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Chapter 3

Experimental overview

As discussed in Chapter 2, one of the promising candidate platforms to realize strong atom-photon

coupling is microtoroidal resonator based cavity QED systems. As the first on-chip monolithic

lithographically fabricated platform that achieved strong atom-photon coupling, investigations on

this platform where atoms interact with evanescent fields at the nano-scale (∼ 100 nm) are interesting

not only in their own right but also in revealing the physical factors or elements important in this

world of nanophotonic atom-photon interaction, including: the role of dielectric surfaces in modifying

atomic internal electronic states and decay rates, the center-of-mass dynamics of single atoms near

dielectric surfaces, the electric field polarization behavior of strongly confined light at sub-wavelength

scales and its role in atom-photon interactions, and the critical aspects of nanophotonic device

fabrication in the context of atom-photon interactions. While some of these issues were investigated

in microtoroidal-based cavity QED experiments conducted in this thesis (Chapters 4, 5, 6), some

of the latter issues were investigated in more detail in an optical nanofiber platform (Chapter 7).

As discussed in more detail in later sections and chapters of this thesis, these cavity QED systems

demand strict and high quality photonic device fabrications, which are critical and may limit the

performance or even function of the system, such as the ability to trap single atoms. With the

combined knowledge of experimental investigations on microtoroidal resonator and optical nanofiber,

we investigate a cavity QED platform based on lithographically fabricated nanophotonic waveguides

and photonic crystal resonators (Chapter 8), which hold bright promise towards the realization of

a chip-integrated scalable quantum network with strong coupling of trapped single atoms to single

photons with N � 1 number of nodes, allowing multiple qubit operations in quantum computation

contexts, as well as quantum simulations of many-body systems represented by the atoms.

In this chapter, we present basic experimental setups of this thesis, the basic experimental tech-

niques involved, and explore the three types of nanophotonic devices considered in this thesis,
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namely: microtoroid cavity QED (Sec. 3.1), tapered optical nanofiber (Sec. 3.2), and nanophotonic

waveguides and cavities (Sec. 3.3).

3.1 Cavity QED with a microtoroidal cavity

3.1.1 Model

3.1.1.1 Modes of a microtoroidal resonator

An idealized microtoroid has axial symmetry, so we work in a standard cylindrical coordinate system

~r → (ρ, φ, z). The toroid is modeled as a circle of diameter Dm with dielectric constant ε revolved

around the z-axis to make a torus of major diameter DM (Fig. 3.1 (a)). The toroid is therefore

defined by its minor diameter Dm and its principal diameter Dp = DM +Dm. The fabrication and

characterization of high-quality microtoroids are described in detail elsewhere [11].

The axisymmetric cavity modes of interest are whispering-gallery modes (WGM), which lie near

the edge of the resonator surface and circulate in either a clockwise or counter-clockwise direction.

These modes are characterized by an azimuthal mode number m, whose magnitude gives the period-

icity around the toroid and whose sign indicates the direction of propagation. The WGMs for ±m are

degenerate in frequency but travel around the toroid in opposite directions. The mode electric fields

for the WGM traveling waves are written as ~E(~r) = Emax
~f(ρ, z)eimφ, where ~f(ρ, z) = ~E(ρ, z)/Emax

is the mode function in the ρ − z cross-section normalized by the maximum electric field Emax. In

general, backscattering couples these two modes so that a more useful eigenbasis for the system

consists of the normal, standing wave modes characterized by a phase and the periodicity |m|. This

backscattering coupling h is assumed to be real, with the phase absorbed into the definition of the

origin of the coordinate φ. In addition, the mode’s field decays at a rate κi through radiation, scatter-

ing, and absorption. In our simulations, a cavity mode is fully described by its spatial mode function

~f(~r), its azimuthal mode number m, its loss rate κi, and the coupling h to the counter-propagating

mode with mode number −m.

We model the microtoroid modes using a commercial finite-element software package (COMSOL)

to solve numerically for the vector mode functions ~f(ρ, z) for modes of a given m [180]. Mode volumes

are calculated from,

Vm =

∫
dV ε(~r)| ~E(~r)|2

E2
max

= 2π

∫
dA ε(ρ, z)ρf(ρ, z)2. (3.1)

In this notation [224], the coupling of a circularly polarized optical field to an atomic dipole located



48

(a) (b)

10 μm

(c)

10 μm

ρ (µm)

z (
µm

)

−2

0

2

9 11 13

ain κex

input/output
coupling

ab

κi

g( r )

r(t)γ

h

aout

binbout

z

ρ

Dp

DM

Dm

ψxft

Df

z

ϕ
ρ

d

r(t)

ρ ϕ

z

ρ (µm)

z (
µm

)

−2

0

2

9 11 13

10 12 14

-2

0

2

z (
μm

)

ρ (μm)

ρ 
= 

12
μm

d (z=0)

0

20

40

g/

z=0

γ 0

0 400 800
d (nm)

(d)

ρ (µm)

z (
µm

)

−2

0

2

9 11 13
ρ (µm)

z (
µm

)

−2

0

2

9 11 13

0 0.5-0.5-1 1

80400
g/γ0

0

20

40

g/

ρ=12μm

γ 0

-2 0 2
z (nm)

Eρ
max

Eρθ=0

Eϕ
max

Eϕθ=�/2

Ez
max

Ez
θ=0

|E|max
|E| 0.5 0.750.250 1

(i) (ii)

(iii) (iv)

(v) (vi)

(vii)

Figure 3.1: Microtoroid cavity QED schematic. (a) Optical input/output coupling enabled
by a tapered fiber (diameter Df) positioned at a small fiber/toroid surface-to-surface gap xft < λ.
Spatial cylindrical coordinates {ρ, φ, z} with origin at toroid center. The toroid geometry can be
described by its major (DM), minor (Dm), and principal (Dp) diameters. On the toroid’s cross-
sectional minor circle plane, ψ describes the latitudinal angle, and d = d(ρ, z) is the atom-to-
surface distance. (b) Tapered fiber optical input/output fields {ain, aout, bin, bout} coupled at rate
κex to toroid counter-propagating intracavity fields {a, b}, coupled by internal scatterers at a rate h,
suffering intrinsic loss at rate κi. A nearby atom located at ~r is coupled to the cavity at rate g(~r), and
has a free space spontaneous emission rate γ. (c) i-iv): normalized electric field |E| profiles and the
components {Eθz , Eθρ , Eθφ} (where θ indicates the optical phase), with Emax

z = 1.00|E|max, Emax
ρ =

0.086|E|max, Emax
φ = 0.118|E|max; v-vii) shows the lowest-order mode function f(ρ, z) for a toroid

with {Dp, Dm} = {24,3} µm, m = 118 and λ = 852 nm, and the cross-sections along d and z. (d)
SEM images of two fabricated mictoroids with Dp ∼ 18 µm and Dp ∼ 24 µm.



49

in the evanescent field of the cavity is calculated as:

g(~r) = 〈~d · ~E〉 = f(ρ, z)eimφ
√

3πc3γ

ω
(0)
a

2
Vm

, (3.2)

where ~d is the dipole operator and ω
(0)
a = 2πc/λ0 is the vacuum transition frequency of the two-

level atom with free-space wavelength λ0. WGMs are predominantly linearly polarized, and so we

average over the dipole matrix elements to obtain an effective traveling wave coupling gtw which

is approximately ∼ 0.6 of the value for circularly polarized light (see supplementary information

of [9]). Travelling wave modes of an axisymmetric resonator are not strictly transverse. For the

toroid geometries considered here, with Dp, Dm � λ, the azimuthal component is small and we

assume that the optical field is linear outside of the toroid. Since the cavity losses are dominated by

absorption and defect scattering rather than the radiative lifetime set by the toroid geometry [224],

we let κi and h be experimental parameters. Fig. 3.1 (c) shows SEM images of two fabricated

mictoroids with Dp ∼ 18 µm and Dp ∼ 24 µm, and the lowest-order mode with m = 118 for a

toroid with {Dp, Dm} = {24, 3} µm. The index m is chosen so that the cavity frequency ωc is near

the 6S1/2 → 6P3/2 transition of Cs with ω
(0)
a /2π = 351.7 THz.

The local polarization of modes varies throughout the interior and exterior of the toroid. Approx-

imate solutions for constant polarization suggest classifications as quasi-transverse modes, labeled

transverse electric (TE) and transverse magnetic (TM) modes, although actual solutions are not

transverse. A reasonable analytic approximation for the lowest-order mode function with mode

number m outside of the toroid is that of a Gaussian wrapped around the toroid’s surface that

decays exponentially with the distance scale set by the free space wavevector 1/λ0 = 2π/λ0,

f(ρ, z) ∼ e−d/λ0e−(ψ/ψ0)2

, (3.3)

where d(ρ, z) =
√

(ρ− DM

2 )2 + z2−Dm

2 is the distance to the toroid surface, ψ(ρ, z) = arctan z
ρ−DM/2

is the angle around the toroid cross-section (ψ = 0 at z = 0), and ψ0 is a characteristic mode width

(see Fig. 3.1 (a)). Higher order angular modes are characterized by additional nodes along the

coordinate ψ.

3.1.1.2 Fiber-toroid optical coupling

As discussed in previous sections, we couple light into and out of the microtoroidal cavity using

a tapered optical nanofiber. In this section we consider in more detail this coupling between the
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two photonic modes. As will be discussed in more detail in Chapter 6, another potential function

for the nanofiber is to provide trapping of single atoms, which could potentially realize strong

coupling between trapped atoms and photons using a microtoroid platform. With this context

in mind, we now proceed to take a look at how the toroid-fiber coupling can be modelled, and

importantly its behavior as a function of varying the toroid’s dimensions (hence its propagation

constant), nanofiber dimensions (hence its propagation constant), and the fiber-to-toroid spacing.

In the experiment, we tune the fiber-to-toroid spacing (xft) by using nanopositioners, which allow

tuning of the input/output coupling rate κex, allowing access to under-coupled (κex <
√
κ2

i + h2),

critically coupled (κex =
√
κ2

i + h2), and over-coupled (κex >
√
κ2

i + h2) regimes. We note that

depending on the phase-matching conditions (dimensions and materials of the toroid and fiber), it

is possible for critical-coupling (and hence also over-coupling) conditions to be unattainable even

when the fiber-to-toroid gap is zero (i.e., the fiber is in contact with the toroid).

As illustrated in Figure 3.2 a), we model our toroid and fiber as two parallel cylindrical waveg-

uides, with a surface-to-surface gap of xft, interaction length of Lft, nanofiber radius of a, and toroid

principal radius rp. We note that, as we will discuss later, the minimum range of Lft for our typical

parameters that may lead to a maximum transfer of power between one initially excited waveguide

to the other (initially not excited) waveguide is in the order of ∼ 1 µm. Given the typical sizes of the

toroid (e.g., diameter of 20-50 µm), the curvature in the ∼ 1µm scale should be relatively small, and

the assumption of two parallel cylindrical waveguides is reasonable. A more precise model should

take into account the curvature of the toroid as we move along the z-axis, instead of assuming two

parallel waveguides with an effective interaction length of Lft that we use here.

Our model is based on the coupled mode theory of two parallel waveguides discussed in [257]. The

dispersion curves showing the two lowest order ‘supermodes’ of a pair of waveguides (labeled waveg-

uides a and b) with configuration near the phase-matching frequency ω0 is illustrated in Fig. 3.2 c).

Here, as we approach ω0, the individually uncoupled waveguide dispersion curves β′a(ω) and β′b(ω)

exhibit anti-crossing near the phase-matching frequency, and the supermodes are described by the

dispersion curves γ1(ω) and γ2(ω) for the odd and even modes respectively. One parameter that

affects the strength of the coupling between the two waveguides is the phase-matching coefficient, δ.

