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Chapter 5

The Tomographic Imaging Camera

5.1 Introduction

So far in our discussion of 3-D imaging we have focused on the retrieval of depth

information from a single location in the transverse plane. One way to acquire a full

3-D data set is through mechanical raster-scanning of the laser beam across the object

space. The acquisition time in such systems is ultimately limited by the scan speed,

and for very high resolution datasets (> 1 transverse mega pixel) is prohibitively slow.

Rapid 3-D imaging is of crucial importance in in vivo biomedical diagnostics [21,

26] because it reduces artifacts introduced by patient motion. In addition, a high-

throughput, non-destructive 3-D imaging technology is necessary to meet the require-

ments of several new industrial developments. The emerging fields of 3-D printing and

manufacturing [27] will require high-precision and cost-effective 3-D imaging capabili-

ties. Advances in 3-D tissue engineering, such as synthetic blood vessels [28], synthetic

tendons [29], and synthetic bone tissue [30], require high-resolution 3-D imaging for

tissue monitoring and quality control. To ensure higher physiological relevance of

drug tests, the pharmaceutical industry is moving from two-dimensional (2-D) to 3-D

cell cultures and tissue models, and high-throughput 3-D imaging will be used as

a basic tool in the drug development process [31]. To date, no imaging technology

exists that meets these industrial demands.

In this chapter we describe our development of a conceptually new, 3-D tomo-

graphic imaging camera (TomICam) that is capable of robust, large field of view,
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and rapid 3-D imaging. We develop the TomICam theory and demonstrate its basic

principle in a proof-of-concept experiment. We also discuss the application of com-

pressive sensing (CS) to the TomICam platform. CS is an acquisition methodology

that takes advantage of signal structure to compress and sample the information in a

single step. It is of particular interest in applications involving large data sets, such as

3-D imaging, because compression reduces the volume of information that is recorded

by the sensor, effectively speeding up the measurement. We use a series of numerical

simulations to demonstrate a reduction in the number of measurements necessary to

acquire sparse scatterer information with CS TomICam.

5.1.1 Current Approaches to 3-D Imaging and Their Limi-

tations

A generic FMCW 3-D imaging system has two important components: an SFL for

ranging and a technique to translate the one-pixel measurement laterally in two di-

mensions to capture the full 3-D scene. The basic principle of FMCW ranging is

illustrated in figure 5.1. The optical frequency of a single-mode laser is varied lin-

early with time, with a slope ξ. The output of the laser is incident on a target sample

and the reflected signal is mixed with a part of the laser output in a photodetec-

tor (PD). If the relative delay between the two light paths is τ , the PD output is a

sinusoidal current with frequency ξτ . The distance to the sample is determined by

taking a Fourier transform of the detected photocurrent. Reflections from multiple

scatterers at different depths result in separate frequencies in the photocurrent.

ω
L

0

PD
Launched Reflected

ω0 + ξt ω0 + ξ(t− τ)

i ∝ cos [ξτt+ ω0τ ]

Resolution: δz = c
2B

Figure 5.1: Principle of FMCW imaging with a single reflector
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The important metrics of an SFL are first, the sweep linearity—a highly linear

source reduces the data-processing overhead—and, second, the total frequency excur-

sion, B, which determines the axial (z) resolution (see figure 5.1 and equation (5.3)).

State-of-the-art SFL sources for biomedical and other imaging applications are typ-

ically mechanically-tuned external-cavity lasers where a rotating grating tunes the

lasing frequency [26, 48, 63]. Excursions in excess of 10 THz, corresponding to axial

resolutions of about 10 µm [26, 48] have been demonstrated for biomedical imaging

applications. Fourier-domain mode locking (FDML) [64] and quasi-phase continuous

tuning [65] have been developed to further improve the tuning speed and lasing prop-

erties of these sources. However, all these approaches suffer from complex mechanical

embodiments that lead to a high system cost and limit the speed, linearity, coherence,

size, reliability, and ease of use of the SFL.

Detectors for 3-D imaging typically rely on mechanical scanning of a single-pixel

measurement across the scene [66], as shown schematically in figure 5.2a. The combi-

nation of high lateral resolution (< 10 µm) and large field of view (> 1 cm), requires

scanning over millions of pixels, resulting in slow acquisition. The mechanical nature

of the beam scanning is unattractive for high-throughput, industrial applications, due

to a limited speed and reliability. It is therefore desirable to eliminate the requirement

for beam scanning, and obtain the information from the entire field of view in one

shot. This is possible using a 2-D array of photodetectors and floodlight illumination.

