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Abstract: 

The olfactory bulb of mammals aids in the discrimination of odors. A mathematical 

model based on the bulbar anatomy and electrophysiology is described. Simulations of the 

highly non-linear model produce a 35-60 Hz modulated activity, which is coherent across 

the bulb. The decision states (for the odor information ) in this system can be thought 

of as stable cycles, rather than as point stable states typical of simpler neuro-computing 

models. Analysis shows that a group of coupled non-linear oscillators are responsible for 

the oscillatory activities. The output oscillation pattern of the bulb is determined by the 

odor input. The model provides a framework in which to understand the transformation 

between odor input and bulbar output to the olfactory cortex. This model can also be 

extended to other brain a reas such as the hippocampus, thalamus, and neocortex, which 

show oscillatory neural activities. There is significant correspondence between the model 

behavior and observed electrophysiology. 

It has also been suggested that the olfactory bulb, the first processing center after the 

sensory cells in the olfactory pathway, plays a role in olfactory adaptation, odor sensitivity 

enhancement by motivation, and other olfactory psychophysical phenomena. The input 

from the higher olfactory centers to the inhibitory cells in the bulb are shown to be able 

to modulate the response , and thus the sensitivity, of the bulb to odor input. It follows 

that the bulb can decrease its sensitivity to a pre-existing and detected odor (adaptation) 

while remaining sensitive to new odors, or can increase its sensitivity to discover interesting 

new odors. Other olfactory psychophysical phenomena such as cross-adaptation are also 

discussed. 
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1. Introduction 

1.1 Motivations of the Study 

1.1.1 Complex systems 

1 

It is already known how bodies or point particles interact with each other, using 

the basic laws of most interactions that are relevant: electromagnetic, weak, strong, and 

gravitational interactions. Physicists can continue their efforts and study the details of 

interactions to find out how everything is made and of which elementary particles and 

what governs the evolution of the universe. In principle, almost everything in the world 

we live in, such as the chemical reactions , and blood flows in the body can be explained. 

But it is only in principle in most of the cases. Although the detailed equations of 

motion are usually available, they can rarely be carried out to the extent that phenomena 

such as turbulence in fluid flow, and consciousness of living bodies can be explained. The 

difficulties are that, for example, the equations are non-linear such that no analytical 

solution can be found, or the number of degrees of freedom is too large to handle. Special 

systems (e.g., systems near equilibrium, without dissipation, and with some symmetries) 

have usually been selected to avoid these difficulties. But systems not in equilibrium and/or 

with dissipation display some interesting behaviors and intriguing complexities. A living 

biological body is a good example of such complex systems, which open new opportunities 

to understand how the interplay of basic physics laws produce complex, interesting, and 

useful phenomena. 

An equilibrium system, whose future is is equal to its present, cannot tell us any new 

information other than that of its present. A non-equilibrium system has a time direction; 

its present tells possible past states and predicts possible future states . The dynamics 

and the changes of the system in certain directions can be used in many fruitful ways. A 

waterfall can produce energy; different shapes of snowflakes can imply different paths that 

the snowflakes went through in the sky, etc. 

The nervous system is one of those biological systems displaying interesting complex 

behaviors. Different parts of the nervous system, each make of many cells called neurons, 

interacting in various ways, give different possible dynamics. These allow the system to 
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perform different tasks, such as seeing, motion coordination, and language performance. 

Biological information processing is complex, and it is not surprising that a nervous system 

with complex dynamics is used for it . 

1.1.2 Olfactory system as a complex system 

The sensory system is a good candidate for the study of the functions of the brain 

because its input is easily accessible and its information processing goal, pattern recog­

nition, is not as vague as that of higher perceptual areas in the brain. Vision, audition, 

olfaction, and somatic sensation (touch), the four senses of human beings, can be assumed 

independent by crude approximations. Other than the possibility of the somatosense, 

olfaction may be the simplest and the most fundamental of all the senses because of the 

(presumed) simplicity of its signal-processing task, its cortical structure, and its primordial 

status phylogenetically. 

In its simplest tasks, the olfactory system need only identify the odor type and con­

centration. The possible odor types and, because of the low resolution of the olfactory 

system, the possible answers to input odor concentration are both limited. In the visual 

system, the problems need to be solved are: 1) what, which object, or who, is in which 

part of the visual scene and 2) how it is changing with time . The mamallian auditory 

system needs to locate the informative sound source from the background and to recognize 

the sound content. The possible numbers of visual and auditory scenes are huge because 

of the higher information content, making vision and audition difficult problems to solve. 

For mammals, the olfactory input is sampled by slow and discontinuous sniffs, whereas 

the visual and auditory inputs change rapidly and continuously, and make adding to the 

heavy processing load. Evolutionarily, the olfaction is phylogenetically primitive (Shepherd 

1979). The olfactory cortex was first differentiated and become recognizable in the brains 

of primitive aquatic species. It is often stated that the olfactory cortex is the precursor 

from which the other types have been differentiated. It is also the principal cortical region 

of most lower vertebrate species, the simplest of the cortical regions in terms of its intrinsic 

structure. Other parts of the brain such as hippocampus, thalamus, and neocortex have 

similar or modified neural circuitry organizations related t o that of the olfactory system 
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(Shepherd 1979). They also generate rhythmic activities just as the olfactory system does. 

Olfaction may therefore give insights into the functions of other brain areas. 

The olfactory system is composed of several different structures in the information 

pathway. Most of the present thesis is devoted to studying the information processing 

of the structure termed the olfactory bulb. It is the first processing center immediately 

following the olfactory sensory cells. Receptors in the sensory cells bind to the odor 

molecules in the respiratory airway, resulting in electrical signals which are sent to the 

olfactory bulb (Fig. [2 .1]). The bulb then sends the processed information to the higher 

olfactory centers, which also return feedback to the bulb. It makes sense to study the 

olfactory bulb in isolation first (before going on to the higher olfactory centers), and, then 

to study the consequences to the bulb of the feedback inputs. The function of this feedback 

input is largely unknown. One major accomplishment of this thesis research is to describe 

in detail the operation of a plausible computational function of these inputs . 

1.2 Neural Networks and Formulations 

The nervous system is composed chiefly of a special kind of cell called neurons (Fig 

[1.1], Kandel and Schwarz 1985). The morphological and functional diversity of a neuron 

is very large. A "typical" neuron has a cell body on a length scale of"' 10 p,m, branches of 

arbor called dendrites (input fibers), and axons (output fibers) stretching out to a distance 

"' 10 p,m to 1 m. A small electrode inserted into the cell body can measure the potential 

difference across the cell membrane, which changes with time. Such a potential difference 

signal will typically consist of spikes of"' 100 m v with width "' 1 ms superimposed on a 

,...__ -90 mv baseline. These spikes are called action potentials and are propagated without 

attenuation down the cell branches, termed axons, by an active regenerative process. The 

axon terminal is normally "' 200 A away from a dendritic branch (or the cell body) of 

another neuron. When the action potential arrives at the terminal, a chemical transmitter 

is released into the gap between the axon and the dendrite, and this opens certain ion 



4 

A 
mv 60L!L 
0 2 4 rnsec 

Dendrites 

\ v / 

Axons and branches 

B 

Neuron 

Input '~ Output 

u > 0 ') g(u) 

Figure 1.1, A: a typical neuron with its cell body (soma), input receiving dendrites, 

o·utput axons and the illustrative recording setup. B: a neuron seen as a device. 
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channels in the dendrite and causes a current flow across the dendritic membrane. The 

junction where axons and dendrites meet is called a synapse. Thus the action potentials 

passing down the axons of the presynaptic cell, cause a current flow across the postsy­

naptic cell membrane. According to the direction of this current flow, hyperpolarization 

or depolarization happens at the post-synaptic membrane and is passed to the cell body. 

The cell membrane time constant for integrating the (leaky) current is ,...., 10 ms. When 

enough depolarization exists at the cell body, an action potential is generated. Each neu­

ron can typically only either depolarize or hyperpolarize the post-synaptic cells, and is 

termed accordingly as an excitatory or inhibitory cell. Neurons interact with each other 

through the synapses. Neurons called receptors receive external inputs from photons (the 

eyes), odor molecules inhaled (olfactory sensory cells) or heat sources (thermoreceptors in 

the skin). Others give outputs to other tissues, such as a muscle fiber, which contracts 

because of the "firings" of the action potentials in a particular neuron that synapses on it. 

Since the nervous system has as many as ,...., 1011 neurons (for humans, for instance), even 

if each neuron only connects to about 100 other neurons, there are numerous dynamical 

patterns made possible myriad of possible neural interactions. Through these dynamics, a 

light pattern on the retina receptors can cause the activities of another neuron group deep 

in the brain to signal the recognition of a visual object; a particular activation of olfactory 

receptors in the nasal airway can induce another neural group to signal the presence of a 

predator, etc . The network dynamics transforms selected inputs into sensible outputs. 

The neural network computation has the following special properties (Hopfield 1984): 

1) resistance to failures of a small number of neurons or synapses; 

2) insensitivity to the input noise and tolerance to input errors, e.g., the noise in a 

visual input image or a grammatical error in a sentence; 

3) fast computations (compared with normal computers), using dynamics in both time 

and space (of the neurons) efficiently; 

4) emergence of collective phenomena from the collection of" simple-minded" neurons 

irrespective of (some of) their detailed properties (H opfield 1984). 
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To study the network dynamics and functions, a model should discard the trivial or 

irrelevant details and preserve only enough necessary features of the network to keep the 

significant functional dynamics and emergent properties. In many of the neural network 

models as well as in this thesis, the following simplifications are used (Hopfield (1984)). 

1) Since most neurons fire only provided that many action potentials arrive within 

a short time ( rv 1 - 10ms) onto its dendrites, and the neural time constant ( rv 10ms 

integrating the membrane current to change membrane voltage) is substantially longer 

than the action potential width, any single action potential and its precise timing are 

insignificant in these cases. Therefore, a neural output is described by the instantaneous 

firing rate of the action potentials (short-time average of the number ofthe action potentials 

per unit time) instead of the precise time series of action potentials. 

2) Each neuron is considered a stationary device (Fig [1.1]) transforming the input 

voltage u (cell membrane potential state) into an output V = g(u) proportional to the 

action potential firing rate . g(u) is a sigmoid (Fig. [2.4]), non-decreasing function satisfying 

g(-oo) = 0, g'(u) ~ 0, and g'(±oo) = 0. 

3) The input current from cell (neuron) j to cell i is seen as proportional to the output 

Vj of cell j; a transconductance Tii describes the synaptic connection strength from j to 

i. The input to cell i is I: i Tii Vi+ Ii; Ii represents the external input either from neurons 

not being considered or from the sensory input such as the current induced by the binding 

of odor molecules to the receptors. 

4) Representing the transmembrane resistance and capacitance of cell i by constants 

Ri and Ci, the equations of motion for a group of neurons are: 

c i ui = L Tii vi - ui I Ri + Ii 
i 

Ui = L Tii vi - ui I Ti + Ii 
i 

( 1.1) 

Here the sub-in dices represent the cells referred to by the variables. This equation 

will be used in the thesis. 
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2.1 Olfactory Environment 
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The olfactory system includes the odor-sensing olfactory receptors within the nasal 

cavity, the olfactory bulb (the output station of the receptors), and the olfactory cortex 

(receiving inputs from the olfactory bulb, Shepherd 1979, Figure [2.1]). The olfactory 

system samples the sensory inputs by sniffs. The receptor activities increase during in­

halation and decrease during exhalation (Getchell and Shepherd 1978). In the olfactory 

bulb and cortex, oscillatory neural activities (depending on the odor input) emerge during 

inhalation and cease during exhalation (Freeman 1978) . 

The sensory input of the olfactory system is the odorant molecules which bind to 

the olfactory receptors that lie deep within the nasal cavity (Lancet 1986). The receptor 

bodies and their short odor-sensing, peripheral processes are confined in a patch called 

olfactory epithelium, which is 100- 200J,tm thick and several square centimeters (man and 

frog) to more than 100cm 2 (dogs) in area. Each receptor has an unmyelinated axon fiber 

running from the nasal cavity to the olfactory bulb (Fig[2.2]; myelination is the wrapping of 

glial cell membranes around an axon to increase the potential signal propagation velocity). 

Bathed in a layer (10- 30J.tm thick) of mucus, through which the odorant molecules diffuse, 

the olfactory receptive apparatus (termed olfactory cilia) reside at the extented tips of the 

receptor dendrites, and extend to the surface of the mucosa (Lancet 1986, Getchell et. al. 

1984). Each receptor is spontaneously active, and increases its action potential firing rate 

upon the arrival of odorants (Section 2.3). Different receptors respond differently, and 

each can respond to more than one type of odorant. The response spectrum of different 

receptors can also overlap. There can also be more than one type of odorant molecules 

in the inhaled air, and they cause a response level pattern in the receptor cell population. 

All odorants are soluble in water, and their equilibrium water/air partition coefficient is 

"' 0-103 • Different diffusion constants through them ucus layer result in different temporal 

response patterns in the receptor-cell population for different odorants (Getchell et. al. 

1984). 



8 

Odor 
Molecules 

-lt 

Olfactory 
Receptors 

-lt Other 

Olfactory 
~ 

Olfactory 

Bulb and 
-lt 1' Brain 

Olfactory ~ 
Cortex ~ Structures 

·. 

Fig. 2.1 Olfactory systems and its enviroment. 



A 

B 

Receptor~-~,_. 

cell 

Basal cell 

I 
Receptor cell axons 

I 
To olfactory bulb 

c 

OLFACTORY I 
MUCOSA 

OLFACTORY I 
NERVES 

GLOMERULI I 
EXTERNAL 
PLEXIFORM 

LAYER 
(EPL) 

MITRAL BODY 
LAYER 

GRANULE 
LAYER 

9 

Olfactory receptor cell 

RECEPTORS 

to LOT-

Neuronal elements of the mammalian 
olfactory bulb. Inputs: olfactory nerves (above) 
from the receptors; central fibers (C,AON and . 
AC) from the higher centers. Neurons: mitral cell 
(M), with primary (1 °) and secondary dendrites 
(2°) and recwTent axon collaterals (rc); tufted cell 
(T), a smaller version of mitral cells; granule cell 
(Gr); inhibitory cell (PG) in the input layer, deep 
short axon cells (SA) which are small in number. 
Outputs: LOT to olfactory cortex. Taken from 
Shephard 1979. 

Fig. 2.2 A: olfactory epithelium and bulb. B: olfactory epithelium containing recep­
tors. C: olfactory bulb. From Kandel & Schwartz 1985. 
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The receptor cells output directly to the olfactory bulb, the first processing center 

of the olfactory system (Shepherd 1979). It is composed chiefly of two layers of locally 

interacting mitral and granule cells (see later sections for details). Within the bulb, the 

olfactory receptor axons synapses with various types of cells, part icularly the bulbar output 

cell- the large mitral cells and the smaller tufted cells. The bulb also receives inputs from 

the olfactory cortex and a region at the base of the brain called the diagonal band. Being 

the first relay station, the bulb has its input and output pathways more or less separated, 

making its operation relatively easily understood. 

The olfactory cortex, whose main part is the prepyriform cortex (Shepherd 1979), 

receives bulbar output and interacts with other olfactory structure and parts of the central 

brain . The bulb and cortex have similar, but different, cortical organizations (Shepherd 

1979; Haberly 1985), and both demonstrate 35-90H z rhythmic neural activities (Freeman 

1978). Olfactory information is ultimately relayed to the thalamus and the neocortex (Fig 

[2.1]). 

2.2 The Circuitry Organization and Properties of the Olfactory Bulb 

The olfactory bulb has several sharply differentiated types of neurons located on dif­

ferent parallel layers. Folded around a fluid-filled cavity called the ventricle, the surface 

of each layer can be treated as a segment of an ellipsoid, or, in the case of the bulb in the 

rabbit, as as incomplete sphere (Freeman 1975). Most of the bulbar information is from 

Shepherd (1979). 

Glomerular layer: The receptor nerve axons from the mucosa enter at the bulb surfa ce 

and terminate in a layer composed of spherical regions of neuropil termed glomeruli. (See 

Figure [2.2]). Each receptor axon does not branch on its way to (only) one of the glomeruli, 

but once inside it ramifies, to var ying extents, and terminates. Each glomerulus is about 

100- 200JLm in diameter, and within it, the receptor axon terminals contact the dendritic 

tufts of the bulbar output neurons, the mitral cells. The periglomerular cells, of inhibitory 

cell type, also r eceive input from the receptor terminals in the glomerular layer. These 
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periglomerular cells have their dendrites and axons radiating in a direction parallel to 

the glomerular layer. Each periglomerular cell has a short, bushy dendritic tree that 

arborizes to an extent of 50 - lOOJ.Lm within one of the glomeruli, and its axons reach to 

other glomeruli in the neighborhood. They receive excitation from the neighboring mitral 

cells by dendrodendritic interactions. (When one neuron gives output from its dendrites 

to another neuron's dendrite s, it is termed dendrodendritic interaction.) They also give 

inhibitions to neighboring mitral and periglomerular cells (within a distance "'500J,Lm) by 

both axon-dendritic and dendrodendritic interactions. 

Mitral cells: The mitral cell bodies are in a thin sheet about 400J.Lm below the glomeru­

lar layer. Each mitral cell sends an unbranched primary dendrite to a single glomerulus, 

to terminate there in a tuft of branches, which fills much of the glomerulus it lies within. 

Each mitral cell also gives rise to several secondary dendrites, which branch sparingly and 

terminate in the external plexiform layer (EPL) above the mitral cell layer. These sec­

ondary dendrites are up to 600J.Lm or so in length, and can reach into the space of other 

mitral cells that receive input from several neighboring glomeruli. Within the EPL, the 

mitral secondary dendrites make (mostly reciprocal) dendrodendritic connections with the 

dendrites of the numerous small inhibitory cells, termed granule cells. The mit ral cell 

axons carry the bulbar output to the olfactory cortex, and some axon collaterals (axon 

branches) synapse on the lower dendrites of the granule cells. 

Granule cells: The granule cell bodies lie in a thick layer below the mitral cell bodies. 

Each granule cell has an upper dendritic tree that ramifies and terminates in the EPL. 

This dendritic tree has a lateral extent of 300-500 urn within the EPL. Thus each of them 

can also reach into the space of the mitral cells that receive input from sev eral neighboring 

glomeruli. A granule cell also has another dendritic tree, which terminates deeper in 

the granule layer to receive excitator y input from the mitral cell axon collaterals. The 

outstanding feature of the granule cells is that they lack morphological axons; the only 

output is given by their upper dendritic tree in the EPL through the dendrodendritic 

interaction on the mitral cell secondary d endrites. Over 80% of the dendrodendritic 
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the central inputs. The olfactory tract carries the bulbar output. From Shepherd 1979. 
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interactions in the EPL are reciprocal between the mitral and granule cells. 

Other cell types: There are also other cell types in the bulb. Tufted cells, for instance, 

are just a smaller version of the mitral cells. Short axon cells, found frequently in the 

granule cell layer, are relatively few in number when compared with granule cells, and 

have no known specific function for bulbar activity. 

Central input: Most central input from other parts of the olfactory system and the 

brain regions are carried to the granule cell dendrites. One kind of central input fibers 

that is relatively sparse comes the farthest distance, from a region at the base of the brain 

called the diagonal band. Other axons, finer and much more numerous, come from a region 

just posterior to the bulb, the anterior olfactory nucleus. Some input from the diagonal 

band also synapse on the primary dendrites of the mitral cells. 

Output pathway: The output of the bulb is carried by the mitral cell axons, which 

branch and terminate to the olfactory cortex. The basic neural circuit is now shown in 

Figure [2.3]. 

Cell numbers: There are about 50,000,000 receptor cells in the nose. The number of 

mitral cells is about 50,000, so there is an order of 1000 : 1 convergence from receptor to 

mitral cells. About 2000 glomeruli are in the olfactory bulb, so there are about 25,000 

receptor axons and 25 mitral cells per glomerulus. Approximate estimates of other cell 

type ratios are: 20 : 1 for the periglomerular cells : mitral cells, 200 : 1 for the granule 

cells : mitral cells. 

Cell properties: The output of a cell increases non-linearly with the input, with both 

threshold phenomena and saturation. Plots of the local mitral cell firing rates with respect 

to the bulbar surface EEG wave amplitude (generated mostly by the granule cells, Free­

man and Skarda 1985) show a sigmoid-shaped function (Fig [2.4]). Both the mitral and 

periglomerular cells give axonal action potential output, while the granule cell output is 

by graded presynaptic depolarization (instead of action potential impulses) at 
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from the granule cells. Taken from Freeman and Skarda 1985. B: the model functions for 

mitral and granule cells, respectively. 
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granule- to-mitral dendrodendritic synapses. The dendrodendritic interaction between the 

periglomerular and mitral cells is also by graded presynaptic depolarization. But the 

mitral-to-granule dendrodendritic output at the EPL is by the presynaptic impulses. The 

mitral and granule cells' membrane time constants are "'5- lOms (Freeman and Skarda 

1985, Shepherd 1988). Very little is known about the synaptic strength from one cell to 

another in the bulb. The granule and mitral cell dendrites have very short electrotonic 

lengths, mostly less than one, and at most two from a cell body to any parts of the cell 

dendrites. (When there is current injection at a spot on the cell membrane, the change in 

membrane voltage decays exponentially with distance from the injection point by length 

constant A. A distance measured in the unit of A is called an electrotonic length. ) 

Therefore, the spread of the current or voltage within a cell is very efficient. 

2.3 Inputs to the Olfactory Bulb 

Each receptor cell has a background activity of :S 1 - 3 impulses/sec. The impulse 

firing frequency increases with increasing input odor concentration, and can reach up to 

20 impulses/sec. When an odor pulse is delivered to the nose, the pattern of the response 

consists of a relatively brief latency (of about several hundred millisecond) of onset, a rapid 

rise in impulse frequency, a continuation of impulse firing during the plateau of the odor 

pulse, and an abrupt termination of the discharge correlated with the termination of the 

odor pulse (Getchell and Shepherd 1978). The rapid rise of the receptor firing frequency 

is approximately linear in time, and lasts for a few hundred milliseconds if the pulse of 

the input odor lasts longer than that. The firing termination time at the end of the input 

odor is relatively constant, independent of the odor concentration, and can be as short as 

lOOms ( Getchell and Shepherd 1978, Figure [2.5]). For rabbits, the respiratory frequency 

is about 2-4 Hz (Freeman and Schneider 1982). 

Different odor input generates different activity patterns in the receptor cell popula­

tion. A high-resolution 2-deoxyglucose autoradiography experiment ( Lancet et al 1982) 

shows that the odor-specific pattern also exists in the glomerular layer. For an input odor, 
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different a.nd even neighboring glomeruli ha.ve different activity levels. This level, however, 

remains relatively uniform within a. single glomerulus. 

Not much is known about the central input to the granule cells. 

