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Abstract

A central objective in signal processing is to infer meaningful information from a set of measure-

ments or data. While most signal models have an overdetermined structure (the number of un-

knowns less than the number of equations), traditionally very few statistical estimation problems

have considered a data model which is underdetermined (number of unknowns more than the

number of equations). However, in recent times, an explosion of theoretical and computational

methods have been developed primarily to study underdetermined systems by imposing sparsity

on the unknown variables. This is motivated by the observation that inspite of the huge volume

of data that arises in sensor networks, genomics, imaging, particle physics, web search etc., their

information content is often much smaller compared to the number of raw measurements. This has

given rise to the possibility of reducing the number of measurements by down sampling the data,

which automatically gives rise to underdetermined systems.

In this thesis, we provide new directions for estimation in an underdetermined system, both for

a class of parameter estimation problems and also for the problem of sparse recovery in compres-

sive sensing. There are two main contributions of the thesis: design of new sampling and statistical

estimation algorithms for array processing, and development of improved guarantees for sparse

reconstruction by introducing a statistical framework to the recovery problem.

We consider underdetermined observation models in array processing where the number of un-

known sources simultaneously received by the array can be considerably larger than the number

of physical sensors. We study new sparse spatial sampling schemes (array geometries) as well as

propose new recovery algorithms that can exploit priors on the unknown signals and unambigu-

ously identify all the sources. The proposed sampling structure is generic enough to be extended to

multiple dimensions as well as to exploit different kinds of priors in the model such as correlation,

higher order moments, etc.

Recognizing the role of correlation priors and suitable sampling schemes for underdetermined
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estimation in array processing, we introduce a correlation aware framework for recovering sparse

support in compressive sensing. We show that it is possible to strictly increase the size of the

recoverable sparse support using this framework provided the measurement matrix is suitably

designed. The proposed nested and coprime arrays are shown to be appropriate candidates in

this regard. We also provide new guarantees for convex and greedy formulations of the support

recovery problem and demonstrate that it is possible to strictly improve upon existing guarantees.

This new paradigm of underdetermined estimation that explicitly establishes the fundamental

interplay between sampling, statistical priors and the underlying sparsity, leads to exciting future

research directions in a variety of application areas, and also gives rise to new questions that can

lead to stand-alone theoretical results in their own right.
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1 + 1)λ1 = 255 sensors on LAT (Ñ(d)). . . . . . . . . . . . . . . . . . 76

3.13 The co-array of the Offset Configuration without the physical element at position 0,

resulting in holes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.14 An example of the optimal solution where the physical array is union of two 1DULAs,

and the corresponding contiguous sensors on the difference co-array. Here K = 9,

hence K1 = 4, K2 = 5. The total number of contiguous virtual elements in the differ-

ence co-array is (K + 1)2/2− (K + 1)/2 = 45. . . . . . . . . . . . . . . . . . . . . . . . 83

3.15 Subarrays of a 2D array with contiguous elements on a lattice. Here S0,0 is the funda-

mental subarray and Sm,n is the subarray shifted by the integer shift [m n]T on the

lattice, where m = 6, n = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



xx

3.16 The virtual difference co-array array of 2D nested array and its subarrays used for the

proposed DOA estimation algorithm based on spatial smoothing. The virtual array is

of sizeM×N whereM = 17, N = 17. The fundamental subarray is of size (M+1)2×

(N + 1)/2 = 9 × 9 and there are a total of (M + 1)(N + 1)/4 = 81 subarrays, each of

which is a shifted copy of the fundamental subarray. . . . . . . . . . . . . . . . . . . . 90

3.17 MN = 30 pairs of (ω1, ω2) obtained according to Lemma 3.10.1 by generating M = 5

random values of ω1 and N = 6 random values of ω2. . . . . . . . . . . . . . . . . . . . 95

3.18 2D MUSIC spectrum using the proposed algorithm for identifying D = 36 sources

using the 2D nested array for two values of snapshots. . . . . . . . . . . . . . . . . . . 100

3.19 Comparison of RMSE (in degrees, averaged over all D = 36 DOA pairs) vs. SNR

between the proposed DOA estimation algorithm applied on the 2D nested array,

and traditional 2D MUSIC applied on the benchmark array. Here T = 500. . . . . . . 100

3.20 Comparison of RMSE (in degrees, averaged over all D = 36 DOA pairs) vs. the num-

ber of snapshots between the proposed DOA estimation algorithm applied on the

2D nested array, and traditional 2D MUSIC applied on the benchmark array. Here

SNR= 6 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.21 Comparison of probability of detecting all the D = 36 sources for the 2D nested array

and the benchmark array, as a function of the number of snapshots. Here SNR= 10 dB. 102

4.1 An arbitrary physical array and its various higher order virtual arrays (top left) The

physical array with 3 arbitrarily generated sensor locations (top right) Virtual array

(difference co-array) for l = 1, q = 2. (bottom left) Virtual array (sum co-array) for

l = 2, q = 2. (bottom right) 2q = 4th order difference co-array. . . . . . . . . . . . . . . 121

4.2 Optimal 4 level nested array (optimized without considering the extra ULA segment)

with 6 sensors and its 4th order difference co-array. Notice the extra ULA segments

that extend out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3 MUSIC Spectra for D = 8 sources, produced by (top left),(bottom left) Proposed

Method on a 4 level nested array with 6 sensors and (top right),(bottom right) 2q

MUSIC on a ULA with 6 sensors. Here T = 800, for (top left) and (top right), and

T = 3000 for (bottom left) and (bottom right). SNR= 6 dB. . . . . . . . . . . . . . . . . 139



xxi

4.4 MUSIC Spectra for D = 2 sources, produced by (top left),(bottom left) Proposed

Method on a 4 level nested array with 6 sensors and (top right),(bottom right) 2q

MUSIC on a ULA with 6 sensors. Here T = 2000, for (top left) and (top right), and

T = 5000 for (bottom left) and (bottom right). SNR= 6 dB. . . . . . . . . . . . . . . . . 140

4.5 RMSE vs number of snapshots (T ) of the proposed method and 4 MUSIC correspond-

ing to (top) D = 6 sources, and (bottom) D = 8 sources. Here N = 6, SNR= 6 dB. No

Model Perturbation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.6 RMSE vs SNR (in dB) of the proposed method and 4 MUSIC corresponding to (top)

D = 6 sources, and (bottom) D = 8 sources. Here N = 6, T = 2000. No Model

Perturbation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.7 RMSE vs number of snapshots (T ) of the proposed method and 4 MUSIC for the per-

turbed model. Here N = 6, SNR= 6 dB, D = 6. . . . . . . . . . . . . . . . . . . . . . . . 142

4.8 Probability of resolving the two sources at 30◦ and 32◦ of the proposed method ap-

plied on 4 level nested array and 4 MUSIC on ULA. Here N = 6, SNR= 6 dB. . . . . . 142

5.1 Comparison of RMSE of the different wideband DOA estimation algorithms v/s SNR

for the source at 45◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2 Comparison of Bias of the different wideband DOA estimation algorithms v/s SNR

for the source at 45◦.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3 MUSIC spectrum for the three sources at 0◦, 30◦ and 45◦ using i) proposed autofocus-

ing approach (top) and ii) TOPS (bottom) at SNR=0 dB. . . . . . . . . . . . . . . . . . . 164

5.4 Constant θ(0 ≤ θ ≤ 180) contours in (ω1 − ω2) plane for different values of ψ. . . . . . 170

5.5 Constant ω (π/2 ≤ ω ≤ π) contours in (ω1 − ω2) plane for different values of ψ. . . . . 170

5.6 Plot of the slope φ of the constant θ contours in the (ω1−ω2) plane vs the spatial angle

θ for different values of the lattice angle ψ. . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.7 Proposed sampling in (ω1 − ω2) plane for ψ = 10◦. . . . . . . . . . . . . . . . . . . . . . 174

5.8 Proposed sampling in (ω1 − ω2) plane for ψ = 90◦. . . . . . . . . . . . . . . . . . . . . . 175

5.9 Frequency Invariant Beampattern as a function of sin θ for 50 values of ω uniformly

between π/2 and π realized using lattice with ψ = 15◦, M = N = 17. . . . . . . . . . . 176

5.10 2 dimensional plot of realized frequency invariant beampattern, as a function of spa-

tial direction sin θ and temporal frequency ω, realized using a lattice with ψ = 15◦ and

M = N = 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



xxii

5.11 Frequency Invariant Beampattern as a function of sin θ for 50 values of ω uniformly

between π/2 and π realized using lattice with ψ = 90◦, M = N = 17. . . . . . . . . . . 177

5.12 2 dimensional plot of realized frequency invariant beampattern, as a function of spa-

tial direction sin θ and temporal frequency ω, realized using a lattice with ψ = 90◦ and

M = N = 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.13 RMSE of realizing the frequency invariant beam v/s lattice angle ψ for two arrays of

size 9× 9 and 17× 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.14 Two examples of 1D arrays and their cross difference co-array on a 2D lattice. (a) and

(c) denote the physical arrays, (b) and (d) denote the corresponding cross difference

co-arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.15 Difference co-array based frequency invariant beampattern as a function of sin θ using

two 17 element ULAs plotted for three values of ω = π/2, 3π/4 and π, using 200

snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.16 Evolution of jammer nulling with snapshots (T ) based on the difference co-array using

two 17 element ULAs with ψ = 45◦ with jammer directions given by {60◦, 45◦, 30◦, 15◦}.186

6.1 (a) A multidimensional decimator and expander in cascade. (b) System with decima-

tor and expander interchanged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.2 (a), (b) Two dimensional arrays with sensors on integer lattices, and (c) the coarray. . 190

7.1 Comparison of recovered DOAs by nested array and ULA for different values of T

(top left) Reconstructed DOAs using nested array with D = 5, T = 200. (top right)

Reconstructed DOAs using ULA with D = 5, T = 200. (bottom left) Reconstructed

DOAs using ULA with D = 5, T = 800, and (bottom right) Reconstructed DOAs

using nested array with D = 8, T = 400. . . . . . . . . . . . . . . . . . . . . . . . . . . 233

7.2 Comparison of resolution performance between nested array and ULA (top) Recon-

structed DOAs using nested array for D = 2, T = 200, and (bottom) Reconstructed

DOAs using ULA for D = 2, T = 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8.1 Comparison of recovered support when | S0 |= 34 > M . (top left): True Support.

(Top right): Support recovered by LASSO on Co-SMV, (bottom) Support recovered by

MMV-BP. Here M = 20, N = 256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252



xxiii

8.2 Probability of Support recovery in two different regimes: (top) | S0 |< M and (bottom)

| S0 |> M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253



xxiv

List of Tables

3.1 Summary of design of nested array in Smith domain. . . . . . . . . . . . . . . . . . . 77

3.2 Solution to Problem (3.10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Solution to Problem (3.12) Using Strategy S∆ . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Solution to Problem (3.13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Summary of Proposed Spatial Smoothing Based Algorithm. . . . . . . . . . . . . . . 147

4.2 Comparison of Proposed Algorithm and 2q MUSIC for 1D DOA Estimation . . . . 148

4.3 RMSE (in degrees) vs Snapshots T , D = 6 Sources . . . . . . . . . . . . . . . . . . . . 148

4.4 RMSE (in degrees) vs SNR, D = 8 Sources, No Perturbation . . . . . . . . . . . . . . 148

4.5 Probability of Resolution vs Snapshots, D = 2 Sources, No Perturbation . . . . . . . 149



1

Chapter 1

Introduction

The theory of statistical estimation is concerned with extraction of meaningful information from

available data or measurements. In recent times, there has been an exponential rate of increase in

the amount of data that is available in almost every application area, leading to the so called “data

deluge” [8]. The “Big Data” routinely arises in sensor networks, genomics, remote sensing, imag-

ing, particle physics, web search, social networks, and so forth. This has led to a widening gap

between the volume of available data and the capabilities for storing, communicating and process-

ing them efficiently. Fortunately however, the amount of information buried in the data acquired by

sensors in most scenarios is substantially lower compared to the number of raw samples acquired.

This key observation has led to the possibility of sampling strategies and design of sensing systems

that can directly capture the information using far fewer samples (typically achieved by random

projections). In many natural scenarios, the physics of the problem itself imposes structures on the

ensuing acquisition system, leading to the possibility of “structured sampling” strategies. Also of-

ten, one can make informed assumptions about the nature of randomness, or statistical distribution

of the data which can be possibly exploited to our advantage for extracting information. In fact,

in many cases, one is actually interested in estimating parameters of the underlying distribution of

the model from the statistics of the data.

Our research aims at understanding the role of sparse structured sampling in the extraction

of information (in the form of parameters of the distribution) buried in data, and investigating if

such sampling can directly exploit the statistics of the signal. Can assumptions on an underlying

statistical model be leveraged in our sampling strategies to obtain only a few samples from the

signals of interest without loss of information? Also, can we design efficient algorithms to extract

the desired information from these few judiciously captured samples, so that the computational
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complexity does not drastically scale with the volume of the data?

The work presented in this thesis addresses these questions by revisiting a much unexplored

frontier of estimation theory, namely that of an underdetermined observation model. The first part

of the thesis focuses on underdetermined signal models arising in antenna array processing. It

is devoted to development of new theoretical guarantees and practical sampling and estimation

schemes to attain those guarantees. In the second part, we consider underdetermined systems

which exhibit sparsity and demonstrate that our approach can be generalized to this case as well,

leading to a new theory of correlation aware sparse estimation.

In this introductory chapter, we review the history and developments of the problems of interest

in this thesis: namely algorithms for antenna array processing, and the theory of sparse signal

representation and estimation. Due to the large volume of existing literature, the summary here is

only directly related to the current thesis and is by no means a complete treatment of all past work.

Please refer to [186, 104, 96, 187, 24, 56] for a more comprehensive treatment.

1.1 Estimation in Array Processing

We present a broad review of estimation algorithms used in array processing. Many of these tech-

niques apply to more general estimation problems beyond the particular application of sensor ar-

rays. The space-time model of array processing also has a more general interpretation which will

be revisited in the context of sparse estimation and will be shown to find applications in many

other problems.

1.1.1 Signal Model and Role of Autocorrelation

Array processing considers a space-time signal model where both spatial and temporal samples of

signals are collected and processed simultaneously. The signal model is developed by considering

both the physics of electromagnetic (EM) wave propagation as well as the statistical model of the

impinging signals.
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1.1.1.1 The Array Signal Model

Consider a plane wave f(t; d) propagating in the direction pointed by the unit vector v ∈ R3

v(θ, φ) =


sin θ cosφ

sin θ sinφ

cos θ

 (1.1)

Here θ denotes the elevation angle and φ denotes the azimuthal angle as represented in Fig. 1.1.

Consider an array of M sensors where the position vector of the mth sensor is given by dm ∈ R3.

PLANE	  WAVE	  

θ	  

ϕ	  
dm	  

  

€ 

 v (θ,φ)

Z	  

Y	  

X	  

Figure 1.1: Figure showing plane wave propagating along the direction v(θ, φ) and received by an
array of sensors. Here θ denotes the elevation and φ denotes the azimuthal angle.

The signal received at the M sensors can be represented as a vector

y(t) =



f(t− τ1)

f(t− τ2)

...

f(t− τM )


, f(t− τi) , f(t; dm), τm =

1

c
vTdm (1.2)

where c is the velocity of propagation in the medium and v is as in (1.1). For a narrowband signal

model, we can write

f(t; d) = s(t; d)ejωct
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where ωc represents the carrier frequency (in radians/s) and s(t; d) is the complex envelope with a

bandwidth of Bs. In array processing, a narrowband signal model is defined as one where

max
m

τm �
1

Bs

This is true if the bandwidth Bs of the envelope is considerably small. Under this assumption,

s(t− τm) ≈ s(t), ∀m and (1.2) reduces to

y(t) = a(θ, φ)s(t)ejωct (1.3)

where a(θ, φ) ∈ CM×1 is defined as the steering vector of the antenna array and its elements are

given by ωc
c vTdm, 1 ≤ m ≤ M . Equation (1.3) is widely known as the narrowband signal model

for far field wave propagation for a single source. For multiple plane waves propagating through

a linear medium, the superposition principle applies. Consider D plane waves fk(t; d) with propa-

gation vectors given by v(θk, φk), k = 1, · · · , D. With additive noise n(t) ∈ CM×1 at the M sensors,

the signal model given by (1.2) becomes

y(t) =

D∑
k=1



fk(t− τ (k)
1 )

fk(t− τ (k)
2 )

...

fk(t− τ (k)
M )


+ n(t) (1.4)

and the narrowband model (1.3) becomes

y(t) = A(Θ,Φ)s(t) + n(t) (1.5)

where A(Θ,Φ) ∈ CM×D is known as the Array Manifold matrix whose columns are comprised

of D steering vectors a(θk, φk), k = 1, · · · , D, and the vector s(t) ∈ CD×1 contains the D complex

envelopes. For the special case of 1D arrays, the position vectors of the elements are given by

dm = [0 0 dmλ/2]T ,m = 1, 2, · · · ,M where λ is the carrier wavelength. In this case, the steering
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vector corresponding to the direction (θ, φ) depends only on the elevation angle θ and is given by

a(θ) =



jπd1 sin θ

ejπd2 sin θ

...

ejπdM sin θ


1.1.1.2 Autocorrelation and Spectral Estimation

The spatio-temporal signal model received by an array of sensors often has a statistical representa-

tion. For the narrowband signal model, this implies that the waveforms {sk(t)}Dk=1 are represented

as jointly Wide Sense Stationary (WSS) random processes with a correlation matrix

Rss(τ) , E[s(t)s(t− τ)] (1.6)

For narrowband signal model, the signals are primarily temporal stochastic processes. However,

for wideband signals, the model corresponds to a random field [96] and the autocorrelation matrix

of WSS s(t; d) has a spatio-temporal structure Rss(τ, δ) = E[s(t; d)s(t − τ ; d − δ)]. Under the

narrowband WSS assumption, the autocorrelation matrix is given by

Ryy(τ) = A(Θ,Φ)Rss(τ)AH(Θ,Φ) + σ2
nI

where the noise is assumed zero mean, spatially white (uncorrelated across sensors) with power σ2
n

and it is uncorrelated with the signals. The correlation matrix for τ = 0 is simply denoted Ryy. This

correlation matrix plays a fundamental role in several different types of estimation techniques used

in array processing. Spectral Estimation broadly refers to the family of estimation techniques that

explicitly uses this correlation matrix. In the traditional sense, spectral estimation implies deriving

information from the spectrum of a signal by computing the Fourier Transform of its autocorre-

lation sequence. Spectral analysis finds application in speech processing for speech analysis and

representation, in source localization and tracking for radar and sonar systems, for predicting pe-

riodicites in data used in economics, seismology, meteorology etc. However, the family of spectral

estimation algorithms in array processing extends beyond the conventional Fourier based interpre-

tation of the spectrum and involves computing spectrum-like functions of parameters of interest
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(also called pseudo-spectrum) from the autocorrelation function.

1.1.2 Parametric Estimation

The random multichannel signal model y(t) carries both spatial and temporal information in the form

of unknown quantities of interest such as the number of sourcesD, the Directions of Arrival (DOA)

{(Θk,Φk)}Dk=1, the signal waveforms sk(t), and the noise power σ2
n. A central goal in array process-

ing is to develop powerful algorithms to estimate or extract information from the spatio-temporal

observation.

The parametric approach to estimation assumes a probabilistic model for the underlying signal

and applies Maximum Likelihood (ML) estimation to extract the unknown parameters of the dis-

tribution. Two different assumptions about the source signals s(t) lead to different ML approaches.

They are known as deterministic ML (DML) and stochastic ML (SML) algorithms. For the deter-

ministic model, the source signals are modeled as unknown deterministic quantities and the ran-

domness of y(t) in (1.3) is entirely due to the noise with unknown variance σ2
n. Modeling the noise

as spatially white circularly symmetric Gaussian random vector, one can derive the Deterministic

ML (DML) estimate [195] (Θ̂, Φ̂, σ̂2
n, {s(t)}Lt=1) as one that maximizes the log-likelihood function

computed over L time samples

−L log σ2
n +

1

σ2
nL

L∑
t=1

‖y(t)−A(Θ,Φ)s(t)‖2

The stochastic approach however consists of modeling the sources as jointly WSS Gaussian random

processes with covariance matrix Rss. The negative log likelihood function is shown proportional

to [17]

1

L

L∑
t=1

‖Π⊥A(Θ,Φ)y(t)‖2

where the notation Π⊥P denotes the projection matrix onto the orthogonal complement of the range

space of the matrix P. The SML algorithm exhibits better large sample accuracy than correspond-

ing DML algorithms [168]. The SML algorithm also attains the Stochastic Cramer-Rao lower bound

(CRB) [169] for Gaussian signals whereas the DML cannot consistently estimate the source param-

eters and they do not attain the deterministic CRB. Although the ML estimates exhibit higher ac-
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curacy, robustness and optimality (in terms of achieving CRB), they are computationally expensive

and require multidimensional search over the parameter space. In contrast, the spectral methods as

described below provide a computationally attractive and simpler alternative to the ML methods.

1.1.3 Spectral Estimation

As mentioned earlier, the spectral approaches largely operate on the spatial correlation matrix Ryy

and compute spectrum-like functions for estimation of the parameters of interest. They can be

broadly classified as (a) beamforming, and (b) subspace-based methods. The former is linear while

the latter is non linear and has distinct advantages over beamforming.

Beamforming [187] is a spatial filtering technique where the observed signals at the output of

M sensors are linearly weighted by a weight vector w ∈ CM×1 and then summed to produce a

scalar output. In its simplest form, the weight vector w is chosen to steer the array to a particular

direction (θ0, φ0). This is obtained by choosing w = a(θ0, φ0) and computing the output as

z(t) = wHy(t).

By changing w to steer at different directions, one obtains an estimate of the spatial spectrum as

P (θ, φ) = aH(θ, φ)
( L∑
t=1

x(t)xH(t)
)
a(θ, φ)

A different type of beamforming based on an optimal weighting was proposed by Capon [30, 209]

and it is called the minimum variance distortionless beamformer (MVDR) which solves for w as

min
w

P (w)

such that wHa(θ0, φ0) = 1

where P (w) = wH
(∑L

t=1 x(t)xH(t)
)
w. This optimization tries to minimize the power from noise

and any signal coming from direction other than (θ0, φ0). The direction (θ0, φ0) is also known as

the “look direction”. MVDR beamforming has better resolution and noise suppression capabilities

than the steering approach. By measuring the power at the output of the beamformer designed

for a certain “look direction”, once can infer the presence of a potential source and estimate its

direction of arrival (DOA). For an extensive discussion on various other beamforming techniques,
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including the adaptive versions, the interested reader is referred to [187].

In contrast to beamforming, subspace based methods for spectral estimation rely upon the eigen

structure of the correlation matrix to estimate the spatial paremeters (DOA) of interest. Pisarenko’s

harmonic retrieval [152] was one of the earliest algorithms belonging to this family. However,

the MUSIC algorithm [160] is probably the most popular subspace based technique for direction

finding which gave rise to a family of other algorithms exploiting the low rank structure of the

covariance matrix. The covariance matrix Ryy = ARssA
H + σ2

nI (we drop the dependency of A

on Θ and Φ) can be decomposed (via eigenvalue decomposition) into UsΛUH
s + σ2

nUnUH
n . The

columns of Un ∈ CM×(M−D) are orthogonal to the range space of A, denoted R(A). The MUSIC

spatial spectrum is defined as

PM (θ, φ) =
1

aH(θ, φ)Πna(θ, φ)

where Πn denotes the projection operator on R(Un). It can be shown that for certain array ge-

ometries, the MUSIC spectrum exhibits peaks exactly at the true DOA locations with no false or

missing peaks. Note that PM (θ, φ) is not a true spectrum but represents a measure of distance

between two subspaces. Also notice that estimating the DOAs now merely involves a 2D search

over (θ, φ) space. There are several other families of subspace based methods such as ESPRIT, Min-

Norm algorithm, Root-MUSIC, IQML etc. One important observation on subspace based methods

is that the number of sources D need to satisfy D < M . Beamforming algorithms also have this

assumption implicitly. Hence, most estimation algorithms in array processing consider an overdetermined

signal model (1.3) where M > D. This indicates that the number of sources D that can be resolved is

upper bounded by the number of sensors M .

1.1.4 Sampling and Underdetermined Estimation

While a large body of literature in array processing only considers the overdetermined signal

model, a few lines of work consider the underdetermined model where the number of unknown

sources can be actually less than the number of physical sensors. In all these cases, the geometry of

the array or the spatial samples plays a vital role in efficient representation of the underdetermined system.

Most of these techniques are based on creating the effect of a virtual array with many more elements

than the physical array by using suitable sampling strategies. The virtual array, also known as a co-
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array, can be either a sum co-array for an active sensing system or a difference co-array for a passive

sensing system. The number of elements in the co-array plays the primary role in determining how

many sources can be resolved. For an array with M physical sensors, both the sum and difference

co-array can have upto O(M2) elements, depending on the geometry of the underlying physical

array.

One popular application which explicitly uses a virtual array is that of synthetic aperture radar

(SAR) where the effect of an artificial larger aperture is created by virtue of the motion of the radar

[165]. The use of sum and difference co-arrays respectively in coherent and incoherent imaging was

extensively discussed in [89]. The difference co-array also arises in direction finding problems in

array processing when one considers the correlation between the signals received at the output of

the antennas. Underdetermined models for direction finding using only the second order statistics

(correlation) was proposed in [149, 150] and thoroughly investigated in [1, 2]. They propose the

use of special one dimensional array geometry known as the minimum redundancy array (MRA)

[126] (we shall review this structure in Chapter 2). Given a fixed number (say, M ) of sensors, MRA

is theoretically the optimum linear geometry which produces the maximum possible number of

elements in the difference co-array without any missing elements in between. However, there is no

closed form expression for the structure of the MRA or the number of elements in its difference

co-array and hence this geometry is not analytically tractable. Also, there is no obvious way to

extend this geometry to higher dimensions, or to the so-called higher order difference co-arrays

(which arise in estimation problems utilizing higher order statistics of the signal). In the latter

case, a number of different virtual arrays can arise depending on the order of statistics used. They

constitute the general class of higher order difference co-arrays [42, 43]. In the context of active sensing,

MIMO radar [38, 39, 16] explicitly utilizes the concept of a sum co-array to create the effect of

a virtual array by transmitting orthogonal waveforms and subsequently processing them with a

bank of matched filters at the receiver.

1.1.5 New Questions in Array processing

The preceding discussion on existing approaches to underdetermined estimation in array process-

ing brings us to the following questions.

1. Is there a simple systematic geometry for underdetermined array processing? In particular,

we would want to develop an analytically tractable array geometry (as opposed to the MRA
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which has no closed form) that has a simple structure and is capable of producing O(M2)

elements in its difference co-array. Also, it is desirable that the structure can be generalized to

higher dimensions and be easily extended to the case of higher order statistics. In this thesis,

we will propose such a geometry, namely the nested arrays, which will be shown to satisfy

all these conditions.

2. Is there an algorithm that can exploit the co-array? Previous attempts at this problem have

used variations of an augmented covariance matrix [1, 2, 149], which, for finite number of

measurements, is unfortunately not positive semidefinite and hence does not represent a

valid covariance matrix. In this thesis, we will propose a new subspace based algorithm

which will produce a positive semidefinite matrix representing the covariance matrix corre-

sponding to the co-array even for finite number of snapshots. This algorithm will be shown

to be generic enough to be applied to two dimensional arrays, as well as to the case of higher

order statistics.

3. Can the ideas in one dimension be extended to multiple dimensions? Array processing in

two dimensions (2D) can be considerably different from its one dimensional (1D) counter-

part. Also, there can be numerous geometries for spatial sampling in 2D, which do not arise

in 1D. In this thesis, we will show that the proposed nested array can be easily extended to

2D if we consider sampling on 2D lattices. We will also consider another sampling strategy,

namely, coprime sampling, which when extended to 2D, necessitates the use of coprime and

commuting integer matrix pairs. This gives rise to theoretical questions on the existence and

construction of such matrix pairs which will be extensively discussed in Chapter 6.

4. How many sources can be resolved using higher order statistics? It is well known that by

exploiting higher order statistics, it is possible to identify an increasingly large number of

sources, which far exceeds the number of sensors. Previously known results indicate that

higher order co-arrays play an important role in this regard and the number of identifiable

sources depends on different possible configurations of the co-array. In particular, it was

known that by using 2qth order statistics (q > 1 is an integer) and M physical sensors, it is

possible to resolve upto O(Mq) sources. In this thesis, we will show that fundamentally, it

is possible to overcome this limit and identify upto O(M2q) sources by using an extension of

the nested structure.
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1.2 Sparse Estimation and Compressive Sensing

The problem of underdetermined estimation has received great attention in recent times particu-

larly due to its connection with the theory of sparse sampling and recovery, also popularly known

as “Compressive Sensing”. Fundamentally, it seeks to solve for x ∈ CN×1 from

y = Ax (1.7)

where A ∈ CM×N is a fat matrix with N �M . As such, the problem is ill defined and the number

of solutions is infinite. However, with more assumptions on the particular x that is desired, the

problem actually can permit a unique answer. A very common assumption is that of sparsity.

1.2.1 The Ubiquitous Sparse Model

Sparsity is a fundamental attribute which characterizes many signals: natural and man-made. A

signal is said to be sparse if it only has a few (almost) non zero coefficients. The sparsity in signals

can be visible either in the observed domain, or in a transformed domain. The particular transfor-

mation under which a signal exhibits sparsity often depends on the specific application of interest.

A wide variety of signals and measurements can have a natural sparse representation. Examples

include images and videos, spatio temporal spectrum of data collected by radar and sonar sys-

tems, anomalies and outliers in data used in statistical regression and inference, fault and outages

in networked systems etc. Knowledge of the sparsity of the signal has been exploited to perform

(sub-Nyquist) sampling and dimension reduction of data, which allows one to represent the sparse

signal in a compact fashion. This in turn implies lower computational and storage requirements

which are particularly attractive in many applications of today which require storage and process-

ing of massive amounts of data [8]. The area of “Compressed Sensing” [56, 24] has emerged to

address the interconnections of sparsity, sampling, and reconstruction and provides an alternate

view to traditional approaches to sampling. There are mainly two aspects of this area: the first

is that of acquiring fewer measurements and performing dimension reduction of data with the

knowledge that the underlying signal is sparse. The second is to reconstruct the original signal

from the small number of (compressed) measurements that are collected. The second problem is

also termed as the sparse recovery problem and has a direct connection to the underdetermined

estimation problem (1.7). It arises in a large number of applications such as sub Nyquist sampling
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of multi band signals [125], image and video processing [117, 67], radar [87, 40], multivariate re-

gression [130], sparse Bayesian estimation [95], monitoring and inferring from networked data [84],

and channel estimation [48, 7].

1.2.2 A Brief Review of Sparse Estimation

Sparse estimation is concerned with finding the sparsest x satisfying (1.7). The problem can be

readily solved if we knew which elements in x are non zero. However, lack of this knowledge

makes the problem very difficult to solve in a computationally efficient manner. The problem

of recovering the sparsest solution to (1.7) is also known as the l0 minimization problem and is

often cast as minx:y=Ax ‖x‖0 where ‖x‖0 denotes the number of non zero elements in x. This

problem in its most general form is NP hard. An alternative approach is to solve the l1 norm

minimization problem: minx:y=Ax ‖x‖1 and hope the solution is the same as that obtained from

the l0 problem. The l1 norm ‖x‖1 denotes the sum of absolute values of x and it is the smallest p

such that the p−norm ‖x‖p is convex. The l1 minimization problem is a linear program which can

be solved efficiently by algorithms with polynomial time complexity. In fact, l1 minimization has

been used for several decades in order to seek sparse solution to the underdetermined problems.

However, for a long time, there was a lack of rigorous analytic results for equivalence of the l1

and l0 problems. These results were finally established in the 2000s which led to the emergence

of “Compressed Sensing” [24, 56] as an active field of research. It has been shown that under

certain conditions on the matrix A, the solution obtained from l1 minimization problem is identical

to that from the l0 norm minimization problem. These conditions are characterized by different

properties of the matrix A such as mutual coherence [58], Restricted Isometry Property (RIP) [25],

Exact Reconstruction Condition (ERC) [177] and the Null Space Property [47]. In the following, we

present a brief history of algorithmic developments for sparse estimation over the last few decades.

1.2.2.1 A Brief History of Sparse Recovery Algorithms

Sparsity promoting l1 regularized techniques were commonly used for deconvolution in marine

seismology in the 1970’s [32, 173]. In the 1990’s, the Basis Pursuit (BP) [34] algorithm was pro-

posed by Chen and Donoho for l1 minimization. The goal was to perform atomic decomposition

of signals in overcomplete dictionaries. Independently, the FOCUSS algorithm was proposed [83]

as a re-weighted sparsity-enforcing norm minimization approach with applications in neuromag-
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netic imaging. As an alternative to the convex l1 minimization, subspace based techniques such as

MUSIC [160] were also introduced for recovery of multi band signals with sparse spectrum [76].

Meanwhile, Matching Pursuit (MP) [122, 52] was introduced as a greedy algorithm for denoising

signals in redundant dictionaries. Tibshirani proposed a l1 regularized least squares minimization

LASSO [175] for sparse regression in a noisy setting. In what was to follow, extensions of MP and

LASSO would become popular means for sparse recovery with analytically provable guarantees.

It was not until the 2000s that a series of breakthrough results demonstrated that the NP hard l0

minimization problem can be exactly solved by the convex l1 minimization problem, under certain

conditions on the matrix A. As a result, the field of Compressive Sampling [56, 24] emerged, partly

building upon the past work (mostly empirical) on sparse recovery, and largely due to the analytic

results on the equivalence of l0 and l1 minimization. These results are undoubtedly among the

most important contributions in recent times. In order to establish the power of l1 minimization in

recovering the sparse solution, theoretical guarantees based on mutual coherence of A were devel-

oped in [59, 60, 58] proving the stability of the BP algorithm in presence of noise. Independently, a

series of theoretical results on l1 minimization [28, 27, 26] provided sufficient conditions for exact

reconstruction of sparse vectors using random measurement matrices, in terms of the newly coined

term “Restricted Isometry Property” (RIP) of the matrix A [28, 25]. In particular, it was shown that

exact reconstruction of s-sparse vectors is possible using random matrices as projection operators

provided the size of projections is O(s logN). Such analysis was also extended for the noisy sce-

nario [27, 26]. The work of Donoho et al established necessary and sufficient conditions for sparse

recovery and provided stronger guarantees than RIP by using the notion of k-neighborly polytopes

[57, 61, 62]. For noisy observations, the performance of LASSO was well studied in [190, 205]. A

set of necessary and sufficient conditions were established for the solution of LASSO to yield the

true support, either exactly or with high probability. A number of papers have also focused on

deriving information theoretic bounds on the possibility of recovering sparse vectors, irrespective

of any particular algorithm used. These formulations consider a statistical model and derive prob-

abilistic guarantees on the sparse recovery by deriving fundamental relations between number of

measurements, size of dictionary, sparsity and the noise level. The results of [189, 5, 172] develop

such guarantees.

Alongside the convex formulation (l1 minimization, LASSO etc) of the sparse recovery problem,

a family of greedy algorithms has also been revisited and analyzed to yield guarantees which are
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comparable to the convex counterparts. Most notable among these is the Matching Pursuit (MP) al-

gorithm [122]. It was modified to Othogonal Matching pursuit (OMP) [147, 52] in the 1990s to yield

superior performance. OMP was revisited by Tropp [177, 180] in the context of sparse recovery and

thoroughly analyzed. A sufficient condition called the Exact Reconstruction Condition (ERC) was

proposed under which OMP can exactly solve the l0 problem. It was also shown that for random

Gaussian ensembles, the number of measurements required by OMP to recover sparse vectors with

high probability, is the same as BP.

1.2.2.2 Extensions

While most algorithms cast the sparse recovery problem in a deterministic setting, a few of them

considers a Bayesian approach for the sparse estimation problem. The work in [176, 95, 199, 207]

belongs to this class of algorithms. They use a sparse Bayesian learning approach to formulate

a MAP estimate for the sparse unknown vector. The sparsity is explicitly characterized in terms

of a weight function (which can be zero) on the distribution of x and it is considered as a hyper-

parameter in the estimation problem which can be “learnt” via various approaches. The learning

algorithms can be shown to enforce sparsity and recover the true solution. This body of work con-

stitutes an alternative to the majority of existing work on convex relaxation based sparse recovery

techniques.

Another extension of the sparse recovery problem deals with Multiple Measurement Vectors

(MMV) as opposed to the SMV model given by (1.7) where a set of multiple unknown sparse vec-

tors shares a common sparse support. Some of the algorithms developed for SMV can be extended

to this case in a more or less straightforward fashion. These examples include M-FOCUSS [48],

M-OMP [181, 128], mixed norm convex optimization, [121, 36] and M-SBL [200]. However, in the

MMV formulation it is possible to exploit additional attributes provided by the multiple vectors

such as rank [53], correlation [207] etc. Considerable work has been done to extend the theoretical

analysis for SMV to the MMV problem. Fundamental guarantees on recovery from a uniqueness

perspective were established in [36]. A more probabilistic argument for sparse recovery in MMV

was made in [71] where the sparse signal was assumed to have a certain probability distribution

and an average case analysis was performed. The extension of LASSO to MMV, known as multi-

variate group LASSO, was analyzed in [130] and necessary and sufficient conditions were derived

for support recovery in the noisy setting. The work in [172] established sufficient conditions for
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sparse recovery by using multiple hypothesis testing framework and also derived a converse re-

sult by using information theoretic argument.

1.2.3 New Questions in Sparse Estimation

In this thesis, we will address some new questions in sparse estimation from a statistical point

of view. Bayesian approaches to compressive sensing [95, 176] provide one way of incorporating

a statistical model and form a fundamental connection between statistical estimation and sparse

reconstruction theory. This perspective gives rise to many new questions that can be asked beyond

the purview of existing sparse sampling and recovery techniques. In this thesis, we will specifically

ask the following questions and explore new possibilities along their lines:

1. What kind of priors can we exploit besides sparsity? The solution to underdetermined

systems becomes unique under the prior knowledge about sparsity of the solution. In the

literature, several other forms of prior have been considered such as non uniform support

[99], partial knowledge of support [188], model based approaches [9] or use of rank of the

data [53]. However, the statistical framework offers the possibility of using a much wider

variety of priors. In this thesis, we will consider such a prior in terms of correlation between the

variables and develop new theoretical guarantees.

2. How can we reduce the requirement on the number of samples? The answer to this question

will constitute a major contribution of this thesis. Almost every approach to sparse recovery,

deterministic or Bayesian, seems to indicate that the number of samples M cannot be less

than the sparsity level to be recovered. But, we will show that by designing suitable sampling

schemes, it is possible to recovery sparsity levels as large asO(M2) by exploiting the statistical

priors.

3. How can Sampling and Reconstruction Exploit Priors? In the underdetermined model (1.7),

knowledge of statistical priors related to the probability distribution p(x) can lead to new

sampling matrix A as well as recovery algorithms that are capable of exploiting such knowl-

edge. Common sampling matrices used in compressive sensing are mostly drawn from ran-

dom ensembles. However, depending on the application, they can often exhibit more struc-

ture. In this thesis, we will also show how sparse sampling schemes can fundamentally utilize

knowledge of priors and develop new reconstruction algorithms.
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1.3 Outline and Scope of the Thesis

In this dissertation, we visit the relatively less explored frontiers of underdetermined estimation

theory in the context of statistical signal processing as well as sparse reconstruction theory. There

are two main problems considered in this thesis. The first problem of focus is estimation in antenna

array processing (Chapters 2, 3, 4, 5 and 6). We consider a strictly underdetermined signal model

where the number of sensors or antennas can be considerably fewer than the number of unknown

spatial parameters. Different variations of this problem are studied. They include correlation based

direction finding and extension to distributions with higher order statistics, beamforming and di-

rection finding for wideband signals, and direction finding for two dimensional arrays. We propose

novel spatial sampling structures in one and multiple dimensions and develop new algorithms to

solve the underdetermined estimation problem in an efficient and systematic fashion. The second

part of the thesis considers the problem of sparse recovery in compressive sensing (Chapters 7 and

8). By introducing a statistical framework to this problem, we will develop new results for the

problem of sparse sampling and reconstruction which will be shown to have better performance

guarantees than existing ones. Below is a brief description of the scope of each chapter.

1.3.1 Nested Arrays in One Dimension (Chapter 2)

While most estimation and detection algorithms in array processing consider an overdetermined

observation model, the focus of this thesis is the underdetermined signal model. In Chapter 2, we

consider the problem of direction finding using such a model where the number of antennas can be

substantially fewer than the number of unknown spatial parameters (angles of arrival). For unique

identification of parameters in this model, we propose the use of correlation priors and derive a model

based on the correlation of the observations which retains all the information about the parameters

but offers a more explicit representation which is amenable to underdetermined estimation. The

traditionally used Uniform Linear Array (ULA) which is analogous to uniform sampling, is shown

to be an unsuitable choice for the purpose of identifying more sources than physical sensors. A new

sparse array geometry, namely, the nested array is proposed [135] which is shown to be fundamen-

tally capable of resolving more sources than the number of physical sensors by exploiting the so

called “difference co-array” that arises in the correlation based framework. The geometry is shown

to be simple and systematic and easily extendable to more than one dimension. An optimal array
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structure is derived for maximizing the degrees of freedom offered by such an array. It is shown to

be order optimal over any array geometry in terms of the maximum number of resolvable sources

using only the correlation of the data. We also develop a new subspace based algorithm which is

capable of estimating the directions of arrival from the covariance matrix of the nested array. Fur-

ther applications of the nested array for beamforming in the power domain are also demonstrated.

The nested array thereby provides a new sampling approach to array processing with more sources

than sensors.

1.3.2 Nested Arrays in Two Dimensions (Chapter 3)

In Chapter 3, we extend the 1D nested array to two dimensions for two dimensional (2D) direction

finding (elevation and azimuth) problems [142, 143]. 2D array processing differs considerably from

that in one dimension due to some unique problems that arise only in two dimensions. Among

many possible sampling geometries in 2D, we focus on lattices and propose a family of two di-

mensional Nested Arrays on Lattices. The concept of 1D nested array is extended to 2D lattices

via integer matrices. Various orientations of the proposed structure are considered and optimized.

It is further shown that the construction of nested arrays for separable and non separable lattices

can be directly related via Smith Form of integer matrices. We also develop a new subspace al-

gorithm for 2D direction estimation using the nested structure. One of the unique issues in two

dimensions is the absence of exact conditions on parameter identifiability. We address this prob-

lem and develop new insights into two dimensional parameter identification and prove guarantees

for different scenarios.

1.3.3 Higher Order Statistics and Extension of Nested Arrays (Chapter 4)

In Chapter 4, we consider the problem of underdetermined estimation using higher order statis-

tics (HOS) of the signal. Higher order statistics have played important roles in statistical estimation

from an underdetermined model since they can provably allow estimation of more parameters than

the number of physical measurements. We revisit this problem in the context of direction finding

in antenna arrays and demonstrate that it is possible to further improve upon the performance of

existing methods utilizing HOS [140]. This is shown to be possible by identifying a new virtual ar-

ray structure embedded within the higher order statistics estimated from such an underdetermined

model. This virtual array is a generalization of the difference co-array and its size is shown to be
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proportional to the order of the statistics used. However, the size also depends on the underlying

physical array and the ULA is again shown to be a sub-optimal choice. We propose an extension

of the nested array which works for every order of statistics and the size of its virtual array is

shown to be order optimal. This demonstrates the flexibility of the proposed nested array in being

adapted to every order of statistic. The subspace algorithm proposed in Chapter 2 is also shown to

be extensible to this case and it can provably resolve larger number of sources than the previously

known algorithms. We also revisit Cramer Rao Bound analysis for underdetermined estimation

and examine its applicability to the current model under both deterministic and stochastic setting.

The performance of the extended nested array coupled with the new subspace algorithm is shown

to be significantly better than previously known approaches, particularly when large number of

temporal samples are available.

1.3.4 Wideband Beamforming and Estimation (Chapter 5)

The problems of direction finding and beamforming for wideband signals are significantly dif-

ferent from their narrowband versions. This is due to the fact that the response of the array is

different at every frequency and incorporation of the information from all different frequencies in

the most effective way remains a challenging task. In Chapter 5, we propose two new approaches

for wideband array processing. One of them focuses on direction finding from wideband signals

[131, 132]. The other one explores new directions in frequency invariant beamforming where the

goal is to make the beampattern of the array appear identical across the frequencies. Our approach

to wideband direction finding is based on coherently combining the signals in the subbands before

performing the estimation. Usually such combination requires some coarse estimtates of the direc-

tions. However, we propose a new approach to coherent combination DOA estimation which does

not require such estimates. This approach, called autofocusing, is shown to provide better perfor-

mance when the coarse estimates are not available. In the second part, we develop new approaches

to frequency invariant beamforming using 2D lattices for wideband signals. Wideband beamforming

is usually realized as a spatio-temporal filtering process. However, we show that such beamform-

ing can be made fully spatial by using two dimensional arrays and striking a trade off between time

and space. We further show that it is possible to realize the 2D arrays virtually by using far fewer

number of suitably placed physical sensors. This shows that frequency invariant beamforming can

indeed be performed without temporal processing or deployment of more sensors.
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1.3.5 Commuting Coprime Matrix Pairs (Chapter 6)

Coprime sampling [184, 185] has been recently proposed as a sub Nyquist sampling scheme which

enables the autocorrelation sequence to be sampled at the Nyquist rate. Hence, one can employ

significantly slower A/D converters (and save power) or deploy fewer sensors and yet retain all

the information about the spectrum of the signal. Coprime sampling when extended to two dimen-

sions, requires the use of integer matrix pairs which are commuting and coprime. It is challenging

to fully characterize the entire family of such matrices. In this chapter, we investigate several fam-

ilies of commuting matrix pairs and establish necessary and sufficient conditions for their copri-

mality [137]. In particular, we look into circulant, skew circulant, adjugate and triangular pairs of

matrices and derive simplified conditions on their entries. The results obtained in this chapter can

lead to constructive techniques for commutive coprime matrices.

1.3.6 Correlation Aware Sparse Recovery (Chapters 7 and 8)

In Chapters 7 and 8, we study the problem of underdetermined sparse recovery by bringing in a

statistical model. Most approaches to sparse recovery have been deterministic in the sense that

they make no assumptions on the statistics of the unknown x in (1.7). The Bayesian approaches

however [176, 95] assume a multivariate normal distribution on x but do not consider priors other

than sparsity. We consider a generic model for sparse recovery which includes a variety of applica-

tions including direction finding for antenna arrays. We introduce a framework where we consider

priors on the unknown sparse signal in the form of statistical correlation [141]. Given this prior, a

model based on the ideal correlation matrix is developed in Chapter 7 for recovering the sparse sup-

port. Fundamental conditions on the uniqueness of recovery are explored which give rise to novel

conditions on the measurement matrix and lead to new design challenges. We demonstrate that

the proposed nested and coprime arrays prove to be a natural candidate for sparse recovery with

correlation priors. We also derive necessary and sufficient conditions on the relaxed problem by

making a connection to Donoho’s result on neighborly polytopes [62]. In Chapter 8, we consider an

extension of this framework in the form of a Multiple Measurement Vector (MMV) model. We use

this model to analyze the performance of the proposed correlation aware sparse recovery technique

when we only have estimates of the correlation computed from the MMV [144]. We demonstrate

that in this case it is possible to have a probabilistic guarantee for support recovery. For Gaussian

sources, it is shown that such recovery can happen with overwhelming probability with respect
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to the number of measurement vectors available [145]. This chapter provides a first step towards

explicit use of correlation priors in sparse recovery and leads to many future directions for prior

aware sparse recovery techniques.

1.4 Notations

Matrices are denoted by uppercase letters in boldface (e.g., A). Vectors are denoted by lowercase

letters in boldface (e.g., a). Superscript H denotes transpose conjugate, whereas superscript ∗ de-

notes conjugation without transpose. The notation [A]i,j denotes the (i, j)th elements of matrix A.

For a set S, | S | denotes its cardinality. Similarly, given two sets S1 and S2, S1 \ S2 denotes the

difference of the sets, S1 ∩ S2 denotes their intersection and S ∪ S2 denotes their union. Given a set

of integers S ⊂ {1, 2, · · · , N} and a vector v ∈ CN×1, the vector [v]S ∈ C|S| × 1 consists of elements

of v indexed by S. Similarly given a matrix A ∈ CM×N , the matrix AS ∈ CM×|S| consists of the

columns of A indexed by S.

The symbol � denotes the Khatri-Rao product [186] between two matrices of appropriate size

and the symbol ⊗ is used to denote the left Kronecker product (p. 1353 of [186]). For two matrices

A and B of same dimensions, A ◦ B denotes the Hadamard product [91]. For example, consider

2 × 2 matrices A ∈ CM×N =

 a1 a2

a3 a4

 and B ∈ CM×N =

 b1 b2

b3 b4

. Then, the Kronecker,

Khatri Rao, and Hadamard products are respectively given by

A⊗B =

 Ab1 Ab2

Ab3 Ab4

 , A�B =



a1b1 a2b2

a1b3 a2b4

a3b1 a4b2

a3b3 a4b4


, A ◦B =

 a1b1 a2b2

a3b3 a4b4
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Chapter 2

Nested Arrays in One Dimension

2.1 Introduction

In this chapter, we will consider a classical parameter estimation problem, namely simultaneous

direction finding using antenna arrays. Contrary to the traditional scenario, we will consider the

case where the model is highly underdetermined. This happens when the number of spatial sam-

ples of the impinging electromagnetic waveform (equivalently the number of antennas) is less than

the number of unknown directions to be resolved. We will develop a systematic theory of such

an estimation problem and propose a new antenna geometry which is fundamentally capable of

resolving more sources than the number of antennas. This underdetermined model will be revis-

ited in Chapter 7 in the context of finding sparse solutions for linear underdetermined system of

equations. This problem arises in a wide variety of applications such as sub Nyquist sampling

and reconstruction, multivariate regression, imaging, source localization etc. The proposed spatial

nested sampling will be shown to play an important role in such problems as well.

Antenna arrays perform spatial sampling of impinging electromagnetic waves and the samples

are used to perform a wide variety of tasks including detection and estimation of spatial signatures.

Direction-of-arrival (DOA) estimation and beamforming constitute two major problems of interest

in this regard. However, traditionally, both of these problems are formulated based upon a signal

model that uses a uniform linear array (ULA) and considers a scenario where the number of sources

is less than the number of sensors. The main reason behind this is that the maximum number of

sources identifiable with a N element ULA using traditional subspace based methods like MUSIC

[160] isN −1. In this chapter, we explore the class of non uniform arrays and propose a novel array

structure which is capable of providing a dramatic increase in the degrees of freedom (DOF) and
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hence can resolve significantly more sources than the actual number of physical sensors. We call

this class of arrays as “nested arrays” because they are obtained by combining two or more ULAs

with increasing inter-sensor spacing. We shall demonstrate that using only second order statistics

of the impinging sources, it is possible to obtain O(N2) DOF from only N physical sensors.

The main idea behind the ability to resolve more sources than physical sensors is based upon

the concept of a difference co-array. This helps in performing array processing with increased de-

grees of freedom in a completely passive scenario. The difference co-array becomes visible as one

computes the correlation between the signals received at the different antennas. Hence the new

direction finding and beamforming algorithms proposed in this chapter work entirely in the cor-

relation domain. The co-array concept has previously been treated for specific array geometries

in [89],[103]. In Section 2.5, we propose our nested array structure which can greatly increase the

degrees of freedom of the corresponding co-array. It will be shown in Section 2.5 that the nested

array is extremely easy to construct and it is possible to provide exact closed form expressions for

the sensor locations and the degrees of freedom for a given number (N ) of sensors, unlike the so

called Minimum Redundancy Arrays (MRAs) used in [149, 1, 2]. We shall also propose a novel

spatial smoothing based technique in Section 2.6 which utilizes only second order statistics to ex-

ploit the degrees of freedom offered by the array and works well even for stationary sources. Our

technique constructs a suitable covariance matrix (which we shall refer to as the spatially smoothed

matrix) corresponding to a longer array on which subspace based methods can be applied directly

to perform detection and estimation of more sources than sensors.

As another potential application of the signal model based on the nested array, a new approach

to beamforming is proposed in Section 2.7, which directly makes use of the degrees of freedom

offered by the co-array. This approach spatially filters the power of the sources (instead of their am-

plitude) and hence it is inherently non-linear in nature. Another major advantage of the proposed

approach to beamforming is that, assuming perfect knowledge of the signal covariance matrix, it

can eliminate noise, which is never possible using conventional linear approach to beamforming.

It should be pointed out that the proposed spatial smoothing based method as well as the beam-

forming are applicable to any array whose difference co-array is a filled ULA and hence they can

be applied even to MRAs.

Relation to Past Work: In earlier works, the problem of detecting more sources than sensors has

been addressed in different ways. In [149],[150], it was shown by using minimum redundancy
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arrays [126] and an augmented covariance matrix, degrees of freedom can be improved. How-

ever, the constructed augmented covariance matrix is not positive semidefinite for finite number of

snapshots (and hence violates the condition for being a covariance matrix.) Unlike the augmented

matrix in [149], the spatially smoothed matrix proposed in this thesis is guaranteed to be positive

semidefinite for any finite number of snapshots. In [1],[2], a transformation of the augmented matrix

into a suitable positive definite Toeplitz matrix was suggested and an elaborate algorithm was pro-

vided to construct this matrix. However, there are two issues with this approach. To gain more

degrees of freedom required for detection of more then N − 1 sources with N sensors, they rely

on the class of Minimum Redundancy Arrays (MRAs), for which, unfortunately, there is no closed

form expression for either the array geometry or the achievable degrees of freedom for a given N .

The optimum design of such arrays is not easy and in most cases, they are restricted to computer

simulations or complicated algorithms for sensor placement [96],[110],[148],[159],[39]. Also, the al-

gorithm for finding the suitable covariance matrix corresponding to the longer array is a lengthy

and complicated iterative algorithm, which converges only to a local optmimum [1, 2]. In [154], the

use of fourth order cumulants was suggested to completely remove the Gaussian noise term and

perform better DOA estimation. It was later shown that through the use of fourth order cumulants,

one can also achieve significant increase in degrees of freedom [63],[42],[43]. But one weakness of

this approach is that it is restricted to non Gaussian sources. Recently, using the concept of Khatri-

Rao (KR) product and assuming quasi stationary sources, it has been shown that one can identify

upto 2N − 1 sources using a N element ULA [118] without computing higher order statistics. It

is to be noted that using the augmented array approach of [149] or with the construction of suit-

able positive definite Toeplitz matrices as done in [1], it will not be possible to obtain this many

degrees of freedom using a ULA. Unfortunately, this method based on quasi stationary sources,

is not applicable to stationary signals. In [16], degrees of freedom were increased by generating

a virtual sum co-array using a MIMO radar. However, the generation of the sum co-array needs

active sensing, i.e., both transmit and receive antennas, and is not applicable to the case of passive

sensing.

The content of this chapter is mainly drawn from [135] and portions of it have been presented

in [133, 134].
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2.2 Outline

In Sec. 2.3, a new signal model based on the concept of a difference co-array is developed. In

Sec. 2.4, we discuss the role of difference co-array of the physical antenna array which plays an

important role for resolving O(N2) sources using N sensors. In Sec. 2.5, we propose a new array

geometry, namely, the nested array and optimize the degrees of freedom offered by it under a fixed

budget of available physical sensors. In Sec. 2.6, we propose a new subspace based algorithm

that can fully exploit the structure of nested array and identify O(N2) sources. In Sec. 2.7, new

approaches to deterministic and MVDR-like beamforming are proposed which directly make use

of the degrees of freedom offered by the nested array. In Section 5.5, simulations are performed to

verify all the proposed techniques and compare them against the conventional methods.

2.3 Definitions and Signal Model based on Difference Co-array

Consider a N element possibly non uniform linear antenna array. Let a(θ) be the N × 1 steering

vector (see Sec. 1.1.1.1) corresponding to the direction θ whose ith element is ej
2π
λ di sin θ. The sensors

are assumed to be placed on a linear grid with di denoting the position of the ith sensor. The carrier

wavelength is denoted by λ. Let us assume D narrowband sources impinging on this array from

directions {θi, i = 1, 2, · · · , D} with powers {σ2
i , i = 1, 2, · · · , D} respectively. Hence the received

signal is

x[k] = As[k] + n[k] (2.1)

where A = [a(θ1) a(θ2) · · ·a(θD)] denotes the array manifold matrix and s[k] = [s1[k] s2[k] · · · sD[k]]T

denotes the source signal vector. The noise n[k] is assumed to be temporally and spatially white,

and uncorrelated from the sources. We also assume the sources to be temporally uncorrelated so

that the source autocorrelation matrix of s[k] is diagonal. Then,

Rxx = E[xxH ] (2.2)

= ARssA
H + σ2

nI (2.3)
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= A



σ2
1

σ2
2

. . .

