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Chapter 5

Toward Human Studies

5.1 Organization

The ultimate goal of this line of research is to develop a new methodology for automating human

SCI therapy. This chapter lays out a roadmap of issues which must be resolved before full-scale

human applications can be realized and provides suggestions for extending the approach of Chapter

4 to human experiments and therapy. Section 5.2 provides an overview of the existing human SCI

therapy experiments to which this work could be applied. The experimental framework for the pilot

studies executed so far is laid out in Section 5.3. Discussions of several specific technical issues and

the solutions employed follow in Section 5.4. Section 5.5 gives results of the pilot experiments and

discusses the significance of these results for the continued development of this approach. Finally, a

number of extensions to the current techniques are discussed in Section 5.6.

5.2 Prior Human Experiments

The following discussion is based upon the work of our collaborators at the Frazier Rehab Insti-

tute and University of Lousiville in Louisville, Kentucky (see Harkema et al., 2011). Three major

different types of experiments under multi-electrode stimulation are undertaken at Frazier Rehab:

supine, standing, and stepping experiments. These experiments are carried out in SCI humans with

paraplegia, each implanted with a RestoreAdvanced neurostimulator (Medtronic, Minneapolis, MN)

connected to a Specify 5-6-5 electrode array (Medtronic) positioned over the lumbar enlargement of

the spinal cord. This dual-component device was originally developed for chronic pain therapy, but

has been adapted to this application.

The supine experiments involve the participant lying in a supine position as the electrical stimulus

is changed to any of a variety of configurations in the stimulus space; the free parameters include

the combination of electrodes used as cathodes and anodes, and the voltage, frequency, and pulse-

width of the stimulus. This experiment is intended to “map out” the spinal cord’s motor pools with
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respect to the active electrodes. In many ways, this experiment could be treated as analogous to

a multi-muscle, multi-electrode version of the current rat experiments, trying to find regions of the

stimulus space which have large activations of particular muscles, or which produce a pattern of

muscle activation matching a specified target. For this reason, these experiments might be a natural

extension of the work of Chapter 4. However, the supine experiments are uncomfortable and boring

for the participants; thus, only a limited amount of data from them has been collected, and relatively

few opportunities to apply a machine learning algorithm to the supine experiments in closed-loop

would be available.

Standing and stepping experiments present a substantially different sort of challenge than the

supine experiments; in particular, the maintenance of a complex motor behavior is a much more

challenging problem than the creation of a particular pattern of muscle activation, or the maxi-

mization of a particular muscle’s activity. While it may be possible to describe stable standing as

a particular, relatively constant pattern of muscle activation, it may also be that the body’s mus-

cular responses to perturbation are actually more important than those in equilibrium. Extracting

this sort of information from EMG in an automated fashion may be very difficult. Stepping is a

complex, cyclic activity, which, as in animals, is difficult to grade effectively, particularly at short

timescales. Motion capture may be a useful means of assessing stepping performance, but motion

capture is very time-consuming to manually process and so an automated motion capture analysis

system may be necessary. As with standing, it may be that what is truly desirable in stepping is not

simply the basic pattern of motor activity, but the ability to respond to perturbation while stepping.

Fortunately, the basic stepping kinematic and motor pattern is fairly distinctive and responses to

perturbations are relatively small, such that a performance measure could likely be created which

responded to grossly correct or incorrect stepping, rather than needing to focus on the fine details

of responses to rare and random events.

5.3 Pilot Applications of GP-BUCB to Human SCI Therapy:

Introduction

Our pilot experiments focused on the use of GP-BUCB and variants of that algorithm in the context

of stand training. While standing is a rhythmless motor behavior, with difficult-to-quantify success,

human standing under epidural stimulation is somewhat understood and stand training is beneficial

for the patients. As an additional point in favor of standing as an experimental target, stand training

is conducted independently by the patients at home as an exercise, suggesting that monitoring and

optimizing standing could fit into the daily routine of SCI patients undergoing EES therapy.

During an experimental session, the participant stands with assistance from the stimulator.

For lateral stability and safety, the participant stands in the middle of a U-shaped apparatus, a



106

stand frame, which can also be used by the participant to assist the sit-to-stand transition. One

important use of the standing sessions in the clinic is the modification of stimulus parameters to

improve standing performance. These parameters, including the set of active electrodes and their

assigned polarities, the master stimulus voltage (the RestoreAdvanced either applies a voltage of

−v or v to each active electrode, where v is the master voltage), and the stimulus frequency, may

be varied during the experiment. Since the effect of changing the stimulus is nearly immediate,

observations of the patient’s responses can potentially provide feedback on the resulting performance.

Previously, this feedback process has involved human expert experimenters interacting with the

patient, observing the patient visually, and monitoring the EMG activity in the patient’s leg muscles.

Using these observations, the clinicians and scientists carefully and gradually modify the stimulus

to aid standing, while also maintaining safety and the efficacy of the session as exercise.

One major constraint during this optimization process, in part due to the limitations of the re-

purposed Medtronic hardware, is that the stimulus must be temporarily stopped when the pattern

of active stimulus electrodes is changed. This means that during the interim the participant must

either support him- or herself (typically with the arms alone) or must sit. This transition may also

be disruptive to the neurological state of the spinal cord. Radical transitions may cause collapse from

standing, and, even for more gradual transitions, the spinal cord requires on the order of seconds to

one minute to acclimate to a new set of stimulus parameters. This potential for disruption is the

reason the stimulus parameters are changed slowly. Given these constraints, the pilot experiments

have so far studied the problem of exploring and exploiting over the space of master voltage and

stimulus frequency, with a fixed combination of active stimulus electrodes during this process and

only slow changes in voltage and frequency.