However, in a high-axial-resolution system, each detector in the array measures a beat

signal ξτ in the MHz regime. A large array of high speed detectors therefore needs

to operate at impractical data rates (∼THz) and is prohibitively expensive. For this

reason, full-field FMCW imaging systems have been limited to demonstrations with

extremely slow scanning rates [25,66] or expensive small arrays [67].

A further limitation of FMCW imaging is the need to process the photodetec-

tor information. This processing typically consists of taking a Fourier transform of

the photocurrent at each lateral (x, y) position. In applications requiring real-time

imaging, e.g., autonomous navigation [68], it is desirable to minimize the amount of

processing overhead.
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An ideal FMCW 3-D imaging system will therefore consist of a rapidly tuned

SFL with a large frequency sweep and a detection technique that is capable of mea-

suring the lateral extent of the object in one shot. The system will be inexpensive,

robust, and contain no moving parts. The TomICam platform achieves these goals

through its use of low-cost low-speed detector arrays. It takes advantage of the lin-

earity and starting frequency stability of the optoelectronic SFL (see chapter 3), as

well as our development of SFLs at wavelengths compatible with off-the-shelf silicon

cameras (1060 nm and 850 nm). Moreover, TomICam is inherently compatible with

novel compressive acquisition schemes [69], which leads to further increases in the

acquisition speed.

Various other approaches to 3-D imaging have been described in literature, and

recent work is summarized in table 5.1. Broadly speaking, the depth information

is obtained using time-of-flight (TOF) or FMCW techniques. Transverse imaging

is obtained either by mechanical scanning or using a full-field detector array. In

some embodiments, compressive sensing ideas are used to reduce the number of mea-

surements necessary to obtain the full 3-D image. TOF ranging systems illuminate

the sample with a pulsed light source, and measure the arrival time of the reflected

pulse(s) to obtain depth information. As a result, the axial resolution of TOF systems

is limited by the pulse-width of the optical source, as well as the bandwidth of the de-

tector. Ongoing TOF experiments rely on expensive femto/pico-second mode-locked

lasers and/or acquisition systems with large bandwidths (' 10s of GHz), in order to

achieve sub-cm axial resolution [17]. Transverse imaging is typically achieved using

mechanically scanned optics [16]. Full-field imaging systems using specially designed

demodulating pixels have also been demonstrated; however, these systems have sig-

nificantly lower axial resolution (' 10s of cm) and a limited unambiguous depth of

range [70].

FMCW ranging has many advantages over the TOF approach, since it elimi-

nates the need for narrow optical pulses or accurate high-speed optical detectors

and electronics (see chapter 2). Very high resolution systems (< 10 µm) have been

demonstrated, and have found many applications, e.g., swept-source optical coherence
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Technology
Axial

resolution
Transverse

imaging
Hardware

requirement
Limitations

Compressive
sensing

TOF-
LIDAR [16]

' 2 cm
Mechanical
scanning

Mode-locked
laser, fast
electronics

Slow scanning,
moving parts,

expensive
components,

limited
resolution

Not used in
cited work

T
O

F Single-pixel
TOF-

LIDAR [17]
' 1 cm

Spatial
light

modulator,
single pixel

detector

Mode-locked
laser, fast

electronics,
SLM

Expensive
components,

limited
resolution

Used to
convert the
single-pixel
data into a
3D model

Lock-in
TOF [70]

10s of cm
Lock-in

pixel CCD

Specially
engineered

lock-in pixel
CCD

Poor
resolution,

limited lock-in
CCD size

Not used

SS-
OCT/CS-
OCT [71]

1–10 µm
Mechanical
scanning

External cavity
chirped laser
with moving
parts, slow

detector

Slow scanning,
moving parts,

bulky and
fragile

Used to
reduce scan

time

F
M

C
W

TomICam
10–

100 µm

CCD/
CMOS
array

Optoelectronic
SFL (no

moving parts),
standard

CCD/CMOS
sensor

Floodlight
illumination

(higher power)

Reduced
acquisition
time and

power

Table 5.1: Recent 3-D camera embodiments
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(a) (b)

Figure 5.2: (a) Volume acquisition by a raster scan of a single-pixel FMCW measure-
ment across the object space. (b) Volume acquisition in a TomICam system. 3-D
information is recorded one transverse slice at a time. The measurement depth is
chosen electronically by setting the frequency of the modulation waveform.

tomography [71].

