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Abstract

In this thesis, I apply detailed waveform modeling to study noise correlations in
different environments, and earthquake waveforms for source parameters and velocity
structure.

Green’s functions from ambient noise correlations have primarily been used for
travel-time measurement. In Part I of this thesis, by detailed waveform modeling
of noise correlation functions, I retrieve both surface waves and crustal body waves
from noise, and use them in improving earthquake centroid locations and regional
crustal structures. I also present examples in which the noise correlations do not
yield Green’s functions, yet the results are still interesting and useful after case-by-
case analyses, including non-uniform distribution of noise sources, spurious velocity
changes, and noise correlations on the Amery Ice Shelf.

In Part II of this thesis, I study teleseismic body waves of earthquakes for source
parameters or near-source structure. With the dense modern global network and
improved methodologies, I obtain high-resolution earthquake locations, focal mech-
anisms and rupture processes, which provide critical insights to earthquake faulting
processes in shallow and deep parts of subduction zones. Waveform modeling of rel-
atively simple subduction zone events also displays new constraints on the structure
of subducted slabs.

In summary, behind my approaches to the relatively independent problems, the
philosophy is to bring observational insights from seismic waveforms in critical and

simple ways.
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