A description of the pilot experiments so far performed follows. In Section 5.4, the necessary

mathematical infrastructure is described, including performance measures (Section 5.4.1), some

required extensions to the GP-BUCB algorithm (Section 5.4.2), and the novel covariance functions

which were created for this problem (Section 5.4.3). Preliminary results and a discussion of these

are presented in Section 5.5.

5.4 Mathematical Methods

As in Chapter 4, it is necessary to make modifications to the existing theoretical and mathematical

framework in order to produce an experimentally useful implementation. In particular, formulating

a useful measure of standing performance is a very challenging problem; the methods used in the

preliminary experiments are described in Section 5.4.1, but even these methods have not proven

entirely satisfactory. Some alternatives are discussed both in Section 5.4.1 and in Section 5.6.2. The

problem of making decisions in a rigorous fashion using these alternative performance measures is
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also not trivial; this problem is examined and solutions used in the preliminary experiments are

described in Section 5.4.2. A further complication, described and addressed in Section 5.4.3, is the

need to specify problem-specific covariance functions. All code implementing the algorithm was

implemented in MATLAB (The MathWorks, Inc., Natick, MA).

5.4.1 Performance Measures

As schematically shown in Figure 1.3, one of the key components of the EES system is the choice of

what sensor information and methods are used to quantify performance of the stimulus, both in the

execution of the desired motor task and in terms of any other variables of interest, e.g., the patient’s

comfort. This decision is crucial. Clearly, if the reward function optimized by the algorithm is not

reflective of actual performance, the algorithm cannot optimize performance; at best, it will optimize

this putative performance measure. The difficulty lies in choosing an appropriate performance

measure. In Chapter 4, it is assumed that an appropriate performance measure is the peak-to-peak

amplitude of activation of the left tibialis anterior muscle, which has the advantage of being a scalar

function. However, this function might be maximized by stimuli which are uncomfortable or are

otherwise unacceptable in humans, or which are simply not useful therapeutically. A number of

possible alternatives are discussed in the following sections.

5.4.1.1 Subjective Ratings

One reasonable way to optimize the performance of a stimulation system is to simply ask the user

for his or her opinion; if the user’s ratings are both repeatable and reflective of actual therapeutic

utility, than this method requires relatively little infrastructure, as well as giving patients a way

to control their own therapy. User feedback could perhaps be beneficial in terms of reducing the

number of clinical visits required, reducing patient frustration, and increasing the patients’ sense

of agency in their own recovery. It is quite plausible that patients could be trained in the use of a

grading scale or rubric, as simple as integers from zero to ten, which would yield repeatable results;

similar methods have been used for gait analysis in animals (e.g., Basso et al., 1995), and a human

user could much more effectively assess some important aspects of the stimulus response, such as

discomfort, than could a fully autonomous system. Under such a system, the object being regressed

upon as a function of stimulus x is f(x), the user’s likely rating for that stimulus. In the preliminary

experiments described here, a very simple zero to ten system was used with both subjects.

Several difficulties with such ratings are apparent. First, a rating system would require the

aforementioned patient training, and so would likely not be useful without the user acquiring a

substantial degree of experience with the stimulator and their personal, subjective experience of

the system’s effects. This characteristic would render it quite difficult to use such a simple grading

system during the initial training period, already the most challenging period for autonomous search
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of the stimulus parameter space. Secondly, it would likely be very difficult to develop a system under

which the quantitative grades assigned by the user corresponded directly with utility. Certainly, it

might quite plausibly be possible to develop a system which was ordinal, i.e., the nominal ordering of

the categories in the rubric was correct in terms of utility, but it would likely be substantially more

challenging to develop a system under which, for example, the difference in utility between an 8 and

a 7 was the same as that between a 4 and a 3. Some discussion of the difficulties inherent in this

non-equivalence of the rating and utility are discussed in Section 5.4.2.1. Further, if different aspects

of the stimulus response are to be graded, e.g., performance and comfort, it might be difficult to

determine how to balance these aspects against one another. A more precise and expressive rating

system would also likely require a greater time for the user to assess and respond to any given

stimulus, slowing the rate of testing. Without this detail, however, it might be very hard to use

ratings to diagnose necessary changes to improve the stimulus, a major disadvantage as compared to

muscle-activity-based systems. Additionally, if the stimulus applied was uncomfortable or dangerous,

a system without its own sensing capabilities could harm the user without giving him or her the time

or ability to respond appropriately. This would require careful design of safety systems. However,

these difficulties aside, a performance measure based on subjective ratings is a reasonable approach

for inexpensive and simple home use, particularly if it could be incorporated as part of a two-tier

system for clinical and home adjustment of stimulus parameters. Medtronic’s line of neurostimulators

for chronic pain managment, for example, includes just such a two-tier system, though this system

is for direct control of stimulus parameters, rather than user feedback; they manufacture both a

complex and capable clinical control device, the N’Vision, and the MyStim, a simpler, less capable

controller given to patients for home use. A simple, handheld unit like the MyStim would be an

excellent interface device for a rating-based, closed-loop system.

5.4.1.2 Grading Vector-valued EMG

Performance must necessarily be quantified as a scalar in order for optimization of the performance

to be a meaningful concept. Because the idea of standing performance itself is somewhat difficult to

define, attempting to measure and work with performance directly is difficult, thus leading to the

idea of using a holistic surrogate such as a user rating, discussed previously. Another alternative is

to define performance as a known function of measurable physical quantities. Indeed, it is plausible

that these measured variables, e.g., EMG signals, can be chosen in such a fashion as to have distinct

patterns which result in useful, high-level behavior, such as naturalistic standing.

