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Abstract

In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e.,
two-dimensional systems of up to twenty interacting electrons in an external parabolic
potential) undergo a gradual transition to a spin-polarized Wigner crystal with in-
creasing magnetic field strength. The phase diagram and ground state energies have
been determined. I tried to improve the ground state of the Wigner crystal by intro-
ducing a Jastrow ansatz for the wave function and performing a variational Monte
Carlo calculation. The existence of so called magic numbers was also investigated.
Finally, I also calculated the heat capacity associated with the rotational degree of
freedom of deformed many-body states and suggest an experimental method to detect
Wigner crystals.

The second part of the thesis investigates infinite nuclear matter on a cubic lat-
tice. The exact thermal formalism describes nucleons with a Hamiltonian that accom-
modates on-site and next-neighbor parts of the central, spin-exchange and isospin-
exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy
and basic saturation properties of nuclear matter can be reproduced. A first order
phase transition from an uncorrelated Fermi gas to a clustered system is observed
by computing mechanical and thermodynamical quantities such as compressibility,
heat capacity, entropy and grand potential. The structure of the clusters is inves-
tigated with the help two-body correlations. I compare symmetry energy and first
sound velocities with literature and find reasonable agreement. I also calculate the
energy of pure neutron matter and search for a similar phase transition, but the sur-
vey is restricted by the infamous Monte Carlo sign problem. Also, a regularization
scheme to extract potential parameters from scattering lengths and effective ranges

is investigated.
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Part 1

Phase Transitions in Quantum

Dots



Chapter 1 Introduction

1.1 Physical Realization of a Quantum Dot

Quantum dots have been the subject of recent intense experimental and theoreti-
cal research. The interest in those nanostructures arises not only from possible new
technological applications, but also from the desire to understand the fundamental
physical problem of a few (m < 300) interacting electrons in an external potential and
a strong magnetic field. The quantum dots are formed through a lateral confinement
of a two-dimensional electron gas. The two-dimensional gas itself is realized by an
inversion layer that occurs at the interface between a semiconductor and insulator
or between two different semiconductors. While in the early days semiconductor-
insulator systems were preferred (in form of Mosfets), which yielded an electron mo-
bility of p ~ 10* cm?/Vs, GaAs-Al,Ga; ,As interfaces are now used, with mobilities
of i ~ 107 cm?/Vs or better. Here, the mobility is the proportionality factor between
the change of the velocity of an electron that is subject to an acceleration by an

electric field in the time interval 7 between two scattering processes,

—

m*AT = eET — Av = %E = pE, (1:1)

with m* as effective mass. The interfaces, also called heterojunctions, can be grown
with high precision and lowest impurity densities through molecular beam epitaxy.
This technology uses single Gallium (Ga) atoms and Arsenic (As,) molecules imping-
ing on a heated substrate surface (usually an impure layer of GaAs) of 500°C. While
the sticking coefficient for Gallium is of order 1, Arsenic usually does not stick to the
substrate, unless a Gallium atom is present. This way very pure GaAs layers can be
produced, since one As atom is accompanied by one Ga atom.

Fig. 1.1 shows the energy levels for the semiconductor-semiconductor case [1].
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Figure 1.1: Band gaps for the GaAs-Al,Ga;_xAs heterojunction. Al,Ga;_,As has
the larger energy gap between valence and conduction and acts as insulator. It is
n-doped while GaAs is weakly p-type.

Al,Ga;_xAs has the wider band gap between valence and conduction band and acts
as insulator. It is doped n-type, putting free electrons into its conduction band, while
the GaAs is made as pure as possible; nevertheless it remains weakly p-type. The
mobile electrons of Al,Ga;_xAs move to the GaAs side to fill the few holes on top
of its valence band, and many electrons end up in the conduction band of GaAs.
The positively charged donors in the Al,Ga;_,As layer, which have been left behind,
attract the electrons in the conduction band of the GaAs layer to the interface and
bend both its bands because the separation of the charge gives rise to an electric field.
This is shown schematically in Fig. 1.2. The relaxation of electrons from Al,Ga;_xAs
to GaAs continues until the Fermi levels on both sides are equal; the electric field
generates a discontinuity in the potential. The density of electrons in the inversion
layer is determined by the dopant density, but can be controlled by putting a backgate
on the Al,Ga;_,As side.

The free electrons in the inversion layer move parallel to the interface in a two-
dimensional sheet. This can be proven by solving the Schrodinger equation for the
motion in z-direction, the direction perpendicular to the interface, which is governed

by 52
2m.,

Hyz (2) = (— 2 + Vr (z)) 2 (2) =gz iz (1.2)
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Figure 1.2: Schematic view of the bent valence and conduction band at the GaAs-
Al,Ga;_4As junction. If the band is bent strongly enough, electrons from the valence
band in GaAs move over to its conduction band and become free. The bending can
be enhanced with a backgate at the Al,Ga;_xAs layer.

A typical Vr (2) is displayed in Fig. 1.3, and m, is the effective mass of the electrons
for the motion in z-direction. The energy gap between the lowest and the first excited
state is with

€1 — €0 = 20 meV (1.3)

much higher than energies that are present when describing the motion in (z, y)-plane.

The zeroth eigenstate,
z
- A 1.4
20 (2) ~ zexp (— =) (1.4

has a width of b ~ 3 — 5 nm, while the lateral confinement of the dots are of order
100 nm, or a little smaller. Thus, the picture of a two-dimensional gas holds quite
well.

The confinement in (z,y)-direction is accomplished by an array of mesas etched
with lithographic methods on top of the AlyGa;_xAs. The material the array is etched
from consists of Si0O, and other materials, and the grooves form quadratic mesas as

illustrated in Fig. 1.4. On top of the mesas are gates which are charged negatively,
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Figure 1.3: Potential Vp governing the motion of the electrons in the inversion layer
in perpendicular direction. The energy gap between the lowest and the first excited
state is €1 — €9 &~ 20 meV.

confining the electrons symmetrically in between them as shown on the right panel
of Fig. 1.4. Kumar et al. [2] have performed a simulation of this device to calculate
the confining potential. They self-consistently solved in Hartree-approximation the

Schrédinger and Poisson equation,

i——_{?aﬂrﬂj} G+ [U(z,y,2) — En]G = 0 (1.5)

% s [c (z,y,2) Vo (z,y, z)] = —pl(z,y,2), (1.6)
with

1
Ai = 5 (Bj.'L‘k L kaj)

B = (0, O, B(])
—€¢ (.’L',y,Z) +AEC (:I;) ZI:Z) (17)

Il

Ul(z,y,z)

on a mesh for this kind of geometry and with appropriate boundary conditions.
AE¢ (z,y,2) is the offset of the conduction band, and p(z,y,2) = pous (T, Y, 2) +

pea (T,y, %) is the total charge density outside and inside the Schrédinger domain,
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Figure 1.4: Schematic view of the gated mesas that accomplish lateral confinement
(left panel). The NiCr gates are negatively charged, forcing the electrons in between
the mesas in the inversion layer, as illustrated on the right panel (top view).

while ¢, describe the electronic states inside the dot (Schrodinger domain), generat-

ing its charge

bt (@09,2) = 2 G @ u A Glmn < 1 (L2) )

with f as Fermi-Dirac distribution function and Er as Fermi energy. They were able
to show that the confining potential is nearly circular despite the square geometry
of the sample. For increasing magnetic fields they proved that the electrons are
indeed exposed to a parabolic potential, that this potential is fairly independent of
the number of electrons in the dot and that the energy levels look very similar to
the Fock-Darwin levels. Fock-Darwin levels are the single-particle levels of a system
with a parabolic potential and electrons that are exposed to a magnetic field which
is perpendicular to the plane of motion, as explained in Section 1.2.

McEuen et al. [3] were able to perform conductance measurement on a quantum
dot by putting leads near the dot. Again, a square geometry of the confining gate
was used. Measuring the peak position as function of gate voltage and magnetic field
in the range of B = 2 — 4 T, they were able to map the conductance peaks to the
energy levels of an ideal parabolic quantum dot. For higher B-fields, though, the
reproduction of the Fock-Darwin levels failed. This could be due to the facts that
electrons do not occupy single Fock-Darwin levels at this field strength.

The electron systems are called dots (or zero-dimensional objects) because their
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size is much smaller than the mean free path of electrons in the inversion layer.

Electrons in the conduction band have Fermi velocities of

vp 108%“, (1.9)

and the time between two scattering processes of an electron can be calculated from
their mobility u as

”2 pa 10712 s, (1.10)

T =

Therefore, the mean free path of an electron in the inversion layer
l=vpT~10°%m (1.11)

is much larger than a typical dot size of 10~7 — 107% m.