2.4 Cell Activities in the Olfactory Bulb 

Stimulation with odors, depending on the a.nima.l motivation, causes a.n onset of a. high­

amplitude bulbar oscillatory activity, which is detected by EEG (electroencephalograph) 

electrodes a.t the bulbar surface (Freeman 1978). The oscillations a.t different parts of 

bulb ha.ve the sa.me frequency, a.nd a.re coherent with ea.ch other. The oscillation is a.n 

intrinsic property of the bulb itself, a.nd persists after the central input fibers a.re cut off 

(Freeman a.nd Skarda. 1985). The oscillation returns to low-amplitude on the cessation 

of the odor stimulus, a.nd disappears when the na.sa.l a.ir flow is blocked (Freeman a.nd 

Schneider 1982). Central input (Freeman 1979a.; Freeman a.nd Skarda. 1985; Baird 1986) 

influences oscillation onset; the oscillation exists only in motivated a.nima.ls, a.nd ca.n be 

present without a.n input odor (Freeman 1978). The granule cells a.re the generators of 

the surface EEG wa.ve, for their morphological structure makes them produce a. dipole 

field, while the mitral cells produce a. closed monopole field negligible a.t the bulbar surface 

(Freeman 1975). The EEG (Freeman 1978; Freeman a.nd Schneider 1982) shows a. high­

amplitude oscillation arising during the inhalation a.nd stopping early in the exhalation 

(Fig [2.6]). The oscillation bursts ha.ve a. pea.k frequency of 35-90 H a.nd ride on a. slow 

background wa.ve phase locked with the respiratory wa.ve. Different parts of the bulb 

ha.ve different oscillation amplitudes a.nd phases. A specific odor input will set a. specific 

oscillation pattern across the olfactory bulb (Fig[6.2)). 
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Fig. 2.6 A: simulation result of bulbar response in several sniff cycles. B: experimentally 
measured EEG waves with odor inputs, taken from Freeman and Schneider 1982. Both 
the simulated and measured EEG waves are surface negative waves. 
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3. The Olfactory Bulb Model Organization and Parameters 

For comparisons between experiments and theory of the olfactory bulb, it is essential 

to model with realism. To do the mathematical analysis and simulation necessary to 

understand collective and statistical properties, it is necessary to disregard superfluous 

details. The model organization is a compromise between these two considerations. 

3.1 Cell Types, Cell Numbers, and Arrangement 

Cell types: Only the mitral and granule cells are included in the model. The glomerular 

layer is assumed to only pass on the input with some processing, and is neglected. The 

receptor cell input is assumed to be effectively directed onto the mitral cells. Tufted cells 

are considered the same as the mitral cells, while the short axon cells are neglected for their 

non-specific functions in bulbar activities. The sources of input to the bulb are considered 

external and are represented as input parameters in the model. 

Cell numbers: There are N mitral and M granule cells in the model. Because of the 

limited capability in computer simulation, the cell numbers are taken to be much smaller in 

the simulation than the real cell numbers. Similarly, the ratio M : N is much smaller than 

that (200 : 1) in the real bulb since, for example, 10 granule cells connected to a mitral 

cell can be viewed as one granule cell connected to the same mitral cell with synaptic 

strength 10 times as strong. In the simulation, N = M = 10. Since the activity within a 

single glomerulus is uniform as observed, the mitral cells connected to the same glomerulus 

receive about the same external input . Assume that the activity level changes very little 

locally for cells below the same glomerulus ; the group of mitral cells connected to the same 

glomerulus is simplified into a single mitral cell in the simulated model. The number of 

granule cells M is also reduced by the similar approximation in the simulation. However, 

the mathematical formulation does not depend on the absolute numbers of the cells and 

their ratio. The significance of the cell numbers N and M, and their ratio M : N , will be 

discussed in later sections. 
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Cell arrangement: Each cell is specified by an index, e.g., ith mitral (i = 1, 2, ... N), 

and jth granule cell (j = 1, 2, ... M ). The cells can be considered as sitting on a one­

dimensional string with the indices i, j resembling the cell locations on the string. The 

ith mitral cell is the neighbor of the i ± 1th mitral cells and the •: th granule cell. The 

1•t and Nth mitral cells are next to each other, and so are the 1•t and Mth granule cells 

(Figure [3.1]) . So the one-dimensional string of cells has periodic boundary conditions, 

or the string's end is connected to its beginning. Although the bulb is more like two­

dimensional sheets of cells folded into incomplete spheres, the 1-d simplification is helpful 

for understanding, but is not essential for the model (see Chapter 8). 

3.2 The Cell Properties 

Cell activity level: Because of the short electrotonic lengths of the mitral and gran­

ule cells, the cell membrane potential spreads effectively, and the potentials on different 

locations of a cell can be simplified as proportional to each other. It is thus justifiable to 

use only one variable, thought of as proportional to the membrane potential, to describe 

the internal state level of a single cell (instead of specifying all types of ion channel activ­

ities for different compartment of a neuron). As in Section 1.2, each cell is described by 

an internal state level (or input potential) and an output, which is a continuous sigmoid 

function of the internal state level. 

The internal states of the mitral cells are X= {x 1 ,x2, ... ,xN }, and of the granule 

cells, Y = {y 1 ,y2, ... ,yM }. The cell outputs are G.,(X) = {g.,(xi),g.,(x2), . .. ,g.,(xN)} 

for the mitral cells, and Gy(Y)- {gy(y1 ),gy(y2), ... ,gy(YM)} for the granule cells, where 

g., and gy are the cell output functions for the mitral and granule cells, respectively. 

The scales of x' s, y' s, g.,, and gy are set such that 
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The function formulae are (Fig [2.4]): 
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s~ = o.14; 

s~ = o.29; 

S 11 = 2.9. 

Note that g"' ( org11 ) is very non-linear near x = th (or y = th ). This point can be seen 

intuitively as the firing threshold of the neurons. The granule cells are modeled with a 

longer linear range, reflecting that granule cells do not have axons , and thus have a weaker 

non-linear threshold effect. The non-linear and threshold functions are essential for the 

bulbar oscillation dynamics (Freeman 1979a; Freeman and Skarda 1985; Baird 1986) to be 

studied. 

The decay time constant T:z: 1ja11 for mitral and granule cells are 

chosen to be 7 msec. 

3.3 The Input Format and Strength in the Olfactory Bulb Model 

The external input to ith mitral cell is described by I, for 1 ::=:; i ::=:; N, and to the 

Ph granule cell, Ic,J for 1 ~ j ~ M. I, (Ic,J ) is the ith (jth) component of the vector 

I= {J1 ,J2,••••JN} ( Ic = {Ic,l,Ic,2•···•Ic,M}) . Input I= Iodor + hackground to the 

mitral cells consists of the background input !background and the odor-induced input Iodor. 

!background includes both the input caused by the spontaneous firings of the olfactory 

receptors without odor, and the input from the central brain to the mitral cells . From 

the little knowledge of the central input, and the knowledge that a receptor cell fires 

at ~ 1 - 3/ sec spontaneously up to 20/ sec at highest odor concentration, hackgr ound is 

considered constant, and Iodor ranges from 0 to 10 or 20 times of !backgr ound· Ic is a 

constant without considering the central control on the olfactory bulb; it is later to change 

with time in the model when the central control is studied . 
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Since the external input synaptic strengths are not known biologically, Ic = 0.1 and 

hackground = 0.243 are set such that when Iodor = O, no large amplitude oscillation exists, 

as observed physiologically. 

I odor changes with time determined by the animal sniff. Since rabbits sniff at fre-

quency of 2 - 4 Hz, each sniff cycle is modeled to last for 200 - 500 msec, with inhalation 

and exhalation taking about half of the cycle. Because of their high water/air partition 

coefficients, the odorants are assumed to be very little in the exhaled air because of their 

absorption by the moisturous throat and lungs. It is then assumed that a sniff brings on 

top of the mucusa an odor pulse, which starts at the beginning ofinhalation and terminates 

at the beginning of the exhalation. Odorant diffusion through the mucous to the receptors 

should delay the increase in the receptor activities. !odor is modeled to increase slowly, 

instead of rising abruptly in time during inhalation, as observed in experiments (Getchell 

and Shepherd 1978). Exhalation is modeled as an exponential return toward the ambient. 

Different sensitivities of receptors cause different degrees of responses to an input odor 

in the receptor population, and thus different input strengths to different mitral cells. For 

any mitral cell i exposed to odor (Fig [2.5A]), 

{ 
p .. (t _tin hale)+ J ·(tinhale) J t _ odor,• odor,• , 

odor,i()- I ·(texhale). e-(t-t• "'hole)/T • .,h.le 
odor,s ' 

if tin hale ::=:; t ::=:; texhale j 

if t > t ex hale, 
(3.1) 

where Texhale = 33 msec, tinhale and texhale are on set times for inhalation and exhalation, 

Podor,i characterizes the odor concentration and the sensitivities of the receptors that give 

input to the ith mitral cell. Iodor(tinhale) = 0 if no odor exists above the epithelium before 

the inhalation . The vector Podor = {Podor,l, Podor,2' • • • , Podor,N} contains the information 

of odor identity and concentration, and can be considered the odor image on the mitral 

cell population. The odor input /odor is taken to be excitatory, and thus Podor has all 

non-negative components. 

More strictly, tinhale represents the onset time of t he receptor cell firing with odor 

input; it is delayed from the beginning of inhalation by a latency that is due chiefly to the 
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odorant diffusion through the mucous layer (Getchell and Shepherd 1978). This latency is 

about ten to hundreds of msecs, depending on the odor and its concentration. If only one 

type of odorant molecules is present, the latency should be the same for all the receptors. 

If there are more than one odorant, the different diffusion constants for different molecules 

make different latencies for different odorants. With selective sensitivities of the receptors, 

the different temporal information in the activities of different receptors can be possibly 

used for odor information processing, although it is not discussed in this thesis. 

3.4 The Synaptic Connection Geometry and Strength 

An M x N matrix W 0 is used to represent the synaptic connections from mitral to 

granule cells. Similarly, an N X M matrix -H 0 represents the connections from granule 

to mitral cells. Therefore, Wo ,ii ;::: 0 and -Ho,ii :S 0 are synaptic connection strengths 

from the ith mitral to the ph granule cell, and vice versa. The minus sign in front of H o 

or H o,ij indicates the inhibitory nature of the granule cells. 

It is known that mitral and granule cell dendrites extend laterally for 300 - 600JLm 

in the EPL layer. Since each glomerulus is about 100- 200JLm in diameter, thus a cell 

below one glumerulus can connect to cells below several neighboring glomeruli. Therefore, 

in the simulated model with N = M = 10, each mitral (or granule) cell is randomly 

connected to several (1-5) neighboring granule (mitral) cells, with a higher probability of 

connecting with closer neighbors (Figure [3.1]). Since mitral axon collaterals also connect 

to the granule cells in a presumably larger neighboring range than that of dendrodendritic 

connection, extra connections from mitral cells are added randomly and more sparsely to 

some neighboring granule cells. The matrices used for simulation are (for N = M = 10): 
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(3.2) 

Most of the non-zero elements are near the diagonal lines because of the locality of 

the synaptic connections. The other non-zero elements at the upper-right or the lower-left 

corners of the matrices originate from the boundary condition that the 1•t mitral and 

granule cells are the neighbors of the Nth mitral and the Mth granule cells. 

No biological data are available for the synaptic strengths (amount of postsynaptic 

depolarization or hyperpolarization : presynaptic firing rate ) in the bulb. Since 

postsynaptic input synaptic strength X presynaptic output, 

doubling the synaptic strength and at the same time reducing the presynaptic input by 

half will cause no effect on the postsynaptic side. Therefore, Wa and H 0 should be set 

according to the scales of g., and gy used for the mitral and granule cell output functions, 

respectively. Furthermore, when a mitral cell and a granule cell interact with each other 

with synaptic strength w and h respectively, the gain of this feedback loop is proportional 
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to hw. Thus the scale of h (or H o) should be set appropriately depending on the scale 

of w (or W 0 ) to keep the feedback loop gain in a certain range. It is shown in Chapter 4 

that this loop gain affects the neural oscillatory frequency. For convenience, H 0 and W 0 

are set to about the same scale, whose value is such that the oscillation in the simulated 

model has a similar frequency range as that of the real bulb. The individual elements of 

H 0 and W 0 are set such that: 1), the connections between the mitral and granule cells are 

largely reciprocal as the mitral-granule dendrodendritic connections in real bulb; i.e., if 

Ho,ij =f. 0, then Wo ,j,i has a large chance of being non-zero also; 2), although the elements' 

value in H o and W 0 look quite random, they are carefully chosen such that some input 

odor patterns can easily induce oscillatory activities within the bulbar cells (see Chapter 

6 for mathematical analysis). However, the mathematical formulation does not depend on 

the exact values of H 0 and Wo. 

3.5 System of Differential Equations in the Olfactory Bulb Model 

The format of the model is summarized here by the system of differential equations: 

X= - H oGy(Y)- axX +I 

Y = WoGx(X)- ayY + I c 

where X = { x 1, x 2 , ••• , x N} are mitral cell activities; 

Y = {Yl, Y2, .. . , YM} are granule cell activities; 

Gx(X) = {gx(xt),gx(x 2 ), ••• ,gx(xN)} are output of the mitral cells; 

Gy(Y) = {gy(y1 ),gy(y2), ... ,gy(YM)} are output of the granule cells; 

I= {I1 ,I2 , ••• ,IN}, are the external input to the mitral cells. 

(3.3) 

Ic = {Icl , I c2 , ••• ,IcM }, are the central input to the granule cells; Wo and -H0 are the 

synaptic-strength matrices from mitral cells to granule cells, and vice versa. The matrix 

elements are: Ho,ii 2:: 0 and Wo,ii 2:: 0 fori= 1,2, .. . ,N, and j = 1,2, .. . ,M. The 

inhibitory nature of the granule cells are indicated by a minus sign in front of Ho in the 

equations above; ax = 1/rx and ay = 1/ry are decay constants of mitral and granule cells, 

respectively; 
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Comparing this equation to Equation (1.1), it can be seen that 

In the simulations, weak random noise with a 7 msec correlation time is added to I 

and Ic to simulate the fluctuations in the system. 
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4. Mathematical Analysis 

In this chapter, the mechanism for oscillation, pattern formation, and computation 

processes in the olfactory bulb are studied. 

4.1 The Oscillation Mechanism 

The origin of the oscillation in the bulb model is a group of oscillators. The intuitive 

way to see the oscillation mechanism is via a single oscillator. 

4.1.1 Single oscillator 

An oscillator with frequency w can be described by the differential equations 

with solution: 

:i; = -wy 

iJ = wx 

x = r 0 sin(wt + </>) 

or 

y = -r0 cos(wt + 4> ), 

( 4.1) 

where T 0 and 4> are arbitrary real constants describing the oscillation amplitude and phase, 

which depend on the initial conditions . The x(t), y(t) trajectory is a circle: 

x 2 + y 2 = constant. 

With dissipation, Equation (4.1) becomes 

x = -wy- ax 

iJ = wx- ay 

The solution becomes 

or x + 2a:i; + (w 2 + a 2 )x = 0. 

y = r0 e- at sin(wt + </> - 7r /2), 

( 4 .2) 

where a is the dissipation constant . The solution orbit is no longer a circle, but spirals 

into the origin as (Fig [4.1A]) 
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i.e., the oscillation amplitude decays. 

If a mitral cell and a granule cell are connected to each other (Fig [4.2A]) with con-

nection strength h and w, respectively, and with inputs i(t) and ic(t), respectively, then 

x = -h · gy(Y)- a:>:x + i(t), 
( 4.3) 

This is the scalar version of Equation (3.3) with each upper-case letter representing a vector 

or matrix replaced by a lower-case letter representing a scalar. It is assumed that i(t) has 

a much slower time course than x or y, because the frequency of sniffs is considerably 

lower than the characteristic neural oscillation frequency, and that i 0 input from higher 

centers, will be kept fixed when the central control is not considered. Use the adiabatic 

approximation, and define the equilibrium point (xo,Yo) as 

( 4.4) 

Define x' =X- X 0 , y' = y- Yoi then 

This is already similar to Equation ( 4.2). Omitting the dissipation, a:>: = ay = 0, the 

system is a Hamiltonian system. Then, when x' and y' are small, they oscillate along the 

solution orbit 

Xo+x' y.+y' 

R= j w(g:>:(s)-g:>:(xo))ds+ J h(gy(s)- gy(Yo))ds =constant, 

Yo 

which is a closed curve (in general, not a circle or ellipse) in the original ( x, y) space 

surrounding the point (x 0 ,y0 ), if R is not too large (Fig [4.1B]). This means that (x,y) 

oscillates around the point (x 0 ,y0 ), although the oscillation is not sinusoidal when g's 

are non-linear. (Strictly speaking, If R is too large, the curve could be closed at infinity 



31 

(-oo,-oo) if g.,(x),gy(Y) = 0 for x,y <,0. Also, equilibrium point (xo,Yo) may not exist 

if a., = ay = 0 and g.,(x) = gy(y) = 0 for x,y < 0. The above treatment is only to 

have an intuitive understanding of the oscillation in a pair of interconnected mitral and 

granule cells.) The oscillation becomes strictly sinusoidal if g's are linear functions, and 

the solution orbit in the (x,y) space will be an ellipse around (xo,Yo)· 

When the dissipation is included, the orbit in (x,y) space will spiral into the point 

(xo,Yo): 

Here dR/ dT :S 0, because g., and gy are non-decreasing. The oscillation amplitude shrinks. 

Therefore, a connected pair of mitral and granule cells behaves as a damped non-linear 

oscillator, whose oscillation center (x 0 ,y0 ) is determined by the external inputs i and ic by 

Equation ( 4.4). If the oscillation amplitude is small, then the system can be approximated 

by a damped, sinusoidal oscillator via linearization around (x 0 , Yo): 

x = -h · g~(Yo)Y- a.,x 
( 4.5) 

where (x,y) are now the deviation from (x 0 ,y0 ). The solution is 

y = r0 e-atsin(wt + ¢>- 11"/2), 

where a= (a.,+ ay)/2, and w = V hwg~(xo)g~(Yo) +(a.,- ay)2 /4. If a., = ay, which is 

about right in the bulb, then a= a., = ay, w = J hwg~(x 0 )g~(y0 ). Using the bulbar cell 

time constant and the oscillation frequency from the previous section, a ~ 0.3w. Notice 

that x and y differ in oscillation phase by a quarter cycle ( cf. Section 4.3). The dependence 

of oscillation frequency w on the synaptic strengths h and w shown above is used to 

choose the scales of h and w (or H 0 and W 0 ), so that the model bulb oscillation frequency 

agrees with the biological data (Chapter 3). The effect of the input controlled equilibrium 

point (x
0

, Yo) on the frequency w shown a bove implies that the oscillation frequency is 
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modulated by the receptor and central input in the real system. The equilibrium point 

(x 0 , Yo) is always stable; i.e., the non-linear oscillation is always damped, and no sustained 

oscillation will exist unless an external oscillating input exists. 

The larger the oscillation amplitude, the worse the small amplitude approximation, 

and the more distorted the oscillation waveform from a sinusoidal one. The oscillation can 

have quite a complex non-sinusoidal waveform if (x 0 , Yo) is near a very non-linear region 

of g's. 

4.1.2 Granule cell as a non-linear Leaky Integrator 

The mitral cell in the single oscillator system acts back on itself indirectly through a 

granule cell. Without this granule cell, then the equation for the mitral cell will be: 

X= w'gx(x)- axx, 

where w' is the mitral cell synaptic strength on itself. This solution for x approaches a 

fixed value instead of being oscillatory. 

An intermediate granule cell integrates the output from the mitral cell and acts back 

onto the mitral cell, and makes the oscillation possible, although it is not the bulbar output 

cell. Its self-dissipation makes it a leaky integrator. An analogous oscillatory system is an 

electric circuit, where an inductance and a capacitor are connected together in a loop (Fig 

[4.2B]), whose equation of motion is 

Lj =-V-I. RL 

CV =I- V/Rc, 

where L and C are inductance and capacitance, I and V are current and voltage, RL 

and Rc are the resistances in the inductor and the capacitor . The mitral cell is like 

the inductor, whose activity is indicated by the current, and the granule cell is like the 

capacitor, whose activity is described by the voltage. The capacitor integrates the current 

from the inductor and feeds back the voltage. The neural non-linearity makes the granule 

cell here a non-linear, leaky integrator. 
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Fig. 4.2 Two oscillatory systems. A: a connected pair of mitral and granule cells. 
B: a dissipative LC circuit. 
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4.1.3 Coupled Non-linear Oscillators 

When a group of granule cells replaces the single granule cell in the connected mitral­

granule cell pair (since there are many more granule cells than the mitral cells in the real 

bulb), it can be seen as a single granule cell, whose synaptic strength is as strong as those of 

all the granule cells in the group combined. Therefore, such a connected mitral and granule 

cell group is also a non-linear, damped oscillator. Similar argument holds if the number 

of mitral cells was larger than the number of granule cells. N such mitral-granule pairs 

without interconnections between the pairs represent a group of N independent, damped, 

non-linear oscillators. If the cells in one oscillator also connect to cells in the neighboring 

oscillators, then these oscillators are no longer independent. This is exactly the situation 

in the olfactory bulb. A granule cell receiving input from a certain mitral cell gives output 

to other mitral cells as well. Similarly, a mitral cell gives output also to the granule cells 

that do not give output to this mitral cell. The local bulbar synaptic connections imply 

the local oscillator couplings. This situation can be quantitatively treated by including 

many neurons in the mathematical analysis. 

Proceed as in the single oscillator case, 

X= -H0 Gy(Y)- ax X+ I, 

Y = WoGx(X)- ayY + Ic, 
( 4.6) 

where X, Y, I,Ic,Gx(X), and Gy(Y) are now vectors, and H 0 and Wo are matrices as 

described earlier ( cf. Equation ( 4.3) ). Use the adiabatic approximation and define the 

equilibrium point (Xo, Y0 ), similar to that of a single oscillator, as: 

Xo ~ 0 = -HoGy(Yo)- axXo +I, 
(4.7) 

And 

if j = t = 0. 
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Linearize around (X 0 , Yo); then 

(4 .8) 

where (X,Y) are now the deviations from (Xo,Yo), and G~(Xo) and G~(Yo) are diagonal 

matrices 

and 
( g~ (Yo,!) 
I 0 

l 
0 
0 

0 
0 

g~ (Yo,i') 

( 4.9) 

To see the picture clearly, first assume a~, ay ~ H, W. Ignoring the decay terms, it 

becomes (cf. Equation (4.1)) 

X= -H ·Y, 

Y= W·X. 
( 4.10) 

Thus 

X+ A ·X= 0, ( 4.11) 

where A = HW is a N X N matrix. 

The individual components of Equation ( 4.11) are: 

X· + A· ·X · +"""' A··X · = 0 I U I L....J IJ J ( 4.12) 
j¢-i 
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for i = 1, 2, ... N. Note that since H and W are matrices with non-negative elements, 

A,; ~ 0 for all i,j . In particular, Aii ~ 0. 

The first two terms in Equation ( 4.12) represent the dynamics of the ith oscillator 

(see Equation (4.1)), while the last term in the equation represents the coupling with the 

other oscillators. If A is a diagonal matrix, the coupling term is zero, and Equation ( 4.12) 

describes a group of N independent oscillators. 

Since the cells in the olfactory bulb connect only to their neighboring cells, the con-

nection matrices H 0 and Wo have most of their non-zero elements near the diagonal lines. 

It follows that matrix A also has most of its non-zero elements near the diagonal line . 

Therefore, each oscillator in the system is coupled only to its neigh boring oscillators. 

The elements of matrix A are 

Aij = "E H o,ik9~ (Yo,k )Wo,kj9~ (xo ,j ). ( 4.13) 
1: 

This means that the coupling from the Ph oscillator to the ith oscillator goes through the 

connection path from the Ph mitral cell to the ith mitral cell via all those intermediate 

granule cells. In particular , Aii, the strength of the ith oscillator, originates from the 

connection path from ith mitral cell back to itself via the intermediate granule cells. In the 

particular simulated model as an example, the H 0 and W 0 (Equation (3.2)) used implies 

that each cell connects to about three neighboring cells, so from the above argument, each 

oscillator couples to about 5 neighboring oscillators. 