Mathematically, such a system must regress upon a vector-valued object, i.e., f(x) ∈ Rn, such

that there are n (possibly linked) observations which arise as the result of a single input x ∈ D. In

the case of interest, f(x) is vector of extracted features of several muscles’ responses to a single EES
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stimulus x. From such a vector-valued object, one fairly natural way define the reward is

r(f(x)) = −
√

(f(x)− t)TW (f(x)− t), (5.1)

where W is a symmetric, positive definite penalty matrix, such that r(x) is the negation of a weighted

2-norm of (f(x)− t), the difference between f(x) and a target response t in Rn. Careful selection of

the feature representation, W , and t should allow relatively precise tailoring of the reward function

to reflect more or less acceptable deviations from a particular motor behavior. In order to formulate

a GP-UCB-like algorithm which uses such a reward function, it is necessary to create a regression

model using Gaussian processes that captures the variation of f(x) with respect to x. If these

features are chosen appropriately, it may be relatively easy to incorporate expert knowledge, e.g.,

by the selection of prior means and covariance functions.

One of the most important problems associated with such a model for f(x) is the problem of

appropriately interlinking the individual GPs corresponding to the different entries in the vector

f . Anatomically, the nerves, interneurons, and motor pools responsible for activity in different

muscles are located in close proximity to one another, such that nearby structures may be brought

to threshold at roughly the same amplitude of stimulation. Thus, different variables of interest can

be expected to co-vary due to their co-dependence on the same physical phenomena. Capturing this

structure is important, and can lead to greater efficiency, particularly in the case in which sensors or

channels of information are intermittently unavailable. One can think of the identity of the muscle

or feature as a piece of side information supplied to the model. Recently, Krause and Ong (2011)

approached this problem of using side information from the GP-bandit perspective. In their setting,

in each round, the algorithm is presented with a context mt from the set of possible contexts M and

must then choose an action xt to take in that round to maximize reward (where the reward depends

on the context and the action). Krause and Ong formulate an algorithm, CGP-UCB, which uses

covariance functions on the context space M to enable regression on a contextual Gaussian process

over D ×M . Decisions in the SCI therapy setting yield a reward which is assumed in this section

to be dependent on all of the contexts simultaneously, thus making employment of the complete

CGP-UCB algorithm inappropriate, due to its assumption that a single context is in effect at any

time. However, the core contextual GP model upon which CGP-UCB is based holds substantial

promise for the multi-muscle or multi-characteristic problem. Using this model requires covariance

functions which are capable of expressing the covariance of f(x,m) and f(x′,m′). Some ideas for

anatomically appropriate covariance functions are discussed in Section 5.4.3.

In the preliminary experiments, some trials were also carried out using a reward function based on

a GP model of an EMG feature vector over the allowed stimulus space. This necessitated formulating

a decision rule which used the reward function and the GP model together to trade off exploration
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and exploitation. The chosen decision rule is discussed in Section 5.4.2.2.

5.4.2 Algorithmic Extensions

Some important extensions to the theory described by Srinivas et al. (2010) and Chapter 3 should

be considered in light of the requirements for human application. As in the case of GP-BUCB, it

is useful to consider alternate decision rules, as well as the circumstances under which probabilistic

guarantees regarding the convergence of algorithms using a GP posterior and these decision rules

can be demonstrated. Another important extension is the creation of an algorithm for selecting

smoothly varying paths of stimuli, rather than the unconstrained transitions in the conventional

GP-BUCB and GP-AUCB algorithms.

5.4.2.1 Divorcing Reward from the Function Regressed Upon

In GP-UCB, GP-BUCB, and GP-AUCB, the response function f that is actually measured and re-

gressed upon is the same as the reward r; thus the GP-UCB decision rule

xt = argmax
x∈D

[µt−1(x) + α
1/2
t σt−1(x)] (5.2)

is sensible, because it trades off the expected reward E[r(f(x))] = E[f(x)] = µt−1(x) with a measure

of the information to be gained by making the corresponding observation. It is not clear, however,

that the reward is always the correct object upon which to regress; in particular, it may be that the

reward is a quantity which is difficult to measure (e.g., standing performance) or even not directly

observable, while there may be one or more objects which are relatively easy to measure (e.g.,

evoked potential amplitude, used in Chapter 4, and subjective ratings, proposed in Section 5.4.1.1),

and which are strongly related to the reward. In addition, it may be that the reward function

does not easily lend itself to being modeled as a GP, perhaps because covariance functions are very

hard to specify or the reward is erratic, whereas the available surrogates are more easily modeled.

As discussed in Sections 4.1 and 5.4.1.1, it is important that these easily measured and modeled

surrogates are chosen such that when they are maximized, reward is also maximized. If more is

known about the relationship between the surrogate and the true reward, perhaps an algorithm

which understands this relationship can exploit this knowledge to perform better than if it simply

considered the reward and surrogate as equal.

One particularly interesting case, and one for which theoretical results are likely obtainable with

a modest degree of effort, involves cases in which f is a scalar function, modeled as drawn from a

GP, and the mapping from f(x) to the utility r is a scalar function g, such that r(x) = g(f(x)).