1.2 Basic Theory

In this section I describe the basic properties of electrons in one dot as they emerge
from the theory. I consider m electrons of effective mass m* in a plane (z,y) confined
by an external parabolic potential,

1 1
V(r) = Em*wgrg = §m*w§ (332 + y2) ; (1.12)

and subject to a strong magnetic field

The effective mass m* is smaller than the free electron mass m,. This is due to the
fact that the electrons move in a crystal, or more specifically, in the conduction band
of GaAs. To motivate this, one can imagine that the electron as a wave packet is

subject to a perturbation like an electric field and experiences a change of its group



velocity

& (3)-r3 (o5 -2

where W (k) is the energy of the band as a function of wave vector k. Since the force

on the electron is given by

F =m0 = hk, (1.15)
the mass then results in 1
PW (k)\
* 32
m* =h (——*a‘?g2 . (1.16)

Even though this is not a complete quantum mechanical derivation, it already shows

the correct dependence of m* on the second derivative of W (k). For GaAs,
m* = 0.067m,. (1.17)
For similar reasons the effective g-factor of GaAs is
g =—0.44. (1.18)

Since the bands have been evolved from atomic levels of the isolated atom (c.f. tight
binding model) with certain quantum numbers of angular momentum, the spin-orbit
interaction and the fact that the degeneracy of atomic levels is lifted in a periodic
lattice generates a g-value that is caused by many levels, thus the irregular value.

The Hamiltonian for the system is

=

) 2
= NS .

- ?
i<j ejf — ""J'l

5B -
h

1
m*

= 1 .o 2 — g p
Hi+§zmw0(zi+yi)+z
=1

=1

ﬁ:.zz

m
i=1

1=
where Ii; = %V—’z + %E(f;) is the kinetic momentum of the ith electron, choosing a

symmetric gauge

A(R) = %(—yﬁﬂ?iao)- (1.20)

€ = 12.9 is the dielectric constant for GaAs. I include the spin degree of freedom of

the electrons S; = :t%é‘,,. While the Zeeman energy is added to the Hamiltonian, an
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order-of-magnitude estimate shows that the spin-orbit interaction can be neglected:

The magnetic field strength induced by the circular motion of an electron with an

angular momentum of h at a typical distance of
lo~1.0x10"% cm

is only
eh

—— SR Iy
m*cld

B, =

and therefore much smaller than the external field.

Defining the frequencies

GBO 1
g = m*c’ w(BU) = ng + nga

the coordinates are rewritten as dimensionless complex variables,

Ty — WY

lov/2

2 =

with
h

b=y ety

as so-called magnetic length, to obtain

i

* BB'S-" 62
h

*
-1 m

Y

i<j E\/ilolii — Zjl

g
ﬁﬂ(‘z‘ia S:l) a5

2
=1
m 62 Z 1

izzl 6\/§l0 i<j |z — Zj' .

L h2 1 * 2 2 2 h =

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

H, is the single-particle Hamiltonian whose eigenfunctions will form the basis states
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for the Hartree-Fock calculation. For the spatial part of ﬁg, I define

ai = %(2— az); b* = %(z - 82)7 a = %(z_'_ai): b= \/Lé(z"*"az) (127)

with [a, a'] = [b,b] = 1 and write

Hy(z) = hw(By)(ata+btb+1)— %hwc(bfb — dfa)
— hw(Bo)(2ata+ L+1) - %mcc

= hw(By)(2bTb — L+ 1) — %hwcﬁ, (1.28)

where £ := b'b — ala is the angular momentum of the particle. The eigenvalues of

the single-particle Schrodinger equation
I;i-O‘Ilnk — enkq’nk (129)

are

1
€nk = hw(Bp){2n + |k| + 1} — Ehwck. (1.30)

These energies are called Fock-Darwin levels [4, 5]. They evolve from the well known
Landau levels because the parabolic potential lifts their degeneracy. As shown in
Fig. 1.5, n enumerates the levels that are Landau levels when the parabolic potential
is switched off, and k differentiates levels within a Landau level. I therefore call the
latter one intra-Landau level. Note that a level with a negative k value is grouped
together with states of the next higher Landau level n + 1. The eigenfunctions of the

single-particle Hamiltonian are generated from the ground state

Too (2) = \/gexp (—|z|2) (1.31)

by the application of a combination of the creation operators a! and b'. For k > 0

they are
Ui (2) = ()" (6" o (2), (1.32)
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Figure 1.5: Samples of Fock-Darwin levels (n, k) as a function of cyclotron energy.
The levels with the same quantum number n (Landau level) have the same color.
Levels with negative k-value have energies that are of the same order as states with
the next higher Landau level n + 1. For clarity some levels (dotted lines) have not
been labeled.
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while I get for £ <0

Wi (2) = (af)" (6)" Yoo (2) - (1.33)

Electrons occupying the Fock-Darwin levels are moving in concentric circles of radius

Rui ~ lgy/(2n + |k| + 1) (1.34)

around the origin of the quantum dot and perpendicular to the magnetic field lines.

1.3 Rotationally Symmetric Ground States

Constraining the electrons to occupy the Fock-Darwin levels (the orbital occupation
numbers are integers), the many-body state of a quantum dot consists of a single
Slater determinant. Many observations can be made and have been described in
literature (see as examples of many more references [6, 7, 8, 9]). The behaviour is
mostly driven by two competing parts of the potential, the confining potential and the
Coulomb interaction. The confining parabolic potential can effectively be controlled
by the magnetic field because of Eq. (1.23). It is somewhat equivalent to talk about
the confinement obtained by the parabolic potential or by the magnetic field strength.
Other components that come into play are the Zeeman energy (eventually resulting in
the spin flip of the electrons) and the Pauli principle which makes certain configuration
more favorable than others.

At zero magnetic field strength all Fock-Darwin levels are twofold degenerated
because they can be occupied by a spin-up (1) and a spin-down (/) electron. The
dot is unpolarized, or its total spin is just S = j:%h, the spin of the one electron
in the half-filled Fock-Darwin level. Furthermore, some of the higher Landau levels
are energetically favored over intra-Landau levels of the lowest Landau level (n = 0)
when the dot is filled with electrons. At higher B-fields only the lowest Landau level

(n = 0) is occupied: For By ~ 10 T, for example, one has fiw, ~ 17 meV and
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hw(Bp) ~ 9 meV, and all particles occupy the Fock-Darwin states with n = 0:

Ae = €n—0L — €n=o0r—1 ~ 0.5 meV < €n—0L — €n=11 ~ 18 meV. (135)

The interplay of the three basic mechanism is very subtle as it has been shown in
the articles cited above [6, 7, 8, 9]: The Coulomb interaction always favors a larger
area; if there were no parabolic confinement, charge would be distributed over infinite
space. The Coulomb interaction also makes spin polarization of the dot set in earlier
than a naive back-of-the-envelope calculation would suggest. For again By = 10 T

the split in the Zeeman energy,

* o ¥

g*m
2m,

AEs = g*upBy = hw, =~ 0.25 meV, (1.36)

is smaller than the intra-Landau level separation, but the Coulomb repulsion of an
electron with the one in the same Fock-Darwin level together with the one of the
neighboring level makes it energetically not advantageous to have two electrons stay
in the same orbit; in addition, the radius of the electrons decreases with increasing

magnetic-field strength,
1

VB’

making the Coulomb repulsion stronger. If the spins align, the spin part of the many-

R~y ~ (1.37)

body wave function becomes symmetric, forcing the spatial part to be antisymmetric
to obey the Pauli principle. This makes the electrons occupy different Fock-Darwin
levels thereby reducing the Coulomb energy. This is a manifestation of Hund’s rule
as it is known in atomic Physics. The existence of this rule for quantum dots has
been shown experimentally for small B-fields [10].

The Pauli principle, on the other hand, guarantees that the dot forms a compact
disk rather than a system of separated orbits. (One could imagine that, if the con-
finement is not too strong, placing electrons in orbits that are sufficiently apart from
each other would minimize Coulomb repulsion and make the energy disadvantage

caused by the confinement not unfavorably large. The Pauli principle disallows that.)
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Figure 1.6: Scheme on allowed (green check mark) and disallowed (red cross) configu-
rations for five electrons in a dot. The electron are constrained to occupy Fock-Darwin
level of with n = 0. Occupied states are marked with a blue dot. Because of the Pauli
principle the electrons form one compact disk or ring. Only for a larger number of
electrons there can occur a ring and a disk in a dot.

The exchange potential is most attractive for two electrons in adjacent Fock-Darwin
levels. If there are m electrons in a spin-polarized dot, the most stable configurations
are those that form one disk or one ring as demonstrated in Fig. 1.6 or Fig. 1 of
Ref. [7]. Taking into account that the level (0, k) carries angular momentum hk, the

energy as a function of the total angular momentum,

J=h ¥ 4 (1.38)
e
has downward cusps at
-1
Jd= T_(_T’Z____)_ + pm , p integer. (1.39)

These numbers of angular momentum are called magic. There will be a range of
magnetic-field strengths for which a so-called maximal density droplet exists: Fock-
Darwin levels are occupied, starting from (0,0) until (0, m); all levels are occupied
once, yielding in a spin-polarized system. The next most stable configuration is then
accomplished by taking out the most inner electron and putting it next to the outmost
electron, and so on.