Consider the initial condition where light is initially injected only into waveguide b, with power

Pb = P0; and no light is travelling through waveguide a. Let us assume that this initial condition is

satisfied at z = 0. The power transferred to waveguide a, as a function of the interaction length, z,
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Figure 3.2: Microtoroid-nanofiber optical coupling. a) Nanofiber (radius a) and microtoroidal
cavity (principal radius rp, minor radius rm = 1.5 µm) interacting over an effective interaction
length Lft, with gap xft, modeled as two parallel cylindrical waveguides. b) Transverse cross-section
of a pair of generic waveguides (a, b), with electric fields (Ea, Eb), individual (one waveguide)
refractive index profiles (na, nb), and composite (two waveguides) refractive index profile nc, along
a spatial coordinate r. c) Dispersion curves near phase-matching frequency ω0; βa, βb: no coupling;
γ1, γ2: lowest order odd and even supermodes; δ: phase-matching coefficient. d) Fiber V -parameter,
V = ka

√
n2 − n2

air, where k = 2π/λ, n = 1.452 (SiO2), nair = 1; (i) fiber radius a ' 300 nm, (ii)
a = 215 nm; single-mode (V < 2.405) shaded. e,f,h) Curves i-v: fiber radius a = 215 nm and
toroid principal diameter Dp = 12, 12.3, 12.6, 12.9, 13.2 µm (dashed red curves: a = 300 nm,
Dp = 12 µm). e) t1, t2, t3: toroid whispering-gallery-mode with azimuthal mode numbers 117,
118, 119 respectively, k0 = 2π/λ, λ = 852 nm. f) Transmittance T (xft is fiber-toroid gap). g)
Oscillatory term Posc of fiber-toroid coupling strength (fiber radius 215 nm (blue), 300 nm (red)).
h) Transmittance T vs δLft, the deviation from Lft value that maximizes Posc, at critical coupling.
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is then given by [257]:

Pa(z) = P0PfracPosc = P0
κ2

κ2 + δ2
sin
((√

κ2 + δ2
)
z
)
, (3.4)

where Pb = P0 − Pa(z) is the power in waveguide b for the given z. The term Pfrac = κ2

κ2+δ2

determines the maximum possible fraction of power transfer and the term Posc = sin
((√

κ2 + δ2
)
z
)

is oscillatory as a function of the coupling length z (or Lft). The phase-matching coefficient δ is

given by:

δ =
1

2
((βb +Mb)− (βa +Ma)) , (3.5)

where βa and βb are the propagation constants of waveguides a and b respectively, whereas Ma and

Mb are small correction terms to the waveguides’ a and b propagation constants respectively, due

to the presence of the other waveguide, and are given by

Mi =
ωε0
4

∫ ∞
−∞

(n2
i (r)− n2

c(r))E2
i dA, (3.6)

where i denotes the waveguide label (i.e., a or b), ε0 is the vacuum permittivity constant, ni(r) is

the refractive index profile for waveguide i only (in the absence of the other waveguide) as a function

of spatial coordinate r, nc(r) is the composite (two waveguides, both a and b present) refractive

index profile (see Fig. 3.2 b)), and Ei is the unperturbed electric field for waveguide i. Finally, the

effective coupling constant κ is given by the geometric mean of the coupling constant for waveguides

(a to b) and (b to a) [257, 222], κ =
√
κabκba, where

κij =
ωε0
4

∫ ∞
−∞

(n2
i (r)− n2

c(r))EiEjdA. (3.7)

We note that given the above equations,

κ =
√
κabκba =

√
n2

bn
2
a

ωε0
4

∫ ∞
−∞

EaEbdA = βaβbC0, (3.8)

where C0 is a proportionality constant that contains in it the integral involving the electric field

profiles of the waveguides. Note that we have used ni = βi/k0 with k0 = 2π
λ , the free-space wave

number. At this point, we make an approximation to treat the value C0 to be constant, as we modify

the dimensions at the toroid and fiber in the discussions that follow. This approximation is based

on the assumption that the taper-toroid coupling strength is most sensitive to the phase-matching
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conditions determined by the propagation constants, and the value of the integral inside C0 does

not change significantly relative to these changes.

We now find the propagation constants of the microtoroid whispering gallery mode and the

nanofiber. For the microtoroid, the intrinsic propagation constant is given by βtoroid = 2π/λeff =

2π/(2πreff/m) = m/reff ≈ m/rp where m is the azimuthal mode number and reff is the effective

toroid mode radius and rp is the principal radius [222]. In our calculation, we use the principal radius

for the toroid used in the experiment discussed in Chapter 5, rp = 12 µm, and the azimuthal mode

number m=118, which brings the toroid’s resonant frequency to that of the cesium D2 (F = 4 →

F ′ = 5 transition) at λ ≈ 852 nm. To see the sensitivity to changes in m, in Fig. 3.2 e), we plot the

propagation constant βtoroid as a function of rp for m = 117, 118, 119 (labeled t1, t2, t3) in red, black,

and blue respectively. The propagation constants for the nanofiber can be calculated analytically or

by using COMSOL (see Sec. 3.2). In Fig. 3.2 e), we include the propagation constants for nanofiber

of radii a = 215, 300, 400, 500 nm, as well as the free-space wave number k0 = 2π/λ0 with λ0 = 852

nm. We note that in the toroid cavity QED experiments described in Chapter 4 and Chapter 5, we

used a nanofiber with estimated radius a = 300 nm, pulled from a single-mode fiber SM800 from

Fibercore. In the nanofiber atom trap experiment described in Chapter 7, we used a nanofiber with

estimated radius a = 215 nm, pulled from a single-mode fiber 630-HP from Nufern. We also consider

use of this smaller final radius fiber a = 215 nm for the atom trap scheme using a tapered nanofiber

next to a microtoroid described in Chapter 6. One of the main reasons is the requirement to have

the nanofiber to support only a single-mode at the cesium D2 line magic wavelengths 687 nm and

937 nm (used for the blue-detuned and red-detuned trapping beams, respectively), and the probe

light at 852 nm. While the larger nanofiber (a = 300 nm) is single-mode for 852 nm and 937 nm, it

is not single-mode at 687 nm. This is illustrated in Fig. 3.2 d) where point (i) indicates single-mode

condition for λ = 852 nm but not 687 nm, and points (ii) indicate the single-mode condition for λ

= 687 nm and 852 nm. The shaded region indicates the single-mode region with V < 2.405.

Now, two measureable quantities in the experiment are the power of the input light into the fiber,

Pin, and the transmitted power coming out of the fiber, PT after it interacts with the microtoroid

cavity, leading to the transmittance T = PT/Pin. As a function of the so-called coupling factor K,

the transmission is given by [222]:

T (K) =

(
1−K
1 +K

)2

, (3.9)

where

K =
κ2

0e
−γ′0xft

κ2
i e
−γ′ixft + (σ′0)2

. (3.10)
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Here K is the ratio of desired nanofiber-toroid mode power coupling to the total power loss of

the system, xft is the fiber-toroid surface-to-surface distance, κ0 is the coupling constant into the

fundamental nanofiber mode, κi is the coupling constant into the higher-order (lossy) nanofiber

modes, 1/γ′0 and 1/γ′i are spatial exponential decay constants associated with the evanescent fields

of the fundamental and higher-order nanofiber modes (not to be confused with spontaneous decay

rates that use similar symbols in this thesis), and σ′0 is the microtoroid resonator loss rate constant

(not to be confused with atomic scattering cross-section). We note that the units of κ2
0, κ

2
i and σ2

0

are all 1/sec, representing coupling (loss) rates per second. In our calculation, we use the values

1/γ′0 = 1/γ′i = 174 nm, which represent the 1/e spatial exponential decay constant for the nanofiber

modes, and σ0 =
√

2πc
λQi

with λ = 852 nm; c the speed of light in vacuum; and Qi = 5 × 107, the

intrinsic quality factor of the toroid, corresponding to the experimental parameters of Chapter 5.

Our first goal now is to apply our model to our experimental measurement data of transmission

T as a function of xft that were taken in the experiment described in Chapter 5 by tuning the

relative position between our toroid and nanofiber using an independently calibrated nanopositioner

(see Appendix A). Recall that here the nanofiber radius is a = 300 nm. The experimental data

is shown in Fig. 3.2 f) as the black points. Using the equations and parameters presented above,

one can compute the transmission T as a function of xft, given the two values of κi and κ0. The

value of κi determines the ratio of the values of T at the far under-coupled position to the highly

over-coupled position. Independent investigations show that this is typically very small and the

fiber-toroid coupling efficiency can be as high as 99.97% [223]. We note that below certain values of

κi, the shape of T becomes insensitive to the exact value of κi. For our calculation, we set κi = 103

such that κ2
i /κ

2
0 < 0.001. This leaves us with one free parameter, κ0, which in principle can be

calculated from the exact field distributions of the toroid and nanofiber, taking into account the

effects due to the various curvatures and also experimental uncertainties. In our calculation, instead

of modeling this part of the equation to compute κ0, we set κ0 to be fitted by the experimental data1.

Specifically, we set κ0 = 4 × 104, which leads to a critical coupling condition for the (a=300nm)

fiber at xft = 600 nm. Note that the minimum point (the critical coupling condition point) of the

transmission curve T is quite sensitive to the value of κ0, which shifts T horizontally along xft.

Recall in Equation (3.4) the term κ2

κ2+δ2 determines the maximum fraction of power to be

transferred from one waveguide to the other waveguide. From our earlier discussions, we have

sufficient information to compute κ and δ for different fiber and toroid dimensions within our

model and approximations. We thus apply this to the coupling factor K in Eq. (3.9), that is,

1A more detailed modeling of a nanofiber-microsphere coupling system can be found in [152].
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K̃ = K ×
(

κ̃2

κ̃2+δ̃2

)
/
(

κ2

κ2+δ2

)
, where the variables with tildes correspond to the values for various

fiber and toroid dimensions, and the variables without the tildes correspond to K for the case where

we have the experimental data. We show the results in Fig. 3.2 f), where the experimental data is

shown by the black points, the theoretical results for this case (fiber with radius a = 300 nm and

toroid principal radius rp = 12 µm) by the red dashed curve, and the curves i, ii, iii, iv, v (in red,

blue, green, magenta, black respectively) are the results for a fiber with radius a = 215 nm, and

toroid principal radii rp = 12, 12.3, 12.6, 12.9, 13.2 µm respectively.

Lastly, we take a look at the oscillatory term Tosc ≡ sin
((√

κ2 + δ2
)
z
)

in Eq. (3.4). The results

for Tosc for a toroid with rp = 12 µm, and nanofibers of radii a = 215 nm and 300 nm are shown as

the blue and red curves respectively in Fig. 3.2 g).

Now setting xft to be at the critical coupling condition (i.e., the minima in T in Fig. 3.2 f)),

and letting the interaction length Lft vary by the amount δLft from the length Lft,0 that gives the

maximum value of Tosc, we see how the transmission T = PT/Pin is affected as we scan the values

of δLft. This is important for the stability of T with respect to variations in Lft. The result for

fiber radius a = 300 nm and toroid principal radius rp = 12 µm is shown as dashed red curve in

Fig. 3.2 h). The results for fiber radius a = 215 nm and toroid principal radius rp = 12, 12.3,

12.6, 12.9, 13.2 µm are shown as the solid curves labeled by i, ii, iii, iv, v respectively in (red, blue,

green, magenta, black) colors in Fig. 3.2 h). The shaded area in Fig. 3.2 h) corresponds to T < 1%

showing the necessary stability condition of δLft± 500 nm to achieve T < 1% stability at critical

coupling. We note that this is a necessary but not necessarily a sufficient condition. There are other

factors such as the laser stability and the stability of xft that may have larger effects on changes in

T . We note that in the experiment described in Chapter 5, we have a stability at critical coupling

of T < 1%.

3.1.1.3 Cavity QED in an axisymmetric resonator

We consider a quantum model of a two-level atom at position ~r(t) coupled to an axisymmetric

resonator shown schematically in Fig. 3.1. The terminology used here follows the supplemental

material of [9], [57], and [5], but the general formalism can be found in additional sources (see [225],

for example). As described in section 3.1.1.1, an axisymmetric resonator supports two degenerate

counter-propagating whispering-gallery modes at resonance frequency ωc to which we associate the

annihilation (creation) operators a and b (a† and b†). Each traveling-wave mode has an intrinsic

loss rate, κi; the modes are coupled via scattering at rate h. External optical access to the cavity
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is provided by a tapered fiber carrying input fields {ain, bin} at probe frequency ωp. Fiber fields

couple to the cavity modes with an external coupling rate κex. The output fields of the fiber

taper in each direction and are the coherent sum of the input field and the leaking cavity field,

{aout, bout} = −{ain, bin}+
√

2κex{a, b} [9, 57].

We specialize to the situation of single-sided excitation, where 〈bin〉 = 0. The input field ain drives

the a mode with strength εp = i
√

2κex〈ain〉 so that the incident photon flux is Pin = 〈a†inain〉 =

|εp|2/2κex. Experimentally accessible quantities are the transmitted and reflected photon fluxes,

PT = 〈a†outaout〉 and PR = 〈b†outbout〉, respectively. In experiments, data are typically presented as

normalized transmission and reflection coefficients defined as T = PT/Pin and R = PR/Pin. In the

absence of an atom, the functions T and R for the bare cavity depend on the detuning ∆cp = ωc−ωp

and the cavity rates h, κi, and κex. At the critical coupling, κex =
√
κ2

i + h2, the bare cavity T → 0

when ∆cp = 0 [223].

The cavity modes {a, b} both couple to a single two-level atom with transition frequency ωa

at location ~r. In the context of cQED, the atomic system is described by a single transition with

frequency ωa with the associated raising and lowering operators σ+ and σ− and an excited state field

decay rate γ. The atomic frequency ωa(~r) may be shifted from the free-space value ω
(0)
a by frequency

δa(~r) due to interactions with the dielectric surface. The coupling of the traveling-wave modes {a, b}

to the atomic dipole is described by the single-photon coupling rate gtw(~r) = gmax
tw f(ρ, z)e±iθ, where

f(ρ, z) is the cavity mode function and θ = mφ. A discussion of f(ρ, z) for the modes of a microtoroid

appears in section 3.1.1.1. For an atom in motion, ωa(~r), γ(~r), and gtw(~r) are spatially-dependent
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quantities that depend on the atomic position ~r(t).