If g is a finite, Lipschitz continuous, non-decreasing function of f(x) ∈ R, with Lipschitz constant

k, it follows immediately that the set X∗ ∈ D of maximizers of f also is a subset of the set of
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maximizers of r = g(f) over D. Further, it follows from Theorem 1 that if the algorithm is simply

run conventionally, ignoring g(f) and treating f as the reward, the regret with respect to r = g(f) is

no more than k times the regret of the algorithm with respect to r = f , i.e., the regret increases by

at most a factor of k. If g(f) is given to the algorithm, it is likely that clever design could produce

an algorithm which exploits knowledge of g to do considerably better than this. While g is unknown

in the subjective rating setting arising from the human experiments, a number of intriguing forms

for g exist. One potentially fruitful choice for theoretical analysis is

g(f) = tanh(k(f − c)),

or similarly, the related logistic function,

g(f) = 1/(1 + exp (4k(f − c))),

which both saturate to both the left and right, implementing a gentle classification between success

and failure at a threshold c. Other reasonable choices include a hinge loss

g(f) = min[0, k(f − c)]

or gain

g(f) = max[0, k(f − c)],

or piecewise continuous functions of a variety of forms. There are many other interesting possibilities,

but exploitation of a properly chosen g might give quite a bit of expressiveness and flexibility to the

family of UCB-based algorithms.

5.4.2.2 Making Decisions Using Vector-Valued Functions

Section 5.4.1.2 introduces the idea of modeling many characteristics of the EMG activity of multiple

muscles using a contextual GP, as well as the idea of using a reward function of the form of Equation

(5.1), a weighted Euclidean norm. Making decisions using this combination of reward function and

contextual GP model is examined in some detail in Appendix D.1. In summary, one plausible

decision rule for batch or delay selection in this case is

xt = argmax
x∈D

[
−
√

(µfb[t](x)− t)TW (µfb[t](x)− t) + β
1/2
t

√
trace(WΣt−1(x))

]
. (5.3)

This decision rule is related to trading off the expected reward and a quantity similar to the standard

deviation of a scalar function. Another useful characteristic is that the uncertainty term (the second

term inside the brackets) is non-increasing as observations are added to the decision set, meaning
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it can be calculated lazily. Finally, the scalar case of this decision rule reduces to the GP-BUCB

decision rule, Equation 3.7, for t→∞. A version of this decision rule has been implemented in the

suite of code prepared for the pilot experiments.

5.4.2.3 Choosing Paths

One important observation from early feasibility testing in the human model is that it is important

to choose stimuli which form smooth sample paths, i.e., to only command gradual changes in the

stimulus. This constraint is necessary because the spinal cord’s neurological and functional state

has a memory and abrupt changes in the stimulus result in a disruption of behavior. This suggests

that, particularly in terms of frequency and voltage, it is important to plan paths through the space

of candidate stimuli. From an algorithmic perspective, a problem immediately presents itself; this

sort of multi-step search is likely exponentially complex in the length B of the path, since such a

path search becomes a search over leaves of a tree with depth B and a branching factor of greater

than 1 (typically 5 in these pilot experiments). This exponential complexity in constructing batches

is the very reason the GP-BUCB and GP-AUCB algorithms use a greedy decision rule to sequentially

select individual stimuli and thereby construct a batch, rather than attempting to choose one out of

all possible batches. One potential (though not entirely satisfactory) solution to this problem is to

require that all valid paths must follow a particular set of construction rules, and further, to restrict

the construction rules such that there is at most one valid path of length B or less to any x ∈ D,

given the current state, xt−1; let this set of legal paths be designated L. In this case, since |L| ≤ |D|,
there are again at most |D| entities among which the algorithm must choose at any given time t.

Following this formulation, two suggested decision rules, both with discounted and undiscounted

versions, are presented in Appendix D.3. Among these four forms, the decision rule

Xt = argmax
X∈L

[
t+B−1∑

τ=t

[λτ−t(µfb[t](xτ ) + β
1/2
fb[t]στ−1(xτ ))]

]

has been implemented for the human experiments, where any path X ∈ L is the ordered sequence

X = {xt, . . . ,xt+B−1}, Xt ∈ L is the selected path, and λ is a discounting rate corresponding to

the probability of a failure occurring at each step, i.e., the assumed likelihood that the path must

be stopped due to that step’s stimulus being unacceptable. This decision rule is intended to be used

to search the space of voltage and frequency, given a fixed set of active electrodes, where subjective

ratings quantify the reward. Alternatively, the decision rule

Xt = argmax
X∈L

[
t+B−1∑

τ=t

[λτ−t(−
√

(µfb[t](x)− t)TW (µfb[t](x)− t) + β
1/2
t

√
trace(WΣt−1(x)))]

]
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has been implemented for path-based planning using the vector-valued EMG feature representation

discussed in Sections 5.4.1.2 and 5.4.2.2. A second, more fundamental problem also occurs if decisions

must constitute paths; it may be possible to construct a combination of D, the construction rules,

and B, such that no paths or sequence of paths can ever connect particular parts of D. Even if this

does not happen, it could occur that poorly-responding zones prevent the algorithm from moving

between two regions of good performance, even if both high-performing zones have been previously

explored. In such situations, there is a non-zero probability that the algorithm cannot find the

optimum. This is, unfortunately, a consequence of requiring legal paths, rather than allowing the

algorithm to “jump,” as do GP-BUCB and GP-AUCB. One partial work-around might be to allow

paths to transition through an “off” state, which neighbors many other states, but this makes

decision-making very complex and further divorces the algorithm from rigorous theory.

5.4.3 Novel Covariance Functions

The multipolar array configurations needed for the current and future human experiments require

new, carefully structured covariance functions. The parameterization of the input space used in

Chapter 4 for bipolar electrode configurations is based upon the four spatial coordinates of the single

cathode and single anode used. For any two different bipolar pairs x,x′ ∈ R4, the covariance function

k(x,x′) compares the (rescaled) Euclidean proximity of the cathodes and anodes and computes the

covariance between the muscle responses to these stimuli on the basis of this proximity. The logical

extension of such a covariance function to n ≥ 2 active electrodes in a given stimulus would be

to again describe the spatial locations of the active electrodes in R2n; however, this approach has

many deficiencies. With several electrodes of the same polarity, exchangeability issues arise, i.e.,

the set of active electrodes (A1+, A2+, C9-) is actually the same as (A2+, A1+, C9-), though

these two descriptions might naturally correspond to different points in R6. Thus, the covariance

function would have to recognize the equivalence of different descriptions of the same configuration,

a problem not present in the bipolar case. Worse, if the algorithm is allowed to use multi-electrode

configurations with different numbers of active electrodes, it must be able to compare these objects.