Nevertheless, it is not clear whether a dot filled with an arbitrarily large number
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of electrons is a compact disk or ring for all values of By. In fact, A.H. MacDonald
[8] and C. de C. Chamon [9] showed that bulk instabilities occur somewhere in the
middle of the maximum density droplet and not at the center or at the edge when the
confining potential is made weaker or the Coulomb interaction stronger. Electrons in
the bulk are taken out and put next to the outmost electron at some critical value
of By, forming a disk and a ring (cf. Fig. 11 of Ref. [9]). The quasiparticle energy,
which is the cost or gain in energy of adding or removing an electron in a particular
Fock-Darwin level, is higher for the occupied states within the bulk, not at the center,
than those unoccupied at the edge, making it energetically possible to break up the
maximum density droplet. Even though an investigation of rotationally symmetric
many-body states is not the subject of this project, I made similar observations and
will mention them in Section 4.1. However, this summary already shows a very
richness of phenomena and observations that can be identified in quantum dots and

is caused by quite elementary effects.
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Chapter 2 Aim of the Calculation

The scenarios discussed in the last chapter assume an unbroken rotational symmetry.
But it is not obvious that the real ground state has to be rotationally symmetric.
The bulk instabilities that develop for high fields indicate that the system might
be frustrated because the electrons are forced to occupy Fock-Darwin levels. The
Coulomb repulsion becomes the strongest part in the Hamiltonian for high fields
and cannot be viewed as a perturbation anymore. One can imagine a situation in
which adding an electron to an existing rotationally symmetric system perturbs the
electrons so much that they are being ”thrown out” of their orbits (or better said:
the dot is polarized) by that valence electron. This is very similar to the Physics
of deformed nuclei: A spherical (closed shell) nucleus has deformed neighbors in the
table of nuclei because the additional valence nucleons polarize the remaining core
nucleons and induces higher moments. Many investigations on quantum dots, among
them some of those mentioned in the last chapter, simply do not allow for these
considerations because of the restriction of electrons having to occupy Fock-Darwin
levels.

Other authors have considered the possible existence of not rotationally symmetric
ground states. Maksym [7] considers a “large angular momentum limit” of systems up
to five electrons and describes only excited states of integer angular momentum. He
speculates on the existence of ground state Wigner molecules in the large-field limit.
Bolton and Réssler [11] simulated up to forty classical interacting point charges in an
external parabolic potential, neglecting kinetic terms. Their model is aimed at un-
derstanding which charge distribution in a Wigner state is caused by the interaction.
Their simulation is Monte Carlo like, agitating particles according to a Maxwell-
Boltzmann distribution exp (—AE/kgT), AFE being the energy difference between
two configurations of electrons. They observe a distinct spatial structure of minimum

energy clusters with up to four ring-like shells. They also give an illustration how
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some configurations for a fixed number of electrons are very close to degeneracy by
calculating the energies of a transition between two configurations. They find that,
especially for 6, 10, 12, 14 and 17 electrons, alternative clusters with almost identi-
cal energies occur which will turn out to be an important finding in my calculation
too. Nevertheless, their investigation can only be considered qualitative because the
full Hamiltonian is not considered, the electrons are treated as point charges and a
quantum mechanical treatment is not attempted.

In this project I solve the full quantal problem of up to twenty electrons in a
quantum dot. I consider ground state properties of these systems in the limit of a
strong magnetic field. I treat the problem by solving the Hartree-Fock equations,
but emphasizing on the search of not rotationally symmetric ground states. This
can be accomplished by two approaches: First performing a constrained Hartree-
Fock calculation, forcing the electrons to shape like a dipole, quadrupole or a higher
moment; secondly, by starting an ordinary Hartree-Fock calculation with arbitrary,
but not rotationally symmetric initial conditions (Hartree-Fock is a self-consistent
method). The latter one will turn out to be successful. After a brief description of the
well known phases of the rotationally symmetric case as they appear in the Hartree-
Fock approximation, I present the gradual transition towards a Wigner molecule
and crystal; the various spatial configurations are shown and the shell structure is
compared to that of the classical calculation [11]. I further describe a variational
Monte Carlo calculation which I performed to improve the wave function by a Jastrow
ansatz. Finally, I investigate the rotational spectra associated with the breaking
of the continuous rotational symmetry; the heat capacity associated with this new
rotational degree of freedom is calculated and a method to detect Wigner molecule

experimentally is suggested. The results presented here have been published [15].
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Chapter 3 Hartree-Fock Approximation

for Quantum Dots

3.1 Theory

I restrict my calculation to the n = 0 level because for a high magnetic-field strength
only the lowest Landau level is involved, as pointed out in Section 1.3. The eigen-
functions are

Wy, ~ 2" exp(—|2|?) (3.1)
and are identical to the usual form

7.2

S ~ e ot Ll (r) exp(— o
212

)s (3:2)
L!)kl(r) being the Laguerre polynomial of degree zero.

In the Hartree-Fock calculation, the Hartree-Fock energy

n 1 _
EHF — <(D|H|(I)> = Z tlllz <q)|c}1012|@> ¢ Z Z Uliolaly ((I)|C;1 CIQC;4CI3|(I))
lil2 i1l
izly

1 .
= zthlzplzh y s _2' Z Pisly Uty lalsls Plals (33)

lls 1l
igly

is minimized with
Pl = (QICLCHI(I» (34)

being the density matrix and |®) a Slater determinant. czr creates a fermion in the

state W;, while its Hermitian conjugate ¢; destroys it. The second part of Eq. (3.3)
can be derived using Wick’s theorem [12]. The indices /; = (k;, s;) run over all orbital

states k, as well as the spin degree of freedom s = {+%, —%} In this notation, the
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single-particle matrix element is given by

. *upB
thi, = (Vi |Ho|Vy,) = €k, Ok, + (—1)31%2%53132 (3.5)

with
1
€k, = fuw (B) (kl =+ 1) — §hwck1, (36)

and ¥ is the antisymmetrized Coulomb matrix element,

ﬁl112i3l4 = (3'7)
Eﬁlo <k1k2| 1 ]k3k4> if S3 =,é 84.

[zi—2;]

62 { <k1k2|ﬁlk3k4> == <k1k2|rz-:}'z—;|'|k4k3) lf 83 = 84,

To evaluate these two-body matrix elements in the two-electron Fock-Darwin repre-

sentation (z;, z;),

o(ka+ka+2)/2

ksky) = ———
I 3 4> 7T\/k3!k'4!

(2:)" (23)" exp (|l = |2;]2), (3.8)
I switch to the variables

2= s (), 2= s (=) (3.9)

and yield

exp (—|z_|? — |z |?) Fathe - 3 4 3+ka—p 2
ek = ZEREEL DS oy (2 ) () oo o a0

The overlap with the new representation (z.,z_), indicated by the letters n and [,

2(n+l+2)/2

Inl) = ey ()" (2-) exp (“[z+|2 - |Z—I2) ; (3.11)

is then given by

[ nll! 1 i ks k4
(”l|k3k4) = Op il ks+ks m\/——le——H zl: (—1) (l . z) ( ; ) (3.12)
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The matrix elements for the Coulomb interaction in (z,,z_) coordinates are then

easily calculated as

L+
(nl|——|n’l') = \/ﬁué‘nnfdw =Yy (l) 5nn’5ll’: (313)

1 1
] T(I+1)

and in the (z;, 2;) representation

(k1k2|ﬁ\k3k4) ="V (1) {kiko|nl)(nl|ksks). (3.14)
s nl

I' is the Gamma function. Note that because of the overlap functions (3.12), the k;’s
have to fulfill £; + k2 = ks + k4, which means that angular momentum is conserved
as required from the Coulomb interaction.

To obtain the ground state within the space of Slater determinants, I minimize

the Hartree-Fock energy (3.3) by varying with respect to p,

(5EHF
73 0. (3.15)

It has to be ensured that the solution stays within the set of Slater determinants and

that the number of particles is conserved:
o =p, tro=m. (3.16)
This results in a matrix diagonalization problem

S hiiDi =Y (tij +3 171‘1';'!40”') Dji, =Y (tij + ©45) Djx = exDik, (3.17)
J

) w J

where © is the so-called mean field. The eigenvectors D, of h represent the new
single-particle states {k}, that are to be occupied according to the energies €. They

are the new Hartree-Fock basis. Eq. (3.17) has to be solved self-consistently, since

m
pw =Y DiDjy;, (3.18)

=1
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which means that the matrix depends on its eigenvectors. p is diagonal because of

(3.16). This suggests the following procedure (unconstraint Hartree-Fock):

1. Calculate the single-body part ¢ of the Hamiltonian.

2. Set the initial condition in ﬁk according to the aim of the calculation, in this

case a not rotationally symmetric condition. From that, calculate p.
3. Calculate the mean field ©.

4. Diagonalize h = ¢t+© and obtain the new single-particle wave functions Dy and

energies €.
5. Calculate p from the new functions.

6. Calculate the Hartree-Fock energy

m
1
EHF = Z €k — § Z pl3llﬁlllzlai4p[4lz- (3.19)
k=1

Il
l3lg i

7. Repeat 3 to 6 until EF has converged.

The Hartree-Fock approximation is known to conserve symmetries present in the
initial trial wave function. To generate deformed solutions, I started with a quite
arbitrary, but not rotationally invariant, initial Slater determinant, which produces
a deformed initial mean field. Self consistent iteration of the Hartree-Fock scheme
guarantees amplification of solutions with the symmetry of the Wigner molecule. Of
course, the same converged solution must be reached for several different initial states
to give confidence that it is the true minimum.

The other way of investigating deformed ground states is by introducing a con-
straint on the dot in form of an external field, as mentioned earlier. I used the method
of Lagrange multiplier to impose the condition. This is known as constraint Hartree-
Fock. I searched for new ground states by applying dipole and quadrupole fields,
but was not able to find a minimum with a lower energy than those presented in

Chapter 4.1.