The TomICam approach is unique, in that it combines the high resolution of

FMCW ranging, along with full-field imaging using a detector array, thereby elimi-

nating any mechanical beam scanning optics. Moreover, it does not require specially

engineered detectors pixels, unlike the lock-in TOF lidar [70], making it more ver-

satile and scalable. Specifically, state-of-the art lock-in CCDs are limited to tens of

thousands of pixels, while standard low-speed CMOS/CCD sensors with tens of mega

pixels are commercially available. The TomICam technique therefore has significant

advantages over other state-of-the-art high-resolution 3-D imaging modalities.

5.1.2 Tomographic Imaging Camera

In its basic implementation, the TomICam acquires an entire 2-D (x, y) tomographic

slice at a fixed depth z, as shown in figure 5.2b. A full 3-D image is obtained by a set

of measurements where the axial (z) location of the 2-D slice is tuned electronically.

An intuitive description of the TomICam principle is shown in figure 5.3. The

conventional FMCW measurement in figure 5.3a produces peaks in the photocurrent
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Fourier variable (x × time)
xt1 xt2 xt3

FMCW Target
reflections
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0
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intensity
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Fourier variable (x × time)
xt2-n
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measurement

0 xt3-n

(a)

n = xt1

Figure 5.3: (a)Spectrum of the FMCW photocurrent. The peaks at frequencies ξτ1,
ξτ2, and ξτ3, where ξ is the chirp rate, correspond to scatterers at τ1, τ2, and τ3. (b)
The beam intensity is modulated with a frequency ξτ1, shifting the signal spectrum,
such that the peak due to a reflector at τ1 is now at DC. This DC component is
measured by a slow integrating detector.

spectrum, each peak corresponding to a scatterer at a particular depth (z) within the

sample. If a sinusoidal modulation is imposed on the optical intensity, and hence on

the photocurrent, the spectrum is shifted towards DC. In figure 5.3b, the DC compo-

nent of the shifted spectrum is measured by a slow detector (e.g., a pixel in a CCD

or CMOS array). The entire spectrum is recovered by changing the modulation fre-

quency over several scans. This scheme supplants the need for computing the Fourier

transform and thus effects a reduction in system complexity. Inherent compatibility

with compressive sensing further reduces the number of measurements necessary to

reconstruct the full 3-D scene.

In the following sections we develop the formalism necessary to describe the TomI-

Cam principle and its extension with compressive sensing.

5.1.2.1 Summary of FMCW Reflectometry

A detailed description of the FMCW ranging system is presented in chapter 2. Here,

we briefly summarize the FMCW analysis to set the scene for TomICam. Consider

the FMCW experiment shown in figure 5.4a. We analyze the response of this system

under excitation by an SFL with a linear frequency sweep, ω(t) = ω0 + ξt. We

assume that the sample comprises a set of scatterers with reflectivities Rn and round-



89

1×2
coupler

Reference arm

Circulator Integrating

detector

Sample

SFL

2×1
coupler Fast

detector

Fourier

transform

(a)

1×2
coupler

Reference arm

Circulator Integrating

detector

Sample

SFL

Intensity

modulator

W(t)

2×1
coupler

(b)

Figure 5.4: (a) Single-pixel FMCW system. The interferometric signal is recorded
using a fast photodetector, and reflector information is recovered at all depths at
once. (b) Single-pixel TomICam. The beam intensity is modulated with a sinusoid,
and the interferometric signal is integrated using a slow detector. This gives one
number per scan, which is used to calculate the reflector information at a particular
depth, determined by the modulation frequency.
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trip delays τn; and that these delays are smaller than the laser coherence time, so

that any phase noise contribution can be neglected. The normalized photocurrent is

equal to the time-averaged intensity of the incident beam (see chapter 2),

iFMCW(t) =

〈∣∣∣∣∣e(t) +
∑
n

√
Rn e(t− τn)

∣∣∣∣∣
2〉

= rect

(
t− T/2
T

)∑
n

√
Rn cos

[
(ξτn)t+ ω0τn −

ξτn
2

2

]
,

(5.1)

where T is the scan duration, ξ is the slope of the optical chirp, φ0 and ω0 are the

initial phase and frequency, respectively, and only the cross terms were retained for

simplicity. The total frequency excursion of the source (in Hz) is therefore given by