Taking into account the decay terms: 

( 4 .14 ) 
Y = W ·X -ayY· 

After differentiating, it becomes 

x = -H .y -a., .X 
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Substituting with Y = -H- 1 (X + a., X), where n- 1 Is the pseudo-inverse of H, and 

H- 1 H = 1, then 

or 

( 4.15) 

This is a generalization of Equation ( 4.2) for a group of N coupled dissipative oscillators, 

and a generalization of Equation ( 4.11) with extra dissipation. The ith oscillator (mitral 

cell) follows the equation 

xi+ (a.,+ ay)xi + (Aii + a.,ay)xi + L A i;x; = 0. 
j#- i 

( 4.16) 

The first three terms describe a single damped(ith) oscillator (cf. Equation (4 .2)), while 

the last term describes the coupling to other oscillators. 

Equation ( 4.15) is only the small amplitude approximation of Equation ( 4.6). The 

non-linear effect shows with larger amplitude oscillations just as in the case for a single os-

cillator. Therefore Equation (4.6), which is the mathematical model for the olfactory bulb, 

describes a system of N non-linear dissipative oscillators, each coupled to its neighbors. 

This explains the mechanism of oscillation in the olfactory bulb. 

From oscillation Equation (4.15), it shows that the matrix A= H0 G~(Yo)W0 G~(X0 ) 

determines the dynamics . When the scales of H 0 , Wo, G.,, and G y are considered, only 

their multiplication is important. This means that as long as the scale multiplication 

is kept constant, their individual scales can be varied. This is how the scales for these 

parameters are determined in Chapter 3. Of course, for fixed ext ernal input I and I c, the 

scales of Ho and W 0 influence the values of X 0 and Yo by Equation (4.7). This in turn 

influences the matrix A and the oscillation dynamics. However in this model, the scales for 

the parameters H 0 , W 0 , G.,, and Gy are set first before setting the external input scales 

for appropriate X 0 and Y 0 (see Chapter 3 and 4). 
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4.2 Oscillation Pattern Analysis 

Consider the non-dissipative equation 

X+ AX= o. ( 4.11) 

If X k is one of the eigenvectors of A with eigenvalue A~c, Equation ( 4.11) has solutions: 

( 4.17) 

for k = 1, 2 ... N, where W~c 0 = v->:;. The equation has N such linearly independent oscil­

lation modes. Denote solution X~ce±iv>:";t as the kth mode of the system. The oscillation 

amplitude and phase of the ith mitral cell in the kth mode is determined by the ith com-

ponent of the complex vector X~c. Note that W~co is a complex valued frequency; i.e., the 

oscillation modes can have increasing or d ecreasing amplitudes as they evolve in time. 

Including the dissipation of each oscillator, 

( 4.15) 

The kth oscillation mode becomes 

( 4.18) 

fork= 1,2, . .. N, where wk is the solution of 

( 4.19) 

Note that w~c = W~co = A if a., = ay = 0. Therefore, extra damping is added to each 

oscillation mode if dissipation of the oscillators is included. When a"' = ay = a, the 

oscillation modes become: 

( 4.20) 

for k = 1, 2, ... , N. From now on, a., = ay = a is used in the mathematical expressions, 

since the time constants of the mitral and granule cells are similar. The equation b ecomes 

X+ 2aX +(A+ a 2 )X = 0. (4.21) 
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If 

Re(-a ± iV~) > 0 ( 4.22) 

is satisfied for some k E 1, 2, ... N, then the oscillation amplitude for k'h mode will increase 

with time. Starting from an initial condition of arbitrary small amplitudes in linear anal­

ysis, the mode with the fastest growing amplitude will dominate the output. When there 

is a single dominating mode, the whole bulb oscillates in the same frequency as observed 

physiologically (Freeman 1978; Freeman and Schneider 1982) and in the simulation. In 

large amplitude oscillations, the non-linear effect plays an important role. The oscillation 

waveform will not be strictly sinusoidal. The N oscillation modes will no longer be inde­

pendent. The strongest modes will suppress the others. The final activity output will be 

a single "mode" in a non-linear regime, i.e., a single dominating mode mixed with other 

non-dominating modes excited by the coupling with the dominating mode. 

The collective oscillation mode is a result of coupling. Each oscillator gets external 

driving "forces" from the neighboring oscillators. The driving "force" for the i'h oscillator 

is F; _ - L:: i A;; xi. When the oscillators influence each other in harmony, a global 

oscillation mode results. The oscillation amplitude of the i'h oscillator will increase when 

its driving "force" feeds in more energy than the energy lost through the damping "force" 

-(a., + ay )x; (see Section 4.3.3). An oscillation mode with growing amplitude emerges 

when each oscillator with substantial amplitude in the mode has enough driving "force" 

through coupling with other oscillators. It is known that an ordinary coupled oscillator 

system (e.g., a group of pendulums connected by springs) can not have growing oscillation 

modes because of energy conservation . This is because when one oscillator drives another 

oscillator, it gets a reaction force equal to the driving force by Newton's third law. This 

means that one oscillator feeding energy to another has to lose the same amount of energy. 

The special coupled oscillator system in this model does not obey Newton's third law; the 

coupling forces between the i'h and j'h oscillators, - A;i xi and -Aj;X;, are not necessarily 

equal. Therefore, the oscillation energy is not conserved, and the growing oscillation modes 
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are possible. Recall that a single oscillator in this model is always damped; this means 

that the equilibrium point (xo,Yo) is always stable. Because of the coupling between the 

oscillators, the equilibrium point (X 0 , Yo) of a group of oscillators is no longer always 

stable with the possibility of growing oscillation modes. (X o, Yo) is going to be called 

operation point or biase sometimes, to avoid confusion. 

The only non-zero elements in matrices H 0 , W 0 , G~(X0 ), and G~(Yo) are positive 

valued ones near the diagonal lines. Thus, A = HoG~(Yo)WoG~(Xo), is also a matrix 

with its only non-zero elements positive and near the diagonal line. Thus, very few of the 

eigenvalues of A are expected to have >.k < 0 for some k E 1, 2 ... N. If >.k < 0 for some 

k, there could be a non-oscillating exponentially growing mode. Since this is not observed 

in the olfactory bulb, A is assumed to have no negative real eigenvalues in most practical 

cases of synaptic connections. 

In order that some mode X k can be both growing and oscillatory, >.k must be complex. 

For this, a necessary ( but not sufficient ) condition is that matrix A be non-Hermitian, 

or non-symmetric in this case of real matrix A. It follows that systems of less than 

three oscillators will not have growing modes, since a matrix of dimension 1 or 2 (1 or 

2 oscillators) with non-negative elements only has real eigenvalues. 

4.2.1 Examples of the Oscillation Modes 

If Ho is symmetric and W 0 is proportional to identity, e.g., 

( :, h' 0 0 0 h'\ 
h h' 0 0 o I 

Ho I ~ h' h h' 0 0 0 0 I 

\~I 0 0 h' ~) 
( 4.23) 

{w 0 0 0 0 0\ 
0 w 0 0 0 0 I 

W o = l1 0 w 0 0 0 0 o I 
I 

0 0 0 ~) 
This corresponds to each mitral cell's giving output only to the nearest granule cell, and 

to each granule cell's giving output to the three nearest mitral cells. Moreover, if X 0 
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and Yo are vector with identical components, i.e., X0 ,; = Xo,j, and Yo,i' = Yo,i' for all 

i -::f. j and i' -::f. j', then both G~(Xo) and G~(Yo) are proportional to the identity matrix. 

A= H0 G~(Y0 )W0 G~(Xo) should be symmetric and have the form 

(~ b 0 0 
a b 0 

0 b a b 0 0 

A= 0 0 b a b 0 

0 0 b 
b 0 0 

TheN oscillation modes for Equation (4.21) will be 

{ sin(kl) 
sin( k2) 

I sin( ki) 
I 
I . 

\ sin(.kN) 

{ cos(kl) 
cos(k2) 

I 
I 
1 cos(ki) 
I 
I . 

\ cos(.kN) 

0 b\ 
0 0 I 
0 

~ I 0 (4.24) 

: I 
a b I 

b a} 

\ 
I 

I 
I -crt± ;v>:~ t 
I e ' 

( 4.25) 

I 
I 

) 

where k = 2;;N, K is an integer, 0:::; K < ~, Ak = a+ 2bcos(k). Forb< a/2, Ak > 0, all 

the modes will be damped oscillations with similar frequences close to w = yla. In each 

mode, all the oscillators have the same oscillation phase, but different amplitudes. 

The same matrix A and thus the same oscillation modes above can be achieved by 

some different synaptic connection patterns such as, for example (with X 0 and Yo staying 

the same), 
h' 
h 
0 

0 
0 

0 

w 
w' 

0 

0 

0 
h' 
h 

0 

0 
w 

0 
0 
h' 

0 

0 
0 

0 

0 

0 

0 

0 
0 

w' 
0 

0 

0 
0 

h 
0 

0 

0 

0 

w 
w' 

0 \ 
0 I 
0 I 
. I 

iJ 
w' \ 
0 I 
o I 

I , 
0 I 

w} 

( 4.26) 
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where h'w = w' h. The connection pattern is that each granule cell give output to the 

nearest and the first mitral cell on the right, and that each mitral cell give output to the 

nearest and the first granule cell on the left. 

Another example is with a non-symmetric matrix 

ra b c 0 0 0\ 

A= l; a b c 0 o I 
0 a b c 0 0 

~ I ( 4.27) 

0 0 a !J c 0 0 

which can be achieved if, for example, each mitral (granule) cell gives output to its nearest 

and the first granule (mitral) cell on the right with connection pattern 

h' 
h 
0 

0 
0 

w' 
w 
0 

0 

0 

0 
h' 
h 

0 
w' 
w 

0 
0 
h' 

0 

0 
w' 

0 0 

0 0 

0 
0 

0 
0 

0 
0 
0 

h 
0 

0 
0 

0 

w 

0 

0 \ 
0 

o I 
I ' . I 

:') 
and with X 0 and Yo proportional to the identity vector. 

Then the oscillation pattern will be 

\ f3 = 21r K jN, 

J .-. <± ;-!:;:,', 
K is an integer, 

0 :s; K < N, 

>. 13 = a + beifJ + ce 2 if3 . 

( 4.28) 

(4.29) 

Notice that in this case, >. 13 's are non-real complex numbers. It is possible to have growing 

modes if for some {3, Re( -a± i../"f;) > 0. Also notice that the individual oscillators in 

most modes have different oscillation phases. 
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4.3 Explanation of the olfactory bulb activities 

4.3.1 Oscillation phases for mitral and granule cells 

This model predicts that the local mitral cells' oscillation phase leads that of the 

local granule cells by a quarter cycle, as is clear from the single oscillator analysis (Section 

4.1). (This is analogous to the circuit of an inductor and a capacitor, in which the voltage 

and current differ by a quarter cycle in phase. See Section 4.1.2.) This is confirmed 

in experiments (Freeman 1975, Eeckman 1988a,1988b, Eeckman and Freeman 1985,1986, 

1987), in which the local mitral cell unit activity was compared with the granule cell 

generated surface EEG waves for phase difference. (Note that the orientation of the granule 

cell dipole field gives the surface EEG wave an opposite sign to that of granule cell activities 

(Freeman 1975). Therefore, the sign of the EEG oscillation is reversed before comparing 

with the local mitral cell oscillation for phase differences.) 

4.3.2 Oscillation frequencies 

The model also indicates that for any particular stimulus, oscillatory activity should 

have the same dominant frequency everywhere on the bulb because of the single-mode 

dominance. This is also true in experiments (Freeman 1978; Freeman and Schneider 1982). 

Furthermore, the range of oscillation frequencies possible should be narrow. The observed 

range is 35- 90 Hz. 

The ith oscillation in the system follows the equation: 

x; + 2ai:; +(A;;+ a 2 )x; = - 2.:: A;ixi 
j~i 

for i = 1, 2, ... N. The external driving force and the damping force for the oscillator are: 

F; -2.:: A;jXj ( 4.30) 
j~i 

A damped oscillator will not have high-amplitude response unless the frequency of 

the external driving force is close to the oscillator resonant frequency. Therefore, an 
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oscillation mode will not be non-damping unless its frequency, which is the frequency of 

the driving force for every oscillator in the system, is close to the oscillators' resonant 

frequencies. It can be safely assumed that all the oscillators in the bulb have similar 

resonant frequencies. This is because the synaptic connection strengths and structure, 

which determine the frequencies (Section 4.1), are relatively uniform across the bulb. Since 

only the non-damping oscillation modes will be observable, the oscillation frequencies seen 

in experiments should be in a narrow spectrum that covers the resonant frequencies of the 

oscillators. 

4.3.3 Oscillation phase gradient across the olfactory bulb 

The physiological observation (Freeman 1978; Freeman and Schneider 1982) shows 

that the oscillations have different phases across the bulb, and thus give a phase gradient 

field. This phenomenon turns out to be a necessary condition for the existence of oscillation 

bursts. 

For a damped ith oscillator, if the driving force F; is partially or completely in phase 

with the oscillator velocity x; to compensate the dissipation, i.e., 

to+ 2'K /w t 0 +2'K /W 

j F;x; · dt > j 2axi · dt > o, ( 4.31) 

to 

where w is the oscillation fr equency, then F; feeds enough energy into the oscillator and 

helps to increase the oscillation amplitude. If all the neighboring oscillators xi coupled to 

the ith oscillator (A;i > 0) are in phase with x;, the inequality (4.3) can not hold because F; 

is perpendicular to X;. Thus, the necessary condition for a growing (and thus observable) 

oscillation mode is that the coupled oscillators are not completely in phase. (This will not 

be necessarily true if the excitatory-to-excitatory (mitral-to-mitral) connections or other 

synaptic connections are present, since the nature of oscillator coupling will be different 

(Section 9 .1 ). ) Particularly, for a single mitral cell, the neighboring mitral cells that give 

output to it through the granule cells should not be all in phase with it in a non-decaying 

oscillation pattern. This means that the phase of the mitral cell oscillations change within 
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the range of the cell connections (from one mitral to another via the granule cells): several 

hundred microns laterally if that is the longest distance of connections. The granule cell 

oscillation is strongly related to that of the mitral cells, so the phase gradient field also 

exists in the granule cell population, and gets detected by EEG. 

4.3.4 Sniff Control of the Olfaction 

The fourth consequence of the model is that the oscillation activity will rise during the 

inhalation and fall at exhalation, and that the oscillatory wave rides on a slow background 

baseline shift wave phase locked with the sniff cycles. 

Both the physiological observation and the simulation of our model show the bulb 

activity modulated by sniff input (Fig[2.5], Chapter 6, Freeman 1978, and Freeman and 

Schneider 1982). The operation point (equilibrium point) (Xo, Yo) of the bulb is determined 

by the input (J, I c) via 

Xo = -HoGy(Yo)- aXo +I, 

Yo = WoGr(Xo)- aYo + Ic, 

if j = 0 (ic = 0 is assume d) . 

(4.7) 

Since I = I odor + !background, with !background assumed constant, the operation point 

(X 0 , Y 0 ) will be determined by Iodor (the sniff input) alone. 

If I-+ I+ of and oi = 0, then 

oXo = -H · oYo- aoXo +of, 

oYo = W · oXo- aoYo. 

oi = 0 leads to 6X o = 6Yo = 0. Thus, 

6X0 =(a + Ha- 1 W)- 1 6I 

= (a 2 + HW)- 1 aol, 

6Yo = (H + aW- 1 a )- 1 ol 

= (a 2 + W H)- 1 WH . 

( 4.32) 
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To see how the operation point (X 0 , Yo) changes with sj, a differentiation on Equation 

( 4. 7) results 

Similarly 

SXo = -H SYo- a.SXo + sj 

= -H(W6Xo - a.SYo)- a6Xo + t5j 

= -HW6Xo + Ha6Yo- a6Xo + t5j . 

Since the time scale of a sniff is much longer than the characteristic time of the neurons, 

adiabatic approximation is used to have 

Solving for 6X 0 and 6Y0 , we get 

6Xo = (a2 + HW)- 1 6j, 
( 4 .33) 

SYo = -(a2 + W H)- 1 a.H- 1 Sj. 

Combine Equation ( 4 .32) and ( 4.33): 

dX0 :=::::: (a2 + HW)- 1 (adl + dj) 

dYo::::::: (a 2 + W H)- 1 (Wdl- a.H- 1 dj) 
(4.34) 

A sniff for odor input takes a time of "' 300 ms, much longer than a- 1 
"' 7 ms and 

a.(HW)- 1 :::; a - 1 • (Here (HW)- 1 means the scale of (HW)- 1 = A - 1
, which is the scale 

of >.k - 1
• a 2 :::; >.k is assumed for the oscillation dissipation time constant a- 1 is generally 

longer than the oscillation period"' 1/A.) Therefore, the dj terms in equation (4.34) 

are negligible except at the initial inhalation and exhalation instant. Or 

dX 0 :=::::: (a 2 + Hw)- 1 adi 
(4 .35) 

dYo::::::: (a 2 + W H) - 1 Wdl 

(X 0 , Yo) is the baseline shift or the neural oscillation center of the equation 

( 4 .21) 
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Equation ( 4.35) states that this baseline shift is raised by odor input I during inhalation, 

when I is increasing, and suppressed by I during the exhalation, i.e., phase locked with 

the sniff cycles. 

Furthermore, the oscillation Equation ( 4.21) will have a growing oscillation mode 

only if Re( -a ± i~k) > 0 for some k, which means that only if the eigenvalue >..~: is 

large enough. This requires that the gain (G~(Xo),G~(Yo)) be high enough to make 

A= H0G~(Yo)W0 G~(Xo) large. As non-linear functions (Fig.[4.3]), the gains G~(Xo) and 

G~(Yo) are very small when X 0 and Yo are low, and they get larger as (X0 , Yo) increases 

before it reaches the saturation parts of the function G., and Gy. Before inhalation, (X 0 , Yo) 

is low on the input-output curve and the gains are too small to have emerging oscillation 

bursts. During the inhalation, the increasing receptor input I raises (X 0 , Yo) towards 

higher gain points (Fig. [4.3]). When at some point Re( -a ± iv').k) > 0 is satisfied for 

some mode k, the oscillation mode emerges from noise. During the exhalation, the receptor 

input decreases, the process reverses its direction and the oscillation decays away. This 

explains the rise and fall of the oscillation bursts with the respiratory wave. 
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5. Computational Features in the Olfactory Bulb 

The mathematical exploration on the model revealed the mechanism of oscillation pat­

terns, the oscillation phase and amplitude relationships, the narrow oscillation frequency 

spectrum, the close relationship between the input sniff and the bulbar activity, etc. The 

implication of this model on the information processing of the bulb is studied here. 

5.1 Information extraction procedure from sniff-input pattern to bulb­

output pattern 

Sniff-input pattern determines the equilibrium point (X 0 , Yo) of 

X= -H 0 Gy(Y)- aX+ I, 

Y = W 0 G.,(X)- aY + Ic 
(5.1) 

(see Equation (4.6)), which describes the dynamics of the bulbar cell. This (X 0 ,Y0 ) de­

termines the mean firing rates of the cells, which are approximately close to G.,(Xo) and 

Gy(Yo) for the mitral and granule cells, respectively. Therefore, different input (I,Ic) at 

least gives different mean output, which is also possibly used for odor information coding. 

More importantly, the input also sets the stability of (X 0 , Yo) , and defines the local dy­

namics around (X 0 ,Y0 ) by shaping the parameter matrix A= H0G~(Y0 )W0G~(X0 ) of the 

local oscillation equation 

X+ 2aX +(A+ a 2 )X = 0. (4.21) 

The resulting growing oscillation modes, if there are any, depend on A and arise from 

noise .. Thus, different input also gives different oscillatory output superimposed on the 

mean output level. This completes the information extraction process from sniff-input 

pattern to bulbar oscillation and baseline output pattern. 

(X 0 , Yo) behaves like a high-dimensional knob for the oscillation Equation ( 4.21) and 

shapes its behavior, while the input (I,Ic) behaves as the agent that turns the knob. When 

there is no or little odor input Iodon the point (X0 , Yo) is stable, and no high-amplitude 
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oscillation burst occurs because oscillation modes are damped; i.e., Re( -a± i~) < 0 

for all k. Increasing Iodor not only raises the mean activity level (Xo, Yo), but also slowly 

changes the oscillation modes by structurally changing the oscillation Equation ( 4.21) 

through matrix A= A(X0 ,Y0 ) . If the knob (Xo,Yo) is turned (raised) to such an extent 

that one of the modes can grow with time, i.e., Re( -a ± i~) > 0 for some k, the 

equilibrium point (Xo, Y0 ) becomes unstable and the k 1
h mode emerges with oscillatory 

bursts. In these cases, different oscillation modes that emerge are indicative of the different 

odor-input patterns that control the system parameters (X 0 , Yo). When (X o, Yo) is very 

low, or is raised by non-appropriate receptor input (see Section 5.3), all modes are damped, 

and only small amplitude oscillations occur, driven by noise and the weak time variation 

of the odor input. 

The stability change (bifurcation) of the equilibrium point (X 0 , Yo) for the oscillation 

Equation ( 4.21) has been suggested by others (Freeman and Skarda 1985; Baird 1986; 

Skarda and Freeman 1987) for olfactory processing. Baird (1986) has showed how single 

or double Hopf bifurcation in one or two oscillators can make stable (non-damping) cycles 

occur. Baird used excitatory-to-excitatory connections in the mitral cells to ensure the 

possibility of the stable cycles, which are otherwise impossible in systems with less than 

three coupled oscillators (Chapter 4 and 9). The present model shows them ultiple (N os­

cillators) Hopf bifurcations with (Chapter 9) or without requiring excitatory-to-excitatory 

connections, weak or absent in the olfactory bulb (Nicoll 1971; Shepherd 1979). 

The present model system shows the relationship between the odor input and the 

oscillation mode in terms of the eigenvectors and eigenvalues of matrix A. The oscillation 

modes that emerge from the bulbar activity with odor input can be thought of as the 

decision states reached for odor information. The bulb output classifies the odor input 

by two stages. First, it fails to oscillate appreciably for weak odors (or some particular 

stronger odors). The absence of oscillation can be interpreted by higher processing centers 

as the absence of an odor (Skarda and Freeman 1987). Second, when the odor produces 
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oscillation, the particular pattern of mitral cell activity is specific to an input pattern and 

its minor variants, the pattern of oscillation classifies odors. This is apparent chiefly when 

the responses of individual mitral cells are studied, and tends to disappear in the EEG 

average. 

5.2 Necessary Conditions for Significant Bulbar Output 

In order for the k 1h mode X ex Xke- at± ivl>:";;t to be the observable (growing) output 

mode of the bulb, inequality 

( 4.22) 

should hold, i.e., >.k be large enough and be complex (>.k can never be negative real as 

assumed). The requires that matrix A = H0G~ (Y0 )WoG~ (Xo) be large enough in scale 

and, at the same time, be non-symmetric (non-Hermitian). So the necessary condition for 

significant bulbar oscillatory output is: 1), Both Xo and Yo be high enough to give the 

high gain G~(Xo) and G~(Yo) in order to make A large enough. But high gain alone does 

not ensure the existence of the non-damping mode, so another necessary condition is 2), 

that A be non-symmetric. 

Inequality ( 4.22) shows that the bulbar cell dissipation a puts a threshold in selecting 

>.k or the growing oscillation modes. Two examples in the next section will show the 

implication of A's being non-symmetric as the necessary condition for bulbar oscillatory 

response. 