To study the atom-cavity dynamics, we write the standard Jaynes-Cummings-style cQED Hamil-

tonian for coupled field modes [114, 9]:

H/~ = ωa(~r)σ+σ− + ωc

(
a†a+ b†b

)
+ h

(
a†b+ b†a

)
+
(
ε∗pe

iωpta+ εpe
−iωpta†

)
+
(
g∗tw(~r)a†σ− + gtw(~r)σ+a

)
+
(
gtw(~r)b†σ− + g∗tw(~r)σ+b

)
. (3.11)

Following the rotating-wave approximation, we write the Hamiltonian in a frame rotating at ωp [9,

57, 225]:

H/~ = ∆ap(~r)σ+σ− + ∆cp

(
a†a+ b†b

)
+ h

(
a†b+ b†a

)
+ ε∗pa+ εpa

†

+
(
g∗tw(~r)a†σ− + gtw(~r)σ+a

)
+
(
gtw(~r)b†σ− + g∗tw(~r)σ+b

)
, (3.12)

where ∆ap(~r) = ωa(~r) − ωp and ∆cp = ωc − ωp. Dissipation from coupling to external modes is

treated using the master equation for the density operator of the system ρ:

ρ̇ = − i
~ [H, ρ] + κ

(
2aρa† − a†aρ− ρa†a

)
+ κ

(
2bρb† − b†bρ− ρb†b

)
+γ (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) . (3.13)

Here, κ = κi + κex is the total field decay rate of each cavity mode, and 2γ(~r) is the atomic dipole

spontaneous emission rate, which is orientation dependent near a dielectric surface (section 6.2.4.1).

The Hamiltonian (3.12) can be rewritten in a standing wave basis using normal modes A =

(a+ b)/
√

2 and B = (a− b)/
√

2,

H/~ = ∆ap(~r)σ+σ− + (∆cp + h)A†A+ (∆cp − h)B†B

+
(
ε∗pA+ εpA

†) /√2 +
(
ε∗pB + εpB

†) /√2

+gA(~r)
(
A†σ− + σ+A

)
− igB(~r)

(
B†σ− − σ+B

)
, (3.14)

where gA(~r) = gmaxf(ρ, z) cos θ, gB(~r) = gmaxf(ρ, z) sin θ, and gmax =
√

2gmax
tw . In the absence

of atomic coupling (gtw = 0), these normal modes are eigenstates of (3.12). With gtw 6= 0, the

eigenstates of the Hamiltonian are dressed states of atom-cavity excitations. With h = 0 and

gtw 6= 0, the atom defines a natural basis in which it couples to only a single standing wave mode.

For the modes {A,B} defined above, coupling may occur predominantly, or even exclusively, to one
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of the two normal modes depending the azimuthal coordinate θ. For such θ, the system can be

interpreted as an atom coupled to one normal mode in a traditional Jaynes-Cummings model with

dressed-state splitting given by the single-photon Rabi frequency Ω(1) = 2g ≡ 2gmaxf(ρ, z), along

with a second complementary cavity mode uncoupled to the atom. Approximately for gtw � h, this

interpretation is consistent for any arbitrary atomic coordinate θ. For h 6= 0 and comparable to κi

with a fixed phase convention (such as Im(h) = 0 used here), this decomposition is not possible for

arbitrary atomic coordinate θ; the atom in general couples to both normal modes as a function of

φ [9, 225].

The master equation (3.13) can be numerically solved using a truncated number state basis

for the cavity modes. Alternatively, the system is linearized by treating the atom operators σ±

as approximate bosonic harmonic oscillator operators with [σ−, σ+] ≈ 1. For a sufficiently weak

probe field, the atomic excited state population is small enough that the oscillator has negligible

population above the first excited level and the harmonic approximation is quite good. As part of

this linearization, we factor expectation values of normally-ordered operator products into products

of operator expectation values [66, 80]. Numerical calculations confirm that this approximation is

accurate when calculating cavity output fields and classical forces for the weak driving power levels

considered here. In particular, experiments typically utilize a photon flux PT = 〈a†outaout〉 ∼ 15

cts/µs corresponding to an average cavity photon population of 〈a†a〉 ∼ 0.1. At these photon

numbers, cavity expectation values effectively factorize such that 〈a†a〉 ≈ 〈a†〉〈a〉 for the semiclassical

treatment used here [105]. We use this approximation to write PT = 〈a†outaout〉 ≈ 〈a†out〉〈aout〉,

implying that we only need the complex number 〈aout〉 = −〈ain〉 +
√

2κex〈a〉 and its conjugate to

calculate the cavity transmission at these photon numbers. This approximation is not sufficient

for calculation of the g(2)(τ) correlation function where the nonlinearities must be included [5], but

the linearized two-level atom formalism enables efficient simulation of the behavior of ensembles of

atoms at the accuracies required by the existing experimental data in [5].

The relevant equations of motion for the field amplitudes of the linearized master equation are,

〈ȧ〉 = −(κ+ i∆cp) 〈a〉 − ih 〈b〉 − iεp − ig∗tw 〈σ−〉, (3.15)

〈ḃ〉 = −(κ+ i∆cp) 〈b〉 − ih 〈a〉 − igtw 〈σ−〉, (3.16)

〈 ˙σ−〉 = −(γ + i∆ap) 〈σ−〉 − igtw 〈a〉 − ig∗tw 〈b〉. (3.17)

Time and spectral dependence of this system of equations are governed by its eigenvalues Λi. The
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imaginary part of the eigenvalues as a function of detuning ∆ca ≡ ωc−ωa are illustrated in Fig. 3.3b.

For large ∆ca � |gtw|, the three eigenvalues include one atom-like eigenvalue and two cavity-like

eigenvalues separated by the mode splitting h. For intermediate ∆ca, there is an anti-crossing of two

dressed-state eigenvalues Λ±, while the third (cavity-like) Λ0 is uncoupled to the atom.

For a slowly-moving atom, the mode fields remain approximately in steady state as the param-

eters evolve with the atom trajectory ~r(t). Analytic steady-state solutions to (3.15) for 〈a〉ss and

〈b〉ss are:

〈a〉ss =
iεp(γ+i∆ap)[(κ+i∆cp)(γ+i∆ap)+|gtw|2]

[ih(γ+i∆ap)+(g∗tw)2][ih(γ+i∆ap)+g2
tw]−[(κ+i∆cp)(γ+i∆ap)+|gtw|2]2

, (3.18)

〈b〉ss = − ih(γ+i∆ap)+g2
tw

(κ+i∆cp)(γ+i∆ap)+|gtw|2 〈a〉ss, (3.19)

〈σ−〉ss = −i gtw〈a〉ss+g∗tw〈b〉ss
γ+i∆ap

. (3.20)

3.1.2 Experiment setup and techniques

The experiments described in this thesis in Chapters 4 and 5 involving microtoroidal cavities began

from an empty table in 2007 shown in Fig. 3.4 e), where some home-built diode lasers were placed

inside the safety boxes, along with quadrupole magnetic coils shown on the left, an army of optics

at the bottom right side of the table, and then the chambers were baked and pumped by a turbo

pump. The setups after the experiments were performed are shown in Fig. 3.4 f-h), where the

main chambers are shown in part f), part g) shows the supporting laser sources, optics, and other

components for the experiments, and part h) shows two home-built tapered amplifiers on the left

and a Ti:Sapph laser on the right used for making the dipole trap conveyor belt.

The realization of and achievements made in the experiments on this microtoroid platform are

a result of the close collaboration and hard work of many individuals working on these projects,

some of which I would like to especially acknowledge here. Among them are: Prof. Takao Aoki who

worked together with me on the project from its inception in 2007, from whom I have learned a great

deal, Prof. Scott Parkins of Auckland University, who contributed largely on the underlying theory

of our systems, Prof. Nate Stern who made great contributions especially in our atom near surface

interaction projects, Dr. Eric Ostby and Dr. Hansuek Lee from the group of Prof. Kerry Vahala

who have fabricated the high quality microtoroidal resonators and shared their valuable knowledge.

It has been a priviledge to have collaborated with the Vahala group at Caltech, who shared their

pioneering expertise especially in optical tapered fiber and microtoroidal resonator systems, central

to our experiments. I would also like to acknowledge Prof. Cindy Regal and Prof. Barak Dayan
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in our group who have made valuable contributions in these projects based on microtoroidal cavity

platform. This work was carried out under the guidance and supervision of my advisor, Prof. Jeff

Kimble at Caltech.

The heart of the experiment setup for the microtoroid cavity QED experiments described in

Chapters 4 and 5 is shown in Fig. 3.4 a), which consists of two chambers connected by a differential

pumping tube, separated by a distance of about 20 cm from the center of the source magneto-optical

trap (MOT) chamber on the left, to the center of the science chamber on the right, where the toroid

chip is located. This separation is necessary to avoid contamination of the microtoroid chip due to

background cesium pressure released by the getter (source), inside the MOT chamber, as well as

the large MOT cloud. This makes a significant improvement to the lifetime of the quality factor of

the toroids. For example, in the early microtoroid experiment [9], a significant degradation of the

toroid’s quality factor by more than a factor of two occured as rapidly as within a few months time-

scale. In contrast, with the two-chamber setup, the microtoroid’s quality factor can be maintained

with little degradation for more than a year. We note that the differential pumping tube separating

our two chambers is of length a few inches with inner diameter of ≈ 1 cm. While this does not lead

to large pressure differential between the two chambers (MOT chamber pressure is ≈ 10−9 − 10−8

torr and science chamber pressure is ≈ 10−10 − 10−9), it is the separation of the microtoroid chip

from the Cesium getter and large MOT cloud that is most critical in improving the quality factor

lifetime of the microtoroids.

Now, as illustrated in Fig. 3.4 a), a MOT cloud consisting of about 109 atoms is created in

the MOT chamber, where about 108 atoms are then loaded into a one-dimensional optical lattice

(standing-wave) FORT trap formed by counter-propagating red-detuned beams whose frequencies

are chirped relative to each other, creating a moving optical conveyor-belt, which moves the atom

cloud from the MOT chamber to the science chamber 20 cm away. This atom cloud transport

takes about 80 ms, resulting in about 107 atoms being positioned at about 800 µm on top of the

microtoroid chip in the science chamber. These ≈ 107 atoms at a temperature of ≈ 100 µK are

then released, where they free-fall down towards a toroid on the chip, which is optically coupled to a

tapered nanofiber aligned by stacks of nanopositioners (Attocubes) as shown in Fig. 3.4 a). One in

every million of these atoms make its way to a ‘good’ position about ≈ 100 nm away from the surface

of the toroid, and becomes coupled to the single photon cavity mode, leading to optically detectable

signals at the output of the single-mode fiber. Using fast programmable electronics (FPGA) in the

experiment discussed in Chapter 5, these strongly coupled single atoms can be detected in real-time
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in as short as < 500 ns. Given this time reference, one can then make physical changes to the

experiments such as the intensity or frequency of the probe laser in the fiber-toroid-atom system

using fast switches with a latency of 100-150 ns, and make real-time measurement of these falling

single atoms as they couple to the cavity for a transit time of a few µs.

In the subsequent subsections, we discuss in more detail some of the aspects involved in the

abovementioned experimental setup, as illustrated in Fig. 3.4.

3.1.2.1 Cold atoms and conveyor belt

As discussed in the previous section, the cold atom cloud preparation starts inside the MOT chamber,

where cesium vapor is ejected out of a getter (from SAES, P/N 5G0050, CS/NF/3.9/12 FT10+10)

with about 3-5A current running through it. About 109 atoms are then collected in a magneto-optical

trap formed by three pairs of counter-propagating beams, a quadrupole (anti-Helmholtz) field with

(≈ 10 G/cm) that confines the cloud in three dimensions. Each of the six red-detuned (by ≈ 12 MHz

from cesium D2 line, F=4 → F’=5 transition) beams has a power of ≈ 5mW with a beam radius

of ≈ 1 cm, giving an intensity of I = 1.7 mW/cm2 = 0.62 Isat (total of counter-propagating beams

I = 3.4 mW/cm2) where Isat = 2.71 mW/cm2 for isotropic light polarization for the cesium D2

line. The total number of atoms in the MOT of ≈ 109 atoms gives an MOT atom density of ≈ 1010

atoms/cm3, and the 1/e loading time is about a few seconds. The MOT cloud, with a temperature

of about 100 µK, is compressed [58, 99, 255] by changing the beam detuning to -40 MHz (for ≈ 10

ms), keeping the repumping beam (F=4 → F’=3 transition) constant (with intensity ≈ Isat), and

the cloud is then polarization-gradient cooled by keeping the beam’s detuning at -40 MHz, and

attenuating the beam’s power by ≈ 10 dB. We note that the precise values of these numbers are

merely a result of optimizations for our specific systems to give the required performance in our

experiment. It should be noted that in this specific experiment, as the ultimate goal is to drop the

cold atom clouds on top of the toroid, the density of atoms is not something particularly critical, and

this can be further improved. Note that in the experiment involving nanofiber and nanophotonic

beams, where we overlap a magneto-optically trapped and cooled atom cloud with the nanophotonic

device, the atom density number is actually one of the most critical parameters, for the simple reason

that it is important to have as many atoms as possible coupled to the nanophotonic device, within

its small mode volume.