Indeed, a configuration with two cathodes and one anode might be functionally very similar to the

bipolar configuration in which one of these two cathodes is off (i.e., is neither a cathode nor an

anode). In such a case, the covariance function certainly should express the commonality between

their respective responses, even though these two objects would exist in R6 and R4 respectively.

Clearly, a covariance function which operates directly on vector quantities of arbitrary size is not

appropriate. The covariance function should therefore act on some representation of the electrode

configuration which is independent of the number of cathodes or anodes.

One natural way to create the required unified representation would be to calculate the electric

field or voltage distribution created by each stimulus configuration, and then compare key charac-
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teristics of the fields generated any pair of stimuli. This is reasonable because these fields can be

calculated from first principles (given good measurements of the electrical properties of the tissue)

and the effects of epidural electrostimulation arise via these fields. Particularly if computational

speed is an issue, very simple (i.e., closed-form algebraic) calculations may be appropriate. For-

tunately, electricity is well-understood and follows simple physical laws. As an example, given a

spherical electrode of radius ρ with a fixed surface voltage V , the voltage V (r) at distance r ≥ ρ

from the center of the electrode in a homogeneous medium is

V (r) = V
ρ

r
, (5.4)

assuming that the infinite distance boundary condition is ground, i.e., V (r)→ 0 as r →∞. If several

electrodes of different positions and voltages are desired (i.e., the chosen stimulus x includes more

than one active electrode), an approximate solution can be obtained by summing the corresponding

voltage functions, yielding a voltage value corresponding to the influence of all of the electrodes

together. Given a set of target locations believed to be representative of the voltage distribution’s

influence on the spinal cord, the vector of voltage values V(x) corresponding to a stimulus x can

be calculated. Since these locations are fixed, V(x) has the same size and meaning, regardless of

how many electrodes are active in stimulus x. To calculate a covariance function for x and x′,

it then remains to compare the vectors V(x) and V(x′) in terms of their similarity with respect

to the responses of interest. One plausible way to do this is to weight some elements of V more

heavily than others, using anatomical intuition. Using information from Sharrard (1955), as well as

Sharrard (1964) and Harkema et al. (2011), it is possible to localize any of several motor pools of

interest within the human spinal cord with respect to the electrode. These localizations can also

be verified with respect to the array by use of the data from the supine stimulation experiments

described in Section 5.2.

If the model must consider EMG from several muscles, the set of which is designated M , it is

necessary to construct a covariance function which enables predicting these responses, treating the

individual muscle or feature as a context. One way to do this is to create a diagonal weight matrix

Wm for each muscle m ∈ M . Then, if the ith entry in V is at a location where electrical stimulus

might plausibly exert substantial effects on the spinal inputs and circuits associated with muscle m,

e.g., near the corresponding motor pool, [Wm]i,i should be large; conversely, if the ith entry in V

can be expected to not be particularly influential on muscle m, the weight [Wm]i,i should be small.

One way to do this simply is to choose the weights as the height values of a Gaussian bump centered

on the location of the motor pool associated with muscle m. The re-weighted vectors WmV(x) and
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Wm′V(x′) can then be fed into a covariance function

k(WmV(x),Wm′V(x′))

which computes the covariance of the responses to x in muscle m and the responses to x′ in muscle

m′. Appropriate covariance functions might be linear,

klin(WmV(x),Wm′V(x′)) = (WmV(x)) · (Wm′V(x′)), (5.5)

or perhaps could take the form

klin,0 = max[0, (WmV(x)) · (Wm′V(x′))],

where this second form would avoid having large, negative covariances between polarity-flipped

configurations. Alternatively, rather than focusing on individual muscles, as in the vector-valued

EMG case, it might be more appropriate to consider a holistic view of activity in general, as in the

subjective rating case; it would then be reasonable to attempt to correspondingly use knowledge of

motor pool locations to weight elements of V, via the choice of a combined weight matrix Wcombined,

constructed as a linear combination of individual matrices Wm. The covariance function has been

employed using both the subjective rating and vector-valued EMG modes, and results are described

in the next section.

5.5 Preliminary Results and Discussion

Some fairly simple preliminary experiments have been conducted with two different human patients.

In the first patient, designated ARI (who has no voluntary motor control or sensation below the

level of his injury), data from two sessions were used. In the first, the human experts performed a

standard procedure, a voltage and frequency sweep, using a configuration of active electrodes known

to produce good standing for ARI (3+ 4+ 8+ 14+ 15+ // 9- 10-, in which cathodes form a horseshoe

shape around two anodes at the caudal end of the array). This experimental session consisted of a

gradual (0.2 V increment after reaching threshold) increase in voltage from 0 V to 4.6 V, with the

stimulus frequency fixed at 25 Hz. After this voltage sweep, the voltage was fixed at 3.8 V, and the

frequency of stimulation was increased in 5 Hz steps from 10 Hz to 40 Hz. During this process, the

participant was instructed to provide a rating from zero to ten of how well he was standing, one such

rating at each set of stimulus parameters. Subjective ratings from these two sweeps are presented

in Figure 5.1(a). On a subsequent experimental day, the algorithm was given the data from the

previous session and given a quadratic mean function chosen such that the maximum subjective
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(a) ARI: Search Paths
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(b) BQB: Search Paths
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(c) ARI: L Sol Features
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(d) BQB: L Sol Features