B = ξT/2π. A Fourier transform of this photocurrent results in a map of scatterers

along the direction of beam propagation (e.g., figure 5.3a). The strength of a scatterer

at some delay τ is given by the intensity of the Fourier transform of equation (5.1),

evaluated at a frequency ν = ξτ :

|Y (ν = ξτ)|2 =

∣∣∣∣∫ T

0

exp [j(ξτ)t] iFMCW(t)dt

∣∣∣∣2 . (5.2)

By the Fourier uncertainty relation, the resolution of this measurement is inversely

proportional to the integration time T . The spatial resolution is, therefore, given by

∆z =
c

2

2π

ξ

1

T
=

c

2B
, (5.3)

where c is the speed of light.1

5.1.2.2 TomICam Principle

The key idea behind TomICam is that the Fourier transform required for FMCW

data processing may be performed in hardware using an integrating photodetector,

e.g. a pixel in a CCD or CMOS imaging array. To this end, we modify the basic

FMCW experiment to include an intensity modulator, as shown in figure 5.4b. The

1The scatterer range is given by z = cτ/2.
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integrating detector is reset at the beginning of every sweep, and sampled at the end.

For a given modulation signal W (t), the beat signal at the detector is given by

yW (t) ∝ W (t) iFMCW(t). (5.4)

The value sampled at the output of the integrating detector is therefore given by

YW =

∫ T

0

W (t) iFMCW(t)dt, (5.5)

where YW is the TomICam measurement corresponding to an intensity modulation

waveform W (t), and we assumed an overall system gain of 1 for simplicity. The

TomICam measurement therefore amounts to projecting the FMCW photocurrent of

equation (5.1) onto a basis function described by the modulation W (t).

We consider two modulations: WC = cos [(ξτ)t], and WS = sin [(ξτ)t], which

correspond to the cosine and sine transforms.

YWC
(τ) =

∫ T

0

cos [(ξτ)t] iFMCW(t)dt (5.6)

YWS
(τ) =

∫ T

0

sin [(ξτ)t] iFMCW(t)dt (5.7)

Equation (5.2) may therefore be written as:

|Y (ν = ξτ)|2 = |YWC
(τ) + j ∗ YWS

(τ)|2 = |YWC
(τ)|2 + |YWS

(τ)|2 . (5.8)

The scatterer strength at a delay τ is calculated using two consecutive scans. The

strength of the TomICam platform lies in its ability to generate depth scans using

low-bandwidth integrating detectors, making possible the use of a detector array, such

as a CMOS or CCD camera. A possible extension to a 2-D integrating detector array

is shown in figure 5.5. Each element in the array performs a TomICam measurement

at a particular lateral (x, y) location, as described above. The TomICam platform
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Figure 5.5: A possible TomICam configuration utilizing a CCD or CMOS pixel array
in a Michelson interferometer. Each transverse point (x, y) at a fixed depth (z) in the
object space is mapped to a pixel on the camera. The depth (z) is tuned electronically
by adjusting the frequency of the modulation waveform W (t).

therefore has the following important features:

• A full tomographic slice is obtained in a time that is only limited by the chirp

duration. This is orders of magnitude faster than a raster-scanning solution,

and enables real-time imaging of moving targets.

• The depth of the tomographic slice is controlled by the electronic waveform

W (t), so that the entire 3-D sample space can be captured without moving

parts.

• It leverages the integrating characteristic of widely available inexpensive CCD

and CMOS imaging arrays to substantially reduce signal processing overhead.

• It is scalable to a large number of transverse pixels with no increase in acquisition

or processing time.

• The TomICam platform is not limited to sinusoidal modulations W (t), making

it inherently suitable for compressive sensing, as described in section 5.2.

5.1.2.3 TomICam Proof-of-Principle Experiment

In order to verify the equivalence of FMCW and TomICam measurements, we have

performed a proof-of-principle experiment, shown schematically in figure 5.6. We
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Figure 5.6: Schematic diagram of the TomICam proof-of-principle experiment. A
slow detector was modeled by a fast detector followed by an integrating analog-to-
digital converter. The detector signal was sampled in parallel by a fast oscilloscope,
to provide a baseline FMCW depth measurement.

Figure 5.7: The custom PCB used in the TomICam experiment. Implemented func-
tionality includes triggered arbitrary waveform generation and high-bit-depth acqui-
sition of an analog signal.



94

used the 1550 nm VCSEL-based optoelectronic SFL, described in section 3.4.1, which

produced a precisely linear chirp with a swept optical bandwidth of 400 GHz, and a

scan time of 2 ms. The beam was modulated using a commercially available lithium

niobate intensity modulator.