σ2
D


AH + σ2

nI (2.4)

Now, following [118], we vectorize Rxx to get the following vector

z = vec(Rxx) (2.5)

= vec
[ D∑
i=1

σ2
i (a(θi)a

H(θi))
]

+ σ2
n
~1n (2.6)

= (A∗ �A)p + σ2
n
~1n (2.7)

where p = [σ2
1 σ2

2 · · ·σ2
D]T and ~1n = [e1

T e2
T · · · eN

T ]T with ei being a column vector of all

zeros except a 1 at the ith position. Comparing it with (2.1), we can say that z in (3.17) behaves like

the received signal at an array whose manifold is given by A∗ �A where � denotes the KR prod-

uct. The equivalent source signal vector is represented by p and the noise becomes a deterministic

vector given by σ2
n
~1n. The distinct rows of A∗ � A behave like the manifold of a (longer) array

whose sensor locations are given by the distinct values in the set {~xi − ~xj , 1 ≤ i, j ≤ N} where ~xi

denotes the position vector of the ith sensor of the original array. This array is precisely the differ-

ence co-array of the original array [89]. Hence instead of (2.1), we can apply DOA estimation to

the data in (3.17) and work with the difference co-array instead of the original array. The difference

co-array thus occurs naturally in problems involving second order statistics of the received signal.

Even the methods based on fourth order cumulants end up exploiting the degrees of freedom of

the difference co-array as was pointed out in [63],[42],[43].

2.4 The Co-Array Perspective

In this section, we shall first discuss the concept of co-array along with its important properties. We

shall also relate it to the degrees of freedom for direction of arrival estimation and explain to what

extent different algorithms can exploit them.

Definition 2.1: (Difference Co-array)



26

Let us consider an array of N sensors, with ~xi denoting the position vector of the ith sensor.

Define the set

D = {~xi − ~xj}, ∀i, j = 1, 2, · · · , N (2.9)

In our definition of the set D, we allow repetition of its elements. We also define the set Du which

consists of the distinct elements of the set D. Then, the difference co-array of the given array is

defined as the array which has sensors located at positions given by the set Du. �

The number of elements in the difference co-array (given by the set Du) directly decides the dis-

tinct values of the cross correlation terms in the covariance matrix of the signal received by an

antenna array. Using these distinct cross correlation terms judiciously in different ways, one can

substantially increase the number of sources that can be detected by the array. Each such technique

actually amounts to using a part or whole of the resulting difference co-array, instead of the origi-

nal array, to perform the DOA estimation. Of course, the maximum degrees of freedom that can be

attained is limited by the number of elements present in the co-array. There is a related concept of

“sum co-array” which we do not consider here as it does not arise naturally in computation of the

covariance matrix of the received signal.

Definition 2.2: (Weight Function) Define an integer valued function w : Du −→ N+ such that

w(~d) = no. of occurences of ~d in D, ~d ∈ Du. �

where N+ is the set of positive integers.The weight function w(~d) denotes the number of times ~d

occurs.

2.4.1 Properties of Difference Co-Array:

Let us consider any N element array (possibly non linear). Then the following are true for the

weight function w(.) corresponding to its difference co-array:

1. w(~0) = N

2. 1 ≤ w(~d) ≤ N − 1 ∀~d ∈ Du \ {~0}

3. w(~d) = w(−~d), ∀~d ∈ Du

4.
∑
~d∈Du,~d6=~0 w(~d) = N(N − 1)
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Property (1) is due to the fact that ~d = ~0 occurs whenever ~xi = ~xj in (2.9) and that happens exactly

N times for i = j = 1, 2, · · · , N .

Property (2) can be verified as follows: Say the value ~d 6= ~0 occurs as the difference between the

ith and the jth sensors, i.e., ~d = ~xi − ~xj . Then, ~d 6= ~xi − ~xk for any k 6= j. Therefore ~d can occur

only once as we consider the set of differences in position between a given sensor (say, ith) and

the remaining sensors. So the maximum number of times it can occur is once, for each value of

i = 1, 2, · · · , N − 1, i.e., it can occur a maximum of N − 1 times. For example, in a N element ULA

with unit spacing, the difference of 1 occurs exactly N − 1 times.

Property (3) is easily verifiable since whenever ~d = ~xi− ~xj occurs, correspondingly we also get the

position difference −~d = ~xj − ~xi. Hence the values ~d and −~d occur with equal frequency.

Property (4) can be verified as follows: The LHS indicates the sum of occurences of all possible

non zero position differences ~d ∈ Du. The total number of times all position differences can occur

is exactly equal to all possible permutations, taken two at a time from the set {~xi, i = 1, 2 · · · , N},

which is equal to N(N − 1). HHH

It is to be noted that the cardinality of Du for a given array gives the degrees of freedom that

can be obtained from the difference co-array associated with that array. However, from property (4)

above, we can immediately conclude that the maximum degrees of freedom that can be obtainable

from a difference co-array for a N element array with any geometry, is

DOFmax = N(N − 1) + 1. (2.10)

Thus we see that if we use second order statistics, then, by exploiting the degrees of freedom (DOF) of the

difference co-array, there is a possibility that we can getO(N2) degrees of freedom using onlyO(N) physical

elements. DOFmax gives a global upper bound on the maximum DOF achievable from the difference

co-array over all classes of arrays. Also there is a trade-off between the degrees of freedom and the

value of the weight function which is clear from Property (4) above. If a difference occurs more

than once (i.e., w(~d) > 1 for some ~d), then it implies a drop in the overall cardinality (and thereby

the degrees of freedom) of Du.
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2.4.2 Computing the Weight Function:

Given a linear array with d as the minimum spacing of the underlying grid on which sensors are

assumed to be located, define the function c(m) which takes a value 1 if there is a sensor located at

md and 0 otherwise. Then the weight function w(n) can be computed as the convolution:

w(n) = (c~ c−)(n). (2.11)

where c−(n) = c(−n).As an example, the difference co-array of anN element ULA is another ULA

with 2N−1 elements. The difference co-array of a uniform circular array (UCA) is a set of concentric

UCAs with N(N − 1) + 1 degrees of freedom when N is odd. Minimum redundancy arrays form

a class of non uniform arrays which have the longest difference co-arrays under the constraint

that the difference co-array is a ULA. However, the sensor locations and degrees of freedom of

such arrays cannot be computed in closed form for any arbitrary N and they are found through

computer search [110],[96].

2.4.3 Comparison of underdetermined DOA estimation techniques from the

co-array perspective

1. Augmented Matrix Approach [149],[150],[148]: This method exploits the difference co-array of

a minimum redundancy array but effectively uses only one half of the difference co-array, be-

cause the negative differences are used up to make the augmented matrix Hermitian. Hence,

it can attain M/2 degrees of freedom where M is the cardinality of Du. Also, in case of ULA,

this method cannot exploit the additional degrees of freedom provided by the difference co-

array of the ULA because it only uses one half of the co-array. So it cannot identify sources

beyond the traditional limit of N − 1 for a N element ULA. The modification to [149] that

was suggested in [1], [2] also has the same limitation. They assume that the maximum num-

ber of resolvable sources that can be obtained from any N element array is N(N − 1)/2 + 1

(which is because they aim at constructing a Hermitian Toeplitz matrix) whereas the actual

difference co-array provides twice as many degrees of freedom. So using some other suitable

algorithm, there is a possibility that this additional freedom might be exploited and even with

a N element ULA, one can resolve 2N − 2 sources (see below).

2. Fourth order cumulants [154],[42],[43][63]: Here the effective steering vector becomes aeff =
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a⊗a∗, as given in [154],[43]. Thus aeff behaves exactly like the steering vector corresponding

to the entire difference co-array of the original array, where each row represents an element of

the co-array. Depending on the weight function of the co-array, the row corresponding to the

nth element of the co-array occurs w(n) times in aeff . Nevertheless, it captures all degrees

of freedom offered by the entire co-array and hence even for an ULA with N sensors, it can

resolve upto 2N − 2 sources. However, a drawback of this method is that it is applicable only

to cases where the source signals are non-Gaussian. Also, one needs to compute the fourth

order cumulants of the received signal which might require large number of snapshots and

longer computation time.

3. KR product based MUSIC:[118] This recent method exploits quasi stationarity of source signals

to construct a full rank matrix whose rank is given by the rank of the effective array manifold

Aeff = A∗�A where� denotes the KR product. Aeff behaves like the manifold of the entire

difference co-array and hence it is inherently capable of exploiting the full degrees of freedom

offered by the difference co-array. The authors considered a N element ULA and provided a

Krushkal rank based argument to prove that it can identify upto 2N − 2 sources. However

such argument is not necessary because the identifiability condition becomes obvious when

we view it in the light of the co-array of a ULA. The advantage of this method is that it

uses only second order statistics of the data and hence has no problem in handling Gaussian

sources. However, it requires quasi stationarity to ensure that the constructed matrix is full

rank.

2.5 The Concept of Nested Array: Degrees of Freedom and Opti-

mization

As we observed in Section 2.4, a key idea behind the ability to resolve more sources than physical

sensors, is to use a possibly non uniform array so that its difference co-array has significantly more

degrees of freedom than the original array. In [149],[1], classes of Minimum Redundancy arrays

(MRAs) were used to achieve this purpose. However, the main problem is that there is no simple

way to construct these arrays and it requires extensive computer search [159],[39],[186]. Hence,

there is no way to predict the attainable degrees of freedom of MRAs for a given N other than the

fact that it is always strictly less thanN(N−1)+1 [186]. So, much of the work on underdetermined
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DOA estimation problems have been performed considering specific examples of MRAs instead of

a general class.

In this section, we attempt to provide a solution to this problem by proposing a class of “nested

arrays”. This array structure, as we shall show, can be generated very easily in a systematic fashion

and we can exactly predict degrees of freedom of its co-array for a given N . Moreover, with this

class, it is indeed possible to generate O(N2) degrees of freedom from O(N) physical elements. It

is also easy to extend this idea of nesting to higher dimensions. A similar increase in degrees of

freedom has been achieved in MIMO radar using the virtual array concept through active sens-

ing. But here we will show that even in the passive scenario, it is possible to exploit such nested

structures and attain even more degrees of freedom compared to the corresponding MIMO radar

with same number of physical elements. The “two level” nested array as we shall define below, is

similar to the array structure originally proposed by Bracewell (see [155]). The combination of the

transmitting and the receiving arrays in MIMO radar also has a similar structure. However, we

shall generalize the structure to beyond 2 levels to systematically increase the degrees of freedom.

2.5.1 Two Level Nested Passive Array

A two-level nested array is basically a concatenation of two ULAs: inner and outer where the inner

ULA has N1 elements with spacing d1 and the outer ULA has N2 elements with spacing d2 such

that d2 = (N1 + 1)d1. More precisely it is a linear array with sensors locations given by the union of

the sets Sinner = {md1, m = 1, 2, · · · , N1} and Souter = {n(N1 + 1)d1, n = 1, 2, · · · , N2}. Fig.2.1

illustrates the nested array. It is similar to the union of the transmit and the receive arrays of a

MIMO radar and uses the same number of sensors. However here we use a single such array for

receiving only (passive sensing) instead of active sensing as done in MIMO radar.

Fig. 2.1 also shows the difference co-array of this nested array. Two important observations

about the co-array are:

• It is a filled ULA with 2N2(N1 + 1) − 1 elements whose positions are given by the set Sca

defined as

Sca = {nd1, n = −M, · · · ,M, M = N2(N1 + 1)− 1} (2.12)

• Comparing with the virtual array of the MIMO radar, we find that it has twice as many de-
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Figure 2.1: A 2 level nested array with 3 sensors in each level (top), and the weight function of its
difference co-array (bottom).

grees of freedom though both use the same number of physical sensors. Also, the proposed

nested array can be used as a passive array, i.e., the entire array is used for “receive only”,

and yet we can successfully exploit the degrees of freedom of its co-array (as we shall demon-

strate when we perform DOA estimation and beamforming with this array) as opposed to

the MIMO radar situation where the longer virtual array can only be realized through “active

sensing”.

Thus we demonstrated that with a two-level nested array, we can attain 2N2(N1+1)−1 freedoms

in the co-array using only N1 +N2 elements. This indeed gives us a systematic way to increase the

degrees of freedom of the co-array, as opposed to the MRAs which need computer search to find

those array structures. We can further optimize the distribution of sensors in the two levels by

finding N1, N2 that maximize the total degrees of freedom, 2N2(N1 + 1) − 1, under the constraint

of fixed total number of sensors, i.e., N1 + N2 = N . The solution (using AM-GM inequalities) can

be verified as:

N optimal N1, N2 DOF

even N1 = N2 = 1
2N

N2−2
2 +N

odd N1 = N−1
2 , N2 = N+1

2
N2−1

2 +N

Hence, using 2 level of nesting, we can obtain little over half of the maximum limit in (2.10). So
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now we examine how far we can increase the degrees of freedom of the co-array by extending the

nesting strategy to more than two levels.

2.5.2 K Levels of Nesting

A ‘K-level’ nested linear array, parameterized by K,N1, N2, · · · , NK ∈ N+, is defined as one where

the sensor positions are given by the set S(K-level) =
⋃K
i=1 Si where Si = {nd

∏i−1
j=1(Nj + 1), n =

1, 2, · · · , Ni}, i = 2, · · · ,K

S1 = {nd, n = 1, · · · , N1}

The structure of the ith nesting level (i 6= 1) in a K-level nested array is depicted in Fig. 2.2.

So, the “K”-level nested array is essentially a union of K ULAs with Ni sensors in the ith level of

… …………. ………. …………. …………. …………………

0 1 N1Ͳ1N1
(N2Ͳ1)�N12N1 NiͲ1 NiͲ2 ….�N1 (NiͲ1)�NiͲ1 ...�N12NiͲ1 NiͲ2 ….�N1 NkͲ1 NkͲ2 ...�N1 NkͲNkͲ1 ...�N1

Level�1 Level�2 Level�i Level�K

…………. ……. …

Figure 2.2: The ith nesting level containing Ni sensors in a K-level nested linear array.

nesting and the intersensor spacing in the ith level is (Ni−1 +1) times the inter-sensor spacing in the

(i− 1) th level. Note that the total number of physical sensors in the nested array is
∑K
i=1Ni = N.

It can be verified using the convolution formula in (2.11) that the degrees of freedom in the

corresponding difference co-array is DOFK = 2
{

[N2(N1 + 1)− 1] + [(N3 − 1)(N1 +N2 + 1)
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+ (N1 + 1)] + · · ·+ [(NK − 1)(N1 +N2 +N3 + · · ·+NK−1 + 1)

+ (N1 +N2 + · · ·+NK−2 + 1)]
}

+ 1

which can be simplified to

DOFK = 2
( K∑
i=1

K∑
j=i+1

NiNj +NK − 1
)

+ 1 (2.13)

The corresponding difference co-array, however, is not a filled ULA for more than two stages of

nesting.

2.5.3 Optimization of the K level nested Array

Given a number of sensors, N , we would like to know the number of nested levels and also the

number of sensors per nesting level, which will maximize the degrees of freedom of the nested

array. This can be cast as the following optimization problem:

max
K∈N+

max
N1,···,NK∈N+

DOFK (2.14)

subject to:
∑K
i=1Ni = N

Since the variables K,N1, · · · , NK are all positive integers, this is a combinatorial optimization

problem. However, we will provide a closed form solution to this problem using a simple observa-

tion and thereby deduce the structure of the optimally nested array. The solution to this problem is

given by the following theorem

Theorem 2.5.1. Given a number N of sensors, the optimal number of nesting levels K and the number of

sensors per nesting level are given by

K = N − 1

and

Ni =

 1, i = 1, 2, 3, · · · ,K − 1

2, i = K

The corresponding difference array is a non uniform linear array with degrees of freedom given by DOFopt =

N(N − 1) + 1 which is same as the upper bound in (2.10). �
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Proof. See Appendix 2.11.

Corollary 2.5.1. Structure of the optimally nested array: Substituting these optimum values into

(2.5.2), it can be verified that the optimum nested array has sensors located at the positions given by

the set Sopt = {d, 2d, 4d, 8d, · · · , 2N−1d}. �

Hence we have this interesting observation: The optimally nested array is one with exponential spacing.

2.5.4 Remarks

1. Compared to the minimum redundancy arrays, our two level nested array will always pro-

duce less degrees of freedom since the minimum redundancy arrays are optimized to produce

the longest difference co-array under the constraint that the difference co-array is a ULA.

However, the structure of a MRA for a given N cannot be exactly predicted and it can only

be found through numerical simulations individually for each N . In contrast, the nested ar-

rays are easy to construct and the sensor positions and degrees of freedom are analytically

tractable and are also O(N2).

2. Extending the nesting strategy beyond two levels fails to produce a difference co-array which

is a ULA (i.e., holes appear). Same is true for the optimally nested array which is exponen-

tially spaced. This is because the difference array is associated with the second order statistics

of the received data. So, extending beyond two levels of nesting will have a nice advantage

if we consider higher order statistics. For example, if we consider fourth order statistics, then

instead of the difference co-array, we shall be interested in the difference of the difference set.

In such a situation, a 4 level nested array with N elements in each level, will beautifully pro-

duce a filled ULA with O(N4) elements. Thus, an important advantage of this nesting strategy

is that it easily extends to the case of higher order statistics, producing consistent increase in degrees

of freedom. In future, we shall explore this advantage in greater detail. It is to be noted that

MRAs cannot yield O(N4) degrees of freedom with 4th order statistics because the difference

array is a ULA.

3. The optimally nested array belongs to a special class of array, namely, the non redundant

array. Non redundant arrays are the ones for which every difference in the difference co-array
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appears only once (except the zero lag which has to appear N times). Hence, by Property 4

in Section 2.4, it achieves the maximum value of degrees of freedom given by (2.10) for any value

of N . It is interesting to note that while the two level nested array belongs to the class of

“no-hole” arrays (arrays with no holes but with redundancies), the optimally nested array is

a “non redundant array” (arrays which have no redundancies but have holes).

For comparison, we enlist the degrees of freedom in the difference co-array of the MRAs [186],

2 level nested array and the upper bound in (2.10) (achieved by the optimally nested array) for

different values of N :

N MRA 2 level Upper Bound

4 13 11 13

8 47 39 57

9 59 49 73

10 73 59 91

15 159 127 211

2.6 Applications of the nested Array in DOA estimation of more

sources than Sensors

As discussed in Section 2.4, the increased degrees of freedom offered by the co-array were exploited

by different techniques such as augmented matrix approach [149, 1], fourth order cumulant based

methods [154] and the recent quasi stationary signal based method [118]. However, as we pointed

out earlier, all of them have limitations. Hence, in the following section, we propose an alterna-

tive way to exploit the degrees of freedom by applying the spatial smoothing technique [74] in

a novel fashion. This approach guarantees to produce a positive semidefinite covariance matrix

corresponding to the co-array even for finite snapshots (thereby overcoming the limitation of [149]

without resorting to the multiple iterations suggested in [1]). Also, unlike the methods based on

fourth order cumulants, our proposed approach would work even in the case of Gaussian signals

and unlike [118], it is equally applicable for stationary signals.
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2.6.1 Spatial Smoothing based DOA estimation:

We propose a spatial smoothing based approach for exploiting the degrees of freedom of the differ-

ence co-array. It is to be noted that we do not use spatial smoothing for decorrelating uncorrelated

sources, as it is done in the conventional sense [74],[163]. Rather, it is used as a technique to build

up the rank of an observation matrix so that we do not need to either use the fourth order cumu-

lant or assume quasi stationarity of signals. Note that spatial smoothing works only for a ULA and

so we shall focus on the two-level nested array for applying this technique since its difference co-

array is a filled ULA. It should be remembered that application of the proposed spatial smoothing

based method is not restricted to nested arrays and it can be applied to any array whose difference

co-array is a filled ULA (including the MRA).

Consider the signal model in Section 2.3 given by (3.17) for a two level nested array with N/2

sensors in each level. We assume N to be even, similar arguments can be applied for the odd case

as well. The dimension of the new array manifold A∗ �A is N2 ×D but it has precisely as many

distinct rows as the number of degrees of freedom of the difference co-array which is (N2−2)/2+N

for 2 level nested array for even N . Since the difference co-array in this case is a filled ULA, A∗�A

is like a Vandermonde matrix with (N2 − 2)/2 +N distinct rows and hence its rank is D as long as

D ≤ (N2−2)/2+N . However the equivalent source signal vector p for this co-array consists of the

powers σ2
i of the actual sources and hence they behave like fully coherent sources. In [118], this problem

was taken care of by assuming the source powers to vary in different quasi stationary intervals and

these were collected to build a full rank matrix. Here, we propose an alternate solution by using the

well known technique of spatial smoothing that is applied for coherent sources, to the new signal

model given by (3.17). We should like to emphasize that the spatial smoothing technique which is

usually applied for ULAs, might also be used for the difference co-array (which is not a ULA) of

the optimally nested array after doing some preprocessing like interpolation as suggested by [78].

To apply spatial smoothing, first let us construct a new matrix A1 of size ((N2 − 2)/2 +N)×D

from A∗�A where we have removed the repeated rows (after their first occurrence) and also sorted

them so that the i th row corresponds to the sensor location (−N2/4 − N/2 + i)d in the difference

co-array of the 2 level nested array. This is equivalent to removing the corresponding rows from

the observation vector z and sorting them to get a new vector z1 given by

z1 = A1p + σ2
n~e
′

(2.15)
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where ~e
′ ∈ R((N2−2)/2+N)×1 is a vector of all zeros except a 1 at the (N2/4 + N/2)th position. It

can be verified that due to the above mentioned sorting and replacement of repeated rows, the

deterministic noise vector changes from ~1n in (3.17) to ~e
′
.

From (2.12), the difference co-array of this 2 level nested array has sensors located from (−N2/4−

N/2 + 1)d to (N2/4 + N/2 − 1)d. We now divide this co-array into N2/4 + N/2 overlapping

subarrays, each with N2/4 + N/2 elements, where the ith subarray has sensors located at {(-
i+1+n)d, n=0,1,· · · , N2/4 +N/2− 1} The ith subarray corresponds to the (N2/4 +N/2− i+ 1)th

to ((N2 − 2)/2 +N − i+ 1) th rows of z1 which we denote as

z1i = A1ip + σ2
néi

where A1i is a (N2/4+1)×D matrix consisting of the (N2/4+N/2−i+1)th to ((N2−2)/2+N−i+1)

th rows of A1 and éi is a vector of all zeros except a 1 at the ith position. It is easy to check that

z1i = A11Φi−1p + σ2
néi

where

Φ =



e−j
2π
λ d sin θ1

e−j
2π
λ d sin θ2

. . .

e−j
2π
λ d sin θD


Define Ri , z1iz1i

H

= A11Φi−1ppH(Φi−1)HA11
H + σ4

néié
H
i

+ σ2
nA11Φi−1péHi + σ2

néip
H(Φi−1)HA11

H Taking the average of Ri over all i, we get

Rss , 1
(N2/4+N/2)

∑N2/4+N/2
i=1 Ri. (2.16)

We call the matrix Rss as the spatially smmoothed matrix and it enables us to perform DOA esti-

mation of O(N2) sources with N sensors, as given by the following theorem:
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Theorem 2.6.1. The matrix Rss as defined in (3.22) can be expressed as Rss = R̂2 where

R̂ =
1√

N2/4 +N/2
(A11ΛA11

H + σ2
nI)

has the same form as the covariance matrix of the signal received by a longer ULA consisting of N2/4 +N/2

sensors and hence by applying MUSIC on Rss, upto N2/4 +N/2− 1 sources can be identified. �

Proof. From (3.22), we get Rss = 1
(N2/4+N/2)

∑N2/4+N/2
i=1 Ri

= 1
(N2/4+N/2)

[
A11CCHA11

H + σ4
nI

+ σ2
nA11C + σ2

nCHA11
H
]

where

C =



σ2
1

σ2
2

. . .

σ2
D





1 ν1 · · · ν
(N2/4+N/2−1)
1

1 ν2 · · · ν
(N2/4+N/2−1)
2

...
...

...
...

1 νD · · · ν
(N2/4+N/2−1)
D


where

νn = e−j
2π
λ nd sin(θi)

Noticing that

A11
H =



1 ν1 · · · ν
(N2/4+N/2−1)
1

1 ν2 · · · ν
(N2/4+N/2−1)
2

...
...

...
...

1 νD · · · ν
(N2/4+N/2−1)
D


we can rewrite (2.6.1) as Rss = 1

N2/4+N/2 [A11ΛA11
HA11ΛA11

H + σ4
nI

+ 2σ2
nA11ΛA11

H ]
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= 1
(N2/4+N/2) (A11ΛA11

H + σ2
nI)2 where

Λ =



σ2
1

σ2
2

. . .

σ2
D


(2.17)

Since Λ is a diagonal matrix with positive entries, the matrix R̂ , 1√
N2/4+N/2

(A11ΛA11
H + σ2

nI)

has the same form as the conventional covariance matrix used in subspace based DOA estimation

techniques when applied on a ULA with N2/4 +N/2 sensors whose array manifold is represented

by A11. It shares the same set of eigenvectors as Rss and its eigenvalues are the square roots

of those of Rss. So by eigendecomposition of Rss, the eigenvectors corresponding to the smallest

N2/4+N/2−D eigenvalues of R̂ can be found, which will span the null space of A11
H and we can

apply subspace based algorithms like MUSIC on it to identify uptoD ≤ N2/4+N/2−1 sources.

2.6.2 Remarks:

1. The spatial smoothing technique essentially halves the total degrees of freedom offered by

the difference co-array, hence we can identify upto N2/4 + N/2 − 1 sources as opposed to

N2/2 +N − 2 (if we could exploit total DOF of the full difference co-array). However, using

the forward-backward spatial smoothing algorithm, this can be increased to 3
2 (N2/4+N/2−1)

[151]. The augmented matrix approach [149] or the modified detection estimation algorithm

in [1], however, can not identify more than 1
2 (N2/4+N/2)−1 sources because, as we discussed

earlier, they use only one half of the co-array.

2. The co-array of the optimally nested array is not a filled ULA and hence spatial smoothing

cannot be used directly on it. It would require some preprocessing like interpolation [78].

However the method based on quasi stationary signals [118] can be applied to it and the full

degrees of freedom of the optimally nested array can be exploited as we shall demonstrate

through numerical examples.

3. Since Rss is constructed as in (3.22), it is a sum of vector outer products and hence it is positive

semidefinite by construction for any finite value of snapshots. This essentially overcomes the

major flaw of augmented covariance matrix approach [149] without resorting to the iterative
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techniques described in [1].

2.7 Beamforming with increased Degrees of freedom

As discussed in the last section, the vector z in (3.17) can be thought of as the signal received at the

difference co-array with the amplitudes of the source signal vector replaced by their corresponding

powers. So we can propose beamforming with respect to the signal powers instead of with respect

to the signal amplitudes as is the convention. This will enable us to perform beamforming with the

full degrees of freedom of the difference co-array and gain O(N2) degrees of freedom using only N

physical sensors. To see this, consider taking the inner product of the vector z with a weight vector

w to get y = wHz

=
∑D
i=1 wH

(
a∗(θi)⊗ a(θi)

)
σ2
i + σ2

nwH~1n Defining the new beampattern as

Bpower(θ) = wH
(
a∗(θ)⊗ a(θ)

)
, (2.18)

we can write (2.7) as

y =

D∑
i=1

Bpower(θi)σ
2
i + σ2

nwH~1n (2.19)

Hence the power of the ith source from direction θi gets spatially filtered by the amount Bpower(θi)

and thereby spatial filtering (or beamforming) is performed with respect to the power of the sig-

nal. As is evident, this kind of beamforming is based on a non linear preprocessing (taking the

autocorrelation of the received signal vector) and hence it is essentially a non linear beamformer. It

requires time-averaging to realize (3.16) from which the subsequent signal model is derived. It also

requires uncorrelated sources and enough snapshots to realize the autocorrelation matrix. An idea

similar to this was discussed in [22],[21] where beamforming based on time-averaged arrays was

suggested using specific array geometries. We now exhibit some examples of different approaches

to beamforming that can be performed with this array. Since the two-level nested array has a uni-

form difference co-array, we would concentrate on beamforming with 2 level nesting since all the

conventional beamforming approaches are based on ULAs. However, the beamforming techniques

might be extended to the optimally nested array as well.
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2.7.1 Deterministic Beamforming

Let us consider a 2 level nested array with N/2 sensors in each level. The difference co-array is an

ULA with (N2 − 2)/2 + N elements. Let b(θ) denote the ((N2 − 2)/2 + N) × 1 steering vector of

the ULA corresponding to the co-array. Say we want to realize a beam Bdes(θ) with this ULA and

let wdes denote the deterministic weights such that

wH
desb(θ) = Bdes(θ). (2.20)

Now to realize this beampattern with the two level nested array, let w denote the weight vector we

would like to apply to the vector z in (3.17). Using (2.20), this means

wH
(
a∗(θ)⊗ a(θ)

)
= wH

desb(θ), ∀θ.

From the discussion of the co-array of the 2 level nested array in Section 2.5, it can be easily seen

that the N2 × 1 vector a∗(θ) ⊗ a(θ) consists of the same rows as b(θ), except the fact that some

of them occur more than once. Let ni denote the number of times the ith row of b(θ) occurs in

a∗(θ)⊗ a(θ) and let i1, i2, · · · , ini denote the row numbers where it occurs in a∗(θ)⊗ a(θ). Then the

weight vector w is given by [w]ij = 1
ni

[wdes]i, j = 1, 2, · · ·ni

i = 1, 2, · · · , (N2 − 2)/2 +N

2.7.2 Nulling of Jammers and Noise

Consider J jammers incident on the 2 level nested array from directions {θi, i = 1, 2, · · · , J} re-

spectively. Also assume that we are interested in looking into the direction θ0. Using the proposed

beamformer in (2.20), this means we wish to determine the weight w to spatially null the jammers

and maintain unity response in the look direction. This means

B(θ0) = 1, B(θi) = 0, i = 1, 2, · · · , J.

However, it can be noticed from (2.19) that the random noise now assumes the form of a deter-

ministic vector ~1n, which can also be nulled by the weight w. Hence, using this beamforming, we

can effectively null the noise term as well. This is something which really cannot be achieved by

the conventional beamforming. Thus to null both jammers and noise, w should be selected as the
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solution to



(
a∗(θ0)⊗ a(θ0)

)H(
a∗(θ1)⊗ a(θ1)

)H(
a∗(θ2)⊗ a(θ2)

)H
...(

a∗(θJ)⊗ a(θJ)
)H(

~1n

)T


w =



1

0

0

...

0

0


(2.21)

With this beamforming, we can null noise, and upto (N2 − 2)/2 + N − 2 jammers (with unity

response in look direction), since we have in all (N2 − 2)/2 +N degrees of freedom in the co-array

of the 2-level nested array. The jammer DOAs are either assumed known or can be estimated using

the proposed spatial smoothing based method in Section 2.6. This technique for nulling jammers

can also be extended to the case of the optimally nested array by simply replacing a(θ) of the 2 level

nested array with that of the optimally nested one in (2.21).

It is to be noted that in practice, since the signal covariance matrix is estimated from a finite

number of snapshots, the kronecker product in (2.21) is only an approximation and hence (2.21) is

satisfied only approximately. However, as we shall show in the numerical examples, the perfor-

mance is quite satisfactory for moderate number of snapshots.

2.7.3 MVDR-like Beamforming

When the jammer directions are not specifically known, MVDR beamforming is a popular alterna-

tive where the jammers are automatically suppressed by making the weights inversely proportional

to the total covariance matrix of signal+jammer+noise while maintaining a distortionless constraint

in the look direction [186]. However the MVDR yields poor performance when the jammers are co-

herent [209]. In our proposed beamforming, though the incident jammers are originally assumed

uncorrelated, after the time averaging process, they are represented by their powers which form a

deterministic vector p in (3.17). Hence we cannot apply a MVDR directly on z since the resulting

covariance matrix will be of rank 1. So instead, we perform spatial smoothing on z as described in

the last section by considering the sub-array with elements at {nd, n = 0, 1, · · · , N2/4 +N/2− 1} as

the reference sub array (whose steering vector we denote as a1(θ)) and get the spatially smoothed

covariance matrix Rss as in (2.6.1). This will help us in building a full rank covariance matrix
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which can be effectively used for MVDR beamforming. With constraint of unity response in the

look direction θ0, we can express the MVDR weight as

wMVDR =
R−1
ss a1(θ0)

a1(θ0)HR−1
ss a1(θ0)

(2.22)

2.8 Numerical Examples

In this section, we provide numerical examples to illustrate the superior performance of the nested

array in terms of degrees of freedom for DOA estimation and beamforming. In the examples,

we consider a 6 sensor array (N = 6) with 8 narrowband sources (D = 8) impinging on it from

directions of arrival {−60◦,−45◦,−30◦, 0◦, 15◦, 30◦, 45◦, 60◦}, all with equal power. The sources

are modeled as random Gaussian processes. For comparing with the KR product based MUSIC

[118] which requires quasi stationarity, we assume 16 different quasi stationary intervals with T1

snapshots in each interval. The noise is assumed to be spatially and temporally white. For being

able to apply spatial smoothing, we consider a 2 level nested array with 3 sensors in each level. The

method based on spatial smoothing can resolve uptoN2/4+N/2−1 = 11 sources. The KR-product

based method can resolve (N2 − 2)/2 + N − 1 = 22 sources but requires quasi-stationary signals

and a larger number of snapshots compared to the proposed method. In particular, if the number

of sources is D, then the KR-product based method requires at least D times more snapshots than

the proposed spatial smoothing based method.

2.8.1 MUSIC spectra

Fig. 2.3 shows the representative MUSIC spectra after applying the proposed spatial smoothing

based technique (SS-method) and the quasi stationary based techniques (QS-method). Both use a

total of T = 4800 snapshots with the KR product based MUSIC using T1 = 300 snapshots for each

of the 16 quasi stationary intervals. The SNR for both the methods is assumed to be 0 dB. As can

be seen, both of them can resolve the 8 sources sufficiently well.

Now let us reduce the total number of snapshots to T = 480 snapshots. Fig. 2.4 illustrates the

MUSIC spectra for the proposed SS-method and the QS-method. The QS method clearly suffers
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Figure 2.3: MUSIC spectrum using the SS-method and the QS-method, as a function of sine of the
DOA, N = 6, D = 8, T = 4800, SNR= 0 dB.

due to lack of snapshots and it misses the peak at −60◦ whereas the SS method still shows a good

performance with clearly discernible peaks of the MUSIC spectrum. This shows the effect of snap-

shots on the performance of the two methods. Next, we study the performance of both the methods

through Monte Carlo simulations.
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Figure 2.4: MUSIC spectrum using the SS-method and QS-method, as a function of sine of the
DOA. Here N = 6, D = 8, T = 480, SNR= 0 dB.

2.8.2 RMSE v/s SNR and snapshots

We compare the SS-method and QS-methods by studying the RMSE of the angle estimates as a

function of both SNR and snapshots. Since the two level array has 12 degrees of freedom, we also
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consider the corresponding RMSE for conventional MUSIC applied to a 12 element ULA which we

would use as a benchmark at high SNR. We plot the RMSE for the source at 30◦. The performance

is similar for the other sources as well. Fig. 2.5 shows the RMSE of the three methods as a function

of SNR, averaged over 1500 Monte Carlo simulations, for T = 800 snapshots. Fig. 2.6 show the

corresponding performances for T = 4800 snapshots.
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Figure 2.5: RMSE (in degrees) vs. SNR (for the source at 30◦) of QS and SS methods applied on 2
level nested array and ordinary MUSIC on a 12 element ULA, with T = 800, N = 6.
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Figure 2.6: RMSE (in degrees) vs. SNR (for the source at 30◦) of QS and SS methods applied on 2
level nested array and ordinary MUSIC on a 12 element ULA, with T = 4800, N = 6.

Notice how the performance of both SS and QS methods improve with SNR. Also, the SS

method performs reasonably better than the KR method at low snapshots whereas the difference

in their performance becomes less prominent at larger number of snaps. Note, both the methods

perform worse than the conventional MUSIC applied to a 12 element ULA because of the finite
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sample size due to which the kronecker product in (2.18) is only an approximation.

Next, in Fig. 2.7 we plot the performance of the three methods for SNR=6 dB by varying the

total number of snapshots T . The performance of both SS and QS improve considerably with the

number of snapshots with the QS method performing strictly worse than the proposed SS method.
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Figure 2.7: RMSE (in degrees) vs. the number of snapshots T (for the source at 30◦) of QS and SS
methods applied on 2 level nested array and ordinary MUSIC on a 12 element ULA. Here SNR= 6
dB, N = 6.

2.8.3 Detection Performance

In the previous examples, we assumed the number of source D to be known. However, in practical

situations, we need to estimate it from the available data. To do this, we would need to find some

optimum detection algorithm suited to our model, which is a subject of our future research in this

direction. However, we applied the threshold based technique in [41] which proved to give satis-

factory results in the proposed SS based technique. We plot the estimated probability of detection

of this proposed method at SNR= 10 dB as a function of snapshots in Fig. 3.21. For comparison,

we also plot the corresponding performance of the conventional MUSIC applied on 12 element

ULA. The probabilities were obtained by running 1000 Monte Carlo simulations averaged over an-

other 1000 runs. We can see that the detection performance improves dramatically with increasing

snapshots and approaches that of the conventional MUSIC asymptotically.

2.8.4 Resolution Performance

The advantage of MUSIC-like algorithms comes from the fact that these are super-resolution algo-

rithms, capable of resolving even very closely spaced sources. Since SS-MUSIC makes use of the
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Figure 2.8: Comparison of detection performance of SS method applied to 2 level nested array and
MUSIC applied to 12 element ULA as a function of number of snapshots. Here SNR= 10 dB,N = 6.

increased degrees of freedom provided by the co-array, we expect its resolution performance to

improve greatly. In this example, we consider two sources placed at 12◦ and 14◦ and compare the

resolution performances of two-level nested array with 6 sensors, an ULA with 6 sensors and an

ULA with 12 sensors (since SS MUSIC applied on 6 element ULA yields 12 degrees of freedom).

Following [98], we plot the probability of resolution vs SNR for T = 300 snapshots, averaged over

1000 Monte Carlo runs in Fig 2.9. As in [98], we assume that the number of sources is known.

Clearly the two level nested array outperforms the corresponding ULA with same number of sen-

sors and performs close to the much longer ULA.
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Figure 2.9: Comparison of resolution performance of SS-MUSIC method applied to 2 level nested
array with 6 sensors and traditional MUSIC applied to a 12 element ULA and a 6 element ULA, as
a function of SNR for two closely spaced sources at 12◦ and 14◦.
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2.8.5 2 level vs optimally nested array

We now provide an example to show the ability of the optimally nested array to resolve more

sources than the corresponding 2 level array for N = 6 sensors. Since the spatial smoothing based

technique cannot be applied directly to the optimally nested array, we consider QS method to

perform the DOA estimation. With QS method, the 2 level array can resolve D = 22 sources

whereas the optimally nested array can resolve 30 sources. We consider 27 quasi stationary sources

distributed uniformly between −60◦ and 60◦. We use 2 × 27 = 54 quasi stationary intervals with

T1 = 300 snapshots per interval yielding a total of 54 × 300 = 16200 snapshots. Fig. 2.10 and Fig.

2.11 respectively show the corresponding spectrum obtained by using QS-MUSIC to the optimally

nested array and the 2 level nested array. Clearly the 2 level nested array fails to detect the sources

whereas the optimally nested array can perfectly detect them. This confirms the superior detection

ability of the optimally nested array. For large N , the optimally nested array can detect about twice

as many sources as the 2 level nested array.
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Figure 2.10: MUSIC spectrum for QS-method applied to the optimally nested array with N = 6,
T = 16200, D = 27 and SNR= 0 dB.

2.8.6 Beamforming

In this section we demonstrate the capability to perform beamforming with increased degrees of

freedom offered by the 2 level nested array. There are two ways of plotting the resultant beampat-

tern. One way is to plot the pattern B(θ) as defined in (2.18) directly after computing the necessary

weights. This however is not practical because the kronecker product in (2.18) is realized only
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Figure 2.11: MUSIC spectrum for QS-method applied to the 2 level nested array with N = 6,
T = 16200, D = 27 and SNR= 0 dB.

approximately due to finite snapshots. Hence, for practical reasons, to plot a more realistic beam-

pattern, we consider a single source at angle θ and plot the amplitude response of our non linear

beamformer to it by varying θ for finite number of snapshots. This automatically takes into consid-

eration the finite sample effect. We call the former beam as an ideal beampattern and the latter as

the practical beampattern.

2.8.6.1 Deterministic Beampattern

Let us consider a simple sinc beampattern obtained by applying uniform weighting to a 19 element

array. Since N = 6 element array with 2 level of nesting gives (N2 − 2)/2 + N = 23 degrees

of freedom, we consider a 6 element array and plot both the ideal and practical beampatterns in

Fig. 2.12 by computing the weights following (2.7.1). The practical beampattern is generated using

T = 100 snapshots and it approximates the ideal beampattern quite closely.

2.8.6.2 Jammer and noise Nulling

Consider a 4 element array with 2 levels of nesting. The look direction is 0◦ and we consider 6

jammers from directions {−60◦,−45◦,−30◦, 15◦, 30◦, 45◦}with jammer to signal power ratio 20 dB

and signal to noise ratio 0 dB. The ideal and practical beampatterns are generated using the weight

computed from (2.21) and plotted in Fig 2.14. Note the introduction of nulls along the jammer

positions. Also, the sidelobes are seen to be high which could pose problems for noise in the
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Figure 2.12: Practical deterministic sinc beampattern obtained by non linear beamforming from the
2 level nested array, N = 6, T = 100.

conventional beamforming. However, unlike conventional beamforming, in our case the noise has

been reduced to a deterministic vector which can also be efficiently nulled. So the presence of noise

at all spatial angles (which is assumed in conventional beamforming) can be ruled out and hence

the high sidelobes do not pose a serious threat as far as noise is concerned. Also, we see that though

this jammer and noise nulling theoretically requires perfect knowledge of signal covariance matrix,

the practical beampattern shows that the approximation is reasonably good at moderate number

of snapshots (T = 100).

In order to show the performance improvement of our proposed beamforming, we plot the

signal to jammer plus noise ratio (SJNR) vs the number of snapshots in Fig 2.13. The SJNR plot

is obtained as follows. The response of a beamformer to an input signal consisting of desired

signal+jammer+noise is measured. Then the response of the beamformer to the input signal con-

sisting only of the same jammer+noise is measured. Finally the ratio between the difference of the

first and second responses, and the second response is taken to be the SJNR and it is plotted on a dB

scale, averaged over 1000 Monte Carlo simulations. Notice how the SJNR performance of proposed

method improves with number of snapshots. We also compare it with the SJNR performance of an

equivalent ULA with 11 sensors (since the co-array of a 2 level nested array with 4 sensors has 11

degrees of freedom) where we introduced nulls along jammer directions and used remaining de-

grees of freedom to maximize the SNR. As expected, the SJNR of the equivalent ULA is not affected

by number of snapshots. Also, it is to be noted that the proposed beamforming outperforms the

ULA. This can be explained from the fact that we are actually able to null the noise (the extent to
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which it is nulled again depends on snapshots) which is not possible for the ordinary beamforming

case with the equivalent ULA, and hence the SJNR for our method increases almost linearly (on dB

scale) with the number of snapshots.
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Figure 2.13: Signal-to-Jammer-and-noise-ratio (SJNR) vs number of snapshots (averaged over 1000
Montecarlo runs) for 2 level nested array with 4 sensors and the equivalent ULA with 11 sensors,
Number of jammers = 6, SNR= 0 dB, SJR= −20 dB.
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Figure 2.14: Practical Beampattern obtained from the 2 level nested array after nulling 6 jammers
and noise, N = 4, T = 100.

2.8.6.3 MVDR-like Beampattern

We now plot the MVDR-like beampattern for the spatially smoothed 6 element array with 2 levels

of nesting. Look direction is 0◦ and we consider 9 jammers at { −60◦, −45◦, −30◦, −15◦, 20◦, 30◦,

45◦, 55◦, 60◦ }. The weights are computed as per (2.22) using T = 1000 snapshots to compute the

spatially smoothed covariance matrix Rss, and the ideal beampattern is plotted in Fig 2.15.

Through the inversion of the spatially smoothed matrix in (2.22), nulls have been automatically

introduced in the jammer directions even without explicitly finding the jammer DOAs.
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Figure 2.15: Ideal MVDR-like beampattern obtained by applying spatial smoothing to the 2 level
nested array, N = 6, using T = 1000 snapshots for computing the smoothed covariance matrix.

2.9 Conclusion

In this chapter, we have attempted a unified viewpoint to compare the established approaches to

the problem of underdetermined source localization in the light of the co-array concept. Drawing

inspiration from the MIMO radar literature, we proposed a novel nested array structure which can

realize significantly more degrees of freedom even in the passive sensing scenario. Different nesting

strategies were explored and the optimum nested array structure was found through solving a

combinatorial optimization problem. Though this nested array could be used in conjunction with

both the fourth order cumulant based and the KR-product based methods, it would suffer from the

inherent drawbacks of these techniques. So we proposed an alternative spatial smoothing based

approach to underdetermined DOA estimation, which does not require any of the assumptions in

the previous two methods. We also demonstrated how to perform beamforming with this array

structure. The results were verified through simulations and the performances of the proposed

techniques are seen to improve considerably by increasing the number of snapshots.

2.10 Appendix

2.11 Proof of Theorem 2.5.1

Using the constraint in (2.14), we can write (2.13) as DOFK = 2
{

1
2

[(∑K
i=1Ni

)2

−
∑K
i=1N

2
i

]
+

NK

}
− 1

= N2 −
∑K
i=1N

2
i + 2NK − 1
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Let us consider Nj , the number of sensors in the jth level of nesting. We shall deal with the follow-

ing two cases separately:

• Case I: 1 ≤ j ≤ K − 1. Consider breaking Nj into the sum of two smaller integers Nj1 and

Nj2, i.e., Nj = Nj1 + Nj2. This amounts to breaking the jth nested level into 2 levels such

that now there are (K+ 1) levels of nesting with {N1, N2, · · · , Nj−1, Nj1, Nj2, Nj+1, · · · , NK }

sensors respectively. Using the expression for degrees of freedom in (2.11), we can write, the

new degrees of freedom for this new nested array, as DOFK+1 = N2 −
[∑K

i 6=j,i=1N
2
i + N2

j1 +

N2
j2

]
+ 2NK − 1.

Subtracting (2.11) from (2.11), we get the change in DOF due to splitting the jth nesting level:

4DOF , DOFK+1 −DOFK = N2
j −N2

j1 −N2
j2

= 2Nj1Nj2 > 0

Thus we can conclude that breaking up the jth level of nesting into two levels, always increases the

degrees of freedom for j = 1, 2, 3, · · · ,K − 1. Hence we should go on redistributing the sensors

in the inner nesting levels till we hit only one sensor per nesting level. So, at this stage we

have N̂K elements in the last stage and all the stages before it have one sensor each, i.e.,

Ni = 1, i = 1, 2, 3 · · · ,K − 1 Now we consider the last stage of nesting and optimize the

number of sensors in them.

• Case II: j = K. Similar to the previous case, let us break NK as NK = NK1 + NK2 So now

we have a K + 1 level-nested array, with N1, N2, · · · , NK1, NK2 sensors respectively in the

K + 1 levels. Applying the formula for degrees of freedom in (2.11), we get the degrees of

freedom in this case as, DOFK+1,K= N2−
[∑K−1

i=1 N2
i + N2

K1 + N2
K2

]
+ 2NK2 − 1 Similarly

as before, the increase in degrees of freedom can be found by subtracting (2.11) from (2.11) as

4DOFK+1,K , DOFK+1,K −DOFK

= N2
K −N2

K1 −N2
K2 + 2(NK2 −NK)

= 2NK1NK2 − 2NK1

= 2NK1(NK2 − 1) ≥ 0

Thus we see that in this case also, the degrees of freedom increase by splitting as long as

the number of sensors in the last level (i.e., NK2) is ≥ 2. So we should go on splitting the

last level of nesting till we hit 2 sensors in the last level and one sensor in every other level.

This, along with the previous case, also implies that the total number of levels of nesting is

N − 2 + 1 = N − 1 since the total number of sensors is N .
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Chapter 3

Nested Arrays in Two Dimensions

3.1 Introduction

In Chapter 2, one dimensional (1D) nested arrays were introduced to provide a novel way to per-

form array processing with increased degrees of freedom using much fewer physical sensors. In

this chapter, we generalize the idea of nested arrays to two dimensions (2D) assuming the sensors

to be present on lattice(s). The extension of the idea of 1D nested array to 2D is quite nontrivial, and

it involves addressing several issues pertaining to the array geometry, identifiability and so forth,

which are peculiar only to the 2D case. This chapter puts forward the theory and applications of

the class of 2D nested arrays, which offers the potential to do conventional 2D array processing

applications with enhanced degrees of freedom. The goals of this chapter are to study the geomet-

rical structure of nested arrays in 2D and propose practical algorithms for exploiting the increased

degrees of freedom provided by the nested array in 2D DOA estimation, beamforming, and so

forth.

In two dimensions, lattices [182] are widely used to perform uniform sampling of signals and

are analogous to uniform linear arrays (ULAs) in 1D. In this chapter, we propose a new class of two

dimensional arrays by combining sensors on two (possibly nonseparable) lattices, which is capable

of providing a dramatic increase in the degrees of freedom (DOF) compared to the actual number

of physical sensors. We call this class of arrays as “nested arrays” because they are obtained by

combining two arrays with elements on two related lattices, one dense and the other sparse, the

sparse lattice being a sublattice of the dense one.

Traditional subspace based techniques are based on processing the second order statistics of the

impinging sources, assuming them to be wide sense stationary (WSS) [160, 186]. In the case of our
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proposed nested arrays also, we shall demonstrate that using only the second order statistics of

the impinging sources, it is possible to create the effect of a 2D array of O(MN) “virtual” sensors

using only M + N physical sensors. We want these virtual sensors to be distributed uniformly on

a lattice, completely filling up an appropriate parallelogram with no missing sensors (also called

“holes”). This is mathematically defined in Sec. 3.3, Definition 3.3. We will henceforth refer to

sensors arranged this way as “contiguous sensors” without holes or missing sensors. Unlike 1D

nested arrays, there are several possible orientations of the co-array for the 2D nested array in

the 2D plane. By manipulating the relative configurations of the sparse and dense arrays, one

can further increase the number of virtual sensors in 2D. These interesting issues relating to the

geometric orientation of 2D nested arrays are addressed in detail, and the number of virtual sensors

is considerably improved by choosing an appropriate orientation.

Relation to Past Work. The main concept behind generation of this larger virtual array is based on

the idea of “difference co-arrays” which is discussed in [89, 110] in great detail. In earlier work, the

problem of detecting more sources than sensors [1, 2, 149] (underdetermined scenario), has mostly

been discussed in the context of 1D arrays using non uniform arrays like minimum redundancy

arrays (MRA) [126] or their approximations [159],[148]. In [135] and in Chapter 2, the concept of

1D nested arrays was introduced, which is generalized to two dimensions in this chapter. In two

dimensions, the idea of difference co-array was used earlier in [155] and the references therein.

However, they address very specific examples of 2D arrays and do not develop the theory of a

generic class of 2D arrays. Also, they do not develop any algorithm for exploiting the extra degrees

of freedom offered by the 2D co-array for array processing applications like 2D DOA estimation or

beamforming. In [184], [185], [136], a related idea of coprime arrays in 1D and 2D were introduced.

Coprime arrays can be physically made arbitrarily sparse but they usually require more physical

sensors to produce contiguous virtual sensors on a lattice.

The content of this chapter is mainly drawn from [142] and [143] and parts of it have been

presented in [138].

3.2 Outline

In this chapter, we first briefly review 2D lattices and the idea of difference co-arrays in Sections

3.3 and 3.4. In Section 3.5, we propose the new class of 2D nested arrays and characterize their
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degrees of freedom. In two dimensions, construction of these arrays gives rise to several issues

pertaining to their geometrical orientations (which we will henceforth refer to as symmetry issues)

and these are addressed in Section 3.6. In Section 3.7, we revisit the nested array by considering

the Smith form of an appropriate integer matrix that relates the lattice generators of the dense

and the sparse lattice. This is shown to offer a new perspective into the problem of array design

and symmetry issues. In Section 3.8, the total number of degrees of freedom in the virtual array

is optimized under the constraint of a fixed number of sensors in the physical domain. Several

interesting conclusions leading to the optimal structure are drawn. In Section 3.9, we propose a

novel algorithm, inspired from the idea of 2D spatial smoothing [33, 74, 163], which provides a way

to build a larger covariance matrix corresponding to the virtual array. In Section 3.10, we address

some of the issues related to identifiability of 2D source DOAs, which are inherent in any 2D array

processing problem and hence, applies in particular to the virtual 2D array of our proposed nested

array as well. Finally in Section 3.11, we provide numerical examples to demonstrate the DOA

estimation performance of the proposed algorithm and study its performance with respect to SNR

and the number of snapshots.

3.3 Review and Definitions of Multidimensional lattices and In-

teger Matrices

We shall first review several concepts related to multidimensional lattices [182], with particular

reference to integer matrices, which will be extensively used in the following sections.

Given a D × D non singular matrix V, the D dimensional lattice generated by this matrix is

defined as

LAT (V) = {t : t = Vn}

where n ∈ ND×1 is an integer vector. The matrix V is called the generator of the lattice. An

important concept related to LAT (V) is that of the fundamental parallelepiped (FPD):

Definition 3.1: (Fundamental Parallelepiped (FPD):) The FPD of V ∈ CD×D (denoted FPD(V))



57

in D dimensions is defined as the set of all vectors of the form

{Vx,x ∈ [0 1)D}

Visually, FPD(V) consists of all points contained in the parallelepiped whose sides are given by

the two column vectors of V (it includes the origin but excludes all other corners). This is

illustrated in Fig. 3.1 for the two dimensional case. �

X

Y

0

V1

V2

FPD�(V)

Figure 3.1: Fundamental parallelepiped (FPD) of the lattice generated by the generator matrix V =
[v1 v2]

The volume of the FPD is given by |det(V)| and the number of lattice points per unit volume

(density of lattice points) is given by 1/|det(V)|.

A matrix whose elements are all integers, is known as an integer matrix. The unimodular matrix

is a special kind of integer matrix whose determinant is ±1. The inverse of a unimodular matrix

is also a unimodular matrix. It can be verified that LAT (V) = LAT (VU) for any unimodular

matrix U. The number of integer vectors (vectors whose entries are all integers) within the FPD of

an integer matrix P, is equal to det(P). An important result on integer matrices is the Smith-form

decomposition [182]:

Definition 3.2: (Smith-form Decomposition): Any integer matrix A of size D ×N can always be

decomposed as

A = UΛV

where U and V are unimodular matrices (of size D ×D and N ×N respectively) and Λ is a
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diagonal integer matrix whose ith element λi divides the (i+ 1)th element λi+1. �

In this context, we shall also like to mathematically defined the notion of contiguous sensors in

2D which will come up several times in this chapter.

Definition 3.3: (Contiguous sensors on a lattice): In two dimensions, a collection of sensors on

LAT (V) is said to be contiguous (also referred to as “array with no holes”, and “array with no

missing sensors”) if the sensor locations are given by

{V[v1 v2]T , N11 ≤ v1 ≤ N12, N21 ≤ v2 ≤ N22} (3.1)

for some integers N11, N12, N21, N22. �

3.4 Revisiting Difference Co-Arrays

The role of difference co-array in 1D in the context of 1D nested arrays has been discussed in

detail in Chapter 2. The case of 2D difference co-arrays in the context of 2D coprime arrays, was

elaborated in [185]. In this section, we define a related concept of cross difference co-array is also

explicitly pointed out as follows:

Cross Difference Co-array: Given two arrays, one with N1 sensors with locations {~x1i, 1 ≤ i ≤

N1} and the other with N2 sensors with locations {~x2i, 1 ≤ i ≤ N2}, their “cross difference co-

array” is defined as the set

±{~x1i − ~x2j , 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}.

Notice that the definitions of difference co-array and cross difference co-array apply to position

vectors in any dimension. The difference co-array arises naturally when the second order moments

of the signals impinging on a sensor array are considered. Assume a narrowband signal s(t) with

wavelength λ impinging on a two dimensional array with sensors located at {~vn ∈ R2×1, n =

1, 2, · · · , N}. Let φ denote the angle of elevation and θ denote the azimuthal angle respectively.

Then, the signal received at the nth sensor is given by

xn(t) = ej
2π
λ sinφ~uT ~vns(t)
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where ~u = [cos θ sin θ]T . Assuming the power of s(t) is σ2
s , the cross correlation between the

signals received at the mth and nth sensors is given by

E(xm(t)x∗n(t)) = ej
2π
λ sinφ~uT (~vm−~vn)σ2

s .

The difference co-array elements ~vm−~vn appear in the exponents of the cross correlation terms and

these phases behave exactly like those received by (virtual) sensors located in the (larger) difference

co-array. We state two properties of difference co-arrays in this context which are particularly

useful:

1. If v denotes the position of a virtual sensor in the difference co-array, then there exists a

corresponding virtual sensor in the co-array at −v (image of v under point reflection about

0).