Figure 5.1: Search paths, ratings, and EMG features from experiments with participants ARI and
BQB. (a): Voltage and frequency sweeps executed by human experts (circle) and the algorithm using
subjective ratings (dashed, x) with participant ARI. Subjective ratings given by the participant are
shown as color and size of the marker, where red and large markers are high subjective ratings and
blue and small markers are low subjective ratings. Participant ARI was instructed to give ratings
from 0 (least favored) to 10 (most favored) and gave ratings covering this whole range. (b): Voltage
and frequency sweeps conducted by the algorithm with participant BQB, where the first session was
executed using subjective ratings (circle, dashed) and the second was executed using EMG-based
grading (x, with individual paths respectively shown as dash-dot and solid). The starting state for
the first session lies at the rough center of the four separate, diverging paths executed on that day;
these paths give good coverage of the region around that state. Participant BQB was instructed to
give ratings from 0 to 10, with 5 as a “baseline,” and gave no rating lower than 3 and no rating higher
than 6. (c): Features calculated from participant ARI’s EMG activity in a representative muscle, the
left soleus, in response to each stimulus. The same scheme for labeling trials and subjective ratings
is maintained from (a). The crescent shape shown in this feature space seems to correspond with
a continuum from quiescence (upper left) to activation driven by the stimulus (lower right). (d):
Features calculated from BQB’s EMG activity under the stimuli shown in (b), again maintaining
the labeling of trials and subjective ratings used in that figure. Qualitiatively different behavior
appears to have occurred in the left soleus during these two sessions; in the first session (circles),
the muscle was quiescent, while in the second (x) it was active, quite strongly in some cases.
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rating was at 3.7 V, 25 Hz, near the previous day’s maximum. The algorithm then continued this

search over voltage and frequency, making two individual five-step paths. The first path started

from 3.8 V and 25 Hz. The second started from 3.4 V and 25 Hz, an intermediate point on the

first path, a value selected by the human experts overseeing the experiment. These experimental

paths were successfully completed, yielding subjective standing quality ratings which were generally

similar to those given in the previous session.

Two sessions were also conducted with the second patient, designated BQB (who has some

sensation, but no motor control below the level of his lesion). Again, a known effective combination

of active stimulus electrodes (2+ 3+ 4+ 9+ 13+ 14+ 15+ // 7- 8- 10-, consisting of two outer rows of

cathodes and one midline cathode, combined with midline anodes, and all positioned at the caudal

end of the array) was selected, with voltage and frequency values (4.5 V, 30 Hz) known to produce

effective standing chosen as the starting point for the first session. The algorithm then was asked to

choose paths. The first path started from this known point. After the completion of the first path,

the stimulus was set to 4.4 V and 30Hz, which was used as the starting state for the remaining three

paths of the first session. All four paths in this first session were selected using the subjective rating

method. During the second session, the algorithm selected actions based on hand-selected EMG

targets and weights. These targets and weights were chosen such that the highest-rated stimuli

also tended to have the highest EMG-based grades when the reward was calculated using Equation

(5.1), substituting the observations actually made for the vector f . The algorithm was then given

the EMG observations from an earlier session involving quiet standing using the same combination

of active electrodes and one combination of voltage and frequency, as well as the EMG data from the

first session, which had been guided by subjective ratings. Since it was making decisions using only

EMG, the algorithm was now unable to directly use the subjective ratings given during the rating-

based session. Within this second, EMG-based session, the algorithm selected two paths, the first

beginning from the best stimuli found during the fourth path of the previous session. The second

path executed during this session used the EMG observed during the first path to make decisions

about what stimuli to apply during the second. This session thus provided an opportunity to test

the efficiency of the data handling and processing necessary to select a subsequent path based on

EMG observations acquired earlier in the same session. Using the current manual, two computer

process, it may be possible to execute three paths during one hour-long session, but more paths will

likely require an integrated data acquisition and processing system.

While no rigorous assertions regarding the search strategy’s effectiveness can be made on the

basis of the current experiments, several conclusions may be drawn from this experience. First,

the algorithm and software implementation are capable of collaboratively planning experiments

with human experts. In this procedure, given parameters set by the human experts, the algorithm

proposed experiments, which were then approved and executed. This collaborative system allows the
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combination of the rigorous, quantitative search and optimization capabilities of GP-BUCB and its

derivatives with the human experts’ ability to assess a variety of important diagnostic information

unavailable to the algorithm via the subjective ratings or EMG. Second, wide variation is present in

the subjective grades given by different patients, perhaps in part because the instructions given may

not have been consistent, but also perhaps due to differences in the perceived effects of EES therapy

for individual patients. This difference in perceptions may be related to the differences in individual

injuries as well, particularly the degree of sensation preserved. From an algorithmic or procedural

standpoint, this implies that the rating scale must be both carefully specified and also customized to

each patient. Careful specification is important because ratings must be repeatable and consistent

to be useful. Patient-specific customization is also important because patient perception is highly

individual, yet each patient’s ratings must have sufficient resolution to identify improvement if and

when it occurs, even if this improvement is small. Third, the Euclidean distance metric used for

reward under the EMG-based selection procedure may require modification or replacement. It is

clear that in some features (e.g., linear envelope amplitude, which roughly translates to contractile

activity), there are qualitative differences between regions of the feature space (e.g., a muscle being

“on” vs. “off”) which are not effectively captured by simple Euclidean distance from a target;

Equation (5.1) instead implies linear and symmetrical degradation of reward as distance from the

target increases. From the perspective of standing performance, it may be that it is very important

that a particular muscle is indeed “on”, but not terribly important how strongly it is contracting

during the period recorded, making the distance metric a poor fit. Another type of reward function

may be more suitable to these features than Equation (5.1), e.g., the soft classification reward

functions suggested in Section 5.4.2.1. Third, as a simple matter of logistics, the experimental cycle

must eventually be made faster than it currently is, such that more than two or three paths of

EMG-based stimuli selections can be made; without greater throughput, it will be very hard for the

algorithm to effectively search while independent of expert assistance.