5.3 How to Enhance Sensitivity or to Be Responsive to a Particular Search 

Pattern 

First case: Consider the situation when the synaptic connection in the bulb is di­

rectionally symmetric, i.e., when each cell connects to its left neighbor(s) in the same 

strength(s) as to its right neighbor(s), and furthermore, if the connection is also uniform 

across the bulb, i.e., one part of the bulb has exactly the same connections as any other 
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part . The connection pattern 

( :, h' h" h" h'\ 
h h' h" h" 

=l i 
h' h' 

I 
Ho h h" 

J h" h" h' 

( ;, w' w" w" w'\ 
w w' w" w" 

w. = l ~" w' w w' w" I 
I 
I 

) w' w" w" w' w 

and E quation ( 4.23) a re examples of t hese situations . Moreover , if the central input I c 

and receptor backgrou n d input !ba ckground are also unifor m across the bulb, i.e., l ei = lei, 

and I background ,i' = I backgrou nd,j' for a ll i =/:- j and i ' =/:- j', then this bulb network will be 

insensitive to a uniform input I odor from the receptor s as shown b elow. 

If I odor is uniform too, then the equilibrium p oint (X0 , Yo) will also be uniform by 

obvious symmetry. The matrices G~(Xo) and G~(Yo) are now proportional to t h e identity 

matrix. B y symmetry, A = H0 G~(Yo)W0 G~(X0 ) will be symmetric and have the form 

ra b c 

I ~ 
a b c 

A= b a b c 

\l c 

c 

c b 

(Matrix A in Equation ( 4.24) is an example of this.) According to the necessary condition 

discussed in the last section, no significant oscillation mode outpu t arises from the bulb. 

(See the example in Section 4.2.1.) Therefore, this particular bulb structure will be non-

responsive to uniform receptor input Iodor, no matter how strong it is, and no matter how 

high t h e gain (G~(Xo),G~(Yo)) is raised by Iodor· 

Such a bulb, however, may respond to certain non-uniform in put I odor, which destroys 

the uniformity of (Xo, Yo) and causes a non-symmetric matrix A = H0G~(Yo)W0G~(X0 ). 

A decision-state, oscillatory output may be reached if t h e input I is sufficiently non-uniform 

(i.e., the o dor selectively excites different mitra l cells) . 
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Second case: Olfaction , however , is different from vision. T h e visual system extracts 

inform ation from contrasts and d isregard s the b righ tness of the input , while t h e olfactor y 

system need s to recognize both the o d or identity and intensity (concentration) . T herefore, 

I believe t hat the olfactory system sh ould have some sensitivi ty to uniform in put . A 

p ossible b u lb network that i s sen sitive t o uniform input is described b elow . 

If t he synaptic connection is u nifor m across the b ulb but non-symmetric in the direc-

tions, e.g., each neuron gives output to its left neigh bor(s) but not t h e r igh t neighbors as 

in Equation (4.26), 

( h h' 0 0 0 0\ 
0 h h' 0 0 o I 

H -I 0 0 h h' 0 0 0 

0 -l ~' 0 I 
I 

0 0 0 ~ } 

( w w' 0 0 0 0 \ 

I ~ 
w w' 0 0 0 I 

wo = 0 w w' 0 0 0 0 I 
I 

\ ~' 
. I 

0 0 0 ~ } 
If everything else in t his network stays the same as in the previou s case, A matrix for 

uniform input Iodor will is 

( a b c 0 0 0 \ 
I 0 a b c 0 0 I 
I 0 0 a b c 0 0 0 I 

A= I I 
I I ' I 
I 

0 0 b I 

\ ~ a 
a} c 0 0 

which is non-symmetric . Section ( 4 .2 .1) shows that this system will have possib le oscil-

latory growing modes. Thus, a bulb with this structure can be responsive to uniform 

receptor input pattern if it is strong enough. Note that since G~(Xo) and G~(Yo) are di­

agonal matrices, the matrix A= H0 G~(Y0 )WoG~(Xo) with above H 0 and W 0 will a lways 

be non-symmetric even for non-uniform input Iodor . This network is therefore sensitive to 

both uniform and non-uniform receptor input Iodor. 
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These two examples demonstrate that the bulbar synaptic connection pattern deter­

mines the input patterns to which the bulb selectively responds and t hus fulfills pattern 

classification. 

The real biological olfactory bulb suggests that its structure stays in between these two 

example structures. In the EPL layer of the bulb, the dendrodendritic connections between 

the mitral and granule cells are dominantly reciprocal. If synaptic strength differences are 

ignored, this suggests that W,?' ~ H o, where W,?' is the transverse of the matrix Wo, and 

implies the symmetric matrix A for uniform input. But since the mitral cells also have 

extra axon collaterals that connect to the granule cells in their deeper dendritic trees, 

W,?' = H 0 + extra connections, which has less reason to be thought symmetric. This 

confirms the conjecture that the olfactory bulb is possibly responsive to uniform receptor 

input patterns. 

5.4 Performance Optimization and Feature Extraction in the Bulb 

5.4.1 Ready for the Next Sniff 

An active mammalian olfactory system samples the input by sniffs, each lasting 200 

msec to 1 sec in rabbits. The olfactory system should make itself ready for the next sniff, 

which may contain different odor information from the previous sniff. If (X, Y) is the 

initial deviation of the system from the equilibrium point (X o, Yo), then the degree to 

which the kth oscillation mode gets excited in the beginning of inhalation is proportional 

to < X X k >. X = 0 corresponds to no excitation to any modes , while X as a random noise 

corresponds to equal chances of excitation to all the modes. Terminating the oscillation 

during the exhala tion leaves only random noise and minim urn information contamination 

from the previous sniff in the system. It therefore helps the bulb to reach an unbiased 

decision state (oscillation mode) on the odor information for the next sniff. Furthermore, 

exhalation also changes the operation point (X 0 , Yo) back to the original value before the 

inhalation (Section ( 4.3.4)), making the system ready for the next sniff. 

5.4.2 Motivation level control 
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The initial operation point (Xo, Yo) before a sniff input should be controlled by the 

motivation level of the animal. If (Xo, Yo) is very low initially, a strong input Iodor is 

needed to raise the bias (X 0 , Y0 ) high enough for an oscillation-burst output. Less strong 

input Iodor would be required for an initially higher bias. Since the initial bias (X0 , Yo) 

is determined by !background and the central input Ic by Equation ( 4.7), it seems likely 

that the motivation level of the animal will be controlled by the input from higher centers. 

The simulation value for Iba ckgroun d and lc are set such that the (X 0 , Yo) with l odor = 0 

is just below the maximum gain point on the non-linear input-output curves (Section 3 .3, 

Fig[4 .5]). This corresponds to a motivated state; a small amount of odor input can raise 

the gain to maxim urn values. Physiologically, the bulbar oscillatory bursts are observed to 

occur only in the motivated animals (Freeman 1978; Freeman and Schneider 1982). The 

experimental measured gain ( defined as the change in the mitral firing rate with respect to 

the change in EEG amplitude ) for bulb neural mass is shown to be higher in the motivated 

states (Freeman 1979a), which can be achieved by raising !ba ckground through the central 

input . Experiments even show the existence of oscillations without the odor input with 

nasal breathing in motivated animals (Freeman and Schneider 1982). 

The central input Ic is also likely to participate in other olfact ory functions such as 

odor-masking or sensitivity-enhancing for particular odors (see also Freeman and Schneider 

1982). This issue will be studied in Chapter 7. 
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6. Simulation of the Bulb Model without Central Control 

The computer simulation of the model has been done on a special case of N = M = 10. 

The parameters used in the simulated model are described in Chapter 3. Here the central 

control from the higher olfactory and brain centers are not considered. Thus the central 

input Ic to the granule cells are kept fixed and considered a background input . The 

simulations start with initial cell internal states close to the background states when no 

odor input is present. Different odor input patterns are represented by different Iodor, 

i.e. , different Podor (see Equation (3.1)) . Appendix A gives the sample computer program 

written in C for the simulation. 

6.1 General Model Response 

Response to odor input: When a particular input Iodor is present for several sniff 

cycles, 

{ 
p (t _ t~nhal e ) +I (ti.nhale) 

I odor 1 odor ) , 

odor(t) = I (te:rhal e ). e-(t-tj"'" 410
)/Te.,h41e 

odor j ' 

if ti.nhale < t < t ~:rha le . 
) - ) ' 

if tj"'hal e < t ::=; t;~~ale. ' 

where t~nhal e and t ':"'h al e are the onset time of the inhalation and exhalation on the J· th 
) 1 

sniff. The model bulb oscillates with about the same frequency as that of the real bulb . 

The oscillation bursts, which ride on the slow baseline shift wave phase locked with the 

respiratory wave (Figure [2.6]), set up during inhalation and drop at the early part of the 

exhalation. The baseline shift is more obvious in the granule cells than the mitral cells. 

The oscillation amplitude, phase and baseline activity level can vary from cell to cell. 

The responses of all cells constitute a response pattern for an odor input. Figure [6.1] shows 

an example of a response pattern for an input pattern during one sniff of 370 miliseconds, 

the first 180 miliseconds of which is inhalation. Both the internal states of the cells and 

mitral cell output G., (X) are plotted in the figure. From the figure, one can see that the 

internal states (corresponding to the cell membrane potentials) of mitral cells 1, 3, 7, and 

9 oscillate with higher amplitudes, while those of mitral cell 4 and 10 oscillate with lower 
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Fig. 6.1 Internal states of mitral and granule cells and the outputs of the mitral cells 
in one sniff cycle with odor input I odor --1. The cells are arranged in the normal reading 
sequence, i.e., from left to right and from top to bottom. 