2. The maximum possible number of virtual sensors in the difference co-array of an array with

N sensors (with any geometry and any dimension) is N(N − 1) + 1 [135].

Hence, if the N physical sensors are chosen appropriately one can generate a difference co-array

with as many as N(N − 1) + 1 virtual sensors. It is to be noted that the difference co-array is

symmetric under point reflection about 0. In 2D, since there are 4 quadrants, there is room to play

around with the geometric orientation of the physical array so that the resulting difference co-array

has a desired distribution of sensors among the quadrants. We shall explore this idea in detail in

Sec 3.6.

Since the difference co-array arises while computing the autocorrelation of the received signal,

we can get the effect of a larger array by constructing a signal model based on the second order

moments and can think of performing array processing with increased degrees of freedom by using

the difference co-array. In this chapter, we aim to achieve this by first constructing a class of 2D

arrays with M +N sensors distributed over two non separable lattices, such that its difference co-

array has O(MN) sensors on a lattice with no holes (missing sensors) inside. This is analogous to

a uniform linear array (ULA) in one dimension.
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3.5 Nesting of Arrays on Lattices

Consider two lattices with 2×2 generator matrices N(s) and N(d) (not necessarily integer matrices)

satisfying

N(s) = N(d)P (3.2)

where P is a 2× 2 integer matrix. Notice:

• LAT (N(s)) is a sublattice of LAT (N(d)), i.e., if v ∈ LAT (N(s)) then v ∈ LAT (N(d)). Hence,

LAT (N(s)) is a sparser lattice compared to LAT (N(d)). This is illustrated in Fig. 3.2 where

P =

 2 −2

2 1

 and N(s) is randomly generated. By choosing P, it is possible to make N(s)

generate any sublattice of LAT (N(d)).

FPD�(N(d))

FPD�(N(s))

LAT
LAT(N(s))

LAT(N(d))

X

Y

0

Figure 3.2: FPDs of dense lattice generator N(d) and sparse lattice generator N(s), where N(s) =
N(d)P. Here N(d) is randomly generated (with the shaded FPD) and P is as given in the text. Also
shown are the sensors belonging to the sparse and dense lattices where LAT (N(s)) is included
within LAT (N(d)).

• Notice that det(N(s)) = det(N(d))det(P) where det(P) > 1 (we will not choose P to be uni-

modular). So the volume of the FPD of N(s) is det(P) > 1 times larger than that of N(d).

Lemma 3.5.1. The cross difference co-array between LAT (N(s)) and LAT (N(d)) has all sensors located on

the dense lattice generated by N(d). �

Proof. The cross difference co-array between LAT (N(s)) and LAT (N(d)) has sensors located at

N(s)n(s) − N(d)n(d) where n(s),n(d) are integer vectors. Since N(s) = N(d)P, the differences can
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be rewritten as N(d)(Pn(s)−n(d)) = N(d)ń where ń is an integer vector. Hence, the cross difference

co-array has its sensors on the dense lattice N(d).

In practice, when the indices n(s) and n(d) take up a finite number of values, they need to be

suitably chosen so that the resulting cross difference co-array describes a 2D array on LAT (N(d))

without any holes (missing sensors) inside (see Definition 3.3).

An array which is a union of two arrays: one with sensors given by N(s)n(s) and the other

with sensors given by N(d)n(d), where n(s) and n(d) are integer vectors taking up a finite number

of values, will be generally referred to as a nested 2D array. A more precise definition of the 2D

nested array describing the exact location of sensors on the lattice is given in Definition 3.4. The

term “nested” essentially indicates the fact that one lattice is contained within the other lattice.

The 2D nested array reduces to the 1D nested array [135] when the matrix N(d) is singular with

identical columns and P is a diagonal matrix with equal elements. We will now discuss some of

the key properties of this nested array which will also tell us how to choose the integer vectors n(s)

and n(d).

3.5.1 Properties of the Nested Array

We are interested in the following question regarding the 2D nested array: given a sparse lattice

generator N(s) and a dense lattice generator N(d), how to place N (s) sensors on the former and

N (d) sensors on the latter so that the resulting difference co-array has N (s)N (d) sensors on lattice

N(d) without any holes in the interior? The following theorem addresses this question. To state the

theorem, we first define

SFPD(N(s), k1, k2) ,
{

N(s)
(

[k1 k2]T − x
)
,x ∈ [0, 1)2

}

Here k1, k2 can be arbitrary integers and SFPD essentially refers to “shiftedFPD”, whereFPD(N(s))

is shifted by the vector [k1 k2]T .

Theorem 3.5.1. Consider two non singular 2× 2 matrices N(s) and N(d) related by an integer matrix P as

N(s) = N(d)P. Then

1. Any point N(d)n on LAT (N(d)) can be expressed as N(d)n = N(s)n(s) −N(d)n(d) where n(s) is an

integer vector and n(d) ∈ FPD(P).
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2. All points on LAT (N(d)) contained within SFPD(N(s), k1, k2) can be generated by the differences

{N(s)[k1 k2]T −N(d)n(d),n(d) ∈ FPD(P)}.

♠ �

Proof. 1. Since P is an integer matrix, by the integer division theorem [182] we can say that given

any integer vector n, there exist unique integer vectors n(s) and n(d) ∈ FPD(P) such that

n = Pn(s) − n(d). (3.3)

Hence, if n(s) is allowed to take up all possible integer values and n(d) is allowed to take up

all integer values in FPD(P), then all integer vectors n can be generated. Premultiplying

(3.3) by N(d), we get the desired result.

2. Note that a point N(d)ń on LAT (N(d)) also lies in SFPD(N(d), k1, k2) iff

N(d)ń = N(s)[k1 k2]T −N(s)x, x ∈ [0 1)2.

This is equivalent to ń = P[k1 k2]T − n(d) where n(d) = Px. Hence n(d) is an integer vec-

tor inside FPD(P). This holds for each ń such that N(d)ń belongs to SFPD(N(s), k1, k2).

Therefore all elements on LAT (N(d)) inside SFPD(N(s), k1, k2) can be generated by the set

of differences {N(s)[k1 k2]T −N(d)n(d),n(d) ∈ FPD(P)}.

3.5.2 A Specific Construction

Let us consider N (s) = N
(s)
1 N

(s)
2 sensors on the sparse lattice N(s) located at N(s)[k1 k2]T , 0 ≤

k1 ≤ N
(s)
1 − 1, 0 ≤ k2 ≤ N

(s)
2 − 1. Let us also place N (d) = det(P) elements on a dense lattice

N(d) whose locations are given by N(d)n(d),n(d) ∈ FPD(P). Here P is given by P =

 3 2

2 4

 .

Then SFPD(N(s), k1, k2) for each k1, k2 in the above mentioned range, is completely filled with

sensors on the dense lattice as we consider the cross difference co-array between the sparse and

dense arrays. This is pictorially depicted in Fig 3.3 where (a) shows the FPD of the dense lattice

and the location of the integer vectors inside the FPD of the integer matrix P which decide the

location of the det(P) dense lattice elements. Fig. 3.3 (b) shows how this choice of the dense lattice
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sensors fills up SFPD(N(s), k1, k2) for k1 = 1, k2 = 1. In other words, each of the N (s)
1 N

(s)
2 SFPDs

in the sparse array is completely filled with the N (d) =det(P) dense lattice points, yielding a total

of det(P)N
(s)
1 N

(s)
2 virtual sensors using only N (s)

1 N
(s)
2 +det(P) physical sensors.
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Figure 3.3: (top) The integer vectors inside FPD(P) (total number of such vectors is det(P)) which
denote the locations of the sensors on the dense lattice generated by N(d) (here N(d) is randomly
generated and P is given in the text). Also shown is FPD(N(d)). (bottom) This choice of location of
det(P) sensors on the dense latticeLAT (N(d)) completely tiles SFPD(N(s), k1, k2). In this example,
k1 = 1, k2 = 1.

This leads us to the following configuration of 2D nested array:

Definition 3.4: (Two dimensional Nested Array: Configuration I): A two dimensional nested

array described by a 2× 2 non singular matrix N(d), an integer matrix P and integers N (s),

N (d)=det(P), is said to be of configuration I if the physical sensors are chosen as the union of two

2 D arrays:

(a) A dense array with N (d)=det(P) elements on lattice generated by N(d), with sensor locations
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given by {N(d)n(d),n(d) ∈ FPD(P)}.

(b) A sparse array with N (s) elements on the lattice generated by N(s) = N(d)P, with sensor

locations given by N(s)[k1 k2]T with 0 ≤ k1 ≤ N (s)
1 − 1, 0 ≤ k2 ≤ N (s)

2 − 1 and

N
(s)
1 N

(s)
2 = N (s).

�

This definition is inspired by the cross differences of the form N(s)[k1 k2]T −N(d)n(d) which

tiles the sparse array with the dense array. However, the difference co-array also includes differ-

ences of the form N(d)n(d)−N(s)[k1 k2]T which can correspond to an entirely or partially new set

of sensor locations. We will address this issue in greater detail in Sec 3.6 and 3.7 and provide other

configurations of nested array (by redefining the sensor locations).

An Example: Fig. 3.4 (a) shows a 2 level nested array with a randomly generated N(d) and

P =

 3 1

3 3

, hence the dense array has N (d) =det(P) = 6 sensors. We assume N (s) = 12

and hence the sparse array has 12 sensors located on LAT (N(s) = N(d)P). The difference co-array

elements given by N(s)n(s) −N(d)n(d) are shown in Fig. 3.4 (b). Note that there are 12 × 6 = 72

virtual sensors completely filling up the 12 shifted FPDs of the sparse lattice.

-10 -5 0 5 10
-0.4

0

0.4

0.8

1.2
Sparse Array 
Sensors

Dense Array 
Sensors

-15 -10 -5 0 5 10

0

0.4

0.8

1.2

Figure 3.4: (left) A 2D nested array with 6 sensors on the dense lattice and 12 sensors on the sparse
lattice, and (right) its corresponding difference co-array elements given by N(s)n(s)−N(d)n(d). Here
N(d) is randomly generated and P is given in the text.

3.6 Orientation Issues of the Two Dimensional Nested Co-Array

In Sec. 3.5, we defined Configuration I for the 2D nested array, where a 2D virtual array with

N (d)N (s) sensors onLAT (N(d)) was obtained by considering the cross differences N(s)n(s)−N(d)n(d)
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of N (s) sensors on the sparse lattice generated by N(s) and N (d) = det(P) suitably placed sen-

sors on the dense lattice generated by N(d). However, we can actually obtain even more sen-

sors (about twice) on the virtual array by considering the negatives of these differences, viz.,

N(d)n(d) − N(s)n(s). Henceforth, we will refer to the differences N(s)n(s) − N(d)n(d) as the posi-

tive half and N(d)n(d) −N(s)n(s) as the negative half of the 2D nested co-array.

A very interesting aspect of the 2D nested co-array is the orientation of these positive and nega-

tive halves in the 2D space. We illustrate this through the following three configurations of the 2D

nested array and the relative orientations of the positive and negative halves that each gives rise

to. The three configurations will be discussed under three cases:

1. Configuration I of the 2D nested array (see Definition 3.4) where the sensors in the union of

the positive and negative halves are not contiguous.

2. Configuration II, where the positive and negative halves are contiguous and the overlap be-

tween them is reduced to a line.

3. Offset Configuration: It is a modification of Configuration II, obtained by placing the ele-

ments at an offset from their lattice positions. This configuration has the maximum number

of contiguous virtual sensors among all the three configurations.

We will denote N(s) = [n
(s)
X n

(s)
Y ] for the rest of the section.

Assumption: For better intuition into the symmetry related issues, for the rest of this section we

shall assume that P is a diagonal matrix given by P =

 p1 0

0 p2

. In the next section (Sec. 3.7),

we shall show, using the Smith form decomposition, that this is not a loss of generality, because for

every arbitrary (nonseparable) integer matrix P, there is an equivalent representation in terms of a

diagonal matrix.

3.6.1 Sensor Configuration I:

3.6.1.1 Sensor Locations

This configuration was described in Definition 3.4. Fig. 3.5 illustrates an example of this nested

array and its difference co-array for the case N(d) =

 1 0

0 1

 ,P =

 3 0

0 3

 , N
(s)
1 = 3, N

(s)
2 =

6.
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Figure 3.5: (top) A 2D nested array with sensor locations as given in Configuration I. (bottom)
Corresponding difference co-array, where the positive and negative halves do not have contiguous
sensors.

3.6.1.2 Positive and Negative Halves of the difference co-array

The positive half of the co-array is a “filled” 2D array in the sense that each SFPD(N(s), k1, k2)

(see Sec 3.5) of the sparse array is completely filled by the dense array sensors for each k1, k2 in the

sparse array. The elements of the positive half are given by { N(d)[n
(diff)
1 n

(diff)
2 ]T ,−(p1 − 1) ≤

n
(diff)
1 < (N

(s)
1 − 1)p1,

− (p2−1) ≤ n(diff)
2 < (N

(s)
2 −1)p2}, which satisfy the condition in Definition 3.3 for contiguous sen-

sors. Similarly, the negative half, being the image of the positive half under point reflection about

0, is a filled array with contiguous sensors. However, the positive and negative halves together do

not give rise to contiguous sensors on LAT (N(d)) (see Definition 3.3 for the mathematical meaning

of contiguous sensors). This can be verified by taking the union of the positive half with its point

reflection about 0. The positive half of the array is mostly in first quadrant, as a result of which the
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negative half is mostly in third quadrant and hence their union do not describe contiguous sensors.

Rather, they appear as two separate filled 2D arrays which share a band of common sensors around

the sensor at 0 (see Fig.3.5 (b)). So, although we get almost twice as many virtual sensors by con-

sidering the negative half, they unfortunately are not contiguous. Ideally we would like the union

of the positive and negative halves to describe contiguous sensors on LAT (N(d)), an example of

which is provided in Fig 3.6. The following configuration provides a way to realize this.
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Figure 3.6: An Example of a 2D array with contiguous sensors.

3.6.2 Sensor Configuration II:

In this configuration, the sensors in the dense and sparse lattice are placed such that the result-

ing positive and negative halves of the difference co-array contain contiguous elements and they

overlap only along a line. Also, the union of the two halves has more degrees of freedom than

Configuration I. Here, we assume p1 to be odd. The sensor locations and the resulting difference

co-array are given by the following theorem:

Theorem 3.6.1. Consider a 2D nested array where the sparse and dense array sensors are placed as follows:

(a) The sparse array has N (s) sensors located at N(s)[n
(s)
1 n

(s)
2 ]T with −N (s)

1 ≤ n
(s)
1 ≤ N

(s)
1 , 0 ≤ n

(s)
2 ≤

N
(s)
2 − 1, (2N

(s)
1 + 1)N

(s)
2 = N (s).

(b) The dense array hasN (d) sensors located at N(d)n(d) where n(d) = Px,x ∈ [−0.5 0.5)×(−1 0], N (d) =

det(P).

The resulting positive and negative halves of the difference co-array overlap only along a line along n
(s)
X .
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There are Nl = (2N
(s)
1 + 1)p1 sensors on the line of overlap. The union of the positive and negative halves of

the co-array contains 2N (d)N (s) −Nl contiguous sensors on LAT (N(d)). ♠ �

Proof. The union of the positive and negative halves is now given by the virtual sensors located at

{ N(d)[n
(diff)
1 n

(diff)
2 ]T ,

−N (s)
1 p1 − (p1 − 1)/2 ≤ n(diff)

1 ≤ N (s)
1 p1 + (p1 − 1)/2,

− N (s)
2 p2 + 1 ≤ n

(diff)
2 ≤ N

(s)
2 p2 − 1} which describe contiguous sensors since the condition given

by Definition 3.3 are satisfied. The positive half includes the sensors at

{N(d)[k 0]T ,−N (s)
1 p1 − (p1 − 1)/2 ≤ k ≤ N (s)

1 p1 + (p1 − 1)/2}

and this line is identical to its own image under point reflection about 0. Hence both positive

and negative halves share this common line of overlap. This line has Nl = (2N
(s)
1 + 1)p1 sensors.

Hence the union of the positive and negative halves has 2N (s)N (d) − Nl contiguous sensors on

LAT (N(d)).

So, the trick is to basically put the sparse and dense array sensors on opposite sides with respect

to the origin as shown in Fig 3.7. It can be readily verified that the positive and negative halves do

not overlap along a band but it is reduced to a line as demonstrated in Fig. 3.7. Here, p1 = 3 and

hence there are 3× 3 = 9 sensors along the line of overlap as shown.

The value of p1 is solely decided by the integer matrix P and it can be reduced by choosing P

appropriately. We will visit this issue in Sec. 3.7.

3.6.3 Configuration on Offset-Lattice

As aptly pointed out by an anonymous reviewer, the line of overlap in the above configuration can

be readily avoided by placing the sensors on the dense array at an offset from their positions on

LAT (N(d)). To see this, let the sparse sensor positions be as in Configuration II, but let the elements

on the dense array be located as N(d)Px where x ∈ [−0.5 0.5)×(−3/2 −1/2]. For the case where

N(d) is the identity matrix, this amounts to shifting the dense array (from Configuration II) along

the Y− axis by 1/2 unit below the y = 0 line. This is illustrated in Fig. 3.8. It can be readily verified

that the resulting difference co-array has no line of overlap between positive and negative halves. In

fact, there are 2(2N
(s)
1 + 1)N

(s)
2 p1p2 elements given by the locations {±N(d)[n

(diff)
1 n

(diff)
2 ]T ,

−N (s)
1 p1 − (p1 − 1)/2 ≤ n(diff)

1 ≤ N (s)
1 p1 + (p1 − 1)/2,
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Figure 3.7: (top) A 2D nested array with sensor locations as given in Configuration II. (bottom)
Corresponding difference co-array, where the positive and negative halves form a continuum and
also their overlap is reduced to a line with only 9 sensors.

1/2 ≤ n(diff)
2 ≤ N (s)

2 p2− 1/2}. Clearly offset configuration gives rise to more elements in the virtual

array. However, it is to be noted:

1. The physical sensors in dense array, as well as the difference co-array are no more on the

dense lattice. Infact they have been offset from their lattice positions, hence the name “Offset-

lattice” configuration.

2. The physical sensor at 0 needs to be present in this offset-configuration, otherwise there will

be holes in the difference co-array, a fact which is illustrated in Sec 3.7.3.

In the remaining chapter and also in accompanying Part II, we will treat both Configuration II

(which retains the sensors on the lattice) and the “Offset” configuration and the reference will be

made explicit.
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Figure 3.8: (top) A 2D nested array with sensor locations as given by Offset Configuration. (bottom)
Corresponding difference co-array, with no overlap.

3.7 A Smith-Form Perspective to 2D Nested Array

In the proposed nested 2D array, the dense lattice generator N(d) and the integer matrix P can be

any arbitrary (non separable) integer matrix. This implies, in particular, the following:

1. The sparse and the dense lattice geometries can be chosen to be completely different. For

example, the dense lattice FPD and the sparse lattice FPD might look very different from

each other. This is illustrated in Fig. 3.9 where N(d) =

 1 0

0 1

 and the integer matrix is

P =

 3 0

−6 3

. Only in the case where P is a diagonal matrix, the sparse lattice FPD

looks like a stretched version of the dense lattice FPD and their geometries look very similar.

In general when P is non separable, the FPDs look quite different, and it might not even be
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Figure 3.9: The FPD of N(s) and N(d) for the case where P is a non-diagonal integer matrix. Their
geometries look very different.

obvious that one can be used to tile the other. Yet, by suitable sensor placement (as described

earlier), the difference co-array can be constructed by completely filling up the sparse FPDs

by the dense ones.

2. The virtual sensors in the difference co-array may not be contiguous as described in (3.1). This

happens because P is any arbitrary integer matrix and not necessarily diagonal. However,

for the 2D DOA estimation algorithm, we will need to ensure that the sensor locations in the

difference co-array are indeed contiguous.

In this section, we shall address these two issues by viewing the co-array elements in terms of

Smith form decomposition [182], which will allow us to construct a difference co-array where the

elements are contiguous on the dense lattice even though P is an arbitrary integer lattice.

3.7.1 Smith Form of the integer matrix P

The Smith form decomposition of the integer matrix P is given by

P = U1ΛU2

where U1 and U2 are integer unimodular matrices and Λ =

 λ1 0

0 λ2

 is a diagonal integer

matrix, and λ1 divides λ2. Then, the difference N(s)n(s)−N(d)n(d) can be represented as N(s)n(s)−

N(d)n(d) = N(d)Pn(s) −N(d)n(d)
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= N(d)U1ΛU2n(s) −N(d)n(d)

= N(d)U1(ΛU2n(s) −U1
−1n(d))

= Ñ(d)(Λñ(s)− ñ(d)) where Ñ = N(d)U1 generates the same lattice as N(d) since U1 is unimodular

and

ñ(s) = U2n(s), ñ(d) = U1
−1n(d) (3.4)

are integer vectors since U1 and U2 are unimodular. Hence, we can see that the difference co-array

can be equivalently represented by the difference co-array of a dense generator Ñ(d) and a sparse

lattice Ñ(s) where Ñ(s) = Ñ(d)Λ with sensor locations stipulated by ñ(s) and ñ(d) respectively. In

particular, this implies the following:

1. The integer matrix Λ is a diagonal matrix with same determinant as P. This implies that the

lattice generators Ñ(d) and Ñ(s) have FPDs such that one is the stretched version of the other.

This is illustrated in Fig.3.10. The physical sensors however, are located on the lattices gen-

0 0.5 1 1.5 2 2.5 3
-6

-5

-4

-3

-2

-1

0
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3

Figure 3.10: FPDs of Ñ(s) and Ñ(d) obtained by taking the Smith form of P. The FPDs are scaled
versions of each other with each side of FPD(Ñ(s)) being 3 times that of FPD(Ñ(d)) since Λ = 3I.

erated by N(d) and N(s) whose FPDs appear quite different. Thus, for any arbitrary integer

matrix P, there is always an equivalent representation of the difference co-array in terms of

another dense matrix Ñ(d) and sparse matrix Ñ(s) whose FPDs are similar in geometry.

2. This will enable us to place the physical sensors in such a way that the difference co-array

can be made to have contiguous sensors (as given by (3.1)) on LAT (Ñ(d)) as described in the

following subsection.
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3.7.2 Co-array design in Smith domain

Here, we will consider Ñ(d) and Ñ(s) as our dense and sparse lattice generators respectively (which

are related through the separable integer matrix Λ) and select their respective index sets ñ(d) and

ñ(s). The selection can be made according to Configuration II or Offset-configuration, both of which

will be discussed. Denoting

ñ(s) = [ñ
(s)
1 ñ

(s)
2 ]T , (3.5)

we choose

−N (s)
1 ≤ ñ(s)

1 ≤ N
(s)
1 , 0 ≤ ñ(s)

2 < N
(s)
2 . (3.6)

The dense array sensors locations are given by Ñ(d)ñ(d) where

ñ(d) = Λx (3.7)

with

x = [x1 x2]T ,−0.5 ≤ x1 < 0.5,−1 + α < x2 ≤ α. (3.8)

where

α =

 0, Configuration II

−0.5 Offset Configuration

Also, we need the number of integer vectors in FPD(Λ) along [λ1 0]T to be odd, which implies

λ1 should be chosen to be odd (λ1 corresponds to p1). Hence, x1 takes up values in the range

−(λ1 − 1)/2 ≤ x1 ≤ (λ1 − 1)/2.

Choosing ñ(s) and ñ(d) to be in the above ranges, the actual physical sensor locations can be

found by the transformation given by inverting (3.4). This selection of indices will ensure that the
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positive half of the difference co-array has elements located at

Ñ(d)[ñ
(diff)
1 ñ

(diff)
2 ]T ,

−N (s)
1 λ1 − (λ1 − 1)/2 ≤ ñ(diff)

1 ≤ N (s)
1 λ1 + (λ1 − 1)/2,

−α ≤ ñ(diff)
2 ≤ (N

(s)
2 − 1)λ2 + λ2 − 1− α

with a total of (2N
(s)
1 + 1)λ1N

(s)
2 λ2 elements.

3.7.2.1 Smith form Based Design using Offset Configuration

It can be readily verified that the virtual array in this case has 2(2N
(s)
1 + 1)N

(s)
2 λ1λ2 elements (with

no loss of elements due to overlap), however they are not on LAT (N(d)), rather they are offset by

half the inter element distance. The locations of co-array elements in the offset configuration are

given by

±
(
Ñ(d)[ñ

(diff)
1 ñ

(diff)
2 ]T + Ñ(d)[0 0.5]T

)
,

−N (s)
1 λ1 − (λ1 − 1)/2 ≤ ñ(diff)

1 ≤ N (s)
1 λ1 + (λ1 − 1)/2,

0 ≤ ñ(diff)
2 ≤ (N

(s)
2 − 1)λ2 + λ2 − 1

3.7.2.2 Smith Form Based Design Using Configuration II

: For Configuration II, the positive and the negative halves overlap along a line (see Fig. 3.7) with

Nl sensors where

Nl = (2N
(s)
1 + 1)λ1
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Therefore, the positive and negative halves together produce a total of

2(2N
(s)
1 + 1)λ1N

(s)
2 λ2 − (2N

(s)
1 + 1)λ1 (3.9)

contiguous virtual sensors on LAT (Ñ(d)) (i.e., LAT (N(d))). for any arbitrary integer matrix P. This

property will be particularly useful for the DOA estimation technique proposed in part II [143].
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Figure 3.11: (Top) FPD of N(d) and circles indicating the index set n
(d)
c (Bottom) FPD of Ñ(d) =

N(d)U1 and circles indicating the index set ñ
(d)
c = U1

−1n
(d)
c which describe contiguous elements

on LAT (Ñ(d)).

The Smith form based design ensures that the co-array elements are contiguous on LAT (Ñ(d)),

i.e., they are given by Ñ(d)ñ
(d)
c where the index set ñ

(d)
c spans a rectangular grid. The co-array

sensors can be equivalently described by N(d)n
(d)
c where the index set n

(d)
c = U1ñ

(d)
c however does

not span a rectangular grid. The relation between the index sets n
(d)
c and ñ

(d)
c and the respective
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Figure 3.12: (Top) 2D Nested array designed in Smith domain showing the location of the sparse
and dense sensors on LAT (Ñ(s)) and LAT (Ñ(d)) respectively with Λ = 3I, N

(s)
1 = 2, N

(s)
2 = 3.

There are (2N
(s)
1 + 1)N

(s)
2 − 1 = 14 sensors on the sparse and det(Λ) = 9 sensors on the dense

lattice. (Bottom) Corresponding difference co-array with 2(2N
(s)
1 +1)N

(s)
2 λ1λ2−(2N

(s)
1 +1)λ1 = 255

sensors on LAT (Ñ(d)).

FPDs of N(d) and Ñ(d) are illustrated in Fig. 3.11 for N(d) =

 1 2

−1 2

 and unimodular U1 =

 2 7

1 3

 .

The summary of the construction procedure for the nested array based on the Smith form, is

given in Table 1. The total number of physical sensors thereby become

• (2N
(s)
1 + 1)N

(s)
2 − 1 sensors on the sparse array

• λ1λ2 sensors on the dense lattice.
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Table 3.1: Summary of design of nested array in Smith domain.

Given A 2 × 2 nonsingular matrix (dense lattice
generator) N(d), an integer matrix P and
integers N (s)

1 , N
(s)
2 .

Step 1 Compute the Smith form of P as P =

U1ΛU2, Λ =

(
λ1 0
0 λ2

)
.

Step 2 Construct the index set ñ(s) =
[ñ

(s)
1 ñ

(s)
2 ]T as −N (s)

1 ≤ ñ
(s)
1 ≤ N

(s)
1 , 0 ≤

ñ
(s)
2 ≤ N

(s)
2 − 1,ñ(s) 6= 0.

Step 3 Construct the index set ñ(d) =
[ñ

(d)
1 ñ

(d)
2 ]T as −(λ1 − 1)/2 ≤ ñ

(d)
1 ≤

(λ1 − 1)/2, α ≤ ñ
(d)
2 ≤ λ2 − 1 + α where

α = −0.5 for Offset configuration and 0
for Configuration II.

Step 4 Construct the transformed index sets n(s)

and n(d) as n(s) = U2
−1ñ(s),n(d) =

U1ñ(d).

Step 5 Place the sparse array elements at the lo-
cations given by N(d)Pn(s) and the dense
array at the locations N(d)n(d).

Using these physical sensors, we can thus generate 2(2N
(s)
1 +1)N

(s)
2 λ1λ2−(2N

(s)
1 +1)λ1 contiguous

sensors onLAT (Ñ(d)). The following theory summarizes the Smith form design procedure for both

configurations.

Theorem 3.7.1. The difference co-array of a 2D nested array with the dense lattice generator N(d) and

sparse lattice generator N(s) related through a nonseparable integer matrix P (i.e., N(s) = N(d)P) can

be equivalently represented as the difference co-array of a dense lattice generator Ñ(d) and sparse lattice

generator Ñ(s) which are related through a separable integer matrix Λ (Ñ(s) = Ñ(d)Λ). Furthermore if

the nested array is designed following the procedure in Table I , then, for Configuration II, using a total of

(2N
(s)
1 + 1)N

(s)
2 − 1 sensors on the sparse array and λ1λ2 sensors on the dense array, a total of 2(2N

(s)
1 +

1)N
(s)
2 λ1λ2 − (2N

(s)
1 + 1)λ1 contiguous sensors on LAT (Ñ(d)) can be obtained in the difference co-array.

For the Offset Configuration, 2(2N
(s)
1 + 1)N

(s)
2 λ1λ2 elements can be obtained in the difference co-array,

which are at an offset from LAT (N(d)). ♠ �
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An example of the nested array in Smith domain is provided in Fig. 3.12. Following the design

procedure in Smith domain, the physical array has 14 sensors on the sparse array and 8 sensors on

the dense array. The resulting difference co-array has 2× (14 + 1)× (8 + 1)− 15 = 255 contiguous

sensors on LAT (Ñ(d)).

3.7.3 Inclusion of the 0 element

So far, we have included the zero sensor in the physical 2D nested array. We will now show that

for Configuration II, if N (s)
1 ≥ 1 and N

(s)
2 , λ1, λ2 > 1, the same continuum of virtual sensors given

by (3.9) can be achieved even when a physical sensor is not placed at the location 0. It will be

demonstrated that this result is not true for the Offset Configuration.

Theorem 3.7.2. Consider a 2D nested array designed in the Smith domain using Configuration II, as

described in Sec 3.7.2. Let the sensor located at 0 be removed. Then, the virtual sensors thereby lost from

the set of cross differences ±{Ñ(s)ñ(s) − Ñ(d)ñ(d)} can be regained by considering the self differences of the

sparse and dense arrays individually, provided N (s)
1 ≥ 1, N (s)

2 > 1, λ2 > 1, and λ1 > 1. �

Proof. See Appendix 3.13.1.

Comment on “Offset Configuration”: The above theorem however does not hold if we place the

dense and sparse array elements according to the “Offset configuration”. Let us place the elements

as in Fig 3.8 (a). with the only exception of the sensor at 0 being removed. The resulting difference

co-array can be seen in Fig. 3.13 which clearly has holes.
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Figure 3.13: The co-array of the Offset Configuration without the physical element at position 0,
resulting in holes.
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3.8 Optimization of Degrees of Freedom

In this section, we will address the problem of maximizing the degrees of freedom (number of

virtual sensors) in the difference co-array of a 2D nested array, given a fixed number of physical

sensors.

3.8.1 Maximization of degrees of freedom in the offset configuration

We wish to find the distribution of the sensors between the sparse and the dense arrays that max-

imize the degrees of freedom. The total number of physical sensors in the 2D nested array in this

case is (2N
(s)
1 + 1)N

(s)
2 − 1 + λ1λ2, which is assumed to be constant (= K, say). In the Smith form

of P, λ1 divides λ2. However, we can always exchange λ1 and λ2 and permute the columns of U1

and the rows of U2 to yield the same integer matrix P. So more generally, one of λ1 and λ2 should

divide the other.

For the “Offset configuration”, the optimization problem is simpler than that for Configuration

II, and is given by

max
2N

(s)
1 +1,N

(s)
2 ,λ1,λ2∈N+

2(2N
(s)
1 + 1)N

(s)
2 λ1λ2 (3.10)

subject to:

1. (2N
(s)
1 + 1)N

(s)
2 + λ1λ2 = K + 1.

2. λ1 is odd.

3. One of λ1 and λ2 divides the other.

The solution to the above problem is given by integers N (s)
1 , N (s)

2 , λ1 and λ2 satisfying the values

tabulated in Table 3.2. The result can be verified by using AM −GM (Arithmetic Mean-Geometric

Mean) inequality. As will be shown, due to the absence of a line of overlap, this produces more

Table 3.2: Solution to Problem (3.10)
K odd even

(2N
(s)
1 + 1)N

(s)
2 (K + 1)/2 (K + 2)/2

λ1λ2 (K + 1)/2 K/2
DOF (K + 1)2/2 (K2 + 2K)/2
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elements in virtual array than optimal value in Configuration II. However, the elements are no

longer on a lattice, but at an offset.

3.8.2 Maximization of the degrees of freedom in Configuration II

For Configuration II, the physical sensor at 0 can be omitted provided

N
(s)
1 ≥ 1, N

(s)
2 , λ1, λ2 > 1. (3.11)

We shall however assume that the physical sensors at 0 is present, otherwise we need to incorporate

the extra constraints given by (3.11) which makes the integer optimization problem less tractable.

Ideally we would like to have a 2D nested array whose difference co-array is also a 2D array

(i.e., it has sensors which are integer linear combinations of both the vectors ñ
(d)
1 and ñ

(d)
2 ), not

skewed towards either direction. Defining

∆ = N
(s)
2 λ2 − (2N

(s)
1 + 1)λ1,

it can be seen that positive ∆ indicates how skewed the co-array is towards ñ
(d)
2 . The smaller the

value of |∆|, the less skewed the array is, and when |∆| = 0, each half (positive and negative) of

the co-array has same number of sensors along both ñ
(d)
1 and ñ

(d)
2 . So, in order to avoid degenerate

1D solutions, one can fix ∆ to a desired value and solve the optimization problem:

max
2N

(s)
1 +1,N

(s)
2 ,λ1,λ2∈N+

2(2N
(s)
1 + 1)N

(s)
2 λ1λ2 − (2N

(s)
1 + 1)λ1 (3.12)

subject to:

1. (2N
(s)
1 + 1)N

(s)
2 + λ1λ2 = K + 1.

2. λ1 is odd.

3. One of λ1 and λ2 divides the other.

4. N (s)
2 λ2 − (2N

(s)
1 + 1)λ1 = ∆.

However, for a given ∆ and K, the problem (3.12) may not have a feasible integer solution. In our
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case, we would like to solve (3.12) for ∆ = 0, but for a given K, an integer solution may not exist.

To resolve this, we will adopt the following strategy (henceforth referred to as strategy S∆):

1. Start with ∆ = 0 and try to find the optimal solution (if it exists) to (3.12).

2. If for some value of K, the solution does not exist, increase |∆| in steps of 1 till we get a

feasible solution and then solve (3.12) for that value of ∆.

Denoting N0 = (2N
(s)
1 + 1), and defining

DK , (K + 1)2/2− (K + 1)/2,

the solution obtained using strategy S∆ is given by the following theorem.

Theorem 3.8.1. The optimal degrees of freedom obtained by solving (3.12) following strategy S∆ depends

on values ofK modulo 4 and are tabulated in Table II. The optimal values ofN0, N
(s)
2 , λ1, λ2 that solve (3.12)

are positive integers that satisfy the conditions tabulated in Table II along with the constraint that one of λ1

and λ2 divides the other.

In each case, depending on K, several values of N (s)
1 , N (s)

2 , λ1 and λ2 can lead to the optimal value of

DOF. Specific solutions that always exist for individual cases are:

1. K + 1 = 4p+ 2: λ1 = 1, λ2 = 2p+ 1, N
(s)
1 = p,N

(s)
2 = 1.

2. K + 1 = 4p: λ1 = 1, λ2 = 2p+ 1, N
(s)
1 = p− 1, N

(s)
2 = 1.

3. K + 1 = 4p+ 1: λ1 = 2p+ 1, λ2 = 1, N
(s)
1 = 0, N

(s)
2 = 2p.

4. K + 1 = 4p+ 3: λ1 = 1, λ2 = 2p+ 2, N
(s)
1 = p,N

(s)
2 = 1.

�

Proof. The proof is elaborated in Appendix 3.13.2.

Special Case of Degenerate Solution:

The last constraint in (3.12) is necessary to avoid solutions that degenerate to 1D. Without it, the

optimal degrees of freedom will be larger and it will correspond to 1D nested array. To see this,

consider

max
2N

(s)
1 +1,N

(s)
2 ,λ1,λ2∈N+

2(2N
(s)
1 + 1)N

(s)
2 λ1λ2 − (2N

(s)
1 + 1)λ1 (3.13)
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Table 3.3: Solution to Problem (3.12) Using Strategy S∆

K + 1 4p+ 2 4p 4p+ 1 4p+ 3
∆ 0 2 −1 1

N0λ1 2p+ 1 2p− 1 2p+ 1 2p+ 1

N
(s)
2 λ2 2p+ 1 2p+ 1 2p 2p+ 2

N0N
(s)
2 2p+ 1 2p− 1 2p 2p+ 1

λ1λ2 2p+ 1 2p+ 1 2p+ 1 2p+ 2
DOF DK DK − 1 DK − 1 DK

subject to:

1. (2N
(s)
1 + 1)N

(s)
2 + λ1λ2 = K + 1.

2. λ1 is odd.

3. One of λ1 and λ2 divides the other.

Theorem 3.8.2. In the optimal solution to (3.13), we always have N (s)
1 = 0, λ1 = 1. The optimal values of

N
(s)
2 and λ2 and the optimized degrees of freedom depend on whether K is even or odd and are given in Table

3.4.

♦ �

Proof. See Appendix 3.13.3.

Table 3.4: Solution to Problem (3.13)
K odd even
N

(s)
2 (K + 1)/2 (K + 2)/2
λ2 (K + 1)/2 K/2

DOF (K + 1)2/2− 1 (K + 1)2/2− 3/2

The difference co-array of the 2D nested array consists of elements on LAT (Ñ(d)) where Ñ(d) =

N(d)U1. Denote

Ñ(d) = [ñ
(d)
1 ñ

(d)
2 ]. (3.14)

Since the optimal solution given by Theorem 3.8.2 always yields N (s)
1 = 0, λ1 = 1, it can be seen

that the optimal 2D nested array actually corresponds to a degenerate 1D array oriented entirely

along the vector ñ
(d)
2 . This is because we did not explicitly impose a constraint to avoid this degeneracy.

This is precisely what is provided by the last constraint in (3.12) to avoid the degeneracy.
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3.8.3 Optimal Solution with 1D Uniform Linear Arrays

For each of the four possible values of K modulo 4, it can be seen from Theorem 3.8.1 that there

exists a solution which corresponds to the physical dense and sparse arrays being reduced to 1D

manifolds (but the difference co-array is obviously 2D) as illustrated in Fig. 3.14. This is given by

the following corollary:

Corollary 3.8.1. A particular solution to the optimization problem (3.13) always exists, that corresponds

to two 1D uniform linear arrays (ULAs) oriented along the two columns of Ñ(d) = [ñ
(d)
1 ñ

(d)
2 ] with K1

sensors (excluding the sensor at 0) in the ULA along ñ
(d)
1 and K2 sensors (including the sensor at 0) in the

ULA along ñ
(d)
2 where K1 and K2 depend on K as follows:

• K + 1 = 4p+ 2: K1 = 2p,K2 = 2p+ 1,

• K + 1 = 4p: K1 = 2p− 2 and K2 = 2p+ 1,

• K + 1 = 4p+ 1: K1 = 2p, K2 = 2p, and

• K + 1 = 4p+ 3: K1 = 2p, K2 = 2p+ 2.

♦ �

(a) Optimal Physical Array composed of 
1D manifolds

(b) 2D Difference co-array

Y

X X

Y

Figure 3.14: An example of the optimal solution where the physical array is union of two 1D ULAs,
and the corresponding contiguous sensors on the difference co-array. Here K = 9, hence K1 = 4,
K2 = 5. The total number of contiguous virtual elements in the difference co-array is (K + 1)2/2−
(K + 1)/2 = 45.

It is to be noted that though the physical array is a combination of two ULAs, their difference

co-array is still a 2D array and not a degenerate 1D array, unlike the solution given by Theorem

3.8.2.
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3.9 Application of Nested Co-Array in 2D DOA estimation of more

uncorrelated sources than sensors

In this section we will propose a novel algorithm for 2D DOA estimation by using the increased

degrees of freedom offered by the co-array of the 2D nested array. The algorithm is capable of

estimation of 2D DOAs of O(MN) uncorrelated sources using only O(M + N) physical sensors,

which is not possible using traditional approaches. The key idea is to build a covariance-like matrix

of much larger size (O(MN ×MN)) from the estimated covariance matrix (of size O((M + N) ×

(M +N)) which

• is a positive semidefinite matrix even when the number of snapshots available is finite, and

• for large number of snapshots, behaves like the covariance matrix obtained from the (much

larger) virtual difference co-array.

By applying conventional subspace based methods like MUSIC, one can estimate the 2D DOAs

of O(MN) sources. In the following subsections, we will develop a novel rank enhancing algo-

rithm which serves this purpose. We will represent the received signal model (received by the

physical array) by a model based on the larger difference co-array. By noticing the similarity of

the model with that obtained in traditional array processing when sources are correlated, we draw

inspiration from the 2D spatial smoothing technique [33] to build a suitable positive semidefinite

matrix of appropriate rank. It is to be noted that this similarity is more of a qualitative nature, and

quantitatively, there are technical differences from the actual correlated model. Also, our proposed

algorithm differs considerably from the traditional spatial smoothing in many ways:

1. The proposed algorithm works in the co-array domain and hence leads to a covariance-like

matrix of much larger dimension (corresponding to the difference co-array) which has the

potential to resolve many more sources (O(N2) with only O(N) physical sensors when sub-

space based algorithms are applied on it. However, in traditional array processing, the spatial

smoothing technique works on the physical array (withN sensors) and it leads to a covariance

matrix of size (N/2) × (N/2) which can resolve about half as many sources as the physical

number of sensors.

2. The impinging signals are assumed uncorrelated in our proposed algorithm - they behave like
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correlated sources (as explained later) when we go to the “co-array domain”. However, tra-

ditionally spatial smoothing is used when the impinging sources are themselves correlated.

3. Traditionally in spatial smoothing, the signal and the noise are assumed uncorrelated; how-

ever, in our case, in the co-array domain, the signal and the noise terms become correlated

and the cross terms between them cannot be ignored. This leads to a very different structure

of the resulting matrix and the subsequent algebra becomes considerably different from that

of conventional spatial smoothing.

3.9.1 Signal Model Based on the difference co-array:

Consider a 2D nested array with (2N
(s)
1 +1)N

(s)
2 −1 elements on the sparse lattice generated by N(s)

and det(P) elements on the dense lattice generated by N(d), with N(s)n(s) and N(d)n(d) denoting

the elements on these two lattices respectively.

Assume D narrowband signals impinging on this array with (θi, φi) being the azimuthal angle

and elevation angle respectively and σ2
i being the power of the ith source, i = 1, 2, · · · , D. The

signal received at the output of these (2N
(s)
1 + 1)N

(s)
2 +det(P)− 1 sensors is given by

x[k] =

 As

Ad

 s[k] + η[k] (3.15)

where Ad is a (det(P))×D matrix and As is a ((2N
(s)
1 + 1)N

(s)
2 − 1)×D matrix (corresponding to

the dense and the sparse arrays respectively) whose elements are given by

[Ad]i,k = ej
2π
λ uTkN(d)n

(d)
i ,

k = 1, · · · , D, i = 1, · · · ,det(P)

[As]i,k = ej
2π
λ uTkN(s)n

(s)
i

k = 1, · · · , D, i = 1, · · · , (2N (s)
1 +1)N

(s)
2 −1 where uk= sinφk[cos θk sin θk]T , and s[k]=[s1[k] · · · sD[k]]T

denotes the source signal vector. The noise η[k] is assumed to be temporally and spatially white

with power σ2
n, and uncorrelated from the sources. We also assume the sources to be temporally

uncorrelated so that the source autocorrelation matrix of s[k] (denoted by Rss) is diagonal with σ2
i
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being the ith diagonal element. Then,

Rxx = E[xxH ] =

 As

Ad

Rss

 As

Ad


H

+ σ2
nI (3.16)

Now, we vectorize Rxx to get

z = vec(Rxx) =

 As

Ad


∗

�

 As

Ad

p + σ2
n
~1n (3.17)

where � denotes the Khatri-Rao product (columnwise Kronecker product), p= [σ2
1 · · ·σ2

D]T and

~1n= [e1
T· · · eT

(2N
(s)
1 +1)N

(s)
2 +det(P)−1

]T with ei being a ((2N
(s)
1 +1)N

(s)
2 +det(P)−1)×1 column vector

of all zeros except a 1 at the ith position. It can be verified that the rows of

 As

Ad


∗

�

 As

Ad


contain all rows ai,k and a∗i,k where ai,k = [ej

2π
λ uT1 (N(s)n

(s)
i −N(d)n

(d)
k ) · · · ej 2π

λ uTD(N(s)n
(s)
i −N(d)n

(d)
k )]

i = 1 · · · , (2N (s)
1 + 1)N

(s)
2 − 1, k = 1, · · · det(P) and also rows a

(s)
i,k ,a

∗(s)
i,k ,a

(d)
i,k ,a

∗(d)
i,k where a(s)

i,k =

[ej
2π
λ uT1 (N(s)n

(s)
i −N(s)n

(s)
k ) · · · ej 2π

λ uTD(N(s)n
(s)
i −N(s)n

(s)
k )]

i, k = 1 · · · , (2N (s)
1 + 1)N

(s)
2 − 1, a(d)

i,k = [ej
2π
λ uT1 (N(d)n

(d)
i −N(d)n

(d)
k ) · · · ej 2π

λ uTD(N(d)n
(d)
i −N(d)n

(d)
k )]

i, k = 1 · · · ,det(P) These rows ai,k,a
(d)
i,k ,a

(s)
i,k and their conjugates, together behave like the array

manifold of the difference co-array of the 2D nested array on which the D narrowband signals are

impinging. Hence, we get {N(s)n
(s)
i −N(d)n

(d)
k , i = 1, · · · , (2N (s)

1 + 1)N
(s)
2 − 1,

k = 1, · · · ,det(P)− 1}⋃
{N(s)n

(s)
i −N(s)n

(s)
k , i, k = 1, · · · , (2N (s)

1 + 1)N
(s)
2 − 1}⋃

{N(d)n
(d)
i −N(d)n

(d)
k , i, k = 1, · · · ,det(P)}

= {Ñ(d)[k1 k2]T ,

−N (s)
1 λ1 − (λ1 − 1)/2 ≤ k1 ≤ λ1N

(s)
1 + (λ1 − 1)/2,

− ((N
(s)
2 −1)λ2 +λ2−1) ≤ k2 ≤ λ2(N

(s)
2 −1)+λ2−1}Hence the rows ai,k,a

∗
i,k,a

(s)
i,k ,a

∗(s)
i,k ,a

(d)
i,k ,a

∗(d)
i,k

can be equivalently represented by the rows bk1,k2 = [ej
2π
λ uT1 Ñ(d)[k1 k2]T · · · ej 2π

λ uTDÑ(d)[k1 k2]T ]

−N (s)
1 λ1 − (λ1 − 1)/2 ≤ k1 ≤ λ1N

(s)
1 + (λ1 − 1)/2,

− ((N
(s)
2 − 1)λ2 + λ2 − 1) ≤ k2 ≤ λ2(N

(s)
2 − 1) + λ2 − 1

Let us construct the matrix Adiff using these 2(2N
(s)
1 + 1)N

(s)
2 λ2λ1 − (2N

(s)
1 + 1)λ1 rows. This

amounts to extracting the corresponding rows from the vector z to get the [2(2N
(s)
1 + 1)N

(s)
2 λ2λ1 −

(2N
(s)
1 +1)λ1]×1 vector z1. This operation extracts one row with 1 (corresponding to the difference
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of 0 in the difference co-array) and remaining “all-zero” rows from ~1n, and we denote this vector

as é, thereby obtaining

z1 = Adiffp + σ2
né. (3.18)

This signal model behaves like the signal received by a “larger” array (given by the difference co-

array) whose manifold is Adiff . The source signal vector is replaced by the vector p of their powers

(which behaves like fully correlated sources) and the noise being replaced by the deterministic

vector é. Hence (3.18) can be thought of as being analogous to (3.15) through the corresponding

analogies:

x[k] −→ z1

 As

Ad

 −→ Adiff

s[k] −→ p η[k] −→ σ2
né

In order to perform DOA estimation with this larger array manifold, we first need to build up a

positive semidefinite matrix with appropriate rank on which subspace based algorithms (like MU-

SIC) can be applied. To achieve this, we propose a novel algorithm inspired from the idea of 2D

spatial smoothing which will allow us to perform DOA estimation with the freedom of the larger

difference co-array. The similarity of the co-array based signal model with that obtained from corre-

lated sources impinging on the longer array enabled us to draw inspiration from spatial smoothing.

The 1D versions of this algorithm for 1D nested arrays and coprime arrays were developed in [135]

and [136] respectively. It is to be noted that we do not use spatial smoothing for decorrelating cor-

related sources, as it is done in the conventional sense [74],[163]. Also, in the conventional spatial

smoothing, the noise and signal terms are uncorrelated and their cross terms can be averaged out

to zero. In our case, however, the noise is also deterministic (behaving like fully correlated with

signal) and the cross terms cannot be ignored.
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3.9.2 Invariance in the Difference Co-Array

In order to apply spatial smoothing, the array is required to possess a certain invariance in its struc-

ture. The concept of invariance is heavily used in ESPRIT [157] based DOA estimation algorithms.

In particular, invariance means that the array should be divisible into a number (say,K) of identical

subarrays (of sizeM1×N1, say) which are merely shifted copies of each other. Let us consider a 2D

array with contiguous sensors on LAT (Ñ(d)) where the index set spans a rectangular grid of size

M ×N . In the context of our 2D nested array,

M = (2N
(s)
1 + 1)λ1, N = 2N

(s)
2 λ2 − 1. (3.19)

Also, let us consider a subarray of this array consisting of contiguous sensors on LAT (Ñ(d)) where

the index set spans a rectangular grid of size M1 × N1 (M1 < M , N1 < N ). The set of sensor

locations of this subarray is given by {S0,0(i, j), 0 ≤ i < M1, 0 ≤ j < N1}. Now, to maximize the

number of subarrays K, which can be obtained as shifted copies of this subarray, the subarrays

should have maximum possible overlap. This is obtained by shifting the fundamental subarray

elements on lattice of Ñ(d) by successive integer vectors. Mathematically, this means, the (m,n)th

shifted subarray’s sensor locations are given by

Sm,n(i, j) = S0,0(i, j) + Ñ(d)[m n]T , 0 ≤ i < M1, 0 ≤ j < N1

Fig. 3.15 illustrates this for m = 6, n = 8. Since Sm,n is also a subarray of the original array, this

implies, in particular, that the original array should have sensors located at Ñ(d)ń where ń spans a

set of successive integer vectors. This is ensured by designing the array such that the co-array index

set in the Smith domain spans a rectangular grid. Hence, the Smith form decomposition provides

a direct way to ensure that the resultant array has the desired invariance. Also, the improvement

in the rank is proportional to the number of subarrays (Nsub, say) [151],[33], whereas the degrees

of freedom available after spatial smoothing is proportional to the size of the subarray M1 × N1.

Since the total number of elements in the array is constant, increasing the number of shifted copies

(Nsub) implies that the fundamental subarray is smaller, and a larger fundamental subarray means

we have smaller number of shiftsNsub available. So, the best strategy would be to make them equal

which is achieved by selecting the subarray to be (M + 1)/2× (N + 1)/2. Note in our case, M and

N are both odd (given by (3.19)) for the co-array of the 2D nested array. In that case, the shifts are
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S(0,0)

S(m,n)

0

m
n[ ]

m=6,�n=8

Figure 3.15: Subarrays of a 2D array with contiguous elements on a lattice. Here S0,0 is the funda-
mental subarray and Sm,n is the subarray shifted by the integer shift [m n]T on the lattice, where
m = 6, n = 8.

given by

{[m n]T , 0 ≤ m < (M + 1)/2, 0 ≤ n < (N + 1)/2}

and so Nsub = (M+1)
2

(N+1)
2 .

3.9.3 Novel Rank Enhancing Algorithm for DOA Estimation

To apply spatial smoothing, let us divide the co-array into (M + 1)(N + 1)/4 overlapping identical

subarrays of size (M + 1)/2× (N + 1)/2. It is to be noted that this technique is a 2D generalization

of the 1D method introduced in [135]. Here M,N are as defined in (3.19). The (m,n)th subarray

(m = 0, · · · , (M + 1)/2 − 1, n = 0 · · · , (N + 1)/2 − 1) has sensors located at Ñ(d)vm,n where

vm,n = [v1m,n v2m,n]T such that −(M − 1)/2 + m ≤ v1m,n ≤ m, −(N − 1)/2 + n ≤ v2m,n ≤ n.

As shown in [135], this is equivalent to extracting the corresponding rows from z1 (by selecting the

corresponding rows from Adiff ) to get the vector zm,n = Am,np + σ2
nem,n where the elements of

Am,n are given as [Am,n] (N+1)
2 l+i,k

= e
j

(
ω1k(l−(M−1)/2+m)+ω2k(i−(N−1)/2+n)

)
,

l = 0, · · · , (M − 1)/2, i = 0, · · · , (N − 1)/2 Here,

ω1,k =
2π

λ
sinφk[cos θk sin θk]ñ

(d)
1 , (3.20)
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S(0,0)
S(1,0)

S(2,0)

S(M1ʄ1+ (ʄ1Ͳ1)/2,0)

S(M1ʄ1+ (ʄ1Ͳ1)/2,�(M2Ͳ1) ʄ2Ͳ1)

S(0,1)

Sensors�in�(0,0)th subarray S(0,0)

Figure 3.16: The virtual difference co-array array of 2D nested array and its subarrays used for the
proposed DOA estimation algorithm based on spatial smoothing. The virtual array is of sizeM×N
whereM = 17, N = 17. The fundamental subarray is of size (M+1)2×(N+1)/2 = 9×9 and there
are a total of (M + 1)(N + 1)/4 = 81 subarrays, each of which is a shifted copy of the fundamental
subarray.

ω2,k =
2π

λ
sinφk[cos θk sin θk]ñ

(d)
2 (3.21)

where Ñ(d) = [ñ
(d)
1 ñ

(d)
2 ]. The vector em,n is a [(M + 1)(N + 1)/4] × 1 vector of all zeros except a

1 at the ((M + 1)(N + 1)/4− (N+1)
2 m− n)th position. It can be readily verified that

zm,n = A0,0Λ
m
1 Λn

2 p + σ2
nem,n

where Λ1 and Λ2 are D×D diagonal matrices with (i, i)th element given by ejω1i and ejω2i respec-

tively. We can now define Rm,n , zm,nzHm,n

= A0,0Λ1
mΛ2

nppH(Λ2
n)H(Λ1

m)HAH
0,0 + σ4

nem,neH
m,n

+ σ2
nA0,0Λ1

mΛ2
npeH

m,n + σ2
nem,npH(Λ1

mΛ2
n)HAH

0,0 Taking the average of Rm,n over all (m,n), we get

Rco−array , 1
(M+1)(N+1)/4

∑(M−1)/2
m=0

∑(N−1)/2
n=0 Rm,n (3.22)

It can be shown that

(M−1)/2∑
m=0

(N−1)/2∑
n=0

Λ1
mΛ2

nppH(Λ2
n)H(Λ1

m)H = RssA
H
0,0A0,0Rss, (3.23)

(M−1)/2∑
m=0

(N−1)/2∑
n=0

Λ1
mΛ2

npeH
m,n = RssA

H
0,0, (3.24)
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(M−1)/2∑
m=0

(N−1)/2∑
n=0

em,neH
m,n = I(M+1)/2×(N+1)/2. (3.25)

Substituting the values from (3.23), (3.24), (3.25) in (3.22), we get

Rco−array = (A0,0RssA
H
0,0 + σ2

nI(M+1)/2×(N+1)/2)2. (3.26)

We call the matrix Rco−array as the rank-enhanced matrix and it enables us to perform DOA estima-

tion with the freedom of (N
(s)
1 λ1+(λ1+1)/2)N

(s)
2 λ2 2D sensors using only (2N

(s)
1 +1)N

(s)
2 +λ1λ2−1

physical sensors, as given by the following theorem:

Theorem 3.9.1. The matrix Rco−array as defined in (3.22) can be expressed as Rco−array = R̂2 where

R̂ =
1√

(M+1)(N+1)
4

(A0,0RssA
H
0,0 + σ2

nI(M+1)/2×(N+1)/2)

has the same form as the covariance matrix of the signal received by a (larger) (M + 1)/2 × (N + 1)/2

array with sensors on lattice Ñ(d) (whose manifold is represented by A0,0 ∈ C
(M+1)(N+1)

4 ×D) and hence

by applying MUSIC on Rco−array, two dimensional DOA estimation can be performed with the degree of

freedom of a (M + 1)/2× (N + 1)/2 sensor array with (M + 1)(N + 1)/4 = (N
(s)
1 λ1 + (λ1 + 1)/2)N

(s)
2 λ2

elements. �

3.10 Identifiability Issues

In this section, we will explore the identifiability conditions for subspace based techniques applied

to 2D DOA estimation using the nested array. The subspace based spectral estimation methods are

applied on the covariance matrix Rco−array which corresponds to the much larger co-array. Hence

the identifiability problem is the same as that of traditional subspace based methods applied to

a physical 2D array identical to the difference co-array in our case, the only difference being that

the sensors are now virtually generated using far fewer number of physical sensors. Hence the

results discussed in this section apply to a generic DOA estimation scenario using a 2D array with

sensors uniformly placed on a lattice. The matrix A0,0RssA
H
0,0 in R̂ denotes the signal component

of the covariance matrix and is usually rank deficient, since the number of sourcesD is less than the

total number of sensors in the 2D array. However, in the case of 2D DOA estimation, the relation

between the number of sources D and the rank of the signal subspace is not direct. In 1D, the
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array manifold of a ULA (which corresponds to A0,0 in 2D) is a Vandermonde matrix and hence,

whenever the D (number of sources) < N (number of sensors), the rank of the manifold is D, and

hence the null spectrum (estimated using the N − D null space eigenvectors) peaks correspond

uniquely to the DOAs. However, in the case of 2D DOA estimation, the following situations may

arise, depending on how the source DOAs are located in 2D :

• The number of distinct sources is D but the column rank of the array manifold A0,0, is < D.