The necessary electronic functionality, including an arbitrary waveform generator,

an integrating high-bit-depth analog-to-digital converter, and a microcontroller, was

implemented on a PCB, shown in figure 5.7. The waveform generator was used to

provide sine and cosine waveforms of different frequencies to the intensity modulator.

The amplitude of these waveforms was apodized by a Hamming window, which sup-

pressed the sinc sidebands associated with a rectangular apodization. The integrating

analog-to-digital converter recorded a single number per scan. The microcontroller

was used to coordinate the waveform generation and signal acquisition. The pho-

todetector output was also sampled on a high-speed oscilloscope in order to provide

a baseline FMCW measurement.

We used a sample comprising two acrylic slabs. Reflections from the air-acrylic

and acrylic-air interfaces were recorded and the results are shown in figure 5.8. The

red curve is the intensity of the Fourier transform of the FMCW photocurrent. The

blue curve is constructed by varying the frequencies of the modulation waveforms

WC(t) and WS(t), and applying equation (5.8). As expected, the two curves are

practically identical.

We note that a copy of the signal, scaled in frequency by a factor of 1
3
, shows up

in the TomICam spectrum in figure 5.8. This ghost replica is due to a third-order

nonlinearity exhibited by our intensity modulator, and can be resolved through the

use of a linear intensity modulator. An example of such a modulator is the amplitude

controller based on an semiconductor optical amplifier in a feedback loop, described

in section 3.3.2.

We characterize the dynamic range of our system by performing FMCW and

TomICam measurements on a fiber Mach-Zehnder interferometer (MZI). We intro-

duce optical attenuation in one of the MZI arms, and measure the signal SNR. The

results for unbalanced and balanced acquisition in FMCW and TomICam configura-
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Figure 5.8: Comparison between FMCW (red) and TomICam (blue) depth measure-
ments. The two are essentially identical except for a set of ghost targets at 1

3
of the

frequency present in the TomICam spectrum. These ghosts are due to the third-order
nonlinearity of the intensity modulator used in this experiment.

Figure 5.9: Characterization of the FMCW and TomICam dynamic range. The signal-
to-noise ratio was recorded as a function of attenuation in one of the interferometer
arms. At low attenuations, the SNR saturates due to SFL phase noise and residual
nonlinearity.
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tions are shown in figure 5.9. The dynamic range of our system, defined as the ratio

of the strongest to weakest measurable target reflectivity, is about ∼ 80 dB. For low

attenuation, i.e., large reflectivities, the SNR is limited by the laser coherence and

residual chirp nonlinearity, saturating at a (path-length mismatch dependent) value

of ∼ 50 dB. The fiber mismatch used in this experiment was about 40 mm.

5.2 Compressive Sensing

The total number of tomographic slices, N , used in a 3-D image reconstruction is

given by the axial extent, Lz, of the target divided by the axial resolution, ∆z. We

note that most real life targets are sparse in the sense that they have a limited number

of scatterers, k, in the axial direction. The acquisition of N � k slices to form the 3-D

image is therefore inefficient. In this section, we investigate the use of compressive

sensing (CS) in conjunction with the TomICam platform in order to obtain the 3-D

image with many fewer than N measurements. This has the potential to reduce the

image acquisition time and the optical energy requirement of the TomICam by orders

of magnitude.

5.2.1 Compressive Sensing Background

We briefly state the salient features of CS [69]. Consider a linear measurement system

of the form:

y = Ax A ∈ Cm×N ,x ∈ CN ,y ∈ Cm, (5.9)

where the vector x is the signal of interest, and the vector y represents the collected

measurements. The two are related by the measurement matrix A. The case of

interest is the highly under-determined case, m� N . The system therefore possesses

infinitely many solutions. Nevertheless, CS provides a framework to uniquely recover

x, given that x is sufficiently sparse, and the measurement matrix A satisfies certain

properties such as restricted isometry and incoherence [69]. The intuition behind CS
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is to perform the measurements in a carefully chosen basis where the representation

of the signal x is not sparse. The signal is then recovered by finding the sparsest x

that is consistent with the measurement in equation (5.9). Specifically, the recovery

is accomplished by solving a convex minimization problem:

minimize ‖x‖1

subject to Ax = y,
(5.10)

where ‖x‖1 denotes the l1 norm of x. The use of the l1 norm promotes sparse

solutions, while maintaining convexity of the minimization problem, resulting in a

tractable computation time. Success of recovery depends on the number of measure-

ments m, the sparsity level of x, and the properties of the measurement matrix A.