Below are the internal states of 10 mitral cells 

Below are the internal states of 1 0 granule cells 

~~~~~ 

Below are the outputs of 10 mitral cells 

100ms 

0.1 

0.1 
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amplitudes. Mitral cell 6 has low baseline shifts and therefore has small output although 

its internal state oscillation amplitude is quite substantial. (This implies that although 

some cell membrane potentials are oscillating with high amplitudes, they seldom exceed 

the cell firing thresholds to give substantial action potential output.) Actually, mitral cell 

6 has its baseline shift suppressed by the odor input, and decreases its firing rate by odor 

stimulation as is sometimes observed in biology (Shepherd 1979). Mitral cells 3, 4, 8, and 

10 give more substantial oscillation output. Although mitral cells 4 and 10 have smaller 

amplitudes internal states oscillations, they oscillate near the neuron firing thresholds, 

which amplifies their output by the threshold non-linearity. Furthermore, all the cells 

with substantial amplitudes oscillate with about the same peak frequency but different 

phases (see later sections for calculations of frequencies and phases). Higher frequency 

components are also visible in the activities, and they make the activity waveforms look 

complex. Since the mitral cell output is the only information sent to the higher olfactory 

centers, it will be often referred to later in the thesis as the bulbar response. 

Response to zero-odor input: In agreement with the experimental observations, there 

is very little or no large amplitude oscillatory activity other than some transient ones 

generated by noise (Figure [6.3D]) when Iodor = 0. In fact, such model response is achieved 

by setting the values of !background and Ic appropriately (as already mentioned in Chapter 

3) to agree with the experimental result. 

EEG Explained: The cell activities generate electrical current, which flows from indi­

vidual neurons in the extracellular spaces in and around the olfactory bulb, and gives rise 

to summed extracellular potentials recorded by EEG. When the EEG probe is at the bulbar 

surface on or above the glomerular layer, the granule cells, which generate a dipole field, 

can have their potential field detected by EEG measurement, while the monopole field gen­

erated by the mitral cells because of their morphology can not be detected (Freeman 1975 ). 

EEG measurement therefore represents the average activities of the local granule cells in 

the bulb. Here the approximation by Freeman (1980) is used to calculate the surface EEG 
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as a weighted sum of the granule cell output according to cell distances to the electrode. 

Simultaneous measurements of EEG at multiple spots on the bulbar surface give the EEG 

response pattern to an odor input (Figure [6.2]). Such multi-channel measurement of sur-

face EEG waves (Freeman 1978), though originating from the externally invisible granule 

cell activities, also displays an odor information pattern in the multi-dimensions. 

6.2 The pattern classification properties of the model 

An odor input pattern of one sniff 

{ 
p . (t _tin hale)+ J (tin hale) 

odor odor ' 
Iodor(t) = I (te:rhale). e-(t-t•"'" 410 )/r.,.AAie 

odor ' 

if tin hale :::; t < te:rhale; 

if t ~ te:rhale • 

with Iodor = 0 at tin hale, and t•:rhale fixed is determined by Podor. For a sniff cycle lasting 

370 msec with inhalation taking 180 msec, some Podor induce oscillation, while others do 

not, and different Podor induce different oscillation patterns (Figure [6.3]). This means 

that the bulb model shows the capability of a pattern classifier. (What patterns drive the 

bulb well is as yet arbitrary in the model, for there is no relation between the particular 

connections and the odor used.) As the only bulbar information output, mitral output 

patterns are studied for the pattern classification properties. 

Some measures have been defined to describe the difference between different patterns. 

The mitral output G.,(X(t)) were filtered above 20Hz to obtain the oscillatory signal Sh(t), 

and below 20Hz for for baseline shift S 1(t). Both Sh(t) = {sh, 1 (t),sh, 2 (t), ... ,sh,N(t)} 

and Sz(t) = { Sz,I(t), Sz,2 (t), ... , Sz,N (t)} have N ( = number of mitral cells) components to 

describe all the mitral cells. The oscillation period T is the time lag ~ 5 msec that gives 

the largest auto-correlation for Sh (t). Similar operations are done to the different com-

ponents of Sh(t) to obtain the individual cell oscillation frequencies. Similarly, oscillation 

phase differences between the mitral cells are calculated by cross-correlating the different 

components of Sh(t) after the higher frequency components(!> 1.3/T) are removed (to 

eliminate noise). The phase differences are measured with r espect to the first cell. The 

oscillation amplitude of ith cell is the root-mean-square of sh,;(t) averaged in time. The 
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Fig. 6.2 A: A segment of a simulated surface EEG wave pattern during the oscillatory 
bursts with the odor input IodorJ.· B: Multi-channel recorded bulbar surface EEG wave 
pattern during 100 msec of bursts, taken from Freeman 1978. Both signals in A and Bare 
band-pass filtered. 
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Fig. 6.3 Mitral output reeponae patterns for different inputs I*r of one miff cycle luting 
370 maec. A,B: oecillatory responae~ for two different inputs. C: non~illatory response 
for an input. D: reeponae for no odor inputs. 
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results show that for each response, cells with substantial oscillation amplitudes have 

frequencies within 1 Hz of each other. Define 

Oo•ci: an N -dimensional complex vector whose ith component has its amplitude and 

phase equal to the amplitude and phase of the ith mitral cell oscillation; 

Om ean: an N -dimensional real vector describing the baseline activities above the 

background level (S1(t)- Sdpodor=o) averaged over the sniff cycle; 

Om ean and 6 o.ci: scalars describing the root-mean-square averages of the components 

of Omean and Oo.ci, respectively; i.e., they are proportional to the lengths of the vectors 

0 mean and 0 o.ci' respectively. 

These quantities are used to define the similarity or difference between response pat-

terns. For two response patterns a and b indicated by superindices, possible distance 

measures are: 

(6.1) 

where < UV > means the dot product of vectors U and V, and IU I is the absolute 

value or the length of U. d 1 and d2 give differences in the response pattern forms, while d3 

and d4 give differences in the response levels. d1 ,d2 , ld3 l, ld4 1 ~ 1 suggests the similarity 

between two response patterns. d3 (a, b), d4 (a, b) > 0 could suggest that the response level 

in a is higher than that in b. This choice of difference measure is certainly not the only 

possible one. For instance, the frequencies of response patterns are not accounted for in 

this measure. 

Using the responses to three different odor inputs lodor_1 , Iodor-2 and Iodor...3 (or 

Podor_l, Podor-2 and Podor...a) of three presumably different odor types, Table [6.1] gives 

the differences measured between them, compared with differences between two responses 

with the same Iodor_a for a = 1, 2, 3 input but different system noises. These examples 

show that the three odor inputs are easily distinguishable, while the same odor input 
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Differences between responses to different odor inputs and between responses 
to the same odor inputs with different noises and between the input patterns 
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l= J= d1(a,b) d2(a, b) d3(a, b) d4(a, b) d{n(a,b) d~n(a,b) 

a, b: responses 1 1 0.001 0.068 0.002 -0.016 0 0 
to same odor 

inputs but 
2 2 0.001 0.008 -0.001 0.010 0 0 

different 
system noises 

3 3 0 .000 0.092 -0.012 0.098 0 0 

a: response 1 2 0.253 0.243 -0.210 -0.112 0.014 -0.247 
to Iodor_i 

b: response 
1 3 0.226 0.556 -0.180 0.321 0.031 -0.060 

to Iodor_j 
2 3 0.486 0.474 0 .031 0.419 0.032 0.190 
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with different system noises induces similar responses. The three odor vectors used in the 

simulations have their Pod or, respectively: 

Podor_l = 1/70{0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3} 

1/70{0.6, 0.5, 0.5, 0.5, 0.3, 0.6, 0.4, 0.5, 0.5, 0.5} (6.2) 

Podor..JJ = 4/700{0.7, 0.8, 0.5, 1.2, 0. 7, 1.2, 0.8, 0.7, 0.8, 0.8} 

The differences between the input patterns Podor_a for a = 1, 2, 3 can be calculated by 

replacing Omean with Podor in Equation (6.1) for d 1 and d3 to get the corresponding d~n 

and d;n, respectively. That is, 

din ( b) 1 _ < Podor...aPodor_b > 
1 a, = I II I Podor_a Podor_b 

din ( b) Fodor_a - Podor...b 
3 a, = 

Podor_a + Podor_b 

(6.3) 

d~n indicates the difference in form (not amplitude) of the input patterns Podor, while 

d;n indicates their level or amplitude difference. Table [6.1] shows that the bulb amplifies 

the differences in input vector Podor to give output vectors Oo•ci and Omean (compare 

d~n with d 1 and d 2 ). The vector Podor has all non-negative components, while Omean 

can have both positive and negative components. The bulb also creates the oscillatory 

response Oo•ci from the non-oscillatory (not counting the low frequency respiratory part) 

odor input. 
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7 A model of olfactory adaptation and sensitivity enhancement 1n the ol­

factory bulb 

An application of this bulb model is shown in this chapter. Appropriate inputs from 

the higher centers can enhance or suppress the sensitivity to particular odors. Psychophys­

ical phenomena such as olfactory adaptation (Pryor et al. 1970; Steinmetz et al. 1970), 

sensitivity enhancement in odor searching can be understood from these arguments (Li, 

1989). 

7.1 The Problem 

The olfactory system needs to solve two problems: 1) What is the identity of the input 

odor? 2) What is the intensity of the input odor object? If there is only one odor type 

("odor object") in the actual sensory input, the computation will be straightforward. But 

when there are odor mixtures in the input, the problem becomes complex, and the olfac­

tory system often cannot tell the individual odor subcomponents (Moncrieff 1967). Since 

most receptor cells respond to more than one odor types (Lancet 1986; Sicard and Holley 

1984), and a given odor may contain a mixture of molecules that bind predominantly to 

different receptors, the information about any one odor object may be distributed across 

the whole receptor population. Therefore, it will generally be inappropriate to focus atten­

tion on a small subset of receptors to search for a particular odor object. The integrative 

processing done by olfactory centers must be responsible for identifying individual odor 

objects, separating multiple objects if possible, or sensing an odor mixture as a whole new 

odor type. (Odor mixtures have a complex psychophysics . For example, two substances 

odorous singly may be inodorous together- counteraction; or only one odor type is sensed 

when two are mixed - masking (Moncrieff 1967).) 

Since the major olfactory problem of an animal in a rich olfactory environment is to 

identify odor objects, it would be desirable if the olfactory system could detect individual 

odors in a mixture. Olfactory adaptation may be a strategy used to detect individual 

odor components . It should not be understood as an olfactory fatigue, but as an active 
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mechanism used by the olfactory system to screen out a pre-existing odor object, which 

has already been detected, and to stay sensitive to new odors mixed with the pre-existing 

odors. For example, after a human adapts to vanillin, a mixture of vanillin and coumarin 

smells only of coumarin (Moncrieff 1967). Without adaptation, the new odors may be 

masked or counteracted by the pre-existing odors and not detected as the appropriate 

odor object. 

If the olfactory system can reduce its sensitivity to particular odors in adaptation, it 

is reasonable to expect that it may also be able to increase the sensitivity to certain odors 

in, for instance, odor searching. Psychophysical experiments are not generally done on the 

olfactory sensitivity enhancement by motivation since the subject is not as easy to handle 

as olfactory adaptation. Enhanced sensitivity to a particular stimulus is evident in other 

sensory systems such as vision and audition - attention can be focused on a particular 

object in a large input image to eyes, or a particular speaker in a noisy cocktail party. It 

is not surprising that the olfactory system can also focus its attention on a particular odor 

stimulus. 

What 1s the mechanism for olfactory adaptation or enhancement? It is known that 

the olfactory adaptation is not due simply to the exhaustion of receptor cells (Moncrieff 

1967). The receptor cells keep firing, but within a second, change from phasic to tonic 

response during continuous stimulus (Getchell and Shepherd 1978; Lancet 1986), while the 

olfactory adaptation occurs in the time order of minutes (Pryor et al. 1970; Steinmetz et 

al. 1970). So the olfactory structure responsible must then be at the bulb or higher in the 

olfactory pathway. Physiological experiments (Chaput and Panhuber 1982) show that the 

bulbar mitral cells' firing decreases with long exposure to (a single) odor, suggesting the 

bulb's involvement in olfactory adaptation. 

There are several theoretical reasons suggesting that the feedback signal from higher 

olfactory centers to the olfactory bulb is the source for bulbar adaptation. First, bulbar cell 

exhaustion should not be the source for adaptation since the sensitivity to new odor inputs 
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remains intact after adaptation to the pre-existing odor. Second, with the same odor input 

and no bulbar cell exhaustion, the bulbar response should not change from one sniff to 

another unless the other bulbar input, namely, the central input, changes in time. Third, 

the selectivity of the sensitivity reduction to only the pre-existing odors suggests that the 

bulb is instructed by a well-computed information signal, which is only available from 

higher centers. Fourth, the signals from the higher centers should serve some information 

processing purpose by their existence. Olfactory adaptation as one of the processes used 

to detect new odors, may very likely have the central signal involved in it. 

Here a possible mechanism for a central signal to participate in the adaptation is 

suggested as follows. After the pre-existing odor object is detected, the higher olfactory 

centers have a good knowledge about this odor. They can then send a computed signal 

to the bulb to cancel the effect of this particular odor object input on the bulb output. If 

the cancellation is complete and exact, the bulb output would ideally be as if no such odor 

existed. Because of the selectivity of the cancelling, a new input odor object mixed with 

the pre-existing and cancelled odor object could be detected by the bulb as if it were the 

only component in the odor input mixture. 

We can extend our suggestion to olfactory enhancement. If the higher olfactory centers 

can send signals to the bulb to reduce its response level to a particular odor object, it is 

reasonable to expect that they can also send some signals to increase the response level 

to a particular odor object. If a signal S from higher centers can cancel the effect of a 

particular input odor on the bulb output, an opposite of this signal (i .e., -S, the enhancing 

signal,) may increase the effect of this particular odor. In this case, we have a sensitivity 

enhancement to this odor object. The higher centers should have a knowledge of the odor 

in order to send a right enhancing signal. This requires that the odor information be 

known either through genetics and development or by experience. 

If this suggested mechanism for olfactory adaptation and enhancement is correct, there 

will be the following consequences. Suppose we have a situation when an odor object is 
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detected, and adaptation is set up such that a cancelling signal is sent for this pre-existing 

odor object in every sniff. If in the next sniff, a new odor object is introduced and at the 

same time the pre-existing odor object is withdrawn, then the cancelling signal can not find 

the odor object it is supposed to cancel. This also means that the pre-existing odor object is 

not there to cancel the effect of this central control signal on the bulbar output. Therefore, 

the cancelling signal will affect and impair the bulbar sensitivity and detectability to this 

new odor object. This is known as cross-adaptation and is psychophysically observed (Cain 

and Engen 1969). Experiments show that after sniffing one odor, another odor at the next 

sniff smells weaker than it would be and even smells different sometimes (Moncrief£ 1967). 

( The recovery from olfactory adaptation after the pre-existing odor is removed takes a 

few minutes (Pryor et al. 1970; Steinmetz et al. 1970). Therefore, if there is such a 

cancelling signal, it will not disappear as soon as the pre-existing odor is removed.) The 

cross-adaptation is observed to depend on both the pre-existing and the new odor types, 

and it is non-symmetric on the odor types (Cain and Engen 1969); i.e ., the extent to which 

one odor in cross-adapted by another is different from the extent of vice versa. Another 

consequence is analogous to the cross-adaptation. Suppose an animal is motivated to 

search for an odor object; therefore, an enhancing signal is sent from the higher centers to 

the bulb to enhance the sensitivity to that particular odor. If a different object instead of 

the interested odor object is inhaled, the enhancing signal will distort the bulbar response 

to this odor object because of the effort to enhance the interested odor response. We will 

call this cross-enhancement . There are no experimental data on the cross-enhancement. 

This chapter is to show how the olfactory adaptation and enhancement mechanism 

suggested above can be realized in the bulbar model studied, and confirmed by simulation . 

7.2 A model of central control on bulbar response 

In this model of the olfactory bulb, the mitral cell output has an oscillatory part 

determined by X in Equation ( 4.21 ), and a baseline shift part determined by X o which 

is the oscillation center or the equilibrium point. The granule cell response also has a 
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baseline shift state level Yo and an oscillatory part Y determined by Equation ( 4.6) and 

( 4.7), although this activity is invisible outside bulb. (The mitral cells are the only output 

neurons of the bulb.) 

The oscillatory response X is determined by (X 0 ,Y0 ) via matrix A; thus (X0 ,Y0 ) 

completely determines the bulbar oscillatory. By Equation ( 4.34), the receptor input I 

determines the bulbar output provided that the central input I c stay fixed. When the 

central input Ic is not fixed, it can also control the bulbar output by shifting (X 0 ,Y0 ). 

Calculations show that: 

dXo ~ (a 2 + HW)- 1 (-Hdic + aW- 1 dt) 

dYo ~ (a 2 + W H)- 1 (adlc +die) 
(7 .1) 

This equation can be obtained simply by interchanging X 0 {:=:=:? Y 0 , I {:=:=:? Ic and 

-H {:=:=:? W in the derivation for Equation ( 4 .34). Therefore, we have 

Let 

dX 0 ~ (a 2 + HW)- 1 (adl + dj- Hdlc + aW- 1 dt) 

dY0 ~ (a 2 + W H)- 1 (Wdi- aH- 1 dj + adic + dt) 

Ic - fc,background + fc, contro!, 

(7 .2) 

(7.3) 

where Ic,background is the central background input, which does not change during a sniff 

and controls the motivation level such as sleeping, resting, hunger states, while Ic ,control is 

the control signal, which changes during a sniff. Iodor and Ic,control determine the bulbar 

output activities during a sniff. 

Suppose for a particular odor input Iodor that there is a central control signal I c,control 

which cancels the effect of Iodor on (X 0 , Y 0 ), such that (X0 , Y 0 ) stays the same as if neither 

Iodor nor Ic,contror exists - cancelling, i.e., 

dXo ~ (a2 + HW)- 1 (adlodor + djodor- Hdlc,contror + aW- 1 djc,contror) = 0 

dYo ~ (a2 + w H)- 1 (Wdlodor- aH-ldjodor + adlc,control + dL ,control) = 0 

(7.4) 
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Then not only the baseline bulbar response X 0 , but also the oscillatory X by its dependency 

on (Xo, Yo) in Equation (4.21) stay the same as if no odor input exists. In this case, a 

complete self-adaptation to that odor input is achieved, and we will denote the control 

signal as I~ancel. 

When (~Xo,~Yo) depends linearly on (Iodor,Ic,control) , a central control signal 

/enhance _ -"1/cance l 
C I C 

for 'Y > 0 

will enhance rather than cancel the effect of Iodor• and thus enhance the bulbar output level 

or the sensitivity to that particular input odor. Since H = H 0 G 11 (Yo) and W = W 0 G.,(X 0 ), 

Equation (7.2) is a non-linear equation. Thus, such an enhancing signal is certain to 

work when (X0 ,Y0 ) is in a near linear range of the gain curves G., and G 11 with I od or · 

Physiological experiments show that when the oscillation signals are small, the bulbar 

system operates in a near linear range (Freeman 1979a) with odor input. When the 

near linear approximation is not valid, the enhancing signal can not simply be a negative 

constant times the cancelling signal. 

An absolute self-adaptation signal I~ancel satisfying Equation (7.4) for odor input 

Iodor can not be achieved generally. Since Xo and Yo are N and M dimensional vectors, 

respectively, Equation (7.4) is a system of N + M equations. This number of equations 

is too many for solving M unknown components of an M dimensional vector I~anc e l. 

Therefore, no cancelling signal I~ance l will satisfy Equation (7.4) for a given odor Iodor, 

generally. 

We can compromise by modifying I~ancel ( and thus 1:nhance ) such that weaker 

requirements for cancelling are satisfied. Since the mitral cells are the only output cells of 

the bulb, we need only demand that the mitral cell activity induced by Iodor b e cancelled, 

while the granule cell activity can be different from the no-odor input case. To have the 

baseline response X o raised by Iodor be cancelled (suppressed) by I~ancel, we have 

(7 .5) 
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We already know from Chapter 4 and 5 that the necessary condition for oscillatory response 

is to have both X 0 and Yo be high enough. Therefore, the above suppressed baseline re-

sponse X 0 also makes the non-damped oscillatory mode impossible, as if no odor input 

exists. An effectively complete self-adaptation is therefore fulfilled . Such an I~ancel, how-

ever, cannot cancel the effect of I odor on the baseline shift of the granule cells Yo. A 

solution of Equation (7.5) for I~ancel with M unknown variables will generally exist, since 

the number of equations N, which is number of the mitral cells, is much smaller than M , 

which is the number of the granule cells (Shepherd 1979). 

It is not easy to calculate the I~ancel, since Equation (7.5) is non-linear (H and W 

depend on (X 0 , Y0 ) ). In the computer simulation, a simplification is used. If the inputs 

(I, Ic) change in a time scale much longer than 1/a ~ 7 mesc, then Equation (7.2) becomes 

(see Chapter 4) 
dX0 ~ (a 2 + HW)- 1 (adl- Hdlc) 

dY0 ~ (a 2 + W H)- 1 (Wdl + adlc) 

And Equation (7.5) becomes 

(7.6) 

(7.7) 

This is true for I since a sniff cycle is about a few hundred milliseconds, and it is reasonable 

to assume that the central control Ic is also modulated in a time scale of a sniff cycle. By 

Equation (7.7), dl~ancet = n- 1 adlodon suggesting that I~ancet will change in about the 

same time scale as I odor. Therefore, the approximation is self-consistent. (It can be no ticed 

in deriving Equation (7 .1) that I and Ic are analogous. So it is to be expected that Iodor 

and J~ancel should change in the same time sca le.) 

Now if we have 

/enhance __ /cancel 
c - I c ' 

(7.8) 

we have response enhancement. Instead of suppressing X 0 , which is being raised by Iodo n 

1:nhance helps Iodor to raise Xo in the same direction. To the mitral cells, it is almost 
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as if the odor input is stronger in concentration than it actually is. If Yo is also raised 

to the extent as if a stronger input odor were inhaled, then the oscillatory bulbar output 

determined by (X 0 ,Y0 ) will be enhanced as if a stronger input odor were inhaled. But 

on the contrary, Yo is being suppressed by the I:nhance while being raised by I odor. By 

Equation (7.6), (7.7) and (7.8), 

(7.9) 

The larger the I:nhance (or 7), the more Y 0 is suppressed. 

We now examine closely the role of Yo and how odor enhancement works. The (weak) 

odor input Iodor raises (Xo,Yo) to higher a gain (G~(X0 ),G~(Yo)) point . Let us denote 

this y as yweaker-odor (which can be raised further to y•tronger-odor > yweaker-odor 
0 0 0 0 

if a stronger odor is inhaled). The negative central control signal I:nhance lowers the 

central input Ic = Ic,background + I;nhance to the granule cells, and thus lowers Y 0 to 

yoenhance < yoweaker-odor (Fig.[7.1]). This effectively reduces the granule inhibitory drive 

to the mitral cells and raises X 0 , as if a stronger odor is inhaled for the mitral cells. But 

for granule cells Yen hance < y•tronger- odor so enhancing is not exactly equivalent to 
' 0 0 ' --

inhaling a stronger odor. Since granule cells affect the bulbar oscillatory response by the 

g ain G' (Y ) thus as long as yenhance and y•tronger- odor are in about the same linear 
'II 0 ' 0 0 

range on the gain curve Gy(Y0 ), the mitral cell output will be insensitive to the exact Y 0 • 

In such cases, Xo will be the only important factor to determine bulbar output, and it will 

appear as if a stronger odor is inhaled because of the raised X 0 • Yo without odor input is 