• The column rank of the array manifold A0,0 is equal to the number of sources D, but the

steering vector corresponding to a different 2D DOA (which is not equal to any of the source

DOAs), happens to lie in the range space of A0,0.

Both of these will lead to non unique identifiability of the source DOAs using any traditional sub-

space based method, even when D < Ns, Ns being the number of sensors under consideration.

The issue of identifiability in 2D harmonic retrieval has been addressed previously in [113] and the

references therein. However, they offer statisical bounds on the rank of the 2D array manifold and

the number of uniquely identifiable sources (assuming the 2D DOA pairs are drawn uniformly

at random) which might not hold true for a given DOA scenario. In this section, we attempt to

explore the identifiability issue from a purely deterministic viewpoint and provide some sufficient

conditions on the rank of the array manifold, and more importantly, on the identifiability of 2D

DOAs.

3.10.1 Rank of the Array Manifold matrix in 2D

To examine the rank of the array manifold, let us look into its algebraic structure. Redefining

M = N
(s)
1 λ1 +

λ1 + 1

2

(recall that λ1 is odd), and

N = N
(s)
2 λ2

and denoting αi = e−jω1i , βi = e−jω2i , the manifold of the 2D (co) array is given by
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A0,0=



1 1 1 1

β1 β2 · · · βD

...
...

...
...

β
(N−1)
1 β

(N−1)
2 · · · β

(N−1)
D

α1 α2 · · · αD

α1β1 α2β2 · · · αDβD

...
...

...
...

α1β
(N−1)
1 α2β

(N−1)
2 · · · αDβ

(N−1)
D

...
...

...
...

α
(M−1)
1 α

(M−1)
2 · · · α

(M−1)
D

α
(M−1)
1 β1 α

(M−1)
2 β2 · · · α

(M−1)
D βD

...
...

...
...

α
(M−1)
1 β

(N−1)
1 α

(M−1)
2 β

(N−1)
2 · · · α

(M−1)
D β

(N−1)
D



(3.27)

Clearly this is not a Vandermonde matrix but it can be expressed as the Khatri Rao Product of two

Vandermonde matrices Ax and Ay , i.e.,

A0,0 = Ax �Ay (3.28)

Ax =



1 1 1 1

α1 α2 · · · αD
...

...
...

...

α
(M−1)
1 α

(M−1)
2 · · · α

(M−1)
D


(3.29)

Ay =



1 1 1 1

β1 β2 · · · βD
...

...
...

...

β
(N−1)
1 β

(N−1)
2 · · · β

(N−1)
D


(3.30)

Even when the Vandermonde matrices Ax and Ay are full column rank, their Khatri-Rao prod-

uct in general, may not be full rank, as we shall see in subsequent examples. In fact, there exists no
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deterministic formula for the rank of the Khatri-Rao product of two full column rank Vandermonde

matrices. However, statistical characterizations of the rank of the Khatri Rao product exists which

ensures that it is full rank with probability one [113]. But, one might come up with possibly infinite

number of cases where the D pairs of values of (ω1, ω2) can be so chosen that A0,0 is rank deficient.

We will now provide a way to choose the D DOA pairs such that A0,0 is of full column rank. We

will also describe examples which show the existence of difference classes of D values of the DOA

pairs which always lead to A0,0 being rank deficient.

3.10.1.1 Sufficient Condition for full column rank of A0,0 for D ≤MN

In the following lemma, we provide a sufficient condition for making the matrix full column rank

for each D ≤MN :

Lemma 3.10.1. Let us consider MN distinct pairs of (ω1, ω2) given by

(ω1m, ω2n),m = 1, 2, · · · ,M, n = 1, 2, · · · , N.

Here {ω1m, 1 ≤ m ≤ M} and {ω2n, 1 ≤ n ≤ N} are arbitrary M + N real numbers, each in the range

[−π π) such that

ω1m 6= ω1ḿ,m 6= ḿ, ω2n 6= ω2ń, n 6= ń.

If the D pairs of source DOAs (D ≤ MN ) are selected from these MN pairs, the matrix A0,0 will always

have rank D. �

Proof. The MN pairs of DOAs give rise to MN steering vectors given by the MN columns of

A
(1)
M ⊗A

(2)
N where, for (K = M, i = 1) and (K = N, i = 2),

A
(i)
K =



1 1 · · · 1

ejωi1 ejωi2 · · · ejωiK

...
...

...
...

ej(K−1)ωi1 ej(K−1)ωi2 · · · ej(K−1)ωiK



Hence, A
(1)
M and A

(2)
N are respectively rank-M and rank-N Vandermonde matrices and hence the

rank of their kronecker product is MN . Therefore these MN source DOA steering vectors are
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linearly independent. So any D ≤ MN steering vectors selected from these MN vectors will also

be linearly independent, thereby proving the lemma.

An example of the MN DOA pairs is pictorially depicted in Fig. 3.10.1.1 for M = 5, N = 6.

They lie at the possible intersections of M vertical lines (denoting M distinct values of ω1) and N

horizontal lines (denoting the N distinct values of ω2).

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

Z
1

Z
2

Figure 3.17: MN = 30 pairs of (ω1, ω2) obtained according to Lemma 3.10.1 by generating M = 5
random values of ω1 and N = 6 random values of ω2.

3.10.1.2 Column Rank Deficiency of the array manifold A0,0 when D ≤MN

There can be several ways in which the rank of A0,0 might be less than D even when there are

D ≤MN distinct 2D DOA pairs. We provide three classes of examples where this happens:

• Example 1: Assume D = MN . Let us define

P = no. of distinct values in {ω1i, i = 1, 2, · · · , D}

Q = no. of distinct values in {ω2i, i = 1, 2, · · · , D}

Note that P,Q ≤ D. When P < M or Q < N , A0,0 is always column-rank deficient.

Reason: Since A0,0 is the columnwise Kronecker product of Ax and Ay , the columns of A0,0

is a subset of the columns of

Akron = Ax ⊗Ay.



96

Hence

rank(A0,0) ≤ rank(Akron) = rank(Ax)rank(Ay) (3.31)

When P < M , Ax is a Vandermonde matrix where only P out of D columns are distinct.

Hence rank of Ax = P < M. Similarly, rank of Ax = min(Q,N). Hence when P < M or

Q < N , rank of Akron = min(P,M).min(Q,N) < MN. Thus, from (3.31), rank of A0,0 ≤

rank(Akron) < MN thereby making A0,0 column-rank deficient.

• Example 2: Assuming D > N , if the D DOA pairs contain N1 > N distinct (α, β) pairs in

(3.27) of the form

{(α1, βk), k = 1, 2, · · ·N1}, (3.32)

then A0,0 has rank < D.

Reason: In this case, the N1 pairs of DOAs give rise to the N1 columns of the array manifold

of the form



1

α1

...

α
(M−1)
1


⊗



1 1 1 1

β1 β2 · · · βN1

...
...

...
...

β
(N−1)
1 β

(N−1)
2 · · · β

(N−1)
N1


︸ ︷︷ ︸

AN1

Since N1 > N , AN1
is a Vandermonde matrix of rank N . Hence, these N1 > N columns are

linearly dependent, and since A0,0 includes these N1 columns, its columns are also linearly

dependent, resulting in rank(A0,0)< D.

• Example 3: Assume the D DOA pairs, denoted (αi, βi), 1 ≤ i ≤ D, are given by

αi = βki , 1 ≤ i ≤ D

where k is a given integer such that k ∈ N+, 1 ≤ k ≤ N. This implies that the D (ω1, ω2) pairs

lie on a straight line through origin with integer slope k. Then, rank(A0,0) = min(D,N +
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(M − 1)k).

Reason: In this case, theMN rows of A0,0 in (3.27) can be denoted as amN+n = [β
(km+n)
1 β

(km+n)
2 · · ·β(km+n)

D ]

m = 0, 1, · · ·M − 1, n = 0, 1, · · · , N − 1 Hence A0,0 consists of k(M − 1) + N distinct rows.

Moreover these k(M−1)+N rows make up a Vandermonde matrix of size (N+(M−1)k)×D.

Hence the rank of A0,0 = min(D, k(M − 1) + N). When D > kM + N , the source steering

vectors become linearly dependent rendering A0,0 column rank deficient.

3.10.2 A Sufficient Condition on Unique Identifiability

Even when the array manifold is full column rank, it does not ensure unique identifiability in 2D

DOA estimation. This is because the steering vector for a different 2D DOA pair (not belonging to

any of the source DOAs), might lie in the subspace spanned by the manifold of the source DOAs

and hence can produce a false peak in the null spectrum. The following examples illustrates this:

3.10.2.1 Example (Full column rank of A0,0 does not imply unique identifiability)

Assuming D > N , let us choose the D DOAs as per Lemma 3.10.1 by first including N distinct

DOA pairs of the form

(ω11, ω2i) i = 1, 2, · · ·N

and choosing the remaining D − N DOA pairs at random from the remaining MN − N distinct

pairs given by lemma 3.10.1. Then, the array manifold is full column rank D and its orthogonal

complement has rankMN−D. Now consider the pair (ω11, ω2,N+1). Clearly it does not correspond

to any of the source DOA pairs. However, theN+1 DOA pairs (ω11, ω2i), i = 1, 2, · · · , N+1, consist

of N + 1 distinct values of ω2 paired with the same value of ω1 (i.e., ω1 = ω1,1) (they lie on a vertical

line ω1 = ω11 in the (ω1 − ω2) plane). Hence, they correspond to the set of values given in (3.32) of

Example 2 (here N1 corresponds to N + 1), and the steering vectors corresponding to these N + 1

DOAs are linearly dependent. In other words, the steering vector corresponding to (ω11, ω1,N+1)

lies in the range space of A0,0 and hence, it is orthogonal to the null space of the array manifold,

yielding a false peak in the null spectrum.

Motivated by this counterexample, we now present a sufficient condition on the choice of

D DOA pairs which will guarantee unique identifiability of the source DOAs. In the theorem,
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aM,N (ω1, ω2) denotes the steering vector of the 2D array (a column of A0,0) corresponding to a

generic 2D DOA pair (ω1, ω2).

Theorem 3.10.1. Let us consider D ≤ (M − 1)(N − 1) source DOA pairs which are chosen from the

(M − 1)(N − 1) DOA pairs (in accordance with Lemma 3.10.1)

(ω1i, ω2j), i = 1, 2, · · · ,M − 1, j = 1, 2, · · · , N − 1. (3.33)

Then the MUSIC spectrum will exhibit a null if and only if aM,N (ω1, ω2) corresponds to one of theD source

steering vectors. �

Proof. Since the choice of these D < MN source DOAs are in accordance with Lemma 3.10.1, the

array manifold is of full column rank D. Let EN ∈ CMN×(MN−D) be the matrix whose columns

span the (MN −D) dimensional orthogonal complement of the range space of A0,0 [160]. Hence,

aHM,N (ω1i, ω2i)EN = 0T for each i = 1, 2, · · · , D implying that the MUSIC spectrum will yield

D peaks at the true location of the D DOAs. For the necessary condition, we need to ensure that

aHM,N (ω1, ω2)EN 6= 0T if (ω1, ω2) does not correspond to one ofD source DOA pairs (i.e., the MUSIC

spectrum does not produce a peak for any other value of (ω1, ω2) apart from the D DOA pairs). We

will prove this by contradiction. If possible, let aHM,N (ω1,M , ω2,N )EN = 0T where (ω1,M , ω2,N ) does

not correspond to any of the source DOA pairs given in (3.33) (i.e., assume there is a false peak).

Hence



aHM,N (ω11, ω21)

aHM,N (ω12, ω22)

...

aHM,N (ω1,M , ω2,N )


︸ ︷︷ ︸

AH
D+1

EN =



0T

0T

...

0T


(3.34)

Here AD+1 ∈ CMN×(D+1) corresponds to the manifold of the same array but with D + 1 sources.

Now, theseD+1 < MN sources are selected from theMN DOA pairs {(ω1i, ω2j), i = 1, 2, · · · ,M, j =

1, 2, · · · , N} and hence, by Lemma 3.10.1, AD+1 is of full column rank D+ 1. Hence the orthogonal

complement of R(AD+1) is of rank MN − D − 1. However, according to (3.34), the range space

of EN , which is of rank MN − D, belongs to the orthogonal complement of R(AD+1). This is a

contradiction since the orthogonal complement of R(AD+1) is of rank MN −D − 1. Hence (3.34)
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cannot hold true and hence aHM,N (ω1, ω2)EN 6= 0T if (ω1, ω2) does not correspond to one of the

impinging D DOA pairs.

3.11 Simulations

In this section, we provide numerical examples to illustrate the superior performance of the nested

array in terms of degrees of freedom for 2D DOA estimation and beamforming. We consider a

randomly generated dense lattice generator M, and P is constructed as an integer matrix whose

Λ (obtained from Smith form of P) is given by

 3 0

0 3

 . We choose N (s)
1 = 2, N (s)

2 = 3, so

there are in all (2N
(s)
1 + 1)N

(s)
2 +det(Λ) − 2 = 22 sensors on the array (we exclude the sensor at

0 since N (s)
1 > 1 and N

(s)
2 , λ1, λ2 > 1). Using the proposed algorithm on this nested array, we

can construct Rco−array corresponding to a larger 8 × 9 array with a total of 72 virtual sensors. We

now consider D = 36 narrowband waves impinging on this array (36 > 22 = number of physical

sensors in the array) whose DOAs are chosen by generating 25 (ω1, ω2) pairs as
{(

sin(−π/3+2(i−

1)π/18), sin(−π/3 + 2(k − 1)π/18)
)
, i = 1, 2, · · · 6, k = 1, 2, · · · , 6

}
. It can be verified that these

(ω1, ω2) pairs are chosen in accordance with the condition in Theorem 3.10.1 and hence they satisfy

the condition for unique identifiability. Since the matrix Rco−array corresponds to the virtual 2D

array of size 8 × 9, we compare the performance of the proposed method with that of an actual

larger 2D array of size 8 × 9 with sensors on the same lattice. We denote this as the “benchmark”

case.

3.11.1 MUSIC spectra

Figure 3.18(a) and (b) shows the MUSIC spectrum obtained from Rco−array for two different values

of snaphsots T = 100, and 1000. Notice how the spectrum of the proposed method evolves as T

increases, resolving all the 36 sources. For the given number of sources (D = 36), the subspace

based methods could not have been applied on the physical array with 22 sensors (since D >

22). However, the MUSIC spectrum obtained from Rco−array resolves all the 36 peaks like the

benchmark array with more sensors, with the quality of the spectrum improving with increasing

snapshots.



100

[T=100] [T=1000]

Figure 3.18: 2D MUSIC spectrum using the proposed algorithm for identifying D = 36 sources
using the 2D nested array for two values of snapshots.

3.11.2 RMSE v/s SNR and snapshots

We now study the performance of the proposed method by studying the RMSE of the angle esti-

mates as a function of both SNR and snapshots. We individually plot the RMSE in φ and θ as a

function of SNR for T = 500 snapshots, for both the proposed method and the benchmark. The

RMSE is computed by averaging over 800 Monte Carlo runs and averaged over all the 36 DOA

pairs separately for φ and θ. The Monte Carlo run is performed by randomly generating signal and

noise vectors for a given dense lattice generator M. Fig. 3.19 shows the desired RMSE plot.

Figure 3.19: Comparison of RMSE (in degrees, averaged over all D = 36 DOA pairs) vs. SNR
between the proposed DOA estimation algorithm applied on the 2D nested array, and traditional
2D MUSIC applied on the benchmark array. Here T = 500.

Next, in Fig. 3.20 we plot the RMSE of the proposed method and the benchmark for SNR=6

dB by varying the total number of snapshots T . The performance of the proposed method im-

proves considerably with the number of snapshots, approaching the benchmark for large number

of snapshots. It is to be noted that for finite snapshots, the proposed method only approximates
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the benchmark model, and hence there is a gap between the performances of the two. This is espe-

cially true for the plot showing RMSE v/s SNR where the gap between the proposed method and

the benchmark model remains non zero even as we increase SNR.

Figure 3.20: Comparison of RMSE (in degrees, averaged over allD = 36 DOA pairs) vs. the number
of snapshots between the proposed DOA estimation algorithm applied on the 2D nested array, and
traditional 2D MUSIC applied on the benchmark array. Here SNR= 6 dB.

3.11.3 Detection Performance

In the previous examples, it was assumed that the number of sources D is known. However, in

practice, we need to estimate it from the available data. To do this, we would need to find some

optimum detection algorithm suited to our model, which is a subject of our future research in this

direction. However, we applied the threshold based technique in [41] which proved to give satis-

factory results when applied to Rco−array. The estimated probability of detection of this proposed

method at SNR= 10 dB as a function of snapshots is shown in Fig. 3.21. For comparison, we

also plot the corresponding performance of the threshold technique applied to the benchmark 2D

array. The probabilities were obtained by running 1000 Monte Carlo simulations averaged over an-

other 1000 runs. We can see that the detection performance improves dramatically with increasing

snapshots and approaches that of the benchmark asymptotically.

3.12 Conclusion

In this chapter, we have proposed a new class of 2D arrays which is a combination of O(M + N)

sensors distributed over two suitably related non separable lattices, whose difference co-array can
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Figure 3.21: Comparison of probability of detecting all the D = 36 sources for the 2D nested array
and the benchmark array, as a function of the number of snapshots. Here SNR= 10 dB.

give rise to a much larger 2D array with O(MN) sensors on the dense lattice. This is the two

dimensional extension and generalization of the 1D nested arrays proposed earlier. The dense lat-

tice generator and the integer matrix P can be arbitrarily chosen. However, we proved that from

the perspective of a specific requirement on the minimum distance in the lattice (due to mutual

coupling etc.) the best geometry of the dense lattice used to tile the sparse lattice is given by a

hexagonal geometry. Many of the issues related to the geometry of these arrays in 2D space have

been discussed in great detail. It has also been shown that the Smith form decomposition of the

integer matrix relating the two lattices provides a very useful viewpoint in the design of the 2D

nested array. We further have demonstrated the practical applications of the 2D nested array in

array processing problems such as 2D DOA estimation, when the number of sources can be possi-

bly much larger than the number of physical sensors. The number of elements in the virtual array

has been maximized (under the constraint of a fixed number of physical sensors) to yield closed

form solutions for the sensor positions in the physical 2D nested array. One of the solutions to

this problem is always shown to yield 1D manifolds in the physical array domain. In order to ex-

ploit the increased degrees of freedom offered by this virtual array, a novel algorithm based on 2D

spatial smoothing has also been proposed and its performance successfully demonstrated through

numerical examples.
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3.13 Appendix

3.13.1 Proof of Theorem 3.7.2

Since the sensor at 0 is absent, all the virtual sensors in the cross difference co-array that are gen-

erated due to the zero sensor will be absent. In particular, this means virtual sensors located at

±(Ñ(s)ñ(s) − 0) and ±(Ñ(d)ñ(d) − 0) where ñ(s) and ñ(d) take up values given by (3.6) and (3.8)

respectively, will be absent. Now we will argue that these can be regenerated by considering the

individual self differences of the sparse array and the dense array. Note that self differences of the

sparse array sensor locations are of the form

Ñ(s)(ñ
(s)
1 − ñ

(s)
2 ),

ñ
(s)
1 , ñ

(s)
2 ∈ [−N (s)

1 N
(s)
1 ]× [0 N

(s)
2 − 1], ñ

(s)
1 , ñ

(s)
2 6= 0

Consider the subset of the sparse array given by

Ñ(s)[k ñ(s)]T

where

0 ≤ ñ(s) ≤ N (s)
2 − 1, k 6= 0.

Since N (s)
1 ≥ 1, the sparse array indeed contains this as a subset for k 6= 0. It can be easily verified

that the self difference co-array of this set, for each k 6= 0, contains the differences ±Ñ(s)[0 ñ(s)]T

where

0 ≤ ñ(s) ≤ N (s)
2 − 1 (3.35)

Similarly considering the subset {Ñ(s)[ñ(s) k]T ,−N (s)
1 ≤ ñ(s) ≤ N

(s)
1 , k 6= 0} (since N (s)

2 > 1, this

is indeed a subset of the sparse array for k 6= 0), it can be verified that the self difference co-array
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of this subset contains, for each k 6= 0, the difference set

±Ñ(s)[ñ(s) 0]T ,−N (s)
1 ≤ ñ(s) ≤ N (s)

1 . (3.36)

Now, consider two subsets of the sparse array:

Ñ(s)[k ñ
(s)
21 ]T , 0 ≤ ñ(s)

21 ≤ N
(s)
2 − 1, k 6= 0

and

Ñ(s)[0 ñ
(s)
22 ]T , 1 ≤ ñ(s)

22 ≤ N
(s)
2 − 1

The cross differences of these two sets produce sensors located at

±Ñ(s)[k ñ
(s)
2 ]T ,−N (s)

2 + 1 ≤ ñ(s)
2 ≤ N

(s)
2 − 2

Repeating this for each k in the range −N (s)
1 ≤ k ≤ N (s)

1 , k 6= 0, it can be seen that all sensors of the

form Ñ(s)[ñ
(s)
1 ñ

(s)
2 ]T where

N
(s)
1 ≤ |ñ(s)

1 | ≤ 1, −N (s)
2 + 1 ≤ ñ(s)

2 ≤ N
(s)
2 − 1

can be generated. This, together with the differences given by (3.35) and (3.36) produces all virtual

sensors located at Ñ(s)ñ(s) where ñ(s) takes up all the values given by (3.6), thereby generating all

sensor locations on the original sparse physical array (and their negated values).

By a similar argument on the self differences of the dense lattice sensors (by replacing N (s)
1 with

(λ1 − 1)/2 and N
(s)
2 with λ2 and using the assumption λ1, λ2 > 1), it can be shown that all virtual

locations given by Ñ(d)[ñ
(d)
1 ñ

(d)
2 ]T where

−(λ1 − 1)/2 ≤ ñ(d)
1 ≤ (λ1 − 1)/2

−(λ2 − 1) ≤ ñ(d)
2 ≤ λ2 − 1

can be generated. Hence, we can exclude the sensor at 0 and yet gain back all the virtual sensors
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thus lost in the cross difference co-array by considering the individual self differences of the two

arrays.

3.13.2 Proof of Theorem 3.8.1 when K is odd

We prove 3.8.1 for the case when K is odd. The proof for even K can also be obtained on similar

lines.

Proof. Without loss of generality we can assume that

N0N
(s)
2 = n− δ λ1λ2 = n+ δ (3.37)

where

n = (K + 1)/2

and δ is an integer with 0 ≤ |δ| < n. Also, we have

N0λ1 = N
(s)
2 λ2 −∆ (3.38)

where ∆ is an integer. Notice

N0λ1N
(s)
2 λ2 = (n+ δ)(n− δ)

Using (3.38) and denoting N0λ1 = x (note that x needs to be odd to satisfy the constraints) we get

x(x+ ∆) = n2 − δ2 (3.39)

Solving this quadratic equation for x yields

x =
−∆ +

√
∆2 + 4n2 − 4δ2

2

The integers ∆ and δ need to be such that this gives an odd integer solution for x.Now the objective

function to be optimized can be rewritten as DOF(∆, δ) = 2x(x+ ∆)− x

= 2(n2 − δ2) + ∆−
√

∆2+4n2−4δ2

2 . which is a function of ∆ and δ only. For a given ∆, it can be easily
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verified that (3.13.2) is a decreasing function of δ2. So for a given ∆, to maximize DOF, we need to

find the smallest δ2 which gives rise to an odd integer solution for x in (3.39).

3.13.2.1 K + 1 = 4p+ 2

In this case n = 2p+1 is odd. Following strategy S∆, we first consider ∆ = 0. Now for this ∆, δ = 0

maximizes the DOF but we need to verify that it indeed gives a feasible solution for odd integer x

in (3.39). For this, we need to ensure that this choice of ∆ and δ yields an odd integer solution for x

in (3.39). Since n is odd, ∆ = 0, δ = 0 indeed yields a feasible x and hence this corresponds to the

optimal solution. So we have

x = N0λ1 = n = 2p+ 1, N
(s)
2 λ2 = x+ ∆ = 2p+ 1

and

N0N
(s)
2 = n− δ = 2p+ 1, λ1λ2 = n+ δ = 2p+ 1.

The optimal value of the DOF is given by (K + 1)2/2− (K + 1)/2.

3.13.2.2 K + 1 = 4p

Here n = 2p is even, and both ∆ and δ cannot be made 0 in (3.39) because x needs to be an odd

integer. Let us investigate the following cases:

1. ∆ = 0, δ 6= 0 :

In this case, x2 + δ2 = n2. Hence x, δ and n should form a Pythagoren triplet. For given

n, there might not exist solutions for odd x and an integer δ satisfying this. However, the

degrees of freedom DOF(∆ = 0, δ) in this case is bounded by DOF(∆ = 0, δ 6= 0)

< DOF (∆ = 0, δ ± 1)

= (K + 1)2/2− 2−
√

(K + 1)2/4− 1

< (K + 1)2/2 − (K + 1)/2 − 1 Here the first inequality is due to the fact that for a given ∆,

DOF (∆, δ) is a decreasing function of δ2 and the second inequality can be readily verified by

noting that the second quantity is greater than the first.

2. |∆| = 1: In this case, x2 ± x + δ2 = n2. Here also, for a given n, the equation need not be
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solvable for all values of δ. For example, δ = 0 gives no solution for x since x(x ± 1) = n2

has no integer solution (since a perfect square cannot be a product of consecutive integers).

However, whenever a solution exists, it is bounded by DOF(∆ = ±1, δ 6= 0)

< DOF (∆ = ±1, δ = ±1)

= (K+1)2

2 − 2− ±1+
√

(K+1)2−3

2

< (K+1)2

2 − 2− ±1+((K+1)−1)
2

≤ (K+1)2

2 − (K+1)
2 − 1

3. |∆| = 2

Here, x2 ± 2x + δ2 = n2. Again, for δ = 0, no solution exists since solving for x does not

yield an integer solution for any n. However, putting δ = ±1 gives x2 ± 2x + 1 = n2, i.e.,

(x ± 1)2 = n2. Since x is odd and n is even, this always gives feasible solution! Hence, the

minimum ∆ and δ for which a solution exists for all n, is

|∆| = 2, δ = 1.

(Note that the DOF is a function of only δ2). The DOF for ∆ = 2 is given by DOF(∆ = 2, δ = 1)

= (K + 1)2/2− 2− (K + 1)/2 + 1

= (K+1)2/2−(K+1)/2−1 which is strictly greater than DOF(∆ = 0, δ) and DOF(|∆| = 1, δ).

The DOF for ∆ = −2 can be shown to be strictly less than that for ∆ = 2. Hence ∆ = 2, δ = 1

are the smallest possible values of ∆ and δ which always lead to a feasible solution and also

the DOF thus obtained is strictly greater than the DOF obtainable for any other smaller values

of |∆|. Hence for n = 2p (i.e., K + 1 = 4p) it provides the optimum solution. The value of

x = N0λ1 is given by

N0λ1 = n− 1 = 2p− 1

and using (3.38) and (3.37), we get

λ2N
(s)
2 = x+ 2 = n+ 1 = 2p+ 1



108

and

λ1λ2 = n+ δ = 2p+ 1, N0N
(s)
2 = n− δ = 2p− 1

3.13.3 Proof of Theorem 3.8.2

Let N (s)
1 = Ñ1, N

(s)
2 = Ñ2, λ1 = λ̃1, λ2 = λ̃2 denote a feasible solution. Then we can form another

feasible solution N
(s)
2 = Ñ2(2Ñ1 + 1), N (s)

1 = 0, λ2 = λ̃1λ̃2, λ1 = 1 (it can be verified that these

values satisfy the constraints and hence indeed form a feasible point). However substituting these

values in the objective (3.13) strictly increases the value of the objective function since

2(2Ñ1 + 1)Ñ2λ̃1λ̃2 − (2Ñ1 + 1)λ̃1 < 2(2Ñ1 + 1)Ñ2λ̃1λ̃2 − 1

Hence, in the optimal solution, we will always have 2N
(s)
1 + 1 = λ1 = 1. Note that this value of

λ1 automatically satisfies the second and third constraints of (3.13). Therefore, we can recast the

problem (3.13) as

max
N

(s)
2 ,λ2∈N+

2N
(s)
2 λ2 − 1 (3.40)

subject to:

N
(s)
2 + λ2 = K + 1.

which can be readily solved using AM −GM inequality. This yields the solution

N
(s)
2 = λ2 = (K + 1)/2, K is odd

N
(s)
2 = (K + 2)/2, λ2 = K/2, K is even.

The maximized degrees of freedom in the virtual array turns out to be

DOF =

 (K + 1)2/2− 1, K is even

(K + 1)2/2− 3/2, K is odd.
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Chapter 4

Higher Order Statistics and Extension
of Nested Arrays

4.1 Introduction

Direction of arrival (DOA) estimation algorithms, based on the fourth order cumulants of non

Gaussian source signals have been developed for array processing applications for around two

decades [162, 50, 63, 154], particularly for the advantages they offer over traditional DOA estima-

tion methods which exploit the second order statistics of the data. These advantages include (1)

ability to process more than N − 1 statistically independent sources using N physical sensors, (2)

higher resolution, (3) better robustness to modeling errors, and (4) better robustness to presence of

strong background colored noise with unknown covariance [154, 44], and so forth.

Recently, these algorithms were extended to the case of processing an arbitrary even order (2q)

cumulant of the data [44, 14], giving rise to a new family of DOA estimation algorithms, namely

the 2q MUSIC. It has been shown that the identifiability, resolution performance, and robustness

of these methods increase with q, thereby further improving the processing power of the fourth

order cumulant based methods (which correspond to q = 2)[44]. The higher processing power

of these methods is due to a deeper connection of the 2qth order cumulants with the concept of a

higher order virtual array [42] which behaves like an array with many more elements compared

to the physical array. The connection of a longer virtual array with higher order statistics was

first pointed out in [63],[43],[162] in the context of fourth order cumulants. This increased number

of virtual sensors in this array is responsible for the higher processing power of the 2qth order

cumulant based methods. In [42], it has been pointed out that for q ≥ 2, the number of virtual



111

sensors depends on the specific arrangement of the 2qth order cumulant matrix. The best possible

arrangement leads to a virtual array with O(Nq) sensors and hence the 2qth order cumulant based

methods can identify O(Nq) statistically independent sources [44].

In this chapter, we re-examine the virtual array associated with the 2qth order cumulants and

show that an even longer virtual array can be extracted from the cumulant matrices. This virtual

array is shown precisely to be the 2qth order difference co-array (defined in Section 4.4) of the

physical array. For q = 1, second order difference co-arrays have been studied in the past [89, 149,

148, 126, 1, 2, 135, 184] and several constructive procedures for non uniform physical arrays have

been proposed which give rise to second order difference co-arrays which contain ULA segments

with O(N2) elements [159, 148, 155, 110, 135, 184]. Unlike the virtual arrays exploited in [44],[42],

the number of elements in the 2qth order difference co-array are independent of any particular

arrangement of the cumulant matrix and depends only on the geometry of the physical array. Also,

it can haveO(N2q) virtual sensors as opposed to the maximum ofO(Nq) virtual sensors obtainable

in [44], and thereby can potentially enable one to identify O(N2q) sources using the 2qth order

cumulants. However, for q ≥ 2, linear arrays whose 2qth order difference co-array containsO(N2q)

virtual sensors in the form of a ULA, have not been reported in the past. In order to bridge this

gap, we propose a new family of non uniform arrays, parameterized by q, called the 2q level nested

array, whose 2qth order difference co-array contains a ULA with O(N2q) elements. For q = 1, we

proposed the 2 level nested array in [135] and in Chapter 3 and the concept of higher level nested

array was also briefly introduced. However, we did not consider the 2qth order difference co-array

of the multiple level nested array because we were interested in second order statistics. The second

order difference co-array of the multiple level nested array did not contain an ULA with O(N2)

elements and hence it was not used for second order statistic based DOA estimation. However,

we will show that the 2qth order difference co-array of a 2q level nested array indeed contains an

ULA withO(N2q) elements, rendering it a very appropriate geomtery for algortihms based on 2qth

order cumulants. Also, in order to exploit the increased degrees of freedom offered by the 2q level

nested array, we generalize a previously proposed DOA estimation algorithm [135] to process 2qth

order cumulants (for arbitrary q) and identify upto O(N2q) sources. We prove that the proposed

algorithm achieves the maximum identifiability among all DOA estimation methods using 2qth

order cumulants.

The content of this chapter is mainly drawn from [140] and part of it has been presented in [139].
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4.2 Outline

The chapter is organized as follows. In Section 5.3, we briefly review the role of 2qth order cu-

mulants in DOA estimation, defining important terminology. In Section 4.4, we revisit the virtual

array concept inherent in 2qth order cumulant based array processing applications and show that

an even longer virtual array, which is related to the 2qth order difference co-array, can be extracted

from the cumulant based model. In Section 4.5, we propose a new class of 2q level nested arrays

whose 2qth order difference co-array has O(N2q) elements in the form of a ULA. In Section 4.6, we

solve a combinatorial optimization problem to find the optimal distribution of sensors among the

2q levels which maximizes the degrees of freedom in the 2qth order difference co-array. In Section

4.7, we propose a new DOA estimation algorithm which can exploit theO(N2q) degrees of freedom

offered by the 2q level nested array and identifies O(N2q) sources. In Section 4.8, we prove that the

proposed method can achieve the maximum identifiability that can be obtained by using 2qth or-

der cumulants. We also study the Cramer Rao bounds for the non Gaussian signal model when

the number of sources can be less than the number of sensors. Finally in Section 4.9, we present

several numerical simulation results to validate the proposed method and compare the proposed

algorithm with existing 2q MUSIC based algorithms by studying the RMSE performance with re-

spect to snapshots, SNR, modeling errors and probability of resolution. Section 4.10 concludes the

chapter.

4.3 Review of 2qth order cumulants and their role in array pro-

cessing

Fourth order cumulant based DOA estimation methods have been elaborately treated for about

two decades in [63],[154],[162],[50] and the references therein. An excellent tutorial on higher order

cumulants is given in [124]. Recently, the application of 2qth order cumulants for arbitrary integer

q ≥ 2 in the problem of DOA estimation was introduced in [44],[42],[14]. We review the main

existing results in this section to build up the necessary background. The material in this section is

taken mostly from [124] and [44].
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4.3.1 Data Model

We consider a linear array of N sensors and D narrowband sources impinging on them with eleva-

tions angles {θ1, θ2, · · · , θD}. The sensors are assumed to be identical, omnidirectional, unpolarized

and isotropic. The sources are assumed to be zero mean stationary non Gaussian sources which are

statistically independent. While the formulation in [44] does not require the sources to be all statisti-

cally independent, this assumption is essential for our proposed method as will be seen later. The

received signal vector at the output of the N sensors is given by

y(t) =

D∑
d=1

a(θd)sd(t) + u(t) (4.1)

where u(t) denotes the N ×1 zero mean stationary Gaussian noise vector, statistically independent

from the source signals sd(t), d = 1, 2, · · · , D. The vector a(θd) denotes the N × 1 steering vector for

the dth source direction, and its nth component is given by

an(θd) = ej
2π
λ xn sin θd (4.2)

where xn denotes the distance of the nth sensor in the array from the origin.

4.3.2 2qth order circular cumulants

DOA estimation algorithms in [44] are based on computing the 2qth order circular cumulants of the

received signal vector y(t) [44]. More specifically, denoting y(t) = [y1(t) y2(t) · · · yN (t)]T , the 2qth

order circular cumulants of the random variables yi1(t), yi2(t), · · · , yi2q (t) denoted as Cum[yi1(t), yi2(t), · · · , yiq (t),

y∗iq+1
(t), y∗iq+2

(t), · · · , y∗i2q (t)] are computed, for 1 ≤ il ≤ N, 1 ≤ l ≤ 2q. The circular cumulants are

explicitly given by the Leonov-Shiryaev formula [108] as follows:

Cum[yε1i1 (t), yε2i2 (t), · · · , yε2qi2q (t)] (4.3)

=

2q∑
k=1

(−1)k−1(k − 1)!
∑
m

E
[ ∏
l∈S1(m)

yεlil (t)
]
× E

[ ∏
l∈S2(m)

yεlil (t)
]

(4.4)

× · · · × E
[ ∏
l∈Sk(m)

yεlil (t)
]

(4.5)
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Here (S1(m), S2(m), · · · , Sk(m)) denotes a particular (themth) partition in k sets of the set of integers

(1, 2, · · · , 2q), and

yεlil (t) = yil(t), l = 1, 2, · · · , q

and

yεlil (t) = y∗il(t), l = q + 1, · · · , 2q.

In practice, assuming ergodicity, the cumulants are estimated from L samples of the received

vector y(l) , y(lTs), 0 ≤ l ≤ L − 1 where Ts is the sampling period, by replacing the expected

values in (4.5) by their empirical values averaged over L samples. This estimate is asymptotically

unbiased and consistent [44].

The DOA estimation methods based on higher order statistics which were presented earlier

in [44, 14], arrange the cumulants in the form of a Nq × Nq 2qth order Hermitian matrix which

is proved to possess the required structure for application of subspace based DOA estimation al-

gorithms like MUSIC (rather, an extension of it for 2q order statistics of the data, namely the 2q

MUSIC). An important result proved in [44] shows that for q > 1, the cumulants can be arranged in

more than one way to give rise to cumulant matrices with different algebraic structures, which lead

to different identifiability and resolution properties of 2q MUSIC algorithm. In particular, given q,

the 2q th order cumulants can be arranged in the form of cumulant matrice(s) in q different ways.

These matrices are indexed by l, also called the orientation, (0 ≤ l ≤ q− 1) and denoted as C2q,y(l).

Under the assumption of statistically independent source signals and white Gaussian noise in the

data model, the matrix C2q,y(l) is given by C2q,y(l) =
∑D
d=1 c2q,sd [a(θd)

⊗l ⊗ a(θd)
∗⊗(q−l)]

× [a(θd)
⊗l ⊗ a(θd)

∗⊗(q−l)]H + σ2
uINq×Nqδ(q − 1) where

c2q,sd = Cum[sd1(t), · · · , sdq (t), s∗dq+1
(t), · · · , s∗d2q (t)] (4.6)

with dj = d, 1 ≤ j ≤ 2q. The noise power is denoted by σ2
u and a(θd)

⊗l is the N l × 1 vector given

by

a⊗l , a(θd)⊗ a(θd)⊗ · · · ⊗ a(θd)︸ ︷︷ ︸
l times

.
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The noise is assumed white Gaussian, so the 2qth order cumulants of the noise for q ≥ 2 are zero,

giving rise to the σ2
uINq×Nqδ(q − 1) term in (4.3.2). This expression for C2q,y(l) can be derived

by first computing the N2q possible cumulant values using (4.5) by substituting the values of yk

(1 ≤ k ≤ N ) from the data model given by (4.1) and then using the properties of cumulants given

in [124] regarding sums of statistically independent random variables, Gaussian random variables,

and scaled random variables. Then these cumulant values can be arranged in the form of aNq×Nq

Hermitian matrix in q different ways (details in [44]), the lth (0 ≤ l ≤ q − 1) of which is given by

(4.3.2). The reason why the cumulant matrices for different l can give rise to different processing

power (identifiability) and resolution when subspace based DOA estimation algorithms are applied

on them, is because of their connection with the concept of a virtual array associated with the

original array, as described in the next section.

4.3.3 Virtual Array Associated with 2qth Order cumulants

The 2q th order cumulant based DOA estimation methods in [42] show the connection between

the structure of the cumulant matrix and the concept of virtual array which is the reason behind

the capability of the cumulant based methods to identify many more sources than sensors. Such a

connection was first pointed out for q = 2 (fourth order cumulants) in [63, 154, 162]. Consider the

vector

a
(l)
virtual(θ) , a(θ)⊗l ⊗ a(θ)∗⊗(q−l) (4.7)

appearing in the cumulant matrix C2q,y(l). The elements of this vector are given by

ej
2π
λ (

∑l
i=1 xni−

∑q
i=l+1 xni ) sin θ (4.8)

where each xni takes values from the set of physical array locations {xn, n = 1, 2, · · · , N} for 1 ≤

i ≤ q, yielding a total of Nq elements (not all distinct) in the vector a
(l)
virtual(θ). Comparing with

(4.2), we find that (4.8) represents the steering vector of a Higher-Order (HO) virtual array [42] of

Nq virtual sensors whose locations, denoted as x(l)
n1,n2,···,nq for 1 ≤ ni ≤ N, 1 ≤ i ≤ q are given by

x
(l)
n1,n2,···,nq =

l∑
i=1

xni −
q∑

i=l+1

xni . (4.9)
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The following remarks apply to the HO virtual array given by (4.9):

• The virtual array positions take up Nq values, however, not all of them are distinct. The

number of distinct virtual sensors, denoted henceforth as N (l)
2q depends on the geometry of

the physical array, i.e., the physical locations {xn, n = 1, · · · , N}. For givenN , q, l, the quantity

N
(l)
2q is upper bounded by a quantity Nmax[2q, l] which is tabulated for different values of q

and l in Table 1 in [44, 42].

• The orientation l of the cumulant matrix plays an important role in the number of virtual

sensors. For a given physical array, the virtual array for each l can be potentially different.

For a given q and N , the upper bound Nmax[2q, l] depends on l and it is maximum for l = q/2

if q is even and l = (q + 1)/2 for q odd [42].

• The upper bound Nmax[2q, l], for a given q and l, corresponds to, in most cases, arrays with

no particular symmetry. It cannot be reached if certain symmetry conditions are imposed on

the physical array. For example, for a ULA with N sensors, N (l)
2q = q(N − 1) + 1 < Nmax[2q, l].

4.4 A New Look into the Virtual Array Associated with 2qth order

Cumulants

The connection of the 2qth order cumulant matrices with virtual arrays leads to identification of

upto N (l)
2q − 1 independent sources, when the 2q MUSIC algorithm [44] is applied on the cumulant

matrix C2q,y(l). However, in this chapter, we will show that this can be improved even further by

exploiting the cumulant values in a different fashion, inspired from our earlier work in [135] for

second order statistics (corresponding to q = 1). In order to establish our results we will first need

to define a related concept of higher order difference co-array using which we will unify all possi-

ble arrangements of the cumulant matrix (corresponding to different values of l) to a fundamental

higher order difference co-array, namely the 2qth order difference co-array. As will be demon-

strated, the DOA estimation method proposed in this chapter can exploit the increased degrees of

freedom offered by this higher order co-array whereas 2q MUSIC is able to exploit a lower order

(namely the qth order difference co-array assumin q is even) virtual array.
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4.4.1 Higher Order Difference Co-Array

Definition 4.1: Consider a set of N sensors with position vectors vj , j = 1, · · · , N . The 2qth (q ≥ 1

is an integer) order difference co-array of this set of sensors is defined as the set of distinct vectors

from the set

{
q∑
i=1

vni −
2q∑

i=q+1

vni , 1 ≤ ni ≤ N} (4.10)

�

The difference set for q = 1, also known as the difference co-array, has been considered in the

past in relation to MRA [1, 126],[149], 2 level nested array [135], coprime arrays [184] and direction

finding methods related to fourth order cumulants [63, 154]. However, the connection between the

2qth order cumulants and the 2qth order difference set for any integer q ≥ 2 has not been pointed

out earlier.

In the 2qth order difference set, each vni takes up all possible values from the set {vj , j =

1, 2, · · · , N} and a total ofN2q values are generated. However, not all of them are distinct, and hence

the difference co-array generally has < N2q elements, but nevertheless it can be seen from [42] that

the maximum possible number of values is O(N2q). The following points are worth noticing about

the 2qth order difference co-array:

• The 2qth order difference co-array is symmetric about 0, i.e., for every element v, there exists

a corresponding element at −v. Hence the positive half and negative half of the 2qth order

difference co-array has same number of elements.

• The 2qth order difference co-array of an ULA withN sensors is another ULA with 2q(N−1)+1

sensors. But it grows linearly with N as opposed to exponentially (e.g., O(N2q)).

• Relation to MRA: The 2qth order difference co-array of an arbitrary linear array need not be a

ULA in general. Moreover, it might not even have a subarray which is a ULA with O(N2q)

elements. Such arrays are difficult to construct and have not been studied for q ≥ 2. For

q = 1, there have been several systematic procedures to construct physical arrays whose

second order difference set is a ULA with O(N2) elements [159, 148, 155, 110, 184] including

the 2 level nested array proposed in [135]. Of particular interest is the minimum redundancy

array [126] which is the physical array whose difference co-array is a ULA with maximum
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possible elements. However, there is no known method to construct such arrays for every N

and even the degrees of freedom is not known. For q ≥ 2, the literature lacks in any theory

about constructing arrays whose 2qth order difference co-array is a ULA or contains an ULA

with O(N2q) sensors. So in this chapter, we provide a first hand attempt at developing a

systematic and simple method to construct such arrays.

4.4.2 2qth order difference co-array and cumulants

Referring to (4.9), we find that for l = q/2 (assuming q is even), the virtual array corresponds to a

qth order difference co-array. For a given even q, this is also the value of l for which the number of

elements in the virtual array is maximized. In that case, the number of virtual sensors is O(Nq).

For each l, now consider the vectorized cumulant matrix

cvec(l) = vec[C2q,y(l)]. (4.11)

In the following theorem, we will show that this vectorization [118, 135] of the cumulant values

(instead of arranging them in the form of Nq × Nq matrix), leads to a model which captures the

manifold of a much longer array, namely, the 2qth order difference set of the original array, which

is shown to be fundamentally related to the 2qth order cumulant values of the received signal.

This happens irrespective of the orientation (l) of C2q,y(l) (and the virtual array associated with

that orientation). It also provides the first step towards building an appropriate O(N2q) × O(N2q)

matrix on which subspace based DOA estimation methods can be applied. We consider q ≥ 2, so

the noise term σ2
uINq×Nqδ(q − 1) in C2q,y(l) disappears.

Theorem 4.4.1. The vectorized model in (4.11) can be expressed as

cvec(l) = B2q(θ)p (4.12)

where B2q(θ) ∈ CN2q×D (θ = [θ1 θ2 · · · θD]T ) represents, for all l, the manifold of a virtual array

corresponding to the 2qth order difference co-array of the physical array and p ∈ CD×1 represents the vector

of the 2qth order cumulants (c2q,sd , 1 ≤ d ≤ D) of the D sources. ♦ �
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Proof. From (4.3.2) and (4.7), we get

cvec(l) = vec(

D∑
d=1

c2q,sda
(l)
virtual(θd)a

(l)
virtual(θd)

H) (4.13)

=

D∑
i=1

c2q,sda
2q
virtual(θd) (4.14)

where

a2q
virtual(θd) = a

(l)∗
virtual(θd)⊗ a

(l)
virtual(θd)

Hence the elements of a2q
virtual(θd) are given by (1 ≤ i ≤ 2q, 1 ≤ ni ≤ N )

ej
2π
λ (

∑l
i=1 xni−

∑q
k=l+1 xnk−

∑q+l
j=q+1 xnj+

∑2q
m=q+l+1 xnm ) sin θd (4.15)

= ej
2π
λ (

∑q
i=1 wi−

∑2q
k=q+1 wk) sin θd (4.16)

where

wi =


xni , 1 ≤ i ≤ l, q + 1 ≤ i ≤ q + l

xni+q l + 1 ≤ i ≤ q

xni−q q + l + 1 ≤ i ≤ 2q

Since for each 1 ≤ i ≤ 2q, xni takes up values independently from the set {x1, x2, · · · , xN}, it follows

from the above mapping that each wi also takes up N possible values independently from the set

{x1, x2, · · · , xN}. Hence, the set

{ q∑
i=1

wi −
2q∑

k=q+1

wk, wi ∈ {x1, · · · , xN}∀i
}

represents the 2qth order difference co-array of the physical array, which is independent of the

orientation indexed by l. So, the elements of a2q
virtual(θd) correspond to this new virtual array, which

is the same irrespective of the orientation l. Defining

B2q(θ) , [a2q
virtual(θ1) a2q

virtual(θ2) · · ·a2q
virtual(θD)]
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we can rewrite (4.14) in matrix notation to obtain (4.12). Here the dth column of B2q(θ) corresponds

to a2q
virtual(θd) which is the steering vector corresponding to the 2qth order difference co-array and

hence B2q(θ) behaves like the manifold of the 2qth order virtual co-array.

4.4.3 Independence from Orientations

It can be seen from the above theorem that the entries in C2q,y(l) inherently contain the 2qth order

difference set and on vectorizing, it behaves like the model of signals received by the 2qth order

difference co-array. In particular, it also shows that the cumulant matrices corresponding to all

the different arrangements given in [44] give rise to the same 2qth order difference co-array, hence

making the model in (4.12) independent of any particular arrangement of the C2q,y(l). Let S(l)

denote the set of virtual sensor positions associated with the virtual steering vector a
(l)
virtual(θ).

Then we have the following corollary:

Corollary 4.4.1. The 2nd order difference set (or the difference co-array) of S(l) is the same for each l and it

is equal to the 2qth order difference co-array of the physical array. �

Proof. The entries of a
(l)∗
virtual(θd) ⊗ a

(l)
virtual(θd) contain the 2nd order difference co-array of S(l)

and from (4.16), we find that they also represent the 2qth order difference co-array of the original

physical array, which is only a function of the sensor positions in the original array. Hence the 2nd

order difference co-array of S(l) is identical for all l.

Hence, although the virtual arrays associated with a
(l)
virtual(θ) can be very different for different l,

their difference co-arrays however are identical.We illustrate this with the following example:

Example: Figure 4.1 (a) shows an arbitrarily placed 3 sensor array in two dimensions. If we

compute the 4th order cumulants of signal received by this array, then the cumulant matrix can

be arranged in two ways indexed by l where 1 ≤ l ≤ q = 2 which gives rise to two different

virtual arrays. For l = 1, the virtual array has its elements located at xi − xj , 1 ≤ i, j ≤ 3

where xi denotes the location of the physical array sensors. This denotes the so-called difference

co-array. Figure 4.1 (b) shows this array. Whereas for l = 2, the virtual array has its elements

located at xi + xj , 1 ≤ i, j ≤ 3 which is shown in Fig. 4.1 (c). This denotes the so called sum co-

array. Notice that these two virtual arrays look quite different which justifies the claim in [44] that

each arrangement of the cumulant matrix gives rise to different processing powers. However, the

difference co-array of both these arrays are identical and it corresponds to the 4th order difference
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co-array of the physical array. This array is shown in Fig. 4.1 (d) and it has a lot more elements than

the individual arrays. This array is captured by the model in (4.12).
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Figure 4.1: An arbitrary physical array and its various higher order virtual arrays (top left) The
physical array with 3 arbitrarily generated sensor locations (top right) Virtual array (difference co-
array) for l = 1, q = 2. (bottom left) Virtual array (sum co-array) for l = 2, q = 2. (bottom right)
2q = 4th order difference co-array.

When subspace based algorithms were applied on C2q,y(l), the degrees of freedom obtained

were heavily dependent on the choice of l [44] since each l can potentially give rise to a different

virtual array. However, in the subsequent sections, we will consider the model in (4.12) and de-

velop a new DOA estimation algorithm which will exploit the degrees of freedom of the 2qth order

difference co-array, which is independent of the particular arrangement given by l. As will be seen,

the proposed DOA estimation method works for special classes of arrays, whose 2qth order differ-

ence co-array contains an ULA segment. The identifiability properties of the proposed method are

equuivalent to the identifiability properties of the ULA segment. Though 2q MUSIC does not re-

quire the physical array to possess any such property, if the virtual array exploited by the 2q MUSIC

algorithm is not an ULA, ambiguity in DOA estimation will arise [3]. So, to ensure unambiguous

1D DOA estimates, it is necessary for the virtual array seen by the 2q MUSIC algorithm to be a
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ULA.

4.5 Nested Array with 2q levels and its virtual array

In this section, we propose a family of non uniform arrays, (first introduced in [135]), called the 2q

level nested array, parameterized by q, which can give rise to O(N2q) virtual sensors in the 2qth

order difference co-array. Specifically, we will see that for each q, the 2q level nested array with

N physical sensors can be systematically constructed as a combination of 2q uniform linear arrays

with appropriate spacing and its 2qth order difference co-array will contain an ULA with O(N2q)

virtual sensors.

Definition 4.2: (Nested Array with 2q levels:) A 2q level nested array (characterized by integers q,

N1, N2,· · · N2q) is a non uniform array consisting of 2q uniform linear arrays with a total of

N =
∑2q
i=1(Ni − 1) + 1 sensors, where the ith ULA (1 ≤ i ≤ 2q − 1) has Ni − 1 sensors located at

{n(

i−1∏
k=0

Nk)λ/2, n = 1, 2, · · · , Ni − 1}

with the convention of N0 = 1, and the 2qth level has N2q sensors located at

{n(

2q−1∏
k=0

Nk)λ/2, n = 1, 2, · · · , N2q}

�

As can be seen, the ULAs for higher levels are increasingly sparser, with the spacing having a

direct relation to the number of sensors in the ULAs in the previous levels. The increased interele-

ment spacing in each level gets filled up with the sensors in the denser ULAs as one considers

successively higher order difference co-arrays, giving rise to a ULA with O(
∏2q
i=1Ni) sensors for

the 2qth order difference co-array for a 2q level nested array, although the physical array has only

N =
∑2q
i=1Ni − 2q + 1 sensors. This is proved formally in the following theorem:

Theorem 4.5.1. (2qth order Difference Co-Array of 2q level Nested Array) The 2qth order difference

co-array of a 2q level nested array contains a uniform linear array with

2

2q∏
i

Ni − 1
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virtual sensors whose locations are given by

{±nλ/2, n = 0, 1, · · · ,
2q∏
i=1

Ni − 1}.

�

Proof. See Appendix 4.11.1.1.

The following remarks hold for the 2q order nested array:

1. The proposed 2q order nested array is a generic family which defines a class of arrays, one for

each q, which gives rise to O(N2q) virtual sensors continuously in the form of a standard ULA

with spacing λ/2. While there exist examples of arrays for q = 1 (MRA, 2 level nested array

etc.) whose second order difference co-array is a ULA with O(N2) sensors, this class of linear

arrays is the first of its kind which works for each q ≥ 2.

2. The 2q level nested array was briefly introduced in [135] in the context of second order dif-

ference co-array. However, for q ≥ 2, the second order difference co-array of a 2q level nested

array is not a ULA but it has holes (missing sensors), which does not render it suitable for

DOA estimation using the method proposed in [135]. However, it produces a filled ULA

when the 2qth order difference co-array is considered, which makes it a very appropriate

choice for DOA estimation using 2qth order cumulants.

4.5.1 Bonus ULA segment

For q ≥ 2, an interesting property of the 2qth order difference co-array of a 2q level nested array is

that, the ULA segment is actually bigger than the main ULA segment given in Theorem 4.5.1. The

extra or bonus segment extends out on both sides of the main ULA segment and contains
∏2q−1
i=1 Ni

sensors on each side. Hence, it adds to the total number of contiguous virtual sensors, as given by

the following lemma:

Lemma 4.5.1. The 2qth order difference co-array of a 2q level nested array contains an ULA with

2(

2q∏
i=1

Ni +

2q−1∏
i=1

Ni)− 1
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elements located at

{±nλ/2, −L+ 1 ≤ n ≤ L− 1, L =

2q∏
i=1

Ni +

2q−1∏
i=1

Ni}

�

Proof. See Appendix 4.11.1.2.

4.5.2 Comments on the main and bonus ULA segments

Some comments follow regarding the main and bonus ULA segments of the 2q level nested array:

• The bonus ULA segment does not occur for a 2 level nested array (i.e., corresponding to

q = 1). It appears for q = 2 and through a recursive argument (see Appendix 4.11.1-B), it

applies to all values of q > 2.