This approach is of particular interest due to continuous advances in computational

algorithms that improve the reconstruction speed [72].

5.2.2 TomICam Posed as a CS Problem

Fundamentally, the FMCW imaging technique converts the reflection from a given

depth in the z direction to a sinusoidal variation of the detected photocurrent at a

frequency that is proportional to the depth. Scatterers from different depths thus

result in a photocurrent with multiple frequency components. In its basic implemen-

tation (section 5.1.2.2), the TomICam uses a single-frequency modulation of the beam

intensity to determine one of these possible frequency components. Full image ac-

quisition requires N measurements (N = Lz/∆z), determined by the axial resolution

of the swept-frequency source. When the number of axial scatterers—and hence the

number of frequency components in the photocurrent—is sparse, the CS framework

enables image acquisition with a smaller number of measurements.

We first show that the TomICam is inherently suited to compressive imaging

and that different types of measurements may be easily performed with almost no

modification to the system. We recast equation (5.5) in a form more suitable for

the discussion of CS. We assume that there are N possible target locations with
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corresponding delays τn, n = 0, 1, . . . , (N − 1) and target reflectivities Rn. These

target locations are separated by the axial resolution: τn = n/B. We assume that

the target is k-sparse so that only k of the N possible reflectivities are nonzero. The

time axis is discretized to N points given by th = hT
N
, h = 0, 1, . . . (N − 1). Equation

(5.5) can now be written as

y =
N−1∑
h=0

N−1∑
n=0

W (th)

√
Rn

N
cos (ξτnth + ω0τn). (5.11)

Each TomICam measurement therefore yields a single value y for a particular W (th)

(per pixel in the lateral plane), as given by equation (5.11). Note that a sinusoidal

variation ofW (th) yields the reflectivity at a particular axial depth, and a tomographic

slice is obtained using a detector array, as described in section 5.1.2.2.

In this section, we will explore other intensity modulation waveforms W (th) that

are compatible with the CS framework to reduce the number of scans in the axial

dimension. We extend the discussion to include m measurements indexed by s, i.e.,

we will use m different intensity modulation waveforms Ws(th) to obtain m distinct

measurements ys. Equation (5.11) can be simplified to give

ys =
N−1∑
h=0

N−1∑
n=0

Ws

(
hT

N

)
· 1√

N
exp

(
−j 2πhn

N

)
·
√
Rn

N
exp

(
−j ω0

B
n
)

=
N−1∑
h=0

N−1∑
n=0

Wsh · Fhn · xn,
(5.12)

where Wsh ≡ Ws

(
hT
N

)
, Fhn ≡ 1√

N
exp

(
−j 2πhn

N

)
, xn ≡

√
Rn
N

exp
(
−j ω0

B
n
)
, and it is

understood that the measurements correspond to the real part of the right hand side.

Rewriting equation (5.12) in matrix notation, we obtain:

y = WFx, (5.13)

where x is the k-sparse target vector of length N , y is the vector containing the m

TomICam measurements, F is the N×N unitary Fourier matrix, and W is the m×N
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matrix that comprises the m intensity modulation waveforms Ws(th).

Since W is electrically controlled, a variety of measurement matrices can there-

fore be programmed in a straightforward manner. Each TomICam measurement ys is

obtained by multiplying the optical beat signal with a unique modulation waveform

Ws(th) and integrating over the measurement interval. If the modulation waveforms

are chosen appropriately, the measurement matrix can be made to satisfy the cru-

cial requirements for CS, i.e., the restricted isometry property and incoherence [69].

This ensures that the information about the target—which is sparse in the axial

dimension—is “spread out” in the domain in which the measurement is performed,

and a much smaller number of measurements is therefore sufficient to successfully

recover the complete image.

5.2.3 Robust Recovery Guarantees

We now consider two possibilities for W that yield a measurement matrix capable

of robust signal recovery. These represent straightforward implementations of CS

TomICam imaging.

5.2.3.1 Random Partial Fourier Measurement Matrix

A random partial Fourier matrix of size m × N is generated by selecting m rows at

random from the N×N Fourier matrix F. This operation is accomplished by a binary

matrix W that has a single nonzero entry in each row. The location of the nonzero

entry is chosen randomly without replacement. For this class of matrices, robust

signal recovery is guaranteed whenever the number of measurements satisfies [73]

m ≥ Ck log (N/ε), (5.14)

where k is the signal sparsity, 1− ε is the probability of recovery, and C is a constant

of order unity.