in a very non-linear range of Gy (Yo), and has a gain G~ (Yo) too low for oscillatory bulbar 

response. Therefore, two necessary conditions for olfactory enhancement are: a): I:nhance 

to lower Yo and thus raise X 0 to a higher level; b): I:nhance should not be so strong as 

to make Y
0
enhance lower than Yo without odor inputs such that G~(Y0enhance) is too small. 

By Equations (7.6) and (7 .9), condition b means 

2H-1 W or ')'O: < . (7.10) 
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Fig. 7 .1 · This figure illustrates the possible positions 
of Yo indicated by circles on the input-output curve Gy 
under different circumstances. The circle numbered "0" is 
the Yo with no odor input Iodor = 0, "2" with inhaled odor 
without enhancing, "1" with the same odor input with 
enhancing, "3" with a stronger odor input, "-1" without 
odor input while with enhancing. The region inside the 
dashed lines is the linear region of Gy where the oscillation 
output is insensitive to the exact position of Y0 • 
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Since the scales of a, H and W satisfy the relation (Chapter 4) a 2 :=::; HW = A, Yo will be 

raised as the combined effect of Iodor and I;nhance as long as 'Y is not too much larger than 

unity. It is argued in Chapter 3 that G 11 (for the granule cells) has a relatively long linear 

range. Thus, with a not too strong enhancing signal, an enhanced baseline shift bulbar 

output G.,(Xo) will enhance the oscillatory part of the output as well. 

A consequence of this argument is that no odor will be detected (no oscillation) if 

no odor exists even if sensitivity enhancement is going on for a particular odor. When 

Iodor = 0, the condition b mentioned above or inequality (7.10) is violated, and non-

damping oscillation bulbar output becomes impossible, although the baseline shift output 

determined by X o is raised by the enhancing signal. Since it appears that the oscillation 

pattern output carries the essential part of the odor information, a higher baseline output 

without oscillation means no odor information inputs to the olfactory cortex. 

The central input to the bulb during enhancement is Ic = Ic,background + I;nhance; 

since 1;nhance is negative, enhancing corresponds to lowering the central input from the 

background level. For biological synapses of a definite sign (excitatory), Ic ;:=: 0 or 

i[enhance I < I should always be satisfied This implies that [enhance ampli" c _ c,background • c -

tude is restricted below a maximum value. For a not too weak odor input, a small 1;nhance 

is enough to enhance the output to be observable. For too weak an odor input, inequality 

(7 .10) implies that too strong an 1;nhance would not help the enhancement. Thus, in most 

cases for the purpose of enhancement, only II;nhance I :=::; Ic,background is needed. 

Cross-adaptation and cross-enhancement automatically follow by the argument above. 

For odor a denote [cancel_a and Ienhance_a as the cancelling and enhancing central signal 
' c c ' 

respectively, for its receptor input Iodor_a. The cancelling signal [~an e e l ...a for odor a can not 

cancel quite completely odor input Iodor_b for odor b i- a. However, I~ancel_a will impair 

the bulbar response for Iodor-'> since I~ancel_a does actually suppress the mitral baseline 

Xo (Eq. 7.6), although not quite as if a weaker odor b is inhaled. Similarly, an enhancing 

signal I;nhance_a for odor a can only distort the bulbar response to odor input IodorJ· 
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Even though I:nhance..A raises X 0 , it does not raise it in the same direction as if a stronger 

input of odor b is inhaled. The bulbar output will be an information mixing or distortion 

of odor a and b. 

7.3 Simulations 

Computer simulation is done to verify the olfactory adaptation and enhancement in 

the olfactory bulb. The simulated model with all its parameters is the same as described 

in Chapters 3 and 6. To solve for the cancelling signal [~an eel for odor input Iodor, use 

equation 

It follows that: 

dl~ancer ~ H- 1 adlodor = (HoG~(Yo))- 1 adlodor· (7.11) 

This is very difficult to solve since H depends on Y 0 , which changes with time as 

(7.12) 

Further approximations are used in the simulation to calculate [~an eel. First neglect the 

change of Yo (or H ) with time and take 

(7.13) 

where Y 0 (t = 0) and H(t = 0) are, respectively, Yo and Hat the beginning of the inhalation 

t = O, when Iodor = I~ancer = 0. Thus, 

(7 .14) 

But such an approximation works well only when Iodor is small. So the second stage of 

the approximation is to take 

(7.15) 
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where {J is a constant that is tuned in the simulation until a best cancellation is achieved. 

Here the better cancellation means not only the bulbar output G: (X), but also the os-

cillation equation operation point Xo is closer to that of the no-odor input, such that an 

inhalation of a new odor input mixed with the pre-existing odor induces a response closer 

to the response to the new odor alone. The best cancellation case is a compromise between 

these two requirements judged by visual inspection. The final value is {J = 0.452 for a sniff 

cycle of 370 msec, during the first 180 msecs of which is inhalation. 

With such an approximated cancelling signal, the enhancing signal is 

! enhance ,.._, 1cancel 
c "'-' _, c I> 0. (7.16) 

The value of 1 used in most of the simulation is 0.5. Other values can be used to make 

the olfactory enhancing signal stronger or weaker. This ad hoc procedure generates an 

adequate cancellation and enhancement, but not as good a signal as could in principle be 

done with less approximations. In order to see the effect of cancelling and enhancing, I 

use the same measures as in Chapter 6 (Equation (6.1) to see the difference between the 

two bulbar response patterns in a sniff cycle. Note that d3 (a,b),d4 (a,b) > 0 implies that 

the response level in a is higher than that in b. The three different odor inputs Iodor_1 , 

Iodor_2 , and Iodor....a (Equation (6 .2)) are used in the simulations for olfactory adaptation 

and enhancement. 

Simulation of self-adaptation (self-cancelling) shows that 

1 c ancel...i = {JH(t = o)-tai . e - odor_s 

diminishes quite well the bulbar response to the odor I odor...i for i = 1, 2, 3. Application of 

half of the cancelling signal, i.e., Ic, control = 0.5I~an ce l...i, reduces the response level of the 

bulb to input Iodor...i • while the response pattern waveform is still similar to the original 

response without cancelling. This implies that the response signal to odor is less strong 

with non- complete adaptation than it would be without adaptation, and that a stronger 
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input of the pre-existing and adapted odor type will still be detected by the bulb although 

it would smell less strong. Fig [7.2] shows an example of self-adaptation, and Table [7.1] 

gives the measured differences between the adapted and non-adapted responses to odors. 

Notice that d 3 , d 4 ~ 1 between the original response and self-adapted response means 

that a complete self-adaptation is achieved. d 3 and d 4 between the simulated original 

and fully adapted responses are ~ 0.6 - 0.8; this is partly because the granule cells are 

raised to highly responsive internal state Yo, which enhances the system noise and raises 

up the 6 osci and 6 mean levels. Another reason is that the cancelling signal used is an 

approximation. The fully adapted response waveform, which is mostly amplified system 

noise, is very different from that of the original response. 

Simulations also show that the model bulb can remain sensitive to new odor inputs 

Iodor...i after being completely self-adapted to the pre-existing odor Iodor-.i fori=/; j. Assume 

that the total receptor input to the bulb is a linear sum of the odor components in a 

mixture: 

]odor = fodor-.i + lodor..j • (7.17) 

Since the bulb is adapted to Iodor_;, the cancelling signal I~anceu is sent to the bulb from 

the higher centers. Simulations show that both the response waveform and the response 

level in this situation look quite similar to the response to only Iodor...i without adaptation 

(Fig [7.2], Table[7.2]). 

In the simulation for olfactory enhancement Jenhance-.i = -"'Icancel_J is taken with 
' c 1 e 

1 = 0.5 for i = 1, 2, 3. Figure [7.3] compares the bulbar response to an odor example of 

half the input strength, i.e., Iodor = 0.5Iodor_J• with and without enhancing. Enhancing 

raises the response to half-strength-input to about the level of original response, while the 

response waveform stays similar to the original response (Table [7.3]). Similar simulations 

can be done with an even weaker odor input or with different strength-enhancing signals ( 

different 1 values ). Since the quality of the enhancing relies on the linearity of the granule 

cells, the weaker the enhancing signal, the more likely the Yo value stays in the same linear 
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Table [7.1] Difference between adapted and non-adapted responses 

odor 
d1(a,b) d2(a, b) d3(a, b) d4(a, b) number 

a: Non-adapted 1 0.003 0.039 0.271 0.399 
response 

b: Half-adapted 
2 0.014 0.041 0.274 0.471 

response 

3 0.012 0.078 0.309 0.313 

a : Non-adapted 1 0.144 0.803 0.690 0.728 
response 

b: Fully adapted 
2 0.166 0 .736 0.743 0.770 

response 

3 0.642 0.788 0 .774 0.589 
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Figure 7.2 - Demonstration of olfactory adaptation. A,E: Original responses to Iodor-1 

and I o d or-2 , resp ectively. B ,C: Half-adapted and fully adapted responses to I o d o r_1 • D : 

Response to no odor input without adaptation. F : Response to Iodo r-1 + Iod or-2 without 

adaptation. G: Response to I o dor-1 + Iodor.-2 with full adaptation to IodorJ· 
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Figure 7.3 - Demonstration of olfactory enhancement. A ,B: Responses to 0.5lodor_l 

without and with enhancement, respectively. C,D: Responses to no odor input without 

and with enhancement for Iodor_l, respectively. 



Table [7.2] 

Differences between the original response to an odor and the 
response to this odor after fully adapted to another odor 

Response a: the original response to Iod.or-i for all i 

Response b: the response to lod.or = lod.or-i + lod.or-i 

with cancelling signal Iga.neeL; for j '=/= i 

i= J= dl(a, b) d2(a, b) d3(a, b) d,.(a, b) 

2 0.025 0.039 0 .010 0.070 
1 

3 0.016 0.013 0.008 0.065 

1 .0.030 0.038 -0.029 0.087 
2 

3 0.022 0.009 -0.023 0.027 

1 0.006 0.029 0.005 0.151 
3 

2 0.009 0.037 0.021 -0.002 

Table [7.3] Differences between the enhanced and non-enhanced responses 

odor 
dt(a,b) d2(a, b) d3(a, b) ~(a, b) 

number 

a: Non-enhanced 
1 0.001 0.083 0.272 0.423 

original 
response 

b: Non-enhanced 
2 0.013 0.048 0.286 0.420 

response to 
half-strength input 3 0.001 0.045 0.272 0.399 

a: Non-enhanced 
1 0.003 0.014 0.010 0.081 

original 
response 

b: Enhanced 
2 0.002 0.007 -0.001 -0.009 

response to 
half-strength input 3 0.005 0.023 0.006 0.165 
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region, and the less distortion in the enhanced response, although a weaker enhancing 

signal results in less response level enhancement. Caution should be taken always to have 

Ic ;:::: 0. Violating the inequality (7.10) or having too strong an enhancing signal implies 

no oscillatory response. 

Cross-adaptation or cross-enhancement can be simulated as well. Among the simu­

lated examples are those with odor input Iodor.J and the cancelling 6/~ancel...j for cross­

adaptation, and those with odor input 0.5/odor.J and enhancing signal -6/~ancel...j for 

cross-enhancement for i =J j. 6 is a positive number whose value is taken as 0.5. Other 

strengths of the input odors and the cancelling or enhancing signals can be used for simu­

lations as well. Different degrees of information mixing and distortion are seen in both the 

cross-adaptation and cross-enhancement, and they depend on the odor pair; i.e., odor i 

can be cross-adapted or cross-enhanced by odor j to a different extent as the extent of vice 

versa. For instance, response to 0.5lodor_1 with enhancing for Iodor-2 is quite similar to the 

original response to Iodor_1 , while the response to 0.5lodor_2 is more distorted by enhanc­

ing for Iodor_l, and resembles the original response to Iodor_l, even though the strength 

of Iodor_l is weaker than that of Iodor-2· Non-linearity of the system presumably plays an 

important role in the asymmetry between the two odors in a pair for cross-adaptation and 

cross-enhancement. Tables [7.4), [7,5) and Figure [7.4) show the differences between the 

cross-adapted or cross-enhanced responses and the original responses. 

7.4 Self-adaptation and recovery time courses 

Psychophysical experiments (Pryor et al. 1970; Steinmetz et al. 1970) show that 

olfactory adaptation set up slowly in a time period of several minutes. An odor exposed 

to the nose smells less and less strong until no odor perception or a constant faint odor 

perception is reached. The perceived odor strength S(t) can be thought of as following an 

exponentially decaying curve described by (Fig [7.5]): 

(7.18) 



Table [7.4] 

Differences between the original responses and the 
cross-adapted responses 

Cross-adapted response is response to odor input Iodor..i. 

with cancelling signal 0.5Ig4 "cel-i 

'= J= d1(a,b) d2(a, b) da(a, b) d"(a,b) 

a: Original 2 0.246 0.595 0.320 0.646 response 
1 

to lodor..i. 3 0.272 0.266 0.118 0.421 

b: Cross-
1 0.072 0.131 0.095 0 .188 

adapted 2 

response 3 0.106 0 .115 0.040 0.575 

to lodor-i 
1 0.015 0.755 0.189 0.362 

3 
2 0 .038 0.266 0.296 0.490 
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Table l7.5} 

Differences between the original and cross-enhanced responses 

Cross-enhanced response is response to 0.5/odor..i 
with enhancing signal 0.5I;""4 "ce_; for i i= j 

I= )= dl(a, b) d2 (a, b) d3(a, b) d4 (a, b) 

a: Original 2 0.050 0 .046 -0.102 0.184 
1 

response 
3 0.177 0.316 -0.091 0.560 

to Iodor_i 
1 0.121 0.126 0.079 0.239 

2 
b: Cross- 3 0.291 0.356 -0.005 0.330 
enhanced 
response 1 0.008 0.036 0.076 0.107 

3 
to 0.51odor ..i 2 0 .012 0 .042 -0.019 0 .100 

a: Original 2 0 .134 0.175 -0.089 -0.290 
1 

response 3 0.017 0.250 -0.088 -0.321 

to Iodor_j 
1 0.065 0.095 0.112 -0.131 

2 
b: Cross- 3 0.019 0 .061 0 .018 0.070 
enhanced 
response 1 0.193 0.559 0.103 -0.386 

3 
to 0.5/odor..i 2 0.310 0.403 0.006 -0.473 
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Figure 7.4 - Demonstration of cross-adaptation and cross-enhancement. A,B: Original 

responses to Iodor_1 and I odor-2• respectively. C: Response to 0.5Iodor_1 with enhancement 

for I odor-2. D: Response to 0.5/odor-2 with enhancement for Iodor_l• E: Response to I odor_l 

with half-adaptation to Iodor-2• F: Response to Iodor-2 with half-adaptation to lodor..l· 
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Figure 7.5 - The upper figure shows the experimental adaptation and recovery curves 

(Steinmetz et al. 1970) . The lower illustrates the simulated olfactory adaptation curve. 

The vertical axis is Sf S;; the horizontal axis is time in the unit of a sniff cycle. The 

initial odor detection and adaptation start at time = 0 sniff cycle. Odor input is I odor-2, 

s1 = o.2S;, r ~ 33.3. 
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where S; and S1 are the initial and final perceived odor strength, and the adaptation 

starts at t = t 0 which is assumed to be the time when the odor is initially detected, r is 

the time decay constant of the perceived odor strength with time. The perceived strength 

S(t) can be thought of as proportional to the Omean and Ooui described in Chapter 6; i.e ., 

S = cOmean + (1- c)Oo•ci · S 1 and r may depend on the odor type and concentration . 

Olfactory recovery occurs after the odor is withdrawn. The sensitivity to the adapted 

odor gradually increases and saturates at the original sensitivity before adaptation (Figure 

[7.5]). The sensitivity recovery takes about the same time as it is for the adaptation, sug-

gesting that the olfactory adaptation and recovery may or may not use the same underlying 

mechanism in the brain . The model can, however, be used to explain the self-adaptation 

time course. 

Suppose that the central brain sends an extra cancelling signal D..Ic if the odor is 

perceived at the last sniff; i.e., Ic --+ Ic + D..Ic. The original I c is the sum of the background 

central input I c,background and any other central controlling signal which existed at the last 

sniff, for instance, some ( non-complete ) cancelling signal already sent at the last sniff for 

the existing odor. Assume that at the present sniff: 

s- s, 
D..lc = 1/r S · I ; ance/' 

• 
(7.19) 

where S is the perceived odor strength at the last sniff. Encouraged by the result of the 

linear approximation for the cancelling, I assume that 

D..lc 
D..S ~ - S · 

J ea n ee l 1
' 

c 

(7 .20) 

where D..S is the difference of the perceived odor strength between the last and present 

sniff. It follows that 

D..S ~ (S- S 1 )fr. (7.21) 

This process will continue for the next sniff, and finally Equation (7.18) results, where the 

time t can be thought of as the discrete time for the odor perception at discrete sniffs. 
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Adjusting the adaptation speed with Tin Equation (7.18) causes different adaptation time 

scales . Simulation is done (Figure [7.5]) with c = 0.5, S 1 = 0.2S; and r = 33.3 sniff cycles. 

The simulated adaptation curve is not very smooth partly because of the different system 

noises in the different sniffs. 

When the odor is suddenly withdrawn, it can no longer be perceived and the cancelling 

signal will then decay, which may involve some other mechanism . 
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8. Conclusions and discussion on the olfactory bulb model 

The present model of the olfactory bulb is a simplification of the known anatomy 

and physiology. The net of the mitral and granule cells simulates a group of coupled non­

linear oscillators, which are the sources of the rhythmic activities in the bulb. The coupling 

makes the oscillation coherent across the whole bulb surface with a single frequency for each 

sniff but different amplitudes and phases for different mitral cells. The model suggests, 

in agreement with Freeman and coworkers, that stability-change bifurcation is used for 

the bulbar oscillator system to decide primitively on the relevance of the receptor input 

information. Different non-damping oscillation modes that emerged from the bifurcation 

are used to distinguish the different odor input information, which is the driving source 

for the bifurcations. These oscillation modes are approximately thought of as the decision 

states of the system for the odor information. The coupling between the oscillators implies 

that information from different parts of the bulb is combined to make the coherent output 

oscillation mode, and thus a unitary decision. In Chapter 9, more general cases with more 

complicated cell connections will be analyzed . 

This model bulb encodes the non-oscillatory input in the oscillatory "AC" output. 

Since the oscillation is intrinsic in the bulb, the model amplifies the weak odor input by 

transforming it to the oscillatory output. Consequently, whether or not an oscillatory mode 

exists indicates whether an odor is present. With the extra information represented in the 

oscillation phases of the cells, the bulb emphasizes the differences between different input 

patterns (Chapter 6). Both the analysis and simulation show that the bulb is selectively, 

i.e., non-uniformly, sensitive to different receptor input patterns. This selectivity as well as 

the motivation level of the animal could also be modulated from higher centers (Chapter 5). 

The information encoding scheme suggests that to extract information from the oscillation 

amplitudes and phases, the mitral cells, rather than the EEG waves (in which the detailed 

amplitude and phase information tend to be averaged out), should be looked at . Within 

this model, the information is carried by the detailed pattern of activity of the individual 



90 

mitral cells; the spatial EEG pattern is an information epiphenomenon. This model does 

not exclude the possibility that the information is coded in the non-oscillatory slow wave 

X 0 , since X 0 is also determined by the odor input. 

The chief behaviors do not depend on the number of cells in the model. The frequencies 

of the oscillation modes are close to the resonant frequency of a single oscillator in the 

system and are independent of the size of the model. However, since the number of the 

possible oscillation modes is the same as the number ofthe mitral cells, the simulated model 

with less cells has fewer oscillation modes or decision states, and it therefore has smaller 

memory capacity than the real bulb . The simulated bulb does not respond oscillatorily to 

most randomly selected input patterns Podor. 

This model uses a continuous input-output function, instead of discrete spikes gen­

erated by neurons, to describe the neuron output. Since the continuous output value is 

meant to simulate the average of the firing rate of the neurons, unaveraged discrete spike 

output should chiefly introduce more fluctuations in the system. If the biological system 

had approximately equivalent close by neurons, then a continuous output would be a good 

approximation to the group average. Simulation was also done on a model, in which each 

cell in the original model was replaced by a group of cells that generated action potentials 

rather than continuous valued output (Figure [8 .1]). Oscillatory behavior is obvious in the 

summed spike trains of groups of local cells. But the spike train of a single cell appears 

very noisy and sparse with barely recognized oscillatory behavior. In the physiological ex­

periment, each mitral cell fires on the average about once in 100 ms (Freeman and Skarda 

1985), making it hard to recognize an oscillation with a period of 25 ms in the spike train 

of a single cell. On the other hand, the EEG wave is clearly oscillatory since it is from the 

averaged activities of many local granule cells. 

The simulation is done on a one-dimensional ring of mitral and granule cells, while 

the real bulb has cells sitting on two-dimensional segments of a sphere. The dimension 
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Firing histograms of local clusters of mitral cells 

Ill II II II 

II 

100ms 
Spike trains of one mitral cell in each local cluster 

Figure 8 .1 - Simulated bulbar mitral cell response pattern corresponding to Fig.6.A. 

Ea.ch cell is modeled to ha.ve discrete action potential firings of maximum ra.te a.bou t 

300/sec. Ea.ch cluster ha.s about 310 mitral cells, a.nd thus a. maximum firing ra.te of 

93,000/s. 
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of the cell arrangement is not crucial in the model. One simulation was done on a two­

dimensional surface of the cells to mimic the real bulb, and the basic oscillation phenomena 

were very similar to those of the one-dimensional rings. 

This model is successfully used to explain the observed psychophysical phenomena 

of both the self-adaptation and cross-adaptation. The model bulb can remain sensitive 

to new odor input, including a stronger input of the pre-existing odor type, after being 

adapted to the pre-existing odor input. Distorted and reduced response is seen for an 

odor input that replaces the pre-existing and adapted odor input before recovery (cross­

adaptation). Furthermore, sensitivity enhancement by central control is postulated for the 

olfactory bulb. It produces response level enhancement when sniffing a weaker odor (self­

enhancement) . The model bulb does not respond oscillatorily (or sensibly) to no odor input 

even if the olfactory enhancement signal is sent from the central brain for a particular odor. 

Different degrees of odor information mixing and distortion can be seen if the bulb has its 

sensitivity enhanced for one odor while another odor is inhaled (cross-enhancement). This 

can also be considered reasonable since it is analogous to the cross-adaptation, which is 

psychophysically observed. Physiological experiments demonstrate that when the central 

input to the bulb is blocked, the neural oscillatory activity induced by breathing is increased 

substantially (Gray and Skinner 1988). This model of olfactory enhancement agrees with 

this experimental result by showing that reducing the central input enhances the bulbar 

(oscillatory) response to the odor input. The time course of olfactory adaptation can also 

be explained in the model. 

The adapting and enhancing signals in the computer simulation are calculated with 

several stages of approximations: the slow input approximation described in Section 7.2, 

and the linear approximation in Section 7 .3. The simulated results are quite satisfactory 

with these approximated signals. The linear approximation works better with smaller 

signals. I believe that if these signals are calculated with less approximations, the simulated 

results would be better. 
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A necessary condition for the higher olfactory centers to send an adapting (cancelling) 

or enhancing signal for a particular odor is that they have enough information about that 

odor to send the appropriate signal. This condition is easily fulfilled in the adaptation 

process since the adaptation is triggered after the odor is detected, and the higher centers 

will then have a memory of the recent input odor. To enhance the sensitivity to a particular 

odor (which may or may not be present), the higher centers must already know the odor 

either from long-term memory of experience or genetically inherited information. 
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9. Beyond the Olfactory Bulb 

9.1 Generalization to the Olfactory Cortex and Other Parts of the Brain 

This model of the olfactory bulb can be generalized to other masses of interacting 

excitatory and inhibitory cells such as those in the olfactory cortex, neocortex, and hip­

