = 0. To see how this is done in the one 

dimensional case, let 

and /'1 be the solution to (B.5) and 

(B.7) 

Letting Y.+ = (1'1, 0, ... , 0) and y~ 

integral can then be written as 

( -/'1, 0, ... , 0), the approximation to the 

(£( *))100 _hJJ(YJ-'YJ)2 d (0( *))/_0 _hJJ(YJ+'YJ)2 d Pt ~ exp Y+ e 2 Y1 + exp {_ y_ e 2 Y1 
0 -()() 

2 <P( -!3- a1,;exp( -l'i) ( 1- <P ( -1'1 ~)) 

which is just (B.6) multiplied by the additional term (1- <P ( -1'1 Jhil)). 

Since the Hessian matrix is diagonal, the same approach illustrated for the one 

dimensional case can easily be extended to the m-dimensional case. The variables 

(y2, ... Ym) are still integrated from -oo to oo, and the Y1 variable is treated as 
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2~--~----~----~----~----~----~ 
-3 -2 -1 0 

y1 

Figure B. I Integrand for the probability of failure integral when (3 = 2 
and a1 = -0.48. 

above. Evaluating the integral gives 

Pp "" 2 ci> ( -{3- ~anf) exp ( -~ 1D ( ( ~)) 
(B.8) Jdet L(y*) 1- ci> -')'1 Y hu 

where det L(y*) is given by (5.16) and hu by (B.7). 

B.4 Proof of Case 3 of Theorem 5.1 

In this case, there is a surface of maxima of the integrand given by 

where 'Y is such that 
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Since the Hessian matrix is singular at all of these points, the previous approach 

will fail. However, a change of coordinates can be made to avoid this difficulty. Let 

r 2 = y{ + ... y~ and notice that the terms in the integrand become 

F(r, y) 

J>(r,y) 

The failure integral becomes 

(B.9) 1 100 
- - k 1 Pf = Ak-1 F(r, y)<!J(r, y) r - dr dyk+l · · · dyn 

[Rn-k 0 

where Ak is the surface area of the unit sphere ink-dimensions, given by (Flanders 

1963) 

21rk/2 

Ak-1 = r(k/2). 

The integrand in (B.9) has a unique maximum at (r*,y*) = (1,0), where 'Y is the 

unique positive solution of 

and the asymptotic method can be applied as before. The Hessian matrix is evalu­

ated to give 

detL(y*) = ~ (2(k -1) + (k -1-"(2)(k -1-"(2h)) IT (1- ai). 
'Y i=k+1 a1 

Combining the results gives 

(B.10) 
P 2(3-k)/2'Yk-1V'ff ip( -/3 _ ~an2) exp ( -~"!2) 

F f'J r(k/2) y'det L(y*) · 
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