Appendix A - Complete Table of Measured Properties for Wear Testing

<table>
<thead>
<tr>
<th>A/X/C</th>
<th>Density (g/cm³)</th>
<th>2.0Hv</th>
<th>E (GPa)</th>
<th>K (GPa)</th>
<th>G (GPa)</th>
<th>k, Dim. Wear Coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu38Zr42Al7Be10Nb3 A</td>
<td>6.948</td>
<td>626.5</td>
<td>108.5</td>
<td>119.5</td>
<td>40.2</td>
<td>6.60E-05</td>
</tr>
<tr>
<td>Cu44Zr46Al5Y2Nb3 A</td>
<td>6.925</td>
<td>407.4</td>
<td>76.9</td>
<td>110.7</td>
<td>27.8</td>
<td>9.63E-05</td>
</tr>
<tr>
<td>Cu42.5Zr42.5Al7Be5Nb3 A</td>
<td>7.020</td>
<td>544.4</td>
<td>97.8</td>
<td>118.5</td>
<td>35.9</td>
<td>6.53E-05</td>
</tr>
<tr>
<td>Cu41.5Zr41.5Al7Be7Nb3 A</td>
<td>6.867</td>
<td>523.9</td>
<td>102.0</td>
<td>115.2</td>
<td>37.7</td>
<td>7.89E-05</td>
</tr>
<tr>
<td>Cu40Zr40Al10Be10 A</td>
<td>6.582</td>
<td>604.3</td>
<td>114.2</td>
<td>117.0</td>
<td>42.7</td>
<td>1.14E-04</td>
</tr>
<tr>
<td>Cu42Zr41Al7Be7Co3 A</td>
<td>6.846</td>
<td>532.4</td>
<td>101.3</td>
<td>117.8</td>
<td>37.3</td>
<td>1.10E-04</td>
</tr>
<tr>
<td>Cu47Zr46Al5Y2 (POD) A</td>
<td>7.003</td>
<td>409.8</td>
<td>75.3</td>
<td>115.9</td>
<td>27.1</td>
<td>5.95E-05</td>
</tr>
<tr>
<td>Cu42Zr41Al7Be7Cr3 A</td>
<td>6.813</td>
<td>575.1</td>
<td>106.5</td>
<td>116.1</td>
<td>39.5</td>
<td>6.73E-05</td>
</tr>
<tr>
<td>Cu44Zr44Al5Ni3Be4 A</td>
<td>7.014</td>
<td>504.3</td>
<td>95.5</td>
<td>115.7</td>
<td>35.1</td>
<td>9.51E-05</td>
</tr>
<tr>
<td>Cu41.5Zr41.5Al7Be10 A</td>
<td>6.722</td>
<td>557.6</td>
<td>104.5</td>
<td>113.9</td>
<td>38.8</td>
<td>8.68E-05</td>
</tr>
<tr>
<td>Cu44Zr44Al7Be5 A</td>
<td>6.978</td>
<td>514.3</td>
<td>99.0</td>
<td>114.0</td>
<td>36.5</td>
<td>7.76E-05</td>
</tr>
<tr>
<td>Cu43Zr43Al7Be7 A</td>
<td>6.811</td>
<td>550.3</td>
<td>99.0</td>
<td>111.3</td>
<td>36.6</td>
<td>9.38E-05</td>
</tr>
<tr>
<td>Cu41Zr40Al7Be7Co5 C</td>
<td>6.864</td>
<td>589.9</td>
<td>103.5</td>
<td>116.8</td>
<td>38.3</td>
<td>1.05E-04</td>
</tr>
<tr>
<td>Cu43Zr43Al7Ag7 C</td>
<td>7.224</td>
<td>496.1</td>
<td>90.6</td>
<td>117.6</td>
<td>33.0</td>
<td>8.65E-05</td>
</tr>
<tr>
<td>Cu47.5Zr48Al4Co0.5 X</td>
<td>7.138</td>
<td>381.9</td>
<td>79.6</td>
<td>116.3</td>
<td>28.7</td>
<td>8.76E-05</td>
</tr>
<tr>
<td>Cu50Zr50 X</td>
<td>7.313</td>
<td>325.9</td>
<td>81.3</td>
<td>116.8</td>
<td>29.4</td>
<td>7.98E-05</td>
</tr>
<tr>
<td>Cu46.5Zr46.5Al7 X</td>
<td>7.007</td>
<td>510.5</td>
<td>101.4</td>
<td>113.0</td>