pocampus (Shepherd 1979; Singer et al. 1988; Eckhorn et al. 1988), where there may 

be connections between the excitatory cells as well as the inhibitory cells, as is claimed 

by some for the olfactory bulb (Nicoll 1971; Freeman 1975, 1979b, 1979c). One can use 

the same formulation as in the bulb model, with mitral cells generalized to N excitatory 

cells and granule cells to M inhibitory cells, add Bo and Co to represent excitatory-to­

excitatory and inhibitory-to-inhibitory connection matrices, respectively. Then Equation 

( 4.6) becomes: 
X= -HoGy(Y)- a,X + BoG,(X) + I(t), 

Y = W 0 G,(X)- ayY- CoGy(Y) + Ic(t). 

9.1.1 Adiabatic Non-linear Coupled Oscillator System 

(9.1) 

If the inputs (J,Jc) for these systems also change very slowly in a time scale much 

longer than with the characteristic neural dynamic time constant (e.g., the oscillation 

period), then the adiabatic approximation can again be used, and a similar equilibrium 

point (X 0 , Y 0 ) follows the equation (cf. Equation (4.7): 

Xo ~ 0 = -HoGy(Yo)- a,Xo + BoG,(Xo) + I(t), 

Yo~ 0 = WoG,(Xo)- ayYo- CoGy(Yo) + Ic(t). 

Linearizing around (X 0 ,Y0 ) (cf. Equation (4.9)), 

X= -HY -a,X + BX, 

Y = WX -ayY -C'Y. 

(9 .2) 

(9.3) 

where (X, Y) is the deviation from (X 0 , Y0 ), H and W are the same as those defined in 

Chapter 4, B = B0 G~(X0 ), and C' = C0G~(Y0 ). Eliminating Y leads to (cf. Equation 

( 4.15)) 

X+ (a,- B + ay + C)X +(A+ (a,- B)(ay + C))X = 0, (9.4) 
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where C = HC'H- 1 = HC0G~(Yo)H- 1 • This is a system of N coupled oscillators with 

the ith oscillator following the equation 

(9.5) 

jfci jfci 

where (BC);1 means the corresponding matrix element of the matrix product BC. The left­

hand side describes a damped oscillator, while the right-hand side describes the couplings 

from other oscillators. The oscillator couplings are more complicated in this system; even 

the dissipations in oscillators are coupled (see the x1 terms above) . 

Replacing a., by a., - B, and ay by ay + C, Equation( 4 .15) becomes Equation (9.4). 

This means that if coupling B and C is local (i.e., B and C are a lmost diagonal), hav-

ing excitatory connections Bo is like reducing dissipation for oscillators, while having 

the inhibitory connections is like adding some oscillator dissipation. Strong enough lo-

cal excitatory-to-excitatory connections Bo can reduce the oscillator dissipations so much 

that the net can oscillate even without much input I as is simulated by Freeman (1979b, 

1979c). This is, however, not necessarily true if the connection Bo is non-local (as in the 

olfactory cortex, Haberly 1985). This is because neighboring oscillators i and j for i ~ j are 

more likely to oscillate in phase; therefore, with local connections B 0 , the coupling B;1 x1 

from the neighboring j'h oscillator to the ith oscillator is more likely to be in phase with 

x;; this feeds the energy to the ith oscillator (see Chapter 4 ) . A negative dissipation intro-

duced by a local excitatory-to-excitatory connection B o can become positive non-locally 

when the two oscillators coupled by B are oscillating with opposite phases. 

A more compact way to write Equation (9.4) is 

X + B' X + A' X = o, (9.6) 

where A'= A+ (a.,- B)(av +C), and B' =a.,- B + ay +C. Equation (9.5) becomes 

(9 .7) 
jfci j fci 
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In such a system, the oscillation modes are no longer the eigenvectors of matrix A 

or A' (cf. Equation (4.18). To obtain the oscillation modes, define (N + M) dimensional 

( X) . (-a.,+ B -H ) 
vector Z = y , and (N + M) X (N + M) matnx P = W -a _ C' , and 

y 

Equation (9.3) will be 

z = p.z. (9.8) 

The system has (N + M) solution modes. For eigenvector Z~c of matrix P with eigenvalue 

A~c, the kth mode is 

(9.9) 

fork= 1,2 ... ,N,N+1,N+2, ... ,N+M. A~c isacomplexvaluednumber. Iflm(Ak) =I 0 

(Im means the imaginary part of a complex number), then the kth mode will be an 

oscillation mode. Not all the modes actually oscillate. In the special case when B = 0 and 

C = O, for example, there are (M - N) non-oscillatory modes 

zcx( (9.10) 

where Y~c' satisfies HY~c' = 0 for k' = 1, 2, ... , (M - N). These (M - N) modes have the 

Y components decoupled from the X components, and are therefore not available from 

Equation (9.4) (or (4.15) in the special case). The rest of the (N + M) modes (2N of them) 

involve non-zero X components. Since Pis a real matrix, all its non-real eigenvalues come 

as complex conjugate pairs. Therefore, these 2N modes are actually N pairs of modes. 

They are the modes of Equation (9.4) (or (4.15) in the special example). (Notice that the 

solution (4.21) comes with the pair X~ce-at+iV~t and X~ce-at-iV~t for all modes k.) 

For those oscillatory modes (Im(A~c) =I 0), the oscillation amplitudes will increase 

with time if 

Re(A~c) > 0. (9.11) 

Again, as in the case for the olfactory bulb, whether the system will have sustained oscil-

lation patterns, and which oscillation modes shape the output will be determined by the 
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equilibrium point Z 0 = (X 0 , Yo), which is determined by the input (I, Ie)· In other words, 

the oscillator sytem is adiabatically changed by the external input (I, I e)· When the os-

cillation amplitude is large, the non-linear effect is visible again, and the waveform will be 

complex. When the output is carried by the principal excitatory cells (as in most brain 

structures), only the first N components of Z = ( ~) are important for an output 

pattern. 

9.1.2 Externally Driven Non-linear Coupled Oscillator system 

The model can be generalized further to the cases when adiabatic approximations can 

not be used; i.e., the external input (I, Ie) does not change slowly enough compared with 

the neural dynamics. The olfactory cortex, for example, receives olfactory bulb output, 

which oscillates with about the same frequency as that of the olfactory cortex activities 

(Freeman 1978). In these cases, the external input can be separated into fast and slow 

components. Suppose I(t) _ J•low (t) + Jfa•t(t) and Ie(t) = [~low (t) + Ifa•t(t); where 

the superindices indicate the fast and slow input components, respectively. I' 1ow (t) and 

I~ low (t) are assumed to change very slowly compared with the neural dynamics. The 

"equilibrium point" (X 0 , Y0 ) can be calculated as (cf. Equation (9.2)): 

Xo ~ 0 = -HoGy(Yo) - O..:Xo + B 0 Gr(X 0 ) + f' 10 w(t ), 
(9.12) 

Here the adiabatic approximation is used only on the slow input components, and the 

"equilibrium point" is no longer actually in equilibrium because of the extra driving forces 

Jfa•t(t) and Ifa•t(t). Linearizing around (Xo, Yo) ( cf. Equation (9.3)), then 

X = -HY- O.rX + BX + Jfa•t(t) , 
(9.13) 

where all the variables and parameters have the same definition as in Equation (9.3) except 

for the extra external fast input. Eliminating Y as before ( cf. Equation (9.4)), 

X +(o.r - B +ay +C)X +(A+(o.r - B)(ay +C))X = (ay +C)Jfa•t(t)-H I[a• t(t) +jfa•t(t), 

(9.14) 
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where C is the same as in Equation (9.4). Or 

X+ B'X + A'X = F(t), (9.15) 

where F = (ay + C)Jfut(t)- H Ifa•t(t) + jJa•t(t). This is a system of coupled oscillators 

driven by the external force F(t). 

9.2 Discussions and Speculations on Future Research 

This thesis has focused on the modeling of the olfactory bulb which has the charac­

teristic rhythmic neural activities. Recently, similar high frequency oscillations have been 

found in visual neocortex (Singer et al. 1988; Eckhorn et al. 1988). Shepherd {1979) has 

argued that the brain is organized in similar principles in many different areas. Since the 

mathematical model in this thesis does not depend crucially on the olfactory environment, 

the oscillatory network model can also be applied to these other brain areas, as sketched in 

Section 9.1. Of course, the computational function of the oscillation may be quite different 

in other areas. 

The neural oscillatory activities can be conceivably used in many different processing 

algorithms. The oscillation phase information can be used for temporal information. Since 

the high frequency brain waves have frequencies on the order of 40 Hz, the resolution of 

the collective temporal information can be much more accurate than 25 milliseconds. The 

oscillatory dynamics is also structurally stable against saturations (exponential growth in 

neural activity with time) when nonlinearity is included. Using limit cycles as memory 

or classification states can take advantage of the sensitive dynamics, and thus may be 

more sensitive to external input than a memory mechanisms using system fixed points as 

memories. This is true since most of the fixed points so far studied are in the saturation 

regions of the neural states and therefore sacrifice the sensitivity. An oscillatory memory 

system may have smaller basins of attraction for most memory states than those of the 

static memory systems. Of course, by using a gentler nonlinearity, a similar sensitivity 

might also be generated at limit points. But the new variable phase is present only in the 

oscillatory system, and allows a richer description of attractor states. 
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The application of this model to olfactory adaptation and enhancement could also 

be used in other brain areas. It could be used as one of the mechanisms in the brain 

for attention control. The (rhythmic) thalamus in the brain, for instance, receive sensory 

inputs from all the major sensory systems. Each sensory path way has its specific thalamic 

nucleus. Each part of the thalamus, in turn, receives fibers from the area of cortex to which 

it projects (Shepherd 1979). As the gateway to the neocortex for the sensory inputs, the 

attention control is probably needed there. The olfactory adaptation and enhancement 

model in the bulb uses the fact that the numbers of intrinsic neurons (granule cells) or 

central input fibers are much larger than that of the principal neurons (mitral cells). The 

thalamus structure for visual inputs - lateral geniculate nucleus (LGN) - has, however 

(up to the knowledge of today), less intrinsic neurons than the principal neurons. So these 

attention control mechanisms may have to be of modified versions. However, LGN does 

receive more central feedback fibers from the visual cortex than the number of feedforward 

fibers to the cortex. The reticular complex may be involved in attention control for LGN 

(Crick 1984). 

In order for an oscillatory mechanism to be useful in information processing, presum­

ably several periods of oscillations are needed before the information can be deciphered. 

For oscillations of 40 Hz frequency, it takes about 0.2 second for 8 periods. This is about 

the right timescale for the shortest of human perceptions. Higher level intelligent functions 

take longer. 

Resonance phenomena can be another advantage of the oscillation systems. It provides 

a mechanism for specific couplings between successive information processing centers . The 

later stages of brain areas in the information pathway can respond to the sensible inputs 

from previous stages by resonance locking to the input, while no resonance may exist if 

the inputs do not have a proper frequency, oscillation phases, and amplitude pattern -

the generalization of the resonance phenomena from a single driven oscillator to a group 

of coupled oscillators driven by external oscillatory input patterns (see Section 9.1). This 
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may also be used conceivably for attention control or feature selection. The central brain 

area can focus its attention on one sensory input or set of features by resonance-locking to 

that input source only and ignoring the others. A way of decoupling from resonance can 

be provided by the slower rhythms, like the sniff rhythm, to allow attention shifts. 
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Appendix A 
This appendix contains the source codes used to run the simulation on 

the SUN computer. Languange C is used. The codes contains the following 
programs (files) and the input file: 

dy _externs. h - for the external variables; 
main.c - main source code controlling the simulation; 
init.c - to read in the simulation parameters; 
incextra.c - used when central control is needed; 
netforthesis - input for init.c and incextra.c; 
initoutput.c - to initialize the output data file; 
stepforward.c - simulation run after initialization; 
derivative.c - used in stepforward.c; 
celloutput.c - used in derivative.c; 
extract.c - to extract information from the data; 
realft.c - FFT routine, used in extract.c; 
fft.c - FFT routine, used in realft .c. 
These codes are cornpiled and linked together to run the simulation. They 

will be sequentially listed below by the order listed above. The routines 
"init.c" and "incextra.c" will read simulation parameters from the input file 
"netforthesis." The simulated data describing cell activities are outputed to 
the file called "datafile," and oscillation information is extracted from these 
data by "extract.c," and this extracted information is outputed to the file 
"extractout." 

dy _ex terns. h: 

I* 
** Global variable declarations 

*I 

#define 

extern int 

extern int 

Ni'1AX 100 I*** Maximum dimension of y vector 
--- the number of neurons ***I 

nmitral, ngranule; I** numbers of mitral and granule 
cells, respectively. Can be substituted for any 
excitatory and inhibitory cell types. **I 

ndim; I** =nmitral+ngranule**l 
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extern double initt,t_exhale,rinalt,inity[NMAX],resty[NMAX]; 
I*** initt: initial time, when inhalation starts; 

t_exhale: time when exhalation starts; 
rinalt: end OI exhalation time. 

inity[NMAX]: the initial values or the 
neural internal states. 

inity[O], inity[1] ... inity[nmitral-1] £or 
mitral cells, corresponds to initial value 
or vector X in Equation (3.3); 
inity[nmitral], inity[nmitral+1] ... 
inity[ndim-1] £or granule cells; 

corresponds to initial value or 
vector Y in Equation (3.3) 

resty is similar to inity, it is the resting 
( or background) values or vector X and Y in 

Equation (3.3) when no odor input 
exists. Usually inity=resty. ***I 

extern i nt ns t ep; I*** number or steps or time intervals 
i n t he simulation or the dirrerential Equation (3.3)*1 

I*** For mitral ( excitatory) cells**/ 
extern double Sx, Sx2; I** Sx, and Sx', respectively, derined in 

I*** For granule 
extern double 

extern double 

e xt ern doubl e 

extern double 

exte rn doubl e 

Section (3.2), characteristics or 
the excitatory cell gain £unctions ***I 

(inhibitory) cells**/ 
Sy, Sy2; I** Sy, and Sy' , respectively, derined 1n 

Section (3.2), characteristics or 
the inhibitory cell gain £unctions ***I 

threshold; I** derined as "th" in Section 
(3.2) , maximum slope point in the cell 

gai n £unctions --- like a threshold 
or the cells ***I 

exha lespeed; I** Derined as 1/tau_exhale 
in Equation (3.1), characteristic or 

the exhalation speed**/ 
noi s e[NMAX]; I* noise in individual neuron input, 

added to I and I_c in Equation (3.3) **I 
noise level; I* noiselevel in the noise[] *I 



107 

extern double noisewidth; I* "correlation time" of noise[] *I 
I** initial time of the last extern double lastnoise[NMAX]; 

extern double 

extern double 

extern double 

extern double 

noise pulse**/ 
alpha[NMAX]; I** decay constants of neurons, 

defined as alpha in Equation (3.3) **I 
init_in[NMAX]; I** initial external inputs 

I and I_c (Equation 3.3) to neurons**/ 
P_odor[NMAX]; I** Defined as P_odor in 

Equation (3.1) . Characteristic of odor input***/ 
connection[NMAX] [NMAX]; I** connection between 

neurons. In olfactory bulb model, 
used for -H_o and W_o in Equation (3.3). 

connection[i][j] = -H_o[i] [j-nmitral] 
for i<nmitral, j>= nmitral; 
connection[j][i] = W_o[j-nmitral] [i] 

for i<nmitral, j>= nmitral; 
connection[i][j] = 0 for i>=nmitral, 

j<nmitral in the special case of 
olfactory bulb model (Equation (3.3)). **I 

I** For olfactory central control **I 
extern double Icontrol[NMAX]; I* Central control,Equation (7.3)*/ 
extern int yescontrol; I** When there is central control 

yescontrol = 1; 
otherwise, yescontrol = 0; ***I 

extern double Icdecay; I* decay constant of !control at exhalation, 
Supposedly Icdecay = exhalespeed by eq.(7.15) **I 

I** data handling **I 
extern FILE *fppattern; I*** simulation data output file ***I 
extern char datafile[20]; I*** contain the name of the 

output data file ***I 

ma1n.c: 

I* 
** main: This file contains all of the 



** 
** 
*I 
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declarations for global variables used. 
Contains code to control the simulation process . 

#include <stdio.h> 
#include <math.h> 

I*** below are those in dy_externs.h, see that file for 
detailed comments.***/ 

#define NMAX 100 I*** Maximum dimension of y vector 

int 
double 
double 
double 
double 

FILE 
char 

I* 
** main: 
*I 

(the number of neurons )***I 

nmitral, ngranule, ndim,nstep,yescontrol; 
initt,t_exhale,finalt,inity[NMAX] ,resty[NMAX]; 
Sx , Sx2,Sy, Sy2,threshold; 
noise[NMAX] ,noiselevel,noisewidth, lastnoise[NMAX]; 
exhalespeed,alpha[NMAX],init_in[NMAX],P_odor[NMAX], 

Icontrol[NMAX], Icdecay,connection[NMAX] [NMAX]; 
*fppattern; 

datafile[20]; 

simulation control 

main(argc, argv) 
int argc; I*** program arguments are : 1. filename 

of a file containing informations for the 
system. This file is 11netforthesis 11 here 

{ 
char 

int i; 

in the Appendix . 2. a random number for 
simulations ***I 

*argv []; 

FILE *fpout,*fopen(); I*** for output data file ***I 

if(argc !=3 ){ I*** argument need for running ***I 
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printf("input a file nanie and a random number \n"); 
exi tO; 

I**** initialization ***********/ 
i = atoi(argv[2]); 
srand((unsigned)(i)); I*** random number initiation 

for noise generation. ***I 
init(argv[1]); I*** read in the information from the 

input file by the filename "argv[1]". 
This file contains the system parameters. *I 

sprintf(datafile,"datafile"); I* file name of fppattern *I 
fppattern = fopen(datafile,"w"); I* for simulated data *I 
fpout = fopen("extractout","w"); I* for information 

extracted from the simulated data 
output "fppattern" file ***I 

I**** simulation sub-package *******/ 
initoutput(fppattern,i); I* initial documentation **I 

} 

init.c: 

stepforward(nstep); I* run simulation, record data *I 
fclose(fppattern); I*** done simulation running.**/ 
extract(fpout,datafile,1); I* extract information from 

the output datafile. fpout: outputfile pointer, 
datafile: name of the simulated datafile, 1: 
the flag to extract information from cell output *I 

fclose(fpout); I** done **I 

#include<math.h> 
#include<stdio.h> 
#include 
#define 
init(s) 

"dy_externs.h" 
next for(;;) if(getc(fp)=='%') break 

f*** Read neural net information from the file with file 
na me described by string "s". This file has to write 1n 



char *s; 
{ 

FILE 
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t he f or mat such that it can be read by this routine ***I 

*fp,*fopen(); 
double x, y,surn; 
double Control odor[NMAX] ,controllevel; 
int i,j; 

I ** r ead in the net for the simulation**/ 
fp =fopen(s, " r "); 
if ( f p NULL) exit(); 
next; 
next ; 

next ; 
next; 
next ; 
next ; 
next; 
next ; 
next; 
next; 
next ; 
next; 
next; 
next; 
next; 
next; 
next ; 
next; 
next ; 

next ; 

next ; 

fscanf(fp,"Y.d",&ndim); 
fscanf(fp,"Y.d",&nmitral); 
fscanf(fp,"Y.d",&ngranule); 
fscanf(fp,"Y.lf",&Sx); 
fscanf(fp,"%lf",&Sx2); 
fscanf(fp,"Y.lf",&Sy); 
fscanf(fp,"%lf",&Sy2); 
fscanf(fp,"Y.lf",&threshold); 
f scanf(fp,"Y.lf",&exhalespeed); 
f scanf (fp,"Y.lf",&noiselevel); 
fscanf(fp,"Y.lf",&noisewidth); 
f or(i = O;i<ndim;i++) fscanf(fp,"Y.lf",&alpha[i] ); 
for(i = O;i<ndim;i++) fscanf(fp,"Y.lf",&init_in [i] ); 
f or(i = O;i<ndim; i++) fscanf(fp,"Y.lf",&resty[i]) ; 
for(i = O;i<ndim; i++) fscanf(fp,"Y.lf",&inity[i]); 
fscanf(fp,"Y.lf",&initt); 
fscanf(fp,"Y.lf",&t_exhale); 
fscanf(fp,"Y.lf",&finalt); 
fscanf(fp,"Y.d" ,&nstep); 

f or(i =· O;i<nmitral ; i++) 
fscanf(fp,"Y.lf",&P_odor[i]); 

for(i = O;i<ndim;i++) 
for(j=O;j<ndim;j++) 

fscanf (fp, "Y.lf", &connection [i] [j]); 
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fscanf(fp,"%d",&yescontrol); 

if(yescontrol == 1){ 

} 

I* read in more information and calculate the 
central control signal Icontrol,see incextra.c *I 
next; fscanf(fp,"%lf",&Icdecay); 
next; for(i=O;i<nmitral;i++) 

fscanf(fp,"%lf",&Controlodor[i]); 
next; fscanf(fp,"%lf",&controllevel); 
I*** if controllevel >0, olfactory adaptation is 
used, otherwise, olfactory enhancement is used. 

the value of "controllevel" indicates the strength 
of the adaptation or enhancement applied. e . g., 
for self-adaptation, controllevel=1, when full 
adaptation is desired, controllevel = 0.5 when half 
adaptation is desired . For enhancement, 
"controllevel" is equivalent to the "gamma" value 
in Equation (7.16)***1 

I*** Calculate the !control value ***I 
incextra(fp,Controlodor,controllevel); 

fclose(fp); 
if(ndim>NMAX) { 

} 

incextra.c: 

printf("too big a dimension for y\n"); 
exit(); 

#include<math.h> 
#include<stdio.h> 
#include "dy_externs.h" 
incextra(fp,Controlodor, controllevel) 
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double *Controlodor,controllevel; 

FILE 
#define next 
{ 

*fp; 

I*** From an input file pointed by fp, read inverse 
of matrix H_o needed to calculate central control. 
This routine is then to calculate the central 
control signal needed for adaptation or enhancement 
to a particular odor whose P_odor value is described 
by "Controlodor," "controllevel" describes the level 
to which adaptation or enhancement applied.***/ 

for(;;) if(getc(fp) -- '%')break 

double x,g1,g2,gp,sum; 

int i,j; 
double cclloutput(); I*** cell gain function g defined in 

Section (3.2) ***I 
I*** Calculating !control value ***I 

next; 
for(j=nmitral;j<ndim;j++) 
{ 

I* Calculate the "G'_y(Y_o)" in Equation (7.13) ***I 
g1 = celloutput(inity[j] 

+0.001*threshold,Sy2,Sy,threshold) ; 
g2 = celloutput(inity[j] 

-0 . 001*threshold,Sy2,Sy,threshold); 
gp = (g1-g2)/0.002/threshold; 

I* calculate the derivative by difference**/ 
I*** "gp" is "g'_y", the component of "G'_y" ***I 
/**Calculate "Icontrol[j]", the component of the 
control signal, Equation (7.15) and/or (7.16) *I 

sum = 0.0; 
for(i=O;i<nmitral;i++) { 

} 

fscanf(fp,"Y.lf",&x); I*** read in the 
elements of inverse of H_o **I 

sum+= x*Controlodor[i]; 

Icontrol[j] = sum/gp; 



I*** add the control type and level ***I 
Icontrol[j] *= (12.2*controllevel); 
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I*** 12.2 is the factor used for default, 
proportional to beta in Equation (7.15)*/ 

} 

} 

netforthesis: 

I*** Thi s is the net f ile which provides the network 
characteristics and is read by "init" and "incextra" subroutines. 
comments should not be put inside the datas**l 
Y.20 I*** "ndim", the to.tal number of neurons**/ 
Y.10 10 I** "nmitral" and "ngranule"**l 

I** for mitral cells**/ 
Y.1.43 I*** "Sx", "S_x" in Equation (3 .3) **I 
Y.0.143 I*** "Sx2", "S'_x" in Equation (3.3) **I 

I** for granule cells**/ 
Y.2.86 I*** "Sy", "S_y" in Equation (3.3) **I 
Y.0 .286 I*** "Sy2", "S ' _y" in Equation (3.3) **I 
Y.LO I*** "threshold", "th" in Equation (3.3) **I 
Y.0 . 03 I*** "exhalespeed" =1/tau_exhale in Equation (3.1) **I 
%0 .00143 I** "noiselevel" in the input**/ 
Y.7 I** "noisewidth",the duration in milliseconds of 

Y.O. 15 
0 .15 
0.15 
0.15 

each no i se pulse*/ 

I* decay constants "alpha" of the (20) neurons**/ 
0.15 0.15 0 .15 0.15 
0 . 15 0.15 0 .15 0.15 
0.15 0.15 0.15 0.15 
0.15 0.15 0.15 0.15 

I*** initial external inputs "init_in" to neurons**/ 
I*** The upper two rows are " !_background" in Equation 
(3 . 3) , also see Section 3.3; the lower two rows are 
" I_c " in Equation (3 .3). ***I 
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%0.243 0.243 0.243 0.243 0.243 

0.243 0.243 0.243 0.243 0.243 

0.1 0.1 0.1 0.1 0 . 1 

0.1 0 . 1 0.1 0.1 0 . 1 

I** Listed below is "resty", 
the equilibrium point with the background input above**/ 

%0.691868 0.633856 0.741968 0.698668 0.723730 
0.646060 0.635226 0.796132. 0.623564. 0.714763 
0.691868 0.633856 0 . 741968 0.698668 0.723730 
0.646060 0 . 635226 0.796132 0.623564 0 . 714763 

I** Below are the "inity", the initial cell internal 
state values. Usually "inity" is close to "resty"**/ 

%0.682865 0.657688 0.724149 0.719735 0.698454 
0.718061 0.614442 0.796200 0.541007 0.734889 
0 . 710565 
0.740185 

0.729583 0.689668 0.704451 0.699861 
0.722373 0.737577 0.713682 0.717238 

%25 
%205 

I* "t_inhale", initial time of the sniff cycle in msec **I 
I* "t_exhale", initial exhalation time 

of the sniff cycle in msec **I 
%395 I*** "finalt", end of the sniff cycle in msec **I 

%1024 I*** "nstep", number of steps or time intervals used in 
the simulation of differential Equation (3.3) ***I 
I* Below is "P_odor": the odor input vector, the 
p aticular example used here is "P_odor_1" in Eq. (6.2) *I 

%0.00429 0.0042 9 0.00429 0.00429 0.00429 
0.00429 0.00429 0.00429 0.00429 0.00429 

I** Bel ow is "connection" matrix, see dy_externs.h 

%0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 . 0 0 . 0 
-0.3 -0.9 -0.0 0.0 0.0 0.0 0 . 0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 . 0 0.0 

-0.9 -0.4 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 
0 . 0 0.0 0.0 0.0 0.0 0.0 0 . 0 0 . 0 0.0 

-0.0 -0 . 8 -0.3 -0.8 0.0 0.0 0.0 0.0 0.0 

**I 
0 . 0 

-0.7 
0.0 
0 . 0 
0 . 0 
0 . 0 



0.0 0.0 0.0 
0.0 -0.0 -0.7 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0 . 0 0.0 0.0 
0 . 0 0.0 0.0 
0.0 0.0 0.0 
0.0 0 . 0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 

-0.9 0.0 0.0 
0.3 0.7 0.0 
0.0 0.0 0.0 
0.3 0.2 0.5 
0.0 0.0 0.0 
0.0 0.1 0.3 
0.0 0.0 0.0 
0 . 0 0.5 0.2 
0 . 0 0.0 0.0 
0 . 5 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0 .0 0 . 0 
0 .0 0.0 0.0 
0.0 0.0 0.0 
0.7 0.0 0.0 
0.0 0.0 0.0 

0.0 
-0.5 
0.0 

-0.8 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
0.0 
0.2 
0.0 
0.5 
0.0 
0.0 
0.0 
0.6 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 0.0 