23
3.2 Test Cases

I take into account up to 200 single-particle states (including spin). I tested my
code by comparison with the results of Pfannkuche et al. [13] and Bolton [14].
Pfannkuche et al. performn Hartree, Hartree-Fock and an exact calculation of quan-
tum dot Helium, which is a dot filled with two electrons. They consider states with
integer total angular momentum, remain mostly in a region of the magnetic field
strength By where crystallization does not play a role, and their basis states include
two Landau-levels and their intra Landau-levels.

Although their model space is different from mine, my ground state energies of
total angular momentum J = 1 for 0 T < By < 5 T coincide with their Hartree-
Fock calculation within less then 2%, and the J = 0 ground state energies agree
with less than 5%. As one can see in Table I of reference [13], the n # 0 coefficients
in their J = 0 ground state are larger than in their J = 1 ground state, so that
the n # 0 space is more significant for those magnetic-field strengths. Their exact
result for J = 0 is also quite different from their Hartree-Fock result, and they go on
investigating the correlation energy responsible for this deviation, which is ignored
in a Hartree-Fock calculation. In general, the accuracy of a mean field calculation
increases with increasing number of electrons, but an exact calculation which relies
on a direct diagonalization is out of range for a higher number of electrons.

Similar results are obtained if I compare my results to the fixed node Monte
Carlo calculation of reference [14]. A fixed node Monte Carlo calculation evolves the
probability density of the electrons in imaginary time from a trial wave function with
a given fixed nodal structure. The nodal structure is imposed to avoid dealing with
the fermion sign problem. This makes the method approximate. The purpose of this
evolution is to filter out the ground state of the system. At its core is the imaginary
time Schrodinger equation which is almost equivalent to a diffusion equation. They
are investigating a system with one to ten electrons. Their trial wave function is a
Laughlin-like state which is usually used to describe fractional quantum hall effects.

In the spin polarized case my ground state energies agree within a few percent, while
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I overestimate the energy of the depolarized system by up to 15%. This is due to the
larger correlation energies when two electrons can occupy the same orbital. Since the
questions addressed in this thesis concern the spin polarized regime, this deviation

from the results of [14] is of little concern.
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Chapter 4 Numerical Results

4.1 Phase Transition Towards a Wigner Molecule

As mentioned earlier, I have used the material constants of GaAs (i.e., m* = 0.067 m,

and € = 12.9), as well as an external potential strength of
hwg = 3 meV (4.1)

for my calculation. To observe the expected phase transition, I first consider a system
of m = 10 electrons. Fig. 4.1 shows the ground state energy as a function of the
magnetic field strength By and, for comparison, the lowest energy of the rotationally
symmetric system. The Wigner molecule becomes the ground state for By > 5.2 T,
while at smaller strengths the rotationally symmetric state is favored. The system
undergoes spin polarization from By = 0 T to 1.5 T, where the spin polarized so-
called maximum density droplet [8] prevails. At By = 4.5 T bulk instabilities result in
unoccupied inner Fock-Darwin states. The transition to a Wigner molecule, and later
to a crystal, happens very gradually. I refer to the case where the probability density
is deformed, but still very smeared out as a “molecule,” while a “crystal” signifies
well localized and distinguishable electrons, as illustrated in Fig. 4.2. The molecule
at By = 6 T is lower in energy by only 0.2% (0.542 meV) relative to the rotationally
symmetric solution, while the crystal at By = 10 T gains about ~ 3 meV, which is
of order of the strength of the confining potential. Note that the deformed ground
states are not eigenstates of the total angular momentum operator J = }_; L8,

The breaking of symmetry this phase transition relies on is the change of the
continuous symmetry, which is an invariance under the rotation about an infinitesimal
angle, towards a discrete one. Most molecules are still invariant under a rotation

by 180°, but whether there exist additional discrete and finite angles of invariance
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Figure 4.1: Ground state energies of the Wigner molecule (solid line) and lowest
rotationally symmetric state (dashed line) as a function of magnetic field strength for
ten electrons.
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Figure 4.3: Radial electron density of m = 20 electrons for different values of B,.
The green solid curves represent Wigner crystals, while the red dashed curves show
the slow transition to a maximum density droplet, which is reached at By, = 4 T.
Depolarization sets in for the cases of the black dotted curves.

depends on the explicit spatial structure of the molecule.

The rotationally symmetric case suffers further complication with increasing mag-
netic-field strength: While at first (By &~ 6 T) the hole in the bulk widens (the
[ = 1,2,3 Fock-Darwin levels empty), later at By = 6.75 T a fourth state empties,
resulting in an electron in the center and a ring outside. The solution eventually
transforms into two separate rings at Bg > 9 T.

For further insight into the various transitions, the radial (angle-averaged) particle
distribution for various magnetic fields is shown in Fig. 4.3 for m = 20 electrons. The
crystalline state has 1 electron in the center of the dot, 7 in a middle ring and 12
electrons in the outmost region. Correspondingly, the By = 20 T curve shows three

maxima. For By = 6 T the center electron and the seven in the middle ring have
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Figure 4.4: Separation energy A(m) and the differences in the separation energy
Ay (m) for Wigner molecules (upper two diagrams) and for the lowest available rota-
tionally symmetric states (lower two diagrams).

almost uniformly merged to a flat distribution which extends to z ~ 2, and the
outer ring can now be found at z ~ 3. For By = 3 — 4 T I find again the so-called
maximum density droplet: the electrons occupy the first twenty Fock-Darwin levels,
since they are polarized. Further lowering of By results in a depolarization, allowing
further accumulation of electrons near the origin. Since I only take into account n = 0
states, I cannot claim to represent the physical situation for the smaller field strength,
although I do reproduce the energies in this regime quite well, as noted above.

In Fig. 4.4 1 plot the separation energy,

A(m) = Emi1 — Em, (4.2)
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and the differences in the separation energy,
As(m) = A(m + 1) — A(m), (4.3)

as functions of the particle number m in the crystal regime, By = 20 T. There is a
large drop in As of ~ 0.5 meV whenever charge can be put to the outer region of the
dot (see, e.g., m = 4 and m = 8), in accord with charge being distributed over a larger
area, thereby reducing the Coulomb energy. In the case where one charge is placed
in the center and two rings outside (m = 14), the gain in energy is reduced by the
fact that more particles outside feel a stronger external potential. The tendency here
is that the Coulomb energy plays a less and less important role, weakening the slope
in the separation energy, combined with the fact that more particle can be packed in
the outer region.

For comparison, I also show A(m) and Az(m) in Fig. 4.4 for the lowest rotationally
symmetric state. No clear tendency in the behaviour of Ay(m) is evident. The system
is frustrated by the particles having to occupy Fock-Darwin levels.

In Table 4.1 I show the spatial configurations of the system in the Wigner-like
structure (obtained by enumerating the number of electrons occupying the corre-
sponding rings) and give the ground state energies. I generally confirm the config-
urations (spatial shell structure) of the classical calculation of reference [11] as well
as the exceptional behaviour of the m = 6,10,12 and 17 clusters, although there is
no peak in A, for m = 14 (the peaks in Fig. 4.4 correspond to the cusps of Fig. 5 of
reference [11]), since ten electrons are moved outside for the m = 16 configuration.

In Fig 4.5 I plot the phase diagram with respect to number of particles and the
ratio 2¢. I omit the regime of bulk instabilities, since it is of minor importance. The
phase boundary of the spin polarized regime and the partially unpolarized regime
suffers again from the Hartree-Fock approximation, as it bends down with decreasing
number of electrons. The boundary crosses the m-axis at too high values of m.
Only for m=1 there cannot be an unpolarized region if gﬁ # 0. The boundary of

the molecular regime is defined by how much the continuous rotational symmetry is
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number of | energy ring occupations
electrons | [meV] |inner — middle — outer
1 17.247 1—-0-0
2 40.085 2—-0-0
3 66.439 3—0-0
4 96.463 4-0-0
5 129.986 5—0-0
6 166.346 1-5-0
7 205.448 1-6-0
8 247.636 1-7-0
9 292.621 2-7-0
10 339.934 2—-8-0
11 389.489 3—8-0
12 441.634 3—9—-0
13 496.008 4-6-0
14 552.825 4—-10—-0
15 611.879 5—10-20
16 673.004 1-5-10
17 736.135 1-5-11
18 801.162 1-6-—-11
19 868.558 l=B==]13
20 937.973 1-7-12

Table 4.1: Ground state energies and spatial distributions of Wigner crystals in quan-
tum dots for up to twenty electrons at B = 20 T.

broken: the fractional uncertainty in the total angular momentum is
A _ ) - ()
f=m=Xr 7 (4.4)
(J) (J)
and I define a molecule by

f>1%. (4.5)

The boundary is fairly constant for m > 6, but, since the transition is gradual, it has
some uncertainty. For less than seven particles, I find a small drop in the boundary,

due either to some non-obvious physical effect or to the approximation I use.
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4.2 Variational Monte Carlo Calculation for Wig-

ner Molecules

The Hartree-Fock calculation is based on a theory of independent particles moving
in an average potential. I improved the wave functions for the Wigner regime to a
many-body wave function by introducing a Jastrow-type function

<j

|0) = (8 H Fla— Zj)) |Prr) (4.6)

where S is the symmetrizer and |®Pgp) the Hartree-Fock solution to the problem. To
guarantee a convenient symmetrized form of the product of this function, I made the

ansatz

f(zi — z) = |z — z]* (4.7)

for the pair correlation function f(z; — z;) with k as a variational parameter. Note
that this ansatz does not take into account phases, thereby reducing the model space
a bit. Also, this ansatz treats all electrons on an equal footage and does not take
into account the already established spatial structure other than through the Slater
determinant. So this calculation should be viewed as a benchmark of how good the
Hartree-Fock solution already is. If the energy cannot be improved significantly, then
some confidence in the Hartree-Fock solution can be established.