• For q ≥ 2, the 2qth order difference co-array of the 2q level nested array contains a continuous

ULA segment which is the union of the main and bonus segments.

• It will be shown in the next section that in the optimal 2q level nested array, the main ULA

segment contains O(N2q) elements whereas the contribution of the extra ULA segment is

O(N2q−1). For small N , the contribution of the extra segment is significant and it becomes

proportionately smaller for large N .

• Fig. 4.2 illustrates the main and bonus ULA segments of a 4 level nested array with N1 = 3,

N2 = N3 = N4 = 2. The main ULA segment extends from −23 to 23 where N1N2N3N4 − 1 =

23. Also, there is an extra ULA segment extending out on each side of this main ULA segment

and it has N1N2N3 = 3× 2× 2 = 12 elements on either side.

4.6 Optimization of the number of virtual sensors

In this section, we will address the problem of maximizing the degrees of freedom in the ULA

contained in the 2q level nested array under the constraint of a fixed number of sensors. First we

will solve for the optimal sensor distribution which maximizes the virtual sensors in the main ULA.

We will then derive the solution which maximizes the total number of elements in both the main

ULA and the adjoining extra ULA segments.
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4.6.1 Optimal Sensor Allocation Problem (without the extra segment)

According to Theorem 4.5.1, the 2qth order difference co-array of the 2q level nested array contains

an ULA with 2
∏2q
i=1Ni − 1 elements (without considering the extra ULA segment). Hence, the

degrees of freedom optimization problem can be formulated as

max
N1,···,N2q∈N+

(

2q∏
i=1

Ni) (4.17)

subject to
∑2q
i=1Ni = N + 2q − 1.

In other words, we are interested in how to distribute the total fixed (N ) number of sensors

between the 2q levels which gives rise to a virtual ULA with largest possible number of elements.

If we apply the Arithmetic Mean-Geometric Mean (AM − GM ) inequality to (4.17), we find that∏2q
i=1Ni is maximized when

Ni =
N + 2q − 1

2q
, i = 1, 2, · · · , 2q.

However this is not a valid integer solution unless N + 2q − 1 is a multiple of 2q. Hence, to solve

(4.17) for all possible values of N + 2q− 1, let us first define integers m and n to be the quotient and

remainder of N + 2q − 1 modulo 2q, i.e.,

N + 2q − 1 = 2qm+ n, 0 ≤ n ≤ 2q − 1

The solution to (4.17) can then be completely characterized in terms of m and n as given by the

following theorem. Note that since the problem is permutation symmetric, if {N (opt)
i } is a solution,

then so is any permutation.

Theorem 4.6.1. One solution to the optimization problem in (4.17) is given by {N (opt)
i } where N(opt)

i =

m+ 1, i = 1, 2, · · · , n,

N
(opt)
i = m, i = n + 1, n + 2, · · · , 2q The corresponding optimal number of elements in the main ULA

segment in the 2qth order difference co-array of the 2q level nested array is

2m2q−n(m+ 1)n − 1

♦ �
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Proof. See Appendix 4.11.1.2.

Hence, we find that whenN+2q−1 happens to be a multiple of 2q we get the virtual ULA with

a total of

2
(N + 2q − 1

2q

)2q

− 1

sensors. For other values of N , the number of virtual sensors is also always of O(N2q). Hence the

2q level nested array gives proportionately increasing degrees of freedom with increasing q. Hence

this provides a very generic structure for each higher level difference co-array where virtual array

grows as the 2qth power of N as N increases. To the best of our knowledge, this has not been

reported before in the past.

Example: Figure 4.2 shows an example of optimal 4 level nested array with N = 6 physical

sensors. Here m = 2, n = 1. The choice of N1 = 3, N2 = N3 = N4 = 2 corresponds to an optimal

solution which is shown. The corresponding 4th order difference coarray contains the optimal

number 2m2q−1(m+ 1)− 1 = 2× 8× 3− 1 = 47 of sensors in the form of a ULA from −23 to 23 as

shown in the figure. Also, there is an extra ULA segment extending out on each side of this main

ULA segment and it has N1N2N3 = 3 × 2 × 2 = 12 elements on either side. Hence, starting with

6 physical sensors in the 4 level nested array, we get a total of 47 + 2× 12 = 71 virtual elements in

the 4th order difference co-array.

0 5 10 15 20 25
0

(a) Optimal 4 Level Nested array with N=6 sensors.

-50 -40 -30 -20 -10 0 10 20 30 40

(b) Corresponding 4th order Difference Co-Array

Extra ULA Segment Extra ULA Segment
MAIN ULA SEGMENT

Figure 4.2: Optimal 4 level nested array (optimized without considering the extra ULA segment)
with 6 sensors and its 4th order difference co-array. Notice the extra ULA segments that extend
out.
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4.6.2 Relation to exponential array

There exists an interesting result when the number of sensors (N ) is equal to 2q+ 1, as given by the

following Corollary to Theorem 4.6.1:

Corollary 4.6.1. The exponential array with sensor locations

{2n−1λ/2, n = 1, 2, · · · 2q + 1}

is the optimal 2q level nested array with 2q + 1 sensors, i.e., it is the solution to (4.17) when N = 2q + 1. �

Proof. Follows directly as a corollary of Theorem 4.6.1.

The exponential array was also obtained in [135] as the result of a different optimization prob-

lem. It was obtained when the degrees of the freedom in the second order difference set of the K-level

nested array was optimized, with respect to K and the number of sensors Nk, k = 1, 2, · · ·K in

the K levels (see Theorem 1 and Corollary 1 in [135]). Though the exponential array could achieve

the maximum number of virtual sensors possible (N(N − 1) + 1) in the second order difference

set of any array with N sensors, the second order difference co-array was not a filled ULA (it had

holes), thus rendering it inappropriate for DOA estimation with second order statistics using the

algorithm proposed in [135]. However, as we proved here, the 2q + 1 element exponential array is

the optimal array when 2qth order difference sets are considered and it gives rise to a ULA with

2(22q)− 1 elements, which can be readily used for DOA estimation, as shown in Sec 4.7.

4.6.3 Optimization including the extra ULA segment

If we include the extra ULA segment as given in Lemma 4.5.1, then the optimization problem

becomes

max
N1,···,N2q∈N+

(

2q∏
i=1

Ni +

2q−1∏
i=1

Ni) (4.18)

subject to
∑2q
i=1Ni = N + 2q − 1

The solution to this problem is given by the following Corollary to Theorem 4.6.1:

Corollary 4.6.2. One solution to (4.18) is given by Ni = m1 + 1, i = 1, 2, · · · , n1,

Ni = m1, n1 + 1 ≤ i ≤ 2q − 1
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Ni = m1 − 1, i = 2q Here m1 and n1 are the quotient and remainder respectively of N + 2q modulo 2q.

The corresponding maximized number of elements in the ULA segment of the 2qth order difference co-array

of the 2q level nested array is 2m2q−n1

1 (m1 + 1)n1 . �

Proof. Defining N
′

i = Ni, 1 ≤ i ≤ 2q − 1

N
′

2q = N2q + 1 we can rewrite the problem in (4.18) as

max
N
′
1,···,N

′
2q∈N+

(

2q∏
i=1

N
′

i )

subject to
∑2q
i=1N

′

i = N + 2q

Then the problem (4.18) is identical to the problem in (4.17), the only exception being that the right

hand side of the constraint has N + 2q instead of N + 2q−1. Hence, as a corollary to Theorem 4.6.1,

the optimal solution set {N ′i} is of the form N
′

i = m1 + 1, 1 ≤ i ≤ n1,

N
′

i = m1, n1 +1 ≤ i ≤ 2q where m1 and n1 are the quotient and remainder respectively of N +2q

modulo 2q.

Let N + 2q − 1 = 2qm + n and we fix N . Then, if n 6= 2q − 1, m1 = m and n1 = n + 1, otherwise,

m1 = m + 1,n1 = n. In the first case, the maximized number of virtual elements in (4.18) is

2m2q−n−1(m+ 1)n+1−1 whereas in the second case, it is 2(m+ 1)2q−n(m+ 2)n−1. The maximized

value for the problem in (4.17) however is 2(m + 1)nm2q−n − 1. Taking the difference, it can be

easily seen that in the optimal case, the extra ULA segments add O(m2q−1) (i.e., O(N2q−1)) more

virtual sensors to the main ULA segment containing O(N2q) elements.

4.7 Underdetermined DOA estimation with 2q level Nested Ar-

ray

In this section, we will demonstrate how to perform DOA estimation of O(N2q) sources from 2qth

order cumulants of the received data, using an extension of the DOA estimation algorithm origi-

nally proposed in [135] for the special case of q = 1. The method in [44] could identify only upto

O(Nq) sources and used a circular array to demonstrate it. In 1D, no systematic class of arrays

has so far been proposed or used by 2q MUSIC which can identify O(Nq) angles. However, in

this chapter, O(N2q) sources are shown to be identifiable with the 2q level nested array using the
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algorithm proposed in this section.

4.7.1 Proposed Spatial Smoothing Based Algorithm

Let us consider the model in (4.12) where the matrix B2q(θ) contains a (2M2q + 1) × D Vander-

monde submatrix Avirtual
2q (θ) corresponding to the ULA in the 2qth order difference co-array. Here

M2q denotes the degrees of freedom on positive side of the virtual ULA. For example M2q =

((N + 2q − 1)/2q)
2q − 1 for the case when N + 2q − 1 is a multiple of 2q. Note that we can par-

tition

Avirtual
2q (θ) =

 Uvirtual
2q (θ)

Lvirtual2q (θ)

 (4.19)

where the elements of Uvirtual
2q (θ) ∈ C(M2q+1)×D and Lvirtual2q (θ) ∈ C(M2q)×D are given respectively

by [Uvirtual
2q (θ)]m+M2q+1,n = ejπm sin θn ,

−M2q ≤ m ≤ 0, 1 ≤ n ≤ D

[Lvirtual2q (θ)]m,n = ejπm sin θn , 1 ≤ m ≤M2q, 1 ≤ n ≤ D

By extracting the appropriate rows from cvec in (4.12), we get z1 ∈ C(2M2q+1)×1 where

z1 = Avirtual
2q (θ)p (4.20)

Comparing with (4.1), we find that this behaves like the received signal model of a (2M2q + 1)

element ULA with the signal amplitudes being replaced by the 2qth order cumulants of the signals

(elements of p). Also the noise being Gaussian, its 2qth order cumulant (q ≥ 2) is zero, which

explains the absence of a noise term. To apply subspace based methods for DOA estimation using

this model, would require us to build a “covariance-like” matrix with the appropriate rank of null

space. However in the model in (4.20), the source vector p behaves like perfectly correlated sources.

This leads us to take inspiration from the concept of spatial smoothing [74],[163] for building up

a covariance like matrix where the sources will be decorrelated by spatial averaging. This is a

modification of our spatial smoothing based approach proposed in [135] because the model in

(4.20) is more simplistic due to absence of a noise term. The algorithm consists of the following
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steps:

1. Divide the vectors z1 into subvectors z1i ∈ C(M2q+1)×1, i = 1, 2, · · · ,M2q + 1 where

[z1i]m = [z1]i+m−1.

2. Construct the positive semidefinite matrix Cvirtual ∈ C(M2q+1)×(M2q+1) as

Cvirtual =
1

M2q + 1

M2q+1∑
i=1

z1iz
H
1i

3. Apply subspace based algorithms like MUSIC on Cvirtual to perform DOA estimation.

The complete algorithm is summarized in Table 4.1.

The identifiability of the proposed algorithm is given by the following theorem:

Theorem 4.7.1. The matrix Cvirtual can be expressed as

Cvirtual =
1

M2q + 1
CCH

C = Uvirtual
2q (θ)ΛUvirtual

2q (θ)H

where Λ ∈ RD×D is a diagonal matrix with Λi,i = pi, i = 1, 2, · · · , D and Uvirtual
2q is given in (4.19). Ap-

plication of subspace based DOA estimation algorithms on Cvirtual can identify upto M2q source directions.

�

Proof. Notice that

z1i = Uvirtual
2q (θ)Φi−1p

where Φ(θ) is a diagonal matrix whose diagonal elements are given by

[Φ]i,i = ejπ sin θi , i = 1, 2, · · · , D.

Then, (M2q + 1)Cvirtual

= Uvirtual
2q (θ)

(∑M2q+1
i=1 Φi−1ppHΦ(i−1)H

)
Uvirtual

2q (θ)H
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= Uvirtual
2q (θ)Λ

(∑M2q+1
i=1 φi−1φ

H
i−1

)
ΛHUvirtual

2q (θ)H

= Uvirtual
2q (θ)ΛUvirtual

2q (θ)HUvirtual
2q (θ)ΛHUvirtual

2q (θ)H where φi = CD×1 is given by

[φi]k = [Φi]k,k, 1 ≤ k ≤ D, 0 ≤ i ≤M2q

and the last equality in (4.7.1) is due to the fact that

M2q+1∑
i=1

φi−1φ
H
i−1 = Uvirtual

2q (θ)HUvirtual
2q (θ)

Since Uvirtual
2q (θ) is a Vandermonde matrix of rank D, Cvirtual is also of rank D and its null space

(of dimension M2q + 1 − D), spanned by the eigenvectors corresponding to the zero eigenvalues,

is the same as the null space of U
(virtual)
2q (θ)H . Hence, by performing an eigenvalue decomposition

of Cvirtual and using subspace based methods like MUSIC to obtain the pseudo spectrum, upto

D ≤M2q sources can be uniquely identified.

Notice that, similar to ULA based DOA estimation techniques, uniqueness (no false peaks) is guar-

anteed due to the ULA structure of the virtual array which forces Uvirtual
2q (θ) to have the Vander-

monde property.

4.7.2 Comparison with 2q MUSIC

Prior to the algorithm proposed in this chapter, the established algorithm for DOA estimation using

2qth order cumulants was the 2q MUSIC algorithm and its variants [44],[14]. Comparison between

the proposed algorithm and the 2q MUSIC algorithm for 1D DOA estimation problem, in terms

of required array geometry, identifiability, numerical complexity, and ability to handle correlated

sources is tabulated in Table 4.2.

Though the 2q MUSIC algorithm is applicable for non ULA virtual arrays, it might suffer from

a fundamental ambiguity problem that occurs for subspace based DOA estimation algorithms ap-

plied on non ULAs [3]. In other words, two different angles can map to the same steering vector,

resulting in ambiguity. However, since the proposed algorithm always exploits a ULA structure,

such ambiguity does not arise.

The major computational complexity arises from the singular value decomposition (SVD) of

the cumulant matrix (for 2q MUSIC) or the proposed covariance-like matrix, which is the first step
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towards application of subspace based DOA estimation techniques. For a N ×N matrix, the com-

plexity of SVD is O(N3). Since the matrix under consideration for 2q MUSIC is at most of size

O(Nq)×O(Nq) and for the proposed method, it is at most of size O(N2q)×O(N2q), the respective

complexities become O(N3q) and O(N6q).

Hence, the proposed algorithm is capable of identifying larger number of statistically inde-

pendent sources compared to the 2q MUSIC. On the other hand, 2q MUSIC can handle correlated

sources and also requires less computations. Further comparisons between the performance of

these two algorithms in terms of variation of RMSE with respect to SNR, snapshots, modeling er-

rors and resolution are numerically performed in Sec 4.9.

4.8 Comments on Identifiability and Cramer Rao Bound

In this section, we discuss the maximum number of sources that can be identified by any method

that uses the 2qth order cumulants of the received data. We relate the identifiability of the pro-

posed method to this bound. We also address the important issue of Cramer Rao bound analysis

[169],[81],[168] for our model for the particular case of number of sources exceeding the number of

physical sensors.

4.8.1 Identifiability

Among DOA estimation methods using the 2qth order cumulants of the received data, the previ-

ously reported method named 2q MUSIC could identify at most O(Nq) statistically independent

sources. The method proposed in this chapter can identify a number of sources which is equal

to half of the number of virtual elements in the 2qth order difference co-array of the physical ar-

ray. This can be as large as O(N2q) statistically independent sources for appropriately designed

arrays. This brings us to the question: “Fundamentally, what is the maximum number of statisti-

cally independent sources that can be identified by any method using the 2qth order cumulants of

the received data?” The question of fundamental identifiability in DOA estimation problems using

sensor arrays has previously been addressed in [20],[90],[197],[6],[3]. However, they either consider

a Gaussian model (for which higher order cumulants are zero) or consider the source signals to be

deterministic. In this chapter, for the first time, we attempt to answer the question of fundamental

identifiability of any method that exploits 2qth order cumulants of the received data, for any q ≥ 1.
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We first provide a necessary condition that provides an upper bound to this number.

4.8.2 An Upper Bound on Identifiability

The upper bound on the number of identifiable sources for 2qth order statistic based methods stem

from the “Implicit function theorem” and it is also known as “Equations vs Unknowns” bound.

This bound has been used in the past to prove results on identifiability of DOA parameters for

Gaussian source models (see [197],[6] and the references therein). The bound states: “The number of

real valued unknown parameters should be less or equal to the number of independent equations (extracted

from the 2qth order cumulant values in our case)”. We assume knowledge of perfect cumulant values,

which is true in the limit of the number of snapshots tending to infinity.

• Number of Real Unknowns:We have a total of N2q cumulant values (possibly repeated)

which are given by (4.14), (4.16) Cum(n1, · · · , n2q) =
∑D
d=1 c2q,sde

j 2π
λ (

∑q
i=1 xni−

∑2q
i=q+1 xni ) sin θd ,

1 ≤ ni ≤ N where xn denotes the physical location of the nth sensor. There are a total of 2D

real unknown parameters, viz.,

(1) D source DOA parameters: {θd, 1 ≤ d ≤ D}, and

(2) D 2qth order self cumulant values of the D sources: {c2q,sd , 1 ≤ d ≤ D}

• Number of Independent equations: Each of the N2q cumulant values in (4.8.2) gives rise to

an equation in the above 2D unknowns. However, not all N2q equations are independent.

We can see from (4.8.2) that the number of distinct equations is equal to the number of distinct

values in the set {
∑q
i=1 xni −

∑2q
i=q+1 xni , 1 ≤ ni ≤ N} which is nothing but the 2qth order

difference set of the physical array. Denoting N (ca)
2q as the number of elements in this set, the

number of distinct equations therefore becomes N (ca)
2q .

According to the equations v/s unknowns bound, for reliable identifiability, we should have [6]:

2D =No. of Unknowns

≤ No. of Independent Equations

≤ No. of Distinct Equations

= N
(ca)
2q . Therefore we get an upper bound on the maximum number of identifiable sources as

D ≤ bN
(ca)
2q

2 c Since the difference set is always symmetric about zero and it includes the zero, N (ca)
2q
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is always odd and hence we can modify the upper bound as

D ≤
N

(ca)
2q − 1

2
(4.21)

4.8.3 Achieving the Upper Bound with the Proposed Method

We now consider the special class of arrays whose 2qth order difference set is a uniform linear array.

Let us call this class as “2q ULA”. The 2 level nested array is a 2q ULA, corresponding to q = 1. For

such arrays, the proposed spatial smoothing based algorithm effectively builds a covariance matrix

using M2q + 1 elements of the virtual array where N (ca)
2q = 2M2q + 1. Subsequently, subspace based

algorithms acting on this covariance matrix can identify any D DOA angles provided

D ≤M2q =
N

(ca)
2q − 1

2
.

Hence for the class of “2q ULA” arrays, the proposed algorithm can indeed achieve the upper

bound given by (4.21). This leads us to the following theorem:

Theorem 4.8.1. In 1D DOA estimation problems involving D statistically independent sources and using

2qth order cumulants of the received data, the number of identifiable sources D, is always bounded by

D ≤
N

(ca)
2q − 1

2

whereN (ca)
2q denotes the cardinality of the 2qth order difference set of the physical sensor locations. Moreover,

if the physical array is such that the 2qth order difference co-array is a ULA, the proposed spatial smoothing

based algorithm can achieve this bound, i.e., it can identify upto
N

(ca)
2q −1

2 source DOAs unambiguously. �

The following comments follow from the above theorem:

1. Although the proposed spatial smoothing based algorithm uses only about half of the 2qth

order difference set, this does not result in suboptimal identifiability (i.e., we do not really

“lose” half of the freedom) because it achieves the maximum identifiability we can obtain.

2. For a uniform linear array, N (ca)
2q = 2q(N−1)+1 and hence the maximum number of identifi-

able sources using 2qth order cumulants is given by D ≤ q(N −1) . The traditional 2q MUSIC

[44] can in fact attain this (even without using the 2qth order difference set). So the proposed

method does not provide increased identifiability if a physical ULA is used.
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3. The maximum value of N (ca)
2q is O(N2q) and the 2q level nested array’s 2qth order difference

set contains O(N2q) elements. Hence, the proposed method acting on the 2qth order nested

array can identify O(N2q) sources.

4.8.4 Cramer Rao Bound Study

There are traditionally two types of Cramer Rao bound that are identified, depending on the sta-

tistical characterization of the source signals. Consider the model in (4.1). We can consider two

separate Cramer Rao bounds [168] as follows:

1. Deterministic Cramer Rao Bound[168],[169]: If the source signals {sd(t), 1 ≤ d ≤ D} are

considered as deterministic (non random) unknown waveforms, the corresponding Cramer

Rao bound is known as deterministic or conditional Cramer Rao bound.

2. Stochastic Cramer Rao Bound[168],[81]: If the source signals {sd(t), 1 ≤ d ≤ D} are random

(i.e., for each d, the sequence {sd(t)}t=Tt=1 , varies from realization to realization), then the cor-

responding Cramer Rao bound is known as the Stochastic or Unconditional Cramer Rao bound.

Evidently, in this case, the Cramer Rao bound depends on the probability distribution of the

random source signal waveforms.

In our case, we are interested in the underdetermined scenario (i.e., D > N ). It is to be noted that

in our model, we assume the source signals to be random and we perform DOA estimation by

computing the cumulants of their distribution. So, the deterministic model loses its relevance for

our model. However, we will show that even if we had treated the source signal waveforms to be

unknown deterministic quantities, there would exist no consistent estimator for the DOAs by the

following argument.

4.8.4.1 Deterministic Cramer Rao Bound

The deterministic CRB for the model under consideration was rigorously derived and studied in

[169]. However the final closed form expression for the deterministic CRB obtained in [169] only

applies to the case D ≤ N . We will now show that the when D > N , the Fisher Information matrix

for the deterministic model is singular, as follows:

• Singularity of Fisher Information Matrix: Equation (E.9) in Appendix E of [169] provides

the structure of the deterministic FIM. Denoting Θ = [ω1 · · ·ωD]T where ωi = π sin θi, the
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CRB Covariance matrix, CRB(Θ) for the estimate of Θ, corresponds to the lower rightmost

D × D block of Σ. In [169], the expression for CRB(Θ) is derived under the assumption

D < N . For D > N (which is the primary focus of this chapter), the FIM actually turns out to

be singular and hence cannot be inverted. This is because the array manifold matrix A(Θ) is

a N ×D matrix and hence the matrix

H = A(Θ)HA(Θ)

becomes rank deficient matrix for D > N . So each block

 H̄ −H̃

H̃ H̄

 on the diagonal of

the FIM in Equation (E.9) in [169] becomes rank deficient as well. Here H̄ and H̃ denote the

real and imaginary parts of H respectively. So the FIM becomes singular.

• Implications of Singular Fisher Information Matrix: The implications of the singular Fisher

Information matrix has been addressed in depth in [167]. In such cases, the Cramer Rao

bound is obtained by considering the Moore-Penrose pseudoinverse of the FIM. However,

as pointed out in [167], such a Cramer Rao bound is misleading because when the FIM is

singular, there exists no unbiased estimator of the parameters with finite variance, except

under unusual conditions. So in such situations, the unknown parameters cannot be reliably

estimated.

In the light of the above discussion, the deterministic Cramer Rao bound loses its relevance for

the underdetermined scenario. We now examine the stochastic CRB which is the appropriate tool

for the model under consideration.

4.8.4.2 Stohcastic Cramer Rao Bound

Derivation of the stochastic Cramer Rao bound is more challenging than the deterministic counter-

part and it has been discussed in [81]. The stochastic CRB depends on the type of the distribution

that the random source signals s(t) are assumed to follow. In DOA estimation problems, usually

the source signals are assumed to be Gaussian for which the CRB has been studied in [81], [3].

However, the Gaussian model is not appropriate for our case since for the Gaussian model, the

2qth order cumulants, for q ≥ 2, are zero. In the simulations of this chapter, we assume the sig-

nals to be BPSK modulated following discrete uniform distribution. However, the stochastic CRB
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for such a model turns out to be involved and approximate expressions were derived recently in

[55],[54] for the cases of only one and two sources (i.e., D = 1, 2). Currently there exists no literature

addressing the derivation of CRB for D ≥ N and it might as well be a topic of research in its own

right.

4.9 Simulations

We now perform numerical study of the performance of the proposed 1D DOA estimation algo-

rithm applied on a suitable nested array and compare it with the existing 2q MUSIC algorithm for

q = 2 (i.e., using 4th order cumulants). We consider a total of N = 6 physical sensors and arrange

them in form of a 4 level nested array with N1 = N2 = N3 = 2, N4 = 3, on which we apply the

proposed algorithm. For applying 2q MUSIC, we arrange the 6 sensors in the form of a ULA and ar-

range the cumulants according to the orientation corresponding to l = 1. The source amplitudes are

assumed to be statistically independent uniformly distributed (in particular, non Gaussian) BPSK

symbols (i.e., each source amplitude takes up values ±1 with probability 1/2 each). The following

points are to be noted:

• The 4 MUSIC algorithm cannot exploit the virtual elements of the 4th order difference set,

they exploit a lower order virtual array, depending on the orientation. If we use the 4 level

nested array for 4 MUSIC, the virtual array “seen” by the 4 MUSIC algorithm will not be an

ULA and hence it will result in spurious peaks in the MUSIC spectrum. Since the virtual array

of the ULA corresponding to l = 1 is still an ULA, the 4 MUSIC will not result in ambiguity

in the estimated angles.

• The identifiability of the 4 MUSIC for the 6 sensor ULA and orientation l = 1 is 2.(6 − 1) =

10 since the corresponding virtual array of the ULA has 2.(6 − 1) + 1 = 11 elements. The

identifiability of the proposed method on the 6 sensor 4 level nested array isN1N2N3N4−1 =

23. So, for fair comparison between the two methods, we will test both of them on a number

of sources D ≤ 10, so that they are identifiable by both.
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4.9.1 Representative MUSIC Spectra

We first consider D = 8 sources with angles given by

{−30◦, 60◦, 36◦,−60◦, 0◦, 45◦,−45◦, 15◦} (4.22)

and plot the representative MUSIC spectra for SNR = 6 dB. Fig. 4.3 (a) shows the MUSIC spectrum

for the proposed method and (b) shows the MUSIC spectrum for 4 MUSIC for a snapshot value of

T = 800. It can be clearly seen that for this value of snapshots, the 4 MUSIC cannot resolve all

8 sources whereas the proposed method can resolve all 8 sources. On increasing the number of

snapshots to T = 3000, both the proposed method and 4 MUSIC are able to identify all 8 sources,

as shown in Fig. 4.3 (c) and (d).

Both 4 MUSIC and the proposed method use subspace based DOA estimation techniques,

which are superresolution by nature, i.e., they are not limited by the Rayleigh resolution limit of

beamforming based approaches. We now plot representative MUSIC spectra to demonstrate the

resolution performance of both the methods. We consider D = 2 sources with angles {30◦, 32◦}

separated by 2◦, which is beyond the Rayleigh limit of the virtual arrays seen by both the methods.

We consider SNR = 6 dB. Considering a snapshot value of T = 2000, the MUSIC spectra reveal

that the proposed method can resolve these two sources whereas 4 MUSIC fails to do so, as shown

in Fig. 4.4. However, at a higher snapshot value of T = 5000 snapshots, both the methods are able

to resolve the two sources as shown in Fig. 4.4 (c) and (d). Note the sharpness of the peaks obtained

from the proposed method, as compared to 4 MUSIC.

4.9.2 RMSE vs Snapshots

We now study the RMSE performance of the two methods for two different sets of source angles.

For the first set, we consider D = 6 sources with angles equal to the first 6 values in (4.22) and

for the second set, we consider D = 8 sources with angles given by (4.22). We consider SNR= 6

dB. We compute the RMSE of the D sources by averaging over 1000 Monte Carlo runs for each

snapshot value. We finally plot the averaged RMSE vs snapshots, averaged over all D sources.

The corresponding plots for D = 6 and D = 8 are given by Fig. 4.5 (a) and (b) respectively.

Representative numbers for the averaged RMSE for selected values of snapshots are tabulated in

Table 4.3 for D = 6. It can be clearly seen that the proposed method outperforms 4 MUSIC and the
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Figure 4.3: MUSIC Spectra forD = 8 sources, produced by (top left),(bottom left) Proposed Method
on a 4 level nested array with 6 sensors and (top right),(bottom right) 2q MUSIC on a ULA with 6
sensors. Here T = 800, for (top left) and (top right), and T = 3000 for (bottom left) and (bottom
right). SNR= 6 dB.

difference between the two methods is greater for the larger number of sources (i.e., D = 8). The

performance of the two methods get closer for higher values of snapshots.

4.9.3 RMSE vs SNR

Next, we study the RMSE vs SNR performance of the two methods for the above two sets of source

angles. We consider a snapshot value of T = 2000. The corresponding plots for D = 6 and D = 8

are given by Fig. 4.6 (a) and (b) respectively. Representative numbers for the averaged RMSE

for selected values of SNR are tabulated in Table 4.4 for the case D = 8. In this case as well, the

proposed method has lower RMSE compared to 4 MUSIC and the difference is larger for D = 8.

4.9.4 Model Perturbation

We now study the effect of model perturbation on the proposed method (in conjunction with 4

level nested array) and 2q MUSIC. We consider the first set of D = 6 DOAs. Denoting a(θi) as

the steering vector for ith source, we perturb it by adding a modeling error vector ei to get the
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Figure 4.4: MUSIC Spectra forD = 2 sources, produced by (top left),(bottom left) Proposed Method
on a 4 level nested array with 6 sensors and (top right),(bottom right) 2q MUSIC on a ULA with 6
sensors. Here T = 2000, for (top left) and (top right), and T = 5000 for (bottom left) and (bottom
right). SNR= 6 dB.
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Figure 4.5: RMSE vs number of snapshots (T ) of the proposed method and 4 MUSIC correspond-
ing to (top) D = 6 sources, and (bottom) D = 8 sources. Here N = 6, SNR= 6 dB. No Model
Perturbation.
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Figure 4.6: RMSE vs SNR (in dB) of the proposed method and 4 MUSIC corresponding to (top)
D = 6 sources, and (bottom) D = 8 sources. Here N = 6, T = 2000. No Model Perturbation.

perturbed vector as

ã(θi) = a(θi) + ei, 1 ≤ i ≤ D

where ei are assumed to be zero mean statistically independent Gaussian vectors with E(eie
H
i ) =

σ2
eI where σ2

e = 0.0025. Assuming SNR= 6 dB, the averaged RMSE obtained from the proposed

method and the 4 MUSIC are plotted as a function of snapshots in Fig. 4.7. Representative numbers

for the RMSE for selected snapshot values are also tabulated in Table 4.3. It can be seen that the

proposed algorithm is more robust to modeling errors. In fact, the gap between the RMSE values

of the two methods is found to be larger for the perturbed model as compared to the unperturbed

case.

4.9.5 Probability of Resolution

As exhibited through the representative MUSIC spectra plots in Fig. 4.4, the proposed MUSIC

appears to have better resolution power than 4 MUSIC. We consider the same two sources at 30◦

and 32◦ and estimate the probability of resolution as a function of the number of snapshots for both
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Figure 4.7: RMSE vs number of snapshots (T ) of the proposed method and 4 MUSIC for the per-
turbed model. Here N = 6, SNR= 6 dB, D = 6.

the methods. Assuming SNR= 6 dB, we perform 1000 Monte Carlo runs for each snapshot value

and count the number of times each method can resolve two sources. By dividing this number by

1000, we get an estimate of the probability of resolution of the two methods. The corresponding plot

is given by Fig. 4.8 and representative numbers are tabulated in Table 4.5. The proposed method

can resolve the two sources with a perfect resolution probability of 1 for all snapshot values. The 4

MUSIC performs poorly for low snapshot values and it reaches a probability of resolution of 0.9 at

a very high snapshot value of T = 7000.
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Figure 4.8: Probability of resolving the two sources at 30◦ and 32◦ of the proposed method applied
on 4 level nested array and 4 MUSIC on ULA. Here N = 6, SNR= 6 dB.

4.10 Conclusion

In this chapter, we re-examined the 2qth order cumulant based DOA estimation techniques and

demonstrated how the identifiability of the earlier methods can be increased by looking at the

2qth order difference co-array hidden in the cumulant matrices. We also proposed a new array
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structure whose 2qth order difference co-array provides O(N2q) degrees of freedom when used

in conjunction with 2qth order statistics. An efficient algorithm for successfully estimating DOAs

of O(N2q) sources using N physical sensors was also proposed. The combination of the 2q level

nested array and the proposed algorithm can identify O(N2q) statistically independent sources

which is much larger compared to the identifiability of the existing 2q MUSIC algorithm. In fact,

the proposed algorithm was proved to attain the maximum identifiability obtained from 2qth or-

der cumulant based processing. The performance of the proposed algorithm and array geometry

was numerically studied and compared with 2q MUSIC and the proposed method shows better

RMSE performance for a given number of snapshots and SNR. It is also more robust to modeling

errors and has a better resolution capacity. However, the proposed method does not apply to sta-

tistically dependent sources which can be handled by the 2q MUSIC method. Also, the proposed

algorithm needs more computations than 2q MUSIC. So although the proposed method shows su-

perior performance and identifiability for statistically independent sources, the 2q MUSIC might be

a preferred choice in situations where the sources are statistically dependent and/or where com-

putation cost is high. Future work in this area will be directed towards analyzing the performance

of the proposed array structure and algorithm in terms of RMSE of DOA estimates, resolution, and

robustness to modeling errors, which we have studied only numerically in this chapter.

4.11 Appendix

4.11.1 Virtual Sensors in the 2qth order Difference set

4.11.1.1 Proof of Theorem 4.5.1

We will prove the result by induction on the order of the difference set. Let us denote the set of

sensor positions (normalized with respect to λ/2) in the 2q level nested array as S2q . The second

order difference set of the 2q level virtual array is described by

{u1 − u2}, u1, u2 ∈ S2q. (4.23)

Letting u1 and u2 take up values from the set S2 ⊂ S2q where

S2 = {1, 2, · · · , N1 − 1}
⋃
{N1n, 1 ≤ n ≤ N2},
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it can be readily seen that {u1 − u2} behaves like the difference co-array of a 2 level nested array

with N1 − 1 sensors in the first level and spacing N1 in the second level. Hence, {u1 − u2} contains

all integers [−N1N2 + 1, · · · , 0, · · · , N1N2 − 1] [135]. This forms the basis for the induction.

For a given integer k, let us define the set S(ca)
k as

S
(ca)
k = {m, −

k∏
i=1

Ni + 1 ≤ m ≤
k∏
i=1

Ni − 1}

and the set Uk as

Uk = {
k−1∏
i=1

Nin, 1 ≤ n ≤ Nk}.

Now assume that the (2m−2)th order difference set (m ≤ q) of the 2q level nested array contains

all integers given by the set S(ca)
2m−2. We will show that this implies that the 2mth order difference

co-array contains all integers in the set S(ca)
2m . To see this, notice the 2mth order difference set of the

2q level nested array is given by the set S(ca)
2m .

{v1 − v2 + u2m−1, v1, v2 ∈ S2q} (4.24)

where

u2m−1 ,
m−1∑
i=1

ui −
2m−2∑
i=m

ui, ui ∈ S2q

Then, under the induction assumption, u2m−1 takes up all integer values in the range given by the

set S(ca)
2m−2. Now, let v2 take up values from U2m−1. Then the set {v2 − u2m−1, v2 ∈ U2m−1, u2m−1 ∈

S
(ca)
2m−2} contains the 2nd order difference set of a 2 level nested array with

∏2m−2
i=1 Ni sensors (de-

noted by u2m−1) in the first level and the second level has N2m−1 sensors (denoted by v2) with

intersensor spacing
∏2m−2
i=1 Ni. Hence it contains all integers in the set S(ca)

2m−1. In a similar fashion,

denoting u2m , v2−u2m−1, the 2mth order difference set is rewritten as {v1−u2m}. Letting v1 take

up values in the range from the set U2m, it can be again seen that the set

{v1 − u2m, v1 ∈ U2m, u2m ∈ S(ca)
2m−1}

contains the 2nd order difference set of a 2 level nested array with
∏2m−1
i=1 Ni sensors in the first
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level and the second level has N2m sensors (and intersensor spacing
∏2m−1
i=1 Ni). Hence it contains

all integers in the set S(ca)
2m .

4.11.1.2 Virtual sensors in the extra ULA segment

For each 1 < m ≤ q in the above induction, consider again the set of differences {v1 − u2m}where

v1 =

2m∏
i=1

Ni, u2m ∈ S(ca)
2m−1.

When u2m takes up non positive values in S(ca)
2m−1, i.e., values from the set

{−(

2m−1∏
i=1

Ni − 1), · · · , 0},

the set of differences {v1 − u2m} takes up all values

{
2m∏
i=1

Ni + n, 0 ≤ n ≤
2m−1∏
i=1

Ni − 1}

which adds an ULA segment on the positive end of the main ULA segment for each m. Due

to symmetry of the 2q order difference set about 0, the corresponding negative values are also

present, thereby adding the two extra ULA segments. Since this holds for each 1 < m ≤ q, we get

the desired result by considering m = q.

Proof of Theorem 4.6.1

Given a feasible set of values {Ni}, let us consider any pair of integers Nk and Nl (1 ≤ k, l ≤ 2q)

such that

Nk −Nl ≥ 2.

Then, we can create a new pair of integers N
′

k and N
′

l so that

N
′

k = Nk − 1, N
′

l = Nl + 1,
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such that

N
′

kN
′

l = NkNl + (Nk −Nl − 1) > NkNl

Hence replacing Nk and Nl by N
′

k and N
′

l respectively strictly increases the objective function,

while still satisfying the constraint (since N
′

k + N
′

l = Nk + Nl), as long as Nk −Nl ≥ 2. Therefore,

in the optimal solution {Nopt
i }, no two integers Nopt

k and Nopt
l can differ by more than 1. Since the

solution to (4.17) is permutation symmetric, we can say that Nopt
i = m1 + 1, i = 1, 2, · · · , n1,

Nopt
i = m1, i = n1 + 1, n1 + 2, · · · , 2q where m1 and n1 (0 ≤ n1 ≤ 2q − 1) are integers satisfying∑2q
i=1N

opt
i = N + 2q − 1, implying

2qm1 + n1 = N + 2q − 1 = 2qm+ n

Since 0 ≤ n, n1 ≤ 2q− 1, it follows from the uniqueness of remainder of N + 2q− 1 modulo 2q, that

n = n1 and m = m1

Substituting the optimal values in the objective function, it can be easily verified that the maximized

value is 2m2q−n(m+ 1)n − 1.
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Table 4.1: Summary of Proposed Spatial Smoothing Based Algorithm.

Given Received Signal Sequence {y(t)}Tt=1 using
a 2q level nested array, number of sources
= D.

Step 1 Compute estimates of 2qth order cumu-
lant of the received data y(t) using (4.5)
and replacing the expectations by cor-
responding temporal snapshot averages
(averaged over T snapshots). A total of
N2q cumulant values are computed which
are arranged in the form of the vector
cvec ∈ CN

2q

.

Step 2 Compute the 2qth order difference set of
the physical array. Let 2M2q + 1 denote
the number of elements in its ULA seg-
ment (always odd), extending from −M2q

to M2q . Extract the rows of cvec which cor-
responds to the elements in the ULA seg-
ment of the 2qth order difference co-array,
to obtain the vector z1 ∈ C2M2q+1. Order
the elements in z1 such that the ith row
corresponds to the element in the ULA
segment at location −M2q + i− 1.

Step 3 Divide the vector z1 into M2q + 1 overlap-
ping subvectors

z1i ∈ C(M2q+1)×1, i = 1, 2, · · · ,M2q + 1

such that

[z1i]m = [z1]i+m−1, 1 ≤ m ≤M2q + 1

Step 4 Construct the positive semidefinite matrix
Cvirtual ∈ C(M2q+1)×(M2q+1) as

Cvirtual =
1

M2q + 1

M2q+1∑
i=1

z1iz
H
1i.

Step 5 Apply subspace based algorithms like
MUSIC on Cvirtual in the same way as ap-
plied on the covariance matrix of aM2q+1
element ULA, to perform DOA estimation
of upto D ≤M2q sources.
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Table 4.2: Comparison of Proposed Algorithm and 2q MUSIC for 1D DOA Estimation

Virtual array Exploited Required Geometry Maximum
Iden-
tifia-
bility

Handles
Corre-
lated
sources

Complexity

Proposed 2qth order difference set 2qth order difference set
needs to be ULA

O(N2q) No O(N6q)
computa-
tions

2q MUSIC Different virtual arrays,
characterized by orienta-
tion l.
Can exploit upto qth or-
der difference set for even
q.

Virtual array can be ULA
or non ULA. Ambiguity
arises for non ULA.

O(Nq) Yes O(N3q)
computa-
tions.

Table 4.3: RMSE (in degrees) vs Snapshots T , D = 6 Sources

T = 600 T = 800 T = 1000 T = 4000
No Perturba-
tion

RMSE
(Pro-
posed)

0.2527 0.2185 0.1931 0.1044

RMSE
(2q MU-
SIC)

3.34 0.99 0.5686 0.2575

With Model
Perturbation

RMSE
(Pro-
posed)

0.5227 0.2289 0.1996 0.1308

RMSE
(2q MU-
SIC)

3.3 1.237 0.6172 0.4144

Table 4.4: RMSE (in degrees) vs SNR, D = 8 Sources, No Perturbation

SNR=
0.83 dB

SNR=
4.6 dB

SNR=
7.2 dB

SNR=
15.5 dB

RMSE (Pro-
posed)

0.249 0.22 0.209 0.177

RMSE (2q
MUSIC)

3.66 1.44 0.686 0.508
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Table 4.5: Probability of Resolution vs Snapshots, D = 2 Sources, No Perturbation

T = 1000 T = 3000 T = 5000 T = 7000

Probability
(Proposed)

1 1 1 1

Probability
(2q MUSIC)

0.02 0.34 0.705 0.9
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Chapter 5

Wideband Array Processing

5.1 Introduction

In this chapter, we will consider a wideband model for the signal received by an antenna array,

as opposed to the narrowband model that has been so far studied in Chapters 2, 3 and 4. We will

develop new algorithms for two problems in wideband array processing, namely, DOA estimation

of wideband signals and frequency invariant beamforming.

The first part of this chapter considers the problem of estimating the directions-of-arrival (DOA)

of signals impinging on a sensor array. This problem has widespread applications in source lo-

calization for radar, sonar and wireless communication systems. When the incoming signals are

wideband, the most popular approach is to decompose the wideband signal into narrowband com-

ponents and wideband DOA estimation in that case is mainly concerned with finding a clever way

to use the multiple correlation matrices at different frequencies to get accurate DOA estimates. The

incoherent signal subspace method (ISSM) [196]is the simplest wideband method which estimates

the source DOAs separately at each narrowband frequency and then constructs the final estimate

by taking an average. While this works well at high SNR, the performance can suffer severely at

low SNR because even a single outlier from one narrowband component can potentially lead to in-

accurate estimates through the averaging process. Also it is incapable of handling coherent sources.

To overcome these drawbacks, several coherent methods have been suggested [191, 64, 106, 46, 93].

Of these, the coherent signal subspace method (CSSM) [191] was the earliest which aimed at focus-

ing the signal subspace at each frequency to that at a certain reference focusing frequency and then

construct a single correlation matrix using these focused narrowband correlation matrices on which

narrowband DOA estimation algorithms can be applied. This method has good performance at low
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SNR and can also handle coherent sources [191]. However, construction of the focusing matrices

needs preliminary estimates of DOAs and the performance of CSSM is sensitive to the error in the

preliminary estimates, which can give rise to biased final estimates [171]. The weighted average of

signal subspaces (WAVES) [46] is another coherent method and it also requires focusing matrices.

Though it can avoid initial estimates by using BI-CSSM technique, its performance is worse than

when it uses focusing matrices with good initial estimates. Recently, a novel wideband DOA algo-

rithm called test of orthogonality of projected subspaces (TOPS) [204] has been proposed. It is in

between the coherent and incoherent processing, performing best at low to mid SNR and does not

require initial estimates. However, the spatial spectrum used in TOPS can show false peaks which

is a disadvantage of this method. It is seen that coherent methods are definitely advantageous in

terms of good performance at low SNR and capability for handling coherent sources. However, the

dependence of the focusing matrices used in coherent methods, on the preliminary DOA estimates

is a severe drawback of these methods which gives rise to increased computation and also poten-

tially biased estimates. To overcome this problem, in this chapter, we suggest a new technique to

focus the signal subspaces at different frequencies, which does not require the preliminary DOA

estimates. This technique, which we call autofocusing, constructs the focusing matrices entirely on

the basis of the received data and does not require knowledge of array manifold. Also, the focusing

matrices are made unitary by construction so that there is no focusing loss.

The second part of the chapter focuses on beamforming for wideband signals. In array process-

ing for wideband signals, the temporal frequency and the spatial angle of the impinging signals

are usually coupled together in the phase, which makes the resulting beampattern a function of

both frequency and spatial angle. To realize a desired beampattern in such cases, tapped-delay

line filters are needed following each sensor. The number of taps needed to generate a beampat-

tern, increases with the bandwidth of the signal, the number being one per sensor for the case

of narrowband beamforming. This increase in the processing overhead for wideband signals can

potentially lead to increased convergence time and poor numerical properties of the adaptive algo-

rithms, when these tap weights need to be adapted in real time. Hence, as an alternative approach,

frequency invariant beamforming is often used to make the resulting beampattern approximately

independent with respect to the temporal frequency, thereby reducing all further processing to that

of usual narrowband array processing. It has been studied extensively because of the advantages it

offers in terms of reduced complexity for adaptive beamforming, broadband DOA estimation and
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so forth [31, 115, 161, 112, 192, 193, 194]. Several techniques exist in literature discussing generation

of these frequency invariant beams [31, 115, 161, 193]. However, all of them either use filters or

frequency dependent weights following each sensor.

In [82], however, it has been shown that frequency invariant beamforming can be achieved us-

ing just one weight per sensor instead of tapped delay-lines, by extending the dimension of the

array from linear to rectangular. We review this idea briefly in Section 5.6. In this chapter, we gen-

eralize this concept to the case of more generic 2 dimensional arrays with elements on a possibly

non separable lattice (as opposed to the rectangular array which is an example of a separable lat-

tice) and demonstrate how to perform frequency invariant beamforming by using the extra spatial

dimension provided by these lattices, to get rid of temporal processing. In particular, we study the

effect of different lattice geometries (encompassing the special cases of a ULA and a rectangular

array) aiming to gain insight into how they affect the approximation of the frequency invariant

beams. We describe how, using only one constant weight at the output of each sensor, frequency

invariant beamforming can be achieved by designing the beam in a (non linear) transform domain

(instead of the original angle-frequency domain) where a simple DFT relation exists between the

weights to be designed and the beampattern to be approximated. However, the lattice geometry

plays an important role in deciding what the domain of design looks like in the transformed do-

main. To exploit this effect to the maximum extent, we propose a new approach to sampling the

beampattern in the transform domain and the simulations based on this approach reveal that non

separable lattices might be a better choice in terms of approximating the beampattern, the reason

for which is also qualitatively explained. As an application of the frequency invariant beamform-

ing, we demonstrate how to perform wideband DOA estimation using these frequency invariant

beams, using only narrowband subspace based approaches.

The performance of the frequency invariant beamformers however depends on the size of the

array and for a 2 dimensional array, it could mean the use of a large number of sensors. A novel

solution to this is proposed by using the so called difference co-array of a physical array. The

concept of difference co-array has been explored previously in detail in [89] and the references

therein. We propose a new approach to beamforming based on this difference co-array which

essentially performs spatial filtering of the power of the signal (instead of amplitude). This non

linear approach to beamforming, as we shall show, enables us to exploit the additional degrees of

freedom provided by the co-array of the actual array and we shall precisely use this to avoid using
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additional sensors. We first prove that any two dimensional array of size M ×N with elements on a

lattice, can be generated using 2 suitable ULAs withM+N elements. We then propose a novel idea

of producing the same frequency invariant beampattern as generated by an actual lattice, using

the proposed beamforming approach based on the difference co-array. The additional freedom

provided by the extra spatial dimension is used to get rid of TDL filters in wideband frequency

invariant beamforming.

Portions of this chapter have been presented in [132] and [131].

5.2 Outline

The rest of the chapter is organized as follows. In Section 5.3, we briefly review some impor-

tant wideband DOA estimation algorithms. In Section 5.4, we discuss the proposed autofocussing

method. In Section 5.5, we provide numerical examples to compare the proposed method with ex-

isting wideband direction finding algorithms. In Section 5.6, the wideband beamforming model is

introduced and the problem statement is explained. In Section 5.7, we introduce the theory of fre-

quency invariant beamforming using 2 dimensional arrays with elements on a lattice. We provide

design examples and study the effect of lattice geometry on the frequency invariant beamforming.

In Section 5.8, we briefly review how to generate virtual arrays with elements on a lattice using dif-

ference co-array of 1D arrays. We then propose the design of frequency invariant beams using the

difference co-array of suitable combination of ULAs, to gain the same O(N2) degrees of freedom of

a lattice using only O(N) physical sensors.

5.3 Background of Wideband Beamforming

5.3.1 Signal Model

Consider an N element linear array which has the property that D < N steering vectors of the ar-

ray corresponding toD different source angles are linearly independent, spanning aD dimensional

subspace ( also known as the signal subspace). ConsiderD < N wideband sources s1(t), s2(t), · · · , sD(t)

impinging on the array from directions of arrival θ1, θ2, · · · , θD respectively. The signal received at
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the nth sensor is given by

xn(t) =

D∑
d=1

sd(t− τn(θd)) + ηn(t), n = 1, 2, · · · , N (5.1)

where τn(θd) is the propagation delay associated with the dth source and the nth sensor and ηn(.) is

the additive noise at the nth sensor. The incoming signal at each sensor is first sampled at frequency

fs and the samples are then partitioned into segments of K = ∆Tfs samples each. Then, a K-point

DFT is applied to the K samples in a segment. The DFT coefficients from the N sensors can be

expressed as

X[j] = A(fj)S[j] + N[j], j = 0, 1, · · · ,K − 1 (5.2)

where

fj =
j

K
fs, (5.3)

and X[j] =

[
X1[j] X2[j] · · · XN [j]

]T
with Xn[j] denoting the jth DFT coefficient of samples

of xn(t). Also,

A(fj) =

[
aθ1(fj) aθ2(fj) · · · aθD (fj)

]
. (5.4)

with

aθd(fj) =
[
e−j2πfjτ1(θd), · · · , e−j2πfjτN (θd)

]T
(5.5)

as the steering vector of the array at frequency fj for the dth source.

N[j] =

[
N1[j] N2[j] · · · NN [j]

]T
. (5.6)

S[j] =

[
S1[j] S2[j] · · · SD[j]

]T
(5.7)
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where Nn[j] and Sd[j] are the jth DFT coefficients of ηn(t) and sd(t) respectively. Under the as-

sumption that ∆T is long enough compared to the correlation time of the signals and the noise so

that we can regard the DFT coefficients as uncorrelated [64, 191], we can write

Rxx[j] , E[X[j]XH [j]] = A(fj)Rss[j]A(fj)
H + σ2

nI. (5.8)

Here Rss[j] = E[S[j]SH [j]] and we have assumed the noise samples to be zero mean temporally

and spatially white Gaussian random process with variance σ2
n so that the autocorrelation matrix at

each DFT frequency is σ2
nI. Assuming that the D sources are uncorrelated, the D×D matrix Rss[j]

has full rank. Then, if the eigenvectors of Rxx[j] are ordered in decreasing order with respect

to their eigenvalues, the first D eigenvectors span the same subspace of dimension D (known as

signal subspace at frequency fj) as R(A(fj)) and are known as the signal subspace eigenvectors.

The last N −D eigenvectors are called the noise subspace eigenvectors and they span a subspace

of dimension N −D orthogonal to the signal subspace.

5.3.2 Review of Coherent and Incoherent Methods of Wideband DOA Estima-

tion

Incoherent signal subspace method (ISSM) [196] is the simplest wideband DOA estimation method

which estimates the signal and noise subspace at each frequency independently and averages the

estimated DOAs from each frequency bin to get the final estimate. This method, as mentioned

in the earlier section, suffers at low SNR [191]. The coherent method [191] attempts at solving

this problem by combining the signal subspaces coherently into one single autocorrelation matrix

to which narrowband high resolution methods (such as MUSIC) can be applied. The key idea is

to design a focusing matrix T(fj) which transforms the array manifold at frequency fj to that at a

common frequency f0 as follows

T(fj)A(fj) = A(f0). (5.9)

Then the coherent autocorrelation matrix is generated as

Rcoh =

K−1∑
j=0

T(fj)Rxx[j]TH(fj) = A(f0)RsA
H(f0) + σ2

n

K−1∑
j=0

T(fj)T
H(fj) (5.10)
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where Rs =
∑K−1
j=0 Rss[j]. Now any standard narrowband DOA estimation method such as MU-

SIC [160], can be applied by computing the eigenvectors of the matrix pencil (Rcoh,
∑K−1
j=0 T(fj)T

H(fj)).

The coherent method is potentially capable of better performance even at low SNR as it first focuses

the energy at different frequencies at the focusing frequency and then performs narrowband DOA

estimation at that focusing frequency. Also by the frequency averaging process, it can handle cor-

related sources. WAVES [46] is another interesting coherent method which, instead of using the

entire autocorrelation matrix at different frequencies, uses sum of suitably weighted signal sub-

spaces. However, it also requires focusing matrices.

The focusing matrices are non-unique and several discussions on construction of these focusing

matrices can be found in [191, 64, 93]. The most popular way to generate these focusing matri-

ces is to construct a unitary focusing matrix by minimizing the Frobenius norm of the manifold

mismatches, viz.,

min
T(fi)

||A(f0)−T(fj)A(fj)||F (5.11)

subject to T(fi)T
H(fi)) = I.

This class of focusing matrices is called rotational signal-subspace (RSS) focusing matrices [93] and

the matrix is required to be unitary in order to preserve the SNR before and after focusing. The

focusing matrices are further discussed in [64] where it is shown that the focusing matrices (includ-

ing the RSS matrices) belong to the broader class of matrices called signal-subspace transformation

(SST) matrices.

However, to construct the focusing matrices following any of the popular methods, it is crucial

to have some preliminary estimate of the DOAs. Poor initial estimates might lead to inaccurate

focusing and gives rise to final DOA estimates which are biased [171]. The need for initial DOA

estimates can be avoided by the BI-CSSM method [106] which utilizes a set of frequency invari-

ant beams spanning the field-of-view (FOV). However the performance of this method heavily

depends on the size of the FOV and the array geometry.
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5.4 Autofocusing approach to coherent signal subspace based wide-

band DOA estimation

In this chapter, we propose a novel technique of generating focusing matrices, which do not require

any preliminary DOA estimation, and yet can coherently combine the signal subspaces at different

frequencies into one coherent subspace at the chosen frequency, thereby assuring all the advantages

offered by the CSS method. The need for preliminary DOA estimates is avoided by noticing the

simple fact that the signal subspace eigenvectors span the same subspace as the array manifold at

each frequency and so, we can use them to form the focusing matrix, instead of using the array

steering vectors, which require the preliminary knowledge of the DOAs.