-0.9 0.0 

0 . 0 0.0 
-0.3 -0.8 
0.0 0.0 

-0.7 -0.3 
0.0 0.0 
0.0 -0.7 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.5 0.0 
0.0 0.0 
0.1 0.9 
0.0 0.0 
0.3 0.3 
0.0 0.0 
0.0 0.2 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.2 
0.0 0.0 
0.0 0 . 0 
0.0 0 . 0 

0.0 
0.0 
0.0 
0.0 
0.0 

-0.9 
0.0 

-0.4 
0.0 

-0.5 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
0.0 
0.3 
0.0 
0.5 
0.0 
0.0 
0 . 0 
0 . 0 
0 . 0 

0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

-0.9 0 . 0 
0.0 0.0 

-0.5 -0.7 
0 . 0 0 . 0 

-0 . 9 -0.3 
0.0 0.0 
0.0 -0.8 
0.0 0.5 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.4 0.0 
0.0 0.0 
0.5 0.0 
0.0 0.0 
0.3 0.5 
0.0 0.0 
0.2 0.3 
0.0 0.0 
0 . 2 0.3 
0 . 0 0.0 
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0.0 
0.0 
0.0 
0.0 
0 . 0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

- 0 . 9 
0 . 0 

-0.3 
0 . 3 
0.0 
0.7 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0 . 0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.7 
0.0 
0 . 5 
0.0 

%1 I*** "yescontrol". If no central control is desired 
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(yescontrol = 0), the rest of this file is ignored. 
the rest of this file is read by subroutine "incextra" 
to set up the desired central control signal. ***I 

I* Icdecay, **I 
I** Below is the "Controlodor", the P_odor value of the 
odor for which the central control is desired. The 
particular example used here is P_odor,1, i.e., 
"Controlodor" = "P_odor" (see above) 
in this particular simulation. With the particular 
"controllevel" (see below) in this example, we simulate 

the olfactory self-adaptation. If cross-adaptation or 
cross-enhancement is 

**I 
desired, "Controlodor" not= "P_odor". 

%0.00429 0.00429 
0.00429 0 . 00429 

0.00429 
0.00429 

0.00429 
0.00429 

0.00429 
0.00429 

%0.5 I*** "controllevel", In this example, controllevel= 0.5 
implies that half-adaptation is desired. If full 
adaptation is desired, controllevel = 1.0. 
If olfactory enhancement is desired, controllevel < 0, 
and "-controllevel" should take the value of "gamma" in 

Equation (7.16) ***I 

I*** Below is the elements of the inverse of H_o, 
listed in the order of from left to right, then from 
top to bottom in a matrix. 
used to calculate "Icontrol" as in Equation (7.3), (7.15) 

, (7.16) and (7.13). ***I 

%-0.936234 -0.222037 1.164281 -0.181781 -1.050668 

0.684005 0.907618 -1.957304 0.179773 1.645226 
1.223855 -0.426973 0.086650 0.572826 -0.444666 
-0.545919 0.742155 0.388930 -0.958227 0.019022 
0.353068 1. 370623 -1.082513 -0.065527 1.123468 

-0.397237 -1.113719 1.606002 0.221495 -1.488312 

-1.356255 -0.087011 1.569292 -0.548253 0.023366 

0.694883 -0.324511 -0.991181 0.875167 0.539096 



0.478866 -1.017701 
-0.077084 1.046509 
1.176680 0.468648 
-0.665976 -0.067930 
-0.764678 0.635329 
1.393057 -0.791308 
-0.575339 -0 . 646873 
-0.101155 1.515638 
0 . 957155 0 . 008246 
-0.922787 -0.517379 
0.256287 0.644124 
0.408751 -1.343179 

initoutput.c: 

#include<math.h> 
#include<stdio.h> 

-0.029874 
-0.698457 

-1.558090 
1.253102 

0.542599 
0.125543 

0.970692 
-1.030432 

-1.080922 
2.074920 

-0.610385 
0.338792 

#include "dy_externs.h" 
initoutput(fp,seed) 
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1.466662 -0.886789 
-0.658478 0.858079 

-0.001745 1. 559180 
-0.628237 -0.860875 

-1.140155 0.169998 
0.721562 -0.380436 

0.508093 -1.288250 
0.167935 0.838652 

0.451473 0.798752 
-0.635355 -0 .327297 

-0 .658584 1.022000 
1.154961 -0.729553 

I*** initialize the output file , and a little others***/ 
FILE *fp; I** the pointer for output file ***I 
int seed; I*** the random number seed ***I 
{ 

double x,y,sum; 
int i,j,k,rn,a,b,c; 

I** initialize the output file **I 
fprintf(fp,"nurnber of cells p and rn #%d %d %d " 

ndirn,nmitral,ngranule); 
fprintf(fp,"tirne interval is #%f %f\n",initt,finalt); 
fprintf(fp,"Sx2,Sx,Sy2,Sy,threshold are "); 
fprintf(fp,"#%f %f %f %f %f\n",Sx2,Sx,Sy2,Sy,threshold); 
fprintf(fp,"first cycle input is "); 
for (j =0; j <nmi tral; j ++) fprintf(fp, "%f ", P _odor [j]); 
fprintf(fp,"\n"); 



} 
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fprintf(fp,"background 
for(j=O;j<nmitral;j++) 
fprintf(fp,"\n"); 

mitral cell state value is#"); 
fprintf(fp,"%f ",resty[j]); 

if (yescontrol == 1) { 

} 

fprintf(fp," extra ic exists, it is \n"); 
for(j=nmitral;j<ndim;j++) 

fprintf(fp,"%f ",Icontrol[j]); 
fprintf(fp,"\n"); 

else fprintf (fp," no extra ic \n") ; 
fprintf(fp,"the random number seed is %d\n",seed); 
I** set the initial "lastnoise" **I 
for(j=O;j<ndim;j++) lastnoise[j] = initt - noisewidth; 

stepforward.c: 

#include 
#include 

<math.h> 
<stdio.h> 

#include "dy_externs.h" 
stepforward(numbersteps) 

I* carry out the simulation with (numbersteps-1) steps.*/ 
int numbersteps; 
I*** the "nstep" value ***/ 
{ 

void derivative(); 
double stepsize; 
int i, j; 

I*** Document the output file ***I 
fprintf(fppattern,"total number of time points is %d\n", 

numbersteps); 
fprintf(fppattern,"#%f ",initt); 
for(j=O;j<ndim;j++){ 

fprintf(fppattern,"%f ",inity[j]); 
} 



} 
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fprintf(fppattern,"\n"); 
stepsize = (finalt-initt)l(numbersteps-1.); 
simulate(inity,ndim,initt, finalt, stepsize, derivative); 

I** simulate the differential equation given the 
initial values, record the data. ***I 

fprintf(fppattern,"%f\n11
, stepsize); 

simulate(y, n, t,t2, step, derivs) 
double *Y• t,t2, step; 
int n; 
void (*derivs)(); 
{ 

This routine takes the initial values and run a 
differential equation to give the final values. 
Record the simulated data as it goes along. 
Inputs are: 
y: a pointer to the array of initial values 

for the variables in the differential 
equation to be · simulated; 

n: the dimension of the array; 
t: the initial time, (its value advances during 

simulation); 
t2: the desired final time; 
step: stepsize used (fixed) in simulation; 
derivs: a pointer to the function that calculates 

derivatives dyldt in the differential equation. 
Output is the final state vector in the array y. *I 

double calcdel(); 

double y1[NMAX], dydt[NMAX] ,tol,left; 
int i, ender; 

(*derivs)(t, y, dydt); 
ender = 0; 
tol = i.Oe-30; 



} 

do{ 

} 

rk4(y, dydt, n, t, step, 
I*** advance one step, y 
t = t + step; 
for (i = 0; 

y[i] 
record(y,t); 

i <= n - 1; 
= yl[i]; 

I*** record 
setup the 
dydt); (*derivs)(t, y, 

left = t2 - t; 
if (left <= step) 

step = left; 
if (left < tol) 

ender = 1; 

while (ender 0); 

rk4(y, dydt, n, t, s, derivs, yout) 

double *Y• t, *dydt, s, *yout; 
int n; 
void (*derivs)(); 
{ 

derivs, y1); 

-> y1 **I 

i++) 
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the data in fppattern, 

noise ***I 

I* Given the n variables in the array "y" and their derivatives 
"dydt" at time "t", use the fourth-order Runge-Kutta method to 
advance the solution vector over an interval "s" and return 
the incremented variables in "yout." derivs is a pointer 
to a function that computes the derivatives of "y."*l 

double ts, ss, s6; 

int i; 
double dym[NMAX], dyt[NMAX], yt[NMAX]; 

ss s * . 5; 
s6 = s I 6.0; 
ts = t + ss; 

for (i = o· i <= n - 1• i++) 
' ' 



} 

yt[i] = y[i] + ss * dydt[i]; 
(*derivs)(ts, yt, dyt); 
for (i = 0; i <= n - 1; 

yt[i] = y[i] + ss 
(*derivs)(ts, yt, dym); 

i++) 
* dyt [i]; 

for (i = 0; i <= n - 1; i++) { 
yt[i] = y[i] + s * dym[i]; 
dym[i] ~ dyt[i] + dym[i]; 

} 

(*derivs)(t + s, yt, dyt); 
for (i = 0; i <= n - 1; i++) 

yout[i] = y[i] + s6 * (dydt[i] + dyt[i] + 
2.0 * dym[i]); 

record(y,t) 
double 

I** write out data, set up the noise*/ 
t, y[NMAX]; 

{ 

} 

int i,j,k,m,a,b; 

I** write output file**/ 
fprintf(fppattern,"%f ",t); 
for(j=O;j<ndim;j++) fprintf(fppattern,"%f ",y[j]); 
fprintf(fppattern, "\n"); 

I** setup the noise **I 
for(j=O;j<ndim;j++){ 

} 

if((t-lastnoise[j])/noisewidth > 
(0.8 + rand()/2.15e+9)) { 
lastnoise[j] = t; 
noise[j] = noiselevel* 

(rand()-1.07e+9)/1.07e+9; 
} 
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derivative.c: 

#include<math.h> 
#include<stdio.h> 
#include "dy_externs.h" 
derivative(t,y,dydt) 
double t,y[NMAX],dydt[NMAX]; 
{ 
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double celloutput(); I*** the function g_x(x) or g_y(y) ln 
thesis sect. (3.2) for mitral cells and granule cells*/ 

int i,j,k; 
double g[NMAX]; I*** cell outputs ***I 

I** put in the nonlinearity of neurons**/ 
for(i=O;i<nmitral;i++){ 

g[i] = celloutput(y[i] ,Sx2,Sx,threshold); 
} 

for(i=nmitral;i<ndim;i++){ 
g[i] = celloutput(y[i] ,Sy2,Sy,threshold); 

} 

I** set up velocity dydt in y[i]'s, see Equation (3.3) **I 
for(i=O;i<ndim;i++){ 

} 

I** inputs from noise**/ 
dydt[i]= noise[i]*(t- lastnoise[i]); 
I** inputs from other neurons**/ 
for(j=O;j<ndim;j++) 

dydt[i] += connection[i] [j]*g[j]; 
I** decay terms**/ 
dydt[i] -= alpha[i]*y[i]; 

/**external input**/ 
I*** Inputs to the excitatory cells: the receptor inputs 

to mitral cells***/ 
for(i=O;i<nmitral;i++){ 

if(t<t_exhale) I*** inhalation ***I 
dydt[i] += (init_in[i]+P_odor[i]*(t-initt)); 



} 

else I*** exhalation ***I 
dydt[i] += (init_in[i]+ 
P_odor[i]*(t_exhale-initt)* 
exp(-exhalespeed*(t-t_exhale))); 

I*** Inputs to the inhibitory cells: 
the central inputs to granule cells ***I 

for(i=nmitral;i<ndim;i++) dydt[i] += init_in[i]; 
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if(yescontrol == 1){ I** Add extra central control **I 
for(i=nmitral;i<ndim;i++) 

} 

} 

celloutput.c: 

if(t<t_exhale) I*** inhalation ***I 
dydt[i] += Icontrol[i]* 

(t-initt)l(t_exhale-initt); 
else I*** exhalation ***I 

dydt[i] += Icontrol[i]* 
exp(-(t-t_exhale)*Icdecay); 

#include<math.h> 
#include<stdio.h> 
double celloutput(x,S2,S,th) I*** cell output function 

g_x(x) or g_y(y) of neurons defined in thesis sect. (3.2)*1 
double 
{ 

x,S2,S,th; 

double g; 
if(x<th) { 

} 

g = S2*tanh((x-th)IS2)+S2; 
return(g); 

if(x>=th) { 
g = S*tanh((x-th)IS)+S2; 
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return(g); 
} 

} 

extract.c: 

#define 
#define 
#define 

MAX_CELL 50 I* maximum number of cells *I 
MAX_TIME 2000 I*** maximum time interval **I 
MAX_TIME_SHIFT 35 

#define MIN_TIME_SHIFT 5 
I*** all the "TIME"'s above are in the units of millisecond ***I 
#include<math.h> 
#include<stdio.h> 
#define MIN(a,b) 
#define MAX(a,b) 

((a<b)? a:b) 
( (a> b) ? a : b) 

int ndim,nmitral,ngranule; 
double u,v,x,initt,finalt; 
double mainperiod,period[MAX_CELL] ,amplitude[MAX_CELL], 

phase[MAX_CELL],mean[MAX_CELL]; 
I** mainperiod is the period of the oscillation pattern, 
period[] contains the periods for each mitral cell. 
amplitude[] and phase[] describe the O_osci. 
mean[] describes O_mean. **I 

double rmsamplitude,rmsmean,frequency; 
I*** rmsamplitude is the root-mean-square of amplitude[] **I 
I*** rmsmean is the root-mean-square of mean[] **I 

int i,j,k,m,l,n,a,b,c,time; 
double Sx2, Sx, threshold; 
double y[MAX_CELL] [MAX_TIME] ,ymean[MAX_CELL] [MAX_TIME], 

yfft[MAX_CELL] [MAX_TIME]; 
I*** the signals are in y, ymean is S_l in Section 6.2 of 
thesis. y in the later part of this routine becomes the 
S_h in Section 6.2 of thesis. 
yfft is the fourier transform of the original signal y **I 
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double filtermask[MAX_TIME]; I*** the band-pass filter ***I 
double backy[MAX_CELL]; I*** the resty in simulation program ***I 

extract(fpout,string,signalflag) I** extract information from the 
simulated data files, see thesis Chapter 6.2. 
Do fft to help to get the extractions, compile with 
realft.o fft.o, Output to file pointed by fpout, 
input file name is in string[] , signalflag signals 
to extract from the output or the cell internal 
states. **I 

FILE *fpout; I* pointer to the file for extracted information *I 
char string[20]; I* contains the datafile name from which to 

extract information ***I 
int signalflag; I*** flag to set the signal as the g(u) (output) 

{ 

FILE 

or u (cell internal state)**/ 

*fp, *fopen(); 

if(fpout == NULL){ 
printf("can't write to file\n"); exit(); 

} 

fp fopen(string,"r"); 
if(fp == NULL) { 

printf("can't open Y.s\n" ,string); exit(); 
} 

fprintf(fpout,"#%s\n",string); 
fflush(fpout); 

I*** 
By default, y[] [] (S_h in Section 6.2) is obtained by 
high-passing the original signal (above 20Hz), and the 
ymean[] [] (S_l in Section 6.2) is got by low-passing the 
signal (below the 20hz) . The phase of O_osci (phase[]) 
is got by further filtering out the higher frequency part 

of y [] [] . ****I 

readfile(fp,signalflag); I* read the input data file **I 



} 
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buildfilter(20.0, 3000.0); I* set up the band-pass filter *I 
getsignal(); I* get y[] [] and ymean[][] ***I 
catchperiod(); I* calculate the oscillation period(s) **I 
catchamplitude(); I*** calculate the amplitude[] **I 
catchmean(); I*** calculate the mean[] ***I 
catchphase(); I*** calculate the phase[], the phases 

are all normalized from 0 to 1 **I 
I* write the extracted information in the output file *I 
fprintf(fpout,"Mainperiod: #%f ",mainperiod); 
frequency = 1000 . Imainperiod; I** in unit of Hz **I 
fprintf(fpout,"frequency: #%f\n",frequency); 
fprintf(fpout,"Periods for each: \n#"); 
for(j=O;j<nmitral;j++) 

fprintf(fpout, "%f ",period[j]); 
fprintf(fpout,"\n rmsAmplitude #%f", rmsamplitude); 
fprintf(fpout,"\n Amplitudes for each: \n#"); 
for(j=O;j<nmitral;j++) 

fprintf(fpout,"%f ",amplitude[j]); 
fprintf(fpout,"\n Phases for each: \n#"); 
for(j=O;j<nmitral;j++) 

fprintf(fpout,"%f ",phase[j]); 
fprintf(fpout,"\n rmsMeans : #%f",rmsmean); 
fprintf(fpout,"\n Means for each: \n#"); 
for(j=O;j<nmitral;j++) 

fprintf(fpout,"%f ",mean[j]); 
fprintf(fpout,"\n\n"); 
fflush(fpout); 

readfile(fp,signalflag) 
I*** read the input simulated data file pointed by fp***l 

#define next for(;;) if(getc(fp)=='#') break 
FILE *fp; 
int signalflag; 
{ 

double gx(); I*** neuron output function gx(x) ***I 



} 

next; fscanf(fp,"%d",&ndim); 
if(ndim>MAX_CELL) { 

} 

printf("too big a dimension for y\n"); 
exit(); 

fscanf(fp,"%d",&nmitral); 
fscanf(fp,"%d",&ngranule); 

next; fscanf(fp,"%lf",&initt); 
fscanf (fp, "%lf", &final t); 

next; fscanf (fp, "%lf", &Sx2) ; 
fscanf(fp,"%lf",&Sx); 
fscanf(fp,"%lf",&x); 
fscanf(fp,"%lf",&x); 
fscanf(fp,"%lf",&threshold); 
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next; for(j=O ;j <nmi tral; j++) fscanf (fp, "%lf" ,&backy [j]); 
if(signalflag == 1) 

for(j=O;j<nmitral ; j++) 
backy[j] = gx(backy[j], Sx2, Sx, threshold); 

next; fscanf(fp,"%lf",&x); 
time = 0; 
for (;;) { 

for(j=O;j<ndim;j++){ 
fscanf(fp,"%lf",&u); 
if(j<nmitral) { 

} 

} 

if(~ignalfl~~ == 1) I* get the outputs*/ 
y[j] [time] = gx(u,Sx2,Sx,threshold); 

else y[j] [time] = u; I* get the internal 
states ***I 

if(x>=final t){ time++; break;} 
time ++; 
fscanf(fp,"%lf",&x); 

} 

fclose(fp); 
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buildfilter(highpass,lowpass) 
f*** Build a filter band from "highpass" to "lowpass," with 

some smoothing to avoid sharp edges, filter result stored 
in "filtermask." ***I 

double highpass,lowpass; f*** in units of hz***f 
{ 

double smooth; 
a= (int ) (0.001*highpass*(finalt-initt)); f*** high pass***/ 
b = (int) ( 0 . 001*lowpass*(finalt- initt)) ; f*** low pass***/ 
b = MIN(b, time/2); 
smooth = 5.0; f*** default ***I 
f** high pass **I 
if(a>O){ 

for(i=O;i<a;i++){ 
u = smooth*(a-i); 
filtermask[2*i] = (double)(1 . - (1.+u)/(2 . +u)); 
f** treat filtermask[1] separately, because it is 
the highest real frequency slot ,see realft()**f 

if(i!=O) 
filtermask[2*i+1] = (double)(1.- (1.+u)/(2 . +u)) ; 

} filtermask[1] = 1.0; 
f or(i=a;i<time/2;i++) { 

u = smooth*(i-a); 

} 

filtermask[2*i] = (double)((1.+u)/(2.+u)) ; 
filtermask[2*i+1] = (double)((1.+u)/(2.+u)); 

} else f or(i=O;i<time;i++) filtermask[i] = 1.; 

f** l ow pass **I 
if (b<time / 2) { 

for ( i =b; i<t ime/2 ; i++) { 
u = s mooth*(i -b); 

} 

f i l t ermask[2*i] *= (double)(1.- (1.+u)/(2 . +u)); 
fi ltermask[2*i+1] *= (double)(1 . - (1.+u)/(2 .+u)); 

u = smooth* (time/2-b); 



} 

} 

filtermask[1] = (double)(1.- (1.+u)l(2.+u)); 
for(i=O;i<b;i++) { 

u = smooth*(b-i); 
filtermask[2*i] *=(double) ((1.+u)l(2.+u)); 
if(i!=O) 
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filtermask[2*i+1] *= (double) ((1.+u)l(2.+u)); 
} 

getsignal() 

{ 

I*** With the signal y[] [],do FFT on it, filter 
into high-and low-frequency part with the filter 

"filtermask". Inverse FFT. High-frequency part in 
y[] [], low-frequency part in ymean[] []. yfft[] [] 

FFT result of the original signal y[] []. 

I*** do FFT **I 
for(j=O;j<nmitral;j++) 

realft(&y[j] [O],timel2,1); 
for(j=O;j<nmitral;j++) 

for(i=O;i<time;i++) 
yfft[j] [i] = y[j] [i]; 

the signal 

array 
stores the 
***I 

I*** filter the signal , and do the inverse fft **I 
for(j=O;j<nmitral;j++) { 

} 

I** filter signal , for mean part: low pass **I 
for(i=O;i<time;i++) 

ymean[j] [i] = y[j] [i]*(1 . -filtermask[i]); 
I* filter signal , for high frequency : high pass *I 
for(i=O;i<time;i++) 

y[j] [i] *= filtermask[i]; 
I** do inverse FFT **I 
realft(&ymean[j] [0], timel2, -1); 
realft(&y[j] [0], timel2, -1); 
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} 

double gx(x, S2,S,threshold) /*output function g(x) of neurons *I 
double x,S2,S,threshold; 
{ 

} 

double g; 
if(x<threshold/**&& x >O**f) { 

} 

g = S2*tanh((x-threshold)/S2)+S2; 
return(g); 

if(x>=threshold) { 

} 

g = S*tanh((x-threshold)/S)+S2; 
return(g); 

catchperiod() f*** calculate the period by auto-corelation 
from the oscillating signal y[] []. 

{ 

mainperiod is the period of the vector y; while 
period[] is the period of individual components of 
vector y. The period calculated are within the 
range MIN_TIME_SHIFT and MAX_TIME_SHIFT in units 
of milliseconds. ***I 

int shift,k,i,j,minshift,maxshift; 
double sum1,sum2,x,similar,maxsimilar,ylen[MAX_TIME]; 

minshift = time*MIN_TIME_SHIFT/(finalt-initt)+1; 
maxshift = time*MAX_TIME_SHIFT/(finalt-initt)+1; 
for(k=O;k<time;k++) { 

} 

sum1 = 0 . ; 
for(j=O;j<nmitral;j++) { 

sum1 += y[j] [k]*y[j] [k]; 
} 

ylen[k] = sqrt(sum1); 

maxsimilar = -1 . ; 



} 

for(shift =minshift;shift<=maxshift;shift++) { 
sum1=0; sum2 = 0.; 
for(k=O;k<time-shift;k++) { 

for(j=O;j<nmitral;j++) 
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sum1 +=y[j][k]*y[j] [k+shift]; 
sum2 += ylen[k]*ylen[k+shift]; 

} 

similar = sum1/sum2; 
if(similar > maxsimilar) { 

} 

maxsimilar = similar; 
mainperiod = (double)(shift)* 

(finalt- initt)/(double)(time); 

} 

for(j=O;j<nmitral;j++){ 
maxsimilar = -1.; 
for(shift =minshift;shift<=maxshift;shift++) { 

sum1=0; sum2 = 0.; 
for(k=O;k<time-shift;k++) { 

} 

} 

} 

x =y[j] [k]*y[j] [k+shift]; 
sum1 += x; 
sum2 += fabs(x); 

similar = sum1/sum2; 
if(similar > maxsimilar) { 

} 

maxsimilar = similar; 
period[j] = (double)(shift)* 

(finalt- initt)/(double)(time); 

catchamplitude() 
I* Calculate the amplitudes for individual components of the 
oscillating vector signal y, "rmsamplitude" is the 
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root-mean-square" amplitude from all the components. ***I 
{ 
double sum1; 

} 

for(j=O;j<nmitral;j++) { 
sum1 = 0.; 
for(k=O;k<time;k++) 

} 

sum1 += y[j][k]*y[j][k]; 
amplitude[j] = sqrt(sum1/time); 

rmsamplitude = 0 . ; 
for(j=O;j<nmitral;j++) 

rmsamplitude += amplitude[j]*amplitude[j]; 
rmsamplitude = sqrt(rmsamplitude/(double)(nmitral)); 

catchphase() I*** Calculating the relative phases between the 
components of the vector y by cross-corelating them. 

{ 

The first component is finally set to phase zero as the 
reference point. Filter the signal first to eliminate the 
noise.***/ 

int zero,maxshift,shift,delay; 
double x,sum1,sum2,max,highpass,lowpass; 

max= 0.; 
for(j=O;j<nmitral;j++) { 

} 

x = mainperiod-period[j]; 
if(x<0.2*mainperiod) { 

if(amplitude[j] > max) { 
max = amplitude[j]; 
zero= j; 

} 
} 

maxshift =(int)(mainperiod*time/(finalt-initt)); 
I*** get the phase relative to zerophase **I 

I*** filter the signal first***/ 
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x = 1000.0/mainperiod; I*** the frequency***/ 
highpass = 20.0; f*** high pass(Hz) : default***/ 
lowpass = 1.3*x; f*** low pass(Hz): default ***I 
buildfilter(highpass,lowpass); 
for(j=O;j<nmitral;j++) { 

} 

for(i=O;i<time;i++) 
y~] [i] = yfft[j][i]*filtermask[i]; 

realft(&y[j] [O],time/2,-1); 

I*** get phase by matching ***I 
for(j=O;j<nmitral;j++) { 

} 

if(j== zero) phase[j] = 0.; 
else { 

} 

max= -1.; 
for(shift = 0; shift<maxshift;shift++) { 

sum1=0; sum2 = 0; 
for(k=O;k<time-shift;k++) { 

} 

} 

x = y[j] [k] * y[zero] [k+shift]; 
sum1 += x; 
sum2 += fabs(x); 

x = sum1/sum2; 
if(x>max) { 

max = x; 
delay = shift; 

} 

phase[j] = (double)(delay)/(double)(time)* 
(finalt-initt)/mainperiod; 

f*** make them all relative to the 0-th cell, all phase values are 
normalized to the range from 0 to 1, i.e., phase= 1 means one 
cycle of the oscillation period. ***I 

for(j=1;j<nmitral;j++) { 
phase[j] = phase[j] - phase[O]; 
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if(phase[j]< 0 . ) phase[j] = 1. + phase[j]; 
} 

phase [0] = 0 . ; 
} 

catchrnean() I*** Calculate the mean values of the signal from the 
low frequency part 11 ymean11 of the signal . mean[] stores the 

individual mean of the component for vector signal 11 ymean, 11 

rmsmean is the root-mean-square average from the components. *I 
{ 

double sum1; 

} 

for(j=O;j<nrnitral;j++) { 
sum1 = 0 . ; 
for(k=O;k<tirne;k++) 

} 

sum1 += ymean[j][k]; 
mean[j] = sumiltime- backy[j]; 

rmsmean = 0 . ; 
for(j=O;j<nmitral;j++) 

rrnsrnean += mean[j]*mean[j] ; 
rrnsrnean = sqrt(rrnsrnean/(double)(nmitral)); 

realft.c: 

I** This is copied and modified from p.417 of the book 
11 Numerical recipe. 11 To do FFT, compile with fouri,(fft.o) **I 

#include <rnath . h> 
#include <stdio.h> 

void realft(data,n , isign) 

double data[]; 
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int n,isign; 

I* Calculates the Fourier transform of a set of 2n real-valued data 
points. Replaces these data (which are stored in array data[O ... 2n-1] 
by the positive frequency half of its complex Fourier Transform . 

The real-valued first and last components of the complex transform 
are returned as elements data[O] and data[1], respectively. 
n must be a power of 2. This routine also calculates the inverse 
transform of a complex data array if it is the transform of real 

data. **I 
{ 

int i,i1,i2,i3,i4,n2p3; 
double c1=0.5,c2,h1r,h1i,h2r,h2i; 
double wr,wi,wpr,wpi,wtemp,theta; I** double precision for 

the trigonometric recurrences**/ 
void four1 () ; 
I** check if n if a power of 2**1 
i = 2; 
for(i1=0;i1< 50;i1++) { 

if(n i) break; 

i*=2; 
} 

if(i1 == 50){ 

} 

fprintf(stderr, "wrong number of data for fft, or 
number too large\n"); 

exi tO; 

theta= 3.141592653589793 /(double)n; 
I** initialize the recurrence**/ 

if(isign == 1) { 

}else{ 

c2 = -0.5; 
four1(data,n,1); 

I** The forward transform is here**/ 

c2 = 0 . 5; I** otherwise setup for the inverse 
transform*/ 

theta = -theta; 



} 

} 

wtemp = sin(0.5*theta); 
wpr = -2.0*wtemp*wtemp; 
wpi = sin(theta); 
wr = 1.0+wpr; 
wi = wpi; 
n2p3 = 2*n + 3; 
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for(i=2;i<=n/2;i++){ I** case i=1 done separately below **I 
i4 = 1+(i3=n2p3-(i2=1+(i1=i+i-1))); 

} 

I** the two separate transforms are separated out 
of data**/ 

h1r c1*(data[i1-1]+data[i3-1]); 
h1i = c1*(data[i2-1]-data[i4-1]); 
h2r = -c2*(data[i2-1]+data[i4-1]); 
h2i = c2*(data[i1-1]-data[i3-1]); 
I** here they are recombined to form the true 

transform of the original real data **I 
data[i1-1] = h1r + wr*h2r - wi*h2i; 
data[i2-1] = hli + wr*h2i + wi*h2r; 
data[i3-1] h1r - wr*h2r + wi*h2i; 
data[i4-1] = -hli + wr*h2i + wi*h2r; 
I** the recurrence**/ 
wr = (wtemp=wr)*wpr-wi*wpi + wr; 
wi = wi*wpr+wtemp*wpi+wi; 

if(isign == 1 ) { I** squeeze the first and last data 
together to get them all within the original array*/ 
data[O] = (h1r=data[O])+data[1]; 

} else { 

} 

data[!] = h1r-data[1]; 

data[O] = c1*(( h1r=data[O])+data[1]); 
data [1] = c1* ( h1r - data [1]); 
four1(data, n,-1); f**This is the inverse 

transform for the case isign = -1 **I 
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fft. c: 

I* This is copied and modified from the book "Numerical Recipe,"*/ 

#include 
#include 

<math.h> 
<stdio .h> 

#define SWAP(a,b) tempr = (a); (a)=(b); (b)= tempr 

void four1(data, nn, isign) 

double data[]; 
int nn, isign; 

I** replaces data by its discrete Fourier transform, if isign is 
input as 1; or replaces data by its inverse discrete Fourier 
transform, if isign is input as - 1 . data is a complex array of 
length nn, input as a real array data[0 ... 2*nn-1]. nn MUST be an 
integer power of 2 **/ 
{ 

int n,mrnax ,m,j,istep,i,nncopy; 
double wtemp,wr,wpr,wpi,wi,theta; 

I* Double precision for the trigonometric recurrences**/ 
double tempr,tempi; 
I** check to see if nn is a power of 2**1 
m = 2; 
for(n=O;n<50;n++) { 

} 

if( nn == m) break; 
m *= 2; 

if(n== 50){ 
fprintf(s t derr,"wrong number of data :for fft, or 

number too large\n"); 
exit(); 
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} 

nncopy = nn; 

n=nn << 1; 
j=1; 
for (i=1;i<n;i+=2){f** this is the bit-reversal section 

of the routine**/ 

} 

if(j>i){ f** exchange the two complex numbers**/ 
SWAP(data[j-1], data[i-1]); 
SWAP(data[j], data[i]); 

} 

m=n >> 1; 
while (m >=2 && j> m) { 

j -= m; 
m >>= 1; 

} 

j += m; 

mmax = 2; f** here begins the Danielson-Lanczos 
section of the routine**/ 

while(n> mmax ){ I** outer loop executed log2(nn) times**/ 
istep = 2*mmax; 
theta= 6.28318530717959/(isign*mmax); 

f** initialize for the trigonometric recurrence**/ 
wtemp = sin(0.5*theta); 
wpr = -2.0*wtemp*wtemp; 
wpi = sin(theta); 
wr = 1.0; 
wi = 0.0; 
for(m=1;m<mmax;m+=2){ 

I** here are the two nested inner loops*/ 
for(i=m;i<=n;i+=istep){ 

j = i+mmax; I* This is the 
Danielson- Lanczos formula;**/ 

tempr = wr*data[j-1]- wi*data[j]; 
tempi = wr*data[j] + wi*data[j-1]; 
data[j-1] = data[i-1] - tempr; 



} 

} 

} 

data[j] = data[i] - tempi; 
data[i-1] += tempr; 
data[i] += tempi; 

} I** trigonometric recurrence **I 
wr = (wtemp=wr)*wpr - wi*wpi + wr; 
wi = wi*wpr + wtemp*wpi + wi; 

mmax = istep; 
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if(isign == -1){ I** make the inverse transform exact **I 
for(i=O;i<2*nncopy;i++) 

data[i] I= (double)(nncopy); 
} 