I performed a variational Monte Carlo calculation [16] to evaluate the energy

(R [H|Y (8))
BlF = = 0 1w (h))

(4.8)

The Monte Carlo procedure is used to evaluate the integrals in numerator and de-
nominator. They rely on the Metropolis algorithm [17] which is described in more
detail in the second part of this thesis. The difference between this, a variational cal-
culation, and an auxiliary field Monte Carlo is that the variational calculation only
gives an upper bound on the energy, while the auxiliary field Monte Carlo is an exact

thermal description of a physical system. By searching for a minimum of E [k] in the
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parameter space (in this case it is the one-dimensional k-space), I obtain an estimate
for the true ground state energy and wave function. The integrals are evaluated by
introducing a weight function W ({R}), {R} being the set of spatial coordinates of
the electrons, according to which samples of the integrands are taken:

far REUERER IR ({A))

W({R}

- m BYT{RDY({R}) A

E k]

(4.9)

The weight, function W({R}) samples the important regions of the integrand, thereby
reducing the computational burden a lot, if compared to a space discretization scheme.
This results in taking averages of samples of the integrands:

> \Ir‘r({ﬁ})quﬁﬁn
Ek) = Lt oo T (4.10)

Since this is a stochastic approach, there is a statistical error connected with an
observable calculated, but it is of no significance for this particular application.

As it turned out, the Jastrow type wave function did not significantly improve the
Hartree-Fock energy. In the case of ten electrons and B = 20 T, the energy could
only be improved by 0.1% (0.4 meV) at £ = 0.1. For 0.1 < k£ < 1 the energy is
slowly increasing, while for & > 1 highly excited states are simulated as more holes
are introduced into the wave function. Obviously, the Hartree-Fock solution already

describes the Wigner state accurately.

4.3 Rotational Spectra

In my Hartree-Fock solutions of ten or more electrons and By = 20 T, the relative
uncertainty in total angular momentum, f, is of order of 10% which is a consequence
of the fact that total angular momentum is not conserved. As in atomic nuclei, these
deformed solutions give rise to rotational spectra, which do not appear in the case of

the unbroken symmetry. I have estimated the spectrum of rotational excitations by
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projecting the Hartree-Fock Slater determinant onto eigenfunctions of good angular
momentum I. Thus, this method is a projection after variation [18]. It does not

enforce the variation principle exactly. However, the projected wave function
|®) = P!|®) (4.11)

introduces much more correlation than the single Slater determinant obtained by the
Hartree-Fock solution alone, and is a superposition of many slater determinants. It

should therefore produce a lower energy than E#F. The projector has the form

A 1 22X
Pl = %_/0 eI=Nqq (4.12)

and obeys the usual relations

A ~

P =P, P'=pP (4.13)

The energies which result from taking the mean value of H with the projected wave

functions are given by

;. _ (®|PTTHP!|®) (®|HP!®) [dah(a)e =

i = et : = s 4.14
9 (9|PITPI|®) (@|P1|®)  [dan(a)e~ile e
defining the quantities
h(e) = (B|HeT|3) (4.15)
n(a) = (®e|®). (4.16)

Note that H and P’ commute which indicates that the symmetry the projector rep-
resents (in this case rotational invariance) is conserved, while the wave function itself
is symmetry violating. h(a) and n(«) are sharply peaked around « = 0, since € as
a rotation operator rotates the wave function out of its original position quite quickly.

Since the standard deviation in J is only of few percent, these matrix elements can
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be approximately calculated by writing h(a) in the expansion [19]

h(a) = Z:Oh ( L3 & -1“6%) n(a) = Zohnj”n(a), (4.17)
defining
J=—(D)+ %% (4.18)

One justifies this ansatz with the fact that it represents a Taylor expansion of the
Fourier transformed function h(c)/n(a) because the Fourier transform of derivatives
can be expressed as powers in J. Assuming that both quantities are sharply peaked at
a = 0, this quotient is smooth and can be approximated by a few terms of Eq. (4.17).
By operating J on Eq. (4.17) and setting & = 0, an inhomogeneous system of equa-

tions can be obtained for the unknown hg...Ax:

K
(H(AD)™) = ZO hn((AT)™ ) (4.19)
with
AJ = J—{J). (4.20)

Eq. (4.14) can then be expressed as

Eoeos Z ha(Z = ()™ (4.21)

I restrict myself to K = 2, since higher terms involve the calculation of k-body
operators with & > 4. This restriction should not influence the results significantly,
because the Physics of rotational excitation are already captured in the first few
terms. For this case, I have
(AT (HAJT?) — (AJPYHAJT) — (AT H)

AT (AT — (AT — (AT
(HAJ) (AJ3)
(AJ?) (AJ2)

hy =
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Figure 4.6: Rotational spectra for 10 electrons (upper diagram) and 20 electrons
(lower diagram), when they have formed Wigner molecules at By = 20 T, as a
function of total angular momentum 1.

ho = (H) — ho(AJ?). (4.22)

All expectation values in (4.22) can be calculated using Wick’s theorem [12] and basic
commutation relations.

Fig. 4.6 shows the rotational spectra for m = 10 and m = 20 electrons and
B = 20 T as a function of the quantum number I, where I have subtracted the
shifted ground state energy, which is obtained from the Hartree-Fock energy (H) by
subtracting the rotational energy hs (Ajz), which is only of order 0.25 meV in both
cases. This is the amount of energy by which the ground state energy is lowered

because of the improvement of the wave function I have introduced by the projection.
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The moments of inertia associated with these states are

1
Jy = —— = 5.2 x 10° h?/eV (4.23)
2hs

for m = 10 and

Jy = 1.9 x 108 h%/eV (4.24)

for m = 20.
In order to excite a molecule with circular polarized radiation, one has to produce

photons of minimal energy of

AEUN(T =224) = B! (I =224) — ((H) — ho(AJ?)) =1.12-10" eV (4.25)

PTOJ

for the 10 electron molecule and
AE®) (I =790) =32-10"% eV (4.26)

for 20 electrons. They are the energy differences between ground and first excited
state. These energies correspond to radio frequencies of »(19) = 27.06 MHz and
v(20) = 773 MHz. Note that the corresponding wavelengths are in the transparent
region for GaAs. Therefore, the measurement of transmission coefficients of circular
polarized radiation should give experimental evidence of Wigner molecules.

The level spacing, AE ~ -—MJ-AI of the excited states then increases with higher
states, resulting in excitations in the microwave region. The heat capacity connected

with this rotational degree of freedom,

- RO 4.27
“T T ar aTZ (Z proj P ( EsT ) )° (%)
where
Z=1+Y exp (—E};/ksT) (4.28)
I

is the partition function and kp Boltzmann’s constant, should therefore reach its
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Figure 4.7: Heat capacity c arising from the rotational spectra of Fig. 4.6. The dashed
line shows the 20 electron system, the solid one the 10 electron case.

classical value of %kg even for temperature as low as 1 K. Fig. 4.7 shows the well
known Schottky anomaly of the heat capacity, typical for a system where only two
states are of importance, at low temperatures of ~ 1 mK: The heat capacity for a
two-state system falls off like ~ :—rly for higher temperatures, while it approaches zero
for T — 0 [20]. Thus, there is a pronounced hump at intermediate temperature. As
expected, it approaches %kg for high temperatures because the energy differences are
very small. (1 K corresponds to 10~* eV.) For the indicated temperature regime the
heat capacity has converged within my model space, which consists of 400 rotational
states, and shows the expected typical behaviour of a quantum mechanical rotor in a
heatbath.

The energy levels of the vibrational modes of a single electron in the crystal can

be estimated in a simplified one-dimensional model. Concerned only with the radial
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degree of freedom, an outer electron (in the case of ten electrons) interacts with the
external potential and the Coulomb potential of the two inner electrons, which I
regard positioned at the center:
1 2e?
Vir) = cmtwir? 4+ —. 4.29

() = gmtuir® + = (4.29)

Expanding the potential around the equilibrium position 7y of the outer electron to

second order, I obtain

Vir) = 5™ {wo + e_”r;z*—:n:g} (r—ro)” + { m*wyre — o3 (r —ro) + M WoTy + o
(4.30)
The electron is confined by the parabolic part of this expansion with a corrected
strength
Qe2
W = yfw? + ——. (4.31)
em*ry

Setting 79 /= 2 x 107% cm, the energy levels for the vibrational modes of the electron

are separated by

1
AFEup = hw(By) = \/(}“zw’)2 + Z(hwc)2 ~ 21 meV, (4.32)
much larger than the separation in the rotational energy levels
AE,,; = 107 meV (4.33)

around I = 225 h. Vibrational modes therefore contribute only marginally to the
heat capacity and can be easily suppressed by proper excitation of the rotational

modes only.
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Chapter 5 Summary and Conclusion

I have shown in a full quantum mechanical treatment that there exist regimes where
Wigner molecules and crystals are the ground states of quantum dots. I have also
described rotational spectra of quantum dots, which arise from the existence of de-
formed Hartree-Fock solutions. This broken symmetry could make it possible to
detect Wigner molecules experimentally by exciting the rotational excited states of
the system.