<td>37.5</td>
<td>8.92E-05</td>
</tr>
<tr>
<td>Cu44Zr44Al7Ni5 X</td>
<td>7.052</td>
<td>570.0</td>
<td>99.2</td>
<td>114.8</td>
<td>36.4</td>
<td>7.68E-05</td>
</tr>
<tr>
<td></td>
<td>A/X/C</td>
<td>Poisson Ratio</td>
<td>POD (mg)</td>
<td>Volume Loss (mm^3)</td>
<td>Rm (µm)</td>
<td>Track Width (mm)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>---------------</td>
<td>----------</td>
<td>--------------------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>Cu38Zr42Al7Be10Nb3</td>
<td>A</td>
<td>0.35</td>
<td>0.6</td>
<td>0.079</td>
<td>1.930</td>
<td>0.65</td>
</tr>
<tr>
<td>Cu44Zr46Al5Y2Nb3</td>
<td>A</td>
<td>0.38</td>
<td>0.8</td>
<td>0.116</td>
<td>2.237</td>
<td>0.71</td>
</tr>
<tr>
<td>Cu42.5Zr42.5Al7Be5Nb3</td>
<td>A</td>
<td>0.36</td>
<td>0.6</td>
<td>0.078</td>
<td>1.800</td>
<td>0.73</td>
</tr>
<tr>
<td>Cu41.5Zr41.5Al7Be7Nb3</td>
<td>A</td>
<td>0.35</td>
<td>0.7</td>
<td>0.095</td>
<td>1.757</td>
<td>0.85</td>
</tr>
<tr>
<td>Cu44Zr40Al10Be10</td>
<td>A</td>
<td>0.34</td>
<td>0.9</td>
<td>0.137</td>
<td>2.138</td>
<td>0.64</td>
</tr>
<tr>
<td>Cu42Zr41Al7Be7Co3</td>
<td>A</td>
<td>0.36</td>
<td>0.9</td>
<td>0.131</td>
<td>1.981</td>
<td>0.86</td>
</tr>
<tr>
<td>Cu47Zr46Al5Y2 (POD)</td>
<td>A</td>
<td>0.39</td>
<td>0.5</td>
<td>0.071</td>
<td>3.389</td>
<td>0.69</td>
</tr>
<tr>
<td>Cu42Zr41Al7Be7Cr3</td>
<td>A</td>
<td>0.35</td>
<td>0.6</td>
<td>0.081</td>
<td>1.924</td>
<td>0.71</td>
</tr>
<tr>
<td>Cu44Zr44Al5Ni3Be4</td>
<td>A</td>
<td>0.36</td>
<td>0.8</td>
<td>0.114</td>
<td>2.368</td>
<td>0.85</td>
</tr>
<tr>
<td>Cu41.5Zr41.5Al7Be10</td>
<td>A</td>
<td>0.35</td>
<td>0.7</td>
<td>0.104</td>
<td>1.554</td>
<td>0.65</td>
</tr>
<tr>
<td>Cu44Zr44Al7Be5</td>
<td>A</td>
<td>0.36</td>
<td>0.7</td>
<td>0.093</td>
<td>1.741</td>
<td>0.76</td>
</tr>
<tr>
<td>Cu43Zr43Al7Be7</td>
<td>A</td>
<td>0.35</td>
<td>0.8</td>
<td>0.113</td>
<td>1.290</td>
<td>0.74</td>
</tr>
<tr>
<td>Cu41Zr40Al7Be7Co5</td>
<td>C</td>
<td>0.35</td>
<td>0.9</td>
<td>0.126</td>
<td>1.605</td>
<td>0.78</td>
</tr>
<tr>
<td>Cu43Zr43Al7Ag7</td>
<td>C</td>
<td>0.37</td>
<td>0.8</td>
<td>0.104</td>
<td>1.292</td>
<td>0.75</td>
</tr>
<tr>
<td>Cu47.5Zr48Al4Co0.5</td>
<td>X</td>
<td>0.39</td>
<td>0.8</td>
<td>0.105</td>
<td>1.797</td>
<td>0.78</td>
</tr>
<tr>
<td>Cu50Zr50</td>
<td>X</td>
<td>0.38</td>
<td>0.7</td>
<td>0.096</td>
<td>1.693</td>
<td>0.80</td>
</tr>
<tr>
<td>Cu46.5Zr46.5Al7</td>
<td>X</td>
<td>0.35</td>
<td>0.8</td>