The temperature of the atom cloud in the MOT chamber following polarization-gradient cooling

drops to below 10 µK. Of these 109 atoms, about 10% are loaded onto a one-dimensional lattice
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Figure 3.4: Microtoroid cavity QED experiment setup. a) Schematic showing two ultra-high-
vacuum chambers connected by a differential vacuum tube, where a magneto-optically trapped atom
cloud is formed in the source chamber (left), loaded into an optical conveyor belt dipole trap formed
by counter-propagating red-detuned beams λ1, λ2 whose relative frequency is chirped, transporting
the atom cloud to the science chamber where a microtoroid and nanofiber is located, mounted on
top of nanopositioners. b) CCD camera images of atom cloud fluorescence, showing source atom
cloud (top left), cloud being transported to the toroid chip visible as a bright point (top right) and
final position at ∼ 800 µm above the toroid chip (bottom panel). c) Top view. d) SEM images of
a microtoroid and tapered fiber. e) Fresh (blank) optical table in 2007, showing parts to be used
to build the setup from scratch. f-h) Completed setup where the experiments [10] and [5] were
conducted, showing the main two-chamber setup in (f), various external cavity diode lasers, optical
devices and optics supporting the experiment in (g), and Ti:Sapph laser (for optical conveyor belt)
and home-built tapered amplifier units, with toroid characterization setup in the background (h).
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optical dipole trap formed by a pair of counter-propagating red-detuned (with λdip = 852.43 nm,

0.08 nm red-detuned from cesium D2 line at 852.35 nm) beams, each with a power of ≈ 170 mW.

Now taking into account both D1 and D2 transitions, the effective detuning, ∆, is given by [3]:

1

∆
=

1

3

(
1

∆1
+

2

∆2

)
, (3.21)

where ∆i is the detuning from the Di-line. For the above parameters, ∆ = −2π × 51.3GHz. The

maximum trap depth U0 (located at the focus and anti-node of the standing wave) for a pair of

counter-propagating linearly polarized Gaussian beams with beam waist size w0 (Rayleigh length

z0 = πw2
0/λdip and beam radius profile w2(z) = w2

0(1 + z2/z2
0)) is given by

U0 =
~γ0

2

P

πw2
0Isat

γ0

∆
, (3.22)

where γ0 = 2π × 5.2 MHz is the natural linewidth of Cesium D2-line in free-space, Isat = 1.1

mW/cm2 is the corresponding saturation intensity, and P is the total power of both laser beams.

In our experiment, the beam’s waist size is w0 = 300 µm, constrained by the dimensions of our

MOT chamber and science chamber composite setup (note that the FORT beams are launched by

beam-launchers located at both ends, from the outside of the composite chamber). Substituting

the numbers, we get a maximum trap depth of U0 = 1.37 mK. An atom of mass m trapped in this

standing-wave potential oscillates (in harmonic approximation) with frequencies:

Ωz = 2π

√
2U0

mλ2
, Ωr =

√
4U0

mw2
0

, (3.23)

where Ωz/2π = 971 kHz and Ωr/2π = 3.9 kHz are the trap frequencies along the axial and radial

directions, respectively. Another important parameter to consider in our standing-wave dipole trap

is the scattering rate that heats up the atoms, which is given by:

Rsc =
U0γ0

~∆
, (3.24)

which has the value Rsc/2π = 29 kHz. Each photon scattered adds on average one recoil energy

Er = (~k)2/2m = 99.1 nK, so that the heating rate due to photon scattering is given by (the energy

E of an atom in the dipole trap potential increases as) 〈Ė〉 = 2RscEr = 35.6 mK/s. Considering

only this effect corresponds to an increase in energy of 1.75 mK over a duration of 50 ms. The

measured 1/e lifetime of the atom numbers in the standing-wave stationary dipole trap lattice is 50
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ms. For more detailed discussions on dipole traps including the loading process, see [3, 95, 141].

We note that in the above case, we have substituted the intensity profile for a standing-wave

Gaussian beam forming the one-dimensional lattice as described in detail in [3]. We note that more

generally, the dipole trap potential (shift in the ground state energy of the atom due to interaction

between the laser electric field and the atom’s electric dipole moment due to its atomic polarizability),

for the case of large detuning forming a FORT (far off-resonant trap), is given (in rotating-wave

approximation) by [95]:

Udip =
3πc2

2ω3
0

γ0

∆
I(~r), (3.25)

where ω0 is the atom’s resonant frequency, γ0 is the free-space spontaneous decay rate, ∆ is the

effective detuning given by Eq. (3.21), and I(~r) is the spatial intensity profile at the location of the

atom ~r. The scattering rate is given by

Rsc =
γ0

~∆
Udip. (3.26)

We note that while the trap potential Udip ∼ I(~r)/∆, the scattering rate Rsc ∼ I(~r)/∆2, so that for

a given trap depth Udip it is preferable to have larger intensity I(~r) and detuning ∆. In our case, we

are limited by the maximum power that is available, which is ≈ 170 mW per beam. We also note

that for an arbitrary dipole potential U = U(~r), the trap frequency along a particular direction, say

x, is given by applying the harmonic approximation UHO = mω2
xx

2/2 at the location near the trap

minimum, such that the trap frequency along x is given by ωx =
√

(2/m)∂2U/∂x2.

Getting back to our cold atom cloud in the MOT chamber as illustrated in Fig. 3.4 a), we then

chirp the relative frequencies between the two counter-propagating FORT beams to move the 108

atoms that are loaded into the standing-wave lattice, over a period of ≈ 80 ms, to transport the

cold atoms into the science chamber 20 cm away, to be released ≈ 800 µm above a microtoroid.

The conveyor belt motion can be thought of as a stationary standing-wave in a frame moving at a

constant velocity given by v = λ∆ν/2, where ∆ν is the relative frequency detuning between the two

counter-propagating beams [140]. The direction of the conveyor belt velocity is determined by the

sign of the detuning ∆ν. In the case of our experiment, λ = 852.43 nm, ∆ν = 6.35 MHz, giving v

= 2.71 m/s. This is approximately equal to simply dividing the distance between the two centers of

chambers as illustrated in Fig. 3.4 a), 20 cm, by the total time of ≈ 80 ms, v = 20 cm/80 ms = 2.5

m/s. We note that this is also in agreement with the atom cloud fluorescence imaging measurement,

with the camera imaging system calibrated directly using an independent ruler. We also note that
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one very important and crucial element in the conveyor belt system is to use a smooth conveyor

belt acceleration profile from the initial stationary position, in transition to constant velocity state,

and in decelerating to the final stop. This qualitative smoothness condition is much more important

and critical than the precise values used in the conveyor belt sequences. In our experiment, we

optimize the numbers empirically to give our required transport efficiency and distance. We follow

the techniques used in [140, 213, 217]. As our final goal is to have single atoms coupled to our

microtoroidal resonators, the conveyor belt efficiency and heating rate are not critical for us. After

the 80 ms conveyor belt transports over 20 cm, we lose about 90% of our atoms, leaving ≈ 107 atoms

at a temperature of 100 µK positioned 800 µm above a microtoroid. The release of these 107 atoms

then leads to ≈ 10 atoms that have trajectories with locations that lead to strong coupling to the

microtoroid’s whispering gallery mode via its evanescent field, which are detected in our experiment

in real-time. We note that the science chamber is kept to a pressure below 10−9 torr by ion pumps.

3.1.2.2 Optics and electronics

In this section, we give a broad overview of the techniques and components used to control and

perform detection in the microtoroid experiments described in Chapters 4 and 5. A schematic of

the experimental setup and more discussions can be found in Sec. 5.9.

Our laser sources for the microtoroid experiments consist of home-built Littrow design external

cavity diode lasers mainly at 852 nm wavelength, locked to cesium D2 transitions (F=4 → F’=5

for MOT beams, F=4 → F’=3 for repumping beams) via saturated absorption spectroscopy [189],

a commercial Newport Vortex Littman-Metcalf design external cavity diode laser tunable by more

than 50 GHz, and a frequency-offset locked home-built diode laser (which consists of a reference laser

interfered with the output of a frequency-offset laser, whose beatnote is detected by a fast photode-

tector to generate an error signal in frequency, which is converted to voltage by frequency-to-voltage

converter electronic chip, and used to PID-lock the frequency-offset laser through piezoelectric actu-

ation of the grating of the frequency-offset laser), and a Coherent MBR Ti:Sapph laser pumped by

532nm Verdi V-10 and later replaced by Verdi G-10, used to form our standing-wave/conveyor belt

FORT. In addition, we use commercial (Toptica) and home-built (based on JILA design in Prof.

Jun Ye’s group) optical tapered amplifiers, with tapered amplifier chips from M2K and Eagleyard.

These laser sources and tapered amplifiers are shown in Fig. 3.4 g-h). Other optical components

used but not visible in Fig. 3.4 g) are various optical modulators EOMs (e.g. from New Focus),

AOMs (e.g., from Brimrose, or from Inraaction where we could get diffraction efficiencies of > 95%
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at 852 nm), MEMS, in-fiber EO/AO/Mach-Zehnder switch (from EOSpace, with switching speed

of ≈ 10 ns).

The sequences (e.g., MOT loading, cooling, transport, etc.) in the experiment are controlled by

LabView programs that we wrote, which communicate with various National Instruments data ac-

quisition cards (e.g., NI PCI-6259, NI PCI-6602 cards) and National Instrument field programmable

gate arrays (FPGA) operating at 40 MHz, controlling various home-built and commercial electronic

circuits (e.g., from MiniCircuits). An example of the sequences involved in the experiment de-

scribed in Chapter 5 is: 1 second MOT loading, followed by 25 ms compressed-MOT (CMOT), 5

ms polarization-gradient (PG) cooling, 10 ms loading time into FORT lattice, 0.5 ms conveyor belt

acceleration, 82 ms constant velocity time, 0.5 ms deceleration time, and 0.8 ms of waiting time

before release of atom cloud. We note that these involve various on/off optical laser switching us-

ing AOMs, and frequency and power tuning using analog controls via voltage-controlled-oscillators

(VCOs) and voltage-controlled-attenuators (VCAs) that control the RF drivers for AOMs. During

this sequence, the toroid is temperature stabilized to maintain its resonant frequency to coincide

with cesium D2 line (F=4→ F’=5 transition), by using an actively locked Peltier for slow and large

temperature range control with error signal generated from a thermistor mounted inside the UHV

chamber near the toroid, and by using a heating laser focused on the toroid chip, relatively far from

the operating toroid to avoid photons leaking into the probe tapered fiber, for fast temperature con-

trol. Here, the error signal is generated by continuously alternating between the frequency-sweeping

probe beam and the detection beam. The frequency-sweeping probe beam is split into two beams,

one passing through the toroid system locating the toroid’s resonance, and another performing sat-

urated absorption spectroscopy. The error signal is then computed from this using LabView, with

an overall locking bandwidth of around 8 Hz, which is sufficient for the experiment. Following this

frequency-sweeping beam, the toroid is probed with a ‘detection beam’ set to be resonant to cesium

atoms, used to perform real-time detection of single cesium atoms in less than 500 ns. If a cesium

atom is detected, the probe beam is switched to the ‘probe beam’ laser, which may have various

frequencies and intensities used to make temporal or spectral measurements.

As discussed in Sec. 5.9, the input and output of the toroid-coupled tapered optical fiber is

connected to an array of 99/1 beam-splitters for power attenuation at the input, and 50/50 beam-

splitters to perform correlation/coincident measurements of the transmitted and reflected fields. The

photons (at a power of < 1 pW) are detected by single photon counting modules (SPCMs) from

Perkin-Elmer, which are connected to electronics for processing and acquired by fast acquisition
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card P7888 model from FAST ComTec, with 2 ns time-resolution. Brighter beam detections are

done using various photodetectors from Thorlabs and from Newport for higher performance (higher

bandwidth and lower noise) detections, and we also used various femto-watt photodetectors, e.g.,

low bandwidth femto-watt photodetectors from New Focus. For imaging, we used various SLR-

camera-type composite lenses, preferably with adjustable zooms, as shown in Fig. 3.4 f), giving

≈ 0.1− 0.2 numerical aperture, which is sufficient for our purposes mainly for fluorescence imaging

of atom clouds and as a microscope (with 10x to 20x zoom) for the toroid to aid toroid-taper spatial

alignment. The images are detected by standard CCD cameras (e.g., Sony XCE130 CCD with Sony

DC-700 controller), connected to National Instruments image acquisition cards (e.g., NI PCI-1410)

and are controllable by LabView. The spatial scale for the cameras can be calibrated directly by

using a physical ruler, or by dropping a cloud of atoms and using gravitational acceleration rate as

the reference. We note that in the latter, one assumption is that the atom cloud falls at the rate

of g = 9.81 m/s2, which may not always be the case, for example if there is residual near-resonant

light (when AOMs for the MOT beams are switched ‘off’) providing deceleration against gravity.