Much more can be done in this area of quantum dot Physics: Hartree-Fock in
general is only valid if the number of particles is not too small, because the correlation
energies then should not dominate. An investigation how these two-body correlations
neglected in the Hartree-Fock approximation influence the system of a few electrons
would be useful. In the past there have been some direct diagonalization calculations
for m < 5 electrons, but they were only concerned about investigations on magic
numbers and shell structure (in energy, not space) arising from the occupation of
Fock-Darwin levels.

In the other limit of high numbers of electrons, open questions remain too: It is
not obvious a crystalline structure does prevail for any number of particles: At the
outer regions the particles feel a stronger and stronger external potential exerting
such a pressure that it “squeezes” the outer electrons more and more. In this way
they would be forced back to occupy Fock-Darwin levels: the crystal would “liquify”
under the pressure. So one could imagine that both phases, a continuously rotational
symmetric phase outside and a Wigner crystal phase inside, coexist in the same
dot. Unfortunately, I was not able to prove this in another Hartree-Fock calculation
because I ran out of memory (I was using a DEC alpha workstation at that time). It
would certainly be an interesting project.

So far no experimental effort has been made to detect Wigner crystals (to my

knowledge), but it has been recognized that the appearance of the additional de-
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gree of freedom described in the previous chapter is interesting [21]. It could lead
to their detection. The research on the subject of quantum dots is very broad and
diverse, with many interesting effects observed experimentally or theoretically pre-
dicted. The variety stems from the fact that many different experimental conditions
can be achieved easily today, and technology is improving steadily. Therefore, I am
confident that Wigner molecules will be detected in the not-so-far future.

In general, it would be desirable to investigate quantum dots with exact methods,
because Hartree-Fock has its limitation as mentioned throughout the last sections.
But a direct diagonalization scheme or Monte Carlo calculation are difficult to imple-
ment. The direct diagonalization gets out of hand (in memory and cycles) quite fast
with number of particles, while a Monte Carlo procedure, in principle exact, suffers
from the famous sign problem caused by the fermion nature of the problem and the
repulsive feature of the Coulomb interaction. The calculation mentioned earlier fix
the nodal structure of the wave function and are therefore not exact. In the second
part of this thesis I will investigate another system of interacting fermions, and some

of the problems connected with the sign problem will be explained in more detail.
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Part 11

Nuclear Matter on a Lattice
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Chapter 6 Review of Nuclear Matter

One purpose of studying infinite nuclear matter is the determination of binding en-
ergies and saturation densities ab initio from a nuclear potential that describes the
elastic scattering of free nucleons. Properties of nuclei are strongly influenced by fi-
nite size effects like the surface effect, and it is therefore difficult to calculate binding
energies and saturation densities of nuclear matter from nuclei. The semi-empirical

mass formula [25, 26] for nuclei of mass A,

Z(z-1) (N-2)?

EB (Z, N) = OAlA == O£2A2/3 — Q3 A1/3 4 =5

4, (6.1)

takes into account a volume term (a; = 16 MeV), the surface effect (as = 17 MeV)
and the Coloumb repulsion of the Z protons (a3 = 0.6 MeV). Furthermore, a sym-
metry energy contribution (a4 = 25 MeV) takes care of the observation that nuclei
with an equal number of N neutrons and Z protons are more deeply bound, and the
pairing term (A ~ ITZ MeV for an even-even nucleus, A ~ —‘1/—22 MeV for an odd-odd
nucleus and 0 MeV otherwise, where the terms “even” and “odd” refer to the number
of protons and neutrons in the nucleus, respectively) accounts for the pairing force,
making even-even nuclei more tightly bound. The volume term of this formula gives
an estimate for the binding energy of infinite symmetric matter E/A = 16 MeV. The
coefficient is basically obtained from a fit of binding energies of a large number of nu-
clei. The empirical determination of saturation densities stems from an extrapolation
to the central region of finite nuclei and is therefore subject to uncertainties too.

So far, calculations of nuclear matter have had difficulties to predict saturation
densities and binding energies that are compatible with those values obtained from
finite nuclei. None of the existing nuclear potentials reproduces these quantities
correctly. Plotting a diagram of equilibrium energies versus densities for different

calculations (see, for example, Fig. 1 of reference [27]) gives the so called Coester line
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which describes the fact that all calculations either predict the correct equilibrium
density, but underestimates the binding energy, or, if the binding energy is correct,
they overestimate the density. The location of a calculation on the Coester line
turns out to mainly be determined by the strength of the tensor force. It seems
unlikely that NN potentials like Paris, Bonn, Reid, Argonne or Urbana are deficient
since they represent the best theoretical understanding of the interaction currently
available. The only improvements of these mesonic-based two-body potentials that
could be made are at short distances at which they should be replaced by models
that account for the composite nature of the nucleon.

If the two-body potential cannot be held accountable for the insufficient descrip-
tion of nuclear matter, the deficiency could lie in the lack of three-body and higher
order forces or the treatment of the many-body problem. Two major approaches have
been tried in the past to address the latter one: The Bethe-Brueckner-Goldstone
(BBG) [22, 23, 24] theory, and variational methods which are used in connection
with the hypernetted chain approximation (HNC) [28, 29]. The Bethe-Brueckner-
Goldstone theory in lowest order considers repeated scattering of pairs of particles in
the nuclear medium. The effects of the nuclear medium are restricted to a dispersion
relation and the Pauli principle. The latter prohibits the scattering of particles into
occupied states, and the dispersion relation accounts for the fact that each nucleon
is bound in the medium, thereby shifting its energy from the free space value. In
a variational approach the trial wave function is a product of two-body correlation
functions and a Slater determinant of plane waves of noninteracting particles. The
calculation and minimization of the energy is performed by using the HNC formalism
and two-body distribution functions. The variational approach, which incorporates
long range correlations, can be used for the high-density regime, at which the BBG
theory fails. If HNC is used, however, it does not obey a variational principle, unless
Euler-Lagrange equations are applied, and therefore does not give an upper bound in
energy. Another disadvantage is the fact that correlation factors for each pair are the
same regardless of spin and isospin quantum numbers. Finally, a tensor force, a nec-

essary ingredient of the nuclear potential, cannot easily be included in a variational
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approach.

Despite the shortcomings of both approaches, BBG and HNC give results that
agree and lie on the Coester line. Therefore, the last possibility on improving the
potential is a genuine many-body force. Long-ranged three-body forces give density
dependent two-body forces when integrated over one of the nucleon lines that results
in terms proportional to (o7 - 03) (11 - 72) and Sis (71 - 72) in the potential, Sy being
the tensor operator. Combinations of forces, like a three-body force followed by a
one-pion exchange, generate operators of the form S2, (1 - 73)>. These kind of terms
could be used as a new ingredient to accommodate a Hamiltonian that reproduces
energies and densities correctly.

Wiringa et al. [28] and Akmal and Pandharipande [29] have calculated ground
state properties of symmetric nuclear matter (SNM) and pure neutron matter (PNM)
with the most complete interaction that is available today. Wiringa et al. use the
Argonne Vi4 (AV14) and Urbana Vi4 (UV14) two-nucleon potentials which have the
same structure, but they significantly differ in the strength of the short range tensor
force. Both potentials are constrained by NN scattering data. They consist of a
long-range one-pion exchange, an intermediate-range part that simulates two-pion
exchanges and a short-range part which substitutes for the physics of a heavy meson
exchange or the overlap of the composite quark system.

These two two-body potentials are then being used in connection with the Urbana
VII three-nucleon potential and a three-nucleon interaction model (TNI) which turns
out to be a density dependent modification of the Urbana UV 14 potential. The UVII
three-nucleon potential is a combination of a long-range two-pion exchange and an
intermediate-range repulsive force. The first part is attractive and dominates at low
densities, while the repulsive part helps ensure that saturation is reached properly at
high densities. The density dependent UV14 potential is built by multiplying terms
of the two-body UV14 potential by exponential factors, exp (yp), v being a strength
factor and p being the particle density. Density-dependent terms are considered to
be a result of a genuine three-body force where the third nucleon has been integrated

out. The exponential even includes higher order interactions, and the linear term of
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its expansion represents the three-body part.
Their many-body calculation is a variational approach in connection with the
hypernetted chain approximation (HNC), that is used to calculate expectation values
of the full Hamiltonian,

5, = (alH1) -

(tultbw)
|1,) being the trial wave function containing some variational parameters. They
find that the lowest order diagrams in the HNC scheme are already sufficient to
calculate the energy for normal saturation densities, but they are concerned about
their accuracy with respect to spin, isospin and tensor correlations because HNC, as
mentioned earlier, does treat all two-body correlations equally. This also applies to
spin-orbit correlations.