Another important point concerns the EMG features selected. Ten muscles were used in the

EMG-based selection of actions for patient BQB: each of the soleus, tibialis anterior, medial gas-

trocnemius, medial hamstring, and vastus lateralis, in each of the left and right lower limbs. For each

muscle, two features were computed: the average amplitude of the linear enveloped signal (using

a second-order Butterworth filter, 4 Hz cutoff, applied forward and backward using the MATLAB

filtfilt command) and the percentage power decoupled from the stimulus frequency and its multiples.

This second feature was computed by performing a Fast Fourier Transform of the EMG signal and

then computing the ratio of the power in frequency ranges other than
⋃∞
n=1[(n− 0.1)f, (n+ 0.1)f ],

where f is the stimulus frequency, to the power of the original signal; since the frequency content

of a repeating signal with period f should lie in the suppressed bands, this ratio should give the

proportion of the signal which is not driven by the stimulus. The suppressed bands are 20% of the
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frequency spectrum, so this ratio’s value is expected to be approximately 80% when the signal is

white noise (which has a flat frequency spectrum and should be present when the muscle is qui-

escent) and substantially lower when the EMG is driven in synchrony with the stimulus. It was

hypothesized that these features would give the ability to detect the level of activity of the muscle,

as well as the degree to which this activity was being controlled by the spinal cord, rather than

being driven by the stimulus, and that high performance would be observable as moderate-to-high

linear envelope amplitudes and large amounts of stimulus decoupled power. Unfortunately, the ex-

periments conducted so far have not borne out this hypothesis. In patient ARI, most muscles, as

typified by Figure 5.1(c), did not show a co-occurrence of both high activity and high proportion

of decoupled power, even under those stimuli which received very high subjective ratings. On the

other hand, patient BQB did achieve EMG which had large values for both features, but this may

be an artifact associated with a persistent and large amplitude tremor which occurs in both lower

limbs during most of his standing bouts, rather than emergent, spinal-controlled activity. Neither

of these observations implies that EMG with the hypothesized feature combination is infeasible for

either patient, nor do these observations indicate that good standing would not appear in this region

of the feature space; however, it does appear that (subjectively) good standing can occur outside

of this region and that poor standing may in some cases produce EMG signals which do lie in this

region. Both of these facts suggest that different (or at least additional) features may be necessary

for low-error EMG-based recognition of good standing.

5.6 Extensions

The methods discussed in Section 5.4 have been used for the pilot experiments, but several substan-

tial opportunities for improvement, alternatives to current approaches, or extensions to the theory

suggest themselves.

5.6.1 Time Series Information and Coordination of Muscles

While it is reasonable to suggest using contextual GP models for modeling the activity of different

muscles under the same stimulus, representing the aggregate activity of each muscle as a scalar

or set of scalars may miss physiologically and behaviorally important information. In particular,

properties such as coordination of muscles in response to disturbances require examining multiple

EMG channels and how they interact with one another over time; muscle groups should activate

in the proper anatomical pattern for coordination, e.g., flexors in the same leg activating together

or extensors in the same leg activating together. These patterns are not describable by the time-

averaged activity of each muscle; the crucial diagnostic information is instead carried in the relative

times at which the muscles are active. This is not clearly something to which GPs are applicable; a
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(contextual) GP predicts a (set of) scalar(s), rather than a time trajectory. A set of scalars could

be used to parameterize these interactions over time, but it is not clear how this representation

should be constructed, or how expert knowledge should be used to construct covariance functions

which respect the structure of these functions over the stimulus space. Further, it is not clear how a

representation of muscle activity in terms of these features should be used to determine the quality

or performance of the high-level motor activity. These issues remain intriguing, but open.

5.6.2 Dynamical Systems Approaches: Cost Functions and LQG

The cost functions proposed so far may fail to strike the right balance of abstraction versus concrete-

ness; the subjective rating system is high-level and could yield meaningful results, but is somewhat

poorly defined conceptually, while the vector-valued EMG approach relies on the specification of

low-level targets which may not be easy to choose so as to actually produce good standing. Another

alternative, which offers both greater rigor and an intermediate level of abstraction, is to treat the

human participant as a dynamical system, for which some states (motion capture, center of pressure,

etc.) are observed directly and for which some CNS control outputs (EMG) may also be observed.

In this case, a physical model of the human could be used to infer a simple parameterization of the

composite controller (the spinal cord under the influence of the EES system); this becomes a system

identification problem, classically treated in the literature of controls and dynamical systems (for an

introduction to system identification, see the text by Ljung, 1999). If the EES system is assumed to

modulate the parameters of the controller, it might be possible to model these parameters as func-

tions of the stimulus. The controller parameters would then be the objects of interest for learning

and regression, perhaps modeled as draws from a Gaussian process. Given a regression model for

the controller parameters, a closed-loop therapy system requires the ability to predict the reward

corresponding to any stimulus; depending on the controller model used, well-known methods like

linear quadratic Gaussian control (LQG, see Athans, 1971, for an early and thorough review) could

be used to assign a cost to any given set of controller parameters. In the LQG case, for any draw

from the posterior over controller parameters, there is an analytical expectation for the expected

controller cost with respect to disturbances; this cost is the time integral of the variance of a Gaus-

sian (accounting for deviations of the state from the desired trajectory and control costs) summed

with other Gaussian variances (accounting for terminal costs). With relatively few samples, it might

be possible to build a useful notion of the distribution over the composite controller parameters of

the cost of running such a system, such that stimulus decisions could be made by comparing these

cost distributions. This quantification would require a stochastic procedure, such that the algorithm

would no longer be as computationally efficient. However, such a perspective might be more reflec-

tive of useful performance than direct functions of the EMG or other sensors and more tractable

than attempting to work with user ratings directly. Given access to clinical sensors and off-board
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computing, such an approach might be reasonable.