Let us consider the same signal model as described in Section I. In particular, the autocorrelation

matrix for the ith DFT coefficient is

Rxx[i] = A(fi)Rss[i]A(fi)
H + σ2

nI. (5.12)

We propose the following matrix for focusing the frequency fi onto the frequency f0:

Tauto(fi) =
1√
K
U(f0)U(fi)

H (5.13)

where K is the number of frequency bins considered and U(fi) is a N × N unitary matrix whose

columns are the eigenvectors of the autocorrelation matrix Rxx[i]. The motivation behind this

choice will be soon made clear. It is to be noted that this matrix belongs to the same class of SST

matrices as proposed by Doron in [64]. Since the eigenvectors of Rxx[i] can be grouped into signal

space and noise space eigenvectors, we can represent U(fi) as

U(fi) =

[
Uss(fi) UN (fi)

]
(5.14)

where Uss(fi) is a N × D matrix whose columns represent the D orthonormal eigenvectors of

Rxx[i] corresponding to the D largest eigenvalues, and UN (fi) is a N × (N − D) matrix whose

columns represent the remaining (N −D) orthonormal eigenvectors of Rxx[i]. It is to be noted that

to construct Tauto(fi), we do not need to know the number of sources, D, since we are using the

complete set of eigenvectors of Rxx[i] as columns of U(fi), as opposed to using, say, D of them.
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However this does not prevent us from representing U(fi) as in (5.14) because we can always

construct U(fi) by making the jth column equal to the eigenvector corresponding to the jth largest

eigenvalue. We can now multiply X[i] by the focusing matrix and define the transformed vector

Y [i] = Tauto(fi)X[i]. (5.15)

Taking the autocorrelation of Y [i], we get,

Ryy[i] = E[Y [i]Y [i]H ]

= Tauto(fi)Rxx[i]THauto(fi)

= Tauto(fi)A(fj)Rss[i]A
H(fi)T

H
auto(fi) + σ2

nTauto(fi)T
H
auto(fi)

= Tauto(fi)A(fi)Rss[i]A
H(fi)T

H
auto(fi) + σ2

nI (5.16)

where (5.16) is due to the fact that Tauto(fi), being a product of two unitary matrices, is itself unitary,

so the noise autocorrelation at frequency fi remains unchanged. Now we have,

Tauto(fi)A(fi)

=
1√
K

[
Uss(f0) UN (f0)

] UHss(fi)

UHN (fi)

A(fi)

=
1√
K

[
Uss(f0) UN (f0)

] UHss(fi)A(fi)

0

 (5.17)

=
1√
K
Uss(f0)UHss(fi)A(fi) (5.18)

where the last line of (5.17) is due to the fact that the noise eigenvectors at frequency fi are orthog-

onal to the array manifold A(fi) at frequency fi. Substituting (5.18) into (5.16), we get,

Ryy[i] =
1

K
Uss(f0)R̃[i]UHss(f0) +

1

K
σ2
nI (5.19)

where

R̃[i] =
1

K
UHss(fi)A(fi)Rss[i]A

H(fi)Uss(fi). (5.20)
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We next sum (5.19) corresponding to the K frequencies to get the coherently combined autocorre-

lation matrix as

Rcoh =

K−1∑
i=0

Ryy[i]

=
1

K
Uss(f0)(

K−1∑
i=0

R̃[i])UHss(f0) + σ2
nI

= Uss(f0)RsU
H
ss(f0) + σ2

nI (5.21)

where

Rs =
1

K

K−1∑
i=0

R̃[i] (5.22)

Rcoh plays the role of the universal focused sample correlation matrix, where the signal subspaces

at different frequencies are focused to the signal subspace at f0 which is spanned by the columns

of Uss(f0). It can be seen that (5.21) has similar form as (5.10). However, instead of the actual array

manifold A(f0) as the focusing array manifold, we have the matrix U(f0) whose columns span

the same subspace as A(f0) and hence, as we shall show shortly, they carry the same information

about the focusing signal subspace. This is the primary reason why, in our proposed method, the

focusing can be performed without the preliminary DOA estimates. The signal autocorrelation

matrices at different frequencies are, transformed and then summed to get the total correlation

matrix Rs whose rank will be discussed in the following theorem. As the focusing matrices are

unitary, the spatial whiteness of the noise is preserved and hence the noise autocorrelation matrix

remains unchanged. Thus, (5.21) has the form of a narrowband sample autocorrelation matrix

from which we can extract the DOA estimates following similar technique as narrowband MUSIC

algorithm, as explained by the following theorem.

Theorem 5.4.1. : Let Rcoh be the coherently combined sample autocorrelation matrix of the sensor outputs

as given by (5.21). Then the following statements are true:

(i) Rs is a non negative definite matrix satisfying

max
i
{rank(Rss[i])} ≤ rank(Rs) ≤ D. (5.23)
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If the sources are uncorrelated, then Rs is a positive definite matrix, with

rank(Rs) = D (5.24)

(ii) Let ei and λi, i = 1, 2, · · · , N be the eigenvectors and the corresponding eigenvalues, (in decreasing

order), of the matrix Rcoh. Then, under the assumption that the sources are uncorrelated, we have

(a) λD+1 = λD+2 = · · · = λN = σ2
n

(b) Column span of EN ,
[
eD+1 eD+2 · · · eN

]
is orthogonal to Range space of A(f0).

�

Proof. (i) Recall,

R̃[i] =
1

K
UHss(fi)A(fi)Rss[i]A

H(fi)Uss(fi) (5.25)

Since Uss(fi) and A(fi) are N ×D matrices with full column rank, spanning the same range

space, UHss(fi)A(fi) is a full-rank D ×D matrix and so

rank(R̃[i]) = rank(Rss[i]) (5.26)

Moreover, as Rss[i] is non negative definite (allowing coherent sources), so must be R̃[i].

Therefore Rs =
∑K−1
i=0 R̃[i], being a sum of non negative definite matrices, is itself non nega-

tive definite. Also, it is easy to check that

N (Rs) =

K−1⋂
i=0

N (R̃[i]) (5.27)

and hence, rank of the D ×D matrix Rs satisfies

max
i
{rank(Rss[i])} ≤ rank(Rs) ≤ D (5.28)

When the sources are uncorrelated, then Rss[i] is positive definite for i = 0, 1, · · · ,K − 1.

So, using (5.26), we can say that rank(R̃[i]) = D ∀i. This, along with (5.28), implies that

rank(Rs) = D and hence Rs becomes a full rank positive definite matrix.
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(ii) When the sources are uncorrelated, we know from (5.24), that Rs is a positive definite ma-

trix. Since Uss(f0) is N × D matrix with full column rank D, so Uss(f0)RsU
H
ss(f0)) is a non

negative definite rank-D matrix, whose columns span the same subspace as R(A(f0)) since

R(Uss(f0)) = R(A(f0)). The diagonal noise autocorrelation matrix in (5.21) makes Rcoh pos-

itive definite which is essentially the sum of a rank-P non negative definite matrix and a

diagonal matrix. The eigenstructure of Rcoh is exactly the same as that of the sample auto-

correlation matrix encountered in narrowband MUSIC algorithm and hence the proof of this

part of the theorem follows the same lines as given in [160].

The theorem ensures that we can perform narrowband MUSIC on the coherently combined

covariance matrix obtained by using our proposed focusing matrix. We have explicitly proved that

all D sources can be identified when they are uncorrelated. However, this condition can be relaxed

to include even correlated sources. In this case, though the source covariance matrices Rss[i] are

singular, the singularity may be removed by the frequency averaging process so that the averaged

matrix Rs becomes non singular.

Advantages of the proposed autofocusing technique:

We now summarize the advantages of our proposed focusing method:

(i) It does not need any initial estimate of the DOAs to construct focusing matrix. Thus it com-

pletely avoids the need for preprocessing.

(ii) The focusing matrix Tauto(fj) is a unitary matrix by construction, and hence, according to

[64, 93], it results in no focusing loss. Also, it preserves the spatial whiteness of the noise, so

that the coherently combined noise autocorrelation matrix remains diagonal.

(iii) Construction of the focusing matrix at a particular frequency does not require the knowledge

of the number of sources since we use the full set of eigenvectors (as opposed to using only

the signal-subspace eigenvectors) of the autocorrelation matrix at that frequency. This in turn

avoids the errors that might occur due to wrong detection of number of sources at low SNR

locally at a given frequency.

(iv) The focusing matrices are constructed entirely on the basis of the received data, by the eigende-

composition of the signal autocorrelation matrix at different frequencies. So it can be viewed
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as a fully adaptive method. Most importantly, since we do not use the array manifold ex-

plicitly in constructing the focusing matrices, it does not require accurate calibration and can

avoid the errors that occur due to mismatches.

5.5 Simulation Examples

In this section, the performance of the proposed method is evaluated and compared against pop-

ular wideband DOA estimation algorithms through simulation examples. We consider D = 3

broadband sources impinging on a 10 element ULA from 0◦, 30◦ and 45◦. The sampling frequency

is chosen to be twice the highest frequency and hence, the sources occupy the frequency band be-

tween π/2 and π in the digital frequency domain. The sensor spacing is chosen to be λmin/2 where

λmin is the wavelength corresponding to the highest frequency in the signal. This spacing ensures

that there is no aliasing in the spatial domain.

The samples of the impinging signal is divided into M = 100 segments of K = 256 samples

each. In each segment the 256 samples are converted to frequency domain by a 256-point DFT

which are then processed using four different algorithms: i) The proposed autofocusing method.

ii) CSSM using RSS focusing matrices [191, 93] with perfect intial DOA estimates (named CSSM

I) iii) CSSM using RSS focusing matrices with intial DOA estimates obatined by delay-and-sum

beamforming (named CSSM II), and iv) the recently proposed TOPS [204] algorithm. The RSS

focusing matrices are constructed following [191] and the focusing frequency for both the CSSM

methods and the proposed method is chosen to be the middle frequency of the band.

The performances of the four algorithms are compared for the source at 45◦ in terms of their

RMSE in Fig. 5.1 and bias in Fig. 5.2 v/s SNR. The proposed autofocusing technique is found to

outperform CSSM II and TOPS with respect to both RMSE and bias. The CSSM method with perfect

initial DOA estimates exhibits the best performance but it is impractical. It is to be noted that CSSM

II, which is the more practical way to implement CSSM, suffers from bias even at high SNR which

is due to inaccurate initial DOA estimates. The proposed method, however, not requiring any such

initial estimates, gives rise to unbiased estimates as evident from the plots.

It is also to be noted that TOPS spectrum can show spurious peaks at angles other than the true

DOAs. To exhibit this, the TOPS spectrum (inverse of the smallest singular value) and the MUSIC

spectrum for the proposed method are plotted (as a function of angle of arrival) at SNR=0 dB. While
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Figure 5.1: Comparison of RMSE of the different wideband DOA estimation algorithms v/s SNR
for the source at 45◦.
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Figure 5.2: Comparison of Bias of the different wideband DOA estimation algorithms v/s SNR for
the source at 45◦..
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Figure 5.3: MUSIC spectrum for the three sources at 0◦, 30◦ and 45◦ using i) proposed autofocusing
approach (top) and ii) TOPS (bottom) at SNR=0 dB.

the proposed method clearly shows only three peaks, the TOPS spectrum shows several other false

peaks, which can potentially get erroneously detected as source DOAs.

5.6 Introduction to Frequency Invariant Beamforming

In this section, we will address a well known problem in wideband array processing, namely fre-

quency invariant beamforming. Unlike narrowband signal models, the beampattern in wideband

arrays varies considerably across the bandwidth of the signal and the goal of frequency invariant

beamforming is to compensate for this variation. In a one dimensional linear array with N antenna

elements, the most general expression for the wideband beampattern is given by

B(ω, θ) =

N−1∑
n=0

wne
−jωτn(θ). (5.29)

where wn is the weight multiplied to the output of the nth sensor, ω is the temporal frequency of

the impinging wideband sources and τn(θ) is the delay associated with the nth sensor for a source

arriving from a direction θ. As the signals are wideband, the phase of the received signal at different

sensors (i.e., e−jωτn(θ)) are frequency dependent and so in order to realize a desired beampattern,
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say, Bdes(θ), we need to satisfy

N−1∑
n=0

wne
−jωτn(θ) = Bdes(θ). (5.30)

As we can see, to satisfy the above relation, the weights {wn}N−1
n=0 need to be functions of frequency

(i.e., wn(ω)). In other words, we need filters {wn(ω)}N−1
n=0 following the N sensors, which are typ-

ically realized as TDL filters. Frequency invariant beamforming using this time domain filtering

approach has been treated extensively in [161, 192, 193, 194] and various interesting filter design

techniques like fan filters, and dilated filterbank, have been explored. In [82], however, Ghavami

proposed a novel method to perform frequency invariant beamforming using only one multiplier

following each sensor, by using a rectangular array instead of a linear array. The main idea was to

trade temporal processing for an increase in spatial dimension and it was shown how this could

be achieved. This method was extended to the case of 3 dimensional cuboidal arrays and adaptive

versions of this beamforming technique using beamspace beams, was proposed in [111, 114].

Inspired by the fact that spatial and temporal processing can be interchanged, in this chapter,

we seek to explore more general 2 dimensional array geometries and examine if they can be used

for frequency invariant beamforming without TDL filter. Specifically, in the following section, we

shall consider a more general class of 2 dimensional arrays, viz., arrays with sensors on a lattice,

and demonstrate how they provide a general framework for frequency invariant beamforming

without using TDL filters. The rectangular array based FIB happens to be a special case of this and

the related theory can be readily rederived using our proposed general framework.

5.7 Theory of Lattice Based Frequency Invariant Beamforming

without Filters

Lattices provide a useful means to sample a 2 dimensional signal on uniform grid. A special case

of a lattice is a rectangular array. For such an array of size M × N with spacings d1 and d2 along

the two dimensions respectively, the position vector of the (m,n)th sensor is given by

 md1

nd2

 =

 d1 0

0 d2


 m

n

 (5.31)
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where m = 0, 1, · · · ,M − 1 and n = 0, 1, · · · , N − 1. The lattice generator is V =

 d1 0

0 d2


Two dimensional antenna arrays with sensors on a lattice constitute a major class of frequently

used antenna arrays. Consider such an antenna array consisting of MN elements whose elements

are on a lattice defined by the generator matrix V. Specifically, the (m,n)th sensor is located at the

position vector given by

 xm

yn

 = V

 m

n

 ,m = 0, · · · ,M − 1, n = 0, · · · , N − 1

where xm and yn denote the X-coordinate and the Y -coordinate of the position vector respectively

in the X − Y plane. Consider a wideband signal s(c)(t) arriving from an elevation angle φ and

azimuthal angle θ. The signal received at the (m,n)th antenna, after demodulation of the carrier

frequency fc, is given by

x(c)
m,n(t) = s(c)(t− τm,n)e−j2πfcτm,n . (5.32)

where

τm,n =
1

c

[
sinφ cos θ sinφ sin θ

]
V

 m

n

 . (5.33)

Here c is the propagation velocity. After sampling at period of Ts (where Ts is less than the Nyquist

interval for s(c)(t)), the discrete-time Fourier Transform (DTFT) of the (m,n)th sensor, is given by

Xm,n(ejω, θ)=e−j
ω̂
Ts
τm,nS(ejω) (5.34)

Here ω̂ = ω + 2πfcTs. Signal received at (m,n)th sensor is then multiplied by the weight Cm,n and

then all these signals from MN sensors are summed up to get the output signal

Y (ejω, θ) = H(ejω, θ)S(ejω)
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where

H(ejω, θ) =

M−1∑
m=0

N−1∑
n=0

Cm,ne
−j ω̂Ts τm,n (5.35)

is the beampattern which is a function of both temporal frequency ω and spatial direction θ. Our

aim is to make this beampattern frequency invariant, i.e., all-pass with respect to ω:

H(ejω, θ) = G(θ) (5.36)

where G(θ) is a desired narrowband beampattern that we wish to realize. It is to be noted that we

keep φ fixed in all cases, i.e., we define the beampattern with respect to the angle θ only. This means

in particular that we only look into a particular azimuthal angle φ. The usual approach to achieve

this with a ULA will be to make each of the weights Cm,n a function of frequency themselves, i.e.,

apply a TDL filter at the output of each sensor. However, since we are considering two dimensional

arrays, the extra spatial dimension can be used to avoid the temporal dimension, thereby making

each Cm,n a constant weight instead of TDL filter.

5.7.1 Realization of Lattice Based Frequency Invariant Beams

In this section, we shall develop the theory of realizing a given frequency invariant beampattern

(i.e., realize (5.36)) using a two dimensional array with sensors on a lattice. A special case of this

using rectangular array was discussed in [82], which we shall generalize to the case of arbitrary,

in particular, non separable lattices and study the effect of the lattice geometry qualitatively on the

realized beampattern.

In order to realize the frequency invariant beampattern without TDL filters using a 2-D lattice,

we can rewrite (5.35) as

G(θ) =

M−1∑
m=0

N−1∑
n=0

Cm,ne
−j ω̂Ts τm,n (5.37)

=

M−1∑
m=0

N−1∑
n=0

Cm,ne

−j ω̂
cTs

 sinφ cos θ

sinφ sin θ

V

 m

n


(5.38)
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Writing V =

 v11 v12

v21 v22

, and assuming φ = 90◦, we can simplify (5.38) as

G(θ)=

M−1∑
m=0

N−1∑
n=0

Cm,ne
−j ω̂

cTs
[m(v11 cos θ+v21 sin θ)+n(v12 cos θ+v22 sin θ)] (5.39)

Now, we define two new variables as

ω1 =
ω̂

cTs
(v11 cos θ + v21 sin θ) (5.40)

ω2 =
ω̂

cTs
(v12 cos θ + v22 sin θ) (5.41)

we can rewrite (5.39) as

G(θ) = G1(ω1, ω2) =

M−1∑
m=0

N−1∑
n=0

Cm,ne
−jmω1e−jnω2 (5.42)

Thus G(θ) can be represented as the 2 dimensional Fourier transform of the weights Cm,n in the

variables ω1 and ω2 and hence, theoretically, we can realize G(θ) by computing the weights Cm,n

through inverse DFT as

Cm,n =
1

MN

M−1∑
k=0

N−1∑
l=0

G1(ω1k, ω2l)e
jmω1kejnω2l , (5.43)

where ω1k = −π + 2πk
M , ω2l = −π + 2πl

N

Hence, this technique provides a direct way to compute the weights Cm,n and it guarantees

to approximate the desired frequency invariant beampattern at the sample points due to the FFT

relation. However, the dependence of the nature of the approximation on the lattice geometry

deserves further discussion. So, in the next section, we shall study the effect of various lattice

geometries on the approximation of the 2 dimensional filterG1(ω1, ω2) with respect to the transform

variables ω1 and ω2.
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5.7.2 The Beampattern in the Transform domain: Variation of Contours with

lattices

Since the two dimensional filter G(ω1, ω2) is designed in the (ω1,ω2) plane, it is important to study

the effect of the lattice geometries in this “transform” domain. The original beampattern G(θ) is

all pass with respect to temporal frequency ω and hence its contours in the (ω, θ) plane are straight

lines parallel to the ω-axis. However, the change of variables in (5.40) and (5.41) lead to different

contours depending on whether ω or θ is held constant. Moreover, the shapes of such contours

depend heavily on the lattice geometries. So it is important to study the effect of lattices on these

contours which will in turn reveal its effect on the filter approximation.

5.7.2.1 Constant spatial direction (θ) contours:

Elimination of θ between (5.40) and (5.41) yields the relation of ω1, ω2 and θ as

tan θ =
ω2v11 − ω1v12

ω2v21 − ω1v22

Thus, the constant θ contours are straight lines in the (ω1 − ω2) plane. In other words, along these

constant θ lines, the two dimensional filter G1(ω1, ω2) varies with the temporal frequency ω. The

examples of these constant θ contours are shown in Fig. 5.4 for three different angles (ψ = 10◦, 45◦

and 90◦) between lattice vectors (the vectors are assumed to be of equal length). Our aim is to make

the beampattern all-pass with respect to ω in the range ω1 ≤ ω ≤ ω2. This means, in each of these

cases, we want the beam to be frequency invariant along the lines shown in Fig. 5.4. The detailed

effect of variation of the contours with ψ is elaborated later.

5.7.2.2 Constant temporal frequency (ω) contours:

Elimination of ω between (5.40) and (5.41) yields the relation between ω, ω1 and ω2 as

||V−TΩ||22 = (
ω̂

cTs
)
2

where Ω = [ω1 ω2]T . These contours describe ellipses centered at (0, 0). Physically, it means that

along these ellipses in the (ω1, ω2) plane, the temporal frequency ω is constant and the beampattern

varies with the spatial angle θ. So for different temporal frequencies ω, different ellipses describe
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Figure 5.4: Constant θ(0 ≤ θ ≤ 180) contours in (ω1 − ω2) plane for different values of ψ.

the beampattern as a function of θ and our goal is to make the beam look the same along all these

ellipses in the desired range of temporal frequencies. The contours are demonstrated in Fig 5.5 .

For the special case of rectangular array with equal spacing d along the two dimensions (v12 =

0, v21 = 0, v11 = v22 = d), it can be verified that the ellipses become circles with radii ω̂
dcTs

as

demonstrated in [82].
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Figure 5.5: Constant ω (π/2 ≤ ω ≤ π) contours in (ω1 − ω2) plane for different values of ψ.

5.7.2.3 Effect of angle between lattice generator vectors on the beampattern

Given the contours as described earlier, we can now examine the effect of the lattice geometry on

the 2D frequency response that we want to approximate. In particular, we shall assume the lattice

generator to have one of the two generating vectors along the X-axis and the other vector to be
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of same length and inclined at an angle ψ and qualify the changes in the contours as the angle ψ

varies from 0◦ to 90◦. Then

V =

 1 cosψ

0 sinψ


Note that when ψ = 0 , it degenerates to a ULA and when ψ = 90◦ , it corresponds to a rectangular

array. Two properties of V that are worth mentioning, are:

|V| = sinψ

and the eigenvalues of VTV are given by

λ1,2 = 1± cosψ

Now, consider the case of “fixed-θ” contours. For each value of θ, the contour is a straight line

making some angle (say φ) with the ω1-axis. Then φ, θ and ψ are related by

tanφ = sinψ tan θ + cosψ

In order to observe the effect of variation of ψ on variation in φ, the plot of φ v/s ψ is given in Fig

5.6.

It can be seen that for ψ = 0,

tanφ = cosψ = 1

which indicates that the entire beampattern for all values of θ collapses to one straight line with

slope of 45◦. In other words, the frequency response degenerates and the contour collapses to a

single line, showing no variation with θ whatsoever. This precisely coincides with the case of a

ULA and hence we cannot perform beamforming (with respect to θ) using this method of constant

weights per sensor using a ULA (which also agrees with the fact that for a ULA, TDL filters are

needed). This can also be alternatively seen from the determinant of VTV which gives the volume
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Figure 5.6: Plot of the slope φ of the constant θ contours in the (ω1 − ω2) plane vs the spatial angle
θ for different values of the lattice angle ψ.

of the ellipse. For ψ = 0◦,

|VTV| = 0

which also indicates that the ellipse collapses to a straight line.

On the other hand, for ψ = 90◦,

tanφ = tan θ

and hence φ = θ which indicates that equal increments in the spatial angle θ causes equal in-

crements in the angle φ that the corresponding contours make with the axis. Hence the beam is

somewhat uniformly distributed along a circular contour in the (ω1−ω2) plane as shown in Fig 5.5.

For other values of ψ, particularly for smaller values, φ changes more slowly with θ for smaller

values of θ and much faster for higher values of θ. Hence, assuming that the mainlobe of the

beampattern to be realized is around θ = 0◦, a larger change in θ around the mainlobe will cause

a much smaller change in the slope φ of the contours. Hence the mainlobe and adjacent sidelobes

are all mapped to a small sector of values of φ leading to a crowding effect of the contours. For the

sidelobes farther away, however, a smaller change in θ causes a much larger change in the value of

φ and hence the farther sidelobes are sparsely spread out (the angle between the lines increases) as

demonstrated in Fig. 5.4.
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Next, the effect of the lattice on the constant-ω contours is determined by the eigenvalues of

VTV. Suppose we are interested in making the beampattern frequency invariant over a range of

frequencies ωa ≤ ω ≤ ωb. Then this amounts to makingG1(ω1, ω2) allpass over an annular elliptical

region (shown in Fig. 5.5). The width of this annular region, however, varies, being maximum

along the major axis and minimum along the minor axis direction. The width is proportional to the

eigenvalues and is given by (ωb−ωa)(1 + cosψ) along the major axis and (ωb−ωa)(1− cosψ) along

the minor axis. However, for ψ = 90◦, the annular region has uniform width.

Hence, smaller the angle ψ between lattice vectors, the desired beampattern G(θ) gets mapped

to the two dimensional filter G1(ω1, ω2) such that parts of the beampattern around the mainlobe is

mapped to a much smaller sector whereas the farther sidelobes are spread out over a larger sector.

However, this crowding effect keeps decreasing with increasing ψ until, at ψ = 90◦, the beam is

uniformly spread over the entire circle.

5.7.3 Realization Issues: Rectangular v/s Circular Sampling

The effect of the lattice geometry on the contours of the 2 dimensional filter G1(ω1, ω2) brings us

to addressing an important issue: the effect of different sampling geometries in the (ω1, ω2) plane

on the quality of approximation of the desired beampattern. The basic equation that represents

this approximation is (5.42). One way to realize it to compute direct 2 dimensional IDFT of the

samples of G1(ω1, ω2) in the (ω1, ω2) plane and thereby obtain the weights Cm,n. However, this

kind of approach essentially samples the beampattern on a rectangular grid in the (ω1, ω2) plane at

the points ω1k = −π + 2πk
M , ω2l = −π + 2πl

N , k = 0, 1, · · · ,M − 1, l = 0, 1, · · · , N − 1 However,

this kind of sampling in the (ω1, ω2) domain does not translate to uniform sampling in the physical

(ω, θ) domain, which is desirable if we want to approximate the beampattern uniformly over the

range of θ and ω. Due to the effect of different lattice geometries on the contours (as discussed

in the previous section), this kind of rectangular sampling results in poorer approximation. For

example, it does not distinguish between the regions where the contours are more crowded from

the rest. This effect is even more pronounced when ψ is small, since the beam gets more uniformly

distributed for higher values of ψ. So the rectangular sampling strategy suits the rectangular array

best and its effect worsens as ψ decreases.

In order to overcome this adverse effect of rectangular sampling, we now propose an alternate

approach to sampling in the (ω1, ω2) plane. Our aim is to approximate the FIB G(θ) uniformly
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over θ and ω. Note that the vector Ω = [ω1 ω2]T is related to θ and ω through (5.40) and (5.41)

and hence sampling uniformly with respect to θ and ω amounts to sampling Ω via the following

relation:  ω1k,l

ω2k,l

 =
ω̂k
cTs

VT

 cos θl

sin θl


where ω̂k and θl are samples of ω̂ and θ uniformly over a rectangular grid, given by,

ωk = ωa +
k

M
(ωb − ωa), k = 0, 1, · · · ,K − 1

θl = 2π
l

N
, l = 0, 1, · · · , L− 1

This is equivalent to sampling in the (ω1, ω2) plane exactly along the elliptical constant-ω and the

linear constant-θ contours. The result of such sampling is illustrated in Fig. 5.7 for ψ = 10◦ and in

Fig. 5.8 for ψ = 90◦.
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Figure 5.7: Proposed sampling in (ω1 − ω2) plane for ψ = 10◦.

Since the sampling is not on a rectangular grid, the IDFT approach cannot be directly applied

to compute the weights Cm,n. Alternately, we can represent (5.42) in the form of a matrix equation

and solve for Cm,n using least squares by taking Moore Penrose pseudo inverse.
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Figure 5.8: Proposed sampling in (ω1 − ω2) plane for ψ = 90◦.

5.7.4 Examples

We now provide two design examples for implementing frequency invariant beams using two dif-

ferent lattices, one with lattice generator matrix V given by (5.44) for two extreme values of ψ, viz.,

ψ = 15◦ and ψ = 90◦. We assume M = N = 17 for both examples, and wish to design a simple

sinc beampattern with 7 lobes, frequency invariant over the range of π/2 ≤ ω ≤ π. We follow the

proposed sampling strategy and compute the beamformer weights using least squares. The resul-

tant beampattern for ψ = 15◦ is plotted in Fig. 5.9 for 50 values of ω in the above mentioned range.

The two dimensional plot (as a function of ω and sin θ) is plotted in Fig. 5.10. The corresponding

1 D and 2 D plots for ψ = 90◦ are plotted in Fig. 5.11 and Fig.5.12 respectively. It can be clearly

seen that under the proposed sampling scheme, the lattice with ψ = 15◦ outperforms the one with

ψ = 90◦ (rectangular array).

5.7.5 RMSE of approximation

Using the proposed sampling technique, the result of variation of RMSE of approximation of the

FIB as a function of the angle between lattice vectors ψ (V is given by (5.44)) is plotted in Fig. 5.13.

Curiously, the simulations indicate that for the proposed sampling strategy, the RMSE is minimum

at an angle close to ψ = 15◦. While the reason for it being so exactly at that angle is difficult to

quantify, it can be however, qualitatively explained as follows:
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Figure 5.9: Frequency Invariant Beampattern as a function of sin θ for 50 values of ω uniformly
between π/2 and π realized using lattice with ψ = 15◦, M = N = 17.
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Figure 5.10: 2 dimensional plot of realized frequency invariant beampattern, as a function of spatial
direction sin θ and temporal frequency ω, realized using a lattice with ψ = 15◦ and M = N = 17.
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Figure 5.11: Frequency Invariant Beampattern as a function of sin θ for 50 values of ω uniformly
between π/2 and π realized using lattice with ψ = 90◦, M = N = 17.
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Figure 5.12: 2 dimensional plot of realized frequency invariant beampattern, as a function of spatial
direction sin θ and temporal frequency ω, realized using a lattice with ψ = 90◦ and M = N = 17.
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The uniform sampling with respect to θ and ω leads to sampling of ω1 and ω2 along the con-

tours described earlier. And the least squares algorithm then tends to interpolate the values of

the beampattern for the points in between the sample points and this interpolation works in the

(ω1, ω2) plane. For ψ around 90◦, the contours are uniformly spread out whereas for lower values

of ψ, the contours near the mainlobe region (which has higher magnitude) are crowded together

which makes it easier for the least squares to interpolate the intermediate points more efficiently

for lower values of ψ. However, for very low values of ψ, (which reduces the lattice to almost an

ULA), the two dimensional contours degenerate into a straight line and hence the frequency invari-

ant beamforming strategy using constant weights (instead of TDL filters) fails. So in between these

two extremes, there must exist be a value of ψ where the RMSE will hit the minimum and then

reverse its trend. This qualitatively explains the observed minimum in the RMSE around 15◦. This

also shows the important fact that non separable lattices can yield better performance compared to

separable (rectangular) lattices in approximating FIB.
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Figure 5.13: RMSE of realizing the frequency invariant beam v/s lattice angle ψ for two arrays of
size 9× 9 and 17× 17.

5.8 Efficient Realization of the lattice based frequency invariant

beamforming using Virtual Array

Though the lattice based frequency invariant beamforming proposed in Section 5.7 avoids the need

for temporal processing, it results in a proportional increase in the number of physical sensors to

achieve this. Precisely, compared to an ULA with N sensors, we require O(N2) sensors in the 2
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dimensional array. So in this section, we propose a novel solution to this problem, by first sug-

gesting a new approach to beamforming based on the “difference co-array” of a physical array and

thereby suggesting a way to realize the beampattern generated by a lattice (withO(N2) virtual sen-

sors) using only O(N) physical sensors. This results from the fact that the geometry of the lattice

enables one to represent it virtually as the “cross difference co-array” between two suitable ULAs,

and our proposed approach to beamforming can exploit the resulting degrees of freedom of the

virtual array, as we shall demonstrate in the following subsections.

5.8.1 Wideband Beamforming Based on Difference Co-array

Extension of the difference co-array based beamforming to the case of wideband signals is unfortu-

nately not straightforward, because now, we will have a different co-array at each frequency. Since

our goal is to do frequency invariant beamforming, we propose the following approach to get the

effect of the same co-array at each frequency:

Consider D wideband signals, occupying frequency band ωa to ωb, impinging on an array of N

sensors. Then, the signal received at the nth sensor is given by

xn(t) =

D∑
i=1

si(t− τn(θi))

where τn(θi) is the delay associated with the nth array element and the ith source signal and de-

pends on the angle of arrival of the signal and the array geometry. For simplicity, we only con-

sider the elevation angle θ though the delay is also a function of the azimuthal angle. Defining

x(t) = [x1(t)x2(t) · · ·xN (t)]T , and taking the autocorrelation of x(t), we get

Rxx(t) = E(x(t)xH(t)) (5.44)

where the (m,n)th element of Rxx is given by

[Rxx]m,n = E(xm(t)x∗n(t))

= E
[ D∑
i=1

si(t− τm(θi))

D∑
j=1

s∗j (t− τn(θj))
]

(5.45)
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Assuming the sources are uncorrelated (i.e., E[si(t)s
∗
j (t− τ)] = 0, ∀ τ ) we can rewrite (5.45) as

[Rxx]m,n =

D∑
i=1

Rsi,si(τn(θi)− τm(θi))

where Rsi,si(τ) denotes the autocorrelation of the ith signal. Now, we vectorize Rxx to get the

vector y ∈ CN2×1. Treating this as the equivalent signal vector (corresponding to the co-array),

we wish to apply weights to this vector to perform spatial filtering. Denoting the weight vector

as w ∈ CN2×1, we index its elements by the double index (m,n),m = 1, · · · , N, n = 1, · · · , N for

convenience. Then, the final weighted output can be written as

z = wHy (5.46)

=

D∑
i=1

N∑
m=1

N∑
n=1

wm,nRsi,si(τn(θi)− τm(θi)) (5.47)

=

D∑
i=1

N∑
m=1

N∑
n=1

wm,n
1

2π

∫ ωb

ωa

Psi,si(ω)ejω(τn(θi)−τm(θi)) dω (5.48)

where Psi,si(ω) denotes the power spectral density of si(t). Assuming the sources are bandlimited

to ωa ≤ ω ≤ ωb, we can further rewrite (5.48) as

z =
1

2π

D∑
i=1

∫ ωb

ωa

( N∑
m=1

N∑
n=1

wm,ne
jω(τn(θi)−τm(θi))

)
Psi,si(ω) dω (5.49)

=
1

2π

D∑
i=1

∫ ωb

ωa

B(ω, θi)Psi,si(ω) dω (5.50)

where

B(ω, θ) ,
N∑
m=1

N∑
n=1

wm,ne
jω(τn(θ)−τm(θ))

is the beampattern (function of both temporal frequency ω and the spatial angle θ). Our goal is to

realize a frequency invariant beampattern, i.e., achieve

B(ω, θ) = G(θ), ωa ≤ ω ≤ ωb (5.51)

where G(θ) is a frequency invariant beampattern (e.g., a narrowband beampattern). In this case,

we can rewrite (5.50) as z=
∑D
i=1G(θi)

1
2π

∫ ωb
ωa
Psi,si(ω) dω
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=
∑D
i=1G(θi)σ

2
i where σ2

i denotes the power of the ith source signal.

Taking the additive noise at each antenna also into account, and assuming that it is spatially

and temporally white, uncorrelated with the signals, the final output becomes

z =

D∑
i=1

G(θi)σ
2
i + σ2

nwH~1n. (5.52)

where σ2
n denotes the noise power. It can be noted that (5.52) has the same form as the correspond-

ing narrowband version in (2.7). The technique of making the beampattern frequency invariant,

as in (5.51), reduces the wideband beamforming problem essentially to that of the conventional

narrowband beamforming, which can be effectively used for detection.

The key step to this approach to frequency invariant beamforming is to realize (5.51). This is

the same as requiring

N∑
m=1

N∑
n=1

wm,ne
jω(τn(θ)−τm(θ)) = G(θ). (5.53)

In traditional frequency invariant beamforming, the weights wn are chosen as functions of fre-

quency (i.e., realized as TDL filters) to realize the frequency invariant beampattern G(θ). However,

such filters are realized using O(N) physical sensors arranged in a linear fashion, and the remain-

ing dimension is provided by the temporal delay taps. Another approach to achieve this without

performing temporal filtering, is by increasing the physical dimension of the array, using lattices

which was discussed in Section 5.7 of this chapter (a special case of which is the rectangular lat-

tice used by Ghavami.) which provides O(N2) sensors. However, our formulation in this section

is based on a nonlinear approach to beamforming (using the second order statistics of the sig-

nal), which automatically provides increase in degrees of freedom without using extra physical sensors,

thereby avoiding the need for temporal filtering. In particular, we shall virtually realize the exact

same physical sensors as provided by a N × N lattice using only 2N sensors properly selected

(thereby forming a virtual lattice) by exploiting the cross difference set of two linear arrays, to which

we can apply the lattice based frequency invariant beamforming technique discussed in detail in

Section 5.7.
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5.8.2 Realization of the lattice as the difference co-array

In this section, we prove a lemma which will enable us to realize a 2 dimensional lattice virtually

using only 2 suitably constructed 1 dimensional antenna arrays by using the cross difference co-

array between them:

Lemma 5.8.1. Any 2-dimensional antenna array of size M ×N with elements on a lattice, can be realized

using the difference co-array of two uniform linear arrays with M and N elements respectively. �

Proof. Let us consider a 2-D lattice in the XY plane. Let

 rx

ry

 =

(
v0 v1

) m

n

 (5.54)

denote the (X,Y ) coordinates of the (m,n)th element of the 2-D array. Here the 2 × 1 vectors v0

and v1 denote columns of the lattice generator. Then, the phase of a signal with wavelength λ and

propagation vector u, received at the (m,n)th element of the lattice array is given by

ej
2π
λ uT (v0m+v1n) (5.55)

Now let us consider two linear arrays withM antennas andN antennas respectively. TheM anten-

nas of the first array are arranged in the form of a ULA, which lies along the same direction in the

(XY ) plane, as the vector v0. In other words, the position vector of the mth element of this ULA is

~ρ1,m = mv0, m = 0, 1 · · ·M − 1. (5.56)

The N antennas of the other array are also arranged in the form of a ULA, which lies along the

direction of the vector −v1. Hence the position vector of the nth element of this second array is

~ρ2,n = −nv1, n = 0, 1 · · ·N − 1. (5.57)

The cross difference co-array of these two arrays is defined as the array with position vectors

~pm,n = ~ρ1,m − ~ρ2,n
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m = 0, 1, · · · ,M − 1, n = 0, 1, · · · , N − 1 which can be readily seen as

~pm,n = mv0 + nv1 (5.58)

which corresponds to the (m,n) th sensor of the lattice.

Fig. 5.14 shows examples where two 1D arrays placed along the columns of the lattice generator

matrix give rise to a 2D cross difference co-array with elements on the lattice.

v1	  

v0	  

v1	  

v0	  
(a)	  

(b)	  

(c)	  

(d)	  

Figure 5.14: Two examples of 1D arrays and their cross difference co-array on a 2D lattice. (a) and
(c) denote the physical arrays, (b) and (d) denote the corresponding cross difference co-arrays.

5.8.3 Frequency Invariant Beamforming using the difference array:

To physically realize the difference co-array corresponding to the lattice, we follow the covariance

matrix based beamforming approach discussed earlier. However, instead of considering the self-

difference co-array, we now consider the cross difference co-array of the two ULAs described in the

preceding lemma. Let x1(t) ∈ CM×1 and x2(t) ∈ CN×1 denote the signal vectors received at the M

element and N element ULA oriented along −v0 and v1 respectively. So, the mth element of x1(t)

is given by

[x1]m(t) =

D∑
i=1

si(t+mu(θi)
Tv0) + nm(t), m = 0, 1, · · · ,M − 1
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where u(θ) = 1
c [cos θ sin θ 0]T denotes the propagation vector assuming θ is the azimuthal angle

and φ = 90◦ is the elevation angle. The noise term nm(t) is assumed white Gaussian noise which

is spatially and temporally uncorrelated with same power for all the antennas in both arrays. Sim-

ilarly, the nth element of x2(t) is given by

[x2]n(t) =

D∑
i=1

si(t− nu(θi)
Tv1) + nn(t), n = 0, 1, · · · , N − 1

Next, we take the cross correlation of the signals received at the two ULAs, i.e.,

Rx1,x2 = E
[
x1(t)x2

H(t)
]

The (m,n)th entry of the cross correlation matrix is given by

[Rx1,x2 ]m,n =

D∑
i=1

D∑
j=1

E(si(t+mu(θi)
Tv0)s∗j (t− nu(θj)

Tv1)) + σ2
nδ(m− n) (5.59)

=

D∑
i=1

Rsi,si(nu(θi)
Tv1 +mu(θi)

Tv0) + σ2
nδ(m− n) (5.60)

where Rsi,si(τ) denotes the autocorrelation of the ith source signal at lag τ and (5.60) results be-

cause of the fact that the ith and jth signals are uncorrelated for i 6= j. We can rewrite (5.60) in

terms of the power spectral density as

[Rx1,x2 ]m,n =

D∑
i=1

∫ ωb

ωa

Si,i(ω)ejω(nu(θi)
Tv1+mu(θi)

Tv0)dω + σ2
n(m− n)

where Si,i(ω) is the power spectral density of the ith wideband source. Now, vectorizing Rx1,x2 ,

we get the vector z, given by:

z =

∫ ωb

ωa

A(ω, θ1, · · · , θD)S(ω)dω + σ2
n
~1n

where A(ω, θ1, θ2, · · · , θD) = [a(ω, θ1) a(ω, θ2) · · ·a(ω, θD)] ∈ CMN×D. For convenience, we de-

note the elements of a(ω, θi) ∈ CMN×1 by the double index (m,n),m = 0, 1, · · · ,M − 1, n =

0, 1, · · · , N − 1 as

[a(ω, θi)]m,n = ejω(nu(θi)
Tv1+mu(θi)

Tv0)
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The vector S(ω) ∈ CD×1 is given by

S(ω) = [S1,1(ω) S2,2(ω) · · ·SD,D(ω)]T

Now, we wish to apply constant weight vector w to z in order to realize a given frequency

invariant beampattern. Then the output of this beamformer is given by

y =

D∑
i=1

M−1∑
m=0

N−1∑
n=0

wm,ne
jω(nu(θi)

Tv1+mu(θi)
Tv0)Si,i(ω)

For frequency invariant beamforming, we need

M−1∑
m=0

N−1∑
n=0

wm,ne
jω(nu(θi)

Tv1+mu(θi)
Tv0) = G(θ)

where G(θ) is the desired frequency invariant beampattern. It can be readily observed that the

above relation is equivalent to realizing (5.39) and hence the methods discussed in Section 5.7 can

be used to realize this frequency invariant beampattern.

This way, we demonstrated, that using only 2N physical sensors and performing beamforming

with respect to the difference co-array, we can indeed avoid TDL filters and yet realize frequency

invariant beams without increasing the number of sensors.

5.8.4 Examples

We now provide design examples to validate the proposed virtual implementation of the lattice. We

wish to implement a lattice with generator matrix given by (5.44) with ψ = 45◦ with M = N = 17.

Hence we use two 17 element ULAs at an angle of 45◦ with each other and perform the proposed

covariance matrix based beamforming. To test the beampattern, we vary the direction of arrival

of the impinging signal and plot the corresponding output of the beamformer. In order to test the

frequency invariance of the beamformer, we transmit three narrowband signals with frequencies

ω = π/2, 3π/4 and π and plot the resulting beampatterns in Fig. 5.15 using 200 snapshots to realize

the covariance matrix. As can be seen, the beamformer output is fairly constant for all the three

frequencies.

We provide another example as an application of this frequency invariant beamforming in sup-

pressing wideband jammers. We assume the same array structure as in the previous example.
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Figure 5.15: Difference co-array based frequency invariant beampattern as a function of sin θ using
two 17 element ULAs plotted for three values of ω = π/2, 3π/4 and π, using 200 snapshots.

However, to suppress jammers, we first realize a set of P = 7 orthogonal frequency invariant

beams spanning the beamspace, and then combine them by using suitable (narrowband) weights

in the beamspace, to get the final output. The corresponding beamformer output as it evolves

across various snapshots (T ), is plotted in Fig. 5.16. The jammer directions are assumed to be

{60◦, 45◦, 30◦, 15◦}. It can be seen that for T = 300 snapshots, clear nulls have been introduced in

the beamformer output in the jammer directions.
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Figure 5.16: Evolution of jammer nulling with snapshots (T ) based on the difference co-array using
two 17 element ULAs with ψ = 45◦ with jammer directions given by {60◦, 45◦, 30◦, 15◦}.
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5.9 Concluding Remarks

In this chapter, we proposed a new wideband DOA estimation algorithm based on the coherent sig-

nal subspace approach. It provides a solution to one of the biggest drawback of coherent methods,

viz., the requirement of initial DOA estimates, while exhibiting the desirable properties of coher-

ent methods. The focusing matrices proposed by our method are constructed in a fully adaptive

manner, directly from the received data, thereby avoiding the need for careful calibration. Also it

results in no SNR loss as the matrices are unitary by construction. However, the performance of our

method is likely to depend on the choice of the focusing frequency (subspace) and future work will

concentrate on the selection of the best focusing frequency based on the received data. It will also

be interesting to perform asymptotic performance analysis of the proposed algorithm and compare

the results analytically with the existing algorithms.

The theory of frequency invariant beamforming for wideband signals using two dimensional

arrays with sensors on a (nonseparable) lattice was also developed, which avoids the need for

any temporal processing by exploiting the increased spatial degrees of freedom. The need for a

corresponding increase in the number of physical sensors is further avoided by exploiting the ad-

ditional degrees of freedom provided by the difference co-array of a physical array. This results

in significant reduction in the number of sensors needed, yet achieving the desired performance.

The simulation examples satisfactorily show the effectiveness of the proposed technique and indi-

cate that the proposed methods are a better alternative to the conventional wideband sensor array

processing.
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Chapter 6

Coprime Sampling Arrays and
Commuting Coprime Matrices

6.1 Introduction

In this chapter, we will study the family of commuting and coprime integer matrices for efficient

sampling of multidimensional signals. Coprime integer matrices which commute under multipli-

cation arise in the theory of multidimensional multirate systems [97], [37], [72], [73], [102], [116].

For example consider the cascade of the multidimensional decimator and expander [182] shown in

Fig. 6.1(a), where the decimation matrix M and the expansion matrix N are integer matrices. It is

well-known (e.g., see [37]) that these two blocks can be interchanged in cascade, that is, Figs. 6.1(a)

and 6.1(b) are equivalent, if and only if the matrices M and N are commuting and coprime.

More recently, such matrix pairs have been shown to have applications in multidimensional

array processing [183], [185]. To explain this, consider two sensor arrays, with sensors located

on lattices generated by the integer matrices M and N as shown in Fig. 6.2(a), (b). Thus the

sensor locations are at Mn1 and Nn2 where n1 and n2 are integer vectors. Since the density of

sensors on the lattices are 1/det M and 1/det N respectively [96], [182], the two sets of sensors are

distributed sparsely (with respect to the grid of all integers) in space. It can be shown, however,

that the difference set Mn1 −Nn2 can take all integer values in the 2D plane (as n1 and n2 vary

over all integer vectors), if the lattice generators M and N are commuting coprime matrices [185].

The importance of this result arises from the fact that the above difference set (also known as the

difference coarray [89]) is the set of lags at which the 2D autocorrelation of an impinging signal

can be estimated. The fact that sparse coprime arrays allow one to estimate correlations on a dense
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grid has important implications in array processing, similar to the one-dimensional case [184]; one

example is that we can identify many more sources than the number of sensors. For more details,

the reader should refer to [184], [183], [136], and [185].

The mathematical problem of generating families of commuting coprime integer matrices is

therefore of interest to the signal processing community, and this is the main focus of this chapter.

The problem in its general form is still open even for the 2× 2 case, but useful special cases of this

problem have been addressed in the past [97], [102], [72]. In this chapter we enrich the class of

known coprime pairs of matrices by presenting several classes of 2 × 2 matrices: circulants, skew

circulants, and triangular matrices. We also consider a specific case of 3 × 3 matrices, namely tri-

angular matrices and their adjugates. For each of these families we derive necessary and sufficient

conditions for coprimality. Of these, the circulant and skew circulant families are automatically

commuting families. For the remaining classes, commutativity has to be imposed by further con-

straining the matrix elements. For each of the families, the special case where the two matrices

are adjugates of each other is also elaborated. These are of interest because adjugate pairs have the

desirable property that they automatically commute. It will also be shown that any 2×2 matrix can

be triangularized using a simple unimodular transformation, and the test for coprimality of trian-

gular pairs of matrices developed in this chapter can be used to test coprimality of arbitrary pairs

of integer matrices. For this reason, our result on coprimality of triangular matrices is especially

useful.

The content of this chapter is mainly drawn from [137].

M	
 N	
 N	
 M	

(a)	
 (b)	


x(n)	
 y  (n)	
2	  y  (n)	
1	   x(n)	


Figure 6.1: (a) A multidimensional decimator and expander in cascade. (b) System with decimator
and expander interchanged.

6.1.1 Preliminaries

For convenience we summarize here a number of basic definitions and properties pertaining to

integer matrices.
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LAT (M)	
 LAT (N)	


coarray!

(a)! (b)!

(c)!

Figure 6.2: (a), (b) Two dimensional arrays with sensors on integer lattices, and (c) the coarray.

1. Common divisors. An integer matrix R is said to be a right divisor of M if M = M1R for

some integer matrix M1. Thus R is a right common divisor (rcd) of M and N if M = M1R and

N = N1R for some integer matrices M1 and N1. We say that R is a greatest right common

divisor (grcd) of M and N if, for any other rcd R1, we can write R = P1R1 for appropriate

integer matrix P1. The existence of grcds can readily be proved (e.g., see Appendix A.A of

[185]).

2. Unimodularity. An integer matrix U with unit determinant is said to be unimodular (with

detU = −1 allowed sometimes for convenience). If R is a grcd then so is UR for any uni-

modular U.

3. Coprimality. We say that M and N are right coprime if they have no rcds other than unimodular

matrices. When R is a grcd of M and N we can write M = M1R and N = N1R where M1

and N1 are right coprime. Left common divisors (lcd), greatest left common divisors (glcd),

and left coprimality are defined similarly.

4. Commutativity. When M and N commute, i.e.,

MN = NM, (6.1)

left and right coprimality are equivalent (see [37]).
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5. Bezout’s theorem. According to Bezout’s theorem M and N are left coprime if and only if there

exist integer matrices P1 and Q1 such that

MP1 + NQ1 = I (6.2)

This equation is called Bezout’s identity. Similarly, they are right coprime if and only if there

exist integer matrices P2 and Q2 such that P2M + Q2N = I. For scalar integers, Bezout’s

theorem is referred to as Euclid’s theorem [101], [127]. References for further details include

[37], [96], [80], [119], and [182].

6. Integers on a row or column. The left coprimality condition (6.2) implies that the gcd of the 2D

integers in any row of the matrix [ M N ] is required to be unity. To see this, assume that

the integers in the ith row of [ M N ] have gcd g. Now premultiply both sides of (6.2) by the

unit vector [0 0 . . . 1 . . . 0] where the 1 appears in the ith position. Then g is a factor on the left

side but not on the right, which is a contradiction. Similarly if M and N are right coprime, the

2D integers on any column of the matrix [ MT NT ]
T have gcd equal to unity.

Throughout the sequel, the notation

(A1, A2, · · · , An) (6.3)

denotes the greatest common divisor (gcd) of the scalar integersA1, A2, · · · , An. The following sim-

ple fact will be useful in some of the derivations:

Fact . For any two integers A and B, we have

(A,B) = (A+Bα,B) (6.4)

where α is an arbitrary integer. �

Proof. Suppose g is a common factor of A and B, so that A = gX and B = gY for integers X,Y.

Then A + Bα = g(X + Y α) which shows that g is a common factor of A + Bα and B. Conversely

let h be a common factor of A + Bα and B, so A + Bα = hU and B = hV for integers U, V.

Then A = h(U − V α), so h is also a factor of A and B. Thus every common factor between A

and B is also a common factor between A + Bα and B, and vice versa. In particular therefore,
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(A,B) = (A+Bα,B).

It follows similarly that (A,B,C,D, . . .) = (A+Bα,B,C,D, . . .).

6.1.2 Chapter outline

Secs. 6.2–6.5 consider 2× 2 matrices. Secs. 6.2 and 6.3 discuss circulant and skew circulant pairs of

coprime matrices. Triangular matrices are considered in Sec. 6.4. In Sec. 6.5 we introduce the use

of simple unimodular transforms to derive further families of coprime matrix pairs. In Sec. 6.5, we

also show that the coprimality of any pair of 2× 2 matrices can be tested by testing the coprimality

of a pair of triangular martrices. Section 6.6 considers coprimality of a 3× 3 triangular matrix and

its adjugate. Conlcuding remarks are made in Sec. 6.7.

6.2 Circulant matrices

We say that a matrix P is circulant if each row can be obtained from the preceding row by a right

circular shift. In this section we consider pairs of 2× 2 circulant matrices:

P =

[
p q

q p

]
, P1 =

[
p1 q1

q1 p1

]
(6.5)

It is readily verified that these matrices commute, so “coprimality” means left as well as right

coprimality.

First we make some preliminary observations. We know that these matrices are (left) coprime

if and only if PA + P1A1 = I for some integer matrices A,A1. Reading out the first columns of A

and A1, we get

[
p q

q p

][
a

b

]
+

[
p1 q1

q1 p1

][
a1

b1

]
=

[
1

0

]
(6.6)

By rearrangement of rows and columns we see that this equation is equivalent to

[
p q

q p

][
b

a

]
+

[
p1 q1

q1 p1

][
b1

a1

]
=

[
0

1

]
(6.7)
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Thus, Eq. (6.6) is in fact equivalent to Bezout’s idenity:

[
p q

q p

]
︸ ︷︷ ︸

P

[
a b

b a

]
︸ ︷︷ ︸

A

+

[
p1 q1

q1 p1

]
︸ ︷︷ ︸

P1

[
a1 b1

b1 a1

]
︸ ︷︷ ︸

A1

=

[
1 0

0 1

]
(6.8)

In short, the two circulants P and P1 are coprime if and only if Bezout’s identity can, in particular,

be satisfied with circulant matrices A and A1. So P and P1 are coprime if and only if (6.6) can be

satisfied for integers a, b, a1, b1. We now prove the following:

Theorem . The circulant matrices P and P1 are coprime if and only if

(p+ q, p1 + q1) = 1 and (p− q, p1 − q1) = 1, (6.9)

i.e., if and only if p+ q is coprime to p1 + q1 and p− q coprime to p1 − q1. �

Proof. The coprimality condition (6.6) can be written as

pa+ qb+ p1a1 + q1b1 = 1 (6.10)

qa+ pb+ q1a1 + p1b1 = 0 (6.11)

Adding these equations results in

(p+ q)(a+ b) + (p1 + q1)(a1 + b1) = 1 (6.12)

So P and P1 are coprime if and only if there exist integers a, b, a1, b1 to satisfy (6.11) and (6.12).

From (6.12) it is clear that (p+ q) and (p1 + q1) must be coprime (otherwise their gcd would appear

on the right). Similarly (p − q) and (p1 − q1) must be coprime (as seen by subtracting (6.10) from

(6.11).

Conversely, assume (6.9) holds. First, since (p+ q) and (p1 + q1) are coprime, there exist integers

c and c1 such that (p + q)c + (p1 + q1)c1 = 1 (Euclid’s theorem [101], [127]). Writing c = a + b

and c1 = a1 + b1, we satisfy (6.12); we can assume that a and a1 are still free, since b and b1 can be

adjusted to yield the right values for c and c1. Now, Eq. (6.11) can be rewritten in terms of c and c1
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as qa+ p(c− a) + q1a1 + p1(c1 − a1) = 0 which can be rearranged as

(p− q)a+ (p1 − q1)a1 = pc+ p1c1 (6.13)

The right hand side above is fixed. Since (p− q) and (p1 − q1) are coprime, we can choose the free

integers a and a1 such that (6.13) holds. We then solve for b = c− a and b1 = c1 − a1. So there exist

a, b, a1, b1 satisfying (6.11) and (6.12) (hence (6.10) and (6.11)).

6.2.1 Relation to DFT

Notice that p + q and p − q are the two DFT coefficients of the sequence {p, q}. For further insight

into Theorem , recall here that any circulant matrix has eigenvalues equal to the DFT coefficients of

its first row, and eigenvectors equal to the columns of the DFT matrix [146], [182]. Thus, circulants

are diagonalized by the DFT matrix W:

[
1 1

1 −1

]
︸ ︷︷ ︸

W

[
p q

q p

][
1 1

1 −1

]
︸ ︷︷ ︸

W†

= 2

[
p+ q 0

0 p− q

]
(6.14)

Theorem simply says that the DFT coefficients arising from the circulant matrix P must be coprime

to the corresponding DFT coefficients arising from the circulant matrix P1. A second proof of the

theorem, based only on DFT, is given next, for further insight.

Second proof of Theorem . We know P and P1 are left coprime if and only if Eq. (6.8) holds for

some circulants A and B. Since WW† = 2I we can rewrite Eq. (6.8) as WPAW†+WP1A1W
† = 2I

or equivalently as

WPW†WAW† + WP1W
†WA1W

† = 4I (6.15)

Since P,A,P1, and A1 are circulants, they can be diagonalized as in Eq. (6.14). So (6.15) is equiva-

lent to

[
p+ q 0

0 p− q

][
a+ b 0

0 a− b

]
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+

[
p1 + q1 0

0 p1 − q1

][
a1 + b1 0

0 a1 − b1

]
=

[
1 0

0 1

]
(6.16)

Summarizing, P and P1 are coprime if and only if there exist integers a, b, a1, b1 such that

(p+ q)(a+ b) + (p1 + q1)(a1 + b1) = 1 (6.17)

(p− q)(a− b) + (p1 − q1)(a1 − b1) = 1 (6.18)

These imply the condition given by Eq. (6.9) indeed. Conversely, if (6.9) holds then there exist

integers c, c1, d, d1 such that

(p+ q)c+ (p1 + q1)c1 = 1 (6.19)

(p− q)d+ (p1 − q1)d1 = 1 (6.20)

Setting c = (a+b), d = (a−b), c1 = a1 +b1, and d1 = a1−b1, we can then solve for a = (c+d)/2, b =

(c− d)/2, a1 = (c1 + d1)/2, b1 = (c1 − d1)/2. To complete the proof that P and P1 are coprime, we

now argue that c, d (and similarly c1, d1) can be assumed to have the same parity (both even or both

odd), so that a, b, a1, b1 turn out to be integers.