Their observations can be summarized as follows: While three-body correlations
in the wave function matter only slightly in the case of nuclear matter, they are of
significant importance for neutron matter, which they attribute to the tensor cor-
relation introduced by the two-pion exchange of the three-body force. In the case
of nuclear matter, a big contribution comes from the isospin-singlet channel of the
two-body tensor potential, while the corresponding triplet channel is weak in neutron
matter. Thus, the tensor force is emphasized in the three-body force. The variational
results show that the two-body potential alone tends to underbind light nuclei while
saturating nuclear matter at too high densities. They adjust the three-body potential
to improve the nuclear matter properties as shown in Figs. 4 and 5 of their paper.
(Recently, though [30], the suggestion has been made that the tensor force does not
play an important role in the saturation process, but rather relativistic corrections.)
The adjustment of the three-body force gives an improved saturation density, and
therefore a stiffer equation of state. For lower density, the agreements with other
calculations [31] are good. The calculation with the UV14 and TNI potential gives
more deeply bound matter. By looking at kinks in energy curves and rapid changes in
expectation values of the one- and two-pion exchange interactions, a pion condensate

is identified in neutron matter at p = 0.2 fm 3. Wiringa also calculates the equation



48
of state for neutron matter and the first sound velocity which violates causality at
p=1fm~3. The effects of a three-body force are twofold: The repulsive short-range
part guarantees a stiffer equation of state for higher densities, and the long-range
two-pion exchange introduces a neutral pion condensate for neutron matter and was
considered a major improvement to previous work [31].

Akmal and Pandharipande [29] used an improved Argonne potential Vg (AV18)
[32] that includes isospin symmetry breaking terms. They use the same methods as
in Ref. [28] (with a slight improvement that addresses a momentum dependence of
the interaction). The energies in the nuclear matter case are higher than in Wiringa’s
calculation (at higher densities), but they attribute this to a different three-body
force (UIX) used. The minimum energy per particle for SNM is —12 MeV, and
they estimate that deficiencies in the model of nuclear forces accounts for less than
approximately 2 MeV in underbinding. They speculate that three-body correlations
in the wave function could lower the variational bound on the energy by more than
1 MeV. They predict that for the potential AV18 and UIX, symmetric nuclear matter
and pure neutron matter will undergo a phase transition with a pion condensate (cf.
Ref. [28]) at p = 0.32 fm~2 and p = 0.2 fm™3, respectively, which is sensitive to the
g-d and (0 - &) (7-7) interaction part. This transition does not occur with the old
UV and AV potential in SNM, but only in PNM, as mentioned above.

This concludes the summary on calculations of ground state properties of nuclear
matter with accurate Hamiltonians, and I now turn to thermal calculations on lattices.

Nuclear matter exhibits a quark deconfinement phase transition at high temper-
atures (" ~ 200 MeV) and high densities (p ~ po). At low temperature (T =
15 — 20 MeV) a liquid-gas phase transition is expected to take place. For this tran-
sition, Hartree-Fock [33, 34], real time Green’s function [35, 36] and ring-diagram
methods have been tried [37]. Several lattice calculations have been attempted to de-
scribe the thermal properties of nuclear matter, concentrating on phase transitions.

Kuo et al. [38] studied a cubic lattice gas model for nuclear matter where each

lattice site can be either occupied by one proton or one neutron, or it can remain
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unoccupied. They implement nearest-neighbor interaction of the form

V=- Z 8 T (6.3)
<ij>

which is an isospin-1-Ising model, and argue that this is an effective interaction after
terms proportional to 1, -d, 77 and & - &7 - T have been averaged over spin and
spatial variables. Also, they include a kinetic term which turns out to be crucial for
the existence of a phase transition (the same model without kinetic energy term does
not exhibit such a behaviour), and use the Bragg-Williams mean field approximation
to show the existence of a dense (liquid-like) phase and a rare (gas-like) phase. This

approximation replaces the number of nearest-neighbor pairs, N;;, of one kind (protons

(¢ = +), neutrons (¢ = —) or vacancies (i = 0)) with their independent particle value
N;

N N

ey o0 (6.4)

while two Lagrangian parameters fix the density p and asymmetry N, — N_.

Their p-T and p-V diagram show a liquid and a gas phase as well as a coexistence
region of gas and liquid below a critical temperature T, = 18.4 MeV, similar to those
present in an atomic van der Waals theory. Since their calculation is just a mean
field approximation, they speculate in the concluding remark how a Monte Carlo
simulation would change the phase boundaries.

Campi and Krivine [39] investigate clustering of nucleons in a finite piece of mat-
ter at temperatures and densities that are above the liquid-gas critical point. They
consider a three-dimensional cubic lattice with N sites that are either empty or oc-
cupied with one particle. Particles occupying nearest-neighbor sites interact with an

energy —e:
N2 N
H=Zni2———e > mng, A=Y n, (6.5)
i H <ig> i
where n; = 0, 1 are the site occupation numbers. It is a simplification of the usual two-

body Hamiltonian, H = 34 f% + X <ij> v (1i;), discretizing positions of the particles

and assuming a contact interaction for v (r;;). For this case, the grand canonical par-
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tition function is proportional to the canonical partition function of the Ising model,
where the spin-down electron corresponds to an occupied site, and the spin-up elec-
tron to an empty site of their model. The external magnetic field accounts for the
conservation of the number of particles (on average), and the density is linked to the
relative magnetization of the Ising model. The lattice gas model is then solved numer-
ically in the grand canonical ensemble by moving particles on the lattice according
to a Monte Carlo method until thermal equilibrium is reached. They too find three
phases: A gas, a liquid and mixture of both. For an infinite system, thermodynami-
cal quantities like heat capacities, isothermal compressibilities and density differences
exhibit a critical behaviour that is proportional to |T' —T.|* (for a second order phase
transition), where the exponent p is that of the Ising model. Critical exponents are
universal and do not depend on a specific interaction nor on the existence of a lattice,
but only on spatial dimension. Therefore, the result should not depend on the use of
a lattice. They find that a full line of points exists in the T-p diagram on which the
mass distribution of stable droplets is a power law, p(A) ~ A™", 7 = 2.2. This is in
contrast with the common belief that the power law behaviour is characteristic of a
single critical point and could therefore point to a pathology of the lattice-gas model.

Pan and Das Gupta also have investigated a lattice gas model [40, 41, 42], and
recently included an isospin dependent interaction [43]. Similar to Ref. [39], they
put single particles on sites of a cubic lattice and let them interact with their nearest
neighbor via an isospin dependent strength, €, €pn, €nn- Their calculation is classical,
sampling the momentum of the particles from a Maxwell-Boltzmann distribution.
First, they apply the Bragg-Williams conditions to show that for this mean field
approximation the isospin-independent model (€, = €pn = €nn = —5.3 MeV) does not
predict the same value for the energy as for the isospin-dependent case (e,p = €nn, = 0).
The mean field proves not to be capable of accounting for isospin-specific occupation
configurations that would result in the same energy E/A = —16 MeV. Also, the
determination of the critical temperature is dramatically wrong, if compared to their
Monte Carlo like simulation, which shows that the isospin-dependent and independent

model give quite similar values for the critical temperatures, while in the mean field
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case their values differ by a factor 1/2.
Having summarized results on nuclear matter available in literature so far, I now

move on to describe the aims for this project.
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Chapter 7 Concepts and Motivation for

a Lattice Calculation

As it became clear in Chapter 6, calculations for nuclear matter either restrict them-
selves to description of ground state properties and are based on a fairly good Hamil-
tonian, or they attempt simulations for finite temperatures to capture the liquid-gas
transition that is expected to occur at 7' =~ 15 — 20 MeV. In the latter case people
work with a much cruder Hamiltonian. Both approaches share the deficiency that
they are not exact: BBG and the variational attempts are based on low-order ladder
or cluster approximation, and the variational analysis does not even give an upper
bound. Both also fail to predict observational evidence that is now known for 50
years and are summarized by the Bethe-Weizsicker or semi-empirical mass formula.

The lattice calculations that aim at a thermal description of nuclear matter are
classical, not quantum mechanical, putting in kinetic terms by hand or sampling
them from a Maxwell-Boltzmann distribution. On the other hand, these types of
calculations show already that the inclusion of a kinetic term is crucial to observe
a phase transition. Thus, a full quantum mechanical and exact treatment with the
full Hamiltonian, kinetic and potential term, should be a prerequisite for a successful
description of the physical system.

Combining both features, the usage of a realistic Hamiltonian that is based on ex-
perimental data and an exact, thermal treatment of the many-body problem has been
impossible so far; the advent of more computer power has only now made it possible
to describe the simplest and smallest lattice systems in recent years. In condensed
matter Physics, the Hubbard model (aimed at understanding superconductivity) has
been studied extensively, but the model Hamiltonian used and the lattice sizes imple-
mented are still comparatively small: two-dimensional lattices of a few tens of sites

and with a simple nearest-neighbor interaction have been investigated. Nevertheless,
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these simple quantum Monte Carlo methods were able to give important insight about
magnetic properties of electrons and their particle correlations.