5.6.3 Alternative Covariance Functions

A reasonable criticism of the covariance functions proposed in Section 5.4.3 is that, while they have

the virtue of being very efficient computationally, this efficiency has been obtained at the price

of both accuracy and precision in terms of the stimulating voltage distribution in and around the

spinal cord. Certainly, the voltage function used is quite crude; the electrodes are not spheres, nor

point sources, and the medium is not a single, homogeneous material. Additionally, capacitative

and electrochemical effects may be significant, and the chosen weights and target regions of the

spinal cord may not be appropriate. It is important to remember that the algorithmic purpose

of the covariance function is to obtain a useful notion of how the responses to different electrode

configurations co-vary, and how large the uncertainty about these responses may plausibly be, but

this is only a means to an end. The covariance function does not need to perfectly capture the

response function’s shape; rather, it only needs to provide enough of a guide to enable efficient and

intelligent experimental choices, the resulting data from which will drive the GP model.

Nevertheless, it remains reasonable to refine the proposed covariance function. Sophisticated

finite element models of the spinal cord, epidural electrode array, and the surrounding volume

have been created, which might be suitable for these purposes (see, e.g., Minassian et al., 2007).

These simulations are typically quite computationally expensive. For this reason, creating a large,

precomputed set of such simulations (corresponding to large sets of observations Xt−1 or decision

sets D) is likely infeasible. It might be possible to execute some subset of these simulations ahead of

time, however, particularly if the decision set is small, perhaps growing slowly with time. Additional

simulations could be performed on an online, as-needed basis, in a scheme somewhat similar to the

lazy variance calculations discussed in Section 3.5. A hybrid method might also be reasonable; a

sufficiently large “library” of full finite element calculations could be used to calculate corrections to

the predictions of fast but crude models (the simple, homogeneous medium models discussed above,

or perhaps linear combinations of very simple finite element simulations), giving the advantages

speed, accuracy, and large decision or observation sets. It may also be reasonable to use prior

knowledge of the relevant structures in the spinal cord and the mechanisms of neuronal excitation

(see Minassian et al., 2007) or neuronal modeling software like NEURON (Hines and Carnevale,

2001) to choose appropriate functional weightings on the resulting simulation outputs to describe

actual activation (and hopefully the degree of assistance toward the desired motor behavior).

One interesting note follows from the possible studies with NEURON; since the finite element

and NEURON simulations are computationally expensive, a limited budget of these experiments

is available, making this problem itself an appropriate application for the GP-UCB, GP-BUCB, and

GP-AUCB algorithms. The algorithms would choose which simulations should be run, attempting
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to find stimuli which yield favorable patterns of neural activation, as determined by finite element

simulations and NEURON. The results of these experiments could be used (perhaps with smoothing

or abstraction) to build priors on the responses in actual human patients, thus avoiding the need to

relearn the anatomy of the human spinal cord for every individual patient, consequently freeing the

algorithm’s clinical action selections to learn patient-specific variations.

5.6.4 Expansions of the Decision Set

Somewhat related to the question of the decision set “moving” with respect to time, discussed in

Section 4.4.1, it is reasonable to consider decision sets which expand with respect to time. Certainly,

the proof of the cases of Theorem 1 which allow the decision set D to be continuous rest on notions

of how to grow the decision set appropriately as the algorithm acquires more data, discussed by

Srinivas et al. (2009). However, these methods of growing the finite decision set Dt over which

the algorithm must make a choice in each round constitute increasingly fine discretizations of a

continuous, true D. An interesting question is how, and when, to expand the decision set into new

and unexplored territory. One reason to do this is clear; if a set of stimuli are known to be safe

and productive, it would be reasonable to allow the algorithm to explore in a limited “sandbox”

including this set and its immediate surroundings within the stimulus space. Subsequently, the

sandbox should be allowed to grow in some fashion which respects notions of sensitivity and safety.

In the case of experimental stimuli, some reasonable notions of neighborship may be created, e.g.,

moving an active cathode or anode by one interval on the array, inactivating a cathode or anode,

activating a cathode or anode next to an already existing cathode or anode, etc. Again, it is not

clear precisely how these notions of neighborship correspond to functional similarity or sensitivity,

nor is it clear how to choose when to expand the decision set in a rigorous, algorithmic fashion.

Further, while this may be necessary for practical reasons, this sort of expansion of the decision

set in a fashion which is contiguous with respect to the domain may preclude finding the optimum

in some cases. It may also (or instead) be appropriate to track which regions of the decision set

are known to be safe and which are known to be dangerous; dangerous regions should be avoided,

even if they would otherwise be worth exploring. This could perhaps be captured in parallel by

employing a Gaussian process classifier (see Rasmussen and Williams, 2006, Chapter 3), using a

similarly structured covariance function and operating over the same domain. An open question

concerns how to formulate the decision rule in this case; certainly, it is important and useful to

learn more about this classification of safe versus dangerous, but should this be incorporated into

the decision rule, or should this information be acquired as made available by a more conventional

decision rule? Additionally, if it is desirable to incorporate this model of safety and confidence

therein into the decision rule, how should this be done? These questions will have to be answered if

it is desirable to incorporate explicit models of safety into GP-BUCB-like algorithms.