<td>0.107</td>
<td>1.336</td>
<td>0.69</td>
</tr>
<tr>
<td>Cu44Zr44Al7Ni5</td>
<td>X</td>
<td>0.36</td>
<td>0.7</td>
<td>0.092</td>
<td>1.042</td>
<td>0.61</td>
</tr>
<tr>
<td>Composition</td>
<td>A/X/C</td>
<td>Density (g/cm³)</td>
<td>2.0Hv</td>
<td>E (GPa)</td>
<td>K (GPa)</td>
<td>G (GPa)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Ni40Zr28.5Ti16.5Be15</td>
<td>C</td>
<td>6.432</td>
<td>715.2</td>
<td>128.4</td>
<td>131.7</td>
<td>48.0</td>
</tr>
<tr>
<td>Ni40Zr28.5Ti16.5Cu5Be10</td>
<td>C</td>
<td>6.649</td>
<td>668.2</td>
<td>112.0</td>
<td>129.2</td>
<td>41.3</td>
</tr>
<tr>
<td>Ni40Zr28.5Ti16.5Cu5Al10</td>
<td>X</td>
<td>6.485</td>
<td>627.2</td>
<td>99.3</td>
<td>128.7</td>
<td>36.2</td>
</tr>
<tr>
<td>Ni56Zr17Ti13Si2Sn3Be9</td>
<td>X</td>
<td>6.895</td>
<td>562.5</td>
<td>141.1</td>
<td>144.7</td>
<td>52.7</td>
</tr>
<tr>
<td>Ni57Zr18Ti14Si2Sn3Be6</td>
<td>X</td>
<td>6.958</td>
<td>637.3</td>
<td>139.4</td>
<td>145.4</td>
<td>52.0</td>
</tr>
<tr>
<td>Ti33.18Zr30.51Ni5.33Be22.88Cu8.1</td>
<td>A</td>
<td>5.481</td>
<td>486.1</td>
<td>96.9</td>
<td>110.6</td>
<td>35.8</td>
</tr>
<tr>
<td>Ti40Zr25Be30Cr5</td>
<td>A</td>
<td>4.850</td>
<td>465.4</td>
<td>97.5</td>
<td>104.6</td>
<td>36.2</td>
</tr>
<tr>
<td>Ti40Zr25Ni8Cu9Be18</td>
<td>A</td>
<td>5.501</td>
<td>544.4</td>
<td>101.1</td>
<td>110.8</td>
<td>37.5</td>
</tr>
<tr>
<td>Ti45Zr16Ni9Cu10Be20</td>
<td>A</td>
<td>5.322</td>
<td>523.1</td>
<td>104.2</td>
<td>111.1</td>
<td>38.8</td>
</tr>
<tr>
<td>Zr41.2Ti13.8Cu12.5Ni10Be22.5</td>
<td>A</td>
<td>6.061</td>
<td>530.4</td>
<td>95.2</td>
<td>109.6</td>
<td>35.1</td>
</tr>
<tr>
<td>Zr52.5Ti5Cu17.9Ni14.6Al10</td>
<td>A</td>
<td>6.670</td>
<td>474.4</td>
<td>88.5</td>
<td>110.5</td>
<td>32.4</td>
</tr>
<tr>
<td>Zr57Nb5Al10Cu15.4Ni12.6</td>
<td>A</td>
<td>6.667</td>
<td>439.7</td>
<td>83.3</td>
<td>111.5</td>
<td>30.3</td>
</tr>
<tr>
<td>Zr65Cu17.5Al7.5Ni10</td>
<td>A</td>
<td>6.643</td>
<td>463.3</td>
<td>116.9</td>
<td>110.5</td>
<td>44.2</td>
</tr>
<tr>
<td>Zr55Cu30Al10Ni5</td>
<td>A</td>
<td>6.690</td>
<td>520.8</td>
<td>87.2</td>
<td>110.3</td>
<td>31.9</td>
</tr>
<tr>
<td>Zr35Ti30Be27.5Cu7.5</td>
<td>A</td>
<td>5.361</td>
<td>461.8</td>
<td>90.5</td>
<td>104.4</td>
<td>33.4</td>
</tr>
<tr>
<td>Zr36.6Ti31.4Nb7Cu5.9Be19.1</td>
<td>C</td>
<td>5.700</td>
<td>391.1</td>
<td>84.7</td>
<td>105.8</td>
<td>31.0</td>
</tr>
<tr>
<td>Zr55Al20Co25</td>
<td>C</td>
<td>6.176</td>
<td>602.5</td>