In the last few years the shell model Monte Carlo (SMMC) method has been
successfully developed [44, 45, 46, 47, 48] to give a powerful alternative to direct di-
agonalization procedures which suffer from the fact that the many-body space scales
so unfavorably with the number of single-body states considered. Direct diagonal-
ization methods can only address very light nuclei or nuclei with a closed shell and
only a few valence nucleons. The SMMC avoids this combinatorial scaling (in storage
and computation time) and makes it possible to investigate structural properties of
nuclei far beyond the few-nucleon system. The SMMC enforces the Pauli-principle
exactly, but concentrates on the evaluation of thermal averages of observables only:
no wave function of a specific state is obtained. This is the only drawback of the
method. As a consequence, it is impossible to obtain spectroscopic information, but
contrary to the SMMC this would not be the main interest of a nuclear matter inves-
tigation anyway. While in SMMC one extrapolates to lowest possible temperatures
to gain information on the ground state only, the thermal formalism is most welcome
for a study of nuclear matter: here, the equation of state is of main interest, which
clearly depends on density and temperature. It is a further purpose to consider a
large piece of infinite nuclear matter in coordinate space to get rid of finite size effects
that appear after imposing periodic boundary conditions. A formalism written in
momentum space has the disadvantage that two- or many-body correlations cannot
be calculated comfortably: Clustering (and therefore a possible liquid-gas transition)
is not as easily calculated and observed as in the coordinate space representation.

In summary, the following concept should be pursued for a nuclear matter calcu-
lation: In a coordinate representation nucleons shall interact with a potential that
comes as close to a realistic NN interaction (like AV18) as possible. The partition
function along with observables of interest shall be calculated in the grand canoni-
cal ensemble, in order to control temperature 7' and density p. The latter is to be
adjusted on average via the chemical potential . The many-body problem shall be

solved exactly using Monte Carlo methods similar to those used in the SMMC appli-
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cations. At the same time, realizing that the emerging equations eventually have to
be solved on a computer, one should take into account that space will be discretized,
and advantage should be taken of the available technology that has been employed

for the Hubbard and other models in condensed matter Physics.
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Chapter 8 Theory of Nucleonic Matter

on a Lattice

The general concept of the nuclear matter calculation consists of nucleons interacting
via a variety of components of the nuclear two-body potential. While it should be
the ultimate goal to use a potential that fits the nucleon-nucleon scattering data best
[32], at the first stage I concentrate on very few parts of the interactions, namely the
central, spin and isospin exchange one. The degrees of freedom of the nucleon are its
spin, isospin as well as the spatial coordinate.

Subnuclear degrees of freedom are not explicitly incorporated. The lightest meson,
the pion, facilitates an interaction with a range of r = 1.4 fm which happens to
be of same order as the lattice spacing of the first applications, symmetric nuclear
matter. For this case, however, the one-pion exchange force of the nuclear potential
averages out, because the potential (for example for AV14) only contains terms which
contain the isospin operator. The force is then mediated by mesons that have higher
mass, like the w or o. Since the system is ultimately regularized on a lattice, the
argument can be made that all subnuclear degrees of freedom are integrated out,
resulting in a strong on-site and weaker next-neighbor interaction, if a lattice spacing
of a = 1.842 fm is assumed. This particular lattice spacing sets the half-filling of the
lattice at p = 2pp = 0.32 fm 3.

However, at saturation density p = pg =~ 0.16 fm 3, the Fermi momentum corre-
sponds to prc = hkpc =~ 260 MeV and should be compared to the vacuum nucleon

mass myc? = 939 MeV. The expansion of the Fermi kinetic energy,

v 1 3 v}
myc? ( 1——= - ) = Eva% + gmNCQC—f + e, (8.1)

gives a correction of A% ~ 2 MeV, which is small, but not insignificant if compared
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to the saturation binding energy F/A =~ 16 MeV.

In this chapter, I specify the Hamiltonian of the system and describe the nu-
clear matter Monte Carlo method (called NMMC hereafter), which consists of the
thermal formalism to express the grand canonical partition function as an integral
over single-body evolution operators. At its center stands the Hubbard-Stratonovitch
transformation, and it is used to reduce the many-body problem to an effective one-
body problem. The details of the Monte Carlo procedure, which is used to evaluate
the resulting multi-dimensional integral, are explained. Finally, a description how to

obtain potential parameters from scattering length and effective range is attempted.

8.1 Hamiltonian of the System

I consider a three-dimensional cubic lattice of spacing a and assume periodic boundary
conditions, which result in a three-dimensional toroidal configuration. The coordinate

T and the momentum p’ are discretized as

Z = am = Z,,, m integer, (8.2)
“’—)(zﬂ')l_c‘—*’ k integer (8.3)
p Na = Dk, ger, .
so that
2
o= ﬁﬂ- X integer, (8.4)

where N is the number of lattice points in each spatial direction.

The nucleons have mass my, spin o = :i:% and isospin 7 = :i:% . The Hamiltonian,

H=K+V, (8.5)

is expressed in second quantization and contains kinetic and potential operators. The

first term is written as

h2
2mN

R=—g3 [ 4% 61,3V (). (8.6)
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The fermion operator ! _(Z) creates a nucleon of spin and isospin (o, 7) at location
Z, while its adjoint ¢, (Z) destroys it. This equation is discretized on the lattice by
the symmetric 3-point formula for the second derivative, and the integral is replaced

by a finite sum:

2L p@10() » vera)-W@vE-a 67
/ i@ - Y (8.8)

This results in

]C = _t(] Z aS Z %@T (-fn) [war (fn T aé;.) - 27/)07 (-'fn) + war(fn - aé})] (89)

En,i=1---3

with
h2
ty = —— |
0 2m Na"” (8 O)
and the orthogonal unit vectors {€;} span the three-dimensional space.
The general ansatz for the potential,
f dz / A7 P! (@)L (FVWV(E — &) (F)er (), (8.11)
can be written in terms of the density
§@) = 3 bor(@) = Sl (@) (2). (8.12)
aT

The purpose of doing so is to cast the potential in linear and quadratic terms, as the
Hubbard-Stratonovitch transformation can only be performed on quadratic terms.

Using the fermion anticommutation relation,

(m)’l/)a"'r’( Worr (& )or (B) = — L’fif(ff) {5(07),(0’7’)5(5 — ')
— Yo @W (@)} o (2),  (8.13)
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the potential then becomes

zfmyﬁuvw m@(ﬂ—-/mv (). (8.14)

The last term is the self-energy and is a consequence of the Pauli principle. It could
also be viewed as an additional chemical potential. The discretized version of this

equation is

=L Y V@ - 2)iEE) - ST VOE).  (619)

Tn,Th

The choice of the potential parts is somewhat arbitrary and partly determined by

computational issues that are discussed in later sections. It is

~ ~ ~ -

V=V 4V, + V.. (8.16)

The first part is the central potential (V,), followed by the spin-exchange (V,) and
isospin-exchange (17.,) potential. I assume a Skyrme-like on-site and next-neighbor

interaction

n

Ve (@ = 23) = VI8 (80 — £,) + V) (V3,6 (8a - £)) (8.17)

whose discretized form is

Vc(“) V(2 3

a3 Q:n,I

Otntaze®y, — 2027, + Ora—atim, ). (8.18)
i=1

; © @ . :
Note that in this form -‘%:— and %5— have the units MeV. The parantheses in Eq. (8.17)
indicate that the Laplace operator only acts on the §-function, but not on any fol-

lowing parts. Inserting Eq. (8.18) into (8.15) gives
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o, ‘/—C(O) i — — AL =
Ve= 23 2 a®(@)* - 2@5 Za Z (P (Zn + a&;) — p (Tn))’
Zn Th =1
1 V(O) V(2)
~ 3 (? == ) >_ap(Zn), (8.19)

indicating that (a®p) is a dimensionless quantity. I again applied periodic boundary

conditions:
S (4(@n) — H(En—08))? = 3 p(Ea)?+ 3 p(Fa—as)2—2 Y p(Za)p(Ea—adi) (8.20)
and
Z.ﬁ(:c —a&)? = Zp (8.21)
as well as
Z P(Z0)Pp(Tn — ag;) = Z P(Zn) p(Zn + a&y). (8.22)

The spin- and isospin-exchange parts of the potential are handled in a very similar

way. Starting from

z [ a7 [ 6l @l (@ VWol@ = #)Forer - Gormntbn (@) (@),

ZKZ/?J
(8.23)
I use the identity
F-7 = oo 42 (o) o) 4 o) o)
= o0 4 (a(“ + 0'("))2 ¥ (O'(_) + o'(+))2 (8.24)
to rewrite (8.23) in form of spin densities
ﬁz(fa)(f) Z w T(m O’TK}\"‘:bKJA(w)? a = O ey — (825)

TTRA
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Eq. (8.24) holds because (0(*))? and (o(7))? are zero. o'%)., are the elements of a

generalized Pauli spin-isospin matrix:

pt pl nt nl
pt 1 0 0 0
o P l 0 -1 0 0 (8.26)
nt 0 0 1 0
nl 0 0 0 -1
pt pd nt nlJ
pt 0 1 0 0
@ P 0 0 0 0 (8.27)
nt 0 0 0 1
n.J 0 0 0 0
pT pl nt nJ
pt 0 0 0 0
s Pt 1 0 0 0 (8.28)
nt