3.1.2.3 Optical/photonic devices and mechanics

As discussed previously, in the microtoroid cavity QED experiments, two optical/photonic devices

are central in the experiments, namely the microtoroid silica cavity and the tapered optical fiber used

to couple light in and out of the cavity. The fabrication of the microtoroid cavity involves creation of

silica microdisks that are then heat-reflowed by a CO2 laser to become a smooth microtoroid, giving

quality factors in excess of 109. For our experiments with relatively small dimensions, the cavity

quality factors reach above 107. Our microtoroid cavities are fabricated by our collaborators Dr.

Eric Ostby and Dr. Hansuek Lee, members of the Prof. Kerry Vahala group at Caltech. For more

information regarding the fabrication of a microtoroid cavity, see for example [240]. The tapered

fibers for our experiments are home-built, as discussed in Sec. 3.2.

We now discuss the integration and positioning of the microtoroid and tapered fiber. As shown

in Fig. 3.4 a), the microtoroid chip is positioned on top of a Peltier (shown as green box), on a copper

plate in contact with a thermistor. The toroid chip is attached to the copper plate by a vacuum-

compatible, conductive double-sided carbon adhesive pad (such as the ones used in SEM sample

holders, e.g., from Ted Pella). The copper plate is attached to the Peltier by a UHV-compatible

ceramic compound (Cerama Bond 835-M from Aremco Products). The Peltier is then mounted

on machined aluminium adapters that mount into a stack of nano-positioners (Attocubes model
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100 series). Together with the mounting stack for the tapered fiber (see Fig. 3.4 a)), we have four

Attocube positioners, giving x, y, z-linear tunability and one tilt tunability to adjust the axis of the

fiber relative to the plane of the toroid cavity. Characterization and calibration of the Attocube

positioners is given in Appendix A. We note that despite the nice capabilities of long-range and at

the same time nanometer precision positioning by the Attocubes, they need very careful handling

and more importantly, they have mechanical resonances at the ≈ 200-500 Hz range (at least for these

model 100 series) as shown in Appendix A. This leads to amplification of mechanical vibrations from

the environment, which leads to instability in the relative position between the toroid and tapered

fiber, which then could lead to fluctuations in the optical transmission out of the tapered fiber when

the system is positioned at (near) critical coupling condition. In other words, instead of the ideal

case where transmission is zero at critical coupling (all things being ideal), the vibrations limit the

minimum value of transmission (T ) that can be achieved. Indeed, out of all instabilities in our

experiment, this mechanical vibration is the limiting factor for the minimum value of T at critical

coupling.

One way to overcome this is to actively stabilize the toroid-taper separation distance. This

however requires both frequency stabilization as well as position stabilization. With Dr. Elizabeth

Wilcut Connolly, we tested this in a separate characterization setup outside our chamber, using

Pound-Drever-Hall locking [28] that locks the laser frequency to the toroid cavity resonance; and

then while this was operating, we implemented dither locking, where the relative position error signal

is obtained by oscillating (dithering) the position at high frequency using the Attocube controller.

Although it is quite complex and is not ideal to implement during the experiment, where the com-

plexity is undesirable, in the test we were able to suppress the vibration noise in the low frequency

region below 4 Hz by more than 40 dB. More information can be found in [51].

In our experiments, we rely on passive mechanical stability to ensure good floating of our optical

table, which is very crucial, and then we place the entire stack of positioners and mount them on top

of four little (1 cm diameter × 1 cm height cylinders) soft silicone rubbers as shown in Fig. 3.4 a).

Together, these lead to a stability in transmission of δT < 1% at critical coupling, a significant

improvement to the case without the two passive stabilization implementations of δT ≈ 10%. The

soft vibration isolation material is a room-temperature vulcanizing silicone rubber RTV-615 (from

GE silicones) that is vacuum-compatible [1]. With these passive stabilizations implemented, we can

maintain our transmission to be below T < 1% at critical coupling in our experiment. We note

that looking at the ‘noise’ that makes up this 1% critical-coupling level, there is a major component
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oscillating at a frequency of ≈ 250 Hz, showing that it is due to the mechanical vibrations amplified

by the Attocube mechanical resonances. We also note that other sources of noise including the

dark-noise of our detectors are significantly below this T = 1% level.

3.2 Nanophotonic optical fiber as a quantum optics platform

3.2.1 Model

A schematic of a tapered optical nanofiber is shown in Fig. 3.5 a) with its features highlighted.

Starting from a standard optical fiber (diameter values given here for a specific fiber example) with

jacket diameter DJ = 400 µm, buffer diameter DB = 250 µm, cladding diameter DCl = 125 µm, and

core diameter DCr = 5 µm, a nanofiber is fabricated by pulling the two ends of the single-mode fiber

with a heat source positioned at the center. For the fibers fabricated for the experiment described in

Chapter 7, the total tapering length is LT ≈ 7 cm, and the uniform waist size fiber length is Lf = 6

mm. The fiber radius decays exponentially in the transition regions, from the cladding size of rCl =

62.5 µm down to the nanofiber radius Df/2 = a = 215 nm, as shown in the schematic in Fig. 3.5 a)

and experimental datapoints from SEM measurements, in Fig. 3.5 d) and theoretical predictions

shown as solid curves in Fig. 3.5 d) in parts (i) and (ii). The Cartesian coordinate systems used are

shown in Fig. 3.5 a) with {x, y, z} and in cylindrical coordinate {r, φ, z}. We note that as the fiber

radius decreases from 62.5 µm down to 215 nm, at some stage the fiber core material vanishes and

the entire nanofiber is made up only of the cladding material. Here, we no longer have core-cladding

guided mode but rather cladding-air guided mode. If the nanofiber radius is sufficiently small, as

the case in our experiment, relative to the propagating light wavelength λ, then the nanofiber only

supports a single mode, the fundamental mode.

Now consider an input light beam of wavelength λ = 852 nm, polarized along the x-axis, as

shown by the 3D gray arrow illustrating light injected into the nanofiber from the bottom left of

Fig. 3.5 a). The fundamental mode supported by the nanofiber of radius a = 215 nm is shown in

Fig. 3.5 c), where in part (i), the (normalized) absolute value of the electric field |E|/|E|max taking

into account all (c-valued) components Ex, Ey, Ez is shown as a contour plot, with white arrows

(vectors) showing the directions of local (real-valued) electric field polarizations (Ex, Ey)/
√
E2
x + E2

y

(note the length of the arrow vectors is normalized). By real-valued, we refer to the plane at

optical phase θ = 0, the phase where the beam’s polarization field Ex is maximum and Ez = 0.

At θ = π/2, Ex = Ey = 0 and Ez is maximum. We note that because of the subwavelength
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confinement of the light beam (electromagnetic field), although at the beginning of the tapered

fiber (when the radius is still 62.5 µm) we inject a laser beam polarized along x, with negligible Ey

and Ez, the polarization structure becomes more complicated at the nanofiber region, as shown in

Fig. 3.5 c) for Ex, Ey, Ez. The field has electric field components in all axes x, y, z, and moreover the

longitudinal field component Ez is π/2 phase-shifted relative to the other components. At this small

sub-wavelength light confinement regime, these field components can have amplitudes comparable

to each other (see Fig. 3.5 c) caption). We also note the field spatial azimuthal symmetry breaking

that occurs in this regime.

Despite the complex polarization structure discussed above, which is undesirable, the tapered

optical nanofiber platform provides a mean to confine single atoms three-dimensionally, along a

one-dimensional array in close proximity ∼ 100 nm to the nanofiber surface. One scheme that

utilizes two pairs of red-detuned (λ = 937 nm) and blue-detuned (λ = 687 nm) trapping beams

polarized along the x-axis (shown in Fig. 3.5 a)) is discussed in Chapter 7. For illustration, we show

in this overview in Fig. 3.5 b), a trap potential profile that can be generated under such scheme,

that provides three-dimensional confinement along the standing wave lattice with a trap depth of

≈ 200 µK, at a distance of ≈ 200 nm from the nanofiber surface. Intuitively, the trap is generated

by combining a short-range (short λ) blue-detuned repulsive dipole potential and long-range (long

λ) red-detuned attractive dipole potential forming a radial potential well (confinement), azimuthal

confinement due to the azimuthal symmetry breaking of the mode profile relative to the polarization

direction of the guided beam, and axial confinement due to the counter-propagating standing-wave

red-detuned beams that form the one-dimensional lattice. We note that the counter-propagating

blue-detuned beam is used not for the purpose of generating a trap potential, but to allow minimal

intrusion to the internal state of the trapped atoms that will otherwise be significant due to the

complex guided mode polarization structure that leads to local elliptical field polarizations that act

as pseudo magnetic fields. The trapping scheme is discussed in Chapter 7, along with our experiment

that realizes such atom trap, leading to trapping of ≈ 200 atoms at 215 nm from the fiber surface.

One of the key enabling capabilities required to realize a nanofiber atom trap as discussed above

is the fabrication of a tapered optical fiber with strict specifications especially in relation to its

transmission efficiency (single-mode operation), precise and repeatable nanofiber shape profile and

dimensions, and the ability for the nanofiber to carry relatively large amount of power inside a UHV

vacuum environment. We discuss our fabrication techniques and results in Chapter 7. Figure 3.5 d)

shows the results of seven fabricated nanofiber samples as measured by SEM. Most of these fibers
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have efficiencies > 97%, with measured shape profile (especially the nanofiber waist radius) in

agreement with the theoretical predictions by < 5% error, and we have tested the ability of these

nanofibers to carry laser beams with optical power exceeding 200 mW inside a vacuum environment.

The realization of this nanofiber device with these strict requirements and good yield/repeatability

is not a trivial task; it involved many months of optimization and improvements, as will be discussed

in Chapter 7.

3.2.1.1 Fundamental nanofiber mode

When the radius a of an optical fiber is reduced well below the propagating field wavelength λ, the

resulting cladding-to-air waveguide supports only the “hybrid” fundamental mode HE11 [129, 237].

In this strongly guiding regime, a significant fraction of energy of the HE11 mode is carried in the

form of an evanescent wave outside of the nanofiber. The evanescent field intensity is azimuthally

asymmetric when the input polarization is linear [129, 237]. Fig. 3.5 c) i) shows the electric field

intensity |E|2 = |Ex|2 + |Ey|2 + |Ez|2 in a plane transverse to the fiber for a single, linearly-polarized

beam. The unit vectors (ex, ey, ez) shown in Fig. 3.5 a) form the basis of the (x,y,z) frame, and

(r, φ) are the cylindrical coordinates in the transverse plane (x,y).

The fundamental mode HE11 is often referred to as “quasi-linear” when excited with a linearly

polarized input beam. However, for a dielectric waveguide in the strong-guiding regime with indices

of refraction n1 ≈ 1.5 inside the waveguide and n2 ≈ 1.0 outside, the HE11 mode actually exhibits

a significant ellipticity for a . λ/2, leading to vector shifts of the Zeeman sublevels. Formally, for a

linearly polarized input, the evanescent field E = (Ex, Ey, Ez) of the fundamental mode propagating

in the fiber can be expressed as follows for r ≥ a [129, 237, 205]:

Ex(r, φ, z, t) = Alin
β11J1(h11a)

2q11K1(q11a)
(3.27a)

×[(1− s11)K0(q11r) cos(ϕ0) + (1 + s11)K2(q11r) cos(2φ− ϕ0)]ei(ωt−β11z),

Ey(r, φ, z, t) = Alin
β11J1(h11a)

2q11K1(q11a)
(3.27b)

×[(1− s11)K0(q11r) sin(ϕ0) + (1 + s11)K2(q11r) sin(2φ− ϕ0)]ei(ωt−β11z),

Ez(r, φ, z, t) = iAlin
J1(h11a)

K1(q11a)
K1(q11r) cos(φ− ϕ0)ei(ωt−β11z), (3.27c)

with
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Figure 3.5: Tapered optical nanofiber. a) Schematic of a tapered nanofiber, showing fiber jacket
(diameter DJ), buffer (diameter DB), tapering region (total end-to-end length LT), nanofiber region
(Lf) with uniform waist radius a = Df/2, and fiber cladding (diameter DCl) and core (diameter
DCr). Bottom: Two pair of blue- and red-detuned x-polarized beams form atom trapping potential
as shown in b) and x-polarized probe beam shown by the gray arrow. c) Normalized electric field
|E| profiles and the components {Eθx, Eθy , Eθz} (where θ indicates the optical phase and location
along the z-axis. E.g., θ = 0 ↔ z = 0, θ = π/2 ↔ z = λ/4) for the nanofiber fundamental HE11

mode polarized along x, with Emax
x = 0.892|E|max, Emax

y = 0.224|E|max, Emax
z = 0.453|E|max. d)

Theoretical prediction and experimental data of tapered fiber radius (r) profile along the fiber axis
(z), measured from hundreds of SEM images taken from seven fabricated tapered fiber samples, such
as the one shown in (iii).
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s11 =

[
1

(h11a)
2 +

1

(q11a)
2

] [
J ′1(h11a)

h11aJ1(h11a)
+

K ′1(q11a)

q11aK1(q11a)

]
, (3.28a)

h11 =
√
k2

0n
2
1 − β2

11, (3.28b)

q11 =
√
β2

11 − k2
0n

2
2. (3.28c)

Here, φ denotes the azimuthal position in the transverse plane (Fig. 3.1 a), ϕ0 indicates the

polarization axis for the input polarization relative to the x axis, n1 and n2 are the indices of

refraction inside and outside the waveguide, β11 is the mode propagation constant, 1/h11 is the

characteristic decay length for the guided mode inside the fiber, 1/q11 is the characteristic decay

length for the guided mode outside the fiber, Alin is the real-valued amplitude for the linearly

polarized input, Jl is the l-th Bessel function of the first kind, and Kl is the l-th modified Bessel

function of the second kind.