The solutions c, c1 and d, d1 in Eqs. (6.19), (6.20) are not unique. For example, starting from

some solution if we make the replacements

c→ c+ (p1 + q1), c1 → c1 − (p+ q) (6.21)

d→ d+ (p1 − q1), d1 → d1 − (p− q) (6.22)

the result will continue to be a solution. We provide here the (somewhat boring) argument that if

the parities of c and d (and similarly c1 and d1) do not match, then such replacements can always

be used to match up parities. First consider Eq. (6.19). Since the right side is unity, the two terms

in the left have opposite parity. Without loss of generality assume the 1st term is even. Then there

are two cases:

1. (p+ q) is odd. In this case c is even, c1 is odd, and (p1 + q1) is odd. So in the second equation

Eq. (6.20), (p − q) and (p1 − q1) are odd. Since one term in (6.20) is even and the other odd,

there are now two possibilities: (a) d is even and d1 is odd, and (b) d is odd and d1 is even. In
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the first event, c, d have the same parity, and so do c1, d1, so all is well. In the second event if

we perform the replacement (6.22) then the parities of d and d1 are changed (because (p − q)

and (p1 − q1) are odd), and once again c, d have the same parity, and so do c1, d1.

2. (p+ q) is even. In this case c can be of any parity, c1 is odd, and (p1 + q1) is odd. So (p− q) is

even and (p1 − q1) is odd. In order for (6.20) to be true, d1 is therefore odd, and d can be of

any parity. So the parities of c1 and d1 already match. If the parity of d does not match that of

c then we can replace d and d1 using (6.22). This will change the parity of d because p1 − q1 is

odd, but will leave the parity of d1 unchanged because p− q is even.

Summarizing, we can always make sure that c, d have the same parity, and so do c1, d1. The solu-

tions a, b, a1, b1 are therefore integers, and P and P1 are coprime indeed.

6.2.2 Embedding circulants into unimodular matrices

One outcome from the proof of Theorem is that when P and P1 are circulant and coprime, the

matrices A and A1 in

PA + P1A1 = I (6.23)

can also be assumed to be circulant (see Eq. (6.8)). Since circulants commute we also have

AP + A1P1 = I (6.24)

The following matrix identity therefore follows:

[
P P1

A1 −A

]
︸ ︷︷ ︸

U

[
A P1

A1 −P

]
︸ ︷︷ ︸

V

=

[
I 0

0 I

]
(6.25)

where we have used the facts that PP1 − P1P = 0 and AA1 − A1A = 0. Taking determinants,

we see from (6.25) that detV = detU = ±1. This shows, in particular, that when two circulants P

and P1 are coprime and therefore satisfy (6.23), the integer matrix U indicated above is unimod-

ular, and its inverse is the unimodular matrix V. Note that all the indicated submatrices of U are

circulants. So we say that when circulant matrices P and P1 are coprime, they can be embedded into

a unimodular matrix U with circulant blocks.
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6.2.3 Adjugate pairs

Given an arbitrary matrix P, suppose P1 is related to it as follows:

P =

[
p q

r s

]
, P1 =

[
s −q

−r p

]
(6.26)

Then we say that P1 is the adjugate of P (see [91] for the general definition). Notice that PP1 =

P1P = (ps − qr)I, so the matrices automatically commute. The importance of adjugate pairs of

coprime matrices in 2D array processing is explained in Sec.V of [185]. For the special case where

the two circulants are adjugates of each other, that is,

P =

[
p q

q p

]
, P1 =

[
p −q

−q p

]
, (6.27)

we have p1 = p and q1 = −q. In this case the coprimality conditions (6.9) reduce to the single

condition

(p+ q, p− q) = 1. (6.28)

Eq. (6.28) says that the two DFT coefficients of the sequence {p, q} are coprime. We claim that this is

equivalent to the following condition:

(p, q) = 1, and p and q have opposite parity. (6.29)

Here “parity” refers to “odd” or “even” parity. “Opposite parity” means one integer is even and

the other is odd.

Proof of equivalence. First assume (6.28) holds. If p and q both had a factor g > 1 , it would be

a factor of p + q and p − q, violating (6.28). If p and q had the same parity then p + q and p − q

would have a common factor of 2, again violating (6.28). Thus condition (6.28) certainly implies

both conditions in (6.29). Conversely, suppose (6.29) holds. If g > 1 is the gcd of p + q and p − q

then p + q = ga, p − q = gb so that 2p = g(a + b) and 2q = g(a − b). But since (p, q) = 1 this is not

possible unless g = 2 in which case p+ q and p− q are even, violating the opposite-parity condition

in (6.29).
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6.3 Skew Circulants

A skew-circulant or anticirculant matrix is similar to a circulant except for the extra negative signs

below the main diagonal. Coprime pairs of skew circulant matrices have applications in two di-

mensional sampling (Sec. V. of [185]). In this section we consider pairs of skew-circulant matrices:

P =

[
p q

−q p

]
, P1 =

[
p1 q1

−q1 p1

]
(6.30)

Direct multiplication shows that skew circulant matrices are commutative, and that the product is

skew-circulant. We now derive the conditions under which the skew-circulants are coprime.

For the case of circulants, the derivation was facilitated by the fact that the vectors [ 1 1 ] and

[ 1 −1 ] are left-eigenvectors of circulants. This was implicitly involved in the proof of Theorem

(see first paragraph of the proof). For a skew-circulant unfortunately, the eigenvectors are complex,

and have the form [ 1 j ] and [ 1 −j ]. A different technique will be used for the derivation of

coprimality conditions, as elaborated next.

6.3.1 Derivation of the conditions for coprimality

From Bezout’s theorem we know that coprimality holds if and only if there exist integers a, b, c, d, a1, b1, c1, d1

such that

[
p q

−q p

][
a c

−b d

]
︸ ︷︷ ︸

A

+

[
p1 q1

−q1 p1

][
a1 c1

−b1 d1

]
︸ ︷︷ ︸

A1

=

[
1 0

0 1

]

(6.31)

Extracting the first column of this equation, we get

[
p q

−q p

][
a

−b

]
+

[
p1 q1

−q1 p1

][
a1

−b1

]
=

[
1

0

]
(6.32)
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In view of the skew-circulant property of the matrices, this can be rearranged as

[
p q

−q p

][
b

a

]
+

[
p1 q1

−q1 p1

][
b1

a1

]
=

[
0

1

]
(6.33)

Comparing with the 2nd column of Eq. (6.31), we conclude that if Eq. (6.31) can at all be satisfied,

then it can in particular be satisfied by restricting A and B to be skew-circulants:

[
p q

−q p

][
a b

−b a

]
+

[
p1 q1

−q1 p1

][
a1 b1

−b1 a1

]
=

[
1 0

0 1

]

(6.34)

Thus, P and P1 are coprime if and only if there exist integers a, b, a1, b1 satisfying Eq. (6.32), i.e.,

satisfying the following two equations:

pa− qb+ p1a1 − q1b1 = 1 (6.35)

qa+ pb+ q1a1 + p1b1 = 0 (6.36)

By Euclid’s theorem, Eq. (6.35) can be satisfied if and only if p, q, p1, and q1 have no common factor,

i.e.,

(p, q, p1, q1) = 1. (6.37)

When this necessary condition is satisfied, we can find the integers a, b, a1, b1 satisfying (6.35) using

Euclid’s algorithm [101], [127]. But since the solutions given by Euclid’s algorithm are not unique,

we can exploit this to modify a, b, a1, b1 such that the second equation (6.36) is also satisfied. Thus,

given one solution a, b, a1, b1 for (6.35), modify it as follows:

p(a+ αq + βp1 + γq1)− q(b+ αp+ δp1 + εq1)

+ p1(a1 − βp+ δq + ηq1)− q1(b1 + γp− εq + ηp1) = 1
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This equation continues to be satisfied no matter how the six integers α, β, γ, δ, ε, and η are chosen

(because they simply cancel off on the left hand side). Under certain conditions on p, q, p1, and q1,

these free integers can be chosen such that (6.36) also holds, as we shall elaborate next. Substituting

the modified values of a, b, a1, and b1 into (6.36), this equation becomes

q(a+ αq + βp1 + γq1) + p(b+ αp+ δp1 + εq1)

+ q1(a1 − βp+ δq + ηq1) + p1(b1 + γp− εq + ηp1) = 0,

which can be rearranged as

C + α(p2 + q2) + (β − ε)(p1q − q1p)

+ (γ + δ)(pp1 + qq1) + η(p2
1 + q2

1) = 0 (6.38)

Here C qa+ pb+ q1a1 + p1b1 is a constant for fixed p, q, p1, q1 and fixed initial solution a, b, a1, b1. If

(
p2 + q2, p2

1 + q2
1 , p1q − q1p, pp1 + qq1

)
= 1, (6.39)

that is, the four integers on the left have gcd=1, then a linear combination of these four numbers

(obtained through choice of α, β, γ, δ, ε, η which are completely free) can achieve any value, in par-

ticular, −C. So Eq. (6.38) can be satisfied indeed. Note that if (p, q, p1, q1) = g > 1 then the factor g

(in fact, g2) would be present on the left side of (6.39), and this equation cannot be satisfied. So, Eq.

(6.39) also implies (6.37). In short, Eq. (6.39) is a sufficient condition for the existence of integers

a, b, a1, b1 such that (6.34) holds.

Necessity of the sufficient condition. We have just shown that Eq. (6.39) is sufficient for coprimality

of P and P1. We now show that Eq. (6.39) is actually also necessary! For this assume the contrary,

and let g > 1 denote the gcd of the four integers on the left hand side of (6.39). Then we also have,

in particular,

(
p2 + q2, p1q − q1p, pp1 + qq1

)
≥ g > 1, (6.40)

(
p2

1 + q2
1 , p1q − q1p, pp1 + qq1

)
≥ g > 1. (6.41)
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Assuming that Eq. (6.32) is still satisfied, we will bring about a contradiction. Premultiplying (6.32)

by [ q1 p1 ] we get

[ q1p− p1q pp1 + qq1 ] u + [ 0 p2
1 + q2

1 ] v = q1, (6.42)

where u and v are integer vectors. Similarly premultiplying (6.32) by [ p1 −q1 ] yields

[ pp1 + qq1 p1q − q1p ] u + [ p2
1 + q2

1 0 ] v = p1. (6.43)

Using (6.41) in the above equations, we see that the left hand sides have a factor g which shows

that p1 and q1 on the right hand sides have a common factor g. Similarly by premultiplying (6.32)

by [ q p ] and [ p −q ] , and using (6.40) this time, we can verify that p and q have a common factor

g. In short, we have shown that (p, q, p1, q1) ≥ g > 1 which contradicts the necessary condition

(6.37) for coprimality. This proves that, for coprimality of P and P1 it is necessary to have g = 1.

Summarizing, we have proved that the skew-circulants in (6.30) are coprime if and only if

(
p2 + q2, p2

1 + q2
1 , p1q − q1p, pp1 + qq1

)
= 1. (6.44)

We will show that the coprimality of the four integers in Eq. (6.44) is equivalent to the coprimality

of the first three integers. In fact we can summarize the main result as follows:

Theorem . The skew-circulant matrices

P =

[
p q

−q p

]
and P1 =

[
p1 q1

−q1 p1

]
(6.45)

always commute, and they are coprime if and only if

(
p2 + q2, p2

1 + q2
1 , p1q − q1p

)
= 1, (6.46)

or equivalently

(
p2 + q2, p2

1 + q2
1 , pp1 + qq1

)
= 1. (6.47)

�
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Proof. Eq. (6.44) is clearly equivalent to

(
p2 + q2, p2

1 + q2
1 , (p1q − q1p)

2, (pp1 + qq1)2
)

= 1. (6.48)

Now use Fact from Sec. 6.1: adding the third entry to the fourth entry, and then dropping the

square in the third entry, (6.48) becomes

(
p2 + q2, p2

1 + q2
1 , p1q − q1p, (p2 + q2)(p2

1 + q2
1)
)

= 1.

Since the last entry above is a multiple of the first entry, it can be dropped. This results in (6.46).

Eq. (6.47) is proved similarly, by replacing the third entry in (6.48) with the sum of the third and

fourth entries.

The following discussions provide further insights into the conditions given by Theorem .

6.3.2 Coprimality of determinants

Notice that p2 + q2 and p2
1 + q2

1 are the determinants of the two matrices in (6.45). If these determi-

nants are coprime, then the matrices are evidently also coprime.1 The preceding theorem asserts

that coprimality of determinants, while sufficient, is not necessary, since (6.44) is weaker than co-

primality of p2 + q2 and p2
1 + q2

1 . For example, suppose p = 3, q = 4, p1 = 7, and q1 = 9. Then

p2 + q2 = 25 and p2
1 + q2

1 = 130, so the determinants are not coprime. But p1q − q1p = 1, and

pp1 + qq1 = 57, so Eq. (6.44) is still satisfied, and the skew circulants are coprime.

6.3.3 Adjugate pairs

Consider the special case where the skew circulants are adjugates of each other:

P =

[
p q

−q p

]
and P1 =

[
p −q

q p

]
(6.49)

We claim that these matrices are coprime if and only if

(p, q) = 1, and p and q have opposite parity. (6.50)

1To see this, assume for example, that L is a glcd so that P = LX and P1 = LY for integer matrices X and Y. Thus detP
and detP1 have the common factor detL. But since these determinants are coprime, detL = 1, that is L is unimodular,
showing that P and P1 are left coprime.
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This is identical to the coprimality condition (6.29) for an adjugate pair of circulants.

Proof of the claim. Eq. (6.45) corresponds to p1 = p, q1 = −q, so (6.44) becomes

(
p2 + q2, 2pq, p2 − q2

)
= 1. (6.51)

We will show that (6.50) is equivalent to (6.51). First assume (6.50) is not true. This could arise in

one of two ways: if (p, q) = g > 1, then the factor g is there in p2 +q2, 2pq, and p2−q2, contradicting

(6.51). If, on the other hand, p and q have the same parity, then p2 + q2, 2pq, and p2 − q2, have the

common factor 2, again contradicting (6.51). Thus if (6.50) is not true, then neither is (6.51). Next

assume (6.50) is true. If (6.51) is not true, then, in particular, (2pq, p2 − q2) = g for some g > 1. But

the parity statement in (6.50) implies that p2 − q2 is odd, so g has to be a common factor of pq and

(p2 − q2). So there is a common factor f > 1 between p (say), and p2 − q2, hence between p2 and

p2 − q2. Subtracting, we find that f2 is also a factor of q2, so (p2, q2) ≥ f2 > 1, that is, (p, q) > 1,

violating (6.50). This shows that (6.50) implies (6.51).

6.3.4 Comparing with circulants

We know from Theorem that the two circulant matrices (6.5) are coprime if and only if Eq. (6.9)

holds. For the special case where p1 = p and q1 = −q (adjugate pairs) this condition reduces to

(6.29) which is identical to (6.50). That is, in the case of adjugate pairs, the condition for coprimality

for circulants is the same as that for skew circulants. This raises the following question: is the

coprimality condition (6.9) for two general circulants equivalent to the coprimality condition (6.44) for two

general skew circulants? This turns out to be not the case. The following examples show that neither

condition implies the other.

Example . Coprime skew-circulants. Suppose p = 4, q = 1, p1 = 5, and q1 = 2. Then p2 + q2 = 17,

and p2
1 + q2

1 = 29, which already shows that (6.44) is satisfied. But p − q = p1 − q1 = 3, so (6.9) is

violated. Thus the skew circulants (6.45) are coprime but the circulants (6.5) are not.

Example . Coprime circulants. Let p = 4, q = 3, p1 = 3, and q1 = −4. Then p+ q = 7, p1 + q1 = −1,

p−q = 1, and p1−q1 = 7, so (6.9) is satisfied. But p2+q2 = p2
1+q2

1 = p1q−q1p = 25, and pp1+qq1 = 0.

Thus the four quantities on the left hand side of (6.44) have the factor 25, and (6.44) cannot be

satisfied even though the necessary condition (6.37) is satisfied. As a double check, substituting

the numbers into (6.42), which ought to be satisfied in the coprime case, we get 25X = −4 which
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cannot be satisfied for integer X . In this example, the circulants (6.5) are coprime but the skew

circulants (6.45) are not.

Example . Coprime circulants and skew-circulants. For the example where p = 3, q = 4, p1 = 7, and

q1 = 9, we found earlier that the skew circulants are coprime (though their determinants were not).

Since p+ q = 7, p1 + q1 = 16, p− q = −1, and p1 − q1 = −2, the circulants are coprime as well.

6.4 Triangular matrices

Next consider two triangular integer matrices of the form

P =

[
p q

0 s

]
, P1 =

[
p1 q1

0 s1

]
(6.52)

We present in this section the conditions for coprimality of these matrices. Even though these

matrices do not commute as such, the following result can be considered to be important for its own

sake. Furthermore, commutativity can be imposed separately in a number of ways, for example,

by constraining the triangular matrices to be adjugate pairs (Sec. 6.4.1). Moreover, as shown in Sec.

6.5.3, an arbitrary pair of 2 × 2 integer matrices can be checked for coprimality by triangularizing

these matrices using unimodular matrices, and then applying the theorem given next.

Theorem . The triangular matrices P and P1 are left-coprime if and only if

(s, s1) = 1 and (p, p1, q1s− qs1) = 1, (6.53)

i.e., if and only if s is coprime to s1, and there is no factor common to p, p1, and q1s− qs1. �

Proof. From Bezout’s theorem we know that P and P1 are left-coprime if and only if there exist

integers a, b, c, d and a1, b1, c1, d1 such that

[
p q

0 s

][
a b

c d

]
+

[
p1 q1

0 s1

][
a1 b1

c1 d1

]
=

[
1 ×

0 1

]
(6.54)

There is no loss of generality in taking the right hand side to be as above, and the entry denoted as

× does not matter. This is because, the right hand side is unimodular, and its inverse is an integer

matrix, so we can move it to the left side to make the preceding equation look like Bezout’s identity.
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The preceding equation is equivalent to the three scalar equations

pa+ qc+ p1a1 + q1c1 = 1 (6.55)

sc+ s1c1 = 0 (6.56)

sd+ s1d1 = 1 (6.57)

Note that b and b1 are not involved, and can be set to zero. The last equation shows that s and s1

have to be coprime, in which case we can find d and d1 to satisfy that equation. The second equation

says c/c1 = −s1/s; since s1/s is irreducible (from the third equation) this implies c = −ns1 and c1 =

ns for some integer n. Substituting this into the first equation results in pa− qs1n+ p1a1 + q1sn = 1

which can be rearranged as

pa+ p1a1 + (q1s− qs1)n = 1. (6.58)

The free integers a, a1, and n can be chosen to satisfy this if and only if p, p1, and q1s− qs1 have no

factor in common [101]. This completes the proof.

6.4.1 Remarks

6.4.1.1 Adjugate pairs

For the special case where P1 is the adjugate of P, that is,

P =

[
p q

0 s

]
, P1 =

[
s −q

0 p

]
(6.59)

we have p1 = s, s1 = p, and q1 = −q. Using (6.53) we see that the adjugate pair of triangular

matrices (6.59) is coprime if and only if the single requirement

(p, s) = 1 (6.60)

is satisifed.That is, the diagonal elements have to be coprime, and the value of the nonzero non

diagonal element does not matter.
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6.4.1.2 Right coprimality

The theorem provides conditions for left coprimality. It can similarly be shown that the two triangu-

lar matrices are right coprime if and only if

(p, p1) = 1 and (s, s1, q1p− qp1) = 1. (6.61)

Comparing (6.61) with (6.53) we find that the two triangular matrices are left and right coprime if and

only if

(s, s1) = 1 and (p, p1) = 1. (6.62)

This is because the second conditions in Eqs. (6.61) and (6.53) are automatically satisfied if (6.62) is

satisfied. Eq. (6.62) says that the corresponding diagonal elements of the matrices must be coprime.

The non diagonal elements do not matter here.

6.4.1.3 Commuting triangles

It is easily verified that the triangular matrices (6.52) commute if and only if

q1p− qp1 = q1s− qs1. (6.63)

In this case the condition for left coprimality (6.53) and right coprimality (6.61) indeed become

identical as expected.

6.5 Other related matrices

If P and P1 are left coprime, then PU and P1V are also left coprime for any pair of unimodu-

lar matrices U and V. This is because the Bezout identity PA + P1B = I can be rewritten as

PUU−1A + P1VV−1B = I, where U−1A and V−1B continue to be integer matrices (since U and

V are unimodular), hence Bezout’s identity is satisfied by PU and P1V. Using this simple idea,

a number of related results for coprime pairs can be derived, starting from the results given in the

earlier sections.
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6.5.1 Reflected triangles

As a first example, we can generate a so-called reflected triangle from a triangle by post multiplying

with a unimodular matrix:

[
p q

0 s

][
0 1

1 0

]
=

[
q p

s 0

]
(6.64)

The matrix on the right is called a reflected triangle because it is the reflection of a triangular matrix

with respect to a vertical (or horizontal) line in the middle. Since post multiplication by a unimodu-

lar matrix does not affect left-coprimality, we use Theorem to conclude that the reflected triangular

matrices

[
q p

s 0

]
and

[
q1 p1

s1 0

]
(6.65)

are left-coprime if and only if

(s, s1) = 1 and (p, p1, q1s− qs1) = 1. (6.66)

Similarly, since

[
0 1

1 0

][
p q

0 s

]
=

[
0 s

p q

]
(6.67)

we see that the reflected triangles

[
0 s

p q

]
and

[
0 s1

p1 q1

]
(6.68)

are right coprime if and only if

(p, p1) = 1 and (s, s1, q1p− qp1) = 1. (6.69)

Conditions for right coprimality of (6.65) and left coprimality of (6.68) can similarly be derived.
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6.5.2 General matrices with three freedoms

Circulants and skew circulants are characterized by two distinct integers. Triangular matrices and

their minor variations (e.g., antisymmetric) are characterized by three distinct integers. For another

variation, consider the following unimodular postmultiplication of a triangular matrix:

[
p q

0 s

][
1 0

1 1

]
=

[
p+ q q

s s

]
(6.70)

This is a matrix with a repeated element s, so three integers determine the entire matrix. For pairs

of matrices of this kind, the conditions for left coprimality can be readily derived from Theorem .

Other examples of matrices with three distinct elements can be generated by appropriately modi-

fying the unimodular matrix in Eq. (6.70).

6.5.3 Testing coprimality by triangularization

We conclude by pointing out another important consequence of the fact that (left) coprimality is

preserved when unimodular matrices are multiplied on the right. For this we first show that any

2×2 integer matrix P can be triangularized by multiplication with a unimodular matrix. That is, we

can choose the elements uk of a unimodular matrix U such that

[
p q

r s

]
︸ ︷︷ ︸

P

[
u1 u2

u3 u4

]
︸ ︷︷ ︸

U

=

[
a b

0 d

]
︸ ︷︷ ︸

∆p

(6.71)

for some integers a, b, and d. For this it is first necessary to force ru1 +su3 = 0. Notice that unimod-

ularity implies u1u4−u2u3 = 1, so the integers u1 and u3 are required to be coprime. To ensure this

we proceed as follows: with g denoting the gcd of r and s, write

r = gX, s = gY (6.72)

so thatX and Y are coprime. Choosing u1 = Y and u3 = −X we ensure then that they are coprime,

and furthermore

ru1 + su3 = g(u1X + u3Y ) = g(Y X −XY ) = 0 (6.73)
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indeed. Since u1 and u3 are coprime by construction, there exists (by Euclid’s theorem) u2 and u4

such that u1u4 − u2u3 = 1, that is, U is unimodular indeed! Notice that (6.71) is analogous (though

by no means equivalent) to the QR decomposition for complex matrices where Q is unitary rather

than unimodular, and R is triangular.

The importance of the preceding triangualrization is the following: given two integer matrices

P and Q, suppose we triangularize them both:

PU = ∆p, QV = ∆q. (6.74)

Since U and V are unimodular, it follows that P and Q are left coprime if and only if ∆p and ∆q

are left coprime. And since the latter can be checked readily using Theorem , coprimality of the

arbitrary pair {P,Q} is readily checked by this triangularization trick! There is no need to compute

Smith forms and so forth, as in more elaborate test procedures.

6.5.4 Unimodular similarity transforms

While we are on the topic of unimodular matrices, we mention an important transformation here

which preserves coprimeness and commutativity [72]. Given a commuting coprime pair of matri-

ces P,Q, define a new pair

P1 = UPU−1, Q1 = UQU−1 (6.75)

where U is unimodular (so that U−1 is an integer matrix). The commutativity property P1Q1 =

Q1P1 is readily verified. Since coprimality of P and Q implies PA + QB = I, it follows that

UPU−1UA + UQU−1UB = U, that is,

UPU−1︸ ︷︷ ︸
P1

UAU−1︸ ︷︷ ︸
A1

+ UQU−1︸ ︷︷ ︸
Q1

UBU−1︸ ︷︷ ︸
B1

= I. (6.76)

Since A1 and B1 are integer matrices it follows that P1 and Q1 are also coprime. Summarizing, if P

and Q are commuting and coprime, then so are P1 and Q1. That is, a unimodular similarity transfor-

mation preserves the commuting coprime property.2 For example, suppose P and Q are circulants,

2A transform of the type T−1AT is called a similarity transform. It preserves the eigenvalues, hence the trace and the
determinant.
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and we apply a unimodular similarity transform as follows:

[
1 0

n 1

]
︸ ︷︷ ︸

U

[
p q

q p

]
︸ ︷︷ ︸

P

[
1 0

−n 1

]
︸ ︷︷ ︸

U−1

=

[
p− nq q

q − n2q p+ nq

]
︸ ︷︷ ︸

P1

(6.77)

and similarly for Q. Then P1 and Q1 are not circulant and appear to have no specific structure at

all, yet they commute, and their coprimality can be tested readily using Theorem for circulants.

6.6 3× 3 Triangular matrix and adjugate

All the cases considered so far are for 2 × 2 matrices. Although the coprimality conditions are

difficult to derive for 3× 3 matrices in general, there is one example which can be handled with the

tools we have described so far. This is the case of a 3× 3 triangular matrix and its adjugate:

P =


p q r

0 s t

0 0 u

 , P̂ =


su −qu qt− sr

0 pu −pt

0 0 ps

 . (6.78)

We will prove the following result:

Theorem . The triangular matrix P and its adjugate given in Eq. (6.78) are left coprime if and

only if

(p, s) = 1, (p, u) = 1, and (s, u) = 1, (6.79)

that is, the diagonal elements of P are coprime in pairs.�

Notice that the result is sysmmetric in the diagonal elements p, s, u. Furthermore, the non diagonal

elements of the triangular matrix do not have a role in coprimality.

Proof of Theorem . First assume (6.79) is true. Then the corresponding diagonal elements of P

and P̂ are coprime:

(p, su) = 1, (s, pu) = 1, and (u, ps) = 1 (6.80)
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So there exist integers ak, bk such that pa1 + (su)b1 = 1, sa2 + (pu)b2 = 1, ua3 + (ps)b3 = 1, that is,

there exist diagonal integer matrices Λa,Λb such that

PΛa + P̂Λb =


1 × ×

0 1 ×

0 0 1

 (6.81)

The right hand side ∆ is triangular because all matrices on the left are triangular. Since ∆ is also

unimodular we can convert (6.81) to Bezout’s identity by multiplying with ∆−1. Thus, P and P̂ are

left coprime.

For the converse, we use a comment made at the end of Sec. 6.1.1 under “Integers on a row or

column.” If P and P̂ are coprime, then in particular the elements on the last row of [ P P̂ ] are

coprime, that is, (u, ps) = 1. Thus (u, p) = 1 and (u, s) = 1 are necessary; it only remains to show

that (p, s) = 1 is also necessary. For this, note that if P and its adjugate P̂ are left coprime, then they

are also right coprime (because P and P̂ commute). So, elements along any column of the 2D ×D

matrix

[
P

P̂

]
have gcd = 1. Since the first column of the above 2D × D matrix only has p and su

(besides 0s) we have (p, su) = 1, implying (p, s) = 1 indeed.

Consider now the special case where the triangular matrix P is also Toeplitz. Then P and its adju-

gagte P̂ have the form

P =


p q r

0 p q

0 0 p

 , P̂ =


p2 −pq q2 − pr

0 p2 −pq

0 0 p2

 (6.82)

Since the diagonal elements of P are identical (p = s = u), the condition (6.79) reduces to (p, p) = 1,

i.e., p = ±1. Thus, the triangular Toeplitz matrix and its adjugate in (6.82) are coprime if and only if

P has all diagonal elements equal to±1. In this case det P = ±1, that is, P is essentially unimodular.

6.7 Concluding remarks

In this chapter we first derived conditions under which certain classes of 2 × 2 matrix pairs are

coprime. Two of these classes, namely circulants and skew-circulants, contain only commuting

matrices. For each class, the special case where the pairs of matrices are adjugates of each other
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was also considered, because such pairs automatically commute. In this way, we have developed

several families of commuting coprime matrices. In each case that was considered, the coprimal-

ity of the matrices was reduced to the coprimality of two or more scalar integers related to those

matrices.

We also showed that coprimality of arbitrary pairs of matrices can be tested by testing the co-

primality of a pair of triangular matrices, which in turn can be done by using Theorem . The results

on individual classes of coprime matrices continue to be valuable in spite of this result because, the

individual theorems allow us to constructively generate entire families. For example, the “skew-

circulant and adjugate pair” family, and similarly the “circulant and adjugate pair” family can be

generated simply by generating a pair of coprime integers with opposite parity.

We concluded by considering a 3 × 3 triangular matrix P and its adjugate, which were shown

to be coprime if and only if the three diagonal elements of P are pairwise coprime. Thus, by

generating three integers which are pairwise coprime, this entirely family can be systematically

constructed.



213

Chapter 7

A Correlation Aware Framework For
Sparse Estimation: Ideal Covariance
Matrix

7.1 Introduction and Related Work

The Sparse Sampler and Arrays and new subspace based reconstruction algorithms proposed in the

earlier chapters demonstrated that it is possible to identify/estimate more parameters than number

of physical measurements in a largely underdetermined linear measurement model. In this chapter,

we will consider additional structure on the unknown signal by assuming that it is sparse, i.e., it has

only a few non zero elements. This sparse linear measurement model occurs centrally in compressive

sensing [24, 56] where the goal is to recover the sparse signal by computing the sparsest solution to

an underdetermined set of linear equations. There is a rich history of theoretical and algorithmic

developments for this problem, which have been outlined in Chapter 1.

In this chapter, we introduce a statistical model on the unknown signal and assume the knowl-

edge of priors in the form of additional information about the nature of correlation between the

non zero components of the unknown signal. We will propose a new approach to “sparse sup-

port recovery” based on the covariance matrix of the observations and demonstrate how this can

fundamentally lead to the possibility of recovering supports of much larger size than most existing

approaches. Many of the well known approaches to sparse reconstruction, such as convex formula-

tion [35, 28], greedy algorithms [177, 180, 128], or non convex norm based formulations [77, 83, 94]

treat the recovery problem rather deterministically in the sense that they do not exploit the statis-

tical properties of the unknown signal. In few cases, the sparse signal recovery problem has been
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cast in an estimation/detection setting [51]. More generally, a family of recovery techniques which

explicitly compute a MAP-like estimate of the sparse unknown vector, have been unified under

the umbrella of Bayesian Compressive Sensing [95]. Sparse Bayesian Learning [176, 199, 200, 207]

provides an alternative to the usual l1 minimization approach to recovery of such sparse vectors by

computing the MAP estimate of the sparse unknown vector. Few other kinds of priors have also

been considered in recent literature. They include (a) knowledge of feasible configurations of the

non zero elements of the sparse vector in a model-based recovery technique [9], (b) partial knowl-

edge of the support [188], (c) knowledge of the probability with which each index can be non zero

in he context of a non uniform sparse model [99], and (d) knowledge of the rank of the sparse sig-

nal matrix (in the multiple measurement vector model) [53]. However, none of these frameworks

explicitly uses the correlation between the non zero values of the sparse signal as a prior.

In contrast to existing approaches to sparse recovery which use priors of various kinds, our

formulation specifically makes use of the following prior:

The non zero elements of the sparse vector are assumed statistically uncorrelated

This was a fundamental assumption in the preceding chapters for direction finding and spectral

estimation. We will show the implication of this assumption with respect to the size of the support

that can be recovered. In particular, our support recovery algorithm will act on the data covari-

ance matrix instead of the raw measurements themselves. Such estimation techniques which use

correlation of the signal find extensive use in a wide variety of parametric/non parametric esti-

mation problems. In particular any spectral estimation algorithm fundamentally relies upon using

the autocorrelation of the (WSS) signal. Such applications include recent approaches to spectral

compressive sensing [66], wideband spectrum sensing for cognitive radio [153, 174, 203], direction

finding in antenna arrays [121, 206, 166], radar [87], MEG/EEG imaging and source localization

[201, 208].

7.2 Related Work

The body of work in sparse sensing and recovery that are most related to our work consists of

sparse spectral estimation techniques [174, 153, 121, 206, 166], methods for joint support recov-

ery [107], and the general framework of Sparse Bayesian Learning and its recent applications

[176, 207, 208]. None of these methods however explicitly uses the fact that the non zero elements
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of the unknown signal are uncorrelated, although some of them implicitly make that assumption in

their signal model. The problem of spectrum sensing in cognitive radio is cast as a sparse recovery

problem in [153, 174] but no special sampling or reconstruction scheme that can directly exploit the

lack of correlation among the different frequency bands are used. Similarly in [121, 166], different

approaches to sparse modeling and estimation in direction finding problems have been developed

without explicitly using the aforementioned fact. The work of [107] uses a hybrid of subspace

based methods like MUSIC and l1 norm minimization algorithms for joint support recovery. Al-

though the computations are based on the covariance matrix of the data, it does not exploit the

uncorrelated structure of the unknown signal. Similarly, the SBL framework models the unknown

vector as a Gaussian random vector with diagonal covariance matrix, but it does not investigate

what advantage this structure might offer. The use of SBL in multiple measurement model where

temporal correlation might be present, was demonstrated in [208]. This is also different from our

framework where we solely concentrate on spatial correlation (or the lack of) in the measurements.

More recently, the work in [206] represents the sparse recovery problem using the covariance ma-

trix in a form that closely matches our own formulation; however, they do not focus on developing

new sampling schemes and arrays which can exploit the correlation priors. The use of Kronecker

product matrices in compressive sensing has been studied in [65]. We however consider a special

matrix product, namely the Khatri-Rao product [100], which, inspite of being derivable from the

Kronecker product, has very different properties from the Kronecker product and the results in [65]

are not quite applicable to our case.

Summarizing, almost every existing sparse recovery technique, be deterministic or statistical,

operates in a regime where the sparsity is less than the size of the measured/observed vector. Using

a certain kind of correlation priors, as described earlier, we will show that it is possible to recover

sparse support of size larger than that of the observed vector(s). The design of measurement matrix

will be shown to play a crucial role in achieving this, whereby we will develop new conditions on

the matrix for such recovery to be successful. We will next review some existing guarantees for

sparse recovery in Sec. 7.3 and provide an outline of the major contributions in Sec. 7.4.

Parts of this chapter have been presented in [141].
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7.3 Review of Conditions for Uniqueness of Sparse Representa-

tions

A central problem in the field of Compressive Sensing and Sparse Reconstruction is the recovery

of the sparsest solution to a linear underdetermined systems of equations which is also known as

the Single Measurement Vector (SMV) model. Such a model is given by

y = Ax0 (SMV) (7.1)

where A ∈ CM×N is a fat matrix with N �M and x0 is a sparse vector with | Supp(x0) |� N . The

problem of recovering the sparsest vector satisfying (7.1) is of central interest in many applications

pertaining to compressive sampling and sparse reconstruction. The problem is cast as

min
x
‖x‖0 (P0)SMV

subject to y = Ax (7.2)

The sole property of A that decides when such recovery is possible, is the Kruskal Rank [105] of A,

denoted as Krank(A), as defined below:

Definition 7.1: (Kruskal Rank:) The Kruskal Rank of A, denoted as Krank(A) is defined as the

largest integer r such that every r columns of A are linearly independent. �

Denoting S0 as the support of x0, the following condition provides a maximum limit on | S0 |

(also known as the sparsity level) that ensures unique recovery of x0 [58] :

Theorem 7.3.1. Consider the (SMV) model y = Ax0 with S0 denoting the support of x0. Solving (P0)SMV

will uniquely recover x0 if and only if

| S0 |≤
Krank(A)

2
(7.3)

�

This guarantee on the maximum level of sparsity that can be recovered is fundamental in the

sense that it needs to be satisfied for any recovery algorithm (convex or otherwise) to be successful.
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Since Krank(A) ≤ rank(A), it can be easily shown that the maximum level of recoverable spar-

sity from the SMV model satisfies

| S0 |≤
M

2
(7.4)

A natural extension to the SMV model is the Multiple Measurement Vector (MMV) Model:

YL = A [x1 x2 · · ·xL]︸ ︷︷ ︸
XL

(MMV) (7.5)

Here a set of L > 1 unknown sparse vectors xl ∈ CN×1, l = 1, 2, · · ·L share a common support S0,

i.e., Supp(xl) = S0,∀l. Let rXL
∈ RN×1 be such that

[rXL
]i =

(
L∑
l=1

([XL]n,l)
q

) 1
q

, for some q ≥ 1

The corresponding problem for recovering the sparsest set of vectors now becomes

min
X∈CN×L

‖rXL
‖0 (P0)MMV (7.6)

subject to YL = AX (7.7)

The recovery guarantee (independent of any specific algorithm used) for | S0 | now obeys [36]

Theorem 7.3.2. Consider the MMV model (7.5) where S0 denotes the common support of the L vectors.

Solving (P0)MMV will recover the support S0 if and only if

| S0 |<
Krank(A) + rank(YL)

2
(7.8)

�

Since rank(YL) ≤M and Krank(A) ≤M , (7.8) implies

| S0 |< M. (7.9)

It is to be noted that the maximum recoverable sparsity is independent of L as long as L > M .

From Theorems 7.3.1 and 7.3.2 it is clear that with no further assumptions on x0 or XL, the
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maximum sparsity level that can be recovered from SMV or MMV model is always O(M). Almost every

existing algorithm for sparse reconstruction obeys this upper limit. In particular, no existing al-

gorithm for sparse reconstruction considers sparsity levels which can be in the region | S0 |> M .

In this chapter, we will explore precisely this regime of sparsity levels which can be larger than M

and show that it will be possible to recover supports of size potentially larger than M , provided a

statistical framework for the unknown x is used with appropriate priors on the distribution.

7.4 Our Contributions

We summarize our main contributions along with an outline for the remainder of the chapter.

7.4.1 A Correlation Aware Framework

We will develop a novel approach to support recovery (i.e. recovery of S0) incorporating a statistical

framework in the SMV model. In particular, rather than treating x0 as a deterministic unknown

vector, we model it to be a sparse random vector with a fixed support. In particular we will

1. Explicitly use statistical priors on the unknown sparse vector by imposing a structure on the

covariance matrix of x.

2. Propose novel conditions on the measurement matrix (which, in particular implies new strate-

gies for structured sampling) and new reconstruction algorithms that can exploit the afore-

mentioned priors.

We will establish that such correlation awareness, coupled with suitable designs for measurement

matrices and appropriate algorithm can guarantee the recovery of sparsity levels which can be orders of

magnitude higher than existing methods which are blind to the correlation structure. Specifically, we

make the following assumptions regarding the statistics of x0:

1. (A1): E(x0) = 0

2. (A2): E([x0]i[x0]
∗
j ) = 0, i 6= j, i, j ∈ S0

Assumption (A2) means that the non zero elements of x0 are statistically uncorrelated. In what

follows, we will develop a new framework for recovering S0 that exploits this fact. The main idea
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is to use the data covariance matrix

Ryy = E(yyH) (7.10)

for recovery of S0. The first part of our results is based on the exact knowledge of the data covariance

matrix Ryy whereby we will show it is possible to guarantee the recovery of sparsity levels as large

as

| S0 |= O(M2). (7.11)

This becomes possible under certain conditions on the measurement matrix. Sparse sampling

schemes such as nested and coprime sampling will be shown to satisfy these conditions and hence

they become natural choices for correlation aware support recovery. Without the knowledge of cor-

relation priors and appropriate sampling strategies, existing performance bounds on sparse models

[60, 59, 29, 189, 190, 172] can only guarantee recovery of O(M) sparsity levels. In the second part,

we will also consider the case when the matrix Ryy is not known exactly and we need to rely upon

estimated R̂yy (computed from finite number of measurements).

7.4.2 Recovery of Sparse Support v/s Sparse Vector

We want to highlight an important difference between the recovery of the sparse vector(s) x and

the recovery of its support. In all existing approaches to sparse recovery, no distinction is made

between the two. In fact, in every case, the recovery of support S0 automatically leads to recovery

of the sparse vector x since it is possible to solve y = AS0
[x]S0 uniquely for [x]S0 . This happens

because | S0 |< Krank(A). In our correlation aware framework, we will demonstrate that it is

possible to recover support S0 where | S0 |� M , possibly | S0 |= O(M2). However, in this case, it

is not possible to recover the vector(s) x itself. This can be easily seen from the fact that when | S0 |>

M ≥ rank(A), there is no unique [x0]S0
satisfying y = AS0

[x]S0
. Our framework explicitly brings

out this important difference between the two kinds of recovery which has not been considered in

the literature so far. Also, as we will show later, it is possible to recover E(|[x]i|2), i ∈ S0 although

it is not possible to recover xS0
itself.

In many applications, the support S0 itself is sought after rather than the sparse vector x itself.

They include spectral estimation [153, 174], imaging [208, 201, 117], direction finding in array pro-
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cessing [166, 206, 121, 107], multivariate regression and classification [129, 130] etc. In most of these

applications, the information of interest is actually contained in the support. Such applications can

potentially benefit greatly from our proposed framework which can fundamentally allow recovery

of much larger supports.

The rest of the chapter is organized as follows. In Section 7.5, we will establish fundamental

bounds on the size of the largest sparse support that can be recovered from an exact knowledge of the

data covariance matrix Ryy and demonstrate that this can be as large as O(M2). We will characterize

the role of Khatri Rao product of the measurement matrix A in ensuring this and how this leads

to interesting and non trivial design problems. In Section 7.6, we will develop new conditions for

convex relaxation of the support recovery problem using our proposed correlation aware frame-

work. Some of the guarantees will be based on coherence of the measurement matrix and they

strictly improve similar existing results based on coherence. In sec 7.7, we will also show that the

support recovery problem becomes equivalent to minimizing the l1 norm of a certain positive vec-

tor (derived from the covariance matrix) satisfying a set of underdetermined linear equations and

the positive can be exploited to guarantee recovery of O(M2) sparsity levels even for the relaxed

problem. We will also provide an illustrative application, namely direction finding in antenna ar-

rays, which will bring out the role of antenna geometry in sparse support recovery and will unify

the proposed nested and coprime sampling framework. Finally in Section 7.8, we will re-derive

similar guarantees for greedy heuristics such as the Orthogonal Matching Pursuit (OMP) for the

correlation aware framework and establish that correlation awareness strictly improves upon ex-

isting recovery guarantees in this case as well.

7.5 Uniqueness of Support Recovery From Exact Data Covariance

In this section, we will establish a set of new guarantees on the size of recoverable | S0 | which

are fundamentally related to the uniqueness of sparse representation. These conditions will be for

support recovery from the data covariance matrix, as opposed to from the measurements them-

selves. In sec. 7.6, we will develop convex relaxations for the support recovery problem under the

assumption that we still know Ryy exactly. In Chapter 8, uniqueness conditions and guarantees

for convex relaxations will be derived when only an estimate R̂yy is available.

1. We know the ideal data covariance matrix Ryy = E(yyH)
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2. Assumptions (A1) and (A2) hold.

The exact knowledge of Ryy is possible when large number of measurements are available, i.e.

as L → ∞ in the model (7.5). Notice that Theorem 7.3.1 dictates that without any assumptions on

xl other than sparsity, it is not possible to recovery sparsity levels higher than M regardless of how

large L might be. We will show that by exploiting priors given by (A1) and (A2), we can actually

overcome this limitation and recover sparsity level as large as O(M2) when we know Ryy exactly.

This is possible as L→∞ since

lim
L→∞

1

L
YLYH

L = Ryy (7.12)

Our goal is to first develop a set of conditions to investigate if it is at all possible to increase the

recoverable sparsity limit to O(M2) when we have exact knowledge of Ryy.

The following lemma establishes the connection of support recovery from the covariance ma-

trix:

Lemma 7.5.1. Consider a SMV model (7.1) where S0 denotes the support of x0. Under assumptions (A1)

and (A2), recovery of S0 is equivalent to recovering Supp(p) in

z =
(
A∗ �A

)
p (Co− SMV ) (7.13)

where z = vec(Ryy) and p = diag(Rxx). �

Proof. The covariance matrix of y is given by

Ryy = ARxxAH

Upon vectorization, we obtain

z = (A∗ ⊗A)vec(Rxx) (7.14)

Under assumptions (A1)-(A2), [Rxx]i,j = σ2
i δ(i − j) where σ2

i = E
(
|[x]i|2

)
, i ∈ S0. Therefore, the

non zero elements of vec(Rxx) are contained in the vector diag(Rxx) ∈ RN×1. It is readily seen

that Supp
(

diag(Rxx)
)

= S0. Using the definition of Khatri-Rao product, (7.14) thereby reduces to
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(7.13) and this concludes the proof.

The lemma suggests we can equivalently recover the sparse support if we can recover p satis-

fying (7.13). The problem formulation for recovery of S0 then becomes

min
p
||p||0 (P0)Co−SMV

subject to
(
A∗ �A

)
p = z (7.15)

Henceforth, we will denote the Khatri-Rao [100] product as

AKR = A∗ �A

In order to understand what is gained by solving (P0)Co−SMV instead of (P0)SMV , we define the

following quantity called the “Degree of Krank Expansion” (denoted αA) of A:

Definition 7.2: The Degree of Krank Expansion of A ∈ CM×N is defined as

αA =
Krank(AKR)

Krank(A)
(7.16)

�

The quantity αA indicates if at all, using the “Co-SMV” framework, it is fundamentally possible

to recover higher levels of sparsity than what is possible from the SMV model. This is formulated

by the following lemma:

Lemma 7.5.2. Let sSMV and sCo−SMV denote the maximum size of S0 that can be uniquely recovered by

solving (P0)SMV and (P0)Co−SMV respectively. Then

sCo−SMV = αAsSMV (7.17)

�

Proof. Applying Theorem 7.3.1 to (P0)Co−SMV , we obtain that all sparse supports upto size

| S0 |≤
Krank(AKR)

2
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can be uniquely recovered. The lemma then follows from definition of αA.

Hence, for αA-krank expandable matrix A, by solving (P0)Co−SMV we can recover sparsity

levels which are αA times as large as the sparsity level that can be recovered by solving (P0)SMV .

The following theorem precisely characterizes how large this αA can be:

Theorem 7.5.1. The Degree of Krank expansion of A satisfies

1 < αA ≤M (7.18)

�

Proof. We use the following result from [164]

Krank(A�B) ≥ min(N,Krank(A) + Krank(B)− 1). (7.19)

This implies Krank(AKR) > Krank(A) and hence αA > 1. Also let rank(A) = r. From properties

of Kronecker Products [91], rank(A∗ ⊗A) = r2. Now,

Krank(AKR) ≤ rank(AKR) ≤ rank(A∗ ⊗A) = r2

Hence, we obtain αA ≤ r ≤M . This concludes the proof.

Theorem 7.5.1 implies the following:

1. Since, αA > 1, we can always recover sparse support of larger size by using the “Co-SMV”

framework.

2. Depending on A, the maximum size of recoverable support can be M times larger than that

obtained from solving (P0)SMV , i.e., it can be O(M2).

This leads us to the following question:

Question: “What are deterministic and random designs of A which can guarantee KruskalRank(AKR) =

O(M2)?”

The following Theorem proves that random A with independently drawn entries has αA =

O(M) almost surely:
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Theorem 7.5.2. Let A ∈ RM×N be a random matrix whose elements are drawn independently from a

continuous distribution over RMN . Assuming N > M2+M
2 , the following holds with probability 1:

Krank(AKR) =
M2 +M

2
(7.20)

�

Proof. We will show that any collection of M
2+M
2 columns in AKR has rank M2+M

2 with probability

1 over R
M(M2+M)

2 . This will establish that AKR has Kruskal Rank M2+M
2 with probability 1 over

RMN by using the union bound over
( N
M2+M

2

)
sets. Consider a subset S ⊆ {1, 2, · · · , N}, where

| S |= M2+M
2 and let [AKR]S denote the submatrix consisting of columns indexed by the elements

of S. Denote the elements of A as ai,j , 1 ≤ i ≤ M, 1 ≤ j ≤ N . The elements in the jth column

of AKR are given by ai,jal,j , 1 ≤ i, l ≤ M. Given integers i0, l0 ∈ {1, 2, · · · ,M}, i0 6= l0,and j ∈ S

there are exactly two rows in [AKR]S that are identical and consist of the elements ai0,jal0,j , 1 ≤

j ≤ N . Overall, there are M2−M
2 such identical rows, upon removing which we obtain an M2+M

2 ×
M2+M

2 submatrix of [AKR]S which we will denote as [AKR]sub
S . We will show that this matrix is

full rank with probability 1. In order to establish this, denote aS = {ai,j , 1 ≤ i ≤ M, j ∈ S}. Since

the variables ai,j are drawn independently from a continuous distribution on RMN , the function

f(aS) , det([AKR]sub
S ) is a multivariate polynomial in M | S | variables given by the elements

of aS and hence it is analytic in RM |S|. By property of analytic functions, if f(aS) is not the zero

polynomial, its zero set will be of measure 0 in RM |S|. Given S, if we can prove that f(aS) is not a

trivial polynomial, then it will imply that the random matrix [AKR]sub
S is full rank with probability

1 with respect to any continuous distribution over RM |S| and it will conclude our proof. In order

to prove f(aS) is non trivial, it suffices to find a specific point [aS ]0 such that f([aS ]0) 6= 0. Such

a [aS ]0 can be found by the following construction: Let {jk, k = 1, 2, · · · , | S |} denote the indices

included in S. Let us divide the M2+M
2 columns indexed by S into M unequal groups {Si}Mi=1 with

the | Sm |= M −m+ 1. Also, relabel the columns in Sm as {jmk , 1 ≤ k ≤M −m+ 1}. The elements

of A in columns indexed by Sm, 1 ≤ m ≤M are then given by:

ai,jmk =


1 if i = m, k = 1

1 if i = m,m+ k − 1, k > 1

0 otherwise

(7.21)
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The resulting matrix [AS ]sub can be transformed, through row exchanges, to an upper triangular

matrix, with each diagonal element being equal to 1. Hence it is full rank and this concludes the

proof.

The result shows that Khatri-Rao product of random matrices continue to exhibit very high

Kruskal Rank. However, in many applications, such as imaging or source localization, the physics

of the problem imposes structure on the measurement matrix A. In many applications such as net-

works, the matrix A can represent the adjacency matrix of a network graph and can have further

deterministic constraints. Usually in such situations, it is more difficult to come up with a deter-

ministic design whose Khatri-Rao product continues to have O(M2) Kruskal Rank, and common

sampling strategies often fail. In this context we would like to revisit the nested and coprime sam-

pling strategies and show how these deterministic designs naturally possess O(M2) Kruskal Rank

for their Khatri-Rao products.

7.5.1 Deterministic Designs: Revisiting Nested Arrays

Let us revisit the problem of direction finding in phased antenna arrays. Consider M antennas

located at

ziλ/2, i = 1, 2, · · · ,M

where zi are assumed integers. In DOA estimation problems, we assume D narrowband source

signals impinging on this array of antennas from directions given by the set Θ = {θ1, · · · , θD}. The

lth time sample of the received signal vector (containing the signals at the M antennas) is given by

y[l] = Asteer(Θ)s[l], 1 ≤ l ≤ L (7.22)

where s[k] ∈ CD×1 denotes the source signal vector’s lth time sample, n[k] denotes the vector of

noise, assumed white and uncorrelated from signal. The source signals are assumed zero mean

WSS random processes with power σ2
i , 1 ≤ i ≤ D. The matrix Asteer(Θ) ∈ CM×D is the “Array

Manifold Matrix” with elements

[A(Θ)]m,n = ejπzm sin θn (7.23)
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To convert the problem to the linear sparse representation problem, following [121], we di-

vide the range [−π/2 π/2) corresponding to all possible directions, into Nθ � Nca grid points

{θ1, θ2, · · · , θNθ} and construct the (known) matrix Agrid
steer ∈ CNca×Nθ with columns corresponding

to steering vectors for the candidate directions θi, 1 ≤ i ≤ Nθ. In particular, the elements of Agrid
sparse

are given by

[Agrid
sparse]m,n = ejπzm sin θn , m = 1, · · · ,M, n = 1, · · · , Nθ (7.24)

We can therefore approximate our model (7.22) as

y[l] ≈ Agrid
steerssparse[l] (7.25)

The vector ssparse ∈ CNθ×1 is now a sparse vector with only D out of Nθ non zero (positive) values.

Notice, by increasing Nθ, we can approximate (7.25) better. The unknown directions of arrival are

now given by the support set of the vector ssparse[l] and hence direction finding becomes a sparse

support recovery problem with Agrid
steer acting as the known measurement matrix and the information

about unknown directions contained entirely in the support of ssparse[l].

It is to be noted that assumptions (A1) and (A2) naturally fit the context of direction finding

because (A2) simply implies that the signals coming from different directions are statistically un-

correlated - an assumption that is commonly used. Denoting

Ag = Agrid
steer

we wish to understand how the structure of the array manifold can be exploited to ensure that

the Kruskal Rank of Ag
KR is O(M2). We show that the conventional Uniform Linear Array (ULA)

fails in this regard whereas coprime and nested arrays ensure the Kruskal Rank to be O(M2). To

understand this, notice that the elements of Ag
KR are given by

ejπ(zi−zj) sin θn , i, j ∈ {1, 2, · · ·M}, n = 1, 2, · · ·Nθ (7.26)

The rows of Ag
KR are therefore characterized by the “difference set” as defined in Chapter 2:

Sca = {zi − zj , 1 ≤ i, j ≤M} (7.27)
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The following lemma makes an explicit connection between the difference set and the Kruskal Rank

of Ag
KR:

Lemma 7.5.3. The Kruskal Rank of Ag
KR satisfies

Krank(Ag
KR) ≤| Sca | (7.28)

�

The number of distinct elements in Sca therefore fundamentally limits the Krank of Ag
KR. We

now revisit the traditional Uniform Linear Array (ULA) and the nested array in the light of this

fact. In each of the following cases, we assume that Ng > M2:

1. ULA: For a uniform linear array,

zi = i, 1 ≤ i ≤M.

It can be easily seen that in this case

Sca = {m,−M + 1 ≤ m ≤M − 1}

and hence | Sca |= 2M − 1. In fact, it can be verified that in this case Krank(Ag
KR) = 2M − 1.

Since for a ULA, Krank(Agrid
steer) = M , this shows from (7.19) that ULA actually achieves the

minimum bound for the Kruskal Rank of its Khatri-Rao product.

2. Nested Array: For a nested array, the set of sensor locations is given by

{zi}Mi=1 = {m, 1 ≤ m ≤M/2} ∪ {(M/2 + 1)n, 1 ≤ n ≤M/2

As shown in Chapter 2, the difference set is

Sca = {m,−M2/4−M/2 + 1 ≤ m ≤M2/4 +M/2− 1}
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and it can be verified that

Krank(Ag
KR) =

M2

2
+M − 1

Hence the nested array corresponds to a structured spatial sampling scheme that produces a

deterministic measurement matrix with Krank(Ag
KR) = O(M2).

It can be shown in a similar fashion that coprime arrays with M antennas can also give ensure

that Krank(Ag
KR) = O(M2).

7.6 Convex Relaxation for Support Recovery from Ideal Covari-

ance Matrix

The preceding section established that it is possible to design both random and deterministic mea-

surement matrices such that it becomes possible to identify supports of size O(M2) from the data

covariance matrix Ryy, say via exhaustive search. However, the practical approach to solve the

support recovery problem is to solve a “relaxed” version:

min
p
||p||1 (P1)Co−SMV (7.29)

subject to
(
A∗ �A

)
p = z

There are various ways to characterize when the solution to (P0)Co−SMV is identical to that of

(P1)CoSMV . We will next describe a coherence based guarantee since the coherence for A and AKR

can be easily related.