In the TomICam implementation, a random partial Fourier measurement corre-

sponds to pulsing the intensity modulator during the linear chirp, so that only a single



100

optical frequency is delivered to the target per scan, leaving a lot of dead time. As a

result, the optoelectronic SFL is not the most ideal laser candidate, and other sources

that can provide rapid random frequency access, such as sampled grating SCLs, are

more suitable [74]. In these devices, the cavity mirrors are formed using a pair of

sampled gratings, each of which has multiple spectral reflection bands. Current tun-

ing of the mirror sections is used to make these reflection bands overlap, forming a

single band whose position may be varied over a broad spectral range. Further, a

phase section current is applied to align a Fabry-Pérot cavity mode to the middle

of the band in order to optimize lasing properties. Simultaneously tuning all three

sections enables broadband frequency access, approaching 5 THz at 1550 nm [75].

5.2.3.2 Gaussian or Sub-Gaussian Random Measurement Matrix

This class of matrix has the property that any entry Aij in the matrix A is randomly

chosen from independent and identical Gaussian or sub-Gaussian distributions. In

this case, robust signal recovery is guaranteed for

m ≥ Ck log (N/k), (5.15)

where k is the signal sparsity, and C is a constant of order unity. Moreover, the same

result also applies to a measurement matrix that is a product of a Gaussian or sub-

Gaussian random matrix and a unitary matrix. Since F is unitary, a Gaussian random

matrix W results in robust signal recovery when equation (5.15) is satisfied [76]. The

measurements obtained using a Gaussian matrix W may be interpreted as a collection

of conventional TomICam measurements where each measurement queries all possible

depths with different weights.

We want the failure rate ε to be much less than unity, while the sparsity level k is

at least unity. Therefore, the Gaussian random matrix requires fewer measurements

than the random partial Fourier matrix for correct recovery.



101

M easurem ent 

Generate random 
target of given 

sparsity xo 

l 
Generate random 

code matrix W 

l 
Inject noise, and 

make 
"measurement" l yo= WF(xo+ noise) 

Repeat 1 00 times 

Minimize Ll norm 
of x, subject to 

yo= WFx 

• Space dimension: 
- N=100 

• Number of measurements: 
- m = 0 to 100 

• Sparsity: 
- k = [ 1 , 3, 5, 7, 9] 

• SNR: [40dB, 80dB, 120dB] 

Figure 5.10: Flow diagram and parameters of the CS TomICam simulation

5.2.4 Numerical CS TomICam Investigation

Because the partial Fourier matrix is not well-suited for the TomICam platform, we

continue our investigation with the Gaussian random matrix in mind. We evaluate

the performance of a compressively-sampled TomICam through a series of numerical

simulations. The simulation steps and parameters are summarized in figure 5.10.

We consider a signal space with dimension N = 100, and generate a random target

signal x0 of a given sparsity. We generate a Gaussian random matrix W of size m×N ,

where m is the number of measurements. We then make a noisy measurement

y0 = WF(x0 + xn), (5.16)

where xn is a randomly generated noise vector. We define the SNR as the ratio of

the signal and noise energies,

SNR ≡ ‖x0‖2

‖xn‖2

. (5.17)

We then proceed to solve the convex minimization problem in equation (5.10), which

yields the recovered signal x. We define the signal-to-error ratio (SER) as the ratio of
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Figure 5.11: SER curves for a CS simulation with a Gaussian random matrix
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the energy of the recovered signal to the energy of the difference between the recovered

and the original signals.

SER ≡ ‖x‖2

‖x− x0‖2

. (5.18)

We repeat this procedure 100 times and record the average SER. We consider 0 <

m < 100, and simulate 100 reconstructions for each value of m, resulting in a curve

of SER vs. m. We generate 15 such a curves by considering five sparsity levels

k = [1, 3, 5, 7, 9], and three noise levels SNR = [40dB, 80dB, 120dB].

These curves are plotted in figure 5.11, with the 120 dB SNR shown in red, 80 dB

in blue, and 40 dB in black. We expect that for a small number of measurements,

the reconstructions will fail, yielding a zero SER. Once the number of measurements

satisfies equation (5.15), the reconstruction will essentially always succeed, yielding an

SER that is approximately equal to the SNR. This is the pattern that we see in figure

5.11. The curves corresponding to the different sparsity levels are in order, with the

sparsest case achieving the transition in SER at the lowest number of measurements.