The normalization constant Alin is given by:

Alin =
√

2

(
4µ0ωP

πa2β11

)1/2

(Din +Dout)
−1/2, (3.29)

where

Din = [(1− s11)(1 + (1− s11)
β2

11

h2
11

)(J2
0 (h11a) + J2

1 (h11a)) +

+(1 + s11)(1 + (1 + s11)
β2

11

h2
11

)(J2
2 (h11a)− J1(h11a)J3(h11a))], (3.30)

Dout =
J2

1 (h11a)

K2
1 (q11a)

[(1− s11)(1− (1− s11)
β2

11

q2
11

)(K2
0 (q11a)−K2

1 (q11a)) +

+(1 + s11)(1− (1 + s11)
β2

11

q2
11

)(K2
2 (q11a)−K1(q11a)K3(q11a))]. (3.31)

Here Din/(Din + Dout) and Dout/(Din + Dout) are the fractions of the power of the fields that

propagate inside and outside of the nanofiber, ω = 2πc/λ with the free-space wavelength λ, and P

is total propagating power given by

P =

∫ 2π

0

dφ

∫ a

0

〈Sz〉rdr, (3.32)

where 〈Sz〉 is the z-component of the cycle-averaged Poynting vector 〈~S〉 = 1
2Re

[
~E × ~H∗

]
, which

quantifies the energy flux of the electromagnetic field in the propagation direction along the nanofiber
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Figure 3.6: Electric field, E(x, y, z, t) of a single propagating beam in the plane y = 0. The input
beam is x-polarized. The electric field Re[E(x, y, z, t)], with E(x, y, z, t) defined as in Eq. 3.27, is
shown by the blue arrows. The red arrow indicates the beam propagation direction. The field is
shown for a) ωt = 0, b) ωt = π/2, and c) ωt = π.

axis. Note that in the ideal case where the tapered nanofiber transmission efficiency is 100%, the

total propagating power P is equal to the optical power measured directly at the output of the

tapered optical fiber, which also equal to the power of the injected beam (assuming 100% input

coupling efficiency). Complete equations for nanofiber fundamental modes for circular and quazi-

linear polarizations can be found in [247, 129, 237, 205].

It is clear from Eq. (3.27) that the electric field intensity is not azimuthally symmetric. For

a beam polarized along ex, i.e., ϕ0 = 0, the intensity at the fiber’s outer surface is maximum for

φ = 0, π and minimum for φ = ±π/2.

Notably, the evanescent modes of the nanofiber have a significant longitudinal component Ez

along the fiber propagation direction, which is π/2 out-of-phase with the transverse components

(Ex, Ey) (Eq. (3.27c)). At the outer fiber surface, Ez is maximum for φ = ϕ0, ϕ0 +π (i.e., along the

input polarization axis), and vanishes for φ = ϕ0 ± π/2. For an x-polarized input at 937 nm and a

nanofiber of radius a = 250 nm, |Ez|
2

|E|2 (r = a+, φ = ϕ0) ' 20%. As a consequence, the polarization

of a single propagating beam will be elliptical everywhere except for φ = ϕ0±π/2. The ellipticity of

the beam will be maximum for φ = ϕ0, ϕ0 + π as is illustrated in Fig. 3.6, giving rise to significant

vector shifts, which we discuss in Section 7.2.

We can re-write Eqs. (3.27) as follows:

Ex(r, φ, z, t) = Aei(ωt−β11z), (3.33a)

Ey(r, φ, z, t) = Bei(ωt−β11z), (3.33b)

Ez(r, φ, z, t) = iCei(ωt−β11z), (3.33c)
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where A, B, and C are real functions of r and φ. In particular, if one combines a forward-propagating

beam E(fwd) expressed as Eq. (3.33) with a backward-propagating beam of same amplitude and

input polarization E(bwd) = Aei(ωt+β11z)ex +Bei(ωt+β11z)ey − iCei(ωt+β11z)ez, the total field can be

expressed as:

E(tot) = E(fwd) + E(bwd) = 2 [A cos(β11z)ex +B cos(β11z)ey + C sin(β11z)ez] · eiωt. (3.34)

The resulting electric field E(tot) = E(fwd) + E(bwd) forms an optical lattice with spatially rotating

linear polarization as illustrated in Fig. 3.7. In particular, the polarization state of the field rotates

between the pure linear x and z-polarizations along z at φ = 0, as illustrated in Fig. 3.8.

Figure 3.7: Total electric field, E(x, y, z, t) for two counter-propagating beams in the plane y = 0.
The input beams are x-polarized. The electric field Re[E(x, y, z, t)] is shown by the blue arrows.
The red arrows indicate the beams’ propagation directions. The electric field is shown for a) ωt = 0,
b) ωt = π/4, and c) ωt = π. As opposed to Fig. 3.6, the polarization of the electric field is linear
at any point |r| > a (i.e., the polarization vector has no ellipticity and E does not rotate in time at
a given position r as in 3.6).

3.2.1.2 Atom-photon interactions with nanofibers

Figure 3.9 shows calculation results for λ2/Aeff with λ = 852 nm and Aeff = P/I(x, y) where P

is the total propagating power as given by Eq. (3.32), and I = I(x, y) = cε0
2 Re[|E(x, y)|2] is the

field intensity as a function of the electric field E(x, y) at position (x, y). Recall as discussed in

Sec. 2.5.1 that the quantity 1/Aeff , as conveniently normalized in units of 1/λ2, is related to the

scattering ratio Rsc = σ/Aeff with σ = 3λ2

2π the absorption scattering cross-section of the atom in

free-space. Note however that this simple formula is only valid in cases such as a weakly focused light

interacting with an atom. For cases involving strongly focused light, or in our case sub-wavelength

nanophotonic waveguides, the scattering rate, which is related to the amount of absorption by an

atom is more complicated than the above simple formula, as discussed in Sec. 2.5.1. Nonetheless,
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Figure 3.8: Electric field amplitude after interference, E(tot) = E(fwd) + E(bwd) of two λ =
937 nm beams (x-polarized inputs with ϕ0 = 0) with δfb = 0, at t = 0 and r = a+. The fields
are normalized to the intensity I0 at r = a+, φ = 0, z = 0. a) Axial direction z (at φ = 0). b)
Azimuthal direction φ (at z = 0). In particular, E(tot) has a fixed linear polarization at any given
point r which rotates as r is varied.

the scattering ratio (which can be interpreted as the strength of atom-photon interaction) is still

proportional to 1/Aeff within the discussion of Sec. 2.5.1. It is therefore informative to look at the

distribution of λ2/Aeff as a function of space.

For a nanofiber with radius a = 215 nm (the radius of our fiber used in the experiment described

in Chapter 7), the distributions of λ2/Aeff for quasi-linear and circular polarization probe beams

are shown in Fig. 3.9 a) and b) respectively. On the right hand side of the contour plots are the

corresponding cross-sections at y = 0 and x = 0, for varying nanofiber radius a. The curves colored

in red, blue, green, magenta refer to nanofiber radii of a = 196, 215, 250, 150 nm. The radius of

196 nm is obtained from a = aopt = 0.23λ, the ‘optimum’ nanofiber radius that leads to maximum

λ2/Aeff at the surface of the fiber r = a = aopt, which holds universally true for any λ [247]. For

the plots in Fig. 3.9, we set λ = 852 nm. Note that as seen in the figures, the small fiber (a =

150 nm) has associated with it a large mode area, which leads to a smaller field intensity near the

fiber (hence the smaller value of λ2/Aeff), but it extends over a larger spatial area around the fiber.

For smaller diameter, at larger distances in x and in y, the value λ2/Aeff eventually becomes larger

compared to the other larger nanofibers. We note that in our fiber trap experiment, the location of

the trap minimum is at x− a = 215 nm and y=0, corresponding to the value λ2/Aeff ≈ 0.15.
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Figure 3.9: Nanofiber mode effective area. Contour and cross-sectional plots of λ2/Aeff show-
ing atom-photon interaction strength profile, for a nanofiber HE11 mode, x-polarized in (a) and
circularly-polarized in (b). The contour plot corresponds to nanofiber radius a = 215 nm. For the
cross-sectional plots, the curves colored in red, blue, green, magenta correspond to a = aopt = 0.23λ
= 196 nm (the optimum fiber radius that holds for any λ; here we choose λ = 852 nm), a = 215
nm, a = 250 nm, a = 150 nm respectively.
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3.2.2 Experiment and fabrication setups

The heart of the experimental and fabrication setups for our nanofiber trap experiment described

in Chapter 7 is shown in Fig. 3.10, where we utilized the trapping scheme discussed in Sec. 7.2.

The realization and achievements made in our experiment using tapered nanofiber platform are a

result of collaboration and work of many individuals, which I would like to especially acknowledge

here. First and foremost, I would like to acknowledge the group of Prof. Arno Rauschenbeutel of

University of Vienna for the pioneering work in optical nanofiber system, which forms the basis of

our system. I would like to acknowledge members of our team who worked on the theory, experiment,

and nanofiber fabrication aspects for our nanofiber trap experiment: Akihisa Goban, Kyung Soo

Choi, Clement Lacroute, Ding Ding, Martin Pototschnig, Tobias Thiele, and Nate Stern. It has

been a great priviledge and opportunity to work together with these great individuals who have

contributed to the success of our exciting joint experiment. This work was carried out under the

guidance and supervision of my advisor, Prof. Jeff Kimble at Caltech.

Fig. 3.10 b) shows a photograph of the actual chamber, with red scattered light visible along

the thin nanofiber part of the tapered optical fiber pointed by the white arrow in the figure. The

setup consists of a vacuum chamber with large windows, a cesium getter source inside the chamber

kept at ultra-high-vacuum by an ion pump, and a piece of nanofiber mounted (by UV glues) on an

aluminium ‘fork’ mount as shown in part a) of the figure. On the outside is a set of quadrupole coils

in anti-Helmholtz configuration, magnetic coils to null background magnetic fields, and three pairs

of counter-propagating red-detuned beams that together form a magneto-optical trap of a cold atom

cloud with diameter ≈ 1 mm (with a resonant optical depth of ≈ 6) that is polarization-gradient

cooled and overlaped with the nanofiber positioned at the center of the MOT cloud. During the

dissipative polarization-gradient cooling process (for ≈ 10 ms), the cold atoms are loaded into the

two-color evanescent trap with a trap depth of≈ 270 µK, formed by counter-propagating red-detuned

(λ = 937 nm) and blue-detuned (λ = 687 nm) beams with total counter-propagating powers of 2

× 0.4 mW = 0.8 mW, and 2 × 5 mW = 10 mW respectively. The traps are located at 215 nm

from the fiber surface, with trap frequencies {νr, νφ, νz} = {199, 35, 273} kHz. From absorption

measurement of probe light that propagates through the tapered fiber, we infer a total of up to

≈ 825 trapped atoms (total optical depth of dN=825 = 66, single atom optical depth d1 = 0.08,

where the transmittance T = e−dN and N is the number of trapped atoms). We infer the single

atom optical depth d1 = 0.08 from a saturation measurement with 224 trapped atoms (dN=224 =

18).
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The probe absorption measurement requires decoupling of the relatively large trapping beam

power P ≈ 10 mW from the probe beam with power P ≈ 0.1 pW by orders of magnitude. We

achieve this by using a pair of volume Bragg gratings (VBGs) at the input side of the fiber to

combine the probe beam and the trap beams, and another pair of VBGs at the output side of

the fiber to separate the trap beams from the probe beam. Our pair of VBGs provide ∼ 180 dB

extinction ratio with > 95% diffraction efficiency. The VBG is a custom holographic grating from

OptiGrate, investigated by Dr. Kyung Soo Choi working with Dr. Vadim Smirnov and Dr. Igor

Ciapurin at OptiGrate [44].

The setups for taper pulling fabrication are shown in Fig. 3.10 c-d) for our old taper pulling

setup and in Fig. 3.10 e-f) for our new taper pulling setup used in nanofiber trap experiments.