<td>119.6</td>
<td>108.9</td>
<td>45.4</td>
</tr>
<tr>
<td>A/X/C</td>
<td>Poisson Ratio</td>
<td>POD (mg)</td>
<td>Volume Loss (mm^3)</td>
<td>Rm (µm)</td>
<td>Track Width (mm)</td>
<td>k, Dim. Wear Coeff.</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>----------</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Ni40Zr28.5Ti16.5Be15</td>
<td>C</td>
<td>0.34</td>
<td>0.8</td>
<td>0.124</td>
<td>1.698</td>
<td>0.47</td>
</tr>
<tr>
<td>Ni40Zr28.5Ti16.5Cu5Be10</td>
<td>C</td>
<td>0.36</td>
<td>0.3</td>
<td>0.045</td>
<td>0.768</td>
<td>0.82</td>
</tr>
<tr>
<td>Ni40Zr28.5Ti16.5Cu5Al10</td>
<td>X</td>
<td>0.37</td>
<td>0.3</td>
<td>0.042</td>
<td>0.836</td>
<td>0.66</td>
</tr>
<tr>
<td>Ni56Zr17Ti13Si2Sn3Be9</td>
<td>X</td>
<td>0.34</td>
<td>0.1</td>
<td>0.015</td>
<td>0.487</td>
<td>0.38</td>
</tr>
<tr>
<td>Ni57Zr18Ti14Si2Sn3Be6</td>
<td>X</td>
<td>0.34</td>
<td>0.3</td>
<td>0.043</td>
<td>1.578</td>
<td>0.43</td>
</tr>
<tr>
<td>Ti33.18Zr30.51Ni5.33Be22.88Cu8.1</td>
<td>A</td>
<td>0.35</td>
<td>1.2</td>
<td>0.210</td>
<td>3.162</td>
<td>0.79</td>
</tr>
<tr>
<td>Ti40Zr25Be30Cr5</td>
<td>A</td>
<td>0.34</td>
<td>4.4</td>
<td>0.897</td>
<td>12.150</td>
<td>0.80</td>
</tr>
<tr>
<td>Ti40Zr25Ni8Cu9Be18</td>
<td>A</td>
<td>0.35</td>
<td>1.0</td>
<td>0.173</td>
<td>2.325</td>
<td>0.83</td>
</tr>
<tr>
<td>Ti45Zr16Ni9Cu10Be20</td>
<td>A</td>
<td>0.34</td>
<td>1.0</td>
<td>0.179</td>
<td>2.309</td>
<td>0.90</td>
</tr>
<tr>
<td>Zr41.2Ti13.8Cu12.5Ni10Be22.5</td>
<td>A</td>
<td>0.36</td>
<td>2.3</td>
<td>0.379</td>
<td>6.788</td>
<td>0.71</td>
</tr>
<tr>
<td>Zr52.5Ti5Cu17.9Ni14.6Al10</td>
<td>A</td>
<td>0.37</td>
<td>1.8</td>
<td>0.262</td>
<td>3.607</td>
<td>0.58</td>
</tr>
<tr>
<td>Zr57Nb5Al10Cu15.4Ni12.6</td>
<td>A</td>
<td>0.38</td>
<td>1.9</td>
<td>0.285</td>
<td>6.413</td>
<td>0.75</td>
</tr>
<tr>
<td>Zr65Cu17.5Al7.5Ni10</td>
<td>A</td>
<td>0.32</td>
<td>1.5</td>
<td>0.218</td>
<td>3.082</td>
<td>0.62</td>
</tr>
<tr>
<td>Zr55Cu30Al10Ni5</td>
<td>A</td>
<td>0.37</td>
<td>2.7</td>
<td>0.404</td>
<td>3.754</td>
<td>0.92</td>
</tr>
<tr>
<td>Zr35Ti30Be27.5Cu7.5</td>
<td>A</td>
<td>0.36</td>
<td>3.8</td>
<td>0.699</td>
<td>11.796</td>
<td>1.04</td>
</tr>
<tr>
<td>Zr36.6Ti31.4Nb7Cu5.9Be19.1</td>
<td>C</td>
<td>0.37</td>
<td>4.3</td>
<td>0.746</td>
<td>4.951</td>
<td>0.79</td>
</tr>
<tr>
<td>Zr55Al20Co25</td>
<td>C</td>
<td>0.32</td>
<td>5.9</td>
<td>0.947</td>
<td>9.532</td>
<td>0.71</td>
</tr>
</tbody>
</table>