We observe that ∼ 50 measurements are necessary to recover a 9-sparse target, which

corresponds to a factor of two compression, when compared to conventional sampling.

We note that a Gaussian random matrix has negative entries, and is therefore

not physical (we can only modulate the beam intensity with a positive waveform).

To fix this, we investigate numerically random matrices that contain only positive

entries. SER curves for W given by the absolute value of a Gaussian random matrix

are shown in figure 5.12. The qualitative behavior of the curves is unchanged from

the random Gaussian case.

A passive intensity modulator can only provide a modulation between 0 and 1,

and we therefore examine a waveform matrix W with entries that are uniformly

distributed between 0 and 1. The SER curves for this case are shown in figure 5.13,

and follow the trend of the previous simulations.

Realistic intensity modulators have a finite extinction ratio, meaning they cannot

be used to turn the beam completely off. Moreover, it may be desirable to operate the
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Figure 5.13: SER curves for a CS simulation with a waveform matrix whose entries
are uniformly distributed between 0 and 1
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Figure 5.14: SER curves for a CS simulation with a waveform matrix whose entries
are uniformly distributed between 0.5 and 1



105

W Digital [0.5 1], N=100 
140 ..................................... .. 

120 ........................ . 

. . ... . ... . ... . ... . ... . ... . ... . ... . . .. .... .... .... .... .... ........ ........ ............. ·~·· .................................................. . 

-20~----~----~------~----~----~ 

0 20 40 60 80 100 
Number of measurements 

Figure 5.15: SER curves for a CS simulation with a waveform matrix whose entries
take on the values of 0.5 or 1 with equal probabilities

W uniformly distributed on [0 1 ], N=1 000 
140 .. " .. " .. " . 

120 
.-.. cc 100 
"'0 ._.. 
0 

80 ....., .............. 
ro 
'--
'--
0 60 '--'--

.. .... ' .. .... ' .. .... ' .. .... '.. .. .. i . . . 

Q) 

0 
40 ....., 

ro c 
C> 20 (/) 

: : 

0 . . .. ". ". " . " . " ...... " . " .. " .. " . " . " . ··: 

-20 
0 20 40 60 80 100 

Number of measurements 

Figure 5.16: SER curves for an N = 1000 CS simulation with a waveform matrix
whose entries are uniformly distributed between 0.5 and 1



106

intensity modulator away from the zero point to keep its response as linear as possible.

To account for this possibility we ran the simulation using a waveform matrix W with

entries that are uniformly distributed between 0.5 and 1. Again, the transition trends

for the SER curves, shown in figure 5.14 remain essentially unchanged.

The waveform generator has a finite bit depth, and we consider, as an extreme

case, only two modulation levels—0.5 and 1—which corresponds to a waveform matrix

W whose entries can equal either of the modulation levels with equal probabilities.

The SER curves for this simulation are shown in figure 5.15, and again demonstrate

the same behavior.

For our final simulation we increased the dimension of the space to 1000, and used

a waveform matrix W with entries that are uniformly distributed between 0 and 1.

The SER curves for this simulation are shown in figure 5.16. We observe that ∼ 80

measurements are necessary to recover a 9-sparse target, which corresponds to greater

than 10× compression, when compared to conventional sampling.

5.3 Summary

In this chapter we described the basic tomographic imaging camera principle, and

demonstrated single-pixel TomICam ranging in a proof-of-concept experiment. The

TomICam uses a combination of electronically tuned optical sources and low-cost

full-field detector arrays, completely eliminating the need for moving parts tradi-

tionally employed in 3-D imaging. This new imaging modality could be useful in a

variety of established and emerging disciplines, including lidar [18], profilometry [22],

biometrics [25], biomedical diagnostics [21, 26], 3-D manufacturing [27], and tissue

engineering [28–31].

We also discussed the application of compressive sensing to the TomICam plat-

form, and performed a series of numerical simulations. These simulations show that

a factor of 10 reduction in the number of measurements is possible with CS if the

number of depth bins is about 1000. Future implementations of TomICam will benefit

from the development of high frame rate, high pixel count silicon CCD and CMOS
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cameras, rapidly-tunable semiconductor lasers [77], efficient compressive sensing algo-

rithms, and continuous advances in computing performance. As a result, TomICam

has the potential to push 3-D imaging functionality well beyond the state of the art.