Here we give an overview of the key differences between the old and new setups; more detailed

discussion is given in Chapter 7. There are a couple of key differences between the old and new

taper pulling setups; some are visible in the figures. Firstly, our new setup uses much more precise

and better-controlled motorized stages, which allow not only precise and repeatable positioning, but

also create effective oscillation of the heat source, increasing the heating region, leading to better

quality tapers (for ensuring desired tapered fiber shape profile, transmission efficiency, and single-

mode condition). Secondly, in the new setup the fabrication process is carried out inside a (specified

class 100) clean-hood, which is critical in ensuring a clean nanofiber product, important in ensuring

high power-handling capability by the nanofiber inside a vacuum environment. Thirdly, we use a

hybrid hydrogen-oxygen torch as a heating source instead of an oxygen-only flame. While it is not

clear that this is critical to producing a good quality nanofiber, this provides tunability of the flame

temperature for a given flame torch alignment, oxygen flow rate, ambient air and nozzle type. More

details are discussed in Chapter 7.

3.3 Nanophotonic waveguide and cavity as a cavity QED

platform

In this section we investigate two nanophotonic waveguide structures namely single nanobeam and

double nanobeam structures, discussed in the subsequent subsections. While we concentrate mainly

on nanophotonic waveguides in this section, we note the potential of forming optical resonators

by fabricating a pair of photonic crystal mirrors placed at both ends of the waveguide. Another

potential consideration is to form a periodic structure along a nanophotonic waveguide, which will
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a) b)

c) d)

e) f)

Figure 3.10: Tapered nanofiber fabrication and experiment overview. a) Schematic showing
a nanofiber mounted on an aluminium holder inside an UHV chamber, with three pairs of counter-
propagating magneto-optical trapping and cooling beams forming cold atom cloud overlapped with
the nanofiber. b) Photograph of the vacuum chamber, with arrow pointing towards the red-glowing
nanofiber. c, e) Close-up and environment pictures of our old taper-pulling setup. d, f) Close-up
and clean-hood environment pictures of our improved taper-pulling setup used to fabricate tapered
nanofibers for our nanofiber atom trap experiment.
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create band-structures that may be exploited to increase atom-photon interaction strength and also

other physics based on many-body interactions. These are discussed in Chapter 8.

3.3.1 Single nanobeam

In this section, we describe a nanobeam structure that functions as a nanophotonic device. The

general structure discussed in this section has been designed and initially fabricated by the Painter

group, with inputs from Su-Peng Yu in our group. A single nanobeam structure consists of four

main sections as illustrated in Fig. 3.11 a). Starting from a buffer-stripped standard single-mode

bare core-cladding fiber (e.g., with core diameter of 5 µm and cladding diameter of 125 µm), the

first section (labeled z1 in the figure) is the butt-coupling section, where the core-cladding silica

(refractive index 1.45) optical fiber guided mode is matched to the mode of the nanobeam-air,

silicon nitride (refractive index 2) guided mode (e.g., x1 = 150nm, z1 = 10 µm). This section is

mechanically supported by a small tether that connects to the chip substrate (z2 = 100 nm). In the

second section (z3), the small-sized nanobeam (i.e., large-sized field mode) is adiabatically tapered

into larger-sized nanobeam (smaller-sized field mode) to match to the small mode cross-section size

of the desired nanophotonic waveguide (x2 varies from 150 nm to 300 nm as x23 and x3 varies

linearly to 1000 nm, z3 = 300 µm, z4 = 10 µm). This part is supported by about 15 tethers over

the length z5 = 3.26 µm, followed by a linear decrease in width (x4) from 1000 nm to 300 nm

over the length z6 = 10 µm (x5 ≈ 75 µm). Next, our third section, which is the main section, is

a uniform nanophotonic waveguide with rectangular cross-section of width w = x6 = 300 nm and

height h = y1 = 200 nm (the thickness of the silicon nitride substrate). The length of the nanobeam

ranges from z7 ∼ 100 − 1000 µm. Finally in the fourth section is a photonic crystal mirror (x7

varies linearly from 300 nm to 500 nm, z8 = 10 µm) made up of 10 tapered holes followed by 22

mirror holes (lattice constant between holes 340 nm, diameter φ1 is tapered from zero to φ2 = 200

nm, distributed over z9, z10, z11). Note that the abovementioned parameter values are actual SEM

measured values (which are different to the CAD design parameters due to shrinkages and expansions

induced in the fabrication process) for a particular successful design by Su-Peng Yu (Kimble group)

in collaboration with Painter group [73]. It is described here to give a sense of the geometry of our

device. Optimization was conducted by Su-Peng Yu and Sean Meenehan using Lumerical software

that maximizes optical quality as the light propagates from the tip of the cleaved fiber, all the way

to the photonic crystal mirror, is reflected, and is injected back into the optical fiber, taking into

account structural stability. We note that the bare fibers are glued onto the V-grooves, limiting
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the minimum distance between neighboring fiber-nanobeam devices to a few 100 µm. As shown in

Fig. 3.11 a) and b) i), the chip has a through-hole of size X0 ≈ 5 mm by Z0 ≈ 2 mm, which allows

multiple devices (e.g., five devices) to be fabricated on the whole chip of size X1 = Z1 = 1 cm. SEM

images taken for a similar chip are shown in Fig. 3.11 b) showing the overall structure in i), the

fiber-to-nanobeam butt-coupling in ii), the nanophotonic waveguide in iii), and the photonic crystal

mirror in iv). From Lumerical simulation by Su-Peng Yu of one of the fabricated photonic crystal

mirrors, using dimensions measured by the SEM: lattice constant = 340 nm, width = 500 nm, hole

diameter = 200 nm, 10 linear taper sites, 15 mirror sites, followed by 10 linear tapering-out sites,

the reflectance is R = 99% (T=0.9%) for in-plane (x) polarization and transmittance is T = 97%

(R < 0.1%) for normal-to-plane (y) polarization, with the rest of the power is absorbed or lost. We

note that these number can be further optimized.The mirror bandwidth is ± 1 THz, with similar

reflectances and transmittances.

In the initial design stage of the nanobeam waveguide structure, my principal contribution has

been in the investigation of optical modes of the nanobeam structure, in the context of atom-photon

interactions as discussed below. I would like to acknowledge the contributions of Sean Meenehan

and Richard Norte from the Painter group, and Su-Peng Yu from our group, on the structure design

and optimizations, critical for the fabrication of the device shown in Fig. 3.11 b).

The fundamental nano-waveguide mode for an x-polarized input beam with rectangular cross-

section of w × h = 300 × 200 nm is shown in Fig. 3.11 c). As discussed in Sec. 3.2, in this

sub-wavelength regime of tight electromagnetic field confinement, complex field polarizations arise

despite a linearly polarized input beam. As seen in part c) of the figure, it involves all three

(Ex, Ey, Ez) components that have comparable amplitudes. Note that the longitudinal component

Ez is π/2 out of phase relative to the Ex and Ey components. The exact ratios of the various field

components are given in the figure caption. In part i) of the figure, the (normalized) amplitude

of the electric field |E|/|E|max is shown, taking into account all (c-valued) components Ex, Ey, Ez,

with white arrows (vectors) showing the directions of local (real-valued) electric field polarizations

(Ex, Ey)/
√
E2
x + E2

y (note the length of the arrow vectors is normalized). The real parts are at the

optical phase θ = 0, and the imaginary parts are π/2 out of phase at θ = π/2.

In the same spirit as in Sec. 3.2.1.2, here we show the calculation result for the distribution of

λ2/Aeff , a measure of atom-photon coupling strength of the nanophotonic waveguide, with λ = 852

nm, and Aeff = Aeff(x, y). For discussions on the definition and relevance of this quantity, please

refer to Sec. 3.2.1.2 where we discussed the same quantity in nanofiber platform. The result for this
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Figure 3.11: Nanophotonic beam and mirror. a) Schematic of a nanobeam device showing
optical fiber to silicon nitride waveguide butt-coupling, adiabatic adapter to nanobeam mode (z1-
z6), a nanobeam waveguide with width w and height h, followed by a photonic crystal mirror (z8-
z9). The dimensions are discussed in the text. b) SEM images of a fabricated device (courtesy of
Painter group), showing a sample structure with ∼ mm size thru-hole in (i), fiber butt coupling (ii),
nanobeam waveguide with electric field profile (iii), and photonic crystal mirror at the end (iv). c)
Normalized electric field |E| profiles and the components {Eθx, Eθy , Eθz} (where θ indicates the optical
phase and location along the z-axis). E.g., θ = 0 ↔ z = 0, θ = π/2 ↔ z = λ/4) for the nanobeam
fundamental HE11 mode polarized along x, with Emax

x = 0.840|E|max, Emax
y = 0.340|E|max, Emax

z =
0.560|E|max.
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rectangular nanophotonic waveguide is shown in Fig. 3.12. In part a) is a contour plot for x-polarized

input beam, width w × height h = 300 nm x 200 nm. Part b) shows the cross-sections along the

x-axis (y=0) and y-axis (x=0) over a larger range to highlight the behavior near the surface of the

nanobeam, and over a smaller range highlighting the behavior further away from the nanobeam’s

surface. In the cross-section plots, there are multiple curves corresponding to varying widths w

= 100, 150, 200, 250, 300, 350, 400 nm colored in red, blue, green, magenta, brown, cyan, orange

respectively. We note that w = 300 nm (brown curve) gives the largest relative atom-photon coupling

strength λ2/Aeff at the surface of the nanobeam at x−w/2 = 0 (y=0). For w = 100 nm and 150 nm,

although they have small values of λ2/Aeff near the surface, they have long decay lengths and have

larger λ2/Aeff than the wider nanobeams at greater distances away from the surface of the nanobeam.

Finally we note that although the general behavior is quite similar between the single nanobeam and

the nanofiber discussed in Sec. 3.2.1.2, there are at least three important features that may make the

silicon nitride nanobeam preferable. Firstly, in contrast to the circular cross-section nanofiber, the

intrinsic rectangular cross-section breaks the azimuthal symmetry and could improve the stability

of the polarization direction of the guided mode. Secondly, the lithographically patterned and

fabricated silicon nitride nanobeam offers more flexibility and better control in terms of adding

features such as photonic crystal mirrors to make a cavity, as well as integrating periodic structure

throughout the nano-waveguide to create band-structures. And thirdly, in contrast to nanofibers, it

offers the potential to go beyond one-dimensional systems, to two-dimensional architectures.

3.3.2 Double nanobeam

Figure 3.13 a) shows a schematic of a double nanobeam structure, which consists of similar sections to

the single nanobeam (butt coupler, large-to-small adiabatic mode converter, and a photonic crystal

mirror at the end), but with a modified center section which now may contains a double beam

mode selector and double nanobeam waveguide. Starting from the similar single beam structure as

discussed in Sec. 3.3.1, we now have a Y-junction that converts the single beam mode to a double

beam mode, followed by a double beam mode selector, where the individual beam’s width can be

different, chosen to potentially induce relative phase-shift between one arm of the double beam

relative to the other arm (to allow excitation of even vs odd modes as suggested by Su-Peng Yu),

to be then followed by the nanophotonic double beam waveguide. Fig. 3.13 c) shows the double

nanobeam waveguide including the coordinates (x, y, z), width w, height h, and gap (e.g., with w =

300 nm, h = 200 nm, and gap = 200 nm).
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Figure 3.12: Single nanobeam mode effective area. Contour and cross-sectional plots of λ2/Aeff

showing atom-photon interaction strength profile, for a single nanobeam fundamental x-polarized
mode. a) The contour plot corresponds to nanobeam with width w = 300 nm and height h = 200
nm. b) For the cross-sectional plots, the curves colored in red, blue, green, magenta, brown, cyan,
and orange correspond to single nanobeam with height h = 200 nm and width w = 100, 150, 200,
250, 300, 350, 400 respectively. Each row in (b) show the same curves, over a different domain. In
the first column, the behavior close to the surface is more clearly shown while in the second column,
the behavior far from the surface is more clearly displayed.

The ‘fundamental’ mode of the double beam now consists of the four lowest order modes as the

two individual beams are now coupled together. In Fig. 3.13 b), we plot the effective refractive

index neff = β/k where β is the propagation constant of the guided mode and k = 2π/λ is the

propagation constant in free-space or the wavenumber, as a function of V which we define to be

V ≡ kα
√
n2 − 1, where α is set to 200 nm, and n = 2.0 is the refractive index of the silicon nitride

nanobeam, showing these four lowest order modes. Superimposed are the lines showing the modes

at λ = 852, 687, 937 nm corresponding to cesium D2 line transition wavelength and the blue- and

red-detuned magic wavelengths respectively. Here, we see that for V . 3, the double beam support

four (lowest order) modes, (i), (ii), (iii), (iv), corresponding to even x-polarized, even y-polarized,

odd x-polarized, and odd y-polarized modes respectively, which are ordered from the lowest-order

of the four modes to the higher orders. Even and odd modes refer to symmetric and anti-symmetric

electric field signs, as shown in Fig. 3.13 d), where the rows (i), (ii), (iii), (iv) correspond to the

electric field distributions for the four lowest order modes (i), (ii), (iii), (iv) shown in Fig. 3.13 b).