7.6.1 New Coherence Based Guarantee

A sufficient condition that guarantees the equivalence of (P0)Co−SMV and (P1)CoSMV problems is

defined in terms of the coherence of the measurement matrix

Definition 7.3: The coherence of a matrix A is defined as

µA = maxi6=j
| aHi aj |

‖ ai ‖2‖ aj ‖2
(7.30)



229

�

The following lemma relates the coherence of A and A∗ �A:

Lemma 7.6.1. The coherence of AKR and A are related as:

µAKR
= µ2

A (7.31)

�

Proof. It can be verified from the definition of Kronecker products, that

(ai ⊗ bi)
H(aj ⊗ bj) =

(
aHi aj

)(
bHi bj

)

Hence | [aKR]Hi [aKR]j |=| (a∗i ⊗ ai)
H(a∗j ⊗ aj) |= (| aHi aj |)

2. This concludes the proof.

The coherence based guarantee for finding the support S0 by solving (P1)Co−SMV is given by

Theorem 7.6.1. Consider the SMV model (7.1) where S0 denotes the support of x. Under assumptions (A1)

and (A2), solving (P1)Co−SMV can uniquely recover supports of size

| S0 |<
1

2

(
1 +

1

µ2
A

)
(7.32)

�

Proof. It follows from the coherence based condition in [58] which states that if y = Ax0 where the

support of x0 is given by Sx, then solving minx,Ax=y | x |1 yields x0 if | S0 |< 1
2 (1 + 1

µA
).

Since, by definition µA < 1, (7.31) implies that µAKR
< µA. Theorem 7.6.1 therefore shows

that an argument based on coherence alone indicates that it is possible to recover larger supports

by solving (P1)Co−SMV . On one hand, coherence of a matrix is easy to compute which makes it

a popular way to analyze recovery performance in many situations [23, 59, 179, 11]. On the other

hand, it is only a sufficient condition for sparse recovery and suffers from the Welch bound [198],

which indicates, for AKR,

µAKR
≥ 1

M

√
N −M2

N − 1
. (7.33)
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For given N , this implies, in the Co-SMV forumalation, coherence based conditions on AKR can

guarantee recovery of supports of size only as large as O(M). Hence coherence fails to indicate if

it is at all possible to recover S0 with | S0 |= O(M2) by solving (P1)Co−SMV . In what follows next,

we will exploit additional structures in the Co-SMV model to provide much sharper guarantees.

7.7 The case of Positive Solution

In the previous sections, we ignored the fact that p contains the diagonal entries of E(xxH) in (7.13)

and is actually a non negative vector. In this section, we seek to recover the support S0 by using

this additional constraint on the unknown vector p to be non negative by solving

min
p
‖p‖1 (P1+)Co−SMV

subject to AKRp = z, p � 0 (7.34)

It is to be noted that even when the autocorrelation matrix is non ideal (i.e., estimated), the

solution we are seeking is still non negative since it contains estimated power of the sources.

7.7.1 Conditions for Perfect recovery of non negative solution

The problem (7.34) has been of considerable interest [57, 61, 62] in compressive sensing. The nec-

essary and sufficient conditions for perfect recovery of s-sparse non negative vectors relate to the

theory of neighborly polytopes [62]. We shall first state a result (proved in [62]) when the measure-

ment matrix is a Vandermonde matrix (with elements on the unit circle).

Theorem 7.7.1. Let y = Ax0 where the elements of A are given by [A]m,n = ejmtn , 1 ≤ m ≤ M, 0 <

t1 < · · · < tN < 2π and x0 � 0. If D , ||x0||0 ≤ M and M < 2N , then x0 can be uniquely recovered by

solving (P1+)Co−SMV . �

It is to be noted that the necessary and sufficient condition for (P1+)Co−SMV to recover the sparse

positive vector does not involve a coherence or RIP condition on the measurement matrix A. Rather,

it requires the measurement matrix to be associated with a so-called outwardly | S0 |-neighborly

polytope to ensure perfect recovery. This particular structure of the measurement matrix is espe-

cially relevant in DOA estimation and makes it a perfect candidate for such applications as we
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elaborate below.

7.7.2 Application to DOA estimation

Consider the direction finding problem revisited in Sec. 7.5.1 with the sparse representation given

by (7.25). Traditionally, most DOA estimation algorithms exploit the correlation of the received

data to estimate Θ. Assuming the source signals are uncorrelated, i.e., E([s]i(t)[s]∗j (t)) = 0, i 6= j,

we compute Ryy , E(y(l)y(l)H) and vectorize it to get

z =
(
Agrid
steer

∗ �Agrid
steer

)
p + σ2

nvec
(
I
)

The vector p is a sparse vector with onlyD out ofNθ non zero (positive) values denoting the power

of the D sources.

Denote Nca as the number of distinct elements in the difference co-array Sdiff . Extracting the

elements in z corresponding to those distinct rows, we get the reduced sized vector

z1 = Acap + σ2
ne.

Since the difference co-array is always symmetric about 0, the vector z1 has an odd number of

elements, the upper half being complex conjugates of the lower half. Also, e is a vector of all zeros

except for a 1 in the middle. In order to remove the effect of noise, we only consider the upper

(Nca − 1)/2 element subvector of z1 and get the model

z1,u = A+
cap (7.35)

where rows of A+
ca ∈ C(Nca−1)/2×Nθ correspond to elements of the difference co-array located at

{zi − zj , 1 ≤ i, j ≤M, zi − zj > 0}. Theorem 7.7.1 can be invoked to claim:

Theorem 7.7.2. If D ≤ (Nca − 1)/2, Ntheta ≥ Nca, then the support of the positive sparse vector p in

(7.35) can be recovered by solving (7.34) (using z1,u in place of z and A+
ca in place of AKR) provided the

physical sensor locations satisfy

Sca = {zi − zj , 1 ≤ i, j ≤M} = ±{0, 1, 2, · · · , (Nca − 1)/2} (7.36)
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In other words, the “difference set” of the physical array should contain a Uniform Linear Array

(ULA) with Nca elements. This brings us to the problem of designing physical arrays to achieve

two goals:

1. (C1) The set Sca should contain all possible integers from (Nca − 1)/2 to (Nca − 1)/2.

2. (C2) The integer Nca must be as large as possible.

Evidently

Nca ≤M(M − 1) + 1.

However, maximizingNca under the constraint (C1) is an open problem, with no analytical solution

available for a given M . Following our discussion in Sec. 7.5.1, we can see that for the widely used

ULA, Nca = 2M − 1 and that the nested array gives rise to Nca = O(M2), while satisfying (C1). We

therefore get the following Corollary to Theorem 7.7.2:

Corollary 7.7.1. Consider the sparse signal model for direction finding (7.25) where Agrid
steer corresponds

to the array manifold of a nested array. Then, by solving (7.34), it is possible to uniquely identify upto

M2

4 + M
2 − 1 directions-of-arrival unambiguously from the support of the optimal solution p∗. �

The important points worth noticing about Corollary 7.7.1 are:

1. For nested arrays, the maximum recoverable sparsity by solving the (P1+)Co−SMV is identical

to what could be obtained by solving (P0)Co−SMV . Hence there is no gap in the recoverable

sparsity limit in going from the non convex problem to the convex relaxation.

2. Conditions based on Coherence or the Restricted Isometry Property (RIP) lead to guarantees

on the maximum size of recoverable | S0 | which depends on the number of columns N of A

as | S0 |> M
log(N)

7.7.3 Simulations

Consider (i) a nested array, and (ii) a uniform linear array, both with M = 6 sensors. We perform

DOA estimation by solving (7.34). HereNθ = 800, SNR = 0 dB. The nested array can identify upto

11 sources while the ULA can identify upto 5 sources. In contrast with the ideal autocorrelation
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model discussed so far, we now estimate the autocorrelation matrix by averaging over T snapshots,

i.e., R̂yy =
∑T
t=1 y(t)y(t)H .

Example 1: Assume D = 5 DOAs given by −60◦,−45◦,−30◦,−15◦, 0◦. Here D < M , so both ULA

and nested array can identify them using the correlation based model. We plot the recovered vector

in Fig. 7.1(a)-(c) for both the arrays, for T = 200, by solving (P1+)Co−SMV . It can be seen that

the nested array can identify the 5 DOAs but the ULA fails at this value of snapshots. However,

for T = 800 snapshots, it is able to identify the 5 DOAs. In order to demonstrate the superior

identifiability of the nested array, we also plot (Fig. (7.1 (d)) the recovered vector for D = 8(> M)

sources impinging from {−60◦,−45◦,−30◦, 0◦, 30◦, 36◦, 45◦, 60◦}. Here T = 400. As can be seen, all

8 sources can be identified. We can also notice some smaller spurious peaks which indicates that

the solution is only approximately sparse. This is due to the mismatch between the assumed ideal

autocorrelation and its estimated value with finite snapshots.
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Figure 7.1: Comparison of recovered DOAs by nested array and ULA for different values of T
(top left) Reconstructed DOAs using nested array with D = 5, T = 200. (top right) Reconstructed
DOAs using ULA with D = 5, T = 200. (bottom left) Reconstructed DOAs using ULA with D = 5,
T = 800, and (bottom right) Reconstructed DOAs using nested array with D = 8, T = 400.
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Example 2: We now compare how well the nested array with 6 sensors can resolve two closely

spaced sources compared to an ULA. We consider two closely spaced DOAs at 30◦ and 32◦. The

signals recovered by solving (P1+)Co−SMV are plotted for both the arrays in Fig. 7.2 for T = 800.

The ULA is unable to resolve the two sources whereas the nested array can resolve them. This

is because fundamentally the nested array, in the correlation based model, creates a much longer

virtual array with “O(M2)” new measurements and a larger aperture compared to the ULA with

same number of elements.
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Figure 7.2: Comparison of resolution performance between nested array and ULA (top) Recon-
structed DOAs using nested array for D = 2, T = 200, and (bottom) Reconstructed DOAs using
ULA for D = 2, T = 200.
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7.8 Orthogonal Matching Pursuit on the Covariance Matrix

Greedy algorithms provide an alternate route to the convex relaxation approaches for solving (P0).

The most popular among them is the Orthogonal Matching Pursuit (OMP) [52, 147, 177, 180]. In

this section, we will provide new guarantees for OMP for our proposed Co-SMV model (7.13). In

particular, we will show that it is possible to have significantly better recovery guarantees for OMP

when applied on the Co-SMV model.

7.8.1 The Exact Reconstruction Condition for OMP

The condition which is necessary and sufficient for OMP to recover the true support S0 is known

as the Exact Reconstruction Condition (ERC) [177] and it is given by

Theorem 7.8.1. [177] Given a sparse representation y = Ax where x is s-sparse with S0 denoting the

Supp(x), the OMP will recover the columns of A indexed by S0 in the first s steps if the following condition

(also known as ERC) holds

max
j 6∈S0

‖
(
AS0

HAS0

)−1

AS0

Haj‖1 < 1 (ERC) (7.37)

�

The ERC condition can be very difficult to check. Two parameters of A that help to verify ERC

are the coherence µA and the cumulative coherence function µA
1 (s) as defined below:

Definition 7.4: [177] Given an integer s, the cumulative coherence function of a matrix A is

defined as

µ1(s) = max
S:|S|=s

max
j 6∈S
‖AH

S aj‖1 (7.38)

�

The relation of µA and µ1(s) to the ERC condition is given by the following theorem [177]

Theorem 7.8.2. The condition ERC holds for every S0 ⊂ {1, 2, · · · , N} with |S0| = s if

s <
1

2
(1 +

1

µ
) (7.39)
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or more generally

µA
1 (s) + µA

1 (s− 1) < 1 (7.40)

�

7.8.2 Guarantees for the Co-SMV Model

Recall that in the Co-SMV model, we have the matrix AKR instead of A. We already showed how

µA and µAKR
are related. The following lemma relates µAKR

1 (s) and µA
1 (s)

Lemma 7.8.1. Given an integer s, The cumulative coherence function of A and AKR are related as

µAKR
1 (s) <

(
µA

1 (s)
)2

(7.41)

�

Proof. Let B denote AKR and bi denote its ith column for ease of reference. Given S ⊆ [1, 2, · · · , N ]

with | S |= s,and integer j 6∈ S,

‖BH
S bj‖1 =

∑
i∈S
| bHi bj |=

∑
i∈S

(
| aHi aj |

)2

<
(∑
i∈S
| aHi aj |

)2

≤
(
µA

1 (s)
)2

Hence

µAKR
1 (s) = max

S:|S|=s
max
j 6∈S
‖BH

S bj‖1 <
(
µA

1 (s)
)2

This leads to the following recovery condition for the Co-SMV framework:

Theorem 7.8.3. The OMP algorithm applied on the Co-SMV model recovers the true support S0 if

s <
1

2
(1 +

1

µ2
A

) (7.42)

or more generally

(µA
1 (s))

2
+ (µA

1 (s− 1))
2
< 1 (7.43)
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An immediate corollary to Theorem 7.8.3 is given by

Corollary 7.8.1. If

µA
1 (s) <

1√
2
, (7.44)

then OMP on Co-SMV model can identify all supports of size s. �

Proof. It follows from Lemma 7.8.1.

Notice that Corollary 7.8.1 strictly improves upon the condition in Corollary 3.6 in [177], ac-

cording to which

µA
1 <

1

2
(7.45)

is a sufficient condition for OMP to recovery the true support. However, (7.45) implies (7.44) but

not the converse. Denote sco−SMV as the maximum integer s such that (7.44) holds and similarly

let sSMV be the maximum integer s such that (7.45) holds. Since µA
1 (s) is a non decreasing function

of s [177], we can easily conclude that

sCo−SMV ≥ sSMV

Hence the sufficient condition for success of OMP on the Co-SMV framework can guarantee re-

covery of sparsity levels which can be greater than that on the SMV model. Depending on the

dictionary A itself, the difference between sCo−SMV and sSMV can be substantially large.

7.9 Conclusion

In this chapter, we proposed a correlation aware framework for sparse support recovery. Using

priors on the unknown sparse signal which assume that the non zero entries are statistically un-

correlated, we showed that it is possible to have unique representation for the support even when

the sparsity level exceeds the dimension of the measured vector(s). We developed new condi-

tions based on the Khatri-Rao product of the measurement matrix to allow unique representation.
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We also developed coherence based guarantees for a modified l1 problem for support recovery

from our proposed framework. The coherence based guarantees in this case turn out to be much

stronger than existing counterparts in literature. We further exploited the non negativity of the so-

lution and provided necessary and sufficient conditions for support recovery form the covariance

matrix. These conditions were shown to naturally justify the choice of sparse sampling schemes

such as nested and coprime arrays. Finally, we also considered greedy algorithms applied to the

correlation aware framework and demonstrated that even for greedy approaches such as OMP, it

is possible to have much stronger guarantees for support recovery by using an argument based on

the cumulative coherence of the measurement matrix. The results developed in this chapter point

to the effectiveness of our proposed formulation for recovering sparse supports of much larger size

than what is considered in existing literature.
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Chapter 8

Estimated Covariance matrix and the
Multiple Measurement Vector Model

8.1 Introduction

The last chapter established new conditions on sparse recovery from the covariance matrix of the

measurements. However, in practice, we only have estimate of the covariance matrix, computed

from a finite amount of data. In this chapter, we focus on analyzing the performance of the covari-

ance based recovery techniques when an estimate of the covariance matrix is used. In doing so,

we will use the Multiple Measurement Vector (MMV) model (7.5) (which is a generalization of the

SMV model) to obtain our estimate.

Jointly sparse support recovery from MMV is an important problem that seeks to recover the

common support shared by the set of L sparse signal vectors xl in (7.5). It arises in a number

of applications such as MEG/EEG imaging [200, 117, 207, 208], wideband spectrum sampling

[125], spectrum sensing for cognitive radio [153, 174, 203], direction finding in array processing

[206, 172, 107, 121], radar[87], and multivariate regression [130, 129]. The MMV framework has

been shown to provide fundamentally better guarantees [36, 49] than the SMV model in terms of

uniqueness of sparse representation. Subsequently, a number of algorithms have been developed

which solve the MMV problem for sparse recovery. These include greedy algorithms [181, 128, 48],

convex relaxations via l1/l2 norm minimization and/or LASSO [178, 121, 36, 71, 130], hybrid of

subspace based methods and convex relaxation [107], MMV extension of possibly non convex algo-

rithms such as M-FOCUSS [49, 48] and Bayesian algorithms extended to the MMV model [200, 207].

Information theoretic limits for sparse recovery have also been studied [189, 172].
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In this chapter, instead of assuming that we know the data covariance matrix, we estimate it

from the MMV model using L measurements. As will be shown, this changes the formulation

derived in Chapter 7 based on exact covariance matrix. In particular, as a result of estimation using

finite number of samples, there is an additive noise like term which becomes arbitrarily small as

L → ∞ under our assumptions (A1)-(A2) on the correlation priors. We will devote this chapter to

analyze the effect of such noise to the uniqueness condition of our model. We will also analyze the

performance of LASSO [175] applied for support recovery from such a model.

8.1.1 Related Work and Our Contributions

Many of the algorithms for joint sparse recovery in MMV can be viewed as extensions of their

SMV counterparts [181, 128, 48, 121, 178] and as such do not exploit any special structure or sta-

tistical prior of the measurements. However, there exists a family of algorithms which tries to

exploit structure in the unknown sparse signals {xl}Ll=1, such as rank [53, 107], correlation [207],

non uniform sparse model with different probabilities on non zero entries [99] etc. Our work is

more closely related to this second class of algorithms. However, the specific prior on correlation

that we consider is very different from what has been considered in the literature so far. To the

best of our knowledge, the only other (and possibly the first) body of work so far that considers

correlation in the MMV model is [207, 208]. While the work in [207] considers the case where the

L unknown vectors have temporal correlation and thereby proposes algorithms to learn the corre-

lation by Sparse Bayesian Learning techniques, we actually consider the case when the non zero

entries of the source vectors x[l] have no correlation among themselves. We have show that this

assumption has significant implications in terms of design of suitable measurement matrices that

can exploit such priors. The work in [207], however, does not specifically exploit the lack of cor-

relation among the non zero elements, although it implicitly assumes a block diagonal covariance

matrix for the matrix XL. Also, while the approach in [207] is based on SBL, we apply a LASSO on

the covariance matrix of the data for recovering the sparse support. In future, we are interested in

studying the effect of correlation priors in the SBL framework which has not been investigated so

far.

The performance of LASSO for sparse models with additive noise has been analyzed [79, 190,

26, 59, 179, 123, 205]. In this chapter, we analyze LASSO for its capability to recover the underly-

ing sparse support, as opposed to developing stability of the recovered vector in terms of l2 norm
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of the error. In this regard, our approach to analysis is closely related to that in [190, 79]. How-

ever, while [79] considers a bounded (non random) noise, we have a statistical model for our noise

term, which is derived from the finite sample estimated covariance matrix. The analysis in [190]

considers a random noise model and derives bounds on the probability of support recovery, both

for deterministic and random ensemble of measurement matrices. They however consider a non

random signal model for XL. In contrast, our formulation makes use of the second order moments

of the distribution of a random signal model for XL. In our analysis, the measurement matrix is

deterministic and the probability is measured over the distribution of the unknown signals. Conse-

quently, our recovery guarantees are substantially different from those developed in [189] and we

concentrate on how the probability of recovery behaves as L increases.

Portions from this chapter have been presented in [144] and [145].

8.2 Outline of Chapter

In Sec. 8.3, we formulate the problem of support recovery from an estimated covariance matrix

and show the effect of finite measurements on such a model as an additive noise-like term. In Sec.

8.4, we establish uniqueness results for sparse representation using the proposed model. These

guarantees are independent of any algorithm used. In Sec. 8.5, we propose the use of LASSO on the

model derived from estimated covariance matrix and analyze its performance for any distribution

of XL which satisfy (A1) and (A2). Finally in Sec. 8.6, we compute bounds on the probability of

successful support recovery when XL follows multivariate Guassian distribution and show that it

is possible to recover the support in this case with overwhelming probability as L→∞.

8.3 MMV Model and the Estimated Correlation Correlation

We revisit the MMV problem. Here y[l] ∈ RM×1, 1 ≤ l ≤ L denotes a set of L multiple measure-

ment vectors, A ∈ RM×N = [a1 a2 · · ·aN ] is the measurement matrix, and xs[l] ∈ RN×1, 1 ≤

l ≤ L are L unknown vectors with the same sparsity ||xs[l]||0 = D and common sparsity support

denoted by the set S0 = {i0, i1, · · · , iD−1}. We have

y[l] = Axs[l], 1 ≤ l ≤ L. (8.1)
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We are interested in recovering the sparsity support S0 using these ML measurements and

determining what is the maximum D upto which all sparsity supports with cardinality D can be

recovered. Without considering any priors on XL, one could only recover sparsity supports upto

[36]

D <
Rank(X) + Krank(A)− 1

2

which gives a maximum of D < M . In Chapter 7, it was demonstrated that with the perfect knowl-

edge of the autocorrelation matrix of the vectors y[l], one can recover sparsity supports of much

higher cardinality by applying Basis Pursuit (BP) on an appropriate model. The recoverable spar-

sity can be as high as O(M2) for suitably designed physical measurement matrices, which give rise

to Vandermonde matrices in an appropriate model derived from the autocorrelation matrix. How-

ever, the formulation in Chapter 7 was developed for the ideal knowledge of the autocorrelation

matrix of the measurement vectors y[l] which is true only in the limit at L → ∞. In this paper, we

consider the non ideal case, where we only have an estimate of the autocorrelation matrix from the

L measurement vectors. We demonstrate that the non ideal knowledge of the covariance matrix

manifests itself in the form of a random (possibly unbounded) additive noise term and hence the

support recovery can be characterized only probabilistically.

The estimated sample correlation matrix is given by

R̂[L]
yy ,

1

L

L∑
l=1

y[l]y[l]T = AR̂[L]
xxAT

where R̂
[L]
xx = 1

L

∑L
l=1 xs[l]xs[l]

T On vectorization, we can write

z[L] , vec(R[L]
yy ) = (A∗ �A)︸ ︷︷ ︸

AKR

r[L]
xx + e[L] (8.2)

where r
[L]
xx ∈ RN×1 is a D sparse vector with the same support S0 and non zero elements given by

σ2
i

[L]
,

1

L

L∑
l=1

[xs[l]]
2
i , i ∈ S0 (8.3)

Hence r
[L]
xx is a non negative vector for all values of L. The elements of the vector e[L] ∈ RM2×1 are
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given by

1

L

∑
i 6=j

L∑
l=1

Am,iAn,j [xs[l]]i[xs[l]]j , 1 ≤ m,n ≤M. (8.4)

They denote the estimates of cross correlation between the elements of y[l]. The fact that the sample

cross correlations are (unfortunately) nonzero for finite L is represented by these terms. We can

think of z[L] as our effective Single Measurement Vector (derived from the MMV), A � A as the

effective measurement matrix and e[L] as the effective additive noise term. We aim to recover the

support S0 of the unknown vector r
[L]
xx from this model. Hence the imperfect knowledge of the

ideal covariance matrix leads to an additive noise-like term e[L].

8.4 Fundamental Conditions for Sparse Support Recovery Under

Bounded Noise

With only an estimate of the covariance matrix available (computed from finite number of samples),

the problem of support recovery becomes identical to having an additive noise term to the Co-SMV

model (7.13). Hence it is important to understand what conditions guarantee recovery of the true

support under noisy setting. In other words consider a noisy observation

y = Ax0 + n (8.5)

where Supp(x0) = S0 and ‖ n ‖2 < ε. We would be interested in knowing the condition under

which the following (non convex) support recovery problem will yield the true support:

min
x
‖ x ‖0 (P0)

ε (8.6)

subject to‖ y −Ax ‖2 < ε (8.7)

Since ε gives a measure of the noise power, we define the Signal-to-Noise-Ratio (SNR) as

SNR ,
|x0min|

ε
. (8.8)
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Here x0min denotes the minimum non zero element of x0. We also define a parameter σs(A) of A

which will be useful to provide guarantees for recovery of S0. This quantity is closely related to the

“left RIP constant” as proposed by Candes [25].

Definition 8.1: Given a matrix A and integer s, the parameter σs(A) is defined as

σs(A) = min
S⊂[N ]:|S|=s

√
λmin(AH

S AS) (8.9)

where for a matrix B, λmin(B) denotes the minimum eigenvalue. �

The following theorem states the sufficient condition under which (P0)ε yield S0.

Theorem 8.4.1. Consider the model given by (8.5). The solution x∗ to (P0)ε satisfies Supp(x∗) = S0 if

Krank(A) > 2 | S0 | (8.10)

and

| x0min |>
2ε

σ2|S0|(A)
. (8.11)

�

Proof. The solution x∗ to (P0)ε will recover the true support S0 if and only if there is only one

vector x0 with support S0 that satisfies ‖ y −Ax0 ‖2 < ε. We will show that under the conditions

Krank(A) > 2 | S0 | and | x0min |> 2ε
σ2|S0|(A) , this is indeed true. We will prove this by contradic-

tion. Let us assume that the solution x∗ to (P0)ε does not have the support S0. Let Sx = Supp(x∗).

Since Sx is the minimizing support, | Sx |≤| S0 |. Since both x0 and x∗ are feasible, we can write

‖ASx [x∗]Sx −AS0
[x0]S0

‖2 < 2ε (8.12)

⇒ ‖AS0∪SxxT ‖2 < 2ε (8.13)

where xT =
[
[x∗]SxrS0

[x∗]Sx∩S0
− [x0]Sx∩S0

− [x0]S0rSx

]
T . Since | Sx |<| S0 |, the number of

columns in AS0∪Sx is at most 2 | S0 | and we can say (8.13) implies

σ2|S0|(A)‖ xT ‖2 < 2ε (8.14)
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Since Krank(A) > 2 | S0 |, σ2|S0|(A) > 0 and we can say (8.14) implies

‖ xT ‖2 <
2ε

σ2|S0|(A)
(8.15)

Since S0 \ Sx 6= ∅, it follows that ‖ xT ‖2 > ‖ [x0]S0rSx ‖2 >| x0min. | Therefore, (8.15) implies

| x0min |<
2ε

σ2|S0|(A)

which is a contradiction to the given condition, and this concludes our proof.

Theorem 8.4.1 states that even in the noisy scenario, the following are true:

1. The solution of (P0)ε can yield the true support S0 of size upto |S0| < Krank(A)
2 . This number

coincides with the maximum sized support obtainable by solving (P0).

2. However, the SNR should exceed the threshold t = 2
σ2|S0|(A) .

In the model (8.2) derived from the estimated correlation matrix, the matrix of interest is AKR.

The following lemma establishes the relation between the singular values of A and AKR

Lemma 8.4.1. Given a subset S ⊂ {1, 2, · · · , N}, the minimum singular values of AS and AKRS satisfy

σmin(AKRS) ≥ σ2
min(AS) (8.16)

�

Proof. From the definition of column-wise Kronecker products, it can be verified that

AKR
H
S AKRS =

(
A∗S �AS

)H(
A∗S �AS

)
=
(
AT
SA∗S

)
◦
(
AH
S AS

)

From properties of Hadamard Product, for two positive semidefinite matrices M,N, the minimum

eigenvalues λmin satisfy [92, p. 312]

λmin(M ◦N) ≥ λmin(M)λmin(N) (8.17)

from which the desired condition follows.
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The problem of recovering the sparsest r
[L]
xx satisfying (8.2) can be cast as

min
r
‖ r ‖0 (P0)epsilonCo−SMV (8.18)

subject to ‖ z[L] −AKRr ‖2 ≤ ε (8.19)

where ε is an upper bound on the error of estimation ‖e[L]‖2.

Applying Theorem (8.4.1), we get the sufficient condition for the solution of (P0)εCo−SMV to

uniquely recover the support S0:

Theorem 8.4.2. Consider the model (8.2) derived from the MMV model with ML measurements. The

solution r∗ to (P0)εCo−SMV satisfies Supp(r∗) = S0 if

Krank(AKR) > 2 | S0 | (8.20)

and

| r[L]
xxmin |>

2ε

σ2|S0|(AKR)
(8.21)

�

The theorem in particular implies

1. It is fundamentally possible to uniquely identify sparse support of size as large as Krank(AKR).

Since Krank(AKR) ≥ 2Krank(A), it is fundamentally possible to recover larger sparsity levels

if the SNR is high enough.

2. The above claim is true if the SNR condition | r
[L]
xxmin |> 2ε

σ2|S0|(AKR) holds. For Support S0

with | S0 |< Krank(A)
2 , which can be recovered by solving both (P0)ε and (P0)εCo−SMV , the

SNR threshold required for (P0)εCo−SMV can be higher than that for (P0)ε if σ2|S0|(A) < 1.

This is evident from Lemma 8.4.1.

Hence by solving the non convex problem (P0)εCo−SMV derived from the proposed correlation

aware framework, it is possible to recover larger sparse support provided the SNR is large enough.

However, for smaller sparsity levels, the SNR requirement can be significantly larger than what is
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needed for solving (P0)ε. Since (P0)εCo−SMV is NP-hard, we next analyze the performance of the

convex relaxation of (P0)εCo−SMV .

8.5 Analysis of LASSO: Independent of Distribution

Since the imperfect knowledge of the ideal covariance matrix leads to an additive noise-like term

e[L], this provides the ideal framework for applying LASSO (l1 norm regularized quadratic pro-

gramming) [175] for sparse support recovery. Since the signal vector is always positive, in our case,

we have an added constraint on the unknown vector to be positive. So the problem of recovering

the sparse support becomes finding the support of a vector r̂ ∈ RN×1 which is the solution to the

following constrained LASSO:

min
r

(1

2
||(A�A)r− z[L]||22 + h||r||1

)
(LASSO)

subject to r � 0 (8.22)

.

In [79, 190], the performance of LASSO for support recovery has been analyzed for both bounded

and sub Gaussian noise (for deterministic as well as stochastic measurement matrix A). However,

unlike [79, 190], we do not assume the effective additive noise term e[L] to be bounded or sub

Gaussian. We only have assumptions on the second order statistics of the noise term (which results

from our original assumption about uncorrelatedness of the vectors) and not on their specific dis-

tributions. With this lone assumption, we compute a lower bound on the probability of successful

recovery of the support. As a first step, the following theorem provides a set of sufficient conditions

for the solution of the LASSO (8.22) to yield the true support of the sparse vectors:

Theorem 8.5.1. Consider the model (8.2) where S0 denotes the sparse support of r
[L]
xx . If | S0 |< 1

2 (1 + 1
µ2
A

),

and the following two conditions hold:

‖e[L]‖2 < h
1 + µ2

A − 2µ2
A | S0 |

1 + µ2
A − µ2

A | S0 |
, (E1) (8.23)
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σ2
i

[L]
>

‖e[L]‖2 + h

1 + µ2
A − µ2

A | S0 |
, ∀i ∈ S0 (E2) (8.24)

then the optimal solution r∗ to the LASSO satisfies Supp(r∗) = S0. �

Proof. See Appendix 8.9.1.

Notice that the above set of sufficient conditions involves the random variables σ2
i

[L] and e[L].

Since E1 and E2 are sufficient conditions for support recovery, if we can develop a lower bound

on the probability of joint occurrence of the events E1 and E2, then the probability of successful

support recovery by solving LASSO can also be lower bounded by the same quantity. Denote

µ
(4)
i , E([xs[l]]

4
i ) and σ2

min = min{σ2
i , i ∈ S0}

Lemma 8.5.1. Consider the model (8.2) and let (A1) and (A2) hold. If 0 < h < σ2
min

(1+µ2
A−µ

2
A|S0|)2

2(1+µ2
A)−3µ2

A|S0| , the

probability of the event E1

⋂
E2 is bounded below by

P(E1

⋂
E2) > 1− C(h)

L
+O(

1

L2
)

where the constant C(h) is independent of L and depends on h as well as on coherence µA, sparsity D and

the matrix A as

C(h) =
∑D
i=1

µ
(4)
i −σ

4
i

(σ2
i−h

2(1+µ2
A

)−3µ2
A
D

1+µ2
A
−µ2

A
D

)2
+

M2(1+µ2
A−µ

2
AD)2

h2(1+µ2
A−2µ2

AD)2

∑D
i 6=j σ

2
i σ

2
j

(
‖ai‖22‖aj‖22 + (1TM×1[ai ◦ aj ])

2
)

�

Proof. See Appendix 8.9.4.

Combining Theorem 8.5.1 and Lemma 8.5.1, we obtain the following theorem which sums up

the desired result on the probability of successful recovery:

Theorem 8.5.2. Consider the MMV model (8.1) with the assumptions given by (A1)-(A2). If

| S0 |<
1

2
(1 +

1

µ2
A

), and 0 < h < σ2
min

(1 + µ2
A − µ2

A | S0 |)2

2(1 + µ2
A)− 3µ2

A | S0 |
,
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then the common support S0 can be recovered by solving LASSO given by (8.22), with probability greater

than 1− 1
LC(h) +O( 1

L2 ) �

Following points are worth noticing:

1. When L → ∞, one can guarantee the recovery of any sparsity level upto 1
2 (1 + 1

µ2
A

) with

probability 1. Since we used our assumption only on the second order statistics of the random

vectors (and not their distribution), the above probability of successful recovery was bounded

using Chebyshev Inequality. Consequently, the upper bound on probability of failure decays

as 1
L which can be rather loose for smaller values of L. However, with more assumptions on

the distribution of nuisance terms (such as sub Gaussian tail etc), the bound can be tightened

by using Chernoff-like bounds (as done in [190]). It is also to be noted that unlike most

analysis (including that in [190] ) on sparse recovery which considers probability of successful

recovery over an ensemble of random measurement matrices, the current analysis has been

performed for a fixed measurement matrix A and the probability is considered with respect

to the distribution of the random source vectors xs[l]. Also, our goal is to characterize how it

varies with L.

2. Role of cross correlation: It is evident from above analysis that the cross correlation between

[xl]i and [xl]j , i 6= j has an additive noise like effect on the ideal model considered in Chap-

ter 7. These non zero cross correlation terms arise from the finite number of snapshots and

their norm decreases with high probability as L increases. Hence, we can bound their norm

at any given value of L with a probability that increases with L, and this in turn dictates the

probability of successful recovery using LASSO. A similar analysis may also be extended to

the case where the entries in xl are actually correlated and one can derive interesting rela-

tions between the SNR and the allowable magnitudes of these cross correlation terms for the

success of LASSO.

8.6 Analysis of LASSO For Gaussian Model

In the previous section, we performed analysis of the LASSO (8.22) by computing the probability of

successful support recovery without assuming any specific probability distribution for the source

vectors. Accordingly, the lower bound on the probability of successful recovery (denoted Ps) was

found to be rather loose, and it increases with L as Ps ≥ 1 − C
L . As evident, the bound increases
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to unity rather slowly with increasing L. In this section, we demonstrate that assuming a specific

distribution on the unknown source vectors, namely, multivariate Gaussian, it is possible to guar-

antee support recovery with overwhelming probability with increasing L. In particular, we will

show that the probability of support recovery increases as Ps ≥ 1− Cβ−L, C > 0, β > 1.

8.6.1 Concentration Inequalities

We first state a concentration inequality ([86], Lemma 6) that will be directly used in our derivation:

Lemma 8.6.1. Let each of xi and yi, i = 1, · · · , k be real sequences of i.i.d zero mean Gaussian random

variables with variance σ2
x and σ2

y respectively. Then

P
(
|
k∑
i=1

xiyi| ≥ t
)
≤ 2exp

(
− t2

2σxσy(2σxσyk + t)

)

�

Using above lemma, we can get the following result. The notation σ
(k)
max denotes the kth largest

element in the set of non negative numbers {σi}|S0|
i=1 .

Lemma 8.6.2. Consider the model (8.2). Under the assumptions (A1)-(A2), the following holds ∀1 ≤ i ≤

M2:

P
(
|[e[L]]i| ≥ C

)
≤ 2exp

(
− Lt2

2σ
(1)
maxσ

(2)
max(2σ

(1)
maxσ

(2)
max + t)

)
,

where t , C
‖A‖2∞,∞|S0|(|S0|−1)

�

Proof. See Appendix 8.9.2

We now prove a second concentration inequality which directly provides a bound on the prob-

ability of occurrence of event E2.

Lemma 8.6.3. Let xi, i = 1, · · · , L denote i.i.d zero mean Gaussian random variables with variance σ2
x.

Also, assume 0 < C < σ2
x. Then, there exists β > 1 such that

P
( 1

L

L∑
i=1

x2
i > C

)
≥ 1− β−L (8.25)

�
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Proof. See Appendix 8.9.3

8.6.2 Probability of Support recovery by Solving the LASSO

Armed with the inequalities provided by Lemmas 8.6.2 and 8.6.3, we now state our main result on

the probability of support recovery by solving the LASSO (8.22), given by the following theorem:

Theorem 8.6.1. Consider the MMV model given by (8.1) which satisfies the assumptions (A1)-(A2). If

| S0 |<
1

2
(1 +

1

µ2
A

), and 0 < h < σ2
min

(1 + µ2
A − µ2

A | S0 |)2

2(1 + µ2
A)− 3µ2

A | S0 |
,

then the common support S0 can be recovered by solving the proposed LASSO given by (8.22), with proba-

bility greater than 1− αγ−L for some γ > 1. �

Proof. Using Theorem 8.5.1, we can say that the probability of successful recovery of sparse support

by solving the LASSO (8.22), denoted as Ps, satisfies:

Ps ≥ P(E1

⋂
E2) (8.26)

where (E1) and (E2) are defined in (8.23) and (8.24). Using a technique similar to the proof of

Lemma 8.5.1 in Appendix 8.9.4, it can be shown that

P(E1

⋂
E2) ≥

D∏
i=1

P(σ2
i

[L]
> c2)−

M2∑
i=1

P(| [e[L]]i |≥
c1
M

) (8.27)

Here c1 and c2 are as defined in Appendix 8.9.4 Now using the expression for σ2
i

[L] from (8.3), we

can say, from Lemma 8.6.3 that

|S0|∏
i=1

P(σ2
i

[L]
> c2) ≥

|S0|∏
i=1

(1− β−Li ) (8.28)

and using Lemma 8.6.2, we get

M2∑
i=1

P
(
| [e[L]]i |≥

c1
M

)
≤ 2M2e−δL (8.29)

where δ , t2

2σ
(1)
maxσ

(2)
max(2σ

(1)
maxσ

(2)
max+t)

and t , c1
M‖A‖2∞,∞|S0|(|S0|−1)

. Using (8.28) and (8.29) in (8.64), we
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obtain

Ps ≥
|S0|∏
i=1

(1− β−Li )− 2M2e−δL (8.30)

which proves the desired result since each βi > 1.

8.7 Numerical Results

Consider A ∈ RM×N to be a Gaussian matrix with zero mean and unit variance. We first assume

M = 20, N = 256 and the sparsity level is | S0 |= 34. We consider L = 200 i.i.d Gaussian source

vectors, and apply our proposed technique (correlation aware LASSO) as well as existing variants

of MMV BP [36, 121] on the same data.

Figure 8.1: Comparison of recovered support when | S0 |= 34 > M . (top left): True Support. (Top
right): Support recovered by LASSO on Co-SMV, (bottom) Support recovered by MMV-BP. Here
M = 20, N = 256.

Fig. 8.1 compares the performance of these two methods for sparsity level | S0 |= 34 by plotting

the recovered vector. It can be seen that the proposed method outperforms traditional MMV BP

which fails to identify the correct support for sparsity levels larger than M .

Next, we demonstrate the probability of successful support recovery (by generating zero mean

i.i.d. random xl, 1 ≤ l ≤ L but keeping A constant) averaged over 500 Monte Carlo runs. We

consider M = 20, N = 256 and two different levels of sparsity levels.
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Figure 8.2: Probability of Support recovery in two different regimes: (top) | S0 |< M and (bottom)
| S0 |> M .
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We first plot the probability of successful recovery for | S0 |= 16 < M in Figure 8.2 (top). In

this scenario, many existing MMV sparse recovery algorithms are capable of recovering the sparse

support and we provide a comparison with a number of algorithms. In particular, we compare with

TMSBL [207], MFOCUSS [49, 48] and MMV-BP. It can be seen that for large L, all the algorithms

can recover the true support with probability 1. However, for small L, the existing approaches

outperform SBL and LASSO applied on the proposed framework. This is because for small L, the

estimates of the correlation have the non zero cross correlation terms added and they create the

effect of noise. The traditional methods do not consider estimates of correlation and hence do not

suffer from this effect.

In the second case, we consider | S0 |= 24 > M . We plot the probability of successful support

recovery vs L for two algorithms, namely, SBL [176] and LASSO [175] applied to our proposed

Co-SMV framework. We also compare the performance of MMV-BP in this case. As seen earlier,

the solution of MMV-BP is not even sparse in this scenario. Hence to permit a comparison, we run

MMV-BP under the assumption that the sparsity level | S0 |= 24 is known and hence it picks the

24 largest peaks from it non sparse solution. However, the two algorithms applied on our Co-SMV

framework do not have this side information. Figure 8.2 (bottom) shows the desired plot. It can be

seen that the proposed framework outperforms MMV-BP by a significant margin. This proves the

effectiveness of the proposed framework for dealing with sparsity levels larger than M .

8.8 Conclusion

In this chapter, we studied the performance of correlation aware sparse support recovery when

we only have estimates of correlation obtained from a finite number (L) of measurements from the

MMV model. It was shown that the effect of finite measurements has a noise-like effect on the

model for support recovery and the use of LASSO was proposed. We analyzed the performance of

LASSO for support recovery by probabilistically characterizing the effect of estimated correlation

values. We first performed a general analysis without considering any specific distribution for x

and then extended this analysis to the case where x belongs to a multivariate Gaussian distribu-

tion with diagonal covariance matrix. We showed that it is possible to recover the support with a

probability which grows overwhelmingly fast with L.
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8.9 Appendix

8.9.1 Proof of Theorem 8.5.1

We introduce Lagrange multipliers λi, 1 ≤ i ≤ N corresponding to the constraints −r � 0, with

λi ≥ 0 for each i. Using the KKT conditions [18], we obtain that (r∗,λ∗) constitute a primal-dual

optimal solution pair if and only if

(
A(KR)TA(KR)

)
r∗ −A(KR)T z[L] + h1N×1 − λ∗ = 0 (8.31)

and

[λ∗]i[r
∗]i = 0, 1 ≤ i ≤ N (8.32)

Here A(KR) = A � A. Recall that S0 denotes the set containing the indices indicating the true

support of the sparse vector r
[L]
xx that generates the observed z[L]. Given a vector v, and a set S of

integers, let us denote vS as the |S| × 1 subvector of v containing elements of v whose indices are

given by the set S. Similary for a matrix A, AS is the submatrix composed of |S| columns indexed

by S. With this notation, it can be seen that r̂ and λ̂ as defined below (by (8.33)-(8.36)), are an

optimal primal-dual pair since they can be verified to satisfy (8.31) and (8.32).

r̂Sc0 , 0, (8.33)

λ̂S0
, 0 (8.34)

r̂S0
, r[L]

xx S0
+ A

(KR)
S0

†
e[L] − h

(
A

(KR)
S0

T
A

(KR)
S0

)−1

1S0
(8.35)

λ̂Sc0 , h1Sc0 −A
(KR)
Sc0

T(
e[L]⊥ + hA

(KR)
S0

†T
1S0

)
(8.36)

Here Sc0 = [N ] r S0 and e[L]⊥ = e[L] −A
(KR)
S0

A
(KR)
S0

†
e[L]. Now, if h is such that:



256

h(1− a
(KR)
i

T
A

(KR)
S0

†T
1S0

) > a
(KR)
i

T
e[L]⊥, i ∈ Sc0 (8.37)

then it implies from (8.36)

[λ̂]i > 0,∀i ∈ Sc0 (8.38)

This condition has an important implication in recovery of true support. Any optimal r∗ must now

satisfy (8.32) with the particular optimal dual variable λ̂ satisfying (8.38) and this immediately

implies: Supp(r∗) ⊆ S0

We assume from now on that (8.37) holds true. Using this fact, for any primal optimal r∗ and

the particular dual optimum λ̂ given by (8.34) and (8.38), we obtain from (8.31) that

r∗S0
= r̂S0

(8.39)

where r̂S0
is as in (8.35).

Now if Supp(r∗) ⊂ S0 (i.e., the true support is not exactly equal to the support of the optimal

vector) then ∃i such that

|[r∗S0
− r[L]

xx ]
i
| ≥ σ2

min
[L]
, min
j∈S0

{σ2
j

[L]}

Conversely, we can say from (8.35), if

‖A(KR)
S0

†
e[L] − h

(
A

(KR)
S0

T
A

(KR)
S0

)−1

1S0‖∞
< σ2

min
[L]

(8.40)

then it implies that

Supp(r∗) = S0.

In conclusion, we can say that the support of any optimal solution of the LASSO (8.22) will be equal

to the true support S0 provided (8.37) and (8.40) hold.
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Following an approach similar to [79], it can be shown that if D < 1
2 (1 + 1

µ2
A

), then (8.37) is

satisfied provided

‖e[L]‖2 < h
1 + µ2

A − 2µ2
AD

1 + µ2
A − µ2

AD
(8.41)

and (8.40) is satisfied if

σ2
min

[L]
>
‖e[L]‖2 + h

1 + µ2
A − µ2

AD
(8.42)

Summarizing, if (8.23) and (8.24) hold, then

Supp(r∗) = S0

for any optimal r∗.

8.9.2 Proof of Theorem 8.6.2

Notice from (8.4) that

|[e[L]]i| ≤
‖ A ‖2∞,∞

L

∑
k 6=j

L∑
l=1

∣∣∣[xs[l]]k[xs[l]]j

∣∣∣ (8.43)

Therefore

|[e[L]]i| ≥ C =⇒
∑
k 6=j

L∑
l=1

∣∣∣[xs[l]]k[xs[l]]j

∣∣∣ ≥ CL

‖ A ‖2∞,∞
(8.44)

Also, notice that

∑
k 6=j

L∑
l=1

∣∣∣[xs[l]]k[xs[l]]j

∣∣∣ ≥ CL

‖ A ‖2∞,∞
=⇒ (8.45)

L∑
l=1

∣∣∣[xs[l]]k0 [xs[l]]j0

∣∣∣ > CL

‖ A ‖2∞,∞D(D − 1)
(8.46)
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for some k0, j0 ∈ {1, · · · , D}, k0 6= j0. Using (8.44) and (8.46), we can say that

P
(
|[e[L]]i| ≥ C

)
(8.47)

≤ P
(∑L

l=1

∣∣∣[xs[l]]k0 [xs[l]]j0

∣∣∣ > CL
‖A‖2∞,∞D(D−1)

)
(8.48)

Under assumption (A1), {[xs[l]]j}Ll=1 and {[xs[l]]k}Ll=1 denote sequences of i.i.d. zero mean Gaus-

sian random variables which are independent of each other. Hence, given k 6= j, we can use Lemma

8.6.1 to obtain

P
( L∑
l=1

∣∣∣[xs[l]]k0 [xs[l]]j0

∣∣∣ > CL

‖ A ‖2∞,∞D(D − 1)

)
(8.49)

≤ 2exp
(
− Lt2

2σk0σl0(2σk0σl0 + t)

)
(8.50)

≤ 2exp
(
− Lt2

2σ
(1)
maxσ

(2)
max(2σ

(1)
maxσ

(2)
max + t)

)
(8.51)

The desired result directly follows from above and (8.48).

8.9.3 Proof of Lemma 8.6.3

The proof is based upon Chernoff Bound. Denote p[L]
x , 1

L

∑L
i=1 x

2
i . Then

P(p[L]
x > C) = P

( L∑
i=1

x2
i > CL

)
= P

( L∑
i=1

z2
i >

CL

σ2
x

)
(8.52)

where zi denote i.i.d zero mean standard normal variables. Therefore
∑L
i=1 z

2
i is a Chi-Squared

random variable with L degrees of freedom. Observe P(p[L]
x > C) = 1− P

(∑L
i=1 z

2
i ≤ CL

σ2
x

)
≥ 1 − exp( sCLσ2

x
)(1 + 2s)−L/2 for s > 0. Equation (8.9.3) follows from the Chernoff Bound and

also from the fact that the Moment Generating function of a Chi-Squared random variable with L

degrees of freedom is given by (1− 2s)−L/2, s < 1/2. Now define the function

β(s) = exp(−2sC

σ2
x

)(1 + 2s) (8.53)

we can write from (8.9.3) that

P(p[L]
x > C) ≥ 1−

(
β(s)

)−L/2
. (8.54)
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We want to ensure that ∃s > 0, such that β(s) > 1. Now β(s) > 1 ⇔ C < γ(s) where γ(s) ,

σ2
x

2s log(1 + 2s). It can be verified that γ(s) is a decreasing function in s for s > 0 and γ(0) = σ2
x.

Since, it is given that C < σ2
x, then indeed ∃s0 > 0 such that C < γ(s0). This in turn implies,

β(s0) > 1. Hence, we conclude from (8.54) that P
(

1
L

∑L
i=1 x

2
i > C) ≥ 1− β−L for β =

√
β(s0) > 1.

8.9.4 Proof of Lemma 8.5.1

The probability of successful recovery of sparse support by solving the LASSO (8.22), denoted as

Ps, satisfies:

Ps ≥ P(E1

⋂
E2) (8.55)

= P
(
‖e[L]‖2 < h

1 + µ2
A − 2µ2

A | S0 |
1 + µ2

A − µ2
A | S0 |

, σ2
min

[L]
>
‖e[L]‖2 + h

1 + µ2
A − µ2

AD

)
(8.56)

If (E1) holds, then σ2
min

[L]
>

h
1+µ2A−2µ2AD

1+µ2
A
−µ2

A
D

+h

1+µ2
A−µ2

AD
⇒ σ2

min
[L]

>
‖e[L]‖2+h

1+µ2
A−µ2

AD
. Using this, we get

Ps ≥ P
(
‖e[L]‖2 < c1, σ

2
min

[L]
> c2

)
(8.57)

where

c1 , h
1 + µ2

A − 2µ2
AD

1 + µ2
A − µ2

AD
, c2 , h

2(1 + µ2
A)− 3µ2

AD

(1 + µ2
A − µ2

AD)
2 (8.58)

Now

Ps≥ P(‖e[L]‖2 < c1, σ
2
min

[L]
> c2) (8.59)

≥ P
(M2⋂
i=1

{
| [e[L]]i |<

c1
M

}
, σ2

min
[L]

> c2

)
(8.60)

= P(σ2
min

[L]
> c2)− P(σ2

min
[L]

> c2,

M2⋃
i=1

{
| [e[L]]i |≥

c1
M

}
) (8.61)

≥ P(σ2
min

[L]
> c2)− P(

M2⋃
i=1

{
| [e[L]]i |≥

c1
M

}
) (8.62)

≥ P(σ2
min

[L]
> c2)−

M2∑
i=1

P(| [e[L]]i |≥
c1
M

) (8.63)
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=

D∏
i=1

P(σ2
i

[L]
> c2)−

M2∑
i=1

P(| [e[L]]i |≥
c1
M

) (8.64)

Now, recall from (8.4) that each element e
[L]
k of the vector e[L] is of the form

1

L

L∑
l=1

∑
i 6=j

Am,iAn,j [xs[l]]i[xs[l]]j

for some m,n ∈ {1, 2, · · · ,M}. Therefore, E(e
[L]
k ) = 1

L

∑L
l=1

∑
i6=j Am,iAn,jE

(
[xs[l]]i[xs[l]]j

)
= 0

due to assumption (A1). Furthermore, using (A1) it can be shown that

E(e
[L]
k

2
) =

1

L

∑
i 6=j

(
A2
m,iA

2
n,j + Am,iAm,jAn,iAn,j

)
σ2
i σ

2
j (8.65)

If h > 0 which implies c1 > 0, applying Chebyshev’s Inequality, we obtain

P(| e[L]
k |≥

c1
M

) ≤
E(e

[L]
k

2
)M2

c21
(8.66)

Substituting (8.65) in (8.66), we obtain

M2∑
k=1

P(| e[L]
k |≥

c1
M

) ≤ M2

c21

M2∑
k=1

E(e
[L]
k

2
) (8.67)

= M2

c21L

∑
i 6=j σ

2
i σ

2
j

(
‖ai‖22‖aj‖22 + (1T [ai ◦ aj ])

2
)

(8.68)

On the other hand, from (8.3), we obtain

E(σ2
i

[L]
) = σ2

i

Under the assumption of the theorem h < σ2
min

(1+µ2
A−µ

2
AD)2

2(1+µ2
A)−3µ2

AD
, we have

σ2
i > c2 = h

2(1 + µ2
A)− 3µ2

AD

(1 + µ2
A − µ2

AD)2
, 1 ≤ i ≤ D

Hence we can say that
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P(σ
[L]
i

2
> c2) ≥ P(| σ[L]

i

2
− σ2

i |< σ2
i − c2) (8.69)

Applying Chebyshev Inequality, we get

P(| σ[L]
i

2
− σ2

i |≥ σ2
i − c2) ≤ µ

(4)
i − σ4

i

L(σ2
i − c2)2

(8.70)

since E
(
σ2
i

[L] − E(σ2
i

[L]
)
)2

= 1
L (µ

(4)
i − σ4

i ).

From (8.69) and (8.70), we get

P(σ
[L]
i

2
> c2) ≥ 1− µ

(4)
i − σ4

i

L(σ2
i − c2)2

(8.71)

Using (8.68) and (8.71) in (8.64), we obtain the desired bound on the probability of success.
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Chapter 9

Future Directions

In this thesis, we considered underdetermined estimation problems and established the role of pri-

ors in designing efficient sampling and reconstruction techniques, both for some typical problems

in array processing and broadly to more general sparse observation models. The new perspectives

offered in this thesis open up a number of future directions which are summarized below.

1. Measurement matrix design in the new formulation : Our proposed approach to sparse sup-

port recovery has opened up a host of new questions regarding measurement matrix design.

In our formulation, the support recovery algorithm works not on the physical measurement

matrix A but on the derived matrix AKR. One question of interest is: how to design the physical

measurement matrix such that AKR will have desirable recovery properties. For example, one can

ask the question: how to design A such that AKR would satisfy well known sufficient con-

ditions for sparse recovery such as Restricted Isometry property (RIP), Exact Reconstruction

Condition (ERC) etc. The Null Space Condition which is both necessary and sufficient for sparse

recovery, also needs to be revisited in the context of our new formulation.

2. Sparse recovery and distribution of the data : In our framework for sparse support recovery

(inspired from co-array), we have mostly exploited the correlation (i.e. second order statis-

tics) among the multiple measurement vectors. However, if we have more assumptions on

the distribution of the measurement vectors, we can possibly utilize that knowledge to find better

strategies for sparse support recovery which can guarantee the recovery of even higher lev-

els of sparsity, as we had demonstrated in the context of DOA estimation using higher order

statistics. These may include formulation of the sparse support recovery in a different domain

(derived from higher order moments of the distribution), by computing appropriate statistics
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from the data. Some specific questions that can be asked in this regard are:

• Characterize the probability of successful support recovery and investigate if one can

recover O(s2) sparsity levels with overwhelming probability (i.e., of the form 1− e−CL,

L being the number of measurement vectors and C being a positive constant) using

assumptions on the distribution of the measurement vectors.

• Investigate how the knowledge of higher order moments of the distribution can increase

the sparsity levels.

• Establish information theoretic bounds and study the fundamental limits on sparse re-

covery from an observation model which is equipped with prior information.

This can lead to finding new structures for the measurement matrices given the knowledge

of the distribution of the data.

3. Learning of the dictionary/measurement matrix : In many situations where we are unaware of

the basis in which the data could be sparse, the approach is to learn the dictionary (and the

associated sparse representation) from the data itself [170]. This is often formulated as an

iterative optimization approach. We can ask a similar question in the setting of our problem

based on the derived SMV from the autocorrelation of the data. However there is a differ-

ence due to the fact that our effective dictionary in this correlation domain is different from

the physical measurement matrix. This gives rise to a very interesting dictionary learning

problem where dictionary is now constrained to have the specific structure (related to the Kha-

tri Rao product as discussed earlier) that arises in our proposed co-array based framework.

This added constraint in the iterative optimization procedure can give rise to new approaches

towards learning of such dictionaries. Various tools from machine learning (such as neural

networks) can also be employed to find the underlying dictionary. Potential applications can

be for representation of large data sets arising in computer vision, genomics, web search,

geophysical data, remote sensing, social networks and so forth.

4. Sparse Representation for Learning : Signal representation theory has been one of the corner-

stones of signal processing, and the recent advances in compressive sensing has provided

new perspectives into it by exploiting sparsity in the representation. Such representation can

be very useful for high dimensional signals such as image, video, seismic data, and more
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generally data arising from a variety of sources such as web search, database queries, social

network, stock prices, and so forth. The theory of learning tends to derive meaningful in-

ference from these high dimensional data for a variety of tasks such as prediction, detection,

recognition, classification, etc. The unsupervised learning approach often aims at finding a

sparse or low dimensional representation of the data, which can also be termed as “feature

extraction”, where the features belong to a lower dimensional space. Recent advances in

machine learning have been in the direction of investigating if such a sparse representation

can be efficiently found from large training datasets [202]. One of the existing approaches is

to use sparse autoencoders [88] which employs neural networks to learn the representation.

By blending tools from classical and modern signal processing with those in machine learning, new

insights can be gained regarding feasibility of such sparse representation and its role in learn-

ing. A plausible future direction would be to investigate into learning algorithms that exploit

the statistical distribution of the underlying data while seeking a sparse representation. It will

be interesting to see if the work presented in this thesis can be extended to such problems.
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