For discussions on the electric field distributions, including the presence of multiple electric field

components (Ex, Ey, Ez) including π/2 out-of-phase Ez component, refer to discussions in Sec. 3.2

and Sec. 3.3.1. We note that for V > 3, there exist more than four modes for the double nanobeam
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structure we consider (w = 300 nm, h = 200 nm, gap = 200 nm).

As in Sec. 3.3.1, here we show calculation results of λ2/Aeff for a specific double nanobeam

structure (w = 300 nm, h = 200 nn, gap = 200 nm) as a contour plot in Fig. 3.14 a), and for

varying widths w and gap (keeping h = 200 nm fixed) in parts b), c) and d). In part c), we show

the cross-sections of λ2/Aeff along the x axis (at y = 0), for w = 150, 300, 350 (the three rows), and

within each plot, multiple curves for gap =100, 150, 200, 250, 300, 350, 400, 450, 500 nm (i.e., nine

curves starting from gap = 100 nm to gap = 500 nm, in steps of 50 nm), with gradient colors from

light to dark blue respectively. In part d), we have the same parameter sets for the three rows and

nine curves as in part c), except here the cross-section is along the y-axis (at x=0). Finally in part

b), are plots of λ2/Aeff as a function of gap parameter (from 100 nm to 500 nm), for the coordinates

(x, y) = (0,0), h = 200 nm, and varying widths w = 150, 200, 250, 300, 350 nm corresponding to the

red, blue, green, magenta, orange curves respectively. The top of Fig. 3.14 b) highlights the behavior

near the small gap region (with linear scaling in λ2/Aeff) whereas the bottom plot highlights the

behavior in the large gap region (with logarithmic scaling in λ2/Aeff).

3.3.3 Experiment setup and techniques

Figure 3.15 shows the experimental setup in lab 1 based on the nanophotonic beams and cavities

discussed in the previous sections. This is an on-going work performed by many individuals in

multiple labs in our group and in Painter group, who I would like to acknowledge here. Firstly, in

lab 11: Akihisa Goban and Chen-Lung Hung who first implemented the multi-magneto-optical trap

scheme to transport an atomic cloud from the source chamber to the science chamber and into the

photonic device chip in our group, which was critical in forming the basis of our setup in lab 1;

our collaborator Kyung Soo Choi; Jonathan Hood and Su-Peng Yu who closely worked with device

characterization and fabrication; with Sean Meneehan and Richard Norte in Painter group. In lab

2: Jae Hoon Lee, Juan Muniz, and Ding Ding. Last but not least, the team in lab 1 who directly

work in the experimental setup discussed in this thesis: Andrew McClung, Pol Forn-Diaz, Martin

Pototschnig; I would also like to acknowledge Clement Lacroute from our group; and Justin Cohen,

Taofiq Paraiso, and Alex Krause in Painter group. This work is carried out under the guidance and

supervision of my advisor, Prof. Jeff Kimble, in collaboration with Prof. Oskar Painter at Caltech.

The heart of our experimental setup is shown in Fig. 3.15 a) and d), and consists of two chambers

separated by about 70 cm distance. Starting from the source MOT chamber labeled (i) in part a) of

Fig. 3.15, where about 107−108 atoms are magneto-optically trapped, a near-resonant (e.g., 10 MHz
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Figure 3.13: Double nanophotonic beam and mirror. a, c) Schematic of a double nanobeam de-
vice showing optical fiber to silicon nitride waveguide butt-coupling, adiabatic adapter to nanobeam
mode, a Y-junction single-to-double beam mode converter, a double nanobeam waveguide with
width w, height h, separated by a gap, followed by a photonic crystal mirror. The dimensions are
discussed in the text. b) Dispersion curves showing effective refractive index neff = β/k where
β = propagation constant of the guided mode, k = 2π/λ = free-space wave number, α = 200
nm and n = 2.0, of the first lowest order supermodes, for symmetric (even) modes: x-polarized
(i) and y-polarized (ii), and anti-symmetric (odd) modes: x-polarized (iii) and y-polarized (iv).
Higher-order modes start to appear beyond V ' 3 in the shaded region. c) Double nanobeam
waveguide. d) Normalized electric field |E| profiles and the components {Eθx, Eθy , Eθz} (where θ in-
dicates the optical phase and location along the z-axis. E.g., θ = 0 ↔ z = 0, θ = π/2 ↔ z = λ/4)
for the double nanobeam (w = 300 nm, h = 200 nm, gap = 200 nm) four lowest order modes
polarized along x. For (i), Emax

x = 0.920|E|max, Emax
y = 0.440|E|max, Emax

z = 0.429|E|max.
For (ii), Emax

x = 0.454|E|max, Emax
y = 0.895|E|max, Emax

z = 0.469|E|max. For (iii), Emax
x =

0.863|E|max, Emax
y = 0.445|E|max, Emax

z = 0.572|E|max. For (iv), Emax
x = 0.498|E|max, Emax

y =
0.910|E|max, Emax

z = 0.446|E|max.
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Figure 3.14: Double nanobeam mode effective area. Plots of λ2/Aeff showing atom-photon
interaction strength profile, for a double nanobeam lowest-order x-polarized (even) mode. a) Con-
tour plot corresponds to nanobeam with width w = 300 nm, height h = 200 nm and gap = 200 nm.
b) Plot of λ2/Aeff at {x, y} = {0, 0} as a function of varying gap parameter. The curves colored
in red, blue, green, magenta, orange correspond to double nanobeam with height h = 200 nm and
width w = 150, 200, 250, 300, 350 nm respectively. c-d) Cross-sectional plots for double nanobeam
structure with height h = 200 nm, varying widths w as labeled in each panel. For each panel, the
gap size is scanned from gap = 100 nm (lightest blue) to gap = 500 nm (darkest blue) in steps of
50 nm. In c), the plots are along x-axis (y = 0), and in d), the plots are along y-axis (x = 0).
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blue-detuned) push beam (with beam diameter ≈ 1 mm, power of ≈ 3 mW, and a slightly diverging

profile), indicated by the green arrow in Fig. 3.15 a), pierces through the large MOT cloud, creating a

flux of atoms that slowly diverges in the transverse direction due to its temperature, moving towards

the science chamber (vi) [241]. The two chambers are separated by an all-metal in-line valve (iii),

so that each can be individually isolated and pumped down independently through the all-metal

valves (ii) and (iv). In operation, both chambers are continuously kept at UHV by two operating

ion pumps, one for the source chamber (not shown) and one for the science chamber (v). The source

of Cesium atoms in the MOT chamber is a getter, giving a background pressure of ∼ 10−9 torr in

operation. With no strong differential pumping tube (narrowest tube diameter is about 1 cm), the

≈ 70 cm distance from the source to science chamber, the ≈ 70 cm distance from science chamber

to the ion pump (v), and all the vacuum connections, we have a differential pressure factor of ≈ 10

between the source and science chamber. In operation, the science chamber background pressure is

≈ 10−10 − 10−9 torr.

We note that one important parameter in this system is the atom number and density of the atom

cloud that can be delivered to the nanophotonic chip in the science chamber. Unlike in the toroid

case, where it is not possible to overlap a MOT cloud over the toroid device, here it is actually possible

to overlap a MOT cloud directly over the nanophotonic chip’s thru-hole, where the nanophotonic

devices are located, forming little thin bridges. This offers benefits in terms of size and density

of atom cloud, as well as the possibility of cooling the atoms, for example through the simplest

Doppler-cooling (optical molasses) of the MOT, and sub-Doppler cooling with polarization-gradient

cooling techniques.

The jet of cesium atoms coming from the source chamber to the science chamber is then collected

by a large magneto-optical trap (with practically maximized MOT beam diameter of ≈ 2 cm to cover

as large as possible capture velocity and to collect as many atoms as possible). Here, we magneto-

optically trap ≈ 2 × 107 atoms (after 1 second loading time), which are then polarization-gradient

cooled, and compressed by increasing the detunings of the MOT and repumper beams, and at

the same time attenuating the optical powers [58], leading to about a two-fold density increase to

≈ 4× 1010 atoms/cm3. This dense first MOT in the science chamber is illustrated in the left panel

of Fig. 3.15 b), showing the jet of cesium atoms coming from the left (source chamber), magneto-

optically trapped by the large X-shaped counter-propagating beams (and also a pair for the vertical

confinement): see the red arrows Fig. 3.15 a) representing the three pairs of large MOT beams at

the science chamber (vi). An absorption image of this dense MOT is shown in Fig. 3.15 b) panel (i).
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Figure 3.15: Nanophotonic beams and cavities experiment setup. a) Schematic of experi-
mental setup showing two chambers separated by 70 cm connected by a differential pumping tube,
where a magneto-optically trapped atom cloud is formed in the first chamber (i), pierced through
by a near-resonant push beam (green arrow) that forms a jet of atoms, to be captured by a sec-
ond magneto-optical trap in the science chamber (vi) formed by three pairs of counter-propagating
beams shown by the red arrows, and in b). Following this stage, the cloud of atoms in the science
chamber is transported and recaptured by a mini-magneto-optical trap inside the chip’s thru-hole
over the nanophotonic devices, formed by three pairs of small counter-propagating cooling and trap-
ping beams shown in b). The setup is designed with multiple vacuum valves (ii), (iii), (iv) allowing
frequent loading/unloading of nanophotonic device chip mounted on a multiplexer (vii) and trans-
lation stage (viii). c) Fluorescence image showing atom cloud transport from science chamber large
MOT to mini-MOT inside the chip, taken with CCD camera with viewing direction shown by the
cyan arrow in a) and b), also shown on the right panel of b). d) Setup built for our experiment.
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At this stage, we have a nice dense MOT cloud in the science chamber, but it is not yet positioned

to overlap the nanophotonic device on the chip. The final step involves transporting this MOT cloud

by changing the zero-field location of the quadrupole field (by changing the three pairs of bias-coils),

so that the new zero is located right inside the thru-hole of the nanophotonic chip, where another

independent setup of three pairs of counter-propagating MOT beams, called mini-MOT beams to

distinguish from the large MOT beams we discussed above, form a mini-MOT at the center of the

nanophotonic chip. These mini-MOT beams have beam diameter in the order of ≈ 1 mm, fitting in

nicely with the chip’s through-hole opening of 2 mm x 6 mm. More detailed mechanism of this MOT

transport will be discussed in Chapter 8 and can also be found in Chapter 5 of [221]. We note that

due to the mechanism that involves atom velocity-selection coupled to the magnetic field profiles or

directions, the transport is quantized and is only efficient over certain directions with respect to the

magnetic field distribution [218, 242, 221]. With this technique, we could transport the first MOT

cloud to the second mini-MOT location over ≈ 1 cm in ≈ 10 ms, with about 50% transport efficiency.

This leads to a mini-MOT cloud positioned overlaping a nanophotonic device (inside the chip’s thru-

hole), with atom number of ≈ 7×106 atoms with a density of 1010 atoms/cm3. Figure 3.15 c) shows

a time-series in panels (i) to (iv) measuring the transport of the MOT cloud within the science

chamber, from the first large MOT (i) to the mini-MOT (iv) inside the nanophotonic chip. These

images show absorption by the atom cloud of a resonant weak beam shone towards the CCD camera;

note that the shadow of the nanophotonic chip with its through-hole structure is also visible. These

images were taken with a side-view CCD camera, facing the direction shown by the cyan arrow in

Fig. 3.15 a) and b). The right hand panel of Fig. 3.15 b) shows the view of the CCD camera, with

the MOT transports indicated by the arrows. The dotted arrows showing the MOT transport to

the mini-MOT indicate that the atom cloud goes behind the chip as seen from the CCD camera.

Finally we note that the chip is mounted on a translation stage with axial linear tunability and

rotational tunability (labeled by (viii) in Fig. 3.15 a)). The translation stage is connected to a

multiplexer (vii) with optical fiber feed-throughs, which is connected to the science chamber. For

more detailed discussion on the experimental setup and schemes, please refer to Chapter 8.

3.4 Summary

In this chapter, we have presented an overview of the three platforms considered in this thesis,

namely: microtoroidal cavity QED where we realized an efficient single photon router [10] and

observed in real-time strong-coupling of single cesium atoms to single photons in the whispering



92

gallery mode of an on-chip microtoroid resonator [5]; a tapered optical nanofiber where significant

atom-photon coupling through absorption spectroscopy has been observed [91] via state insensitive

trapping of single atoms ∼ 210 nm close to the surface of a nanofiber; and finally a nanophotonic

waveguide where techniques from the earlier platforms are being combined for promising prospects of

achieving very strong atom-photon coupling and long interaction time through robust atom trapping,

as well as possible future exploitation of band-structure effects and many-body physics [40, 41].

These advances help to provide a path towards a full chip-integrated architecture to realize quantum

network systems for the realization of quantum networks [132]. More detailed discussions, including

the experiments performed and theoretical investigations are presented in the subsequent chapters.


